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ON THE GROWTH OF MORDELL-WEIL RANKS IN P -ADIC LIE
EXTENSIONS∗

PIN-CHI HUNG† AND MENG FAI LIM‡

Abstract. Let p be an odd prime and F∞ a p-adic Lie extension of a number field F . Let A
be an abelian variety over F which has ordinary reduction at every primes above p. Under various
assumptions, we establish asymptotic upper bounds for the growth of Mordell-Weil rank of the
abelian variety of A in the said p-adic Lie extension. Our upper bound can be expressed in terms of
invariants coming from the cyclotomic level. Motivated by this formula, we make a conjecture on an
asymptotic upper bound of the growth of Mordell-Weil ranks over a p-adic Lie extension which is in
terms of the Mordell-Weil rank of the abelian variety over the cyclotomic Zp-extension. Finally, it
is then natural to ask whether there is such a conjectural upper bound when the abelian variety has
non-ordinary reduction. For this, we can at least modestly formulate an analogous conjectural upper
bound for the growth of Mordell-Weil ranks of an elliptic curve with good supersingular reduction
at the prime p over a Z2

p-extension of an imaginary quadratic field.
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1. Introduction. Let A be an Abelian variety defined over a number field F .
The well-known Mordell-Weil theorem asserts that the group A(F ) of F -rational
points is a finitely generated abelian group. In particular, this group has a well-
defined Z-rank which is called the Mordell-Weil rank of A. In this paper, we are
interested in the variation of the Mordell-Weil ranks of an abelian variety in a p-adic
Lie extension, where p is an odd prime at which the abelian variety has ordinary
reduction at every prime of F above p. In studying the Mordell-Weil rank, the Selmer
group plays an important role. In his fundamental work [42], Mazur developed the
(ordinary) Iwasawa theory of Selmer groups, and applied it to obtain an upper bound
for the growth of Mordell-Weil ranks in a cyclotomic Zp-extension which we now
describe.

Let F cyc be the cyclotomic Zp-extension of F . Denote by Fn the intermediate
subfield of F cyc/F with index |Fn : F | = pn. Write X(A/F cyc) for the Pontryagin
dual of the Selmer group of A over F cyc. This Selmer group carries a natural Zp�Γ�-
module structure, where Γ = Gal(F cyc/F ). Mazur conjectured that X(A/F cyc) is a
torsion Zp�Γ�-module. Granted the validity of the conjecture, one can attach Iwasawa
λ-invariant to this module which is usually denoted by λZp�Γ�(X(A/F cyc)). The
following is a theorem of Mazur [42, p. 185] (or see [19, Theorem 1.9]) which gives
a uniform bound on the Mordell-Weil ranks in a cyclotomic Zp-extension in term of
this Iwasawa λ-invariant.

Theorem (Mazur). Let A be an abelian variety defined over a number field which
has good ordinary reduction at every primes above p. Let F cyc be the cyclotomic Zp-
extension of F with intermediate subfield Fn of index |Fn : F | = pn. Suppose that
X(A/F cyc) is a torsion Zp�Γ�-module. Then we have

rankZ(A(Fn)) ≤ λZp�Γ�(X(A/F cyc)).
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The goal of this paper is to search for such an analogous upper bound over a p-adic
Lie extension of higher dimension. Indeed, if F∞ is now a uniform p-adic Lie extension
(see Section 3 for definition) of F of dimension d with Galois groupG, there is a natural
extension of the notion of a torsion Zp�G�-module (see [53]). Under the assumption
that X(A/F∞) is torsion over Zp�G�, one can show that rankZ(A(Fn)) = O(p(d−1)n)
by appealing to the work of Harris [24] (also see [2, Corollary 19], [23, Corollary 2.9] or
[40, Theorem 3.2]). However, Harris’s result does not give a concrete upper bound as
in the cyclotomic Zp-extension. The main reason behind this is that we do not have
a nice enough structure theory for modules over noncommutative Iwasawa algebras
unlike the cyclotomic situation (see [4, 8]).

After much intensive study by Coates, Fukaya, Kato, Sujatha and Venjakob [4,
55], they were led to conjecture that the dual Selmer group X(A/F∞) satisfies a
stronger torsion property which enables one to define a higher analogue of the Iwasawa
λ-invariant. We now describe this aspect of their work. Denote by X(A/F∞)(p) the
Zp�G�-submodule of X(A/F∞) consisting of elements annihilated by some power of
p and write Xf (A/F∞) = X(A/F∞)/X(A/F∞)(p). Coates et al [4] conjectured that
Xf (A/F∞) is finitely generated over Zp�H�, where H = Gal(F∞/F cyc). Granted this
conjecture, it then makes sense to speak of rankZp�H�

(
Xf (A/F∞)

)
. It has been long

observed in literature that this quantity serves as a higher analog of the classical λ-
invariant (for instances, see [6, 26]). In view of this, it would seem natural to expect
an upper bound of the Mordell-Weil ranks which has a description in term of this
quantity, and this is precisely the main theorem of our paper.

Theorem (Theorem 3.1). Assume that (i) A is an abelian variety over a number
field F which has ordinary reduction at every primes above p, (ii) F∞ is a uniform
admissible p-adic extension of F of dimension d ≥ 2 and (iii) Xf (A/F∞) is finitely
generated over Zp�H�. Denoting by Fn the fixed field of Gal(F∞/F )p

n

, we have

rankZ(A(Fn)) ≤ rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n +O(p(d−2)n).

We mention in passing that the error term O(p(d−2)n) arises due to the usage
of an asymptotic formula of Harris [24]. By imposing an extra assumption, we can
elucidate the error terms further, and this is the content of the next theorem.

Theorem (Theorem 3.2). Retain all the assumptions of Theorem 3.1. Assume
further that Hi(Hn, X(A/F∞)) is finite for every i ≥ 1 and n ≥ 0. Then one has

rankZ(A(Fn)) ≤ rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n + d corankZp

(A(F∞)(p)).

The point of the extra finiteness assumption in the preceding theorem is to allow
us to avoid the usage of Harris’s formula which is the key in obtaining such a precise
upper bound. The finiteness assumption are known to be valid in many situations
(see Remark after Theorem 3.2).

We should mention that a proof of Theorem 3.2 was established in [12, Corollary
1.4] by an algebraic K-theoretical argument. (Although their result is stated for
(solvable) admissible p-adic Lie extension of dimension ≤ 3, one can check that their
algebraic K-theoretical argument carries over to the general situation.) Our proof
here is different from there in that we do not use any algebraic K-theory, instead
giving a direct proof via control theorems and some rank calculations of Howson and
Harris. Our reason of having this approach is twofold.
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Firstly, the above approach can be adapted to yield a description of
rankZp�H�

(
Xf (A/F∞)

)
in terms of invariants coming from the cyclotomic level F cyc.

Combining this description with the above theorems, one obtains an upper bound
in terms of these cyclotomic invariants (see Corollary 4.5). The latter inspires us to
make a conjecture on an asymptotic upper bound of the Mordell-Weil ranks in terms
of the cyclotomic Mordell-Weil rank (see Conjecture 1). We like to mention that
although Theorems 3.1 and 3.2, and Corollary 4.5 are derived under the validity of
MH(G)-conjecture, our Conjecture 1 does not require the MH(G)-conjecture in its
formulation (although we need an appropriate conjecture of Mazur for our Conjecture
1). We provide some (mild) theoretical evidence to our Conjecture 1 (see Section 5).
We also mention that in proving Conjecture 1 in these situations, we do not assume
the MH(G)-conjecture.

The second reason of adopting a non algebraic K-theoretical proof stems from
a recent work of Lei and Sprung [35], where they obtained an upper bound for an
elliptic curve with good supersingular reduction at the prime p over a Z2

p-extension
of an imaginary quadratic field which is in the spirit of Harris. As the supersingular
situation is slightly more delicate, the approach we adopted is more suitable than the
algebraic K-theoretical approach. Indeed, we are able to establish analogue of Theo-
rem 3.2 for this non-ordinary situation under an appropriate supersingular variant of
theMH(G)-conjecture. We also mention that as in the case of Theorem 3.2, we do not
use Harris’s asymptotic formula which allows us to establish a precise upper bound
(see Theorem 6.3 for details). Following the ordinary situation, we also formulate a
conjecture on an upper bound of the Mordell-Weil ranks in this non-ordinary setting
(see Conjecture 2).

We now give a brief description of the layout of the paper. In Section 2, we
recall certain algebraic notion which will be used subsequently in the paper. We
also prove several lemmas in preparation for the proof of the main results. Section
3 is where we introduce the Selmer groups and prove our main results. In Section
4, we calculate the quantity rankZp�H�

(
Xf (A/F∞)

)
in terms of various cyclotomic

invariants. It is also here that we state our Conjecture 1 and present some evidence for
it. This is further continued in Section 5, where we describe how the combination of
the works of Cornut-Vatsal, Howard, Nekovár̆ can be applied to establish the validity
of our Conjecture 1 for a Z2

p-extension of an imaginary quadratic field. Finally, in
Section 6, we establish results analogue to those in Sections 3 and 4 for an elliptic
curve with good supersingular reduction over the Z2

p-extension of an imaginary field.
Building on this, we formulate our conjecture (Conjecture 2) on the upper bound of
the Mordell-Weil ranks in this modest non-ordinary setting.
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2. Algebraic Preliminaries. In this section, we recall some algebraic prelimi-
naries that will be required in the later part of the paper. Let G be a compact pro-p
p-adic Lie group without p-torsion. It is well known that Zp�G� is an Auslander reg-
ular ring (cf. [53, Theorems 3.26]). Furthermore, the ring Zp�G� has no zero divisors
(cf. [46]), and therefore, admits a skew field Q(G) which is flat over Zp�G� (see [17,
Chapters 6 and 10] or [32, Chapter 4, §9 and §10]). Thanks to this, we can define the
notion of Zp�G�-rank of a finitely generated Zp�G�-module M , which is given by

rankZp�G�(M) = dimQ(G)(Q(G) ⊗Zp�G� M).

The module M is then said to be a torsion Zp�G�-module if rankZp�G�(M) = 0.
Now if M is a finitely generated Zp�G�-module, then its homology groups

Hi(G,M) are finitely generated over Zp (see [26, Proof of Theorem 1.1] or [40, Lemma
3.2.3]). Hence the quantity rankZp

(
Hi(G,M)

)
is well-defined. In view of this obser-

vation, we can now state the following result of Howson (see [26, Theorem 1.1] or [38,
Lemma 4.3]).

Proposition 2.1 (Howson). Let M be a finitely generated Zp�G�-module. Then
we have

rankZp�G�(M) =

d∑
i=0

(−1)i rankZp

(
Hi(G,M)

)
,

where here d denotes the dimension of the p-adic group G.

From now on, our group G is always assumed to be a uniform pro-p group in the
sense of [14, Section 4]. We write Gn for the lower p-series Pn+1(G) which is defined
recursively by P1(G) = G and

Pn+1(G) = Pn(G)p[Pn(G), G], for n ≥ 1.

It follows from [14, Thm. 3.6] that Gpn

= Pn+1(G) and that we have an equality
|G : P2(G)| = |Pn(G) : Pn+1(G)| for every i ≥ 1 (cf. [14, Definition 4.1]). It follows
from these that |G : Gn| = pdn, where d = dimG. We now record the following lemma
whose proof is left to the readers as an exercise (or see [26, Corollary 1.5]).

Lemma 2.2. Let M be a finitely generated Zp�G�-module. Then M is finitely
generated over Zp�Gn� with

rankZp�Gn�(M) = |G : Gn| rankZp�G�(M) = pdn rankZp�G�(M).

The next lemma will be useful in the subsequent of the paper.

Lemma 2.3. Let G be a uniform pro-p group of dimension d and M a finitely
generated Zp�G�-module. Suppose that Hi(Gn,M) is finite for every i ≥ 1 and n ≥ 0.
(Here G0 is to be understood as G.) Then for every n ≥ 0, we have

rankZp
(MGn

) = rankZp�Gn�(M) = pdn rankZp�G�(M).

Proof. This follows from combining Proposition 2.1 and Lemma 2.2.
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To prepare for the next lemma, we need to introduce some more notation. For a
Zp�G�-module M , denote by M(p) the Zp�G�-submodule of M consisting of all the
elements of M which are annihilated by some power of p.

Lemma 2.4. Let G be a uniform pro-p group of dimension d and M a finitely
generated Zp�G�-module. Then for every i ≥ 0, we have

rankZp

(
Hi(G,M)

)
= rankZp

(
Hi(G,Mf )

)
,

where Mf = M/M(p).

Proof. From the short exact sequence

0 −→ M(p) −→ M −→ Mf −→ 0,

we have an exact sequence

Hi

(
G,M(p)

) −→ Hi(G,M) −→ Hi(G,Mf ) −→ Hi−1
(
G,M(p)

)
,

where H−1
(
G,M(p)

)
is to be understood to be zero. Since the ring Zp�G� is Noethe-

rian and M is finitely generated over Zp�G�, so is M(p). Therefore, there exists
a sufficiently large t such that pt annihilates M(p), and hence all its G-homology
groups. As the G-homology groups are finitely generated over Zp (see discussion be-
fore Proposition 2.1), they must therefore be finite. The equality of the lemma is now
a consequence of this observation and the above four terms exact sequence.

Lemma 2.5. Let G be a uniform pro-p group of dimension d. Suppose that M is
a Zp�G�-module which is finitely generated over Zp. Then we have

rankZp

(
H1(G,M)

) ≤ d rankZp(M).

Proof. By virtue of Lemma 2.4, we may assume that M is free as a Zp-module.
Under this said assumption, we have a short exact sequence

0 −→ M
·p−→ M −→ M/p −→ 0

which in turn induces an injection H1(G,M)/p ↪→ H1(G,M/p). It then follows that

rankZp

(
H1(G,M)

) ≤ dimFp

(
H1(G,M)/p

) ≤ dimFp

(
H1(G,M/p)

)
.

Now since G is pro-p, the only simple discrete G-module is isomorphic to Z/p with a
trival G-action (cf. [45, Corollary 1.6.13]). Hence we may apply a dévissage argument
to obtain the inequality

dimFp

(
H1(G,M/p)

) ≤ dimFp

(
H1(G,Z/p)

)
dimFp

(M/p).

As G is a uniform group of dimension d, we have dimFp

(
H1(G,Z/p)

)
= d by [14,

Theorem 4.35]. Finally, as M is assumed to be torsionfree, we have rankZp
(M) =

dimFp
(M/p). The required estimate is now a consequence of these observations.

Suppose that the uniform group G contains a closed normal subgroup H with the
property that Γ := G/H ∼= Zp. Since Γ is clearly a uniform group, it follows from
[14, Proposition 4.31] that H is also a uniform group. Write Hn (resp., Γn) for the
lower p-series Pn+1(H) of H (resp., for Pn+1(Γ) of Γ). The next lemma records the
relations between the lower p-series of the groups H, G and Γ.
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Lemma 2.6. For every n ≥ 1, we have Hn = H ∩Gn and Gn/Hn
∼= Γn.

Proof. Since H and G are uniform, we have Hn = Hpn

and Gn = Gpn

(cf.
[14, Theorem 3.6]). Clearly, one has the inclusion Hpn ⊆ H ∩ Gpn

. Conversely, let
h ∈ H ∩ Gpn

. Then there exists g ∈ G such that h = gp
n

which in turn implies that
the coset gH is a torsion element in G/H. But since G/H ∼= Zp has no p-torsion,
this forces g ∈ H. Hence we have h ∈ Hpn

and this proves the first equality. For the
second equality, one simply observes that

Gn/Hn = Gpn

/Hpn ∼= Gpn

H/H = (G/H)p
n ∼= Γpn

= Γn.

We end the section with one final lemma.

Lemma 2.7. Let G be a uniform pro-p group which contains a closed normal
subgroup H with the property that Γ := G/H ∼= Zp. Let M be a finitely generated
Zp�G�-module which has the properties that Mf := M/M(p) is finitely generated over
Zp�H� and that Hi(H,M) is finitely generated over Zp for all i ≥ 1. Then for every
i ≥ 1, we have

rankZp

(
Hi(H,M)

)
= rankZp

(
Hi(H,Mf )

)
.

Proof. Taking H-homology of the following short exact sequence

0 −→ M(p) −→ M −→ Mf −→ 0,

we obtain a long exact sequence

Hi

(
H,M(p)

) −→ Hi(H,M)
fi−→ Hi(H,Mf ) −→ Hi−1

(
H,M(p)

)
for i ≥ 1. As seen in the proof of Lemma 2.4 there exists a sufficiently large t such
that pt annihilates M(p). It then follows from this that pt annihilates Hi

(
H,M(p)

)
.

This in turn implies that pt annihilates ker fi and cokerfi. But since Hi(H,M), and
therefore, ker fi is finitely generated over Zp, it follows that ker fi is finite. Also,
as Mf is finitely generated over Zp�H�, the group Hi(H,Mf ) is therefore finitely
generated over Zp which in turn implies the same holds for cokerfi. But we have
already seen that cokerfi is annihilated by pt, and so cokerfi is finite. In conclusion,
the map fi has finite kernel and cokernel, and the equality of the lemma is now an
immediate consequence of this.

3. Selmer groups. In this section, we recall the definition of the Selmer group
of an abelian variety. As before, p will denote an odd prime. Let F be a number field
and A an abelian variety over F . Let v be a prime of F . For every finite extension L
of F , we define

Jv(A/L) =
⊕
w|v

H1(Lw, A)(p),

where w runs over the (finite) set of primes of L above v. If L is an infinite extension
of F , we define

Jv(A/L) = lim−→
L

Jv(A/L),
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where the direct limit is taken over all finite extensions L of F contained in L. For
any algebraic (possibly infinite) extension L of F , the Selmer group of A over L is
defined to be

Sel(A/L) = ker
(
H1(L, A(p)) −→

⊕
v

Jv(A/L)
)
,

where v runs through all the primes of F .
If L is a finite extension of F , then the Selmer group and the Mordell-Weil group

are related by the following short exact sequence

0 −→ A(L) ⊗Z Qp/Zp −→ Sel(A/L) −→ X(A/L)(p) −→ 0,

where X(A/L) is the Tate-Shafarevich group. It follows from this that

rankZ(A(L)) ≤ corankZp

(
Sel(A/L)

)
.

Hence the problem of obtaining an upper bound for the Mordell-Weil ranks is reduced
to obtaining an upper bound for the coranks of the Selmer groups. (Of course, it has
been conjectured that X(A/L) is finite and hence the above inequality should be an
equality under this conjecture. However, for our purposes, we do not need to assume
this.)

A Galois extension F∞ of F is said to be a uniform admissible p-adic Lie extension
of F if (i) Gal(F∞/F ) is a uniform pro-p group, (ii) F∞ contains the cyclotomic Zp-
extension F cyc of F and (iii) F∞ is unramified outside a finite set of primes of F .
We shall always write G = Gal(F∞/F ), H = Gal(F∞/F cyc) and Γ = Gal(F cyc/F ).
Denote by X(A/F∞) the Pontryagin dual of Sel(A/F∞).

To continue, we need to recall certain facts from [5]. For now, let K be a finite
extension of Qp. Write IK for the inertia subgroup. Suppose for now that A is an
abelian variety of dimension g defined over K. Write V = Tp(A) ⊗Zp

Qp, where
Tp(A) denotes the Tate module of A. Following [5], we let W be the Gal(K̄/K)-
invariant Qp-subspace of V of minimal dimension such that some subgroup of IK of
finite index acts trivially on V/W . Set C to be the image of W under the natural map
V −→ V/Tp(A) = A(p). As seen in the discussion in [5, pp 150], in the event that
the abelian variety A has semistable reduction over K, C is precisely F(m̄)(p), where
F is the formal group over OK attached to the Neron model for A over OK . Then
as abelian groups, we have C ∼= (Qp/Zp)

h, where g ≤ h ≤ 2g. In general, an abelian
variety A will have semistable reduction over some finite extension K ′ of K. If F ′ is
the associated formal group over K ′, then the above discussion yields C = F ′(m̄)(p).
Hence we still have C ∼= (Qp/Zp)

h with g ≤ h ≤ 2g.
Returning to the global situation, we let A be an abelian variety defined over

a number field F . For each prime v of F above p, denote by Cv the Gal(F̄v/Fv)-
submodule of A(p) with hv = corankZp

(Cv) defined as in the preceding paragraph.
We can now state the following conjecture.

Conjecture (Mazur, Schneider). rankZp�G�

(
X(A/F∞)

)
=

∑
v|p

(hv − g).

The conjecture was first stated by Mazur in [42] for an abelian variety with good
ordinary reduction over a cyclotomic Zp-extension. This conjecture was extended to
general abelian varieties by Schneider in [50]. For a general p-adic Lie extension, the
conjecture was raised in [47] (also see [7, 21, 23]).
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We shall say that our abelian variety has ordinary reduction at all primes above p
if hv = g for every v|p. For instance, an elliptic curve which has either good ordinary
reduction (in the usual sense) or multiplicative reduction at every prime above p is
ordinary in the above sense. Throughout this paper (with the exception of Section 6),
we always assume that our abelian variety has ordinary reduction at all primes above
p. Under this assumption, the conjecture of Mazur and Schneider is then equivalent
to saying that X(A/F∞) is a torsion Zp�G�-module.

Coates et al [4, 9] have predicted that X(A/F∞) satisfies a stronger torsion prop-
erty. In fact, they formulated their conjecture on the structure of the dual Selmer
group of an elliptic curve with good ordinary reduction at all primes above p. When
the elliptic curve has multiplicative reduction at primes above p, this was formulated
in [33]. Here we merely mimic these prior works in stating the following conjecture
for abelian variety with ordinary reduction (in the above sense) at all primes of F
above p.

MH(G)-Conjecture. For every admissible p-adic Lie extension F∞ of F ,
X(A/F∞)/X(A/F∞)(p) is a finitely generated Zp�H�-module.

From now on, we write Xf (A/F∞) = X(A/F∞)/X(A/F∞)(p). Assum-
ing the validity of the MH(G)-Conjecture, it then makes sense to speak of
rankZp�H�

(
Xf (A/F∞)

)
. We can now state the following theorems.

Theorem 3.1. Assume that (i) A is an abelian variety over a number field F
which has ordinary reduction at every prime above p, (ii) F∞ is a uniform admissible
p-adic extension of F of dimension d ≥ 2 and (iii) Xf (A/F∞) is finitely generated
over Zp�H�. Then we have

rankZ(A(Fn)) ≤ rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n +O(p(d−2)n).

As mentioned in the introduction, we can obtain a more precise upper bound
under an additional assumption on the Hn-homology of the dual Selmer groups.

Theorem 3.2. Retain all the assumptions of Theorem 3.1. Assume further that
Hi(Hn, X(A/F∞)) is finite for every i ≥ 1 and n ≥ 0. Then

rankZ(A(Fn)) ≤ rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n + d corankZp

(
A(F∞)(p)

)
.

Remark.
(1) We have presented our results for uniform p-adic Lie extension mainly for

convenience. By virtue of Lazard’s theorem (see [14, Corollary 8.34]), a com-
pact p-adic Lie group contains a uniform subgroup of finite index. Therefore,
by base-changing of the base field, we can obtain an upper bound of the
Mordell-Weil ranks in an arbitrary admissible p-adic Lie extension.

(2) As already mentioned in the introduction, Theorem 3.2 can be proved by
an algebraic K-theoretical argument similar to that in [12, Corollary 1.4].
Our proof here is different from there in that we do not use any algebraic
K-theory. A version of Theorem 3.2 was also obtained in [6, Proposition 6.9]
for an elliptic curve over an GL2-extension under the stronger assumption
that X(A/F∞) is finitely generated over Zp�H�.

(3) The extra assumption on the finiteness of the Hn-homology groups in the
preceding theorem is known to be satisfied in many cases and we shall mention
them here.
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(a) When dimG = 2 (i.e., dimH = 1), it follows from [37, Proposition
5.1(c)] that Hi(Hn, X(A/F∞)) = 0 for every i ≥ 1 and n ≥ 0. Hence
this assumption holds in this situation.

(b) In fact if dimG ≤ 3, this assumption is also verified in [12, Lemma 2.3]
and is an intermediate argument required for the proof of [12, Corollary
1.4].

(c) If A is an elliptic curve, the hypothesis has been verified for a large class
of p-adic Lie extensions (see [2, Proposition 13], [8, Remark 2.6] and [57,
Theorem 1.2 and Lemma 4.3]).

Before proving the theorems, we first establish the following lemma.

Lemma 3.3. Assume that (i) A is an abelian variety over a number field F which
has ordinary reduction at every prime above p and (ii) F∞ is a uniform admissible
p-adic extension of F . Then we have

rankZ(A(Fn)) ≤ rankZp

(
Xf (A/F∞)Gn

)
+ corankZp

(
H1

(
Gn, A(F∞)(p)

))
.

Proof. It suffices to show that the quantity on the right is an upper bound for
corankZp

(Sel(A/Fn)). Consider the following commutative diagram

0 �� Sel(A/Fn)

sn

��

�� H1(GS(Fn), A(p))

hn

��

��
⊕

v∈S Jv(A/Fn)

gn

��

0 �� Sel(A/F∞)Gn �� H1(GS(F∞), A(p))Gn ��

(⊕
v∈S Jv(A/F∞)

)Gn

with exact rows, and where the vertical maps are given by restriction maps. A diagram
chasing argument immediately yields an exact sequence

0 −→ ker sn −→ S(A/Fn) −→ S(A/F∞)Gn

with ker sn contained in H1(Gn, A(F∞)[p∞]). It follows from this that

corankZp(S(A/Fn)) ≤ rankZp

(
X(A/F∞)Gn

)
+ corankZp

(
H1

(
Gn, A(F∞)(p)

))
.

Finally, taking into account that rankZp

(
X(A/F∞)Gn

)
= rankZp

(
Xf (A/F∞)Gn

)
by

Lemma 2.4, we have the lemma.

We are now in position to prove our theorems.

Proof of Theorem 3.1. It follows from Lemma 3.3 that

rankZ(A(Fn)) ≤ rankZp

(
Xf (A/F∞)Gn

)
+ corankZp

(
H1

(
Gn, A(F∞)(p)

))
.

By Lemma 2.5, the second quantity on the right is bounded by d corankZp

(
A(F∞)(p)

)
.

It therefore remains to estimate rankZp

(
Xf (A/F∞)Gn

)
. Since Xf (A/F∞) is finitely

generated over Zp�H�, it is also finitely generated over Zp�Hn�. Hence we have

rankZp

(
Xf (A/F∞)Gn

)
= rankZp

((
Xf (A/F∞)Hn

)
Γn

) ≤ rankZp

(
Xf (A/F∞)Hn

)
= rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n +O(p(d−2)n),
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where the first equality follows from Lemma 2.6, and the final equality follows from
[24, Theorem 1.10] and noting that H has dimension d− 1. The required estimate is
now immediate from combining the above estimates.

Proof of Theorem 3.2. As seen in the proof of Theorem 3.1, we have

rankZ(A(Fn)) ≤ rankZp

(
Xf (A/F∞)Hn

)
+ corankZp

(
H1

(
Gn, A(F∞)(p)

))
.

By Lemma 2.5, the second quantity is bounded by d corankZp
(A(F∞)(p)). On the

other hand, it follows from Lemma 2.4 and the hypothesis of the theorem that
Hi(Hn, Xf (A/F∞)) is finite for every i ≥ 1 and n ≥ 0. Hence we may apply Lemma
2.3 to conclude that

rankZp

(
Xf (A/F∞)Hn

)
= rankZp�H�

(
Xf (A/F∞)

)
p(d−1)n.

The conclusion of the theorem then follows from these.

4. Comparing ranks. Retain the setting and notation from the previous sec-
tion. We shall derive a formula which relates the rankZp�H�(Xf (A/F∞)) in terms of
certain invariants from the cyclotomic level. Recall that by [5, p. 150-151] (also see
discussion in Section 3), for each prime v of F above p, we have a short exact sequence

0 −→ Cv −→ A(p) −→ Dv −→ 0

of discrete Gal(F̄v/Fv)-modules which is characterized by the facts that Cv is divisible
and Dv is the maximal quotient of A(p) by a divisible subgroup such that the inertia
group acts on Dv via a finite quotient. Since our abelian variety A has ordinary
reduction at the prime v, both Cv and Dv are divisible abelian groups of corank
dim(A). Furthermore, by [5, Propositions 4.1, 4.7 and 4.8], we have

Jv(A/F∞) ∼=

⎧⎪⎪⎨⎪⎪⎩
lim−→L

⊕
w|v

H1(Lw, Dv), if v divides p

lim−→L
⊕
w|v

H1(Lw, A(p)), if v does not divides p

where the direct limit is taken over all finite extensions L of F cyc contained in F∞.
We can now state the main result of this section.

Proposition 4.1. Let F∞ be a strongly admissible pro-p Lie extension of F . Let
A be an abelian variety over F which has ordinary reduction at every primes above p.
Assume that X(A/F∞) satisfies the MH(G)-conjecture. Then

rankZp�H�

(
Xf (A/F∞)

)
= rankZp

(
Xf (A/F

cyc)
)
+

∑
w∈S(F cyc),
dimHw≥1

corankZp

(
Zv(F

cyc
w )(p)

)
,

where S(F cyc) is the set of primes of F cyc above S. Here Zv denotes Dv or A(p)
accordingly as v divides p or not.

Remark. Proposition 4.1 has been proved for an elliptic curve E under the
stronger assumption that X(E/F∞) is finitely generated over Zp�H� (see [2, Theorem
16], [6, Corollary 6.10], [22, Theorem 5.4], [23, Theorem 3.1] and [26, Theorem 2.8]).
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The approach for the proof in this general case follows those in the above citations.
For the convenience of the readers, we shall supply a proof here.

As a start, we have the following lemma.

Lemma 4.2. Retaining the assumptions of Proposition 4.1, we have short exact
sequences

0 −→ Sel(A/F cyc) −→ H1(GS(F cyc), A(p)) −→
⊕
v∈S

Jv(A/F
cyc) −→ 0

and

0 −→ Sel(A/F∞) −→ H1(GS(F∞), A(p)) −→
⊕
v∈S

Jv(A/F∞) −→ 0.

Proof. Since X(A/F∞) is assumed to satisfy the MH(G)-conjecture, it follows
from [9, Proposition 2.5] that for every finite extension L of F contained in F∞,
X(A/Lcyc) is torsion over Zp�ΓL�, where ΓL = Gal(Lcyc/L). Since A(Lcyc)(p) is
finite (cf. [48]), we may apply a similar argument to that in [37, Proposition 3.3] to
obtain a short exact sequence

0 −→ Sel(A/Lcyc) −→ H1(GS(Lcyc), A(p)) −→
⊕
v∈S

Jv(A/L
cyc) −→ 0.

In particular, this yields the first short exact sequence by taking L = F . On the other
hand, by taking direct limit over L, we obtain the second short exact sequence.

The next two lemmas are concerned with the H-homology of global cohomology
groups and local cohomology groups.

Lemma 4.3. Retain the assumptions of Proposition 4.1. We then have that
Hi(H,H1(GS(F∞), A(p))) is cofinitely generated over Zp for every i ≥ 1. Moreover,
we have an exact sequence

0 −→ H1(H,A(F∞)(p)) −→ H1(GS(F cyc), A(p))

−→ H1(GS(F∞), A(p))H −→ H2(H,A(F∞)(p)) −→ 0

and isomorphisms

Hi
(
H,H1(GS(F∞), A(p))

) ∼= Hi+2
(
H,A(F∞)(p)

)
for i ≥ 1.

Proof. Since X(A/F∞) is assumed to satisfy the MH(G)-conjecture, it follows
from [9, Proposition 2.5] that for every finite extension L of F contained in F∞,
X(A/Lcyc) is torsion over Zp�ΓL�, where ΓL = Gal(Lcyc/L). Via similar arguments to
those in [37, Proposition 3.3 and Corollary 3.4], we have that H2(GS(F cyc), A(p)) = 0
and H2(GS(F∞), A(p)) = 0. Hence the spectral sequence

Hi
(
H,Hj(GS(F∞), A(p))

)
=⇒ Hi+j(GS(F cyc), A(p))

degenerates to yield an exact sequence

0 −→ H1(H,A(F∞)(p)) −→ H1(GS(F cyc), A(p))

−→ H1(GS(F∞), A(p))H −→ H2(H,A(F∞)(p)) −→ 0
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and isomorphisms

Hi
(
H,H1(GS(F∞), A(p))

) ∼= Hi+2
(
H,A(F∞)(p)

)
for i ≥ 1

where the Zp-cofinitely generation of latter groups follow on noting that for any p-
adic Lie group H and any Zp-cofinitely generated H-moduleW , all of the cohomology
groups Hi(H,W ) are cofinitely generated Zp-modules.

Lemma 4.4. Retain the assumption of Proposition 4.1. Then
Hi

(
H,

⊕
v∈S Jv(A/F∞)

)
is cofinitely generated over Zp for every i ≥ 1. Moreover,

we have an exact sequence

0 −→
⊕

w∈S(F cyc)

H1(Hw, Zv(F∞,w)) −→
⊕
v∈S

Jv(A/F
cyc) −→

(⊕
v∈S

Jv(A/F∞)

)H

−→
⊕

w∈S(F cyc)

H2(Hw, Zv(F∞,w)) −→ 0

and isomorphisms

Hi

(
H,

⊕
v∈S

Jv(A/F∞)

)
∼=

⊕
w∈S(F cyc)

Hi+2
(
Hw, Zv(F∞,w)

)
for i ≥ 1.

Here Zv denotes Dv or A(p) accordingly as v divides p or not.

Proof. This is a local version of Lemma 4.3 with a similar proof noting that
H2(F cyc

w , A(p)) = 0 and H2(F∞,w, A(p)) = 0 by [45, Theorem 7.1.8(i)].

We can now give the proof of Proposition 4.1.

Proof of Proposition 4.1. Consider the following commutative diagram

0 �� Sel(A/F cyc)

α

��

�� H1(GS(F cyc), A(p))

β

��

��
⊕

v∈S

Jv(A/F
cyc)

γ

��

�� 0

0 �� Sel(A/F∞)H �� H1(GS(F∞), A(p))H ��
⊕

v∈S

Jv(A/F∞)H �� H1
(
H,S(A/F∞)

)
�� · · ·

with exact rows. To simplify notation, we write W∞ = H1(GS(F∞), A(p)) and J∞ =⊕
v∈S

Jv(A/F∞). From the commutative diagram, we have a long exact sequence

0 −→ kerα −→ kerβ −→ ker γ −→ cokerα −→ cokerβ
−→ coker γ −→ H1

(
H, Sel(A/F∞)

) −→ H1(H,W∞) −→ H1(H, J∞) −→ · · ·
· · · −→ Hi−1(H, J∞) −→ Hi

(
H, Sel(A/F∞)

) −→ Hi(H,W∞) −→ Hi(H, J∞) −→ · · · .

By Lemmas 4.3 and 4.4, the groups kerβ, ker γ, cokerβ, coker γ, Hi(H,W∞) (for
i ≥ 1) and Hi(H, J∞) (for i ≥ 1) are cofinitely generated over Zp. Thus, combin-
ing this observation with the above exact sequence, we have that kerα, cokerα and
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H1
(
H,S(A/F∞)

)
(for i ≥ 1) are cofinitely generated over Zp. Moreover, we have

corankZp
(kerα) − corankZp

(cokerα)

= −
∑
i≥1

(−1)i corankZp
Hi(H, Sel(A/F∞)) +

∑
i≥1

(−1)i corankZp
Hi(H,A(F∞)(p))

−
∑

w∈S(F cyc),
dimHw≥1

⎛⎝∑
i≥1

(−1)i corankZp
Hi(Hw, Zv(F∞,w))

⎞⎠ ,

where here Zv denotes Dv or A(p) accordingly as v divides p or not. Applying
Proposition 2.1 and Lemma 2.7, the right hand side is just

−
∑
i≥1

(−1)i rankZp
Hi(H,Xf (A/F∞)) − corankZp

H0(H,A(F∞)(p))

+
∑

w∈S(F cyc),
dimHw≥1

corankZp
H0(Hw, Zv(F∞,w)).

Now consider the following commutative diagram

X(A/F∞)(p)H

h′

��

�� X(A/F∞)H

α∨

��

�� Xf (A/F∞)H

h′′

��

�� 0

0 �� X(A/F cyc)(p) �� X(A/F cyc) �� Xf (A/F
cyc) �� 0

with exact rows. This in turns yields a long exact sequence

kerh′ −→ ker(α∨)
f−→ kerh′′ −→ cokerh′ −→ coker (α∨) −→ kerh′′ −→ 0.

Since X(A/F∞) satisfies MH(G)-conjecture, we have that Xf (A/F∞)H is finitely
generated over Zp. By [9, Proposition 2.5], X(A/F cyc) is torsion over Zp�Γ� and
so Xf (A/F

cyc) is finitely generated over Zp. Hence kerh′′ and cokerh′′ are finitely
generated over Zp, and we have

rankZp
(kerh′′) − rankZp

(cokerh′′) = rankZp

(
Xf (A/F∞)H

) − rankZp
(Xf (A/F

cyc)).

On the other hand, as already seen above, ker(α∨) and coker (α∨) are finitely
generated over Zp. Hence so are ker f and cokerh′. But since these latter groups are
p-primary, they must be finite. Thus, we have

rankZp
(ker(α∨))−rankZp

(coker (α∨)) = rankZp

(
Xf (A/F∞)H

)−rankZp
(Xf (A/F

cyc)).

Combining this with the above calculations and applying Proposition 2.1 for
Xf (A/F∞), we obtain the required formula.

A combination of Theorem 3.1/3.2 and Proposition 4.1 yields the following.

Corollary 4.5. Retain the setting of Theorem 3.1. Then we have

rankZ(A(Fn))

≤

⎛⎜⎜⎝rankZp(Xf (A/F
cyc)) +

∑
w∈S(F cyc),
dimHw≥1

corankZp

(
Zv(F

cyc
w )(p)

)⎞⎟⎟⎠ p(d−1)n +O(p(d−2)n),
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where S(F cyc) is the set of primes of F cyc above S.
Furthermore, in the event that the extra assumption of Theorem 3.2 is also valid,

we can replace O(p(d−2)n) in the above inequality by d corankZp

(
A(F∞)(p)

)
.

Notice that the bound on the right hand side makes sense as long as we know that
X(A/F cyc) is torsion over Zp�Γ�. Hence we are naturally led to raise the following
question.

Question. Can one prove the inequality in 4.5 under the weaker assumption
that X(A/F cyc) is torsion over Zp�Γ�?

Note that it is still unknown if one can deduce the validity of MH(G)-conjecture
from Mazur’s conjecture. A case where such an implication holds is when X(A/F cyc)
is finitely generated over Zp (see [9, Theorem 2.1]). However, there are examples
where X(A/F cyc) is not finitely generated over Zp (see [16] and [42, §1, Example 2]).
Despite this, it seems reasonable to conjecture that the upper bound is valid whenever
X(A/F cyc) is torsion over Zp�Γ�. In fact, we shall go one step further in formulating
a more refined conjectural upper bound (see Conjecture 1 below). Before doing so,
we recall the following observation of Mazur [42].

Lemma 4.6. Let A be an abelian variety over a number field F which has ordi-
nary reduction at every primes above p. Suppose that X(A/F cyc) is finitely generated
torsion over Zp�Γ�. Then A(F cyc) is finitely generated as an abelian group.

Proof. Since Mazur’s conjecture holds, we may apply his theorem (as mentioned
in the introduction) to see that rankZ(A(Fn)) ≤ λZp�Γ�(X(A/F cyc)) for every n.
Choose n0 such that rankZ(A(Fn0

)) is as large as possible. Then A(F cyc)/A(Fn0
)

must be a torsion group. Let P ∈ A(F cyc). Then there exists an integer m ≥ 1 such
that mP ∈ A(Fn0). This in turn implies that m (σ(P ) − P ) = σ(mP ) − mP = 0 for
all σ ∈ Gal(F cyc/Fn0). In other words, σ(P ) − P ∈ A(F cyc)tor. By a result of Ribet
[48], the torsion subgroup A(F cyc)tor of A(F cyc) is finite. Set t = |A(F cyc)tor|. Then
t (σ(P ) − P ) = 0 or σ(tP ) = tP for all σ ∈ Gal(F cyc/Fn0

). Hence tP ∈ A(Fn0
).

Therefore, we can define a homomorphism ϕ : A(F cyc) −→ A(Fn0
) by P �→ tP .

The image of ϕ is finitely generated since it is a subgroup of A(Fn0). On the other
hand, the kernel of ϕ is A(F cyc)tor and so is finite. Consequently, A(F cyc) is finitely
generated.

By the preceding lemma, it makes sense to speak of rankZ(A(F cyc)) under the
validity of conjecture of Mazur and Schneider. In view of Corollary 4.5 and the
question raised after, it seems plausible to make the following conjecture.

Conjecture 1. Assume that (i) A is an abelian variety over a number field F
which has ordinary reduction at every primes above p, (ii) F∞ is a uniform admissible
p-adic extension of F of dimension d ≥ 2 and (iii) X(A/F cyc) is finitely generated
torsion over Zp�Γ�. Then we have

rankZ(A(Fn))

≤

⎛⎜⎜⎝rankZ(A(F cyc)) +
∑

w∈S(F cyc),
dimHw≥1

corankZp

(
Zv(F

cyc
w )(p)

)⎞⎟⎟⎠ p(d−1)n +O(p(d−2)n),

where S(F cyc) is the set of primes of F cyc above S which are not divisible by p. In the
event that the extra assumption of Theorem 3.2 is also valid, we replace O(p(d−2)n)
in the above inequality by d corankZp

(A(F∞)(p)).
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The point of Conjecture 1 is that here we have replaced rankZp(X(A/F cyc))
by the smaller quantity rankZ(A(F cyc)). Note that there are examples where
rankZp

(X(A/F cyc)) �= rankZ(A(F cyc)) (see [19, pp. 140-142]). Nevertheless, we
at least can record the following simple observation.

Proposition 4.7. Assume that (i) A is an abelian variety over a number field F
which has ordinary reduction at every primes above p, (ii) F∞ is a uniform admissible
p-adic extension of F of dimension d ≥ 2 and (iii) X(A/F cyc) is finitely generated
over Zp with rankZp

(X(A/F cyc)) = rankZ(A(F cyc)). Then we have

rankZ(A(Fn))

≤

⎛⎜⎜⎝rankZ(A(F cyc)) +
∑

w∈S(F cyc),
dimHw≥1

corankZp

(
Zv(F

cyc
w )(p)

)⎞⎟⎟⎠ p(d−1)n +O(p(d−2)n),

where S(F cyc) is the set of primes of F cyc above S which are not divisible by p.

Proof. Since X(A/F cyc) is finitely generated over Zp, it follows from a similar
argument to that in [9, Theorem 2.1] that X(A/F∞) is finitely generated over Zp�H�
and hence satisfies the MH(G)-conjecture. The conclusion is now a consequence of
Corollary 4.5 and hypothesis (iii).

We also refer readers to [11, Theorem 1.8], [13, Section 2.5] and [15, Theorems
A.38 and A.41] for discussion in support for Conjecture 1.

Finally, one may be tempted to ask the following naive question.

Question. Retain the assumptions of Conjecture 1. Does one always have

rankZ(A(Fn))

=

⎛⎜⎜⎝rankZ(A(F cyc)) +
∑

w∈S(F cyc),
dimHw≥1

corankZp

(
Zv(F

cyc
w )(p)

)⎞⎟⎟⎠ p(d−1)n +O(p(d−2)n)

for n 
 0?

However, as we shall see in the next section, this question has a negative answer.

5. Additional evidence for Conjecture 1. In this section, we describe how
the deep works of Cornut-Vatsal [10], Howard [25] and Nekovár̆ [44] can be applied
to give further evidence to Conjecture 1. For the remainder of this section, E will
denote an elliptic curve defined over Q with good ordinary reduction at the prime p.
Let F be an imaginary quadratic field of Q, and F∞ the Z2

p-extension of F . As before,
write G = Gal(F∞) and H = Gal(F∞/F cyc). We also write Fn for the intermediate
subfield of F∞/F with Gal(Fn/F ) ∼= Z/pn × Z/pn. We shall further assume that
our elliptic curve E has no complex multiplication and has conductor coprime to the
discriminant of F . For ease of comparison, we first work out how the conjectured
upper bound of Conjecture 1 looks like in this situation. As a start, we record the
following lemma which we prove in slight generality.

Lemma 5.1. Let A be an abelian variety over F with good ordinary reduction at
the prime v above p. Then for every prime w of F cyc above v, we have that Dv(F

cyc
w )

is finite.
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Proof. The long cohomology exact sequence of

0 −→ Cv −→ A(p) −→ Dv −→ 0

gives rise to an exact sequence

A(F cyc
w )(p) −→ Dv(F

cyc
w ) −→ H1(F cyc

w , Cv)

−→ H1(F cyc
w , A(p)) −→ H1(F cyc

w , Dv) −→ 0,

where the final zero follows from that fact that H2(F cyc
w , Cv) = 0 (cf. [45, Theorem

7.1.8(i)]). Since our abelian variety has good ordinary reduction at every prime of
v, Imai’s theorem [27] asserts that A(F cyc

w )(p) is finite. On the other hand, a local
Euler characteristics argument (cf. [18, §3]) shows that corankZp(H

1(F cyc
w , A(p))) =

corankZp
(H1(F cyc

w , Cv))+corankZp
(H1(F cyc

w , Dv). Putting these information into the
exact sequence, we see that the Dv(F

cyc
w ) has trivial Zp-corank.

By a theorem of Kato [28], X(E/F cyc) is torsion over Zp�Gal(F cyc/F )�. Hence
rankZ(E(F cyc)) is well-defined (also see Theorem 6.4). Since E is assumed to have
no complex multiplication, E(p) is not realizable over F∞ which, by [39, Lemma 6.2]
or [57, Lemma 5.3], in turn implies that E(F∞)(p) is finite. Finally, since no primes
outside p ramified in a Z2

p-extension, there are no extra contributions from local terms
outside p. Hence Conjecture 1 in this setting reads as follow.

Conjecture 1′. Retain the notation and settings of this section. Then

rankZ(E(Fn)) ≤ rankZ
(
E(F cyc)

)
pn.

Denote by ε(E/F, 1) the root number of Hasse-Weil L-function L(E/F, s).

Theorem 5.2 (Cornut-Vatsal, Howard, Nekovár̆). Retain the above settings. In
the event ε(E/F, 1) = −1, suppose further that F only contains one prime above p
and that p does not divide the class number of F . Then

rankZ(E(Fn)) =

{
O(1), if ε(E/F, 1) = +1

pn +O(1), if ε(E/F, 1) = −1.

Proof. As explained in the proof of [52, Proposition 3.14] (also see [41]), it follows
from a combination of the deep results of Cornut-Vatsal [10], Howard [25] and Nekovár̆
[44] that

corankZp�H�(E(F∞) ⊗ Qp/Zp) =

{
0, if ε(E/F, 1) = +1,

1, if ε(E/F, 1) = −1.

Therefore, by an application of [24, Theorem 1.10], we have

corankZp

((
E(F∞) ⊗ Qp/Zp

)Hn
)

=

{
O(1), if ε(E/F, 1) = +1,

pn +O(1), if ε(E/F, 1) = −1.

On the other hand, we have

corankZp(E(Fn) ⊗ Qp/Zp) ≤ corankZp

((
E(F∞) ⊗ Qp/Zp

)Gn
)

≤ corankZp

((
E(F∞) ⊗ Qp/Zp

)Hn
)
,
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where the second inequality is obvious (noting Lemma 2.6). For the first equality, we
simply note that the kernel of the natural map

E(Fn) ⊗ Qp/Zp −→ (
E(F∞) ⊗ Qp/Zp

)Gn

is contained in the kernel of the map

Sel(E/Fn) −→ S(E/F∞)Gn

which in turn is contained in H1(Gn, E(F∞)(p)) as seen in the proof of Lemma 3.3.
But this latter group is finite as E(F∞)(p) is finite by the discussion before Conjecture
1′.

Now the conclusion of the proposition clearly follows in the case of ε(E/F, 1) = +1.
For the situation when ε(E/F, 1) = −1, Bertolini [1, Proposition 7.6] has shown that

rankZ(E(F ac
n )) = pn +O(1),

where here F ac denotes the anticyclotomic Zp-extension of F and F ac
n is the inter-

mediate subfield of F ac with |F ac
n : F | = pn. Since E(F ac

n ) ⊆ E(Fn), the required
equality follows.

Remark. Proposition 5.1, in particular, gives a negative answer to the question
raised at the end of the preceding section when ε(E/F, 1) = +1.

Corollary 5.3. Retain the settings of Theorem 5.2. In the event that
ε(E/F, 1) = −1, suppose further that X(E/F )(p) is finite. Then Conjecture 1′ is
valid.

Proof. This is clear when ε(E/F, 1) = +1. For the ε(E/F, 1) = −1 case, it
therefore remains to prove that rankZ(E(F cyc)) ≥ 1 which amounts to showing that
rankZ(E(F )) ≥ 1. But by the parity result of [43, Theorem 1], and noting that
X(E/F )(p) is finite by our hypothesis, we have that rankZ(E(F )) is odd. In partic-
ularly, rankZ(E(F )) ≥ 1.

Remark. We emphasis that we do not require the assumption that X(E/F∞)
satisfies the MH(G)-conjecture throughout the discussion in this section.

6. A variant of Conjecture 1 for elliptic curve with supersingular re-
duction. Throughout this section, let E denote an elliptic curve over Q which has
good supersingular reduction at the prime p. In particular, E is no longer ordinary
in the sense of Section 3. Despite this, we like to formulate a variant of Conjecture 1
for this class of elliptic curves in a modest setting, namely the case of a Z2

p-extension.
Denote by Ẽ the reduced curve of E modulo p. We shall assume that ap =

p + 1 − |Ẽ(Fp)| = 0 (note that this automatically holds if p ≥ 5). Let F be an
imaginary quadratic field of Q at which the prime p splits completely, say p = pp.
Denote by F (p∞) the unique Zp-extension of F unramified outside p and by F (pn) the
intermediate subfield of F (p∞) with |F (pn) : F | = pn. We have analogous definitions
for F (p∞) and F (pn). For each pair of nonnegative integers m and n, write F (pmpn)
for the compositum of the fields F (pm) and F (pn).

We now denote by Ê the formal group associated to E/Qp. Let w be a prime of
F∞ above p. By abuse of notation, we write w for the prime of F (pmpn) below this
prime of F∞. Following [30, 35], we define the following groups

E+(F (pmpn)w) = {P ∈ Ê(F (pmpn)w) : trm/l+1,n(P ) ∈ Ê(F (plpn)w), 2 | l, l < m},
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E−(F (pmpn)w) = {P ∈ Ê(F (pmpn)w) : trm/l+1,n(P ) ∈ Ê((Fplpn)w), 2 � l, l < m},

where trm/l+1,n : Ê(F (pmpn)w) −→ Ê(F (pl+1pn)w) denotes the trace map. For a
prime w of F∞ above p, the groups E±(F (pmpn)w) are defined in a similar fashion
as above. From now on, write Fn = F (pnpn). Let s, z ∈ {+,−}. The signed Selmer
group of E over Fn (cf. [30]) is defined to be

Sels,z(E/Fn)

= ker

⎛⎝Sel(E/Fn) −→
(⊕

w|p

H1(Fn,w, E(p))

Es(Fn,w) ⊗ Qp/Zp

)
⊕

(⊕
w|p

H1(Fn,w, E(p))

Ez(Fn,w) ⊗ Qp/Zp

)⎞⎠ .

Set Sels,z(E/F∞) = lim−→
n

Sels,z(E/Fn), where F∞ is the Z2
p-extension of F . We then

write Xs,z(E/F∞) for the Pontryagin dual of Sels,z(E/F∞). We also write G =
Gal(F∞/F ) and Gn = Gal(F∞/Fn). Recently, Lei and Sprung have established the
following result (see [35, Theorem 4.4]).

Theorem 6.1 (Lei-Sprung). Suppose that Xs,z(E/F∞) is torsion over Zp�G�
for every s, z ∈ {+,−}. Then one has rankZ(E(Fn)) = O(pn).

It is then natural to ask if one can give an explicit upper bound as in the ordinary
setting. This is the goal of the remainder of this section. Before doing so, we need
to make the following supersingular analogue of the MH(G)-conjecture (also see [34,
Conjecture 3.16] and [36, Conjecture 5.3]).

Supersingular MH(G)-Conjecture. For every s, z ∈ {+,−}, the
module Xs,z

f (E/F∞) is finitely generated over Zp�H�, where Xs,z
f (E/F∞) =

Xs,z(E/F∞)/Xs,z
f (E/F∞)(p).

The next result records an important consequence of the above conjecture on the
structure of the module Xs,z

f (E/F∞) which we shall require later.

Proposition 6.2. Retain the settings and notation of this section. Assume
further that the Supersingular MH(G)-Conjecture is valid for every s, z ∈ {+,−}.
Then Hi

(
Hn, X

s,z
f (E/F∞)

)
= 0 for every i ≥ 1 and n ≥ 0.

Proof. We first show thatXs,z
f (E/F∞) has no nonzero torsion Zp�H�-submodules.

By the SupersingularMH(G)-Conjecture, Xs,z(E/F∞) is in particular Zp�G�-torsion.
Therefore, a similar argument to that in [29, Theorem 1.1] can be applied to show that
Xs,z(E/F∞) has no nonzero pseudo-null Zp�G�-submodules. By [51, Lemma 4.2],
this in turn implies that Xs,z

f (E/F∞) has no nonzero pseudo-null Zp�G�-submodules.
Now a well-known theorem of Venjakob [54] says that a Zp�G�-module M which is
Zp�H�-finitely generated is a pseudo-null Zp�G�-module if and only if it is a torsion
Zp�H�-module. Since Xs,z

f (E/F∞) is finitely generated over Zp�H� by the validity of
the Supersingular MH(G)-Conjecture, the claim of this paragraph then follows from
a combination of these observations.

We now prove our proposition. Since Hn
∼= Zp, we have that

Hi(Hn, X
s,z
f (E/F∞)) = 0 for i ≥ 2. Denoting by γH a topological generator of H,

we have an identification H1(Hn, X
s,z
f (E/F∞)) = Xs,z

f (E/F∞)[γp
n

H − 1]. But as seen
in the previous paragraph, Xs,z

f (E/F∞) has no nonzero torsion Zp�H�-submodules.
Therefore, we must have H1(Hn, X

s,z
f (E/F∞)) = 0. The proof of the proposition is

now complete.
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We are in position to establish the following supersingular analogue of Theorem
3.2.

Theorem 6.3. Retain the settings and notation of this section. Assume further
that Supersingular MH(G)-Conjecture is valid for all s, z ∈ {+,−}. Then we have

rankZ
(
E(Fn)

) ≤
⎛⎝ ∑

s,z∈{+,−}
rankZp�H�

(
Xs,z(E/F∞)

)⎞⎠ pn.

Proof. By [35, Proposition 4.3], we have

corankZp

(
Sel(E/Fn)

) ≤
∑

s,z∈{+,−}
corankZp

(
Sels,z(E/Fn)

)
.

For each s, z ∈ {+,−}, the kernel of the natural map

Sels,z(E/Fn) −→ Sels,z(E/F∞)Gn

is contained in the kernel of the map

Sel(E/Fn) −→ Sel(E/F∞)Gn

which in turn is contained in H1(Gn, E(F∞)(p)) via a similar argument to that in the
proof of Lemma 3.3. We claim that this latter group is trivial. Supposing for now the
claim holds. Then we have the following inequality

corankZp

(
Sels,z(E/Fn)

) ≤ rankZp

(
Xs,z(E/F∞)Gn

)
.

By Lemma 2.4, the term on the right is equal to rankZp

(
Xs,z

f (E/F∞)Gn

)
which is

less than or equal to rankZp

(
Xs,z

f (E/F∞)Hn

)
. By virtue of Proposition 6.2, we may

apply Lemma 2.3 to obtain rankZp

(
Xs,z

f (E/F∞)Hn

)
= rankZp�H�

(
Xs,z

f (E/F∞)
)
pn.

The conclusion of the theorem now follows from combining these observations.
It remains to verify our claim. To do this, it suffices to show that E(F∞)(p) = 0.

Let w be a prime of F∞ lying over p. Since p splits completely over F , we have F cyc
w =

Qcyc
p , and so we may apply [31, Proposition 8.7] to conclude that E(F cyc

w )(p) = 0. It
follows from this that E(F cyc)(p) = 0. Since F∞/F cyc is a pro-p extension, this in
turn implies that E(F∞)(p) = 0 by [45, Corollary 1.6.13].

We now proceed to formulate a variant of Conjecture 1 in this modest setting.
Recall that it is well-known by now that E is modular (see [3, 56]). Therefore, one
may apply the results of Kato [28] and Rohrlich [49] to conclude the following.

Theorem 6.4 (Kato, Rohrlich). Let E be an elliptic curve over Q and L a finite
abelian extension of Q. Then E(Lcyc) is a finitely generated abelian group.

In particular, the theorem implies that the quantity rankZ
(
E(F cyc)

)
is well-

defined. Thus, we are in position to state our conjecture on the growth of Mordell-Weil
ranks for an elliptic curve with supersingular reduction at p in this modest setting.

Conjecture 2. Let E be an elliptic curve over Q which has good supersingular
reduction at the prime p with ap = 0. Denote by F an imaginary quadratic field of
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Q at which the prime p splits completely. Write Fn for the intermediate subfield of
the Z2

p-extension F∞ of F with Gal(Fn/F ) ∼= Z/pn × Z/pn. Then we have

rankZ(E(Fn)) ≤ 4 rankZ
(
E(F cyc)

)
pn.

Although we are not able to relate rankZp�H�

(
Xs,z(E/F∞)

)
to invariants coming

from the cyclotomic level, we believe it should be related to certain cyclotomic invari-
ants which bound the quantity rankZ

(
E(F cyc)

)
, henceforth the “4” appearing in our

conjecture. In view of Conjecture 1′, one might even ask if the “4” can be removed.
We do not have an answer at this point of the writing.
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