ASIAN J. MATH. (© 2021 International Press
Vol. 25, No. 1, pp. 089-116, February 2021 006

QUASI-UNIPOTENT MOTIVES AND MOTIVIC NEARBY SHEAVES*

FLORIAN IVORRAT AND JULIEN SEBAGH

Abstract. Let k be an algebraically closed field of characteristic zero. We consider a relative
version over a general k-scheme of the category of quasi-unipotent motives introduced by J. Ayoub
over k. We introduce a monodromic version of the nearby motivic sheaf functor associated with a
function f : X — A,lc on a separated k-scheme of finite type and show that the motives obtained
by applying it are quasi-unipotent. Using this construction, we prove a comparison between this
monodromic version of the motivic nearby sheaf of J. Ayoub and the theory of virtual nearby cycles
of J. Denef and F. Loeser that takes into account the monodromy action.
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1. Introduction. Let k& be a field of characteristic zero and X be smooth k-
variety. To every morphism f: X — A}c, one classically attaches the following degen-
eration diagram:

X, X X, (1.1)

e e |

7= G —— AL <— 5 := Spec(k),

where i is the zero section of the structural morphism of the affine line and j its
complement. Inspired by the theory of nearby cycles, in [9], J. Denef and F. Loeser
introduced the so-called motivic nearby cycles 1, which can be defined by

vp= Y [D3,p(1-L)I"" e Kf(Varx,) (1.2)
0#£JCI

as an element of a monodromic version of the usual Grothendieck ring of varieties.
This formula can be computed, via motivic integration, on every log-resolution of the
singularities of the pair (X, X,). (See[remark 5.3.3|for complements.) In this context,
D = Zie ;m;Dj is the exceptional divisor of the chosen log-resolution, and ﬁf’, is an
étale covering of DY for every nonempty subset J C I (see the end of the introduction
for the notation). Independently, in [2], §3.5], J. Ayoub developed a functorial theory
of motivic nearby cycles that provides a nearby motivic sheaf ¥y(1x,) € SHo(X,),
which can be interpreted as an incarnation of the classical nearby cycles in the world
of motives.
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90 F. IVORRA AND J. SEBAG

With J. Ayoub, the authors in [7] have shown that the nearby motivic sheaf
Vs (1x,) can be compared to Denef-Loeser’s construction (see also [20, Theorem 5.1]
for an earlier version in the category of étale motives). Precisely, one has the following
statement:

THEOREM (See [T, Corollary 8.7]). Keep the notation of diagram|(1.1)l We have
the following formula

[\I/f(]lxn)] = XXG,C<’(/}f) € KO(SHDﬁ7ct<XU))~ (13)

In this statement, the ring morphism xx, o: Ko(Varx,) — Ko(SHop t(X,)) is
the motivic Euler characteristic defined by motives with compact support of X,-
varieties. Let us stress that formula does not take into account the monodromy
action which is yet crucial in the theory of nearby cycles. One explanation of this
weakness is the lack, in the theory of motives of Ayoub-Voevodsky, of a reasonnable
notion of quasi-unipotent motives in the relative settings and a description of the
nearby motivic sheaf as a quasi-unipotent motives over the special fiber.

The goal of the present article is to define the category of quasi-unipotent motives
over a scheme, provide such a description of (1 x,) and extend formula to the
monodromic context. After a presentation, in of results on group actions
useful for establishing our main results, we introduce and study, in the
category QUSH,y;(S) of quasi-unipotent motives on a scheme S.

The main results of this section are used to prove[theorem 4.1.T]and [theorem 4.2.7]
which, in particular, lift the nearby motivic sheaf (1 x, ) to a quasi-unipotent motive
\If}non(]l x,)- More precisely, our first main theorem is the following.

THEOREM. Keep the notation of diagram , Let fGm : Spec(Ox [T, T7]) —
Al be the morphism obtained from f by multplication with the parameter T. Then,

‘I"r;lon(]lxn) = \I/fcm (IlG

vn,Xn)

is in QUSHyy, (X, ), and there is a canonical isomorphism

Iy Wi (1x,) = Uy(lx,).

Thanks to the results of we construct, in a monodromic

motivic Euler characteristic with values in the Grothendieck ring of quasi-unipotent
motives. This ring morphism allows us to formulate and prove our second main result
which can be interpreted as a monodromic version of formula(1.3)| (seetheorem 5.3.1):

THEOREM. For every k-variety S, the motivic Euler characteristic Xsxa,,,c in-
duces a morphism of rings

X5 Kb (Vars) = Ko(QUSHgy (S))
which verifies the following formula:

X, () = [TF"(1x,)] € Ko(QUSHyy (X,)).
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Conventions, notation. In this article, we denote by k£ an algebraically closed
field of characteristic zero and by S a separated noetherian k-scheme of finite Krull
dimension. For every k-scheme Y, a Y -variety is a separated Y-scheme of finite type.
For every k-scheme Y, we denote by Spec(Oy[T,T7']) the k-scheme Y xj Gy,
when we have to fix coordinates on Gy, . For every k-scheme Y, we denote by
ly: Y — G,y the unit section morphism. For every k-scheme Y, we denote by
Ko(Vary) the usual Grothendieck ring of Y-varieties defined, e.g., in [I0]. For every
morphism of k-schemes f: Y’ — Y, we denote by f: Gy’ = Gy,,y the morphism of
k-schemes obtained by base-change over k. Let Y be a scheme and (D;);er be a set of
irreductible components of Y. Given a nonempty subset J C I, we denote by D ; and
D(J) the reduced closed subschemes of Y given by D; = NicyD;, D(J) = UsesD;
and DS := Dy \ D(I\J).

2. Preliminaries on group actions. If G be an algebraic k-group scheme,
acting on a k-variety X, we say that the action is good if every G-orbit is contained
in an affine open subscheme of X according to the terminology used in [9]. We set
By, for A} or G, i, and Cy, for Gy, i or py, i, := Spec(k[T]/(T™ — 1)). The k-scheme
By is endowed with a good Cyg-action, called multiplication,

mg Bk Xk Ck — Bk (21)

which corresponds, at the level of the A-points, for a k-algebra A, to the map
mi(A): (a, B) — af. We denote by mg the base-change morphism Idg x my.

2.1. Diagonally monomial G,,-actions. Let n € N* be an integer. We de-
note by e, : Gy, — Gy, the morphism of k-schemes associated with the morphism
of k-algebras T +— T™. Let p : Y — § Xy, Gy, 1 be a Gy, g-variety. A good G, k-
action o : Y Xj Gy, — Y on the k-scheme Y is said to be diagonally monomial
(simply called gdm action) of weight n if the diagram

Y Xk Gm,k -7 Y (22)

S % (G Xk Gmk) == S X G

is commutative. Let us stress that the action o is gdm if and only if p becomes an
equivariant morphism when G, g is endowed with the action (S X G k) X Gk —
S Xt G i given by (s,u,v) — (s, uv™). We denote by Varg;'a”m the category whose
objects are the pairs (p : Y — Gy, g,0) where p is a G, g-variety and o is a dgm
G, x-action of weight n on Y. The morphisms in this category are the morphisms
of G, s-schemes which are equivariant with respect to the Gy, p-action. Let us note
that the structural morphism of G, 5 is Idg and the gdm Gy, p-action is given
by Idg X ey.

Since the field k is assumed to be of characteristic zero and algebraically closed,
the k-group scheme p,, i, is identified with the finite group object in the category Schy,
associated with the finite group of the n-th roots of unity in k. Let us introduce the
category Vark™ whose objects are the pairs (p: Y — S, 0) formed by a S-variety ¥
endowed with a good p,, x-action. The morphisms of this category are the morphisms
of S-schemes which are equivariant with respect to the p, y-action. We assume that
S is endowed with the trivial action. By [I7, Lemma 2.5] (see also [25]), we have the

m,S
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following link:

PROPOSITION 2.1.1. Letn € N* be an integer. The categories Var?:é"m,VarS"
are equivalent.

We refer to loc. cit. for the proof of [proposition 2.1.1] but provide a quick
description of the involved quasi-inverse functors which will be useful for our own
purposes. With an object (p: Y — Gy,,g,0) of the category Varg;'g:n, the first
functor associates the S-variety Y7 defined by the following cartesian square:

Y ~Y (2.3)

,°

S T vas.

This S-variety Y; naturally carries on a good i, p-action o; since the G, r-action is
assumed to be good and monomially diagonal. The quasi-inverse functor is defined
as follows. To every S-variety p: Y — S, endowed with a good p, ;-action o, one
attaches the G, g-variety p x e, : Y X, Gy, p — G 9, with the p, p-action given,
for every k-algebra A, on the A-points by the map

Y(A) x A% % o n(A) = Y (A) x A (2.4)

defined by (x, A\, ) + (xp, Au~1). The required functor then associates with Y the
G, s-variety Y x;:"”" G, 1 defined to be the geometric quotient of Y xj, Gy, 1 by the
action The action o of Gy, on Y Xy Gy, induces a gdm Gy, g-action & on
Y XZ"’k Gm k-

REMARK 2.1.2. Let Y, X be schemes with a factorization ¥ — X — Y of the
identiy of Y. Then, if X is reduced, so is Y. Using this elementary remark and
diagram we observe that the scheme Y; contructed by diagram is reduced
when the G, s-variety Y is assumed to be reduced. Conversely, [27, §2/(2)] implies
that Y xg""“ G, is reduced if the S-scheme Y is reduced.

2.2. Examples. Given a S-variety Y, g € Oy (Y)* and n € N*, Ayoub defines
the following G, s-scheme Q9™ (Y, g):

Spec(Oy [T, T, V]/(V™ — ¢gT)) — Spec(Os[T,T7']) = Gp.s. (2.5)
We can view this scheme as an object of the category Varg;'a”m when we endow it
with the unique gdm G, p-action o of weight n defined, for every k-algebra A, on the
A-points by the map

Q" (Y,9)(A) x A — Q™ (Y, 9)(4)

which sends ((y,t,v),a) to (y,a™t,av) where y € Y(A), a« € A* and t,v are the
images of T,V in Oy [T, T, V]/(V™ — gT).

Let p: Y — Gy, s be a morphism of k-schemes. Let us explain how to interpret
the composed morphism (as in diagram

pXen ms
Y X G — G5 Xi Gpe — Gons
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in term of schemes of the form Q9™. Let g € €(Y)* be the unit on Y given by the
inverse image of T~! along the morphism

Y = G5 — G i, := Spec(k[T,T7)).

Then, we observe that the morphism mg o (p X e,) coincides with the structural
morphism

Q4 (Y, g) »= Spec(Oy [T, T~ 1, V]/(V" — gT)) =Y X1 G

Spec(Os[T, T71]) = Gus

of the G, g-scheme Q9 (Y, g). In particular, if the G, s-scheme Y is endowed with
a gdm Gy, p-action o of weight n, then the morphism poo(= mgo(pxe,)) equals the
morphism 7. Let us also stress that this morphism is smooth as soon as the morphism
pryop: Y — S is smooth. Furthermore, the action ¢ and the unit section induce a
factorization of the identity of Y:

Y 5 Qomy,g) Y. (2.6)

We conclude this subsection by a technical result which will be crucial in the

proof of theorem 5.3.11 Let n € N* be an integer. Let p : Y — S be a S-variety,
g be an element in (Y)*. We consider the pair (Q%(Y,g),0) in Vark™ where the

S-variety QX (Y, g) equals Spec(Oy[U,U~/(U™ — g)) and o is the good action of
Wn i = Spec(k[T]/(T™ — 1)) associated with the morphism of k-algebras defined by
U—TU.

LEMMA 2.2.1. The object in Var?;”c’;"m associated with QX (Y, g) is

QI (Y, g) : Spec(Oy [T, T, V]/(V"™ — gT)) — Spec(Os[T, T~ ]).
Proof. This follows from the fact that Q9™(Y, g) is endowed with a canonical gdm
G k-action for which the fiber over 1 is (Q#(Y, g), o) and [proposition 2.1.11 O

2.3. Equivariant compactifications. In the proof of [theorem 3.4.1] we will
use the following equivariant version of the Nagata compactification theorem.

PROPOSITION 2.3.1. Let n € N*. Let (p : Y — Gy, 5,0) be an object in
Varg;”c’sn. Then, there exist an object (p:Y — G,.5,0) and an equivariant dense
open immersion j : Y < Y such that the morphism p is proper. Furthermore, if S
is a k-variety and if the k-variety Y is smooth, we may assume that the k-variety Y
also is smooth.

Proof. Let G be finite (abstract) group and G its associated S-group scheme.
Nagata’s compactification theorem admits an G-equivariant formulation as follows.
Let us assume that G acts trivially on S. Let Y be a S-variety with a G-action. By
the Nagata compactification theorem, there exists a dense open immersion j : Y < X
into a proper S-variety X. Consider the S-variety

P:=Xxg - xgX
—_——

|G| terms
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and the immersion Y < P given by the morphisms jog:Y — X. Then, the closure
Y of Y in P is a proper S-variety with an action of G for which the morphism ¥ — Y
is an equivariant dense open immersion.

By using this general remark, let us prove now the assertion of the proposition. Let
Y; the fiber over 1 with its p,, x-action oq. By this remark, there exists an equivariant
open immersion j; : Y; — Y into a proper S-variety p; : Y1 — S endowed with an
action of py, ;. Let

? = ?1 Xgn’k Gm,k
the associated Gy, s-variety with a gdm G, y-action. The morphism
jl X;:n’k Gm,k Y — ?

is a dense equivariant open immersion and Y is proper over G,, s. Indeed, we have
the commutative diagram

?1 Xk Gm,k — Y = ?1 Xgn’k Gm,k:

M \L

S Xk Gk

and the result follows from [I4] Corollaire (5.4.3)] since the quotient map is surjective.
Now, if ¥ is smooth over k, using strong equivariant resolution of singularities as
stated in [22], §3.3 and §3.4], we may also assume that Y is smooth over k. O

3. The categories of relative quasi-unipotent motives. In this section, we
introduce the category QUSH,y (S) of quasi-unipotent motives over S. Our definition
generalizes the one given in [5, Définition 1.3.25] when S = Spec(k). Our main
statement in this section is which proves that the motive with compact
support of a Gy, s-variety endowed with a gdm G,,-action of weight n € N* is
quasi-unipotent.

3.1. Quick review of the categories of motivic sheaves. In this article,
we consider the category of motivic sheaves SHor (S) that appears in [2, Définition
4.5.21] under the name SHyy(S), where T stands for a projective replacement of the
presheaf

C'}WL,S(X)]1
lg®1

(The choice of T' will not play any role in this article.) In the construction of SHox (.5),
for which we refer to [2, §4.5], we choose as Grothendieck topology, either the Nis-
nevich topology or the étale topology. The stable (model) category 9 will be either
the category Spects: (A°PSet,) of symmetric S'-spectra or the category Compl(A)
of complexes of A-modules over some ring A.

For M = Spectgl (A°PSet,) and the choice of the Nisnevich topology, the cate-
gory obtained is the stable homotopy category of S-schemes of Morel-Voevodsky (see
[211, 126] 29]). For Mt = Compl(A) and the choice of the étale topology, the category
obtained is the category DA(S, A) of étale motives with A-coefficients. The homo-
logical motive of a S-scheme of finite type p : X — S is the motive pip'lg. If p is
smooth, it is canonically isomorphic to p;1 x.
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The theory developed in [T}, 2] provides the categories SHyy(—) with the six
operations of Grothendieck and the formalism of nearby cycles. In particular, if
f: X — A} is a morphism of k-varieties, with diagram Ayoub associates a
triangulated functor

\Iff : SHg;n(Xn) — SHg;n(XU).

The object Wy (1x,) € SHop(X,) is called the motivic nearby sheaf.

Let us note that in SHyy(S), the category of compact objects coincides with the
category of constructible motives introduced in [T, 2.2]. Moreover all the operations
(the six operations and the nearby cycles functor) preserves constructible motives as
shown in [T, Scholie 2.2.34, théoréme 2.2.37] and [2, Théoréme 3.5.14].

3.2. Quasi-unipotent motives. In this subsection, we define the categories of
relative quasi-unipotent motives.

Let us recall some useful classical terminology. Let 7 be a triangulated category
in which all (small) direct sums are representable. Let € be a set (or class of objects)
in 7. We denote by (&) (resp. (€)") the smallest full triangulated subcategory of 7
containing the objects in € (resp. and stable under direct factors). We denote by ((€))
the smallest full triangulated subcategory of 7 stable under all (small) direct sums
and containing the objects in €. Note that the category ((€)) is pseudo-abelian and
thus stable by direct factors (see [I, Lemme 2.1.17]). We have the following inclusion

(€) € (&) C ((€)).

We denote by Jzomp the full subcategory of compact objects in 7. This is a triangu-
lated subcategory of .7 stable by direct factors. Recall that .7 is said to be compactly
generated if there exists a set € of compact objects in .7 such that 7 = ((€)). In that
case, we have Teomp = (€)* by [II, Proposition 2.1.24].

We denote Qg the set of objects of SHop(Giy,,g) of the form

milggm (v, (r) = mm'lg,, o(r)

where Y is a smooth S-scheme of finite type, g is an element in &(Y)*, n € N* r € Z
are integers and 7 : Q9"(Y,g9) — Gy, s is the structural morphism of the Gy, g-
scheme Q9™ (Y, g). The category of quasi-unipotent motives over S is defined by

QUSHy(5) = (9s)-

Hence, by definition, QUSH,y (S) is a full triangulated subcategory of SHon (G, s)-
Since the motives in Qg are compact in SHop(Gy,,s), the full subcategory of
QUSH,;,(S) formed by the compact objects is given by

QUSH,y, .(S) = QUSHyy, (S) N SHon ot(Gm,s)-

When S = Spec(k), our definition coincides with the one given in [B, Définition 1.3.25)
and used in [4] [6].
The following stability properties follows from the definition.

LEMMA 3.2.1. Let S’ be a separated noetherian schemes of finite Krull dimension
and f : 8" — S be a morphism of schemes.
(1) If B € QUSH,,(S), then f*B is in QUSHy,(S").
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(2) If f is a smooth morphism and A € QUSHy(S), then fyA is in
QUSH,,(S).

Proof. (1) This is an easy consequence of base change (see [I, Définition 1.4.1])
and the fact that f* commute with (small) direct sums (since it is a left adjoint).
(2) It follows from the definition. O

To prove that (2) in[lemma 3.2.1{holds more generally, it will be useful to consider
a bigger set of generators for the category QUSHgy (S). Consider the set Q) of objects

of SHop (G, s) of the form
tmm'le,, o (r) = tmlggm (v, (7)

where S’ is a subscheme of S and ¢ : 8" — S is the corresponding immersion, and
7w QI™(Y,g) — Gy, g is the structural morphism of the G, s/-scheme Q9™ (Y, g)
where Y is a smooth S’-scheme of finite type, ¢ is an element in &(Y)* and n € N*,
r € Z are integers.

LEMMA 3.2.2. The set Q% generates the category QUSHyy (S) of quasi-unipotent
motives, that is, (Qs)) = (Qs))-

Proof. As Qs C Qf, we only have to prove, with the above notation, that the
motive A := f[?Tuﬂsz(yyg) is quasi-unipotent. Since for an open immersion #, = fﬁ,
we may assume without loss of generality that ¢ is a closed immersion.

Let (S;)icr be an affine open covering of S. Consider, for a nonempty subset
J C I, the intersection S; := N;csS; and the corresponding open immersion s; :
S; — S. Then, tunrn]l belongs to the triangulated category generated by the motives
(s7)¢(s7)*timy1 where J C I is a nonempty subset (see [I, Lemme 2.2.13]). Consider
the cartesian square

s
S

Ay (3.1)

!

S, s s

By applying the proper base change theorem [I, page 208], to the base change of
along the projection G, — Spec(k), we get an isomorphism

(57)2(87) Tl == (87)5 (L) () myll == (57)¢(E) ()1

where Yy :=Y xg S and 7y : Q9™ (Y, g) — Giy,s, is the structural morphism. By
it is enough to prove that (t7)i(ms)s1 is quasi-unipotent. Therefore, we
may replace S by the affine open subset S; and assume S affine.

Now consider an open covering (Y;);cr of Y. Again consider, for a nonempty
subset J C I, the intersection Y; := N;csY; and the corresponding open immersion
uy : QI™(Yy,9) — Q9™(Y,g). Then, tvnrﬂ]l belongs to the triangulated category
generated by the motives

tmy (ug)g(ug) L = f(my)pl

where J C I is a nonempty subset and 7 : Q9"(Y;,g) = Gy, s is the structural
morphism. Hence, we may replace Y by the affine open subset Y.
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Therefore, we may assume that Y is affine, S is affine and that there exists an
étale morphism e : Y — A%, Let A’ := €0(S’). We may even assume that the
morphism e is (isomorphic to) the one induced by the morphism of A-algebras

D(AT, 0) = A[T1, ... Tn] — (AT, ..., T[T/ (P ar-omprogr

where P, Q" € A'lTy,...,T,,T], OrP’ is the derivative of P’ with respect to the
variable T and o’ is the leading coefficient of P’. Since A’ := £(S’) is a quotient of
A = 0(S), we can lift P’,Q’ to polynomials P,Q € A[Th,...,T,,T]. Let a be the
leading coeflicient of P and consider the smooth S-scheme Z given by

Spec(A[Th, . .., To][T1/(P))a-0rp-0-

Then Z is a smooth S-scheme, such that Z xg S’ = Y. The invertible function
g € O(Y)* can be lifted to a function h € €(Z). By replacing Z with the open
subset on which A is invertible, we may assume that h € 0(Z)*.

Let U be the complement of S in S and Z|y := Z xgU. Let h|y be the restriction
of h to the open subscheme Z|;;. Denote by j : U < S the open immersion and by
7wz QI™(Z,h) = G5 and my 1 QI™(Z|y, hly) = Gin,s the structural morphisms.
By base change, the localization triangle

jﬂj* — Id — 6t* +—1>

gives us an exact triangle

+1
(m0)sLQem (z)y mv) = (T2)slqem(zn) = timglgem(v,g) — -

This shows that {ymy1lgem (y gy is quasi-unipotent as claimed. O

PROPOSITION 3.2.3. Let S’ be a separated moetherian schemes of finite Krull
dimension and f : 8" — S be a morphism of schemes. If A € QUSH,y,(S5’), then fiA
is in QUSHy,(5).

Proof. Note that fi commute with (small) direct sums (since it is a left adjoint).
By writing f as the composition of a closed immersion and a smooth morphism, we
may consider separately the two cases. For a closed immersion, it is a consequence of
since f; maps Qg to QY by definition.

So we assume f smooth. In that case, there is a canonical isomorphism
fid ~ fﬂThfl(Qf)A where Qy is the locally free 0-module of relative differential.
Let (S!);cr be an open covering of S’. Consider, for a nonempty subset J C I, the
intersection S’; := NjesS; and the corresponding open immersion s/, : S, — S’. By [L1
Lemme 2.2.13], fiA belongs to the category generated by ﬁ(s7 )g(svf])*A where J C [
is nonempty. Since (suf,)*A is quasi-unipotent by it is enough to prove
the statement for f o s’;. Therefore, we may assume that Q; is isomorphic to g,
for some integer 7 > 0. In that case Th™'(Q)A ~ A(—r)[~2r] and we are reduce to
show that f;A is quasi-unipotent. Then, we may assume A = mylgam(y 4 where V'
is a smooth S-scheme of finite type, g € &(Y)* and n € N*. In that case, it follows
from the definition. O

The above proposition has the following very useful corollary.

COROLLARY 3.2.4. Let z : Z — S be a closed immersion and v : U — S

be the open immersion of the complement. Then, an object A € SHop(G.y,.5) is in
QUSH,, (S) if and only if u*A is in QUSHy, (U) and 2*A is in QUSHy,(Z).
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Proof. We have the localization triangle
WitA — A— 57 A

Therefore, the result follows from 0

3.3. Tensor product and weak tannakian formalism. As shown by the
next proposition, quasi-unipotent motives are also stable under tensor product. This
implies that QUSH,y (.S) inherits also a symmetric monoidal structure from the one
of SHon (Gy,,s) detailed in [11 2].

PROPOSITION 3.3.1. If A, B are in QUSHyy(S) then A® B is in QUSHy, (S).

Proof. Assume that Y is a smooth S-scheme of finite type, g € &(Y)* is a unit
and n € N is an integer. Let us first observe that, for any integer d > 1, the G,, s-
scheme Q9™(Y,g) is a retract of Q47 (Y[U,U~'],U"g). Indeed, the quasi-coherent
Oy [T, T~1]-algebra

Oy U, U~)[T, T\, R]

_

is isomorphic as a Oy [T, T~ !]-algebra to

ﬁY[Ua U717 Ta Tﬁla Rﬂ V]
(Vn —gT,RL—UV)

and therefore to

(ﬁ’y[T7 T4 V]

(Vn —gT) ) [’ B

This shows our claim. This implies that the (homological) motive of Q9™ (Y, g) is a
direct factor of the (homological) motive of Q9" (Y[U,U~'],U"g). Hence, to show the
proposition we may first assume A, B € Qg and then, using the previous observation,
we are reduce to showing that if Y, Z are smooth S-schemes of finite type, n € N* and
g, h are elements in O(Y)* and &(Z)* respectively, then the (homological) motive
of the G, s-scheme

ﬁYXsZ[T7 T_17‘/7W]>

gm gm =
Qn (Y7 g) xGm.S Qn (Z’ h) SpeC <<Vn _ gT’ W” — h,T>

is quasi-unipotent. For this, it suffices to remark that the Oy [T, T~!]-algebras

Oy R _
Oy (T, T~ Y[V, W] (<gRih>) [T, 771, V]
(Vn —gT,Wn — hT)’ (Vn —gT)

are isomorphic. 0

In [1 2], Ayoub developed a weak tannakian formalism and applied it to construct
motivic Galois groups or motivic fundamental groups. One of the key feature in this
context of quasi-unipotent motives is [4, Proposition 2.10].

Let (#Z,A x N*) be the diagram of schemes over G,, ; indexed by the category
A x N* defined in |2, Definition 3.5.3]). Let us denote by

(07 paxn~): (Z,A x N*) = G i
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the structural morphism. Let (2, paxnx) : (Zs, A x NX) — Gy, s be the diagram
of schemes obtained by base change along the projection morphism pry : G,y 5 =
S X Gqu — Gm,k- We set

Us = (paxnx )ﬁw?)*ﬂ(ﬁs,AxNX)-

Note that by [T, Corollaire 2.4.21, Théoréme 2.4.22], we have a canonical isomorphism
Py = Us. Let qg : G5 — S be the projection.
Then, [4, Proposition 2.10] holds more generally with the same proof:

PRrOPOSITION 3.3.2. The functor
Us ® q5 : SHon(S) — QUSHgy (5)
is a right adjoint to the functor 1% : QUSHy, (S) — SHon(S).

3.4. Quasi-unipotence of some motives with compact support. Our main
result in this section is

THEOREM 3.4.1. Let S be a k-variety. Let (Y % Gi.s,0) be an object in
Varg;”éz. Then, the constructible motive pyly belongs to QUSH,(S).

To prove [theorem 3.4.1) we will use a duality argument relying on the notion of
strong dualizability in symmetric monoidal categories. Let (¢, ®,1) be a symmetric
monoidal category. Recall that an object X € € is said to be strongly dualizable if
there exist an object XV in 4 and morphisms

coev

12 xVeX Xex'SHi1 (3.2)

such that the morphisms

X Id®coev X®XV ® X ev®Id X, X\/ coev®Id X\/ ®X®XV Id®ev X\/

are equal to the identity maps.

REMARK 3.4.2. The property of being strongly dualizable is a property which
holds at finite distance if and only if it holds in the limit. More precisely, let I be a
small cofiltered category and (%;)e; be an inductive system of symmetric monoidal
categories (€;, ®;,1;) such that the transition functor Fj_,; : €; — €; is symmetric
monoidal for every morphism j — i in I. Let € be the 2-colimit of the system with
the induced symmetric monoidal structure. Given i € I, let us denote by Fo_,; the
canonical functor ; — % (which is symmetric monoidal). Let ¢ € I and A € ;.
Then, Fo_,; A is strongly dualizable in €, if and only if there exists a morphism j — ¢
such that F;_,; A is strongly dualizable in €.

Let F be a field of characteristic zero. Recall the following lemma which is
a direct consequence of [7, Lemma 4.10] and the equivalence of categories between
RigSH,y, (F((t) and QUSHgyy, (F') proved in [5 Scholie 1.3.26].

LEmMMmA 3.4.3. Let F be a field of characteristic zero. The objects
in QUSHyy (F) are strongly dualizable in the symmetric monoidal category
QUSH,,(F).

In the relative setting, constructible quasi-unipotent motives will not be strongly
dualizable in general. However, as the proposition below shows, they are still generi-
cally strongly dualizable.
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PROPOSITION 3.4.4. Let S be a integral separated k-scheme of finite and A be
an object in QUSHyy (S). Then, there exists a dense open immersion j : U <
S such that j*A is strongly dualizable in QUSHyy,(U). In particular, the motive
Hom(j*A, 1g,, ) belongs to QUSHyy, (U).

The proof of the proposition relies on the following continuity property.

LEMMA 3.4.5. Let I be a small cofiltered category. Let (S;);er be a pro-object
in the category of schemes such that fj—; : S; — S; is an affine morphism for every
morphism j — i in I. Let S = Lim;cS; be the projective limit in the category of
schemes. We assume that S and S;, for every i € I are noetherian separated of finite
Krull dimension. Then, the category QUSHgy (S) is the 2-colimit of the categories
QUSHyp (S:)

Proof. For i € I, we denote by foo; : S — S; the canonical morphism. By [5]
Proposition 1.A.1], it is enough to show that given a compact object A in QUSHgyy (.5),
there exist ¢ € I and a compact object B € QUSH,y(S;) such that f* _,.B is iso-
morphic to A. We may assume that A is in Qg. Let ¢t : T' — S be an immersion, Y
be a smooth T-scheme of finite type, g be an element in & (Y)* and n be an element
in N* such that A = tip;1. By [15] Théoréme (8.8.2), Proposition (8.10.5)] and [16,
Proposition (17.7.8)], there exist ¢ € I, an immersion T; — S;, a smooth T;-scheme
of finite type Y; and a unit g; € O(Y;)* such that Y — T — S is obtained from
Y; — T; — S; by pullback along the morphism fo_; : S — S; and g is the image of
g; by the morphism 0(Y;)* — €(Y)*. In particular, one has a cartesian square

(Y, g9) —= Q7" (Yi, 9:)

i” 0 l

Gm T GT’LTi .

)

Joo—i

Therefore fi _,;(ti)i1(pi)s1 is isomorphic to A = tipy1. We may thus take B =

o0

(ti)i(pi)g1. O
Proof of [proposition 3.4.4. Let I be the cofiltered category of nonempty affine
open subschemes of S. Then (U)ye; is a pro-object in the category schemes with affine
transition morphisms and its projective limit is the spectrum of the function field F' of
S. Let joo : Spec(F) — S the canonical morphism. Since ji A is in QUSHy (F),
the result follows from [lemma 3.4.3| and |lemma 3.4.5| and the fact that the pullback
along the transition morphisms are triangulated symmetric monoidal functors (see

remark 3.4.2). O
The proof of relies on the following lemma.

LEMMA 3.4.6. Let S be a connected smooth k-scheme of finite type. Let (p :
Y — Gy, 5,0) be an object in Varg';”é"m such that p is proper and Y is smooth over
S. Then, there exists a dense open immersion j : U — S such that j*p.1 is in

QUSH,, (U).

Proof. In that case, the morphism p1 — p,1 is an isomorphism. Since o is
a gdm G,-action of weight n, the morphism p o ¢ coincides with the structural
morphism ¢ : Q9™(Y,g) — Gy, s where g is the image of 1/T by the morphism

k[T, T~ — O(Y)* induced by p (see [subsection 2.1)). Since 1y is a section of the

morphism o, the motive p,1 is a direct summand of the motive g, 1 and it is sufficient
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to show that ¢, 1 is in QUSHy(S). By definition g1 is in QUSH,y,(S). Since g;1
is compact, by [proposition 3.4.4] there exists a dense open immersion j : U < S such
that j*¢1 is strongly dualizable in QUSHyy, (U). In particular, Hom(j*¢;1,1) is in
QUSH,;(U). Let Yy =Y xg U and denote by gy the image of g by the morphism
O(Y)* — O(Yy)*. We have a cartesian square

Q%m,(YU7 gU) - Q%TYL(Y, g)

lQU O J{q
Gnu—>Gns
where gy is the structural morphism of the G, y-scheme Q9™ (Yy,gr). Hence

Jj*qs1 — (qu)41 is an isomorphism. Since S is smooth over k, U is regular and
by [I, Proposition 2.3.52] and [I, Proposition 2.3.54] there is a canonical isomorphism

Hom((gu)y1, 1) =~ (qu).1.
This implies that j*¢.1 ~ (qu )1 is in QUSHyy,(U) as desired. O
Proof of We may assume S reduced since the canonical functor
QUSH,y(Sreq) — QUSH ()

is an equivalence. By induction on the number of irreducible components of S, we
may further assume S to be integral. Indeed assume that S is not irreducible and let
i: C — S be the closed immersion of an irreductible component C of S. Denote by
7 : U — S the open immersion of the complement of C' in S. Consider the cartesian
squares

Yo Y Yo

[ A -

J i
U Xk Gm,k — 5 Xk Gm,k ~—C Xk Gm,k-

By the proper base change theorem of [I], we have *ply ~ (pc)ly, and Fpily ~
(pu)ily, . Our claim follows from

It follows from that, if S has dimension zero over k, then p,1 is in
QUSH,;(S) as soon as Y is smooth over S and p is proper. This is in particular
the case if Y has dimension zero over k. We prove the theorem by induction on the
dimension of S and Y over k.

Reduction A. Let us first start with the following observation: we may replace S
by a dense open subscheme. In particular we may assume that .S is smooth over k.

Let u : U < S be an open immersion and z : Z < S be the closed immersion of
its complement. Consider the cartesian squares

\ Y \
J{PU O \LP [m] lpz
U Xk GmJg 4&> S Xk GmJg <L Z Xk Gm,k-

By the proper base change theorem of [I], we have Z*p/1y ~ (pz)ily, and @*ply ~
(pu)ily,. If U is dense in S, then dimy(Z) < dim(S) and by induction (pz)ily, is
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in QUSH,y(Z). Hence, by [corollary 3.2.4] to show that pi1y is in QUSHgy(S), it
is enough to show that (py)ily, is in QUSHyy, (U).

Reduction B. Let us now make a second observation: we may replace Y by a dense
open subscheme stable under the action of . In particular we may assume that Y is
smooth over k.

Let v : U — Y be the open immersion of a dense open subset U of Y stable
under the action and smooth over k. Let Z be the closed complement of U in X and
z : Z — Y the associated closed immersion. Then, Z is also stable under o and both
(U 2% Goun,olv) and (Z 25 Gk, 0|7) belong to Varg;"é”m. The localization
triangle of [I, Lemme 1.4.6] provides a distinguished triangle

(pounly — pily — (poz)ly =N

Since dim(Z) < dim(Y), by induction on the dimension of Y, (p o z)ily is in
QUSH,,(S). Hence, to show that pily is in QUSHy(S) it is enough to show
that (p o)1y is in QUSH,(S).

Reduction of the general case to[lemma 3.7.6. Using reduction B, we may assume
that Y is smooth over k. By|proposition 2.3.1|, there exist an object (p: Y — Gy.5,7)
and an equivariant open immersion j : Y — Y such that p is proper and Y is smooth
over k. By the generic smoothness theorem (see [18, III Corollary 10.7]), and reduction
A, we may further assume that Y is smooth over S. In that case, the theorem follows
from and reduction A. O

4. The monodromic nearby motivic sheaf functor. Let X be a smooth
k-variety endowed with a morphism of k-schemes f: X — A}. In this section, given
a motive A on the generic fiber X, we prove that the motivic nearby sheaf ¥(A)
defined by Ayoub in [2] can be canonically lifted to the category of quasi-unipotent
motives QUSH,;(X,). We make precise and prove this assertion in

ftheorem 4.2.71

and

4.1. Relation with the nearby motivic sheaf functor. The key ingredient

of our approach is [theorem 4.1.1} which is inspired from [28, Proposition 7.1]. Let

f: X — A} be a morphism of k-varieties. We denote by f¢m : G,, x — Al the
morphism obtained as the composition

X Id
X Xy Gm,k f—k> 1&,1C Xk Gm,k % A}g,

that is the morphism Spec(Ox [T, T~!]) — Spec(k[t]) defined by t — T f. With this
definition, diagram |(1.1)[ admits the following factorization

X, X X,
llxg O llx O ilxrn
G x, G, x G, x,
lff*" O lfc’“ o iff"‘
Spec(k) A} Gk

and (SPE2) of [2| Définition 3.1.1] provides a canonical morphism, for every object
B in SHDﬁ(Gm,Xn),

15, Ve, (B) = Uy(l% B) (4.1)
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which is functorial in B. Let p : G, x, — X, be the canonical projection. Defining
the monodromic nearby motivic sheaf functor as the composition

’ N = U e, pt,

we obtain from for an object A € SHop(X,,) a canonical morphism
I WFO(A) — Up(A).

Our first main result is the following theorem.

THEOREM 4.1.1. For every object A € SHon(X,,), the canonical morphism
1% WPm(A) = Wyp(A) (4.2)

is an isomorphism in SHop(X,).

To prove this theorem we will need two results taken from [I, [7, [§]. The first one
is [I, Proposition 2.2.27] (see also [8, Lemma 3.3]) that we recall:

LEMMA 4.1.2. Let S be a k-variety. The triangulated category SHayn (S) is gen-
erated by motives of the form h,1y (r) where h : Y — S is a projective morphism, Y
is smooth over k and r € Z is an integer.

Note that in [8, Lemma 3.3], the above lemma is stated for étale motives and
proved for perfect field of arbitrary characteristic. In this generality, the proof uses de
Jong’s resolution of singularities by alteration. Using instead Hironaka’s resolution
of singularities in characteristic zero, there is no need for [I, Lemme 2.1.165] and
the simplified proof carries out also not only for étale motives but more generally in
SHyn (S).

The second one is the following reformulation of |7, Theorem 6.1] (see the end of
the introduction for the notation):

THEOREM 4.1.3. Assume that X, is a strict normal crossing divisor in X and
let (D;)ier be its set of irreducible components. Denote by DS 2 Dy 2L X, the
corresponding open and closed immersions. Then, for every nonempty subset J C I,
the canonical morphism

(0 (vs) (wr) Wy (Lx,) = (ug) Us(lx,) (4.3)
is an isomorphism.

Proof. Consider the duality functors
Do(~) := Hom(—, fo1t) Dy(~) := Hom(~, f,1e,, ,.)-

Then, it is enough to prove that the image of by D, is an isomorphism. Using
[1, Théoreme 2.3.75], we have to prove that

(ur)" DoV y(Lx,) = (vs)«(vs)"(us) Do ¥y(lx,)

is an isomorphism. By [2, Théoréme 3.5.20], we have a canonical isomorphism
V(Dylx,) ~Ds¥s(1x,). Hence, we have to prove that

(ug)* Wy (Dylx,) = (vg)e(vs)* (us)* Vs (Dylx,)
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is an isomorphism. Let a : X — Spec(k), p : Gy — Spec(k) be the structural
morphisms and j : X;, — X be the open immersion. Since p is smooth and the
O-module of relative differentials Q,, is free, by definition (see [1, §1.5.3.1]), we have
p'ly = Th(Q,)p* 1) ~ 1g,, . (1)[2]. Hence

FolG, = Fp Lu(=1)[=2] = jla'1x(=1)[=2] = j*a' 14 (~1)[-2]

since, j being an open immersion, we have j' = j*. Since a is smooth, by definition
(see [I, §1.5.3.1]), @' := Th(Q,)a* where Q, is the locally free &x-module of relative
differentials. The assertion being local on X for the Zariski topology, we may assume
that Q, free of rank d. In that case, we obtain an isomorphism f,é]lc;,{m w1y, (r)[27]
where r := d — 1. This shows that

D,lx, ~ Fk)J(]le 1x, (r)[2r]) ~ f;A
where A = 14(r)[2r]. Then, the statement follows from [7, Theorem 6.1]. O

Proof of We divide the proof in several steps.
Step one. Let us first show that we may assume A = 1x, . Observe that, if
in an isomorphism for some object A, then, it is an isomorphism for any Tate twist

A(n), n € Z, of A. By [lemma 4.1.2] the triangulated category SHgy(X) is generated
by the Tate twists of motives of the form h,ly where h : Y — X is a projective

morphism and Y is smooth over k.

Let j : X;, = X be the open immersion. Since the counit j*j. — Id is invertible,
the triangulated category SHop (X)) is generated by the Tate twists of motives of the
form j*h.1y ~ (hy)«ly,.

Hence, we may assume A = (hy).1ly,. Then, p*(h,).1ly, ~ (hy).lg,, , and we
consider the commutative diagrar(n g 7 (i) (i) o

1%, WFo((h)« Ly, ) —— Wy ((hy)«1y,) (4.4)

!

1%, (ho) U290 (1y, )

l

(o)L, THS (L, ) — (). T jon (L, ).

The property SPE2 of [2, Définition 3.1.1], applied to the morphism h, ensures that
the vertical morphism on the right in is an isomorphism. Similarly, by the proper
base change theorem [I, page 208], applied to the cartesian square

1y(7
Yo > Gm,Ya

e
1x

XO' > Gm,X(,

and the property SPE2 of [2], Définition 3.1.1], applied to the morphism h, the vertical
morphism on the left in [(4.4)is also an isomorphism. Hence, it is enough to show
that

1y, Wi (Ly,) = Yyon(Ly,)



QUASI-UNIPOTENT MOTIVES AND MOTIVIC NEARBY SHEAVES 105

is an isomorphism. Therefore, we may assume A = 1x, .

Step two. By applying Hironaka’s resolution of singularities [19] (see also [13]
Grand théoreme]) to the pair (X, X,), we may find a smooth k-scheme Y and and
proper morphism i : Y — X such that the base change h, of h to X, is an isomor-
phism and Y is a strict normal crossings divisor in Y. Then, 1x, ~ (h;).1ly, and by
considering and the same arguments as in step one, we may replace f by foh
and assume that X, is a strict normal crossing divisor in X.

Step three. From now on, we assume that X, is a strict normal crossing divisor.
Let I be the set of irreducible components of X, and D; be the irreducible components
associated with ¢ € I. We use the conventions in the introduction and denote by
D5 2 Dy 25 X, the corresponding open and closed immersions. Since the counit
1, (1x, )+ — Id is invertible, we may as well prove that the image by the functor 1%,
of the morphism

VEt(1x,) — (Ix,)-¥r(1x,)

is an isomorphism. Let C' be a cone of this morphism in SHyy(G,, x,). Then,
using the Mayer-Vietoris property, we see that C' belongs to the triangulated sub-
category generated by the motives (u7)i(u7)'C, for J C I nonempty (see [T, Lemme
2.2.31]). Hence, 1%_C belongs to the triangulated subcategory generated by the mo-
tives 1% _(u. N (uy)'C, for J C I nonempty, and we are reduce to prove that the image
by the functor 1% of the morphism

()i (i) U (Lx, ) = (g )(uy) (1x, )« Uy (1x,)

is an isomorphism for any nonempty subset J C I. By the smooth base change
theorem, applied to the cartesian square

1p

D;—">Gn.p, (4.5)
[, b

1X0-
Xa — Gm,XO

the canonical morphism (u7)'(1x,)« — (1p,)«(us)" is invertible. Since both u; and

uy are closed immersions, we have (ujy) = (u)« and (us) = (uy). and by functori-
ality, we have to prove that the image by the functor 1% of the morphism

(i) WF(Lx,) = (1x, ) ()i (ug) Uy ()
is an isomorphism, that is we have to prove that
(L1x, )" () (i) @ (Lx, ) — (u)i(ug) Tp(lx, )

is an isomorphism. This morphism admits a factorization

(1, )* (i) (ug) WP (1x, ) — (us)i(1p,)*(uy) P (1x,)

T

(wr)i(us)'s(1x,)
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in which the horizontal morphism is an isomorphism by the proper base change the-
orem applied to the cartesian square |(4.5)l Hence, it is enough to prove that for a
nonempty subset J C I, the morphism

(1p,)* (i)' W (lx,) = (ug) Us(lx,)

is an isomorphism.

Step four. Let us show that we may assume |J| = 1. Suppose |J| > 2. Consider
the blow-up e(J) : X(J) — X in X with center D; and denote by E(J) its exceptional
divisor. Its special fiber X (J), is again a strict normal crossing divisor of X (J), whose
(reduced) irreducible components are exactly the closed subscheme E(J) and the strict
transforms of D;, for all i € I.

Set f(J):= foe(J)and let e : E(J) — X (J), be the closed immersion. We have
a canonical commutative diagram

(1p,)* (i) wron (1, ) ()" (1x,) (4.6)
(10,)" (@) (() ) PR (Lx (1), () ((D)o) sy (Lx (1),
(10, ) (£(]),)« 8 TP (Lx(),)

(Do) (Lp) EWFR (Lx (),) —= (E()o)e Vs (Lx(),)-

The property SPE2 of |2, Définition 3.1.1], applied to the morphism e(.J), and the
smooth base change theorem, applied to the cartesian square

E(J) —= X(J), (4.7)

s(J)U\L o la(J)a

uy
Dy —— X,

ensure that the vertical morphism on the right in is an isomorphism. Similarly,
using the property SPE2 of [2| Définition 3.1.1], applied to the morphism &(J), the
smooth base change theorem applied to the base change of along G,  — Speck

and the proper base change theorem [I, page 208] applied to the cartesian squares

and

9:18))

E(J) - Gm,E(J)

lemo le(“ )o

1DJ
Dy ———Gy p,,

we see that the vertical morphism on the left in is an isomorphism. Hence, it is
enough to show that

!
1* <! \ymon
E

(NHe€ f(J)(]lX(J)n) - e!q’.f(J)(]lX(J)n)
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is an isomorphism. We may therefore assume |J| = 1.
Final step. Consider the commutative square

(1p,)*(W)i(07) (@) O (g, x, ) — (@o)(vy) () s (lx,) (4.8)

|

(v)i(vs) (1p,) (W) W (La,, «,) —= W) (uy) ¥y (1x,)

| l

(1p,)* () WP (g, x,) —— (us)' Vs (lx,).

By [theorem 4.1.3] the vertical morphism on the right in [(4.8)| is an isomorphism.

Since both v; and v are open immersions, we have (v)' = (v)* and (vs)' = (vs)*.

By [theorem 4.1.3] and the proper base change theorem [I, page 208] applied to the
cartesian square

Lpo
o
D5 — Gy, ps

lv.] \L’Ui]
1p

DJ JE Gm,DJ

we see that the vertical morphism on the left in is also an isomorphism. Hence,
it remains to show that

(1p,)* (W)i() () TP (L, ) = (v )i (vs) (ug)' Tp(lx,)

is an isomorphism.

Let U be the open subscheme of X complement of D(I\J) and v : U — X be the
corresponding open immersion. Note that (Uy)req = DS and the morphism uyouvy is
equal to

r

DS LU, “% X,

where r is the canonical morphism. Since u; o vy is an open immersion, we want to
show that the morphism

(Lp, )" () (ue) " WF" (Lx,, ) = (v (us) Wy (1x,)

is an isomorphism. Let f|y := f o u be the restriction of f to the open subscheme
U. By applying the property SPE2 of [2| Définition 3.1.1], to the open immersions
and u, we see that the canonical morphisms

(ﬁa)*\I!?lon(]an) — \Il}“lfjn(]lUn)
and
ugWy(lx,) = ¥y, (1y,)

are isomorphisms. Since the assertion is local on X, for the Zariski topology, we may
further assume that f|y = v7™ where 7 € 0(U) is a generator of the ideal of definition
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of DS =D;NU,ve OU)* is aunit and m > 1 is an integer. Let vg € (D7) b
the restriction of v and consider the following finite étale covers

Tm, ¢ Dy 1= Spec(Ops [S]/(S™ — vo)) — Dj
and
" QI (DG, vo) = Spec(ﬁD3 [T, T S]1/(S™ — voT)) — Spec ﬁD;[T, Tﬁl] = Gm,D‘}'
By [7, Proposition 3.4] (see also [3l, Théoréme 10.6]), there are canonical isomorphisms
PR (Lo, ) = (™)« Logr (p5,w0), TV (Lu,) = (rm)« 1D,
Hence, we have to show that the morphism
1, @ (rp™)«Lqgr (09 ve) = (v)i(rm)<1p,,

is an isomorphism. This morphism admits a canonical factorization

D, W ()L ggr (Ds ) — (L2)i( (4.9)

|

()i (rn™)«Lgar (D5 ) — (V2)1(rm)«1p,,-

The proper base change theorem applied to the cartesian squares

lDO

J
Dm > Q;]nm( 37“0) D3 > Gm,DS
lrm N \eron \Lv‘] \LUVJ

o 1D3 1DJ
DS Gonps Dy~ Gy,

ensures that the lower horizontal morphism and the vertical morphism on the left in
(4.9)| are isomorphisms. This concludes the proof. O

4.2. Quasi-unipotence and monodromic nearby motivic sheaf functor.
Let us prove now our second main theorem, which asserts that the monodromic nearby
motivic sheaf functor produces quasi-unipotent motives.

THEOREM 4.2.1. For every object A € SHon(X,), the motive W (A) is quasi-
unipotent, that is, belongs to the category QUSHyy (X, ).

Proof. As in the proof of we may assume that A = (h,).1y, where
h:Y — X is a projective morphism and Y is smooth over k. Then, the canonical
morphism W3 ((hy)«ly,) — (ho)s Yo (Ly,) is an isomorphism by the property
SPE2 of [2] Définition 3.1.1]. Hence, by [proposition 3.2.3| it is enough to prove that
VU on(ly,) is quasi-unipotent and we may assume A = 1x, .

Similarly by considering a log-resolution of singularities » : ¥ — X of the pair
(X, X,), we may further assume that X, is a strict normal crossing divisor. Let I
be the set of irreducible components of X, and D; be the irreducible components
associated with ¢ € I. We use the conventions in the introduction and denote by
Dy — Yy Dy 2% X, the corresponding open and closed immersions. Using the Mayer-
Vletorls property, we see that \I/mon(ﬂ x,) belongs to the triangulated subcategory
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generated by the motives (UVJ)!(UUJ)!\IJI}]OH(]].XW), for J C I nonempty (see [I, Lemme
2.2.31]). Hence, it is enough to prove that these motives are quasi-unipotent.

Let us show that we may assume |J| = 1. Suppose |J| > 2. Consider the
blow-up ¢(J) : X(J) — X in X with center D; and denote by E(J) its exceptional
divisor. Its special fiber X(J), is again a strict normal crossing divisor of X (.J),
whose (reduced) irreducible components are exactly the closed subscheme E(J) and
the strict transforms of D;, for alli € I. Set f(J) := foe(J)andlete: E(J) — X(J),
be the closed immersion. We have a canonical morphism

(0 o0 W (L, ) — (i) ()} (2 (7))o P8 (T ),

(Wr)i(e(I)) 8 WFR (Lx(),)

AC)

o
-
(£(T), )6 Wm0 (L ),

which is an isomorphism, by the property SPE2 of [2| Définition 3.1.1] applied to the
morphism &(J), and the smooth base change theorem, applied to the base change of
along G, — Speck. Hence, by [proposition 3.2.3] it is enough to prove that
e Ui (Lx(s),) is quasi-unipotent and we may assume |J| = 1.

By [theorem 4.1.3| and [proposition 3.2.3, to prove that (uy)i(uy) U (1x,) is
quasi-unipotent, it suffices to show that (v7) (qu)!\I/‘;‘On(ll x,) is quasi-unipotent. Let
U be the open subscheme of X complement of D(I \ J) and v : U — X be the
corresponding open immersion. Note that (Uy)rea = DG and the morphism uyowvy is
equal to

DS LU, X% X,

where r is the canonical morphism. Since u; o vy is an open immersion, we want to
show that r* (i, )" WF" (L, ) is quasi-unipotent. Let f|y := fou be the restriction of
f to the open subscheme U. By applying the property SPE2 of |2, Définition 3.1.1],
to the open immersion u, we see that the canonical morphism

(i) W (1x,) = UHT (1u,)

is an isomorphism. Since the assertion is local on X, for the Zariski topology, we
may further assume that f|y = v7™ where 7 € O(U) is a generator of the ideal
of definition of DS = D;NU, v € O(U)* is a unit and m > 1 is an integer. Let
vg € O(DY) be the restriction of v and consider the following finite étale cover rhe™ :
Q9" (DG,v0) = Gm,ps. By [7, Proposition 3.4] (see also [3, Théoréme 10.6]), there
is a canonical isomorphism

PR (Lo,) = (ma™)« Logr (D5 o)
This concludes the proof since this motive is quasi-unipotent by definition. O

5. Monodromic Grothendieck rings and quasi-unipotent motives. In
this section, we compare the theory of motivic nearby sheaves, as introduced in [2]
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§3.5], with that of motivic nearby cycles studied in [9} [10} [T}, 23, [24]. [Proposition 5.2.1]
extends [7, Lemma 8.5] to the monodromic context; its corollary gives rise to a com-
plete picture of the relations between the different motivic Euler characteristics with
compact support. In the end, provides a monodromic version of the
comparison of nearby cycles theories, which generalizes [7, Corollary 8.7].

5.1. Monodromic Grothendieck rings of varieties. Let us recall two dif-
ferent variants of monodromic Grothendieck rings of varieties employed in [17, §2.3].
We refer to loc. cit. for details. Let n € N*.

e The Grothendieck group KO(VarS &, ) is defined as the free abelian group on

the isomorphism classes of objects (Y — Gm7s, o) in Var ch;” modulo the relations

(1) for every G,-invariant closed subscheme Z of Y, we have (Y = Gi5,0)] =
(Z = Gms,0,)]+[(Y\2) = G, svd\y\z)}‘

(2) for every (p : Y — Gy 5,0) in Vars><G for every liftings ¢’ and o” of
the G, r-action o on Y to affine actions, i.e., its restriction to all fibers is
affine, where the morphism Y x; A} — G, s is the composition of p with
the projection on the first factor, we have

[(Y Xk AZ — Gm75,01)} = [(Y Xk AZ — Gm75,0'//)].

It has ring structure induced by the fiber product over G,, s with diagonal action
whose unit is

lsxa,, = [(Gm,s 1, Gu,s,ms o (Idg,, s X en))].

If Ko(Vary) denotes the standard Grothendieck ring of varieties, there is a natural
structure of Ko(Vary)-algebra on KO(VarS &, ) given by the fiber product over k.
We denote by L the element [A}] - 1sxg,, in thls module, and we set ///S =
Ko (Vars"“” )L

e The Grothendieck ring K5 (Varg) is defined as the free abelian group on the

isomorphism classes of objects (p: Y — S,0) in Vark™, modulo the relations

(1) for every p, p-invariant closed subscheme Z of Y, we have [(Y — S,0)] =
(Z = S,0)]+ (Y \Z) = S,0,,)]

(2) for every (p: Y — S,0) in Vark", for every affine bundle A, A’ of Y of same
rank endowed with any lifting o’ and o of the p,, y-action o on Y to affine
actions, where the morphism A, A’ — S is the composition of p with the
projection on the first factor, we have

[(A— S, =[4 = S,d").

It has ring structure induced by the fiber products over S with diagonal action whose
unit is the class of S endowed with the trivial action. We denote by L the class of the
affine line with the trivial action, and set .Z4" = Ko(Vark™)[L™1].

m ’n

As remark in loc.cit., the rings ///S (resp. #%™) form inductive systems

indexed by N* ordered by the division relatlon. We denote by .#. fxmcm (resp. M. S‘f )
the colimit. For every pair of nonzero integers (m,n) € N? with n = ¢m, in case of
G, k-actions (and similarly in case of fi-actions), one defines a functor

m
o, VaerG —>VarsXG
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which sends the object (Y — Giy,.5,0) to (Y — Gy, s, 0') where the action ¢’ is given
by (y,A) = o((y,\")); these functors induce the transition maps in the colimits.
The equivalence recalled in [proposition 2.1.1| implies the following result (see [17}
Proposition 2.6]).

ProposiTiON 5.1.1. For every integer n € N*, the ring morphism
1%: //[Sf;meZ — ME™, which sends the class [((Y — G,g,0)] to [(Y1 — S,01)],
is an isomorphism. In particular, the induced ring morphism 1%: ///SGX”&;m — ///g
also is an isomorphism.

5.2. Monodromic Euler characteristic. |Proposition 5.2.1| is a monodromic
analog of [7, Lemma 8.5] (see also [20, Lemma 2.1] for a formulation in the category
of étale motives).

PROPOSITION 5.2.1. Letn € N*. There exists a unique morphism of rings
G’V?‘L . G’Vﬂ
Xso 't Mslg,, — Ko(QUSHyy (5))

C

such that, for every object (p: Y — Gk, 0) in Var?;"énm

stv},é”([(y o Gm,Sva)]) = [p!p*]le,s]'

By [proposition 5.1.1|, the morphism ng“ also defines a ring morphism

X i ME = Ko(QUSHy, (S))
such that the following diagram

G

Xg, o
ME e, — > Ko(QUSHy (S)) (5.1)
llg l_

N X

ME "~ Ko(QUSHyy (5))

l Forget l 1s

XS, e

Mg ———— Ko(SHop t(5))

commutes.

Proof of [proposition 5.2. Z|. Let (p:Y — Gy, 5,0) be an object in Varg;”Gm. Let
Z be a closed subvariety of Y invariant under the Gy, i-action o and let U be its open
complement. Denote by z: Z — Y and v : U — Y the corresponding immersion. By

theorem 3.4.1) we have the following localization triangle in QUSHyy . (5)

puly = ply = pzly =N

Therefore, we have the equality

ply] = [pwly] + [paly]



112 F. IVORRA AND J. SEBAG

in Ko(QUSHyy (S)). Moreover, the second relation is verified by homotopy invari-
ance. This shows that there exists a unique group morphism

XSe  Ko(Vargyg! ) = Ko(QUSHy () (5.2)
which associates with every object (p: Y — S,0) in Varg';’bm the element

XS ([(p:Y = Gus,0)]) = [ply] € Ko(QUSHy (95)).

Since the image of L by this morphism is [1g,, s(—1)] which is invertible, it is enough
to check that the morphism |(5.2) m is a morphism of unitary rings. Let (Y — Gy,,,5,0)
and (Y — Gy,,.5,0") be two objects in VarSXG Leta:Y - Gpsanda:Y —
G,5 be the structural morphisms. By applymg ‘the proper base change theorem of
[1] to the cartesian square

q

Y xg, Y —L sy

m,S
pl \ La/
Y ——> G5

and using [I, Theorem 2.3.40], we have

AS2 (03 Y —Gs, o) [0 Y = G, o)) = [0y xa, v

= [ar (g*Ly+)] = [ar (a*aily)]
= [ar (Ly ®@y a*aily)] = [alx ©s aily/]

= x50 (((p:Y = Gms,0)]) - xgr (0 : Y = G5, 07)])

as desired. The assertions on Xg,c then follows from |proposition 5.1.1l O

REMARK 5.2.2. Let g5 : Gy,,s — S be the projection. Let us note that the
symmetric monoidal functor

qs : SHo et (5) = QUSHyy (5)
defines a structure of Ko(SHan c+(S))-algebra on Ko(QUSHgy (S)). The square

Gm

X ,C
%SXme - QUSH,yy, . (5)
Mg — 2~ SHyy o(S5)

being commutative, this structure is compatible with the structure of .#g-algebra on

G,
///sm;m

5.3. Relation with the work of Denef-Loeser. In the context of diagram
for every point € X, (k), Denef and Loeser have introduced the motivic Milnor
fiber 1, of x by the formula o7, = x*¢¢ (see [9, 10, 111 23} 24]). We can now prove
the main result of this section, which extends to a monodromic context [7, Corollary
8.7] and [20, Theorem 5.1]:

THEOREM 5.3.1. Let k be a field of characteristic zero. Let X be a smooth
k-scheme of finite type. Let f : X — A} be a flat morphism of k-schemes.



QUASI-UNIPOTENT MOTIVES AND MOTIVIC NEARBY SHEAVES 113
(1) Then, we have the following equality, in the group Ko(QUSHgyy (Xs)),

[WFo (L)) = XS7 (V) = XK, (). (5.3)

(2) Let x € Xy(k) be a rational point. Then, we have in Ko(QUSHyy (k)

[F WP (Dx,)] = X5 7 (V1) = X, (Vo) (5.4)

(77C

Proof. We only have to check formulasince it implies If S is a k-variety
and p : Y — S is a S-variety, it will be useful to denote, as in [7], by Mg.(Y) the
motive with compact support defined to be pily. Let h: Y — X be a log-resolution
of singularities of the pair (X, X, ), I be the set of irreducible components of Y, and
D; be the irreducible components associated with ¢ € I. We use the conventions in
the introduction. For () # J C I, let

mon

pJ:D(O]%D‘O] and Py :Gm,Df}%Gm,D“}

be the finite étale covers defined as in [20] §3.1.3]. By [theorem 4.2.1| and [7, Theorem
8.6] (see also [20, Theorem 3.1]), we have in Ko(QUSHyy, (X, ))

Wyl = 3 DV Moy e (G 4 G
0#£JCI

Using the module structure described in we may rewrite this equality
as follows

v (ly,)] = Z (D) M, (G x, )] [MGM,X(,,C (Gm,Dgﬂ .
0#£JCI

Since we have the equality in .#Zx,
XXC,,C(L - 1) = [MXg,c(Gm,XU)] 5

using [(1.2)} we only have to check that

Xl)lé[,,c[D;nU’nJ] = [MG,,L,XU ,c (Gm,Df})}

but this follows from the local description of the étale covers and O

REMARK 5.3.2. In [7, Remarks 8.14, 8.15], with Ayoub, the authors have sug-
gested that it could be possible to combine the theory of rigid motives and the theory
of motivic integration of E. Hrushovski and D. Kazhdan to obtain analogs of our
[proposition 5.2.1| diagramand assertion (2) of our This has been
positively answered by A. Forey in a recent preprint (see [12]). Let us stress that
this relies on Ayoub’s equivalence between quasi-unipotent motives over k& and rigid
motives over k((t)) and on an important presentation of the monodromic Grothendieck
ring of varieties obtained by Hrushovski-Kazhdan using their theory of motivic inte-
gration. To the best of our knowledge, each of these results requires the base scheme
S to be a field of characteristic zero. Their generalizations to a relative setting are
unknown and seem to be a difficult challenging problem. In the present paper, our
approach broadly differs from the one suggested in [7] and avoid these issues.
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REMARK 5.3.3. In [9] [T0, [IT), 23] 24], by analogy to the works of J.-I. Igusa,
J. Denef and F. Loeser have associated with diagram the motivic zeta function
Z;(T) defined as follows (see also [25]). For every integer n € N, we denote by .2, (X)
the jet scheme of level n of X. We set %n{I ={p(t) € Lu(X), fop=t"+0(t"1)}
for every integer n € N*. This (reduced) subscheme of %, (X) naturally is endowed
with a good p, -action induced by the reparametrization jets ¢ — At. Then, Denef
and Loeser introduced the power series

Z1(T) =Y L2 s h T € % [T, (5:5)

n>1

By loc. cit., one can show that this power series are rational and that its limit when

T — oo equals —¢. Let us stress that has an analog in this context.

Precisely, one has the formula

V. Zan (T) = Z5(T). (5.6)

Gm
Let us justify this formula. For every integer n € N*, the variety %nf 1 equals the
set

{(p(t),7(t) € Ln(X) X Ln(Grnp)s (1) f(p(1) =" + O™ )}
which can be identified with
{(p(t),7(t) € Lu(X) X Z0(Gp), F((t) =7(0)71" + O™ )} (5.7)

We observe that he projection 2, (G, x) — Z0(Gp,x) induces the structure of

G, x,-scheme. Formulas and then implies that

* * —n(d+1 Gm n
1xc,fff9m (1) = 1Xc, (Zn;LGm(,Xt )['%njil ?Nn,k]T )
—n(d+1) 4 % Gm n
= EnZl LXU( )1Xc, [‘%nfl §Nn,k]T
—n(d
= an LXU( +1)L}a['%n]il;un,k]Tn
= Z;(1).
In particular, at the level of Grothendieck rings, formula implies that 1% v ¢a,, =
¥y, which is, by a direct specialization of
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