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STRONGLY HOMOTOPY LIE ALGEBRAS AND DEFORMATIONS
OF CALIBRATED SUBMANIFOLDS∗
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LUCA VITAGLIANO¶

Abstract. For an element Ψ in the graded vector space Ω∗(M,TM) of tangent bundle valued
forms on a smooth manifold M , a Ψ-submanifold is defined as a submanifold N of M such that
Ψ|N ∈ Ω∗(N,TN). The class of Ψ-submanifolds encompasses calibrated submanifolds, complex sub-
manifolds and all Lie subgroups in compact Lie groups. The graded vector space Ω∗(M,TM) carries
a natural graded Lie algebra structure, given by the Frölicher-Nijenhuis bracket [−,−]FN . When Ψ
is an odd degree element with [Ψ,Ψ]FN = 0, we associate to a Ψ-submanifold N a strongly homotopy
Lie algebra, which governs the formal and (under certain assumptions) smooth deformations of N
as a Ψ-submanifold, and we show that under certain assumptions these deformations form an ana-
lytic variety. As an application we revisit formal and smooth deformation theory of complex closed
submanifolds and of ϕ-calibrated closed submanifolds, where ϕ is a parallel form in a real analytic
Riemannian manifold.
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1. Introduction. Let (M, g) be a Riemannian manifold and ∇ the Levi-Civita
connection. A differential form ϕ is called parallel if ∇ϕ = 0. In this case
we shall write (M, g, ϕ). When we want to stress that ϕ has degree p we shall
write ϕp for ϕ. If ϕ is parallel, ϕ is closed and its comass is constant. Nor-
malizing the comass of ϕ, we regard ϕ as a calibration. All important calibrated
submanifolds are ϕ-calibrated submanifolds for some parallel differential form ϕ
[Dao1977, HL1982, Le1990, McLean1998, Joyce2007]1. On the other hand, ϕ-
calibrated submanifolds play an important rôle in the geometry of manifolds with
special holonomy, in higher dimensional gauge theory and in string theory as “super-
symmetric cycles” or “branes” [SYZ1996, DT1998, Tian2000, GYZ2003, AW2003,
Joyce2007, DS2011, Walpuski2012, Walpuski2014]. Note that manifolds with special
holonomy always admit parallel forms, see Subsection 2.1 below.

Deformation theory of closed calibrated submanifolds has been initiated by
McLean [McLean1998] inspired by similarities between calibrated submanifolds and
complex submanifolds. McLean considered deformations of special Lagrangian, as-
sociative, coassociative and Cayley submanifolds. In [LV2017] Lê-Vanžura observed
that any ϕ-calibrated submanifold L in a Riemannian manifold (M, g) considered by
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1In [Dao1977] Dao, based on previous work by Federer and Lawson, proposed to use parallel
differential forms to study area-minimizing real currents, but he did not invent the word “calibration”.
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McLean (as well as any Kähler submanifold) satisfies the following Harvey-Lawson
identity [LV2017, Definition 1.1]

|ϕ(ξ)|2 + |ΨE(ξ)|2 = |ξ|2 for all x ∈ M, (1.1)

with ξ an element in the Grassmannian of unit decomposable k-vectors in TxM , for
some E-valued form ΨE ∈ Ω∗(M,E), where E is a Riemannian vector bundle over
M . In this case the defining equation of ϕ-calibrated submanifolds L is equivalent to
(ΨE)|L = 0. McLean showed that, in the reformulation of [LV2017] using the Harvey-
Lawson identity, the equation (ΨE)|L = 0 is essentially elliptic for special Lagrangian
and coassociative submanifolds, and using the standard elliptic theory he proved that
deformations of those submanifolds are unobstructed. Additionally, he proved that
the equation (ΨE)|L = 0 is elliptic for associative and Cayley submanifolds L, but
deformation of those calibrated submanifolds may be obstructed.

Further works on deformations of calibrated submanifolds are devoted to the
smoothness and the Zariski tangent space to the moduli space of closed cali-
brated submanifolds that are special Lagrangian, associative, coassociative and
Cayley in (tamed) almost/nearly Calabi-Yau, G2 and Spin(7)-manifolds [AS2008,
AS2008b, GIP2003, Gayet2014, Kawai2017, Ohst2014], or to similar questions con-
cerning calibrated submanifolds with elliptic boundary condition [Butscher2003,
KL2009, GW2011, Ohst2014] and non-compact calibrated submanifolds of certain
type [JS2005, KL2012, Lotay2009].

In the present paper we propose a new approach to deformations of calibrated
submanifolds. Firstly, we do not look for a Harvey-Lawson type identity. Instead,
using the first cousin principle we characterize ϕ-calibrated submanifolds up to first
order via the vector-valued form ϕ̂ ∈ Ω∗(M,TM) that is obtained from ϕ by contrac-
tion with the metric (Lemma 3.1, see also Remark 3.2). Motivated by Lemma 3.1,
we introduce the notion of a Ψ-submanifold (Definition 3.3) and develop a general
deformation theory for closed Ψ-submanifolds for any square-zero element Ψ of odd
degree in the graded Lie algebra Ω∗(M,TM), using strongly homotopy Lie algebras
(Proposition 5.3). This generalizes the assignment of a strongly homotopy Lie alge-
bra to a complex submanifold (Remark 6.7). In particular, we show that under some
natural assumptions, the deformation space of Ψ-submanifolds is a finite dimensional
analytic space (Theorem 5.10).

Applying this to a parallel calibration, we prove that the moduli space of ϕ̂-
submanifolds within a given ϕ-transversal homology class is an analytic space and
hence, both the formal and the smooth deformation problem for closed ϕ-calibrated
submanifolds in (M, g, ϕ) are encoded in its associated L∞-algebra (Theorem 6.4).

This paper is organized as follows. In Section 2, we collect known results con-
cerning parallel differential forms and the Frölicher-Nijenhuis bracket that are im-
portant for the main part of the paper. In Section 3, we introduce the notion of
a Ψ-submanifold (Definition 3.3) which seems a good notion to understand defor-
mations of calibrated submanifolds (Corollary 3.6). In Section 4, we assign to each
Ψ-submanifold a canonical strongly homotopy Lie algebra, if Ψ is a square-zero ele-
ment of odd degree in the graded Lie algebra (Ω∗(M,TM), [−,−]FN ) (Theorem 4.1).
In Section 5 we define the deformation problem for Ψ-submanifolds and study formal
deformations using this strongly homotopy Lie algebra (Proposition 5.3). Moreover,
we show that under certain conditions the deformation space is an analytic variety
(Theorem 5.10). In Section 6, we apply these results to study infinitesimal, smooth
and formal deformations of calibrated submanifolds in detail (Proposition 6.1, Theo-
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rem 6.4) and revisit the deformation theory of complex submanifolds (Theorem 6.6,
Remark 6.7).

Notations and conventions.
• In this paper, manifolds and their submanifolds are denoted by capital Latin

letters M,L, etc. When we want to emphasize the dimension of a manifold M (resp.
a submanifold L) we write Mm (resp. Ll). The tangent map to a smooth map
f : M → N is denoted by Tf : TM → TN , and its value at the point x ∈ M by
Txf : TxM → Tf(x)N .

• Small Greek letters usually denote scalar valued forms and capital Greek letters
denote vector valued forms. Also, we use the Einstein summation convention summing
over repeated indices whenever convenient.

• For a scalar valued form ϕ on M we denote by ϕ̂ the associated TM -valued
form on M obtained from ϕ by contraction with the metric (see (2.6) and the sentence
that follows for explanation).

• For a finite dimensional (resp. infinite dimensional) vector space V we denote
by 0 ∈ V (resp. 0 ∈ V ) the origin of V .

• We adopt Getzler’s conventions about L∞-algebras [Getzler2009].

2. Preliminaries.

2.1. Parallel differential forms on a Riemannian manifold. In this section,
we recall the classification of parallel differential forms on a Riemannian manifold
(M, g), described in Tables 1, 2, 3, 4 from [Besse1987, Chapter 10].

Let ϕ be a parallel form on (M, g) such that ϕ is not a multiple of the volume
form. Then the restricted holonomy group Hol0(M, g) is contained in the stabilizer
Stab(ϕ) and therefore is strictly smaller than the group O(m). Since locally a Rieman-
nian manifold (M, g) is a product of Riemannian manifolds whose holonomy group
action on the tangent bundle is irreducible, the classification of parallel forms on
(M, g) is reduced to the case of irreducible Riemannian manifolds (M, g). Symmetric
Riemannian spaces are examples of manifolds admitting parallel forms.

• The algebra of parallel forms on an irreducible symmetric space M = G/H
is isomorphic to the algebra of AdH -invariant forms on TeG/H. In particular, if
M = G/H is compact, then the algebra of parallel forms is isomorphic to the de Rham
cohomology algebra H∗(M,R). A list of the Poincaré polynomials of all the simply
connected compact irreducible symmetric spaces has been compiled by Takeuchi in
[Takeuchi1962].

In 1955, Marcel Berger proved that if (M, g) is a simply-connected Riemannian
manifold with irreducible holonomy group and nonsymmetric, then Hol0(M, g) must
be one of SO(n), U(m) (Kähler manifolds) , SU(m) (Ricci flat Kähler manifolds, in
particular Calabi-Yau manifolds), Sp(m) (hyper-Kähler manifolds), Sp(m) × Sp(1)
(quaternionic Kähler manifolds), G2 (G2-manifolds) or Spin(7) (Spin(7)-manifolds).

• The algebra of parallel forms on a Kähler manifold is generated by the Kähler
2-form ω.

• The algebra of parallel forms on a Ricci flat Kähler manifold is generated by
the Kähler 2-form ω and the real and imaginary parts Re volC, Im volC of the complex
volume form. The latter are called special Lagrangian forms, abbreviated as SL-forms.

• The algebra of parallel forms on a quaternionic Kähler manifold is generated
by the quarternionic 4-form ψ.

• The algebra of parallel forms on a hyper-Kähler manifold is generated by the
three Kähler 2-forms.
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• The algebra of parallel forms on a G2-manifold is generated by the associative
3-form ϕ and its dual coassociative 4-form ∗ϕ.

• The algebra of parallel forms on a Spin(7)-manifold is generated by the self-dual
Cayley 4-form κ.

We also refer the reader to [Bryant1987, Salamon1989] for the geometry of parallel
forms on manifolds with special holonomy.

2.2. Frölicher-Nijenhuis bracket. Let us recall the definition of the Frölicher-
Nijenhuis bracket on Ω∗(M,TM) following [KMS1993, §8], see also [KLS2017a, §2.1]
for a short account.

The space Der(Ω∗(M)) of graded derivations of the graded commutative algebra
Ω∗(M) is a graded Lie algebra. First we recall the definition of algebraic graded
derivations in Der(Ω∗(M)). They are defined by insertions ιK for K ∈ Ω∗(M,TM).
For K = αl ⊗X we define ιK ∈ Der(Ω∗(M)) as follows

ιαl⊗Xβr := αl ∧ (ιXβr) ∈ Ωl+r−1(M).

Next we define the linear map

L : Ω∗(M,TM) → Der(Ω∗(M)), K �→ LK ,

LK := [ιK , d] ∈ Der(Ω∗(M)). (2.1)

Proposition 2.1 ([KMS1993, Theorem 8.3, p. 69]). For any graded derivation
D ∈ Der(Ω∗(M)) there are unique K ∈ Ω∗(M,TM) and K ′ ∈ Ω∗(M,TM) such that

D = LK + ιK′ .

We have K ′ = 0 if and only if [D, d] = 0 and D is algebraic if and only if K = 0.

It follows from Proposition 2.1 that the map L is injective and its image
L(Ω∗(M,TM)) is the centralizer of d in Der(Ω∗(M)):

L(Ω∗(M,TM)) = {D ∈ Der(Ω∗(M))| [D, d] = 0}. (2.2)

Hence, L(Ω∗(M,TM)) is closed under the graded Lie bracket [−,−] on Der(Ω∗(M)).
Then we define the Frölicher-Nijenhuis bracket [−,−]FN on Ω∗(M,TM) as the pull-
back of the graded Lie bracket on Der(Ω∗(M)) via the linear embedding L, i.e.,

L[K,L]FN := [LK ,LL]. (2.3)

Thus, the Frölicher-Nijenhuis bracket provides Ω∗(M,TM) with the structure of a
Z-graded (hence Z2-graded) Lie algebra.

Furthermore the Frölicher-Nijenhuis bracket enjoys the following functoriality
with respect to local diffeomorphisms. First of all, for a local diffeomorphism
f : M → N and any K ∈ Ω∗(N,TN), the pull-back of K by f is defined as fol-
lows:

(f∗K)x(X1, · · · , Xl) := (Txf)
−1Kf(x)(Txf ·X1, · · · , Txf ·Xl). (2.4)

Then we have [KMS1993, 8.16, p. 74]

f∗[K,L]FN = [f∗K, f∗L]FN . (2.5)
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Let (M, g) be a Riemannian manifold. Recall that the contraction ∂g :
ΛlT ∗M −→ Λl−1T ∗M ⊗ TM is defined pointwise as follows [KLS2017a, (2.5)]

∂g(ϕ
l) := (ιeiϕ

l)⊗ (ei), (2.6)

where the sum is taken pointwise over some orthonormal basis (ei) of TxM .

We also abbreviate ∂g(ϕ) by ϕ̂.

Remark 2.2. To express ϕ̂, we shall also use the more convenient notion of a
(l − 1)-fold alternating vector product ρϕ ∈ Ω(l−1)(M,TM) defined by a differential
form ϕ ∈ Ωl(M), [Robles2012, (3.1)] such that

ϕl(u, v2, · · · , vl) = g(u, ρϕ(v2, · · · , vl)). (2.7)

Then we have ϕ̂ = ρϕ. The notion of an alternating vector product, introduced
by Robles, is a generalization of the notion of a multi-linear vector cross product,
introduced by Gray [Gray1969], where Gray imposed a further compatibility be-
tween a vector cross product, which is an alternating vector product, on a pseudo-
Riemannian manifold (M, g) and the pseudo-Riemannian metric g. Vector cross prod-
ucts have been used intensively by Harvey-Lawson in their study of calibrated geom-
etry [HL1982].

A straightforward computation via geodesic normal coordinates yields the follow-
ing

Proposition 2.3 (cf. [KLS2017a, Proposition 2.2]). For any parallel differential
form ϕ on a Riemannian manifold (M, g) we have [ϕ̂, ϕ̂]FN = 0.

Definition 2.4. We say that an element Ψ ∈ Ω2l+1(M,TM) is of square-zero,
if [Ψ,Ψ]FN = 0.

Observe that [Ψ,Ψ]FN = 0 for any Ψ ∈ Ω2l(M,TM) as [−,−]FN is graded skew-
symmetric.

3. ϕ-calibrated submanifolds and Ψ-submanifolds. In this section, moti-
vated by the geometry of calibrated submanifolds (Lemma 3.1), we introduce the no-
tion of a Ψ-submanifold for any Ψ ∈ Ω∗(M,TM) (Definition 3.3). We relate Lemma
3.1 and the notion of a Ψ-submanifold with previous work on calibrated submanifolds,
their further extensions and related results (Remarks 3.2, 3.4). We provide examples
of Ψ-submanifolds that are not calibrated submanifolds (Example 3.7), including all
complex submanifolds as well as all Lie subgroups in compact Lie groups. Finally we
give a shorter proof of Robles’ result that if ϕl is a parallel l-form on a Riemannian
manifold (M, g) then ϕ̂l-submanifolds L are minimal submanifolds if the restriction
of ϕl to L does not vanish (Theorem 3.5), which shall be needed in a later section.

For a submanifold L in a manifold M we denote by NL = TM|L/TN the normal
bundle of L and by pr : TM|L → NL the canonical projection. If M is endowed
with a Riemannian metric g then we also identify NL with the (Riemannian) normal
bundle of L that is the orthogonal complement to the tangent bundle TL.

Lemma 3.1. Let ϕl be a calibration on a Riemannian manifold (M, g) and L a
ϕl-calibrated submanifold. Then pr ◦ ϕ̂l

|L = 0 ∈ Ω∗(L,NL).
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Proof. Let L be a ϕl-calibrated submanifold. Let (ei) and (fj) be orthonormal
bases of TxL and NxL, respectively. Then for any i ∈ [1, k] we have

pr ◦ ϕ̂(e1 ∧ · · · êi · · · ∧ el) =

n−l∑
j=1

ϕ(fj ∧ e1 ∧ · · · êi · · · ∧ el)⊗ fj , (3.1)

where êi stands for omission. By the first cousin principle for calibrated submanifolds
[HL1982, p. 78] the right hand side of (3.1) vanishes. This completes the proof.

Remark 3.2. (1) Let us denote by Gl(TxM) the Grassmannian of all unit de-

composable l-vectors in TxM and by �TxL the unit l-vector associated to the oriented
tangent space TxL whose orientation is defined by the volume form ϕl

|L. The Grass-

manian Gl(TxM) has the natural Riemannian metric induced from the Riemannian
metric on TxM . Note that the tangent space T �TxL

Gl(TxM) has an orthogonal ba-

sis consisting of l-vectors of the form fj ∧ e1 ∧ · · · êi · · · ∧ el. Let ϕ̃l(x) denote the
restriction of ϕl(x) to Gl(TxM). Then we have

〈pr ◦ ϕl(e1 ∧ · · · êi · · · ∧ el), fj〉 = 〈de1∧···∧el ϕ̃
l(x), fj ∧ e1 ∧ · · · êi · · · ∧ el〉 (3.2)

where the pairing in the LHS of (3.2) is defined via the Riemannian metric and
where again, êi stands for omission. Thus the condition pr ◦ ϕ̂l

|L = 0 ∈ Ω∗(L,NL) is

equivalent to the condition that L is a ϕ-critical manifold, i.e., �TxL is a critical point
of ϕx for all x ∈ L; see also [Le1990], [HL2009], [Robles2012] for a study of ϕ-critical
submanifolds.

(2) In [Robles2012, Proposition 3.4] Robles gives a nice characterization of ϕ-
critical submanifolds L in terms of the alternating vector product ρϕ, namely TL is
ρϕ-closed, i.e., ρϕ|L ∈ Ω∗(L, TL).

(3) Although the equality pr ◦ ϕ̂|L = 0 is equivalent to the condition that L is
ρϕ-closed, we prefer the expression pr ◦ ϕ̂|L = 0, since it says that L is the zero
set of an NL-valued differential form, what we shall use in our deformation theory
in later sections. Moreover, this expression is similar to that appearing in the de-
formation theory for coisotropic submanifolds in Poisson and Jacobi manifolds (see,
e.g., [LOTV2014], and references therein), which led us to our search for L∞-algebras
governing deformations of calibrated submanifolds.

Lemma 3.1 motivates the following

Definition 3.3. Let M be a smooth manifold and Ψ ∈ Ωl(M,TM). A sub-
manifold Lr ⊂ M , where r ≥ l, will be called a Ψ-submanifold, if pr ◦ Ψ|L = 0 ∈
Ωl(Lr, NLr) or, equivalently, Ψ|L ∈ Ωl(Lr, TLr).

Remark 3.4. The class of Ψ-submanifolds of a manifold M is larger than the
class of ϕ-critical submanifolds, since this definition does not require a metric on M .
For instance, any almost complex submanifold in an almost complex manifold is a
Ψ-submanifold. In contrast, the notion of a ϕ-critical submanifold in M implicitly
requires a Riemannian metric g on M , which allows us to associate a tangent space
TxL of an oriented submanifold L ⊂ M with the unit l-vector �TxL.

Let us recall the following result of Robles, which we shall need later.

Theorem 3.5 ([Robles2012, Theorem 1.2]). Assume that ϕl is a parallel form on
a Riemannian manifold (M, g). Then a ϕ̂l-submanifold L is a minimal submanifold
if ϕl

|L �= 0.
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We provide below a short proof of Theorem 3.5, using the argument in the proof
of Lemma 1.1 in [Le1990].

Proof. Let L be a ϕ̂l-submanifold in (M, g). We shall compute the mean curvature
H of L. Let V1, · · · , Vl be local vector fields on L such that |V1 ∧ · · · ∧ Vl| = 1. By

Remark 3.2(1), for each x ∈ L the unit l-vector �TxL is a critical point of the function
ξ �→ ϕl(ξ). Hence we have

ϕl( �TxL) = c (3.3)

for some constant c (this follows from the classification of parallel forms on (M, g),
see e.g. [Besse1987, Theorem 10.108, Corollary 10.110] and Subsection 2.1). Recall
that c �= 0 by the assumption of Theorem 3.5.

Let X be a normal vector on L. Using the argument in the proof of Lemma 1.1
in [Le1990] we compute

0 =(ιXdϕl)(V1, · · · , Vl) =
l∑

i=1

(−1)iVi

(
ϕl(X,V1, · · · , V̂i, · · · , Vl)

)
−X

(
ϕl(V1, · · · , Vl)

)
+

∑
1≤i<j≤l

(−1)i+jϕl([Vi, Vj ], X, · · · , V̂i, · · · , V̂j , · · · , Vl)

+

l∑
i=1

(−1)iϕl([X,Vi], · · · V̂i, · · ·Vl), (3.4)

where V̂i stands for omission of this entry. The first and third terms in (3.4) are zero,
since L is a ϕ̂l-submanifold. The second term is zero by (3.3). Hence we get from
(3.4)

0 =
l∑

i=1

(−1)iϕl([X,Vi], · · · , V̂i, · · · , Vl) = c

l∑
i=1

〈[X,Vi], Vi〉 = c〈−H,X〉.

Since c �= 0 we obtain H = 0. This proves Theorem 3.5.

Corollary 3.6. Let ϕ be a parallel calibration. A deformation of a closed ϕ-
calibrated submanifold inside the class of ϕ̂-submanifolds remains in the subclass of
ϕ-calibrated submanifolds.

Proof. Let ϕ be a calibration and let Lt, t ∈ [0, 1], be a continuous family of
closed ϕ̂-submanifolds such that L0 is a ϕ-calibrated submanifold. Then ϕ|L0

�= 0
and therefore ϕ|Lt

�= 0 for sufficiently small t. By Theorem 3.5, Lt is also a minimal
submanifold for such small t, in particular the volume of Lt is constant around t = 0.
Since L0 is a calibrated submanifold, it follows that the Lt are calibrated submanifolds
for all sufficiently small t. Then the set of all values t such that Lt is a ϕ-calibrated
submanifold is an open subset in the interval [0, 1]. On the other hand, since the
volume function is continuous, the set of all values t such that Lt is a ϕ-calibrated
submanifold is also closed. This completes the proof of Corollary 3.6.

Example 3.7. 1. By Remark 3.2 (1), each ϕ-calibrated submanifold is a ϕ̂-
submanifold. In particular, every associative submanifold L3 in a G2-manifold M7

is a ϕ̂-submanifold, where ϕ is the associative 3-form on M7. We claim that every
3-dimensional ϕ̂-submanifold is an associative submanifold. To prove this assertion
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we regard ϕ̂ ∈ Ω2(M7, TM7) as the 2-fold cross product TM7 × TM7 → TM7:
ϕ(X,Y, Z) = 〈X × Y, Z〉 where × denotes the cross product [HL1982, KLS2017a].
Then our assertion follows from the first cousin principle for ϕ̂-submanifolds and the
observation that a 3-plane is associative if and only if it is invariant under the 2-fold
cross product [HL1982].

2. Let us consider a complex manifold (M, g, J). We regard J as an element in
Ω1(M,TM). Clearly a submanifold L in M is a J-submanifold if and only if it is a
complex submanifold.

3. Let ∗ϕ be the coassociative 4-form on a G2-manifold M7. The associated
form ∗̂ϕ ∈ Ω3(M7, TM7) is often denoted by χ and called the 3-fold cross product
[HL1982, KLS2017a].

(a) It is shown in the proof of Lemma 5.6 in [KLS2018] that a 3-submanifold
L3 ⊂ M7 is a χ-submanifold if and only if it is an associative submanifold.

(b) By Remark 3.2 (1), every coassociative submanifold L4 is a χ-submanifold.
We claim that a 4-dimensional χ-submanifold is a coassociative submanifold. To
prove this it suffices to show that the coassociative planes (up to orientation) are the
only critical points of the function ∗̃ϕ defined in Remark 3.2 (1). This assertion is
equivalent to the statement that the associative planes (up to orientation) are the
only critical points of the function ϕ̃, which has been proved in Example 3.7 1.

It is not hard to conclude from (a) and (b) that a χ-submanifold in a G2-manifold
is either an associative or a coassociative submanifold. Thus, we regard χ as an
analogue of the complex form J ∈ Ω1(M,TM) in complex geometry. In [KLS2017a]
Kawai-Lê-Schwachhöfer gave another interpretation of this fact, proving that a G2-
structure is torsion-free if and only if [χ, χ]FN vanishes.

4. Let α := Re(volC) be the SL-calibration on a Calabi-Yau manifold
(M, g, ω, volC). Remark 3.2 (1) implies that every special Lagrangian submanifold
L ⊂ M is a α̂-submanifold.

5. Let M7 be a G2-manifold and ϕ the defining associative 3-form. In [LV2017]
Lê-Vanžura define a form τ ∈ Ω4(M7, TM7) as follows. For x, y, z, w ∈ TM7 we set
([HL1982, (1.17), Theorem 1.18, p. 117], see also [LV2017, Remark 4.2])

τ(x, y, z, w) := −(ϕ(y, z, w)x+ ϕ(z, x, w)y + ϕ(x, y, w)z + ϕ(y, x, z)w). (3.5)

Then any 4-submanifold in M7 is a τ -submanifold.

6. Let M8 be a Spin(7)-manifold and ψ4 its defining Cayley form. Recall that
ψ4(X,Y, Z,W ) = 〈P (X,Y, Z),W 〉 where P is the 3-fold vector cross product, see e.g.

[Fernandez1986]. By Remark 3.2(1), every Cayley submanifold is a ψ̂4-submanifold.

Since any ψ̂4-submanifold L is invariant under the triple product P , L must be a
Cayley submanifold.

7. Let G be a compact Lie group provided with the Killing metric. Denote by
ω3 the Cartan 3-form on G. The calibration ω3 has been first considered by Dao
in [Dao1977] and later by Tasaki [Tasaki1985]. By Theorem 3.1 in [Le1990] any 3-
dimensional Lie subgroup in G is a ω̂-submanifold. Since the tangent space TeG is
invariant under the Lie bracket, any Lie subgroup in G is a ω̂-submanifold. In [Le1990,
Section 3] Lê classified stably minimal 3-dimensional subgroups in compact semi-
simple Lie groups of classical type, see also [Le1990b] for the classification of all stably
minimal simple Lie subgroups in classical Lie groups. Clearly, non-stably minimal Lie
subgroups cannot be calibrated submanifolds, since calibrated submanifolds are area-
minimizing, and hence stably minimal.
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8. Let θ3, θ5, · · · , θ2m−1 be bi-invariant forms on SU(m). By Theorem 3.4 in

[Le1990] for any n < m the standard subgroup SU(n) ⊂ SU(m) is a φ̂-submanifold
for φ = θ1 ∧ · · · ∧ θ2n−1.

4. The L∞-algebra associated to a Ψ-submanifold. We use the notation in
the previous sections, in particular, NL denotes the normal bundle of a submanifold
L in a manifold M . In this section, using Voronov’s derived bracket construction
[Voronov2005], we prove the following.

Theorem 4.1. Let Ψ ∈ Ω∗(M,TM) be an odd degree element which is square-
zero, i.e., such that [Ψ,Ψ]FN = 0, and let L be a Ψ-submanifold. Then the
cochain complex Ω∗(L,NL)[−1] carries a canonical Z2-graded L∞-algebra structure.
If degΨ = 1 then this Z2-graded L∞-algebra is also a Z-graded L∞-algebra.

As a corollary, taking into account Example 3.7 (1),(2), we obtain the following

Corollary 4.2. 1. Assume that ϕl is a parallel l-form on a Riemannian man-
ifold (M, g) and L is a closed ϕl-calibrated submanifold. If l is even, then there is a
canonical Z2-graded L∞-algebra structure on Ω∗(L,NL)[−1]. If l is odd, then there
is a canonical Z2-graded L∞-algebra structure on Ω∗(L× S1, N(L× S1))[−1].

2. (cf. [Manetti2007]) For any closed complex submanifold L in a complex man-
ifold M there is a canonical Z-graded L∞-algebra structure on Ω∗(L,NL)[−1].

3. For every closed associative submanifold L3 in a G2-manifold (M7, ϕ3)
there are canonical Z2-graded L∞-algebra structures both on Ω∗(L3, NL3)[−1] and
on Ω∗(L3 × S1, N(L3 × S1))[−1].

Proof. Let L be a closed ϕl-calibrated submanifold of the Riemannian manifold
(M, g). If l is even, then L is a ϕ̂l-submanifold of M . If l is odd, then L × S1 is a

ϕ̂l ∧ dt-submanifold of M × S1. This proves statement 1. Statement 2 is immediate,
as any complex submanifold is a J-submanifold. Finally, any associative submanifold
L3 of a G2-manifold (M7, ϕ3) is a ϕ3-calibrated submanifold, so we have an L∞-
structure on Ω∗(L3 × S1, N(L3 × S1))[−1] by statement 1. On the other hand, it

has been showed in [KLS2018] that L3 is ∗̂ϕ3-submanifold (see Example 3.7.3). This
proves statement 3.

The remainder of this section is devoted to the proof of Theorem 4.1. First, let
us recall Voronov’s construction of a Z2-graded L∞-algebra from a set of V-data. A
set of V -data is a quintuple (g, a, j, P,�), where

• g = g0 ⊕ g1 is a Z2-graded Lie algebra (with Lie bracket [−,−]),
• a is an abelian Lie algebra;
• j : a → g is a Lie algebra inclusion;
• P : g → a is a (not necessarily bracket preserving) projection, inverting j
from the left and such that kerP ⊆ g is a Lie subalgebra,

• � ∈ (kerP ) ∩ g1 is an element such that [�,�] = 0.

Proposition 4.3 ([Voronov2005, Theorem 1, Corollary 1]). Let (L, a, j, P,�) be
a set of V-data. Then a[−1] is a Z2-graded L∞-algebra with multibrackets

ln(a1, · · · , an) = (−1)�P [· · · [[�, j(a1)], j(a2)], · · · , j(an)]. (4.1)

where

� = (n− 1)|a1|+ (n− 2)|a2|+ · · ·+ |an−1|+
n(n+ 1)

2
,
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and the vertical bars | − | denote the degree in a[−1].

Replacing Z2 by Z in the definition of V -data, Formula (4.1) gives a Z-graded L∞-
algebra. A homotopy Lie theoretic interpretation of Voronov’s L∞-algebra structure
on a[−1] can be found in [Bandiera2015].

The proof of Theorem 4.1 will now go through several steps. The first step consists
in associating V-data to a Ψ-submanifold L equipped with a tubular neighborhood τ .

If j : L ↪→ M is a submanifold, a tubular neighborhood of L in M is defined to
be a diffeomorphism τ : NεL → U ⊂ M from an open neighborhood NεL ⊂ NL of
0 onto an open neighborhood of L in M such that τ ◦ 0 = j, where 0 : L → NL is
the zero section. Clearly, such maps exist, e.g. using the normal exponential w.r.t.
some Riemannian metric on M . Furthermore, since we may assume that NεL ⊂ NL
is a disc bundle and hence bundle equivalent to all of NL, it follows that we may
w.l.o.g. replace NεL by all of NL. That is, from now on we shall assume that a
tubular neighborhood is a diffeomorphism τ : NL

∼−→ U ⊂ M .

Definition 4.4. Let Ψ ∈ Ω∗(M,TM) be an odd degree element with [Ψ,Ψ]FN =
0, let j : L ↪→ M be a Ψ-submanifold and τ : NL → U ⊂ M be a tubular neighborhood
of L in M . Denote by π : NL → L the projection. The 5-tuple (gL, aL, jL, PL,�L,τ )
is defined as follows:

• The graded Lie algebra gL is Ω∗(NL, TNL) with the FN bracket;
• the abelian graded Lie algebra aL is the graded vector space Ω∗(L,NL) en-

dowed with the zero bracket;
• the graded vector space morphism jL : aL → gL is defined on decomposable
elements as jL(ω ⊗X) = π∗(ω)⊗ X̂, where X̂ is the canonical vertical lift of
X given by the natural identification Nπ(x)L ∼= ker(π∗ : TxNL → Tπ(x)L);

• the graded vector space morphism PL : gL → aL is the composition

Ω∗(NL, TNL)
|L−→ Ω∗(L, TNL

∣∣
L
)

pr−→ Ω∗(L,NL),

where the rightmost arrow pr is the natural projection induced by the projec-
tion TNL|L → NL, also denoted by pr in Section 3, by identifying L with a
submanifold of NL via the zero section L ↪→ NL (equivalently, pr is induced
by the canonical splitting TNL|L = TL⊕NL);

• the element ΔL,τ in gL,τ is ΔL,τ = τ∗Ψ, where

τ∗ : Ω∗(M,TM) → Ω∗(NL, TNL)

is the pullback of tensors along the local diffeomorphism τ .

Remark 4.5. Notice that, as the notation suggests, ΔL,τ is the only component
of the 5-tuple (gL, aL, jL, PL,�L,τ ) which actually depends on the tubular neighbor-
hood τ .

Proposition 4.6. The 5-tuple (gL, aL, jL, PL,�L,τ ) associated with a Ψ-
manifold is a 5-tuple of V-data. As a consequence the graded vector space aL[−1] =
Ω∗(L,NL)[−1] carries a Z2-graded L∞-algebra structure induced by this data. When
Ψ has degree 1, this is actually a Z-graded L∞-algebra structure.

Proof. The map jL is injective, the map PL is surjective, and one manifestly has
PL ◦ jL = idaL

so we are left with showing [jLaL, jLaL] = 0, that kerPL is a Lie
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subalgebra of gL, that �L,τ ∈ kerPL and [�L,τ ,�L,τ ] = 0. To this aim, consider the
composition

P̃L = jL ◦ PL : Ω
∗(NL, TNL) → Ω∗(NL, TNL).

It is shown in [KLS2018] that the image of P̃L is an abelian subalgebra of the graded
Lie algebra (Ω∗(NL, TNL), [−,−]FN ) and that ker P̃L is closed under the Frölicher-
Nijenhuis bracket. As PL is surjective, the image of P̃L coincides with the image
of jL, so that jL(aL) is an abelian subalgebra of gL. As jL is injective, we have
ker P̃L = kerPL, and so kerPL is a Lie subalgebra of gL. By the naturality of the
Frölicher-Nijenhuis bracket, we have

[�L,τ ,�L,τ ] = [τ∗Ψ, τ∗Ψ]FN = τ∗[Ψ,Ψ]FN = 0. (4.2)

Finally, as L is a Ψ-submanifold of M and τ is a diffeomorphism relative to L in
a neighborhood of L (identified with the zero section in NL), we have that L is a
�L,τ -manifold in NL. Therefore, PL�L,τ = 0 by definition of �L,τ -manifold.

The underlying graded vector space of the L∞-algebra structure induced on
Ω∗(L,NL)[−1] by Proposition 4.6 is independent of τ . Our next step will consist
in showing that also the L∞-algebra structure is actually independent of τ , up to
isomorphism. To begin with, let us show that a reparameterization of the tubular
neighborhood leaves the L∞-algebra structure unchanged up to isomorphism.

Lemma 4.7. Let τ0 and τ1 be two tubular neighborhoods of L in M such that
τ1 = τ0◦ψ for some diffeomorphism ψ of NL relative to L. Then ψ induces an isomor-
phism of V-data between (gL, aL, jL, PL,ΔL,τ0) and (gL, aL, jL, PL,ΔL,τ1). In partic-
ular (gL, aL, jL, PL,ΔL,τ0) and (gL, aL, jL, PL,ΔL,τ1) induce isomorphic L∞-algebra
structures on Ω∗(L,NL)[−1].

Proof. As ψ is a diffeomorphism of NL relative to L the pullback along ψ induces
commutative diagrams

Ω∗(L,NL)
jL ��

ψ∗

��

Ω∗(NL, TNL)

ψ∗

��
Ω∗(L,NL)

jL �� Ω∗(NL, TNL)

; Ω∗(NL, TNL)
PL ��

ψ∗

��

Ω∗(L,NL)

ψ∗

��
Ω∗(NL, TNL)

PL �� Ω∗(L,NL)

Finally, we have

ψ∗ΔL,τ0 = (τ−1
0 ◦ τ1)∗(τ∗0Ψ) = τ∗1Ψ = ΔL,τ1 .

In order to prove that the L∞-algebra structure Ω∗(L,NL)[−1] is generally inde-
pendent of τ , up to isomorphism, as we can not directly compare two distinct tubular
neighborhoods of L in M , it is convenient to pass to formal neigborhoods.

Definition 4.8. Let Ψ ∈ Ω∗(M,TM) be an odd degree element with [Ψ,Ψ]FN =
0, let L ⊂ M be a Ψ-submanifold and τ : NL → U ⊂ M be a tubular neighborhood of
L in M . Finally, let NLfor ↪→ NL be the formal neighborhood of L in NL via the zero
section embedding s0 : L ↪→ NL. We recall that working in the formal neighborhood
of L means working only with ∞-jets (of functions, sections, etc.) transverse to
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L (see, e.g., [CS2008, Section 4.1], were a similar situation is discussed in details).
In the same notation as Proposition 4.6, the 5-tuple (gforL , aforL , P for

L , jforL ,�for
L,τ ) is the

restriction to NLfor of the 5-tuple (gL, aL, PL, jL,�L,τ ).

Remark 4.9. Notice that the graded abelian Lie algebras aL and aforL actually
coincide: they are both the graded vector space Ω∗(L,NL) endowed with the zero
bracket. In particular the restriction to NLfor is the identity morphism on Ω∗(L,NL).

Proposition 4.10. The 5-tuple (gforL , aforL , jforL , P for
L ,�for

L,τ ) is a set of V-data and

so induces a Z2-graded L∞-algebra structure on aforL [−1] = Ω∗(L,NL)[−1]. Moreover
this Z2-graded L∞-algebra structure coincides with that induced on Ω∗(L,NL) by the
V-data (gL, aL, PL, jL,�L,τ ).

Proof. The proof follows analogous lines as those of [CS2008, Sections 4.1], and
we leave the obvious translation to the reader.

Lemma 4.11. Let τ0 and τ1 be two isotopic tubular neighborhoods of L in M .
Then �for

L,τ0
and �for

L,τ1
are gauge equivalent square-zero elements in gforL . In particular

the V-data (gforL , aforL , jforL , P for
L ,�for

L,τ0
) and (gforL , aforL , jforL , P for

L ,�for
L,τ1

) induce isomor-

phic L∞-algebra structures on aforL [−1] = Ω∗(L,NL)[−1].

Proof. By definition of isotopic tubular neighborhoods, there exists a smooth
family Φt of maps Φt : NL → M , with t ∈ [0, 1], which are diffeomorphisms on their
images and such that Φt ◦ s0 = j for every t ∈ [0, 1], such that Φ0 = τ0 and Φ1 = τ1.
Let Φ̂t be the composition of Φt with the embedding NLfor ↪→ NL of the formal
neighborhood NLfor of L into NL. Then Φ̂t is a formal diffeomorphism between
NLfor and the formal neighborhood L̂M of L inside M . Let Δfor

t = Φ̂∗
t (Ψ

∣∣
L̂M

). Then

Δfor
0 = Δfor

L,τ0
and Δfor

1 = ΔL,τ1 . Moreover, writing Ξ̂t for the formal diffeomorphism

of NLfor relative to L given by Ξ̂t = Φ̂−1
0 ◦ Φ̂t we have

Δfor
t = Φ̂∗

t (Φ̂
−1
0 )∗Φ̂∗

0(Ψ
∣∣
L̂M

) = Ξ̂∗
tΔ

for
0

As Ξ̂0 = idNLfor
, differentiating the above equation with respect to t we find

d

dt
Δfor

t = Lξ̂t
Δfor

t ,

where Lξ̂t
Δfor

t is the Lie derivative of the tensor field Δfor
t with respect to the vector

field ξ̂t =
d
dt Ξ̂t. For every t, the vector field ξ̂t is an element in Ω0(NLfor, TNLfor) =

(gforL )0. Moreover, Lξ̂t
Δt = [ξ̂t,Δ

for
t ]FN . Thus, the family of elements Δfor

t satisfies

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d
dtΔ

for
t = [ξ̂t,Δ

for
t ]FN

Δfor
0 = Δfor

L,τ0

Δfor
1 = Δfor

L,τ1

and it is therefore a gauge equivalence between ΔL,for
τ0 and Δfor

L,τ1
in gforL . The final

part of the statement follows from the following
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Proposition 4.12 (Cattaneo & Schätz, cf. [CS2008, Theorem 3.2]). Let
(g, a, j, P,Δ0) and (g, a, j, P,Δ1) be V -data, and let a[−1]0 and a[−1]1 be the asso-
ciated L∞-algebras. If Δ0 and Δ1 are gauge equivalent and they are intertwined by a
gauge transformation preserving kerP , then a[−1]0 and a[−1]1 are L∞-isomorphic.

Corollary 4.13. Let τ0 and τ1 be two isotopic tubular neighborhoods of L in M .
Then the V-data (gL, aL, jL, PL,�L,τ0) and (gL, aL, PL, jL,�L,τ1) induce isomorphic
L∞-algebra structures on Ω∗(L,NL)[−1].

Proof. Immediate from Proposition 4.10 and Lemma 4.11.

Putting Proposition 4.10 and Corollary 4.13 together, we obtain the following
statement, which is a rephrasing of Theorem 4.1.

Proposition 4.14. Let Ψ ∈ Ω∗(M,TM) be an odd square-zero element, and L
a Ψ-submanifold of M . Then the Z2-graded L∞-algebra structure on Ω∗(L,NL)[−1]
induced by the V-data (gL, aL, jL, PL,�L,τ ) is independent of the tubular neighborhood
τ , up to isomorphism.

Proof. Given two tubular neighborhoods τ0 and τ1 of L in M , there always exists
a third tubular neighborhood τ̃1 such that τ0 and τ̃1 are isotopic relative to L and
τ̃1 = τ1 ◦ ψ for a suitable diffeomorphism of NL relative to L, see, e.g., [H1997,
Theorem 5.3].

5. Deformations of Ψ-submanifolds. Let Ψ ∈ Ω2l−1(M,TM) be an odd de-
gree, square zero element and L a closed Ψ-submanifold in M . As in the proof of
Theorem 4.1, we use a tubular neighborhood τ : NL → U ⊂ M to identify the normal
bundle NL with an open neighborhood U of L in M , and we thus may replace M by
NL. In particular, we may regard Ψ as a square zero element in Ω∗(NL, TNL).

A smooth small deformation of L in NL can be identified with a (smooth) section
L → NL, i.e., with an element in Ω0(L,NL). In other words, when thinking of small
deformations we implicitly identify L with the image of the zero section 0 : L → NL.
We say that a section s : L → NL is a Ψ-section, if its image s(L) is a Ψ-submanifold
in NL. These have an elegant characterization in terms of the maps jL : Ω∗(L,NL) →
Ω∗(NL, TNL) and PL : Ω∗(NL, TNL) → Ω∗(L,NL) from Definition 4.4.

Proposition 5.1. Let FΨ : Γ(NL) → Ω∗(L,NL) be the map defined by

FΨ(s) := PL(exp jL(−s)∗Ψ). (5.1)

Then a section s : L → NL is a Ψ-section if and only if FΨ(s) = 0 ∈ Ω∗(L,NL).

Proof. Let x ∈ L. We begin with two simple remarks. First of all, for v ∈ TxL
we have

exp jL(s)∗v = Txs · v. (5.2)

Second, let w ∈ Ts(x)NL. Then w can be uniquely written as w = ws + wN where
ws is tangent to s(L) and wN is a tangent vector vertical with respect to projection
NL → L. In particular wN is the vertical lift of a, necessarily unique, vector in NxL
that we denote w↓

N . Finally, we have

πNL exp jL(−s)∗w = w↓
N , (5.3)
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where πNL : TNL → NL is the projection to the base. Both (5.2) and (5.3) can be
easily checked, e.g. in local coordinates. Now, we compute FΨ(s) explicitly. So, let
v1, . . . , v2l−1 ∈ TxL. Then

FΨ(s)x(v1, . . . , v2l−1)

= PL(exp jL(−s)∗Ψ)x(v1, . . . , v2l−1)

= πNL exp jL(−s)∗
(
Ψs(x)(exp jL(s)∗v1, . . . , exp jL(s)∗v2l−1)

)
= πNL exp jL(−s)∗

(
Ψs(x)(Txs · v1, . . . , Txs · v2l−1)

)
by (5.2)

= Ψs(x)(Txs · v1, . . . , Txs · v2l−1)
↓
N . by (5.3)

This shows that FΨ(s) = 0 if and only if Ψ(w1, . . . , w2l−1) is tangent to s(L) for all
w1, . . . , w2l−1 tangent to s(L), i.e. s(L) is a Ψ-submanifold.

As a step towards our investigation of smooth deformations of a Ψ-submanifold
L, in this section we first study formal Ψ-deformations of L (Definition 5.2) and show
how they are governed by the Maurer-Cartan equation of the L∞-algebra attached
to L (Proposition 5.3). Then we study infinitesimal and smooth deformations of Ψ-
submanifolds and prove the main theorem of this section on the local structure of the
pre-moduli space of analytic Ψ-submanifolds in an analytic manifold M (Theorem
5.10) under the condition that Ψ is multi-symplectic (Definition 5.8).

5.1. Formal deformations of Ψ-submanifolds. Let ε be a formal parameter.
Let us recall that a formal series s(ε) =

∑∞
i=0 ε

isi ∈ Γ(NL)[[ε]], si ∈ Γ(NS) such
that s0 = 0 is called a formal deformation of L, and s1 ∈ Γ(NL) is called its initial
velocity.

Denote by X(NL) and T (r,s)(NL) the space of smooth vector fields and (r, s)-
tensor fields on NL, where X(NL) is interpreted as the derivations of the (commu-
tative) algebra of smooth functions C∞(NL). The Lie derivative of tensor fields
naturally extends to formal power series; for a formal vector field ξ(ε) :=

∑∞
0 εiξi ∈

X(NL)[[ε]] and a formal (r, s)-tensor field T (ε) :=
∑∞

0 εiTi ∈ T (r,s)(NL)[[ε]] we
define the formal Lie derivative

Lξ(ε)T (ε) :=

∞∑
i=0

εk
∑

i+j=k

LξiTj (5.4)

and the formal exponential acting on T (r,s)(NL)[[ε]] as

expLξ(ε) :=

∞∑
n=0

1

n!
Ln
ξ(ε). (5.5)

Any section s : L → NL defines the constant vector field jL(s) on NL: the flow
on NL generated by the vector field jL(s) on NL is given by Φt

jL(s)yx = yx + ts(x)

for all yx ∈ NxL. The same applies to formal series s(ε) =
∑∞

i=0 ε
isi ∈ Γ(NL)[[ε]].

Proposition (5.1) motivates the following

Definition 5.2. A formal deformation s(ε) of L is called a Ψ-formal deformation,
if FΨ(s(ε)) := PL(expLjL(−s(ε))Ψ) = 0 ∈ Ω∗(L,NL)[[ε]].

An infinitesimal Ψ-deformation of L is a smooth section s : L → NL for which
FΨ(εs(L)) = O(ε2).
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If s(ε) =
∑∞

i=0 ε
isi is a formal Ψ-deformation of L, then its initial velocity s1

is evidently an infinitesimal Ψ-deformation. Conversely, given an infinitesimal Ψ-
deformation s1, we say that s1 is unobstructed, if there exists a formal Ψ-deformation
with initial velocity s1. If all infinitesimal deformations are unobstructed, then we
say that the formal deformation problem is unobstructed. Otherwise it is obstructed
(cf. [LO2016, §10], [LOTV2014, Remark 4.8], [LS2014, Definition 4.8]).

Recall the multibracket ln of the L∞-algebra associated to a Ψ-submanifold (The-
orem 4.1) has been defined in (4.1) in Proposition 4.3.

Proposition 5.3. The formal Ψ-deformations of L are governed by the
L∞-algebra Ω∗(L,NL). Namely, a formal deformation s(ε) of L is a formal Ψ-
deformation if and only if s(ε) is a solution of the (formal) Maurer-Cartan equation

MC(s(ε)) :=

∞∑
n=1

1

n!
ln(s(ε), · · · , s(ε)) = 0. (5.6)

Proof. From the definition of ln we get

PL(Ln
jL(−s)Ψ) = ln(s, · · · , s), n ≥ 1, (5.7)

for s ∈ Γ(NL). This implies the identity of formal power series

PL(Ln
jL(−s(ε))Ψ) = ln(s(ε), · · · , s(ε)), n ≥ 1,

for any s(ε) =
∑∞

i=0 ε
isi ∈ Γ(NL)[[ε]] and so

MC(s(ε)) =

∞∑
n=1

1

n!
PL(Ln

jL(−s(ε))Ψ) = PL(expLjL(−s(ε))Ψ)

for any formal series s(ε) =
∑∞

i=0 ε
isi ∈ Γ(NL)[[ε]].

Corollary 5.4. Let s : L → NL be a smooth section. Then εs is an infinitesimal
Ψ-deformation of L if and only if l1(s) = 0, i.e., if and only if s ∈ ker d0FΨ, where
d0FΨ is the differential of FΨ at the point 0 of Γ(NL).

We shall denote the space of infinitesimal Ψ-deformations as

JΨ(L) := ker l1 = ker d0FΨ. (5.8)

5.2. Smooth and infinitesimal deformations of Ψ-submanifolds.

Definition 5.5. A smooth Ψ-deformation of L is a smooth one-parameter defor-
mation {st} of the zero section of the vector bundle NL → L such that each section
in the family is a Ψ-section.

Clearly if {st} is a smooth Ψ-deformation, then the section dst
dt |t=0

: L → NL is

an infinitesimal Ψ-deformation. More generally, the Taylor expansion

∞∑
n=0

(
dn

dtn

∣∣∣∣
t=0

st

)
εn

of a smooth Ψ-deformation {st} is a formal Ψ-deformation. Smooth ob-
structedness/unobstructedness are defined in a similar way as formal obstructed-
ness/unobstructedness.
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For Ψ ∈ Ω(M,TM) denote by DiffΨ(M) the subgroup of the diffeomorphism
group Diff(M) whose elements preserve Ψ.

Definition 5.6. Given Ψ ∈ Ω∗(M,TM) and a homology class α ∈ Hl(M,Z),
we denote by MΨ(α) the set of all closed l-dimensional Ψ-submanifolds represent-
ing the homology class α and call it the pre-moduli space of α. The quotient
MΨ(α)/DiffΨ(M) is called the moduli space of Ψ-submanifolds of homology class
α.

Furthermore, for a Ψ-submanifold L ⊂ M , we denote by MΨ(L) the pre-
moduli space of closed Ψ-submanifolds in M that are obtained from L by smooth
Ψ-deformations, so that MΨ(L) ⊂ MΨ([L]).

Here we will work with the pre-moduli spaces only and will not discuss the moduli
problem. But note that in most applications, DiffΨ(M) is a (finite dimensional) Lie
group. Under suitable analiticity and nondegeneracy conditions on Ψ this will imply
that the moduli space of Ψ-submanifolds in the connected component of L is a finite
dimensional analytic space, see Theorem 5.10 and Remark 6.5.

Since locally, MΨ(L) is the set of C1-small solutions of the equation FΨ(s) = 0,
we shall use the tools provided in the proof of [LS2014, Theorem 4.9], see also the
pioneering paper by Koiso [Koiso1983] for a similar idea.

Being a differential operator, FΨ extends for each k ≥ 1 to a map denoted by the
same symbol

FΨ : L2
kΩ

0(L,NL) −→ L2
k−1Ω

l−1(L,NL) (5.9)

where L2
kΩ

l(L,NL) denotes the Sobolev space of L2
k l-forms on L with values in NL,

i.e., the completion of Ωl(L,NL) in the L2
k norm.

Proposition 5.7. Let M be a real analytic manifold, Ψ ∈ Ωl−1(M,TM) analytic
and L ⊂ M a closed analytic Ψ-submanifold. Then for each k, the map FΨ from (5.9)
is analytic in a neighborhood of the zero-form 0 ∈ L2

kΩ
0(L,NL),

FΨ(s) = PL(expLjL(−s)Ψ) =

∞∑
n=1

1

n!
PL(Ln

jL(−s)Ψ)
(5.7)
=

∞∑
n=1

1

n!
ln(s, · · · , s). (5.10)

Proof. We follow an approach similar to [LS2014]. First we consider the restric-
tion of the map FΨ defined in (5.9) to the space CkΩ0(L,NL) ⊂ L2

kΩ
0(L,NL).

Abusing notation, the restriction is also denoted by FΨ. Note that the image
FΨ(C

kΩ0(L,NL)) belongs to Ck−1Ωl(L,NL). Now we consider spaces CkΩ0(L,NL)
and Ck−1Ωl(L,NL) as Banach spaces with Ck-norm and Ck−1-norm respectively.

Choose a real analytic local trivialization (xi, yr) of NL where (xi) are the coor-
dinates on L. For any Ck-function f(xi) in this neighbourhood we define its Ck-norm
at x as

‖f‖Ck;x :=
∑
|I|≤k

‖(DIs)x‖,

and likewise, for a section s ∈ Ck(L,NL) we define its Ck-norm (at x) as

‖s‖Ck;x :=
∑
|I|≤k

‖(DIs)x‖, and ‖s‖Ck := sup
p∈L

‖s‖Ck;p (5.11)
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where the sum is taken over all multi-indices I, and DI denotes multiple partial
derivatives with respect to the given coordinates. Observe that there is a constant Ck

such that for all Ck-functions f and g

‖fg‖Ck;x ≤ Ck‖f‖Ck;x ‖g‖Ck;x, (5.12)

In these coordinates, Ψ ∈ Ω2k−1(NL, TNL) takes the form

Ψ =
∑

|I|+|R|=2k−1

dxI ∧ dyR ⊗
(
fr
I;R(x, y)

∂

∂yr
+ f i

I;R(x, y)
∂

∂xi

)
(5.13)

where I, R are skew-symmetric multi-indices, and where we use the Einstein con-
vention of summation over repeated indices. A section s ∈ Γ(L,NL) and its graph
s(L) ⊂ NL are given as

s(x) = sr(x)
∂

∂yr
and yr = sr(x), (5.14)

respectively, and now a straightforward calculation yields

FΨ(ts)

=
∑

|I|+|R|=2k−1

(−t)|R|
(
fr
I;R(x,−ts(x)) + t f i

I;R(x,−ts(x))
∂sr

∂xi
(x)

)
dxI ∧ dsR ⊗ ∂

∂yr

(5.15)
where, for R = (r1, · · · , rp) we set

dsR = dsr1 ∧ · · · ∧ dsrp =
∂sr1

∂xi1
· · · ∂s

rp

∂xip
dxi1 ∧ · · · ∧ dxip . (5.16)

In particular,

dn

dtn

∣∣∣∣
t=0

FΨ(ts) =
∑

|I|=l−1

prI

(
x; sr,

∂sr

∂xi

)
dxI ⊗ ∂

∂yr
,

where each prI is a homogeneous polynomial of degree n in the variables
(
sr, ∂sr

∂xi

)
whose coefficients are linear combinations of functions of the form

DSf
r
I;R, DSf

i
I;R, |S| ≤ n,

where S = (r1, · · · rn) is a multi-index in the yr-variables only. Since fr
I;R, f

i
I;R are real

analytic, it follows (cf. [KP2002, Proposition 2.2.10]) that – after possibly shrinking
the coordinate neighborhood – there are positive constants A,K such that for any
multi-index I = (i1, · · · il) and for all x, |DIDSf

r
I;R|, |DIDSf

i
I;R| ≤ n!l!AKnKl and

hence,

‖DSf
r
I;R‖Ck;x, ‖DSf

i
I;R‖Ck;x ≤ n!ÃKn (5.17)

for all x and |S| ≤ n, with fixed Ã,K > 0. Finally,

‖sr‖Ck;x ≤ C0‖s‖Ck;x ≤ C0‖s‖Ck+1;x,

∥∥∥∥∂sr∂xi
(x)

∥∥∥∥ ≤ C0‖s‖Ck+1;x (5.18)
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for some constant C0. Therefore, as p
r
I is a homogeneous polynomial, it follows from

(5.17), (5.12) and (5.18) that for all x,∥∥∥∥prI
(
x; sr(x),

∂sr

∂xi
(x)

)∥∥∥∥
Ck;x

≤ n!Ã(C0CkK)n‖s‖nCk+1;x,

whence in this coordinate neighborhood∥∥∥∥ dn

dtn

∣∣∣∣
t=0

FΨ(ts)

∥∥∥∥
Ck;x

≤ n!A0K
n
0 ‖s‖nCk+1;x (5.19)

for all x, and since by compactness L may be covered by finitely many such neighbor-
hoods, we may assume that (5.19) holds for all x ∈ L for fixed constants A0,K0 > 0.
That is, ∥∥∥∥ dn

dtn

∣∣∣∣
t=0

FΨ(ts)

∥∥∥∥
Ck

≤ n!A0K
n
0 ‖s‖nCk+1 . (5.20)

By [LS2014, Lemma 6.2], the estimate (5.20) implies that the map FΨ :
CkΩ0(L,NL) → Ck−1Ωl−1(L,NL) is an analytic map between Banach spaces. Since
L is compact, as in [LS2014], this implies that the map FΨ : L2

kΩ
0(L,NL) →

L2
k−1Ω

l−1(L,NL) is also an analytic map between Banach spaces.

In order to utilize this analyticity, we shall need some regularity on the lineariza-
tion d0FΨ. For ξ ∈ T ∗

xM , we define the linear map

σξ : Λl−1T ∗
xM ⊗ TxM −→ ΛlT ∗

xM, αl−1 ⊗ v �−→ ξ(v)ξ ∧ α. (5.21)

Definition 5.8. We call Ψ ∈ Ωl−1(M,TM) multi-symplectic if σξΨ �= 0 for
all ξ �= 0. We say that Ψ is multi-symplectic on L for a Ψ-submanifold L, if Ψ|L is

multi-symplectic in Ωl−1(L, TL).

This terminology generalizes the notion of multi-symplecticity of differential
forms, as it follows from (2.6) that Ψ = ϕ̂ is multi-symplectic (on L) iff ϕ (ϕ|L,
respectively) is multi-symplectic, meaning that ıξϕ = 0 only if ξ = 0.

Proposition 5.9. Let Ψ be multi-symplectic on the Ψ-submanifold L ⊂ M .
Then d0FΨ is an overdetermined elliptic differential operator. In particular, this is
the case if Ψ = ϕ̂ and ϕ|L is multi-symplectic.

Proof. We pick coordinates (xi, yr) as in the proof of Proposition 5.7. Then (5.15)
yields

d0FΨ(s) = l1(s) =
d

dt

∣∣∣∣
t=0

FΨ(ts)

=
∑

|I|=2k−1

(
f i
I;∅(x, 0)

∂sr

∂xi
(x)− su

∂

∂yu
fr
I,∅(x, 0)

)
dxI ⊗ ∂

∂yr

−
∑

|J|=2k−2

fr
J;u(x, 0)

∂su

∂xi
dxJ ∧ dxi ⊗ ∂

∂yr
.
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Thus, for ξ = ξidx
i ∈ T ∗

x0
L, the symbol of d0FΨ is

σξd0FΨ(s) =

=
∑

|I|=2k−1

f i
I;∅(x0, 0)ξis

rdxI ⊗ ∂

∂yr
−

∑
|J|=2k−2

fr
J;u(x0, 0)ξis

udxJ ∧ dxi ⊗ ∂

∂yr

(5.14)
=

∑
|I|=2k−1

f i
I;∅(x0, 0)ξidx

I ⊗ s− ξ ∧
∑

|J|=2k−2

fr
J;u(x0, 0)s

udxJ ⊗ ∂

∂yr

which implies

ξ ∧ σξd0FΨ(s) = ξ ∧
∑

|I|=2k−1

f i
I;∅(x0, 0)ξidx

I ⊗ s
(5.21),(5.13)

= ιξΨ|L ⊗ s.

Since Ψ|L is multi-symplectic, ιξΨ|L �= 0 for all ξ �= 0, whence the symbol σξd0FΨ is
injective for all ξ �= 0, showing the assertion.

We are almost in the position now to construct a local analytic chart on MΨ(L)
using the Inverse Function Theorem (IFT) for analytic mappings between real an-
alytic Banach manifolds [Douady1966], see [LS2014, Appendix] for a short account.
However, the main difference to the situation handled there is that we do not know a
priori if the space JΨ(L) of infinitesimal Ψ-deformations is finite dimensional, whence
we need to impose this as an additional condition.

Theorem 5.10. Let M be an analytic manifold with an analytic section Ψ ∈
Ωl−1(M,TM).

(1) If L ⊂ M is an analytic Ψ-submanifold such that Ψ is multi-symplectic on
L and JΨ(L) is finite dimensional, then the pre-moduli space MΨ(L) of all
Ψ-submanifolds C1-close to L forms a finite dimensional analytic variety.

(2) If any Ψ-submanifold in MΨ(L) shares the properties given in (1), then
MΨ(L) is a finite dimensional analytic space.

Proof. As Ψ is fixed, we shall simply write F instead of FΨ. Since Ψ is multi-
symplectic on L and hence d0F is overdetermined elliptic by Proposition 5.9, we have
the following L2-orthogonal decomposition (see e.g. [Besse1987, Corollary 32, p. 464])

L2Ωl−1(L,NL) = d0F (L2
1Γ(NL))⊕

(
ker(d0F )∗ ∩ L2Ωl−1(L,NL)

)
. (5.22)

• Let Π1 : L2Ωl−1(L,NL) → d0F (L2
1Γ(NL)) be the orthogonal projection

with respect to the decomposition in (5.22). Being bounded linear, Π1 is an
analytic map between Banach spaces.

• Let U(0) denote an open neighborhood of 0 in L2
1(Γ(NL)) such that the

restriction of the map F to U(0) is analytic. The existence of U(0) is ensured
by Proposition 5.7.

• Denote by π : L2
1Γ(NL) → JΨ(L) the orthogonal projection. Since JΨ(L) is

assumed to be finite dimensional, π is bounded linear and hence analytic.
Then we set

F̂ := π ⊕ (−Π1 ◦ F ) : L2
1(Γ(NL)) ⊃ U(0) → JΨ(L)⊕ d0F (L2

1Γ(NL)). (5.23)

By Proposition 5.7, the map F̂ is analytic in U(0) and its differential at 0 is an
isomorphism. Therefore the IFT for analytic mappings of Banach spaces implies that
there is an analytic inverse of F̂

G : V (0,0) → U(0)
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where V (0,0) is an open neighborhood of (0,0) ∈ JΨ(L)⊕ d0F (L2
1Γ(NL)).

Let V JΨ(0,0) := V (0,0) ∩ (JΨ(L),0). Next we define the map

τ : V JΨ(0,0) → JΨ(L), s �→ π ◦G(s)− i(s) (5.24)

where i : (JΨ(L),0) → JΨ(L) is the natural identification map. We now assert that
(1) The map τ is analytic.
(2) The restriction of the projection π to F−1(0) ∩ U(0) is injective.
(3) An element y ∈ V JΨ(0,0) belongs to τ−1(0) if and only if y = i−1 ◦ π(z) for

some z ∈ (Π1 ◦ F )−1(0).
The first statement holds as both π and G are analytic maps, whereas the second

holds since F̂ is locally invertible at the origin.
To see the last assertion, let us first proof the “if”-part. Assume that y = i−1◦π(z)

and Π1 ◦ F (z) = 0. Then F̂ (z) = i−1 ◦ π(z) = y. It follows z = G(y) and τ(y) =
π ◦G(y)− i(y) = π(z)− π(z) = 0, which proves the “if”-assertion.

Now assume that τ(y) = 0. Then π ◦ G(y) = i(y). Set z = G(y). Then F̂ (z) =
y = π(z) and therefore, Π1 ◦ F (z) = 0, so that the third assertion is shown as well.

We now consider the restriction F : τ−1(0) → kerΠ1. Then F−1(0) consists
of the common zeroes of the analytic functions Fξ(·) := 〈ξ, F (·)〉 on τ−1(0) for all
ξ ∈ kerΠ1 and where 〈·, ·〉 refers to the scalar product on L2Ωl−1(L,NL).

Since τ−1(0) ⊂ V JΨ(0,0) is a finite dimensional real analytic variety, the ring of
germs of analytic functions at 0 is Noetherian [Frisch1967, Theorem I.9]. Therefore,
F−1(0) is given as the zero set of finitely many analytic functions Fξ1 , . . . , FξN . In
other words, there is an analytic function

τ̂ := (τ, Fξ1 , . . . , FξN ) : V J(0,0) −→ JΨ(L)⊕ RN

for some finite number N such that F−1(y) = 0 iff y = i−1◦π(z) for some z ∈ F−1(0).
This allows to identify the C1-neighborhood F−1(0) ∩ U(0) of L in the pre-moduli
space MΨ(L) with the pre-image τ̂−1(0) in the neighborhood of 0 ∈ JΨ(L) via the
map i−1 ◦ π : F−1(0) ∩ U(0) → τ̂−1(0), where τ̂ is an analytic map between open
neighborhoods of finite dimensional vector spaces. Since F−1(0)∩U(0) models a C1-
neighborhood U(L) of L in MΨ(L), this completes the proof of the first statement of
the theorem.

To show the second statement, assume that L1 ∈ MΨ(L) lies in a C1-
neighborhood of L, so that L1 = s(L) for some analytic section s of NL. Then s in-
duces, via exp jL(s), an invertible analytic map between the Sobolev spaces L2

1Γ(NL)
and L2

1Γ(NL1) as well as an invertible analytic map between L2
1Ω

l−1(L,NL) and
L2
1Ω

l−1(L,NL).
This means that the charts on U1(L1) constructed via maps πL1 , τL1 are equiva-

lent to the analytic structure induced from the one on U(L). In other words, any two
analytic charts are compatible, which completes the proof.

6. Deformations of ϕ-calibrated submanifolds. In this section we consider
smooth ϕ̂-deformation of a closed ϕ-calibrated submanifold L, where ϕl is a parallel
calibration on the Riemannian manifold (M, g). First, we prove that the space of all
infinitesimal ϕ̂-deformations of L coincides with the space of Jacobi vector fields on
L, regarding L as a minimal submanifold (Proposition 6.1). Then we prove our main
theorem stating that the formal and smooth deformations of a closed ϕ-calibrated
submanifold are encoded in its cananically associated Z2-graded strongly homotopy
Lie algebra (Theorem 6.4). In Remark 6.5 we discuss some related results. Then we
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revisit the deformation theory of complex submanifolds using the methods developed
in the present paper (Theorem 6.6). Finally, in the last subsection we summarize the
achievements of the present paper.

6.1. Infinitesimal deformations of ϕ̂-submanifolds. Given a parallel cal-
ibration ϕ and a closed ϕ-calibrated submanifold L, the premoduli space Mϕ̂(L)
consists of all closed minimal submanifolds that are obtained from L by smooth de-
formation. The following Proposition, in which we do not require the calibration ϕ
to be parallel, is an infinitesimal analogue of Corollary 3.6.

Proposition 6.1. Let ϕ ∈ Ωl(M) be a calibration and L ⊂ M closed such that
either

(1) L is ϕ-calibrated, or
(2) L is a ϕ̂-submanifold such that ϕ|L �= 0, and ϕ is parallel.

Then L is minimal, and

Jϕ̂(L) ⊂ J(L), (6.1)

where Jϕ̂(L) is given in (5.8) and J(L) is the space of Jacobi fields on L. Moreover,
under condition (1), equality holds in (6.1).

Proof. The minimality of L is evident if L is ϕ-calibrated, and it follows from
Theorem 3.5 under condition (2). Assume that L is a closed ϕ̂-submanifold and
s ∈ Γ(NL) is an infinitesimal ϕ̂-deformation. Let us recall that ψt = exp

(
jL(ts)

)
.

Since L is compact, there exist a positive number A and a positive number ε0 such
that, for any x ∈ L

|pr
(
(ψt)

∗ϕ̂
)
|L(x)| ≤ A · t2 (6.2)

for any t ≤ ε0. Denote by Gϕ(x) the space of unit decomposable l-vectors w in
Gl(TxM) such that ϕ(w) = 1. Denote by ρ the distance on the Grassmannian
Gl(TxM) induced by the Riemannian metric on TxM .

We shall abbreviate Lt := ψt(L), xt := ψt(x) and ϕ̂t := (ψt)
∗ϕ̂.

Lemma 6.2. The inequality (6.2) is equivalent to the existence of a positive
number B and a positive number ε1 such that

ρ
(

�Txt
Lt, Gϕ(xt)

)
≤ B · t2 (6.3)

for all t ∈ (0, ε1) (Recall that �Txt
Lt is the unit l-vector associated to the oriented

tangent space TxL).

Proof. Since ψ0 = Id we observe that |prϕ̂t| = O(t2) if and only if |prϕ̂|Lt
| =

O(t2). Recall that we denoted by ϕ̃(x) the form ϕ (at the point x) regarded as a
function on the Grassmannian Gl(TxM) of unit decomposable l-vectors. Then the
function |dwϕ̃(x)| is smooth in the variable w ∈ Gl(TxM). Since dwϕ(x) = 0 if
w ∈ Gϕ(x), this implies that there exist positive constants C1, C2 such that

C1 · |dwϕ̃(x)| ≤ ρ(w,Gϕ(x)) ≤ C2 · |dwϕ̃(x)|. (6.4)

Now, Lemma 6.2 follows from (3.2), which implies

|prϕ̂|TxtLt
| = |d �TxtLt

ϕ̃(xt)|. (6.5)
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Observe that c0 := ϕk( �TxL) is constant on L. Indeed, if ϕ is parallel, then this
follows from (3.3), and if L is ϕ-calibrated, this holds for c0 := 1 by definition. Thus,
Lemma 6.2 implies that there exist a constant C3 and 0 < ε2 < ε1 such that for all
x ∈ L and all t ∈ (0, ε2) we have

c0 − C3t
4 ≤ 〈ϕ, �Txt

Lt〉 ≤ c0 + C3t
4. (6.6)

Since ψ0 = Id, there exist a constant C4 and a positive number ε3 < ε2 such that, for
all x ∈ L and all t ∈ (0, ε3), we have

1− C4t ≤ |(ψt)∗ �TxL| ≤ 1 + C4t. (6.7)

It follows from (6.6) and (6.7) that there exists a constant C5 such that for all x ∈ L
and all t ∈ (0, ε3), we have

(c0 − C5t
3)〈ϕ, (ψt)∗( �TxL)〉 ≤ |(ψt)∗ �TxL| ≤ (c0 + C5t

3)〈ϕ, (ψt)∗( �TxL)〉. (6.8)

Finally, it follows from (6.8) and 〈ϕ, (ψt)∗( �TxL)〉 = 〈ψ∗
t (ϕ)

�TxL〉, that

d2

dt2
|t=0vol(ψt(L)) =

∫
L

d2

dt2
|t=0|(ψt)∗( �TxL)| dvolL =

∫
L

d2

dt2
|t=0(ψt)

∗ϕ = 0.

Hence s is a Jacobi vector field. This proves (6.1).
For the last statement, assume that s is a Jacobi vector field on the ϕ-calibrated

submanifold L. By Remark 2.3 in [LV2017], s is an infinitesimal deformation of L as
a ϕ-calibrated submanifold. This is the same to say that (6.3) holds for some B and
ε0. By Lemma 6.2, this implies that s ∈ Jϕ̂(L).

Note that (6.1) in case of hypothesis (2) in Proposition 6.1 can also be seen by
an argument along the lines of the proof of Theorem 3.5.

Recall that J(L) is finite dimensional and its dimension is called the nullity of L
[Simons1968].

From Proposition 6.1 we obtain Corollary 6.3 below, which has been first proved
by Simons in [Simons1968, Theorem 3.5.1] by computing the Jacobi operator on a com-
pact Kähler submanifold L. Simons’ computation has been generalized by McLean
[McLean1998] for calibrated submanifolds, and simplified by Lê-Vanžura [LV2017],
using different methods.

Corollary 6.3. Let L be a compact and closed Kähler submanifold in a Kähler
manifold (M, g, ω2). Then the nullity of L is equal to the dimension of the space of
globally defined holomorphic sections in NL.

We are now ready to show the main result of this section.

Theorem 6.4 (Main Theorem). Let ϕ ∈ Ωl(M) be a parallel calibration on a
real analytic Riemannian manifold (M, g), let α ∈ Hl(M,Z) be a homology class such
that 〈[ϕ], α〉 �= 0, and let L ∈ Mϕ̂(α).

(1) The pre-moduli space Mϕ̂(α) is a finite dimensional analytic space, and so
is, in particular, Mϕ̂(L) ⊂ Mϕ̂(α).

(2) If L is ϕ-calibrated, then a formally unobstructed Jacobi field s ∈ J(L) is
smoothly unobstructed.

(3) If L is ϕ-calibrated, then there is a canonical Z2-graded strongly homotopy
Lie algebra that governs formal and smooth deformations of L in the class of
ϕ-calibrated submanifolds.
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Proof. Let Nϕ := {v ∈ TM | ı(v)ϕ = 0} be the annihilator of ϕ which induces
the parallel orthogonal decomposition TM = Nϕ ⊕ N⊥

ϕ , and clearly, the restriction

of ϕ̂ to N⊥
ϕ is multi-symplectic. As L is ϕ-calibrated, it follows that TL ⊂ N⊥

ϕ , so
that L is contained in a maximal leaf M0 ⊂ M of the (parallel and hence integrable)
distribution N⊥

ϕ . The normal bundle of L decomposes orthogonally as

NL = NL0 ⊕ (Nϕ)|L, (6.9)

where NL0 is the normal bundle of the inclusion L ↪→ M0. As L is closed, there
is an ε > 0 such that the normal exponential exp : NLε → M is a fiberwise local
diffeomorphism, where NLε ⊂ NL denotes the ε-disc bundle. Let gN := exp∗(g)
be the induced metric on NLε. As g is a local product metric, the gN -orthogonal
complement of the fibers of ((Nϕ)|L)ε → L induces a flat connection on this disc
bundle, and decomposing a small section s = s0+s1 ∈ Ω0(L,NLε) = Ω0(L, (NL0)ε)⊕
Ω0(L, ((Nϕ)|L)ε) according to (6.9), the definition of Fϕ̂ implies that Fϕ̂(s) = 0 iff
Fϕ̂(s0) = 0 and s1 is parallel. Thus,

Mϕ̂(L) ∼= M0
ϕ̂(L)× Rk,

where M0
ϕ̂(L) is the premoduli space of L ⊂ M0, and k is the dimension of the space

of parallel sections in Ω0(L, (Nϕ)|L).
With this, it suffices to show the theorem for L ⊂ (M0, ϕ|M0

), and, after replacing
M0 by M , we may therefore assume w.l.o.g. that ϕ is multi-symplectic.

Being parallel, ϕ is harmonic and hence analytic. If L ∈ Mϕ̂(α), then 〈[ϕ], α〉 �= 0
implies that ϕ|L �= 0 and moreover, by Theorem 3.5, (3.3) is satisfied, and L ⊂ M is
a minimal submanifold. In particular, L is analytic by the Morrey regularity theorem
[Morrey1954, Morrey1958, Morrey2008].

Therefore, Proposition 6.1 implies that Jϕ̂(L) ⊂ J(L) is finite dimensional, so
that Mϕ̂(L) is an analytic space by Theorem 5.10. Since this is the case for any
L ∈ Mϕ̂(α), it follows that Mϕ̂(α) is an analytic space as well.

The second assertion of Theorem 6.4 is a corollary of the first assertion, Propo-
sition 6.1, and the Artin’s approximation theorem [Artin1968, Theorem 1.2], which
implies that, in a finite dimensional analytic space, smooth and formal obstructedness
are equivalent.

For the last statement, assume that L is a ϕ2l-calibrated submanifold. Then the
last assertion of Theorem 6.4 for L follows from the second assertion and Proposition
5.3.

Now assume that L is a ϕ2l−1-calibrated submanifold. Then L×S1 is a ϕ2l−1∧dt-
calibrated submanifold in (M × S1, g+ dt2, ϕ∧ dt). It is not hard to see that, if L̃t is
a smooth deformation of L×S1 in the class of minimal submanifolds in M ×S1, then
L̃t = Lt×S1 for some family of ϕ-calibrated submanifolds Lt. Hence, the formal and
smooth deformations of ϕ2l−1-calibrated submanifold are governed by the Z2-graded
strongly homotopy Lie algebra associated to L × S1. This completes the proof of
Theorem 6.4.

Remark 6.5. 1. Theorem 6.4 is also valid for open ϕ-calibrated submanifolds
with compactly supported variation fields.

2. Assume that L is simultaneously a ϕ-calibrated submanifold and a ϕ′-
calibrated submanifold, where ϕ and ϕ′ are calibrations on (M, g). Then any ϕ-
calibrated closed submanifold L′ that is homologous to L is also a ϕ′-calibrated sub-
manifold. This implies that deformations of such calibrated submanifolds are easier
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to control. For example, let (M6, g, ω2, α = Re volC) be a Calabi-Yau 6-manifold and
C ⊂ (M6, g, ω2, α) a complex curve. Clearly, the product L := S1 × C is simultane-
ously calibrated with respect to both the associative calibration ϕ := dt∧ω2 +α and
the calibration dt ∧ ω2. Hence, any deformation L′ of L in the class of associative
submanifolds is also calibrated by dt ∧ ω. In particular, L′ is invariant under the
flow generated by the vector field ∂t. This flow preserves the Calabi-Yau structure
on each slice {t} × M6. We conclude that all the slices L′ ∩ {t = constant} are
isomorphic as complex curves in M6. It follows that L′ = S1 × C ′, where C ′ is a
complex deformation of C. In particular, if C is isolated then L is isolated. The last
assertion has been obtained in [CHNP2012, Lemma 5.11] by computing the kernel of
the corresponding linearized operators that control the corresponding deformations.
In [Leung2002] Leung studies deformations of simultaneously calibrated submanifolds
using integral estimates. We refer the interested reader to [Le1993] for the relation
between the calibration method and the integral estimate method in the theory of
minimal submanifolds.

3. As we noted in Corollary 4.2, there are two natural Z2-graded strongly ho-
motopy Lie algebras associated to an associative submanifold L in a G2-manifold
(M7, g, ϕ). It is known that the smooth and infinitesimal χ-deformations of L coin-
cide with the smooth and infinitesimal deformations of L as a minimal submanifold
[McLean1998, LV2017]. Thus, the strongly homotopy Lie algebra attached to L via
χ also governs smooth and formal deformations of L as a ϕ-calibrated submanifold.

4. The action of DiffΨ(M) preserves the analytic structure on MΨ(L), whence
the moduli space MΨ(L)/DiffΨ(M) is an analytic space as well. In particular, generic
points ofMΨ(L) orMΨ(L)/DiffΨ(M), respectively, are smooth, and hence (formally)
unobstructed.

6.2. Deformations of complex submanifolds revisited.

Theorem 6.6. Assume that L is a closed complex submanifold in a complex
manifold (M,J).

(1) The pre-moduli space MJ(L) with the C1-topology has the structure of a finite
dimensional analytic space.

(2) A formally unobstructed holomorphic normal field is smoothly unobstructed.
(3) There is a canonical Z-graded strongly homotopy Lie algebra that governs

formal and smooth complex deformations of L.

Proof of Theorem 6.6. Theorem 6.6 is proved in the same way as Theorem 6.4
and we omit its proof.

Remark 6.7. Deformations of complex submanifolds have been examined by Ji
in [Ji2014], using his general theory of deformations of Lie subalgebroids. Since the
Frölicher-Nijenhuis bracket of J ∈ Ω∗(M,TM) is −i/2-times the Dolbeault operator
∂̄, Ji’s strongly homotopy Lie algebra is the same as ours up to an uninfluential global
factor (see also [Manetti2007] for an equivalent formulation).

6.3. Conclusion. In our paper, inspired by the principle that every deforma-
tion problem over a field of characteristic zero is governed by a differential graded Lie
algebra (or, equivalently, by an L∞-algebra), we found new connections between seem-
ingly unrelated subjects: coisotropic submanifolds in Jacobi manifolds, calibrated and
more generally ϕ-critical submanifolds, complex submanifolds in complex manifolds.
As a consequence of this deformation theory approach, we and other authors were
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then led to discover new structures defined by the Frölicher-Nijenhuis bracket on G2

and Spin(7)-manifolds [KLS2017a, KLS2017b, KLS2018], [CKT2018].

In the present paper, we also give a new treatment of Jacobi vector fields on cal-
ibrated submanifolds (Proposition 6.1), generalizing results by Simons, McLean and
Lê-Vanžura. We prove a result on the structure of the pre-moduli space of ϕ-calibrated
submanifolds, where ϕ is a parallel calibration in a real analytic Riemannian manifold
(Theorem 6.4), and a similar theorem for Ψ-submanifolds under a certain condition
(Theorem 5.10), which generalizes a known result on deformations of complex sub-
manifolds in complex manifolds.
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2002.
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