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INT-AMPLIFIED ENDOMORPHISMS OF COMPACT KÄHLER
SPACES∗

GUOLEI ZHONG†

Abstract. Let X be a normal compact Kähler space of dimension n. A surjective endomorphism
f of such X is int-amplified if f∗ξ − ξ = η for some Kähler classes ξ and η. First, we show that
this definition generalizes the notion in the projective setting. Second, we prove that for the cases
of X being smooth, a surface or a threefold with mild singularities, if X admits an int-amplified
endomorphism with pseudo-effective canonical divisor, then it is a Q-torus. Finally, we consider a
normal compact Kähler threefold Y with only terminal singularities and show that, replacing f by
a positive power, we can run the minimal model program (MMP) f -equivariantly for such Y and
reach either a Q-torus or a Fano (projective) variety of Picard number one.
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1. Introduction. We work over the field C of complex numbers. By the funda-
mental work of S. Meng and D.-Q. Zhang (cf. [26] and [27]) during the past several
years, we have known the building blocks and characteristic properties of polarized
and int-amplified endomorphisms of normal projective varieties. Also, Meng and
Zhang show that we can run the minimal model program equivariantly for mildly
singular normal projective varieties and finally reach either a Q-abelian variety or
a Fano variety of Picard number one. As an application, one can use the results
to study the totally invariant divisors of polarized or int-amplified endomorphisms
(cf. [41, Theorem 1.3] and [42, Theorem 1.1]).

Now, we pose a natural question. Does there exist such nice building blocks for
compact Kähler spaces admitting non-isomorphic surjective endomorphisms? This is
open since the minimal model program for higher-dimensional compact Kähler spaces
is unknown.

In this article, we consider an arbitrary normal compact Kähler space X. A
surjective endomorphism f of X is said to be int-amplified, if f∗ξ − ξ = η for some
Kähler classes ξ and η. We first prove that when X is projective, the generalized
definition coincides with the previous one (cf. [26]). Then, we follow the idea of [26] to
study the normal compact Kähler space admitting an int-amplified endomorphism in
terms of the Kähler cone and canonical divisor. We show that most of these properties
are preserved when the objects are extended to the analytic setting. Moreover, we
study the periodic points or totally invariant analytic subvarieties of some special
complex spaces such asQ-tori, i.e., quasi-étale finite quotients of complex tori. Finally,
as a consequence of the existence of the minimal model program (MMP) for compact
Kähler threefolds (cf. [20] and [21]), we prove that every int-amplified endomorphism
of a compact Kähler threefold with at worst terminal singularities has an equivariant
descending, when running the MMP.

Our work can be divided into two parts. First, we recall notation and terminology
for the singular analytic space such as differential forms, currents and invariant cones.
We spend some time showing that all of these objects possess nice properties parallel to
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normal projective cases. Second, we apply these common properties in the preliminary
to generalize results in [26]. Here, we list them below for the convenience of readers.

Theorem 1.1 generalizes [26, Theorem 1.1]. The proof of the equivalent conditions
is the same as [26] while the coincidence of these two definitions of int-amplified en-
domorphisms when X is projective is new (cf. Remark 2.12 and the proof of Theorem
1.1 in section 3).

Theorem 1.1. Suppose that f : X → X is a surjective endomorphism of a nor-
mal compact Kähler space X with at worst rational singularities. Let ϕ := f∗|H1,1

BC(X),

where H1,1
BC(X) denotes the Bott-Chern cohomology space. Then the following are

equivalent.
(1) The endomorphism f is int-amplified.
(2) All the eigenvalues of ϕ are of modulus greater than 1.
(3) There exists some big (1, 1)-class [θ] such that f∗[θ]− [θ] is big, i.e., it can be

represented by a Kähler current T .
(4) If C is a non-empty and non-zero ϕ-invariant convex cone in H1,1

BC(X), then
∅ �= (ϕ− id)−1(C) ⊆ C.

Furthermore, if X is projective, then the two definitions of int-amplified endomor-
phisms coincide (cf. Definition 2.11 in the Kähler setting and [26] in the projective
setting).

As an application of Theorem 1.1, we are able to show the following result, which
asserts that the composition of sufficient iterations of int-amplified endomorphisms is
still int-amplified. Readers may refer to [26, Theorem 1.4] for the projective version.

Theorem 1.2. Let f and g be two surjective endomorphisms of a normal compact
Kähler space X with at worst rational singularities. Suppose that f is int-amplified.
Then both f i ◦ g and g ◦ f i are int-amplified for sufficiently large i� 1.

We refer the readers to [35, Sections 4 and 6] for the definitions of Cartier divi-
sor, linear system and Kodaira dimension for a complex analytic variety. Also, the
positivity of differential forms and currents will be discussed in the preliminary part.

The following theorem is important for the equivariant minimal model program
of compact Kähler threefolds (cf. [26, Theorem 2.5] for the normal projective case).

Theorem 1.3. Let X be a normal compact Kähler space with at worst ratio-
nal singularities. Suppose that X admits an int-amplified endomorphism f and the
canonical divisor KX is Q-Cartier. Then, −KX is pseudo-effective. In particular,
the Kodaira dimension κ(X) ≤ 0.

As an application of Theorem 1.3 and the main theorem in [16], we get Theorem
1.4 below so that when running the MMP for compact Kähler threefolds, we may
reduce the case of canonical divisor KX being pseudo-effective to the Q-torus case.

Theorem 1.4. Let X be one of the following cases: (i) a compact Kähler manifold
of any dimension, (ii) a normal compact Kähler threefold with at worst canonical
singularities or (iii) a normal Q-factorial compact Kähler surface. Suppose that X
admits an int-amplified endomorphism f : X → X and the canonical divisor KX is
pseudo-effective. Then X is a Q-torus, i.e., a quasi-étale finite quotient of a complex
torus.

We generalize [26, Theorem 1.10] to the following equivariant MMP. We refer to
[27, Section 6] for the technical details. The author will highlight and compare the
differences between projective varieties and compact Kähler spaces in Section 8.
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Theorem 1.5. Let f : X → X be an int-amplified endomorphism of a normal
Q-factorial compact Kähler threefold with at worst terminal singularities. Then, re-
placing f by a positive power, there exist a Q-torus Y , a morphism X → Y and an
f -equivariant minimal model program of X over Y : X = X1 ��� · · · ��� Xi ���
· · · ��� Xr = Y (i.e., f = f1 descends to fi on each Xi), with every Xi ��� Xi+1 a
contraction of a divisorial ray, a flip or a Mori fibre contraction, of a KXi-negative
extremal ray, such that:

(1) If KX is pseudo-effective, then X = Y and it is a Q-torus.
(2) If KX is not pseudo-effective, then for each i, fi is int-amplified and Xi → Y

is an equi-dimensional (holomorphic) morphism with every fibre irreducible
and rationally connected. Also, Xr−1 → Xr = Y is a Mori fibre contraction.

Finally, we pose the question below. If X is assumed to be projective, the answer
is affirmative by Fakhruddin’s very motivating result (cf. [13, Lemma 5.1]).

Question 1.6. Suppose that f : X → X is an int-amplified endomorphism of a
normal compact Kähler space. Does there exist a periodic point of f? If so, is the set
of f -periodic points Per(f) open dense in X?

Remark 1.7 (Differences with previous papers). In this article, we fix our at-
tention in the complex analytic setting. Our first work is to sort out the notation
and properties in compact Kähler spaces which are analogous to normal projective
settings. Most of them are well-known to experts, but we were not able to find a
good reference for these results. So we give the complete proofs in the preliminary
part (cf. Propositions 2.2 and 2.6). Second, in the non-projective setting, we do not
have ample divisors and hence an effective cycle cannot be simply written as a sum-
mand of the intersection of ample divisors. However, we shall apply the openness of
Kähler cones to develop some numerical statements (cf. Lemmas 4.4∼ 4.5). As an
application, we apply these new results to show Theorem 1.4. Comparing with [26,
Theorem 5.2], we cannot follow the original proof to show Theorem 1.4 due to the
lack of [18, Theorem 1.1]. Throughout the article, the author will skip the same proof
and highlight the differences when extending previous results.

The proofs of Theorems 1.1∼ 1.3 are in Section 3. The proof of Theorem 1.4 is
in Section 6. The proof of Theorem 1.5 is in Section 8. Now, for the organization of
the paper, we begin with preliminaries in Section 2.

Acknowledgments. The author would like to thank Professor De-Qi Zhang
for many inspiring ideas and discussions, Professor Tien-Cuong Dinh for answering
questions about differential forms and currents, and Professor Andreas Höring for dis-
cussing the finiteness problem of surjective endomorphisms of general compact Kähler
spaces. He also thanks the referees for very careful reading and many constructive sug-
gestions to improve the paper. The author was supported by a President’s Graduate
Scholarship of NUS.

2. Preliminaries. Let X be a normal compact complex space. We refer to [1],
[17] and [35] for basic notation and properties for complex spaces. In this preliminary,
we shall recall the differential forms (resp. currents) and their pull-backs (resp. push-
forwards) in the singular setting.

Let f : X → Y be a surjective morphism between normal compact complex
spaces. Here, a morphism is a holomorphic map in complex geometry. The morphism
f is said to be finite (resp. generically finite) if f is proper and has discrete fibres
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(resp. proper and finite outside a nowhere dense analytic closed subspace of Y ). An
endomorphism of X is a surjective holomorphic map f : X → X.

In this article, we mainly deal with the singular case. Most of the properties in
complex manifolds need to be extended to the singular setting. The following idea
will be used more than once during the preliminary part.

Main Reduction: Let f : X → Y be a surjective morphism between normal
compact complex spaces. Since Y is compact, by Hironaka desingularization theorem,
there exists a modification h : Ỹ → Y obtained by a finite sequence of blowing-up
along smooth subspaces, such that Ỹ is a complex manifold. By [1, Chapter I, Lemma

7.1], h : Ỹ → Y lifts to g′ : X ′ → X obtained by a finite sequence of blowing-up such

that f ◦ g′ factors through Ỹ with the induced morphism f ′ : X ′ → Ỹ . Taking a
resolution σ : X̃ → X ′, we get g := g′ ◦ σ : X̃ → X, f̃ := f ′ ◦ σ : X̃ → Ỹ and the
commutative diagram f ◦ g = h ◦ f̃ , such that all of the morphisms are surjective.
By the classical differential geometry, the morphism f̃ admits very nice properties.
Hence, to detect good properties on f , we need to fix our attention to the resolution
h especially to a single blow-up.

Remark 2.1. Sometimes, the choice of X̃ varies. For example, we can also
choose X̃ to be the resolution of an irreducible component of the product X ×Y Ỹ
dominating X and also get a commutative diagram.

2.1. Differential forms and currents. In this subsection, we refer to [8] for
the definitions and properties below.

Let X be a normal compact complex space of dimension n. Then, X is locally
a closed analytic subset of an open subset of CN , i.e., for any x ∈ X, there exists
an open neighbourhood U of x and an open subset Ω ⊆ CN such that j : U → Ω
is a closed embedding. A differential form ω of type (p, q) on X is a differential
form on the smooth locus Xreg such that for any x ∈ X, with the closed embedding
x ∈ U ⊆ Ω ⊆ CN , there exists a differential form α on Ω such that ω|Xreg

= j∗α|Xreg

locally. We denote by Cp,q the space of differential (p, q)-forms.
A current T of bidegree (p, q) is defined as an element in the dual space of differ-

ential (smooth) (n−p, n−q)-forms. We denote by Dp,q(X) the space of (p, q)-currents
with bidimension (n− p, n− q) on X. It is well-defined, as well as the closedness and
positivity.

Suppose f : X → Y is a morphism between two normal compact complex spaces
of dimensions m and n, respectively. We refer the readers to [21] for the pullback
of differential forms by pulling back forms locally. Suppose further that f is proper.
Then, one can define the push-forward of currents f∗ by setting 〈f∗T, α〉 := 〈T, f∗α〉
for each α ∈ Cp,q(X). For any (p, p)-current T and (q, q)-form α on X, we denote by
T ∧ α the (p + q, p + q)-current such that for each (n − p − q, n − p − q)-form β on
X, 〈T ∧ α, β〉 = 〈T, α ∧ β〉. In addition, since each differential (p, q)-form α on X can
also be naturally regarded as a (p, q)-current, we write [α] to represent a (p, q)-current,
i.e., for each (n− p, n− q)-form β, 〈[α], β〉 := ∫

Xreg
α ∧ β.

We recall the following well-known projection formula which will be heavily used
in this article.

Proposition 2.2 (Projection formula). Suppose f : X → Y is a proper sur-
jective morphism between normal compact complex spaces with dimX = m and
dimY = n. Then for any (l, l)-current T on X and differential (k, k)-form β on
Y , we have f∗(T ∧ f∗β) = f∗T ∧ β in the sense of currents. In particular, if m = n
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(and hence f is generically finite), then f∗[f∗β] = deg f · [β] as currents.

Proof. For any differential (n− k − l, n− k − l)-form γ on Y , it follows from the
push-forward of currents that

〈f∗(T ∧ f∗β), γ〉 = 〈T ∧ f∗β, f∗γ〉 = 〈T, f∗(β ∧ γ)〉 = 〈f∗T, β ∧ γ〉 = 〈f∗T ∧ β, γ〉 ,

which proves the first statement. Now we take two steps to prove the latter claim.
Step 1. From Main Reduction, we get a commutative diagram h ◦ f̃ = f ◦ g

such that f̃ : X̃ → Ỹ is a generically finite morphism of complex manifolds and
deg f = deg f̃ . Then, it follows from the Gysin morphism that f̃∗f̃∗α = deg f · α for
each differential form α on Ỹ (cf. [37, Remark 7.29]).

Step 2. For any(n− k, n− k)-form γ on Y , we have

〈f∗[f∗β], γ〉 = 〈[f∗β], f∗γ〉 =
∫
Xreg

f∗(β ∧ γ) =

∫
˜X

g∗f∗(β ∧ γ).

The third equality is because a proper closed subvariety of a compact Kähler manifold
has Lebesgue measure zero. Then,∫

˜X

g∗f∗(β ∧ γ) =

∫
˜X

f̃∗h∗(β ∧ γ) = deg f̃ ·
∫
˜Y

h∗(β ∧ γ).

Note that the right hand side is equal to deg f · ∫
Yreg

(β ∧ γ) which is nothing but

deg f · 〈[β], γ〉. Then, our second statement holds.

2.2. Classes and cones. In this subsection, we recall the notation and ter-
minology which will be heavily used in this article. First we refer the readers to
[3, Definition 4.6.2] or [21, Section 3] for the definition of Bott-Chern cohomology
H1,1

BC(X) for singular spaces.
On the one hand, for any holomorphic map f : X → Y between normal compact

complex spaces, the pull-back of differential forms f∗ induces a well-defined morphism
f∗ : H1,1

BC(Y ) → H1,1
BC(X) (cf. [21, Remark 3.2]): for any c ∈ H1,1

BC(Y ), we can write
c = ω + ddcu where ω is a (1, 1)-form with local potentials and u is a global smooth
function. Then, the pull-back f∗c is written as the form f∗ω + ddc(u ◦ f) and it
is easy to see that f∗ω is a (1, 1)-form with local potentials since the real parts of
holomorphic functions of Y pull back to real parts of holomorphic functions of X.
Hence, f∗c defines an element in H1,1

BC(X).
On the other hand, if X has at worst rational singularities in the Fujiki class

C, then it follows from the Leray sequence (cf. [21, Remark 3.7]) that there is an
injection: H1,1

BC(X) ↪→ H2(X,R), and hence one can define the intersection product

on the Bott-Chern cohomology space H1,1
BC(X) via the cup-product for H2(X,R). In

addition, this embedding implies that H1,1
BC(X) is a finite dimensional vector space.

Remark 2.3. Suppose X is a compact Kähler manifold. Then by Hodge theory,
there is a natural isomorphism from the Bott-Chern cohomology group to the Dol-
beault group with real coefficients H1,1

BC(X) ∼= H1,1(X,R) := H1,1(X,C) ∩H2(X,R).

To make connections with the normal projective setting ([21, Definition 3.6 and
3.8]), let N1(X) be the vector space of real closed currents of bidegree (n− 1, n− 1)
modulo the following equivalence: T1 ≡ T2 if and only if: T1(η) = T2(η) for all real
closed (1, 1)-forms η with local potentials.
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Remark 2.4. Suppose f : X → Y is a proper morphism between normal compact
complex spaces and TC (or denoted by [C]) is a current of integration (cf. [21, Section
3.B]) of an irreducible curve C on X. We claim that: if f(C) is a curve, then
f∗[C] = deg f |C · [f(C)]; if C is contracted by f , then f∗[C] = 0. This coincides with
the push-forward of cycles in the projective setting.

Proof. We follow the Main Reduction. First, we prove that for any resolution
h : Ỹ → Y with E ⊆ Ỹ a contracted subvariety, h∗[E] = 0. Indeed, for the local

map h′ : Ỹ → Y ↪→ CN and each differential (k, k)-form γ on Y with γ = i∗γ0 and
k = dimE,

〈h∗[E], γ〉 = 〈[E], h∗γ〉 = 〈[E], (h′)∗γ0〉 = 0.

The last equality is due to dimh′(E) < dimE and h′ is locally a holomorphic map
between manifolds. Therefore, h∗[E] = 0. Second, suppose the curve C is contracted

by f . Then, no matter C ⊆ SingX or not, any analytic curve of X̃ dominating C
must be contracted by either f̃ or h. Hence, f∗[C] = 0 when C is contracted by f .

From now on, suppose f(C) is a curve. Then for any differential (n−1, n−1)-form

γ on Y , we apply Main Reduction. If C �⊆ Sing(X), set C̃ ⊆ X̃ to be the proper

transform of C; if C ⊆ Sing(X), let C̃ ⊆ X̃ be any curve dominating C (which exists
since the resolution g is projective). In both cases,

〈f∗[C], γ〉 =
∫
Creg

f∗γ =
1

deg g|
˜C

·
∫

˜C

f̃∗h∗γ = deg f |C ·
∫
f(C)

γ = deg f |C · 〈[f(C)], γ〉 .

Therefore, we complete the proof of our remark.

Let NA(X) ⊆ N1(X) be the closed cone generated by the classes of positive closed
(n − 1, n − 1)-currents. We define the Mori cone NE(X) ⊆ NA(X) as the closure of
the cone generated by the currents of integration TC , where C ⊆ X is an irreducible
curve.

From now on, we begin to discuss the positivity and cones in complex geometry.
In the beginning, we refer the readers to [11, Chapter I] and [9, Introduction and
main results] for the definition and basic properties of (strictly) plurisubharmonic
(psh) functions.

Suppose X is a normal compact complex space of dimension m. Then, it follows
from [11, Chapter I, Theorem 5.8] that a smooth function ϕ is psh on X if and only
if ddcϕ ≥ 0 is a positive current.

A normal compact complex space X is said to be Kähler if there exists a Kähler
form ω on X, i.e., a positive closed real (1, 1)-form ω ∈ C1,1(X) such that the following
holds. For every point x ∈ Xsing, there exist an open neighbourhood x ∈ U ⊆ X, a
closed embedding iU : U ⊆ Ω into an open set Ω ⊆ CN and a strictly psh C∞-function
f : Ω→ C such that ω|U∩Xreg

= (ddcf)|U∩Xreg
.

Similar to the notation of relative ample divisor related to a projective morphism,
we refer the readers to [36] for the information of relative Kähler metric related to a
Kähler morphism. Now, we come to discuss the invariant cones.

Definition 2.5. Let (X,ω) be a normal compact Kähler space, where ω is a fixed
Kähler form. A class [α] ∈ H1,1

BC(X) (where α is a smooth form) is said to be
(1) Kähler, if it contains a representative of a smooth Kähler form, i.e., there is

a smooth function ϕ such that α+ ddcϕ ≥ εω for some ε > 0;
(2) nef, if for every ε > 0, there is a smooth function fε such that α + ddcfε ≥

−εω;
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(3) pseudo-effective, if it contains a positive current (that may not be smooth),
i.e., there exists an almost psh function ϕ = ψ + h where ψ is psh and h is
smooth on X such that α+ ddcϕ ≥ 0 in the sense of currents.

(4) big, if it contains a Kähler current, i.e., there exists an almost psh function
ϕ such that α+ ddcϕ ≥ εω in the sense of currents for some ε ≥ 0.

Let X be a normal compact Kähler space. We use the following to represent the
cones in Definition 2.5 to make connections with the projective setting.

• K(X): the cone of Kähler classes in H1,1
BC(X);

• Nef(X): the cone of nef classes in H1,1
BC(X);

• E(X): the cone of pseudo-effective classes in H1,1
BC(X);

• E0(X): the cone of big classes in H1,1
BC(X).

Observe that K(X) is an open (convex) cone (cf. [16, Proposition 3.6]) and
Nef(X) ⊆ E(X) are closed convex cones by the weak compactness of bounded sets in
the space of currents (cf. [9, Section 6]). Besides, it follows from [21, Remark 3.12]
that Nef(X) = K(X). Furthermore, E0(X) is the interior part of E(X).

We formulate the following important proposition which states that all of these
cones mentioned above are preserved under suitable morphisms. Hence, we can apply
the cone theory developed in [26] to study the Bott-Chern cohomology space.

Proposition 2.6 (Invariant cones). Suppose f : X → Y is a proper surjective
morphism of two normal compact Kähler spaces. Then, for any [α] ∈ H1,1

BC(Y ), the
following hold.

(1) If [α] is pseudo-effective, then so is f∗[α];
(2) If [α] is nef, then so is f∗[α] and the converse holds when f is further assumed

to be a modification of normal compact Kähler threefolds;
(3) If f is further assumed to be finite and [α] is Kähler, then so is f∗[α];
(4) If f is a modification and [α] is big, then so is f∗[α];
(5) If f is generically finite and [α] is big, then so is f∗[α].

Proof. The pseudo-effective cone is invariant under any holomorphic map since
the pull-back of a psh function is still psh, which gives (1). Let ωX and ωY be two
Kähler forms onX and Y respectively such that f∗ωY ≤ aωX for some constant a > 0.
For any ε > 0, since [α] is nef, there exists gε ∈ C0(Y ) such that α+ ddcgε ≥ − ε

a ·ωY .
Then

f∗α+ ddc(gε ◦ f) ≥ − ε

a
f∗ωY ≥ −εωX ,

which proves one direction of (2). For the converse, see [21, Lemma 3.13].
For (3), see [16, Proposition 3.5]. Now, we begin to prove (4). For each big class

[α] on Y , there exists a Kähler form ωY on Y and a representative T ′ of [α] such that
T ′ ≥ ωY . Therefore, it is enough to prove that the pull-back of each Kähler class
on Y is big on X under any modification. Let f : X → Y be a modification and
ωY a Kähler form on Y . By Hironaka’s Chow lemma (cf. [1, Theorem 7.8]), there
exists a normal compact complex space Z with p : Z → Y and q : Z → X such that
p = f ◦ q, where p and q are compositions of finite sequences of blowing-up along
smooth centers.

We claim that p∗[ωY ] is a big class. Indeed, we only need to consider the case when
p is a single blow-up. Note that a blow-up of Y is locally the restriction of a blow-up
of CN . Denote by E the exceptional divisor of p. Then E is locally the restriction of
the exceptional divisor Ei of the blow-up pi : Ũi → Ui, where Ui is an open subset of
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CN . For the smooth manifold Ui, it follows from the calculation in [37, Proposition
3.24 and Lemma 3.26] that for sufficiently large Ci � 1, (Cip

∗
iωUi−Ei)|Y is a positive

(1, 1)-form (also cf. [1, pp.116]). Since Y is compact, there exists a sufficiently large
C � 1 such that Cp∗ωY − E is a positive (1, 1)-form. Hence, p∗[ωY ] is a big class.

Moreover, f∗ωY = q∗q∗f∗ωY = q∗p∗ωY as currents by projection formula. Since
p∗[ωY ] is big, there exists a current T ∈ p∗[ωY ] = [p∗ωY ] such that T ≥ ωZ as
currents for some Kähler form ωZ on Z. Then, we have q∗T ∈ [f∗ωY ] = f∗[ωY ] such
that q∗T ≥ q∗ωZ as currents. In addition, for any Kähler form ωX on X, there exists
a > 0 such that q∗ωX ≤ aωZ . Hence, q∗T ≥ q∗ωZ ≥ 1

aωX as currents and then f∗[ωY ]
is big on Y .

Finally, for (5), if f is a generically finite surjective morphism, then taking the
Stein factorization of f (cf. [35, Theorem 1.9]), we get a modification f ′ : X → Y ′

followed by a finite morphism f ′′ : Y ′ → Y . For any big class [α] on Y , there exists
a Kähler current T ∈ [α] such that T ≥ ωY as currents for some Kähler form ωY

on Y . Then, the pull-back (f ′′)∗T ≥ (f ′′)∗ωY and the class of the right hand side is
Kähler by (3). Hence, (f ′′)∗[α] is big. Further, it follows from the assertion (4) that
f∗[α] = (f ′)∗(f ′′)∗[α] is also big, and thus (5) has been checked.

Recall that if f : X → Y is a surjective morphism between normal projective va-
rieties, then it follows from the projection formula and Lefschetz hyperplane theorem
that the pull-back operation gives an injection f∗ : NSR(Y )→ NSR(X) on the Néron-
Severi groups of X and Y . However, in the analytic case when X and Y are possibly
non-projective, there is no ample divisor and then Lefschetz hyperplane theorem may
not be true. Nevertheless, we give the lemma below by requiring mild singularities.

Lemma 2.7. Suppose f : X → Y is a surjective holomorphic map between normal
compact Kähler spaces with at worst rational singularities. Then f∗ : H1,1

BC(Y ) →
H1,1

BC(X) is an injection.

Proof. We shall apply Main Reduction to prove our lemma. Take a resolu-
tion h : Ỹ → Y and let X̃ be the resolution of an irreducible component of the
product X ×Y Ỹ dominating X with f̃ : X̃ → Ỹ and g : X̃ → X. Since f̃ is a
surjective morphism between compact Kähler manifolds, the induced linear operation
f̃∗ : H1,1

BC(Ỹ )→ H1,1
BC(X̃) is an injection (cf. [37, Lemma 7.28] and Remark 2.3).

Since both g and h are resolutions, H1,1
BC(Y ) (resp. H1,1

BC(X)) embeds into H1,1
BC(Ỹ )

(resp. H1,1
BC(X̃)); see [21, Lemma 3.3]. By the commutative diagram, the induced

linear operation f∗|H1,1
BC(Y ) is an injection.

In particular, we get the following proposition by setting X = Y in Lemma 2.7.

Proposition 2.8. Let X be a normal compact Kähler space with at worst ra-
tional singularities and f : X → X a surjective endomorphism. Then, f induces an
isomorphism of the Bott-Chern cohomology space H1,1

BC(X).

At the end of this subsection, we state the fact of spanning cones below. Indeed,
it follows immediately from the openness of Kähler cone.

Lemma 2.9. Suppose X is a normal compact Kähler space. Then, the pseudo-
effective cone defined in Definition 2.5 spans the Bott-Chern cohomology space.

2.3. Polarized and int-amplified endomorphisms. In this short subsection,
we come to define the key notion in this article.
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First, we prove the next lemma which asserts that for each holomorphic self-map
of a compact Kähler space with mild singularities, the surjectivity will imply the
finiteness.

Lemma 2.10. Let f : X → X be a surjective holomorphic map of a normal
compact Kähler space X. Suppose that X has at worst rational singularities. Then f
is finite.

Proof. Since X is compact, any holomorphic self-map of X is proper. Besides, f
is a surjective self-map and thus generically finite. By taking the Stein factorization
X → Y → X and applying Hironaka’s Chow lemma (cf. [1, Theorem 7.8]) for the
modification X → Y , we see that f is dominated by a composition of finite sequences
of blow-ups followed by a finite morphism Y → X, which is projective. Therefore,
every positive dimensional fibre of f will be covered by curves.

Suppose C ⊆ X is a curve lying in the fibre of f . We fix a Kähler class [ω] on
X. On the one hand, since f is proper and surjective, it follows from Proposition
2.6 (2) that f∗Nef(X) ⊆ Nef(X). On the other hand, since X has at worst rational
singularities, by Proposition 2.8, f∗|H1,1

BC(X) is invertible; hence it maps interior part

of Nef(X) to the interior part of Nef(X). In particular, f∗[ω] is still a Kähler class.

Considering the composite morphism j : C̃ → C ↪→ X, where C̃ is the normaliza-
tion of the curve C, we see that j∗f∗[ω] is also a Kähler class by Proposition 2.6 (3).
Therefore, 0 <

∫
˜C
j∗f∗ω =

∫
C
f∗ω = 〈[C], f∗ω〉 by the numerical characterization of

Kähler classes (cf. [10]). However, the right hand side coincides with 〈f∗[C], ω〉 by
the projection formula and hence vanishes (cf. Proposition 2.2 and Remark 2.4), a
contradiction.

Definition 2.11. Let f : X → X be a surjective endomorphism of a normal
compact Kähler space. We say that f is

(1) polarized, if there exists a Kähler class [α] ∈ H1,1
BC(X) such that f∗[α] = q[α]

for some integer q > 1;
(2) amplified, if there exist a class [ξ] ∈ H1,1

BC(X) and a Kähler class [η] ∈ H1,1
BC(X)

such that f∗[ξ]− [ξ] = [η];
(3) int-amplified, if there exist Kähler classes [ξ] and [η] such that f∗[ξ]−[ξ] = [η].

Remark 2.12. We shall prove in Section 3 that, an int-amplified endomorphism
in the sense of Definition 2.11 coincides with the definition in [26], when X is projec-
tive.

3. Properties of int-amplified endomorphisms: Proof of Theorem
1.1∼ 1.3. In this section, we study the basic properties of int-amplified endomor-
phisms. Most of the following are generalizations of [26, Section 3] for the case when
X is projective and the proofs are similar except we apply new results developed in
Section 2.

To begin with this part, we prove Theorem 1.1 by applying the results in [26].
As reminded by referees, we require X to have at worst rational singularities to make
sure the induced linear operation f∗|H1,1

BC(X) is invertible (cf. Proposition 2.8).

Proof of Theorem 1.1. It is clear that (4) ⇒ (1) ⇒ (3) by letting C = K(X).
Suppose condition (3). Then, applying [26, Lemma 3.1] with V = H1,1

BC(X) and
C = E(X), we get (2). Finally, (2) implies (4) is exactly [26, Proposition 3.2].

Next, we show the equivalence of two kinds of definitions when X is projective.
Indeed, it is obvious that if f is int-amplified in the sense of ample divisors, then f
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is int-amplified in the sense of Kähler classes. For the converse direction, suppose X
is projective and f is int-amplified in the sense of Kähler classes. Then by (2), each
eigenvalue of the invertible linear operation f∗|H1,1

BC(X) has modulus greater than 1.

Since the Néron Severi space NSR(X) is a subspace of H1,1
BC(X), each eigenvalue of

f∗|NSR(X) also has modulus greater than 1. Hence, the converse direction holds by
[26, Theorem 1.1].

The next lemma shows that an endomorphism being int-amplified is equivalent to
its power being int-amplified. The proof is easy by using Theorem 1.1 and Proposition
2.6.

Lemma 3.1. Let f : X → X be a surjective endomorphism of a normal compact
Kähler space with at worst rational singularities. Then the following are equivalent.

(1) f is int-amplified.
(2) fs is int-amplified for any positive integer s.
(3) fs is int-amplified for some positive integer s.

In the following, we shall apply Theorem 1.1 to prove several important lemmas
below.

Lemma 3.2. Let π : X → Y be a surjective morphism of normal compact Kähler
spaces with at worst rational singularities. Let f : X → X and g : Y → Y be two
surjective endomorphisms such that g ◦ π = π ◦ f . If f is int-amplified, then so is g.

Proof. It follows from Lemma 2.7 that π∗ : H1,1
BC(Y ) → H1,1

BC(X) is injective.
Then, each eigenvalue of g∗|H1,1

BC(Y ) is an eigenvalue of f∗|H1,1
BC(X) and thus has modulus

greater than one, since f is int-amplified. Therefore, our lemma follows from Theorem
1.1.

Lemma 3.3. Let π : X → Y be a generically finite surjective morphism between
normal compact Kähler spaces with at worst rational singularities. Let f : X → X and
g : Y → Y be surjective endomorphisms such that g ◦ π = π ◦ f . If g is int-amplified,
then so is f .

Proof. Suppose g is int-amplified. Then, there exist Kähler classes [ξ] and [η] on
Y such that g∗[ξ] = [η] + [ξ]. Note that the Kähler cone K(Y ) is contained in the
big cone E0(Y ) and big classes pull back to big classes under any generically finite
morphism by Proposition 2.6. Then, π∗[ξ] and π∗[η] are big classes on X and the
commutative diagram implies π∗[η] = f∗π∗[ξ]−π∗[ξ]. Hence, our lemma follows from
Theorem 1.1.

Next, we follow the idea of [26] to prove Theorems 1.2 and 1.3 below in our present
setting. Both of them are consequences of Theorem 1.1.

Proof of Theorem 1.2. We fix a norm on the Bott-Chern cohomology space V :=
H1,1

BC(X). Let φf := f∗|V and φg := g∗|V . Since f is int-amplified, by Theorem 1.1, all
the eigenvalues of φf are of modulus greater than 1. Recall that the norm of a linear

operator is given by ||φf || := max
v∈V

||φf (v)||
||v|| , and the right hand side is no less than the

spectral radius of φf . Also, by Gelfand’s formula, lim
i→∞

||ϕ−i
f ||

1
i = ρ(ϕ−1

f ) < 1, where

ρ(ϕ−1
f ) is the spectral radius of ϕ−1

f . Then, there exists i0 such that for all i ≥ i0,

||φ−i
f φ−1

g || ≤ ||φ−i
f || · ||φ−1

g || < 1. So, for each v ∈ V , ||φgφ
i
f (v)|| > ||v||. Let h = f i ◦ g

with i ≥ i0 and φh = h∗|V .
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We claim that all the eigenvalues of φh are of modulus greater than 1. Indeed,
let r be the smallest absolute value of eigenvalues of φh. Since X is Kähler, V has
nonvoid interior. So, it follows from the Perron-Frobenius theorem that V contains an
eigenvector v whose eigenvalue is the spectral radius of φ−1

h , i.e., ||φ−1
h (v)|| = 1

r ||v||.
Therefore, with v replaced by φh(v), we have r > 1 by the inequality: r||v|| =
||φh(v)|| = ||φg(φ

i
f (v))|| > ||v||. Hence h is int-amplified. Similar argument works for

g ◦ f i. So, Theorem 1.2 holds.

Proof of Theorem 1.3. By the ramification divisor formula, f∗(−KX)− (−KX) =
Rφ, where the ramification divisor Rφ is effective and thus pseudo-effective in the
sense of currents. By Theorem 1.1 (4), −KX is also pseudo-effective.

Suppose the contrary that κ(X) > 0. Then, there exists a non-zero effective
divisor D on X, such that sKX ∼ D for some s ∈ N+. Note that D is not contained
in the singular locus due to the normality of X. Therefore, for any Kähler form ω on
X,

sKX ∧ ωn−1 = [D] ∧ ωn−1 =

∫
Dreg

(ω|D)n−1 > 0,

a contradiction to −KX being pseudo-effective. Then, Theorem 1.3 holds.

Let f : X → X be a surjective endomorphism of a normal compact Kähler space
X of dimension n with at worst rational singularities (cf. [21, Remark 3.7]). Denote
by

Lk(X) := {
∑

[α1] ∪ · · · ∪ [αk] | [αi] ∈ H1,1
BC(X)},

the subspace of H2k(X,R). In particular, L1(X) = H1,1
BC(X). Let Nk(X) :=

Lk(X)/ ≡w, where [α] ∈ Lk(X) is weakly numerically equivalent (denoted by ≡w) to
zero if and only if for any [βk+1], · · · , [βn] ∈ H1,1

BC(X), [α] ∪ [βk+1] ∪ · · · ∪ [βn] = 0.

Moreover, for any [α], [β] ∈ Lk(X), [α] ≡w [β] if and only if [α]− [β] ≡w 0.
Let Lk

C(X) = Lk(X) ⊗R C and Nk
C(X) = Nk(X) ⊗R C. Note that the pull-

back operation f∗ on Bott-Chern cohomology space induces a linear operation on the
subspace Lk

C(X) ⊆ H2k(X,C) for each k. With the notation settled, it follows from
Proposition 2.8 that f∗ also gives a well-defined linear operation on the quotient space
Nk

C(X).
We generalize [26, Lemma 3.6] to the following. We skip its proof and readers

may refer to [26, Lemma 3.6] by applying Theorem 1.1 and Proposition 2.8. For its
application, see Theorem 3.5 and Proposition 6.1.

Lemma 3.4. Let f : X → X be an int-amplified endomorphism of a normal com-
pact Kähler space of dimension n. Suppose that X has at worst rational singularities.
Then, for each 0 < k < n, all the eigenvalues of f∗|Nk

C
(X) are of modulus less than

deg f . In particular, lim
i→+∞

(fi)∗[x]
(deg f)i ≡w 0 for any [x] ∈ Lk

C(X).

Theorem 3.5. Let f : X → X be an int-amplified endomorphism of a positive
dimensional compact Kähler space with only rational singularities. Then deg f > 1.

Proof. If dimX = 1, then X is normal since X has at worst rational singularities.
Therefore,X is smooth and projective. By Theorem 1.1, there exist two ample divisors
D and H such that f∗D −D = H. If deg f = 1, taking the degree of both sides, we
get a contradiction.
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If dimX ≥ 2, then by Theorem 1.1, all the eigenvalues of f∗|H1,1
BC(X) have modulus

greater than 1. Note that the eigenvectors of the quotient space N1
C(X) come from

the elements in H1,1
BC(X). By applying Lemma 3.4 for k = 1, deg f > 1.

4. Some dynamics of int-amplified endomorphisms. In this section, we
discuss some dynamics for int-amplified endomorphisms in terms of fixed points and
totally invariant subvarieties. Note that Lemma 4.1 follows immediately from [36,
Proposition 1.3.1] and Lemma 4.2 is an extension of [26, Lemma 2.4].

Lemma 4.1. If f is an int-amplified endomorphism of a normal compact Kähler
space X and Z is an f -invariant analytic subvariety (i.e., f(Z) = Z) of X, then the
restriction f |Z is an int-amplified endomorphism of Z.

Lemma 4.2. Let f : X → X be an int-amplified endomorphism of a compact
Kähler space X. Then, the set of periodic points Per(f) is countable.

Proof. Suppose Per(f) is uncountable. Then, there exists some s > 0, such that
the set Ps of all fs-fixed points is infinite. Let Z be an irreducible component of the
closure of Ps in X with dimZ > 0. Then fs|Z = idZ , which is absurd by Lemmas 3.1
and 4.1.

Unlike the normal projective setting, for a compact Kähler space X admitting
an amplified endomorphism f , it is still open about the density of periodic points.
Nevertheless, the proposition below partially answers Question 1.6 in the case of
complex tori. Further, we will show in Section 5 that the result can be extended to
Q-tori case.

Proposition 4.3. Let f : T → T be an int-amplified endomorphism of a complex
torus T . Then, there exists a fixed point of f .

Proof. By Künneth formula, if λ1, · · · , λk (may not be distinct) are all the eigen-

values of f∗|H1(T,C), then each eigenvalue of f∗|Hi(T,C) is of the form
∏

j λ
lj
j , where∑

lj = i.
Since f is int-amplified, each eigenvalue of f∗|H1,1(T,C) has modulus greater than

1. By Hodge theory, all of the eigenvalues of f∗|H1(T,C) (and hence f∗|Hi(T,C)) are of
modulus greater than 1. Then, it follows from the Lefschetz fixed point theorem that,

L(f) =
∑
i

(−1)iTrace(f∗|Hi(T,C)) =
∑

k1,··· ,ki

(−λk1
) · · · (−λki

) =
∏
i

(1− λi),

with |λi| > 1 for each i. Then L(f) �= 0 implies that f has a fixed point.

In the following, we fix our attention to manifolds temporarily. We extend some
early results in [26, Section 3] to the analytic case. Recall the definition of Lk(X)
and its quotient Nk(X) in Section 3. The following lemma holds due to the openness
of the cone Kk(X), the set of classes of strictly positive closed (k, k)-forms (cf. [11,
Chapter III]).

Lemma 4.4. Let (X,ω) be a compact Kähler manifold of dimension n. Then,
for any closed (k, k)-current T , there exists A > 0 such that Aωk − T is a positive
(k, k)-current.

When X is a normal projective variety, one may use Bertini’s theorem to prove
that for any closed subvariety Z, there exists an effective cycle C such that the sum
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Z +C is the intersection of ample divisors. However, in the analytic setting, we may
not have ample divisors. Nevertheless, Lemma 4.4 says that for any closed current,
there exists a positive “complement” such that the sum is (numerically) equal to a
power of some Kähler form. As an application of Lemma 4.4, we show the lemma
below. Note that when X is smooth, H1,1

BC(X) ∼= H1,1(X,R) and hence we may regard

each (n − k, n − k)-current as a function on Lk(X) using the Poincaré duality and
Stokes’ formula.

In what follows, we show a useful lemma, which will be applied in the proof of
Proposition 4.6 and Lemma 8.2.

Lemma 4.5. Let f : X → X be an int-amplified endomorphism of a normal
compact Kähler space with at worst rational singularities of dimension n. Let ξ be a
Kähler form on X. Then for any k-dimensional analytic proper subvariety Z of X,

which is not contained in the singular locus, lim
i→+∞

∫
Z

(fi)∗(ξk)
(deg f)i = 0.

Proof. Let xi :=
(fi)∗(ξk)
(deg f)i ∈ Lk(X). We take a resolution π : X̃ → X and consider

the pull-back yi := π∗xi, the class of which is a product of nef classes in X̃. Assume
that outside a proper closed subset E ⊆ X̃, we have X̃\E ∼= X\Sing(X). Since

Z �⊆ Sing(X), we denote by Z̃ the proper transform of Z in X̃.
For any fixed Kähler form ω on X, there exists c� 1 such that η := c · π∗ω−E′

is a Kähler form on X̃ (cf. [37, pp.81]), where E′ ≥ 0 is a positive linear combination

of the components in E. We may identify E′ with E in the following. Since [Z̃] is
a positive (n − k, n − k)-current and [yi] is a product of nef classes, by Lemma 4.4,

there exists a > 0 such that
〈
a · ηn−k − [Z̃], [yi]

〉
≥ 0 for any i; hence

∫
Z

xi =

∫
˜Z

yi =
〈
[Z̃], [yi]

〉
≤ [yi] ∪ a · ηn−k ≤ [yi] ∪ (ac)π∗ω ∪ ηn−k−1.

Note that the last inequality is due to the nefness of [yi] and [η] (and hence [yi]∪E ∪
ηn−k−1 ≥ 0). Repeat the above process and apply the nefness of [π∗ω], we have∫

Z

xi ≤ a · cn−k[yi] ∪ (π∗ω)n−k = a · cn−k[xi] ∪ ωn−k. (1)

With Z̃ replaced by −Z̃, the same arguments above together with Lemma 4.4

show that there exists b > 0 such that
〈
b · ηn−k + [Z̃], [yi]

〉
≥ 0 for any i; hence

−
∫
Z

xi = −
∫
˜Z

yi ≤ [yi] ∪ b · ηn−k ≤ b · cn−k[xi] ∪ ωn−k. (2)

By Lemma 3.4, lim
i→∞

[xi] ≡w 0 in Lk
C(X); hence taking the upper limits of both sides

for (1) and (2), we have 0 ≤ lim
i→∞

〈[Z], xi〉 ≤ lim
i→∞

〈[Z], xi〉 ≤ 0. So our result follows.

Proposition 4.6. Let f : X → X be an int-amplified endomorphism of a normal
compact Kähler space X with at worst rational singularities of dimension n. Let Y
be an analytic closed subvariety of X not contained in the singular locus such that
f−1(Y ) = Y and deg f |Y = deg f . Then X = Y .

Proof. Suppose dimY = m < n and we fix a Kähler form ξ on X. On the

one hand, by Lemma 4.5, lim
i→∞

∫
Y

(fi)∗ξm

(deg f)i = 0. On the other hand, we have the
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natural integration on the topological space
〈
[Y ], (f i)∗ξm

〉
= (deg f |Y )i 〈[Y ], ξm〉 =

(deg f)i 〈[Y ], ξm〉.
Therefore, we get a contradiction by the numerical characterization (cf. [10]):

0 <

∫
Yreg

ξm =

∫
Y

ξm =
1

(deg f)i

∫
Y

(f i)∗ξm = lim
i→∞

∫
Y

(f i)∗ξm

(deg f)i
= 0.

Then, our proposition follows from this contradiction.

Resulting from Proposition 4.6, we end up this section with the following lemma.

Lemma 4.7. Let f : T → T be an int-amplified endomorphism of a complex torus
T . Let Z be a non-empty f−1-periodic closed analytic subvariety of T . Then Z = T .

Proof. Since fs is int-amplified for any positive integer s (cf. Lemma 3.1), with
f replaced by its power, we may assume Z is irreducible and f−1(Z) = Z. It follows
from the ramification divisor formula and the purity of branch loci that f is étale.
Therefore we get deg f |Z = deg f ; and hence Z = T by Proposition 4.6.

5. The quotients of complex tori. In this section, we deal with the case of
Q-tori admitting int-amplified endomorphisms. Recall that a normal compact Kähler
space X is said to be a Q-torus if there exists a complex torus (full rank) T and a
finite surjective morphism π : T → X such that π is étale in codimension 1 (cf. [19,
Notation 2.1]). Besides, we say that a finite surjective morphism f : X → Y is quasi-
étale if f is étale in codimension 1. It follows from the ramification divisor formula
that any surjective endomorphism of a Q-torus is quasi-étale.

To begin with this section, we extend the results in [33, Lemma 2.12] and [32,
Proposition 4.3] to the following. Readers may refer to [2, Proposition 3] for its proof.

Proposition 5.1. Let X be a Q-torus. Then there exists a quasi-étale cover
τ : T → X satisfying the following conditions:

(1) T is a complex torus;
(2) τ is Galois;
(3) If τ ′ : T ′ → X is another quasi-étale cover from a torus T ′, then there exists

an étale morphism σ : T ′ → T such that τ ′ = τ ◦ σ.
In particular, we call the quasi-étale cover τ in Proposition 5.1 the Albanese closure
of X in codimension one.

As a consequence of Proposition 5.1, we have the lifting lemma below. Then,
Corollary 5.3 follows immediately from Proposition 4.3 and Lemma 5.2.

Lemma 5.2. Let f : X → X be a surjective endomorphism of a Q-torus X.
Then there exist a complex torus T , a quasi-étale morphism τ : T → X and an étale
endomorphism σT : T → T such that τ ◦ σT = f ◦ τ .

Proof. Note that f is quasi-étale by the ramification divisor formula. Let τ : T →
X be the Albanese closure as in Proposition 5.1. Since the composition f ◦ τ is still
quasi-étale, by Proposition 5.1 (3), such σT exists.

Corollary 5.3. Let f : X → X be an int-amplified endomorphism of a Q-torus.
Then, there exists a fixed point of f .

Comparing with Lemma 4.7, we have the same argument for Q-tori. For the
application of Lemma 5.4, see the proof of Theorem 1.5 in Section 8.

Lemma 5.4. Let f : X → X be an int-amplified endomorphism of a Q-torus X.
Then, there is no f−1-periodic proper subvariety of X.
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Proof. Let Z be a non-empty f−1-periodic closed subset of X, i.e., f−s(Z) = Z
for some s > 0. One needs to show that Z = X. Since X is a finite quotient of
some complex torus T , it has only quotient and hence rational (cf. [25, Proposition
5.15]) singularities. Also, it follows from the ramification divisor formula that f is
quasi-étale. By Lemma 5.2, there exists a quasi-étale cover τ : T → X from a
complex torus T . Since f is quasi-étale, so is the composition f ◦ τ . Then, one gets a
surjective endomorphism σT : T → T such that f ◦ τ = τ ◦ σT . By Lemma 3.3, σT is
int-amplified. Further, the commutative diagram gives that σ−s

T (τ−1(Z)) = τ−1(Z).
Since σs

T is also int-amplified, τ−1(Z) = T (cf. Lemma 4.7) and hence Z = X.

From now on, we aim to show that each dominant meromorphic map from a
normal compact Kähler space with mild singularities to a Q-torus is holomorphic.
We first give a generalized version of [35, Lemma 9.11] by weakening the condition.
Readers are referred to [24, Lemma 8.1] for the projective case but the proofs are
different. To prove Lemma 5.5, we need to recall the Albanese torus for a singular
complex space ([15, Section 3]).

Lemma 5.5. Let f : X ��� T be a dominant meromorphic map from a normal
compact Kähler space with only rational singularities to a torus T . Then, f is a
morphism.

Let X be a compact complex space. A holomorphic map α : X → A to a complex
torus A is said to be the Albanese map of X, and A is called the Albanese torus of
X, if any map from X to a complex torus T factors uniquely through α. Note that
the Albanese torus is unique up to isomorphism if it exists. Let A = Alb(X) and
α = albX . If X is further assumed to have at worst rational singularities, then X
admits an Albanese torus and Alb(X) = Alb(X̃), where π : X̃ → X is a projective
desingularization such that albX ◦ π = alb

˜X (cf. [15, Theorem 3.4]). Now, we are
ready to prove Lemma 5.5.

Proof. [Proof of Lemma 5.5] Let π : X̃ → X be a projective resolution, f̃ : X̃ ���
T the induced dominant meromorphic map, albX : X → Alb(X) and β : Alb(X) ���
T the induced map (cf. [15, Section 3]). Since f̃ is a dominant meromorphic map

from a complex manifold to a torus, by [35, Lemma 9.11], f̃ is a morphism. Moreover,

Alb(X) = Alb(X̃) and thus β is a morphism by [35, Definition 9.6 and Theorem 9.7].
Therefore, f is a morphism.

We end up this section with the following proposition. The proof is the same
as in the projective setting (cf. [27, Lemma 5.3] or [26, Lemma 4.4]) except that we
apply Lemma 5.5 instead of [27, Lemma 5.1].

Proposition 5.6. Let π : X ��� Y be a proper dominant meromorphic map
from a normal compact Kähler space X to a Q-torus Y . Suppose that X has at
worst Kawamata log terminal (klt) singularities and the normalization of the graph
ΓX/Y is equi-dimensional over Y (this holds when the general fibre of π is connected,
f : X → X is int-amplified and f descends to some int-amplified endomorphism
g : Y → Y ). Then, π is a morphism.

6. KX pseudo-effective case: Proof of Theorem 1.4. Proceeding from this
section, we will gradually fix our attention to the normal compact Kähler threefolds.
In Section 8, we will discuss the equivariant MMP for threefolds and before that, some
preparations are necessary. In this section, we consider the case when the canonical
divisor is pseudo-effective. Now, we are ready to prove Theorem 1.4. We first divide



384 G. ZHONG

the theorem into three parts (cf. Propositions 6.1, 6.2 and 6.5) and then, we put them
together to show Theorem 1.4 for the convenience of readers.

Proposition 6.1. Let f : X → X be an int-amplified endomorphism of a
compact Kähler manifold of dimension n ≥ 1 with pseudo-effective KX . Then X is a
Q-torus.

Proof. Since −KX is pseudo-effective by Theorem 1.3 and KX is pseudo-effective
by assumption, KX ≡ 0 in the sense of currents. Then, f is étale by the ramification
divisor formula and Purity of the branch locus theorem of Grauert-Remmert (cf. [17]).

Fix a Kähler class [ω] on X. We claim that c2(X) · [ω]n−2 = 0. Indeed, according
to [16, Proposition 5.6], (deg f)c2(X)·[ω]n−2 = c2(X)·(f∗[ω])n−2 = c2(X)·f∗([ω]n−2).
Then,

c2(X) · [ω]n−2 = c2(X) · f
∗([ω]n−2)

deg f
= c2(X) · (f

i)∗([ω]n−2)

(deg f)i
=: c2(X) · [xi].

Here, lim
i→∞

[xi] ≡w 0 by Lemma 3.4. Moreover, applying Lemma 4.4 for both c2(X)

and −c2(X), there exist two positive closed (2, 2)-currents T1 and T2 and a positive
number A such that c2(X) + T1 = A[ω]2 and −c2(X) + T2 = A[ω]2 in the sense of
currents. Then, we get the inequalities: lim

i→∞
c2(X)·[xi] ≤ 0 and lim

i→∞
−c2(X)·[xi] ≤ 0,

which in turn force c2(X) · [xi] tends to 0 when i → ∞. Therefore, we complete the
proof of our claim.

Note that the vanishing of the first Chern class of X implies that we can find
a Ricci flat metric (still denoted ω) in the Kähler class [ω] (cf. [38] and [39]). The
vanishing

∫
X
c2(X)∧ωn−2 = 0 implies that the full curvature tensor of ω is identically

zero. By the uniformisation theorem, the universal cover of X is an affine space and
X is a quotient of a complex torus T by a finite group G acting freely on T .

Proposition 6.2. Let f : X → X be an int-amplified endomorphism of a
normal compact Kähler threefold with at worst canonical singularities. Suppose that
the canonical divisor KX is pseudo-effective. Then X is a Q-torus.

We refer the readers to [33, Theorem 3.3] and [26, Theorem 5.2] for the projective
version while our present proof will be different.

Proof. To prove Proposition 6.2, we resort to [16, Theorem 1.1] by showing that
c1(X) = 0 ∈ H2(X,R) and c̃2(X) · [ω] = 0 for some Kähler class [ω] ∈ H2(X,R). Here
c1(X) is the first Chern class and c̃2(X) ∈ H2(X,R)∨ is the orbifold second Chern
class of X (cf. [16, Section 5]). Since −KX is pseudo-effective by Theorem 1.3 and KX

is pseudo-effective by assumption, KX is numerically trivial in the sense of currents,
i.e., c1(X)R = 0. It follows from the ramification divisor formula KX = f∗KX + Rf

that Rf is zero and thus f is quasi-étale. Let d := deg f > 1 and fix a Kähler class
[ω] on X.

Now we prove that c̃2(X) · [ω] = 0. Since f is quasi-étale, by [16, Proposition 5.6],
we get c̃2(X) · f∗[ω] = d(c̃2(X) · [ω]). Then with the equality divided by d, we have

c̃2(X) · [ω] = c̃2(X) · f
∗[ω]
d

= c̃2(X) · (f
i)∗[ω]
di

=: c̃2(X) · [xi],

where lim
i→∞

[xi] ≡w 0 by Lemma 3.4. Note that c̃2(X) ∈ H2(X,R)∨ and we can

regard it as an element in the dual of the Bott-Chern cohomology space and hence
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c̃2(X) ∈ N1(X) (cf. [21, Proposition 3.9]). Besides, for any normal compact Kähler
threefold X, the nef cone Nef(X) and the cone NA(X) generated by positive closed
currents of bidimension (1, 1) are dual (cf. [21, Proposition 3.15]). Therefore, [ω]2 is
an interior point of NA(X) because as a linear function on H1,1

BC(X), [ω]2 is strictly
positive on Nef(X)\{0} by Hodge-Riemann theorem (also cf. [12, Théorème 3.1]).
Therefore, there exists A > 0 such that A[ω]2 ≥ c̃2(X) and A[ω]2 ≥ −c̃2(X) in the
sense of currents. Hence, with the same argument as in the proof of Proposition 6.1,
c̃2(X) · [ω] = lim

i→∞
c̃2(X) · [xi] = 0.

Then, applying the criterion in [16, Theorem 1.1], we see that X is a Q-torus.

Lemma 6.3. Let f : X → X be an int-amplified endomorphism of a normal
compact Kähler surface with at worst klt singularities. Suppose that the canonical
divisor KX is pseudo-effective. Then X is a Q-torus.

Proof. With the same arguments as in the previous proof (cf. Proposition 6.2),
KX is numerically trivial in the sense of currents, i.e., c1(X)R = 0. Therefore, it
follows from the ramification divisor formula that f is quasi-étale. Also, c̃2(X) = 0
according to [16, Proposition 5.6]. Hence, X is a Q-torus (cf. [16, Proposition 7.2]).

Lemma 6.4. Let f : X → X be an int-amplified endomorphism of a normal
compact Kähler non-uniruled surface such that KX is Q-Cartier. Then X is a Q-
torus.

Proof. By Theorem 1.3, −KX is pseudo-effective. Let π : X̃ → X be a projective
resolution. Since X and hence X̃ are non-uniruled Kähler surfaces, K

˜X is pseudo-
effective by the classification of surfaces. Further, the equality π∗K ˜X = KX gives
that KX is also pseudo-effective. Therefore, KX ≡ 0.

Since dimX = 2, with the same proof as in [23, Lemma 2.4], X has only canonical
singularities. Then it follows from Lemma 6.3 that X is a Q-torus.

As a consequence of Lemma 6.4, we prove the next proposition.

Proposition 6.5. Let f : X → X be an int-amplified endomorphism of a normal
Q-factorial compact Kähler surface X such that the canonical divisor KX is pseudo-
effective. Then X is a Q-torus.

Proof. Since KX is pseudo-effective, with the same reason as in previous proofs,
KX ≡ 0. Then, it follows from [14, Theorem 1.2] thatKX is semi-ample andKX ∼Q 0.
If X is non-uniruled, this is the case in Lemma 6.4. Therefore, we consider the case of
X being uniruled. Suppose X is a uniruled surface. Then, X is bimeromorphic to a
ruled surface which is algebraic. Thus, X is Moishezon by [1, Theorem 7.14]. Taking

the global index-one log-canonical cover X̃ → X associated with KX ∼Q 0, we have
the following results (cf. [29, Lemma 3.2.7] or [30, Lemma 4.21] and Lemma 3.3): (1)

X̃ is a normal Moishezon and Kähler surface; (2) X̃ → X is étale in codimension

one; (3) X̃ has only rational double points; (4) K
˜X ∼ 0; and (5) f lifts to an int-

amplified endomorphism f̃ of X̃. Therefore, it follows from [29, Proposition 7.3.1] or

[31, Proposition 5.2] that X̃ and hence X are Q-tori (cf. [16, Lemma 7.4]).

Proof of Theorem 1.4. Note that Theorem 1.4 is a direct consequence of Propo-
sitions 6.1, 6.2 and 6.5, which together prove the cases: manifolds, threefolds and
surfaces respectively.

It is natural to consider whether Theorem 1.4 can be generalized to arbitrary
dimensional spaces with mild singularities. For the normal projective setting, the
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answer is affirmative (cf. [26, Theorem 5.2]). In our present context, it is still an open
question.

We end up this section by assuming the following hypothesis when discussing
the minimal model program for the case when KX is pseudo-effective. With the
assumption of Hyp A, we refer the readers to [21] for details.

Hyp A: X is a normal Q-factorial compact Kähler threefold with at
worst terminal singularities. Also, the canonical divisor KX is pseudo-
effective.

7. KX not pseudo-effective case. In this short section, let X be a normal
compact Kähler threefold with at worst canonical singularities. We refer the readers
to [20, Introduction] for the arguments below.

By a theorem of Brunella [4] and [22, Theorem 4.2], the canonical divisor KX is
not pseudo-effective if and only if X is covered by rational curves. We shall deal with
the uniruled case in the following. Let π : X̃ → X be a projective resolution and
X̃ ��� Y the maximal rationally connected (MRC) fibration.

If dimY = 0, then X̃ is algebraic (cf. [5]). We suppose that dimY = 1. Then, a
general fibre F of the MRC fibration is smooth and rationally connected of dimension
two in X̃. If H0(X̃,Ω2

˜X
) �= 0, then there exists a global 2-form η on X̃ and hence we

get a non-zero holomorphic form on some rationally connected fibre F , a contradiction
(cf. [7, Corollary 4.18]). So, applying Hodge theory, we have H2(X̃,O

˜X) = 0 and also

H2(X̃,C) = H1,1(X̃,C). By [15, Proposition 4.10], X̃ is projective and thus X is
Moishezon (cf. [1, Theorem 7.14]).

In both cases, X is Moishezon and also projective thanks to [34, Theorem 1.6].
In conclusion, together with [26, Theorem 1.10], we get the following lemma.

Lemma 7.1. Let X be a compact Kähler threefold with at worst canonical singu-
larities. Suppose X is uniruled and the dimension of the base Y of the MRC fibration
π : X ��� Y is at most 1. Then X is projective. In particular, if X further admits
an int-amplified endomorphism, then there exists an f -equivariant MMP for X after
iteration.

From now on, when discussing the MMP for normal compact Kähler uniruled
threefolds, we always assume the following hypothesis (cf. [20]).

Hpy B: X is a normal Q-factorial compact Kähler threefold with at
worst terminal singularities. Also, the canonical divisor KX is not pseudo-
effective and the base Y of the MRC fibration π : X ��� Y has dimension
two.

8. Equivariant minimal model program: Proof of Theorem 1.5. In this
section, we always assume Hyp A in Section 6 or Hyp B in Section 7 when dis-
cussing the MMP for Kähler threefolds. Before proving Theorem 1.5, we refer to [21,
Definitions 3.19, 4.3 and 7.1] for the basic notation and respective properties of con-
traction morphisms, divisorial rays and small rays. Indeed, all of them are similar to
those in projective settings. By [21, Remark 7.2], if the extremal ray R is small, then
the corresponding Mori contraction contracts only finitely many curves. Moreover,
[21] shows that if we assume Hyp A in Section 6 or Hyp B in Section 7, then after
a contraction of either divisorial or small rays, the end product is still a normal Q-
factorial compact Kähler threefold with at worst terminal singularities. In addition,
under the same assumption, [20] shows that if π : X → Y is a Mori fibre space, then
Y is a normal Q-factorial compact Kähler surface with at worst klt singularities.
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In what follows, we slightly generalize [40, Lemma 2.11] to the following lemma.
We shall skip the proofs since they are the same as the proofs in [40, Lemma 2.11] by
applying Proposition 2.8 and [21, Proposition 3.9] to the present case.

Lemma 8.1. Let X be a normal compact Kähler space with at worst rational
singularities and f : X → X a surjective endomorphism. Let RΓ := R≥0[Γ] ⊆ NA(X)
(which is the closed cone in N1(X) generated by the classes of positive closed currents
of bidimension (1, 1)) be an extremal ray (not necessarily KX-negative) with Γ a
positive closed current of bidimension (1, 1). Then, we have:

(1) Rf∗Γ is an extremal ray;
(2) If C1 is a curve such that [f(C1)] ∈ RΓ, then R[C1] is an extremal ray;
(3) Denote by ΣΓ the set of curves whose classes are in RΓ. Then f(ΣΓ) = Σf∗Γ.
(4) ΣΓ = f−1(Σf∗Γ) := {C a curve | f(C) ∈ Σf∗Γ}.
The result below is known in the projective case (cf. [26, Lemma 8.1]) and we

show that it also holds in the analytic setting. We rewrite the proof in the analytic
version by highlighting the differences and skipping the same parts. The main differ-
ence is that, here, we may not have integral ample divisors in the analytic setting.
Nevertheless, since every analytic subvariety outside the singular locus determines an
integral homology class, the idea of the previous proof is valid in the present case.

Lemma 8.2. Let f : X → X be an int-amplified endomorphism of a normal
compact Kähler space, which is of dimension n ≥ 1 and has at worst rational singu-
larities. Suppose A ⊆ X is a closed subvariety with f−if i(A) = A for all i ≥ 0. Then
M(A) := {f i(A)|i ∈ Z} is a finite set.

Proof. Let M≥0(A) := {f i(A)|i ≥ 0}. With the same reason as in the first step
of the proof in [26, Lemma 8.1], we only need to prove M≥0(A) is finite.

We show that M≥0(A) is a finite set by induction on the codimension of A in
X. If A = X, there is nothing to prove. Suppose k := dimA < dimX and d :=
deg f > 1. Denote by Σ the union of Sing(X), f−1(Sing(X)) and the irreducible
components in the ramification divisor Rf of f . Let Ai := f i(A) (i ≥ 0). Note that
dimAi = dimA = k.

We claim that Ai is contained in Σ for infinitely many i. If not, with A
replaced by some Ai0 , we may assume that Ai is not contained in Σ for all i ≥ 0.
Since f−i−1(Ai+1) = A and f i is surjective, we have f−1(Ai+1) = Ai. Besides, f is
unramified on each Ai, and hence deg f |Ai = deg f . Fix a Kähler form ξ on X. Then,
by projection formula, (deg f)(ξk · [Ai+1]) = (deg f |Ai)(ξ

k · [Ai+1]) = (f∗ξ)k · [Ai].
Substituting this expression repeatedly, we have

ξk · [Ai+1] =
((f i)∗ξ)k · [A1]

di
. (3)

On the one hand, all of these Ai are integral subvarieties of dimension k and not
contained in the singular locus by assumption. Also, the homology classes of these
Ai ⊆ X form a discrete set (denoted by NEk(X)), which is contained in the integral
lattice H2k(X,Z)/tors. In addition, ξk defines a norm on the closure of NEk(X) and
ξk is strictly positive on NEk(X)\{0}. Thus, there exists a real constant μ > 0
such that ξk · [Ai] ≥ μ for every analytic subvariety Ai of dimension k, which
is not contained in the singular locus. As a result, the left hand side of Equation
(3) is always no less than μ.

On the other hand, by Lemma 4.5, lim
i→∞

ξk · [Ai+1] = 0. Therefore, taking the
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upper limit of Equation (3), we get a contradiction and prove the claim. The remaining
proof is the same as [26, Lemma 8.1] after replacing [26, Lemma 2.3] by Lemma 4.1.

Let f : X → X be a surjective endomorphism of a compact Kähler manifold
X. Suppose π : X ��� Y is a meromorphic map to a complex variety. In [19,
Propositions 2.9 and 2.12], Höring and Peternell gave us nice criteria for f to descend
as a (meromorphic) endomorphism of Y in terms of Albanese map, Iitaka fibration,
rationally connected quotient or algebraic reduction.

Now, it is natural to ask whether there exists an equivariant descending for the
contraction morphism of a KX -negative extremal ray. Actually, it has an affirma-
tive answer under the assumption of Hyp A in Section 6 or Hyp B in Section 7
(cf. Lemma 8.3). The proof is the same as in [27, Lemma 6.2] for the projective
setting after replacing [27, Lemma 2.13] by Lemma 8.1 and replacing [25, Corollary
3.17] by [21, Proposition 8.1].

Lemma 8.3. Suppose either Hyp A in Section 6 or Hyp B in Section 7. Let f
be a surjective endomorphism of X and π : X → Y a contraction of a KX-negative
extremal ray RΓ := R≥0[Γ] generated by a positive closed (2, 2)-current Γ. Suppose
further that E ⊆ X is an analytic subvariety such that dim(π(E)) < dimE and
f−1(E) = E. Then, up to replacing f by its power, f(RΓ) = RΓ (hence, for any curve
C such that [C] ∈ RΓ, its image [f(C)] still lies in RΓ). Therefore, the contraction π
is f -equivariant, i.e., f descends to a surjective endomorphism g on Y .

Lemma 8.3 is also valid for any Kähler surface with klt singularities. Besides,
Lemma 8.3 applies when π is a Mori fibre space (with E = X): in that case, π is
fs-equivariant for some s > 0.

Proposition 8.4. Let f : X → X be an int-amplified endomorphism of a nor-
mal Q-factorial compact Kähler threefold X with at worst terminal singularities. If
π : X → Y is a divisorial contraction of a KX-negative extremal ray RΓ := R≥0[Γ]
generated by a positive closed (2, 2)-current Γ. Then fs induces an int-amplified en-
domorphism of Y for some s > 0.

Proof. Let S :=
⋃

C⊆X,[C]∈RΓ
C. By [21, Lemma 7.5], S is an irreducible Moishe-

zon surface and S ·C < 0 for all curves C with [C] ∈ RΓ. By Lemma 8.1, f−if i(S) = S
for all i ≥ 0, since f i is surjective. Then, it follows from Lemma 8.2 that M≥0(S)
is a finite set. So, we may assume f−1(S) = S with f replaced by its power. Also,
π is fs-equivariant for some s > 0 (cf. Lemma 8.3). By Lemma 3.2, the induced
endomorphism on Y is int-amplified.

Indeed, without Lemma 8.2, the finiteness of the number of such S in Proposition
8.4 also comes from the fact that all of these Moishezon surfaces consist of the integral
part of the Zariski decomposition forKX (cf. [21, Section 4.B. and the proof of Lemma
7.5]).

The following result is the analytic version of [40, Lemma 3.6] (cf. [28, (0.4.1)]
for the existence of flips of threefolds), the proof of which is the same since each
contraction morphism of compact Kähler threefolds is projective (−KX is π-ample).

Lemma 8.5. Let f : X → X be a surjective endomorphism of a normal Q-
factorial compact Kähler threefold X with at worst terminal singularities and σ :
X ��� X ′ a flip with π : X → Y the corresponding flipping contraction of a KX-
negative extremal ray RΓ := R≥0[Γ] generated by some positive closed (2, 2)-current
Γ. Suppose that Rf∗Γ = RΓ. Then the dominant meromorphic map f+ : X+ ��� X+
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induced from f , is holomorphic. Both f and f+ descend to the same endomorphism
of Y .

Proposition 8.6. Let f : X → X be an int-amplified endomorphism of a
normal Q-factorial compact Kähler threefold X with at worst terminal singularities
and σ : X ��� X ′ a flip with π : X → Y the corresponding flipping contraction of
a KX-negative extremal ray RΓ := R≥0[Γ] generated by some positive closed current
Γ of bidimension (1, 1). Then there exists a KX-flip of π, π+ : X+ → Y such that
π = π+ ◦ σ and for some s > 0, the commutativity is fs-equivariant.

Proof. The proof is the same as [27, Lemma 6.5] after replacing [27, Lemmas 2.13,
6.1, 6.2 and 6.6] by Lemmas 8.1, 8.2, 8.3 and 8.5. Also, Lemmas 3.2 and 3.3 show
that the induced endomorphism f+ in Lemma 8.5 is int-amplified.

The next Theorem follows from Lemmas 8.3, 8.5 and Propositions 8.4, 8.6.

Theorem 8.7. Let f : X → X be an int-amplified endomorphism of a Q-factorial
compact Kähler space X with at worst terminal singularities. Let π : X ��� Y be a
dominant rational map which is either a divisorial contraction or a Fano contraction
or a flip induced by a KX-negative extremal ray RΓ. Then there exists an int-amplified
endomorphism g : Y → Y such that g ◦ π = π ◦ f with f replaced by its power.

Proof of Theorem 1.5. First, if KX is pseudo-effective, then X = Y is a Q-torus
by Proposition 6.2. Next, we consider the case when KX is not pseudo-effective. If
the base of the MRC fibration X ��� Z has dimension ≤ 1, then Theorem 1.5 follows
from Lemma 7.1 and [26, Theorem 1.10], since X is projective in this case.

Now, we assumeHyp B in Section 7. By [20, Theorem 1.1], we may run the MMP
for finitely many steps: X = X1 ��� · · · ��� Xj consisting of contractions of extremal
rays and flips, such that Xj admits a Mori fibre space Xj → S = Xj+1 onto a normal
Q-factorial compact Kähler surface. Note that S has at worst klt singularities (cf. [20,
Theorem 1.1]). Note also that S is bimeromorphic to the base of the MRC fibration
of X; hence S is non-uniruled and KS is pseudo-effective by considering a resolution
of S. By Proposition 6.5, S is a Q-torus, which is our end product. Replacing f by
its power, the above sequence is f -equivariant by Theorem 8.7.

By Proposition 5.6, the composition ui : Xi ��� Y is a morphism for each i. Also,
for each small contraction πi : Xi → Zi, we claim that the meromorphic map
Zi ��� Y is also a morphism. In the following, let Exc(πi) denote the exceptional
locus of πi.

If the claim does not hold, then by the rigidity lemma, there exists a curve C
on Xi with [C] ∈ R such that ui(C) is a curve on Y . Here, R is a KXi -negative
small ray and πi is the small contraction of R. Recall that, under Hyp B, Y is
a Q-torus of dimension 2. By Lemmas 8.1 and 8.2, with f replaced by its power,
f−1(Exc(πi)) = Exc(πi). Since dimExc(πi) = 1, with f further replaced by its power,
ui(C) is totally invariant under the induced int-amplified endomorphism Y → Y
(cf. [6, Lemma 7.5]), a contradiction to Lemma 5.4. Thus, Zi → Y is also a morphism
and the MMP is over Y .

By [27, Lemmas 2.6 and 5.2], Xi → Y is equi-dimensional with every fibre being
irreducible and rationally connected. Also, KXi

is not pseudo-effective for any i < r,
otherwise Xi is a Q-torus for some i < r and the MMP ends. Therefore, we complete
the proof of Theorem 1.5.
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Invent. Math., 63:2 (1981), pp. 187–223.

[6] P. Cascini, S. Meng and D.-Q. Zhang, Polarized endomorphisms of normal projective three-
folds in arbitrary characteristic, Math. Ann., 378:1-2 (2020), pp. 637–665.

[7] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New Tork,
2001.

[8] J.-P. Demailly, Mesures de Monge-Ampère et caractérisation géométrique des variétés
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