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METRICS AND COMPACTIFICATIONS OF TEICHMÜLLER
SPACES OF FLAT TORI∗

MARK GREENFIELD† AND LIZHEN JI‡

Abstract. Using the identification of the symmetric space SL(n,R)/SO(n) with the Teichmüller
space of flat n-tori of unit volume, we explore several metrics and compactifications of these spaces,
drawing inspiration both from Teichmüller theory and symmetric spaces. We define and study analogs
of the Thurston, Teichmüller, and Weil-Petersson metrics. We show the Teichmüller metric is a
symmetrization of the Thurston metric, which is a polyhedral Finsler metric, and the Weil-Petersson
metric is the Riemannian metric of SL(n,R)/SO(n) as a symmetric space. We also construct a
Thurston-type compactification using measured foliations on n-tori, and show that the horofunction
compactification with respect to the Thurston metric is isomorphic to it, as well as to a minimal
Satake compactification.
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1. Introduction. Throughout their long histories, there has been a great deal of
work studying analogies between Teichmüller spaces and symmetric spaces. Usually,
questions and results about the latter motivate those about the former. In this paper,
we reverse this pattern and use a modular interpretation of the symmetric space
SL(n,R)/SO(n) to define and interpret new and old metrics and compactifications.

While there are similarities between the action of mapping class groups on Te-
ichmüller spaces and the action of arithmetic subgroups of Lie groups on associated
symmetric spaces, Teichmüller spaces are very far from being symmetric spaces. For
example, a corollary of Royden’s theorem [Roy71] shows that there are no symmetric
points of Teichmüller spaces of hyperbolic surfaces. Despite important departures
from symmetric space behavior for hyperbolic surfaces, in the case of flat n-tori of
unit volume, the Teichmüller spaces are precisely symmetric spaces.

The Teichmüller space of a closed oriented surface Sg of genus g, denoted T (Sg),
is the moduli space of marked complex structures on the surface. By the uniformiza-
tion theorem each such marked complex structure possesses a canonical Riemannian
metric of constant curvature. Several different metrics have been defined for T (Sg),
including the classical Teichmüller metric dTeich, defined in terms of extremal qua-
siconformal distortion between two marked complex structures. Another well-known
metric on T (Sg) is the Weil-Petersson metric, introduced by Weil [Wei58], which is
an incomplete Riemannian metric.

In [Thu98], Thurston defined an asymmetric metric on T (Sg), g ≥ 2, using the
extremal Lipschitz constant for marking-preserving maps between hyperbolic surfaces.
This metric is natural for Teichmüller spaces of hyperbolic surfaces as it uses only the
canonical Riemannian metric associated to each complex structure.

In this paper, after defining the Teichmüller spaces of unit volume flat n-tori,
denoted by T (n), we will define analogs of these three metrics for T (n). The natural
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bijection T (n) ↔ SL(n,R)/SO(n) (reviewed in Section 3) is utilized throughout. The
first of our main results is the following characterization of these metrics:

Theorem 1.1. For T (2), the Thurston metric, Teichmüller metric, Weil-
Petersson metric, and hyperbolic metric all coincide. For T (n) with n ≥ 3, we have:

1) The Thurston metric is an asymmetric polyhedral Finsler metric which can
be computed explicitly (Theorem 5.4, Proposition 10.1).

2) The Teichmüller metric is the symmetrization of the Thurston metric by max-
imum (Theorem 6.7).

3) The Weil-Petersson metric is equal to the natural Riemannian metric on the
symmetric space SL(n,R)/SO(n) (Proposition 8.4).

In addition, the Teichmüller metric on T (n) has been studied in a very differ-
ent context before: in [LW94], the same metric on SL(n,R)/SO(n) was found to
be a generalization of the Hilbert projective metric. The Teichmüller metric on
SL(n,R)/SO(n) has also been studied in the context of conformal structures on vector
spaces (see [McM96] Appendix A.1).

Our main tool for understanding the Thurston metric is Proposition 4.1, where
we show that the minimal Lipschitz constant is realized by the unique affine map
between two marked tori. Recall that the extremal quasiconformal map realizing the
Teichmüller distance is unique (see Theorem 11.9 of [FM11], originally in [Tei39]).
Interestingly, this is not the case for extremal Lipschitz maps. We give a construction
for an infinite family of extremal Lipschitz maps in Proposition 4.6.

Compactifications of symmetric spaces are well-studied from many perspectives.
One of the most important constructions is the Satake compactification associated to
a representation of the isometry group, first studied in [Sat60]. Another is the horo-
function compactification with respect to a (Finsler) metric, first defined by Gromov
in [Gro81].

Compactifications of Teichmüller spaces have also been extensively studied.
Thurston’s compactification and its geometric interpretation using projective mea-
sured foliations (see [FLP12]) is the most well-known. In [Wal14], Walsh showed that
the horofunction compactification with respect to the Thurston metric is equivalent
to Thurston’s compactification.

Haettel in [Hae15] has defined and studied a Thurston-type compactification of
the space of marked lattices in R

n via an embedding in the projective space P(RZ
n

+ ).
This mimics the original construction of Thurston. Theorem 3.1 in [Hae15] shows
that this compactification is SL(n,R)-equivariantly isomorphic to the minimal Satake
compactification induced by the standard representation of SL(n,R).

In Section 11, we introduce a related compactification of T (n), analogous to the
geometric description of Thurston’s compactification. In particular, we define an
analog of projective measured foliations on n-tori to construct a Thurston boundary
of T (n).

Theorem 1.2. For the Teichmüller space T (n) = SL(n,R)/SO(n) of unit volume
flat n-tori, the following compactifications are SL(n,R)-equivariantly isomorphic:

1) Thurston compactification via measured foliations on n-tori.
2) Horofunction compactification with respect to the Thurston metric.
3) Minimal Satake compactification associated to the standard representation of

SL(n,R).

Corollary 1.3. The Thurston boundary for T (n) is a topological sphere.
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The equivalence (1)↔(2) is analogous to the case of hyperbolic surfaces, while
(1)↔(3) is related to Theorem 3.1 in [Hae15], and gives a geometric interpretation of
the boundary points of the compactification in [Hae15]. Theorem 1.2 is the combina-
tion of Proposition 10.1 and Theorem 11.11. Corollary 1.3 again mimics the case of
Teichmüller spaces of hyperbolic surfaces, and follows immediately from Theorem 1.2
in light of some past work on Satake compactifications. We also show the following
for the Teichmüller metric:

Theorem 1.4. The horofunction compactification of T (n) with the Teichmüller
metric is SL(n,R)-equivariantly isomorphic to the generalized Satake compactification
associated to the sum of the standard and dual representations of SL(n,R).

Finally, as an immediate corollary to Theorem 1.1(3) and well-known facts about
compactifications of nonpositively curved Riemannian symmetric spaces, we have:

Corollary 1.5. The horofunction compactification of T (n) with respect to the
Weil-Petersson metric is the visual compactification.

An interesting avenue of study would be to explore the Teichmüller theory of the
Siegel upper-half space consisting of symmetric complex matrices whose imaginary
part is positive definite. This is the moduli space of marked abelian varieties. The
Siegel upper-half space is an alternative way to generalize the hyperbolic upper-half
plane, which is the 1 × 1 matrix case. This direction may allow for an analog of the
complex structure of Teichmüller spaces, which is lacking in the case of real tori.

This work began by considering the Thurston metric on Teichmüller spaces of 2-
tori, following [BPT05]. By defining a new analog of Thurston’s metric and extending
to higher dimensions, this work (especially Theorem 5.4) gives an answer to Problem
5.3 in W. Su’s list of problems on the Thurston metric [Su16] from the AIM workshop
“Lipschitz metric on Teichmüller space” in 2012.

Acknowledgements. The authors wish to thank Richard Canary for several
helpful discussions and Athanase Papadopoulos for suggesting some important refer-
ences, as well as the anonymous referees for their helpful suggestions. The first author
is supported by the National Science Foundation Graduate Research Fellowship Pro-
gram under Grant No. DGE#1256260.

2. Teichmüller spaces of hyperbolic surfaces. Here, we will review some
background on Teichmüller spaces for hyperbolic surfaces. Let Sg be a closed, oriented
smooth surface of genus g ≥ 2.

Definition 2.1. The Teichmüller space T (Sg) is defined as the set of equivalence
classes of marked closed Riemann surfaces of genus g:

T (Sg) = {[S, f ] : S a Riemann surface,

f : S → Sg orientation-perserving homeomorphism}/ ∼

where [S, f ] ∼ [S′, f ′] if and only if there exists a biholomorphism h such that the
following diagram commutes up to homotopy:

Remark 2.2. By forgetting the maps f and f ′, we forget the markings and
the condition reduces to conformal equivalence. The resulting collection defines the
moduli space Mg of complex structures on Sg. More formally, the moduli space is
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S

Sg

S′

h

f

f ′

realized as the quotient Mg = Modg\T (Sg), where Modg = Diff+(Sg)/Diff0(Sg) is
the mapping class group of Sg, and the action is given by

ϕ · [S, f ] = [S, ϕ ◦ f ].

Recall next the correspondence between complex structures and constant-
curvature metrics via the uniformization theorem.

Proposition 2.3. For each g ≥ 2, there is a canonical bijection

T (Sg) ∼= Met−1
g /Diff0(Sg)

where Met−1
g is the collection of hyperbolic metrics on Sg, and Diff0(Sg) is the collec-

tion of diffeomorphisms of Sg isotopic to the identity.

This is a special case of Theorem 1.8 in [IT12]. We can thus also view Teichmüller
space as equivalence classes of marked hyperbolic surfaces.

We will next define the Teichmüller metric. Let [S, f ], [S′, f ′] ∈ T (Sg). Then
the map f ′−1 ◦ f is an orientation-preserving homeomorphism from S to S′. Recall
that the quasiconformal dilatation of an orientation-preserving almost-everywhere real
differentiable map φ : D1 → D2 between domains in C is given by:

Kφ = sup
|φz|+ |φz̄|
|φz| − |φz̄|

, (2.4)

where the supremum is over all points where φ is real-differentiable. This definition
extends to maps between Riemann surfaces. The Teichmüller metric on T (Sg) is
defined as:

dTeich([S, f ], [S
′, f ′]) =

1

2
log inf

φ∈[f ′−1◦f ]
(Kφ) (2.5)

where the infimum is taken over all homeomorphisms φ in the homotopy class [f ′−1◦f ]
which are smooth except at finitely many points. One can show this defines a metric
on T (Sg) (see §5.1 of [IT12]).

For g = 1, the Teichmüller metric was determined by Teichmüller in [Tei39] (see
also the translation and commentary in [APS15]):

Proposition 2.6. Under the identification H
2 → T (S1) defined by τ �→ C/(Z+

τZ), the Teichmüller metric is equal to the hyperbolic metric.

Thurston’s (asymmetric) metric [Thu98] utilizes the hyperbolic structure on sur-
faces. If [S, f ], [S′, f ′] ∈ T (Sg), then the Thurston distance between them is defined:

dTh([S, f ], [S
′, f ′]) =

1

2
inf

φ∈[f ′−1◦f ]
log(L(φ))
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where the infimum is over all Lipschitz maps φ : S → S′ in [f ′−1 ◦ f ], and

L(φ) = sup
x �=y

dS′(φ(x), φ(y))

dS(x, y)

is the Lipschitz constant for φ, and dS′ , dS are the induced hyperbolic metrics.
Lastly, we recall the Weil-Petersson metric [Wei58]. See also Chapter 7 of [IT12]

or [Hub06] §7.7. Let [S, f ] ∈ Tg, and let Q(S) be the vector space of holomorphic
quadratic differentials on S, identified with the cotangent space of T (Sg). For q1, q2 ∈
Q(S) define a Hermitian metric on Q(S) by

〈q1, q2〉WP =

∫
S

q̄1q2(ds
2)−1,

where ds2 is the hyperbolic metric on the Riemann surface. This induces an inner
product on the tangent space T[S,f ]T (Sg) by taking the real part, known as the Weil-
Petersson metric.

3. The Teichmüller spaces of flat n-tori. We will introduce now the Te-
ichmüller spaces of unit volume flat n-tori, denoted T (n), where n ≥ 2. Let
T
n = R

n/Zn be the square torus of dimension n.

Definition 3.1. The Teichmüller space T (n) is defined as the set of equivalence
classes of marked flat tori of dimension n and unit volume:

T (n) = {[S, f ] : S a flat n-torus of volume 1,

f : S → T
n orientation-preserving homeo}/ ∼

where [S, f ] ∼ [S′, f ′] if and only if there exists an isometry h : S → S′ such that the
following diagram commutes up to homotopy:

S

T
n

S′

h

f

f ′

We now recall a few classical facts.

Proposition 3.2. There is a natural bijective correspondence between the fol-
lowing spaces:

T (n) ↔ SL(n,R)/SO(n).

Proof. We use methods similar to §10.2 of [FM11]. Given a marked unit volume
torus f : S → T

n, write S = R
n/Λ for a lattice Λ of unit covolume. Lift the map f

to f̃ : Rn → R
n, and let ζi = f̃−1(ei) for i = 1, . . . , n, where the ei are the standard

basis vectors of Rn. These form an ordered generating set (i.e. a marking) for the
lattice Λ, the coordinates of which form the columns of a matrix in SL(n,R). The
original choice of Λ was unique up to the action of SO(n) on R

n, and so this specifies
an element of SL(n,R)/SO(n). Homotopic markings give the same lattice by Lemma
3.5 below.
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Conversely, given a matrix in SL(n,R), the columns form an ordered generating
set for a unit covolume lattice Λ. Now, there exists a linear map φ̃ : R

n → R
n

which sends the ordered generating set for Λ to the standard basis of Rn. This map
descends to a map φ : Rn/Λ → T

n which defines a marked flat torus. Two matrices
will give the same marked flat torus if and only if they represent the same coset in
SL(n,R)/SO(n).

Remark 3.3. The symmetric space SL(n,R)/SO(n) is a complete, simply-
connected manifold of non-positive curvature, and hence is diffeomorphic to the Eu-
clidean space R(n2+n)/2−1 by the Cartan-Hadamard theorem. The Teichmüller spaces
of hyperbolic surfaces are also diffeomorphic to Euclidean spaces (see e.g. [Abi80]
§3.2).

Corollary 3.4. There is a natural bijective correspondence

T (2) ↔ H
2.

Proof. We need only the identification SL(2,R)/SO(2) ↔ H
2, which follows from

the fact that SL(2,R) acts transitively on H
2 by fractional linear transformations with

point stabilizers isomorphic to SO(2).

Lemma 3.5.

1) The group of isometries of a flat n-torus acts transitively.
2) If two homeomorphisms ϕi : S → S′, i = 0, 1, between flat n-tori are homo-

topic, then they induce the same isomorphism of deck transformation groups
acting on R

n.

See [Leh12, Lemma V.6.2, Theorem IV.3.5] for the dimension 2 case of Lemma
3.5, whose proofs generalize immediately. Next, we consider the metric perspective
on T (n).

Proposition 3.6. There is a natural bijective correspondence between the quo-
tient SL(n,R)/SO(n) and the space Pn.

Proof. Let X ∈ Pn. SL(n,R) acts on Pn by g · X = gXgT , where gT is the
transpose. This is transitive with the stabilizer of the identity matrix precisely SO(n).
Hence SL(n,R)/SO(n) is identified with Pn as homogeneous spaces of SL(n,R) by
the map gK �→ ggT .

Henceforth we will interchangeably refer to points of T (n) as either marked flat
n-tori, coset (representatives) gK ∈ SL(n,R)/SO(n), or as elements of Pn.

While the columns of a matrix representative of a point gK determine a marked
lattice Λ which descends to a marked flat torus Rn/Λ, the corresponding point ggT ∈
Pn also has a concrete interpretation in the language of flat tori. The matrix ggT

is an explicit realization of the metric tensor for R
n/Λ. To see this, use Euclidean

coordinates on the standard torus T
n = R

n/Zn. The inner product between two
vectors v1, v2 ∈ R

n ∼= TpX for any p ∈ R
n/Λ is given by:

〈v1, v2〉p = 〈v1g, v2g〉Rn = 〈v1ggT , v2〉Rn .

This defines a Riemannian metric on the standard torus R
n/Zn which is isometric

to R
n/Λ. If γ : [0, 1] → R

n/Zn is a smooth closed curve and X ∈ Pn is the metric
tensor, then the length �X(γ) is computed as follows:

�X(γ) =

∫ 1

0

√
〈γ′(t)X, γ′(t)〉dt
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This formula behaves nicely with the action g · γ = γg for g ∈ SL(n,R):

�X(g · γ) =
∫ 1

0

√
〈(γ′(t)g)X, γ′(t)g〉dt =

∫ 1

0

√
〈γ′(t)(gXgT ), γ′(t)〉dt = �g·X(γ).

4. Extremal Lipschitz maps between tori. Let [S, f ], [S′, f ′] ∈ T (n), with
S = R

n/Λ and S′ = R
n/Λ′. Our main result in this section is the following:

Proposition 4.1. The map ψ : S → S′ which lifts to the unique affine map
ψ̃ : Rn → R

n realizes the minimal Lipschitz constant in [f ′−1 ◦ f ].

Proof. Let S = R
n/Λ and S′ = R

n/Λ′ be tori of volume 1 with markings f and
f ′. Because affine self-maps on flat tori are isometric and transitive we may assume
lifts of maps ϕ : S → S′ to R

n have the property that ϕ̃(0) = 0. Let F denote the
class of all such lifts whose quotients are homotopic to f ′−1 ◦ f . For g ∈ F , let ḡ
denote the induced map S → S′.

Let q and q′ be the quotient maps for S and S′, respectively. Then for all g ∈ F ,
the following diagram commutes:

R
n

R
n

S S′

g

q q′

ḡ

Let {ω1, . . . , ωn} be a basis of Λ. For any g1, g2 ∈ F , it follows that g1(ωi) =
g2(ωi) + λi for some λi ∈ Λ for each of i = 1, . . . , n. By Lemma 3.5, it follows that
λi = 0 for i = 1, . . . , n since g1 and g2 are homotopic. One then obtains a basis
{ζ1, . . . , ζn} of Λ′ such that F is the class of homeomorphisms g : Rn → R

n with

g(0) = 0, g(x+
n∑
i

miωi) = g(x) +
n∑
i

miζi (4.2)

for all x ∈ R
n. Notice that any homeomorphism R

n → R
n satisfying Equation 4.2

descends to a map S → S′ homotopic to f ′−1 ◦ f . The condition of being affine
uniquely determines such a map inside a fundamental domain of Λ, and hence on all
of Rn. This proves uniqueness of the affine map; let w ∈ F be the affine map.

Now we show w has the least Lipschitz constant. Let g ∈ F be a K-Lipschitz
map, i.e.

K ≥ sup
x �=y

|g(x)− g(y)|
|x− y| . (4.3)

Define gk(x) = g(kx)/k for k = 1, 2, . . .. These maps are all K-Lipschitz and satisfy

Equation 4.2, so gk ∈ F for all k. By Lemma 4.4 below, gk
k→∞−−−−→ w uniformly on

R
n. It is a standard fact from real analysis that the pointwise limit of a sequence of

K-Lipschitz functions is also K-Lipschitz. Hence w is K-Lipschitz. In other words,
K ≥ L(w). Because this holds for any Lipschitz map g ∈ F , it follows that w has
minimal Lipschitz constant.

Lemma 4.4. In the proof of Proposition 4.1, the sequence gk → w uniformly.
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Proof. Pick ε > 0 and let x0 ∈ R
n. Since ω1, . . . , ωn are linearly independent, x0

may be written as

x0 =
n∑

i=1

riωi

for some ri ∈ R, i = 1, . . . , n. Let

M = sup
(a1,...,an)∈[0,1]n

∣∣∣∣g(
n∑

i=1

aiωi)

∣∣∣∣+
n∑
i

|ζi|.

This is finite since g is continuous and this domain is compact. Then for any integer
k > M/ε, we have:

∣∣gk(x0)− w(x0)
∣∣ = 1

k

∣∣g(k n∑
i=1

riωi)− (k

n∑
i=1

riζi)
∣∣ (4.5)

since w is affine. Write kri = mi + ti, where ti ∈ [0, 1) and mi ∈ Z, for i = 1, . . . , n.
In Equation 4.5, the integer part mi of each term kri factors through g. We then
compute:

∣∣gk(x0)− w(x0)
∣∣ = 1

k
|g(

n∑
i=1

tiωi)−
n∑

i=1

tiζi| ≤
1

k
M < ε.

It is also known that the extremal quasiconformal map for the Teichmüller dis-
tance is unique (see [Leh12], Theorem 6.3). Interestingly, there are many extremal
Lipschitz maps, at least in some cases.

Proposition 4.6. There exists a pair of marked flat 2-tori with an infinite family
of distinct homeomorphisms respecting the markings, all of which realize the extremal
Lipschitz constant.

Proof. Let S be the square [0, 1]×[0, 1] ⊂ R
2 and T be the rectangle [0, r]×[0, 1/r].

These regions S and T represent fundamental domains for two flat tori. An extremal
Lipschitz map is given by (x, y) �→ (rx, y/r) with Lipschitz constant r. Fix r > 1.
Choose ε ∈ (−1/2, 1/2) and δ such that

max{0, 1
r
− r

2
+ εr} < δ < min{1

r
,
r

2
+ εr}.

Define the map F : S → T by:

F (x, y) =

{(
rx, 1/r−δ

1/2−εy
)

y ≤ 1/2− ε(
rx,

(
1
r − δ

)
+ y−(1/2−ε)

1/2+ε δ y ≥ 1/2− ε

See the figure for an explanation of these values.
This map is linear in the x-direction (the direction of maximum stretch), but

only piecewise linear in the y-direction. The affine map occurs at ε = 0 and δ =
(2r)−1. This map projects onto a homeomorphism of the corresponding tori since
it respects the boundaries. The map F is differentiable almost everywhere, and the
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Fig. 1. The map F sends the two portions of the square linearly to the two similarly-shaded
portions of the rectangle.

total derivatives on the top and bottom halves of the domain are respectively given
by:

Dbottom =

(
r 0

0 1/r−δ
1/2−ε

)
, Dtop =

(
r 0
0 δ

1/2+ε

)

With the above constraints on ε and δ, one can see from Dtop and Dbottom that the
Lipschitz constant for F is r, as desired.

In contrast to the case of the affine map, the inverses of the maps constructed in
Proposition 4.6 are not Lipschitz-extremal. The above construction generalizes easily
to the case of higher dimensions.

Corollary 4.7. There exists a pair of flat tori in any dimension n ≥ 2 with
infinitely many homotopic homeomorphisms respecting the markings which all realize
the extremal Lipschitz constant.

Proof. Let S and T be the two marked flat 2-tori from Proposition 4.6 and let
S′ = S × (S1)n−2 and T ′ = T × (S1)n−2 with the product metrics, where each new
copy of S1 is isometric to a unit circle. An infinite extremal family is given by using
the family from Proposition 4.6 on the S and T components, and the identity on the
remaining components.

Remark 4.8. It is straightforward to generalize the above construction for any
two rectangular tori, but it is unclear whether all pairs of tori admit many distinct
Lipschitz-extremal maps, and if not, when they are unique.

5. Thurston’s metric for n-dimensional flat tori.

Definition 5.1. Thurston’s metric dTh on T (n) is defined as follows:

dTh([S, f ], [S
′, f ′]) =

1

2
log inf

φ∈[f ′−1◦f ]
L(φ)

L(φ) = sup
x,y∈S, x �=y

dS′(φ(x), φ(y))

dS(x, y)

where the infimum is over all Lipschitz homeomorphisms homotopic to f ′−1 ◦ f .
This is identical to the definition for hyperbolic surfaces. Proposition 2.1 in

[Thu98] gives a geometric proof that the Thurston metric is positive-definite for T (Sg),
which works similarly for our case.
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Proposition 5.2. For all points [S, f ], [S′f ′] ∈ T (n), we have

dTh([S, f ], [S
′, f ′]) ≥ 0,

with equality only if [S, f ] = [S′, f ′].

Proof. Suppose we have [S, f ], [S′, f ′] such that dTh([S, f ], [S
′, f ′]) ≤ 0. Then by

compactness there exists a homeomorphism φ : S → S′ in the appropriate homotopy
class with realizing the extremal Lipschitz constant L ≤ 1.

Under φ every sufficiently small ball of radius r in the domain space is mapped
to a subset of a ball of radius ≤ r in the target. However, both surfaces have unit
volume. If we cover the domain space by a disjoint union of balls of full measure, one
sees that each disk must map surjectively onto a disk of the same size. This procedure
works for arbitrarily small balls, and so φ is an isometry.

Because composing Lipschitz maps with constants L1 and L2 gives a Lipschitz
map with constant at most L1L2, the triangle inequality for dTh follows. Together
with Proposition 5.2, we have that dTh is a (possibly asymmetric) metric. We will
need a quick classical fact before we can state a formula for dTh.

Lemma 5.3. The Lipschitz constant of a linear map M : Rn → R
n is given by

max{
√
|λ| : λ is an eigenvalue of MTM}.

Proof. First, recall L(M) = ||M ||op, the operator norm of M :

L(M) = sup
x �=y

||Mx−My||
||x− y|| = sup

x �=0

||Mx||
||x|| = ||M ||op.

Since the operator norm of a diagonalizable matrix is the absolute value of the largest
eigenvalue, using ||MTM ||op = ||M ||2op the result follows.

Next, we will derive a formula for easy computation using the structure of the
symmetric space SL(n,R)/SO(n).

Theorem 5.4. Let Y,X be positive-definite symmetric matrices corresponding
to points of T (n). Thurston’s metric dTh on T (n) = SL(n,R)/SO(n) is given by the
following formula:

dTh(Y,X) =
1

2
max{log |λ| : λ is an eigenvalue of XY −1} (5.5)

Proof. Let hSO(n) and gSO(n) be points in SL(n,R)/SO(n) corresponding to Y
and X. The linear map between them is given by gh−1, which by Proposition 4.1 is
an extremal Lipschitz map. By Lemma 5.3, the Lipschitz constant is given by

λ0 := max{|λ| : λ is an eigenvalue of (h−1)
T
gT gh−1}

Because

XY −1 = gT gh−1(hT )
−1 ∼ (h−1)

T
gT gh−1

are similar matrices, they have the same eigenvalues, and the result follows.
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Notice that if Y = I, the absolute values in Equation 5.5 are redundant since X
is positive-definite.

Corollary 5.6. The Thurston metric is SL(n,R) invariant for the action on
SL(n,R)/SO(n) ∼= T (n).

Proof. This is immediate from the formula and the definition of the action g ·X =
gXgT .

Corollary 5.7. The Thurston metric on T (2) is equal to the Riemannian
symmetric metric on SL(2,R)/SO(2), and hence matches the Teichmüller metric and
hyperbolic metric up to scaling.

Proof. The distance formula for the Riemannian symmetric metric on

SL(n,R)/SO(n) ∼= Pn

is given by (see e.g. [Ter16], Theorem 1.1.1):

d(Y,X) =

√∑
i

(log λi)2

where the sum is over the eigenvalues of Y X−1. In the case of 2 × 2 matrices of
determinant one, there are precisely two eigenvalues whose product is 1. Write the
eigenvalue with absolute value at least 1 as λ. Then the formula becomes:

d(Y,X) =
√
(log λ)2 + (log 1/λ)2 =

√
2 log(λ)2 =

√
2| log λ|.

But λ is also the maximum eigenvalue of Y X−1, and XY −1 has the same eigenvalues,
so up to a choice of scaling, these are the same metrics.

Remark 5.8. A proof of Corollary 5.7 is obtained in the unpublished work [GJ17]
by the present authors using an explicit computation of the Lipschitz distortion in a
realization of the fundamental domains as parallelograms in C.

Remark 5.9. Another proof of Corollary 5.7 is possible using work of Belkhirat-
Papadopoulos-Troyanov [BPT05], where the Thurston metric is defined on T (2), but
T (2) is defined using a different normalization. A fixed curve is set to length 1 via the
marking, as opposed to here, where we choose volume 1. Using the usual identification
of T (2) ↔ H

2, it is shown that the resulting Thurston metric, denoted here by κ̂, can
be computed by the following formula ([BPT05], Theorem 3):

κ̂(ζ, ζ ′) = log sup
α∈S

(
�ζ′(α)/�ζ′(ε)

�ζ(α)/�ζ(ε)

)
= log

( |ζ ′ − ζ|+ |ζ ′ − ζ|
|ζ − ζ|

)

where the supremum is over homotopy classes of closed curves, �ζ(α) is the length
of α in the metric associated to ζ ∈ H

2, and ε is the normalizing curve. In order
to recover our dTh, we normalize using

√
Im ζ, the volume. Using the identification

T (2) ↔ H
2 for dTh, we obtain:

dTh(ζ, ζ
′) = κ̂(ζ, ζ ′) + log

( √
Im ζ√
Im ζ ′

)
= log

( |ζ ′ − ζ|+ |ζ ′ − ζ|√
|ζ − ζ||ζ ′ − ζ ′|

)

=
1

2
log

( |ζ ′ − ζ|+ |ζ ′ − ζ|
|ζ ′ − ζ| − |ζ ′ − ζ|

)
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where the last equality follows from Lemma 2 (an identity for complex numbers) from
[BPT05]. This is exactly the Poincaré metric.

Next, as in [Thu98], we define another asymmetric metric, κ, on T (n). Let
S(Tn) denote the set of homotopy classes of essential closed curves on the n-torus.
For α ∈ S(Tn) and h a metric on T

n, denote by �h(α) the shortest length of any
curve in the homotopy class α. For the flat torus, while the curve realizing this
length is not unique, the shortest length is well-defined and positive. As above, let
[S, f ], [S′, f ′] ∈ T (n) with h and h′ the corresponding unit-volume flat metrics on T

n.
Now, κ is defined as:

κ([S, f ], [S′, f ′]) = log sup
α∈S(Tn)

(
lh′(α)

lh(α)

)
(5.10)

That is, κ is a measure of the maximum stretch along a geodesic. As in [Thu98],
we show:

Proposition 5.11. The two metrics κ and dTh are equal on T (n).

Proof. It is immediate that

κ([S, f ], [S′, f ′]) ≤ dTh([S, f ], [S
′, f ′])

for all [S, f ], [S′, f ′] ∈ T (n), since the latter involves a supremum over all geodesic
segments rather than only closed geodesics. For the opposite inequality, we will utilize
a geometric argument. Let ϕ : Rn → R

n be the (lift of the) affine marking-preserving
map between S and S′.

There exists a line L containing the origin along which the maximal stretch of ϕ
is realized. If there are two lattice points on L, then the segment connecting them
descends to a geodesic whose length is stretched by the Lipschitz constant, yielding
κ ≥ dTh, and we are done.

Suppose now 0 is the only lattice point on L. One can find a sequence of lattice
points pn ∈ Λ, n = 1, 2, . . . which approach L. By continuity, under ϕ the correspond-
ing sequence of closed geodesics will have stretch factors approaching the Lipschitz
constant of the map ϕ. After taking the supremum of the stretches, we conclude
κ ≥ dTh, as required.

The Finsler structure of the Thurston metric. Finsler metrics are impor-
tant in classical Teichmüller theory since both the Teichmüller metric and Thurston
metric are Finsler but not Riemannian. Here, we will give a formula for the Finsler
metric on T (n) associated to the Thurston metric dTh.

Definition 5.12. A Finsler metric on a manifold M is a continuous function

F : TM → [0,∞)

on the tangent bundle such that for each p ∈ M , the restriction F |TpM : TpM → [0,∞)
is a norm (i.e. positive-definite, subadditive, linear under scaling by positive scalars).

Our formula for the Finsler metric for dTh is very similar to the Finsler metric
discussed in [LW94] Theorem 3 (see also Section 7 of this paper). Recall first that the
tangent space of T (n) = SL(n,R)/SO(n) at the identity is identified with the space of
traceless symmetric matrices. One obtains any other tangent space by left translation
via elements of SL(n,R).
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Proposition 5.13. The Finsler structure on the tangent space at Z ∈ T (n) for
the Thurston metric dTh is given by

|X|Th(Z) =
1

2
max{λ : λ is an eigenvalue of XZ−1}

where X ∈ TZT (n) ∼= sl(n,R).

Proof. It suffices to show the case of Z = I. First, note that this is always
non-negative since the trace of X is zero. Let γ : [0, 1] → SL(n,R)/SO(n) be a
smooth path from I to A. Since A is symmetric, its operator norm coincides with the
maximum eigenvalue, and so

dTh(I, A) =
1

2
sup

0 �=v∈Rn

log
〈γ(1)v, v〉
〈v, v〉

comes from the maximum eigenvalue. We then compute:

dTh(I, A) =
1

2
sup

0 �=v∈Rn

∫ 1

0

d

dt
log〈γ(t)v, v〉dt = 1

2
sup

0 �=v∈Rn

∫ 1

0

〈γ′(t)v, v〉
〈γ(t)v, v〉 dt

≤ 1

2

∫ 1

0

sup
0 �=v∈Rn

〈γ′(t)v, v〉
〈γ(t)v, v〉 dt =

1

2

∫ 1

0

|γ′(t)|Th(γ(t))dt

where the final equality follows because the supremum on the left-hand side yields the
operator norm, which matches the Finsler norm inside the integral on the right-hand
side. This is the Finsler length of γ. Thus dTh is bounded above by the Finsler
distance of any path.

Next, choose X such that eX = A, which exists because A ∈ Pn. The Finsler
length of the path γ(t) = etX for t ∈ [0, 1] is computed as follows:

�(γ) =
1

2

∫ 1

0

sup
0 �=v∈Rn

〈XetXv, v〉
〈etXv, v〉 dt =

1

2

∫ 1

0

sup
0 �=v∈Rn

d

dt
log〈etXv, v〉dt

=
1

2
sup

0 �=v∈Rn

〈Av, v〉
〈v, v〉 = dTh(I, A).

Thus the Thurston distance is realized by the Finsler length of a path, as desired.

Corollary 5.14. For U, V ∈ SL(n,R)/SO(n), if eX = UV −1, the path given by
t �→ etXV for t ∈ [0, 1] is a geodesic path from V to U with respect to dTh.

6. Teichmüller metric for higher-dimensional tori. Here, we utilize quasi-
conformal maps for R

n from [GMP17] to define the Teichmüller metric on T (n) for
n ≥ 2 and explore its properties. The Teichmüller metric on SL(n,R)/SO(n) has been
studied for SL(n,R)/SO(n) as a Finsler metric on the space of conformal structures
on vector spaces; see [McM96] Appendix A.1. Here, we review this metric in the
context of quasiconformal maps between n-tori and compare it to our other metrics
on T (n).

6.1. Definitions and useful facts on quasiconformal maps. We will first
state as concisely as possible the definition of K-quasiconformal maps between do-
mains D and D′ in R

n in the case of diffeomorphisms from Chapter 4 of [GMP17].
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For a linear map T : Rn → R
m, define the following:

L(T ) = max
|x|=1

|T (x)|, �(T ) = min
|x|=1

|T (x)|.

These are the maximal and minimal stretching of T , respectively.

Definition 6.1. Let f : D → D′ be a diffeomorphism of domains in R
n. Define

the inner, outer, and maximal dilatations respectively as follows:

KI(f) = sup
x∈D

|Jf (x)|
�(f ′(x))n

KO(f) = sup
x∈D

L(f ′(x))n

|Jf (x)|

K(f) = max(KI(f),KO(f))

where f ′(x) is the total derivative of f at x ∈ D and Jf is the Jacobian. The map f
is said to be K-quasiconformal if K(f) ≤ K < ∞.

The above definition is local, so it applies immediately to flat tori by lifting any
map to its universal cover.

Next, we list a few basic properties of quasiconformal maps which will be essential
to the definition of the Teichmüller metric and are direct analogs of the 2-dimensional
case. These come from Lemma 6.1.1 and Theorem 6.8.4 of [GMP17]:

Proposition 6.2. Let f : D → D′ and g : D′ → D′′ be quasiconformal homeo-
morphisms of domains in R

n. Then the following hold:
1) K(g ◦ f) ≤ K(g)K(f)
2) K(f) ≥ 1 with equality if and only if f is a Möbius transformation
3) K(f−1) = K(f)

We will need one more property of quasiconformal maps in order to prove that
the extremal quasiconformal constant is realized by the affine map. This is a very
special case of Theorem 6.6.18 in [GMP17].

Proposition 6.3. Let (fk)k∈N : Rn → R
n be a sequence of K-quasiconformal

homeomorphisms. Suppose fk → f locally uniformly. Then f : Rn → R
n is a K-

quasiconformal homeomorphism as well.

We now prove the quasiconformal analog of Proposition 4.1.

Proposition 6.4. The extremal quasiconformal constant for a homeomorphism
between two flat n-tori in a specified homotopy class is given by the unique affine map.

Proof. Recall the proof of Proposition 4.1; in particular, recall the collection F
of homeomorphisms g : Rn → R

n such that

g(0) = 0, g(x+

n∑
i

miωi) = g(x) +

n∑
i

miζi

for all x ∈ R
n. This is precisely the collection of lifts of marking-preserving homeomor-

phisms. Let g ∈ F be K-quasiconformal, and define gk(x) = g(kx)/k for k = 1, 2, . . ..



TEICHMÜLLER SPACES OF FLAT TORI 491

The maps gk are also K-quasiconformal since they are built from g by pre- and post-
composition with dilations. Further gk ∈ F , and the sequence of maps uniformly
converges to the affine map. By Proposition 6.3, the affine map has dilatation at
most K. This holds for all g ∈ F , so the result follows.

We are now ready to define the Teichmüller metric.

Definition 6.5. Let [S, f ], [S′, f ′] ∈ T (n). The Teichmüller metric on T (n) is
defined as:

dTeich([S, f ], [S
′, f ′]) =

1

2n
log inf

g∈[f ′−1◦f ]
K(g)

where the infimum is taken over quasiconformal maps homotopic to f ′−1 ◦ f .

Proposition 6.6. The function dTeich above is a metric.

Proof. Proposition 6.2 (1) and (3) give symmetry and the triangle inequality,
and (2) shows dTeich ≥ 0. Now suppose dTeich([S, f ], [S

′, f ′]) = 0. Then there exists
a 1-quasiconformal map g : S → S′ preserving the marking. By Proposition 6.2
(2), it must be a Möbius transformation. Since it preserves the marking, it must be
orientation-preserving and not include inversions in spheres. Thus it is generated by
an even number of reflections over hyperplanes, so it is (the quotient of) an orientation-
preserving isometry of Rn. We conclude [S, f ] = [S′, f ′].

Next, we exhibit a significant departure from Teichmüller spaces of hyperbolic
surfaces.

Theorem 6.7. For all [S, f ], [S′, f ′] ∈ T (n), we have:

dTeich([S, f ], [S
′, f ′]) = max(dTh([S, f ], [S

′, f ′]), dTh([S
′, f ′], [S, f ])).

Proof. Recall from Corollary 6.4 that the extremal quasiconformal constant be-
tween two marked flat n-tori is realized by the unique affine map. The Jacobian of
an affine map is equal to its determinant, which must be 1, since it must be volume-
preserving. Definition 6.1 then gives

K(g) = max

(
sup
x∈Rn

L(g′(x))n, sup
x∈Rn

1

�(g′(x))n

)
.

But g is affine, so L(g′(x)) is the Lipschitz constant of g, and �(g′(x))−1 is the Lipschitz
constant of the inverse map.

Corollary 6.8. The Teichmüller metric on T (n) is given by:

dTeich(X,Y ) =
1

2
max{

∣∣ log |λ|∣∣ : λ is an eigenvalue of XY −1}.

Proof. This is precisely the symmetrization of the formula from Theorem 5.4,
since the eigenvalues of Y X−1 are the reciprocals of the eigenvalues of XY −1.
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7. The Hilbert metric on SL(n,R)/SO(n). Liverani and Wojtkowski [LW94]
defined a generalization of Hilbert’s projective metric for the symmetric space X =
SL(n,R)/SO(n). Their metric s arises naturally during the study of the symplectic
geometry of Rn × R

n, and measures the distance between pairs of Lagrangian sub-
spaces. An explicit formula for the Finsler metric on the tangent space TZX at a
point Z ∈ X associated to their Hilbert metric is also computed, along with examples
of geodesics.

Consider the standard symplectic vector space R
n × R

n, where the symplectic
form is given by:

ω((x, y), (w, z)) = 〈x, z〉Rn − 〈w, y〉Rn .

A subpsace V of (Rn × R
n, ω) is called Lagrangian if it is a maximal subspace such

that ω|V ≡ 0. These subspaces must be n-dimensional. A Lagrangian subspace is
positive if it is the graph of a positive-definite symmetric linear map U : Rn → R

n.
The collection of positive Lagrangian subspaces is parametrized by the space Pn.

The metric s is defined as the supremum of the symplectic angle between vectors
in two positive Lagrangian subspaces. A useful result is the following formula.

Proposition 7.1 (Proposition 5, Theorem 3, [LW94]). For two positive La-
grangian subspaces defined by U,W : Rn → R

n, s is given by

s(U,W ) = max

{∣∣ log |λ|∣∣
2

: λ is an eigenvalue of UW−1

}
. (7.2)

The Finsler norm |A|Z for A ∈ TZX is given by

|A|Z =
1

2
max{|λ| : λ is an eigenvalue of AZ−1}. (7.3)

and the paths t �→ etX for t ∈ [0, 1] and X of trace zero are geodesic paths.

Notice that Equation 7.2 matches the formula in Corollary 6.8, so we conclude:

Proposition 7.4. By the identification T (n) ↔ SL(n,R)/SO(n), dTeich is equal
to the Hilbert projective metric, and dTeich is a Finsler metric with norm defined by
Equation 7.3. The paths t �→ etX for t ∈ [0, 1] and X of trace zero are geodesics.

The significance of Proposition 7.4 is that the same metric dTeich on T (n) arises
in a natural way in a very different context. This provides further evidence of the
usefulness and richness of the study of this Finsler metric on SL(n,R)/SO(n).

Remark 7.5. The Hilbert metric, defined on open convex subsets C ⊆ R
n not

containing a line, is based on the cross-ratio of two points a, b and the points where
the line ab meets the boundary ∂C. When C is the positive orthant of Rn, one obtains
a Finsler metric with many properties similar to the metric s.

8. The Weil-Petersson metric. In this section, we will define the Weil-
Petersson metric on T (n). Fischer-Tromba [FT84] show the classical Weil-Petersson
metric is recovered using a L2-pairing between metrics on hyperbolic surfaces. In
[Yam14], Yamada gives an exposition of this approach, including a definition of the
Weil-Petersson metric for the Teichmüller space of the flat 2-torus. We will follow
Yamada’s presentation and explain how this quickly generalizes to the case of flat tori
in all dimensions.
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Write K = SO(n), G = SL(n,R). Recall first the tangent space of G/K at
the basepoint eK is the vector space of n × n symmetric matrices of trace 0. The
SL(n,R)-invariant metric at this point is defined by:

〈X,Y 〉eK = Tr(XY ).

By translation, at other points gK ∈ G/K for g ∈ SL(n,R) the metric is given by

〈X,Y 〉gK = Tr(g−1Xg−1Y ). (8.1)

Now, recall that T (n) ∼= Pn is also the space of unit-volume flat metrics on T
n.

The tangent space to the set of Riemannian metrics on a manifold is naturally
the space of smooth symmetric (0, 2)-tensors ([Yam14], §3). There is a natural L2

pairing 〈〈, 〉〉L2(g) at a metric g defined by:

〈〈h1, h2〉〉L2(g) =

∫
M

〈h1(x), h2(x)〉g(x)dμg(x) (8.2)

using the volume form dμg of g. Using local coordinates gij for g and (hk)lm for hk,
k = 1, 2, we can rewrite the integrand as:

〈h1(x), h2(x)〉g(x) =
∑

1≤i,j,k,l≤2

gijgkl(h1)ik(h2)jl = Tr(g−1h1g
−1h2).

In §3.2 of [Yam14], two conditions are imposed on the deformations of a metric in
order to ensure that each tensor h is tangent to the Teichmüller space and not merely
the space of all possible metrics: (1) the deformations must be L2-perpendicular to
the action of the identity component of the diffeomorphism group Diff0(M), and (2)
the deformations must preserve curvature. It is shown there that these conditions are
equivalent to being divergence-free and trace-free.

Finally, we arrive at the definition of the Weil-Petersson metric on Teichmüller
space with the viewpoint of deformations of Riemannian metrics.

Definition 8.3 ([FT84], Theorem 0.8). The L2-pairing in Equation 8.2 re-
stricted to the trace-free, divergence-free tensors is called the Weil-Petersson metric.

We apply the above definitions to T (n). Deformations of flat metrics which
remain in the Teichmüller space define a subspace of all (0, 2)-tensors. Maintaining
unit volume restricts to traceless tensors, while the restriction to flat metrics implies
the tensors have constant R

n-coordinates. These are trace-free and divergence-free
tensors. Thus the integrand in Equation 8.2 is constant and given globally by the
local coordinates. The volume of each metric is 1, so the L2-pairing simplifies to:

〈〈h1, h2〉〉L2(g) = Tr(g−1h1g
−1h2).

This matches the symmetric metric in Equation 8.1. We now have for all n ≥ 2:

Proposition 8.4. The Teichmüller space T (n) with the Weil-Petersson metric
is isometric to SL(n,R)/SO(n) with the SL(n,R)-invariant Riemannian metric.

Remark 8.5. The Weil-Petersson metric for Teichmüller spaces of hyperbolic
surfaces is also a Riemannian metric, but it is not complete. This leads to an inter-
esting theory of bordifications and nodal surfaces. Here, we see another interesting
departure from the hyperbolic surface setting in that the Weil-Petersson metric on
T (n) is complete.
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9. Symmetric spaces and compactifications. We briefly review some rele-
vant ideas about symmetric spaces and compactifications. The main references are
[Hal15], [BH13], [BJ06], [GJT12], and [HSWW18]. In the following, let G = SL(n,R),
K = SO(n), and X = G/K.

Lie theory and symmetric spaces. The Lie algebra of G is g = sl(n,R)
consisting of traceless matrices, which decomposes as

g = k⊕ p

where k is the Lie algebra of K, consisting of traceless anti-symmetric matrices, and
p consists of traceless symmetric matrices.

Fix a Cartan subalgebra a ⊆ p consisting of traceless diagonal matrices. The
dimension of a is the rank of G and of X. Here, the rank is r = n − 1. Denote
A = exp(a), the subgroup of G corresponding to the subalgebra a. A totally geodesic
copy of Rr embedded in the symmetric space X is called a maximal flat.

We next recall a few important examples of representations of G and g.

Example 9.1. The standard representation of G is the inclusion

Π : SL(n,R) ↪→ GL(n,C).

This is a faithful representation. The standard representation of g is the inclusion

π : sl(n,R) ↪→ Mn(C).

Composing Π with the quotient map GL(n,C) → PGL(n,C) defines a projective
faithful representation

ΠP : SL(n,R) → PGL(n,C).

Example 9.2. The adjoint representation of the Lie algebra g is defined by

Ad : g → Mn(C), A �→ [A, ·] for A ∈ g

The dual of a representation Π of G is the representation Π∗ defined by

Π∗(g) = τ(g−1)T

where AT is the transpose of A. The dual of a representation π of a Lie algebra is
defined by

π∗(A) = −π(A)T .

The direct sum of two representations τ1 : G → GL(n,C) and τ2 : G → GL(m,C)
is the representation τ1 ⊕ τ2 : G → GL(n+m,C) with the diagonal action.

We next recall weights and roots associated to a. A natural inner product on a
is given by

〈A,B〉 = Tr(A
T
B).
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This inner product identifies a with the dual space a∗. Let π be a nonzero represen-
tation of g acting on R

m. We say μ ∈ a is a weight for π if there exists a nonzero
v ∈ R

m such that

π(H) · v = 〈μ,H〉v (9.3)

for all H ∈ a. The weight space of μ, denoted Vμ, is the subspace of all v ∈ R
m

for which Equation 9.3 holds. Each representation of a Lie group has an associated
representation of its Lie algebra. The weights of a Lie group representation are defined
to be the weights of the associated Lie algebra representation.

Example 9.4. Let π be the standard representation for sl(n,R). Then the
weights are given by the standard basis ei, so 〈ei, ·〉 returns the ith diagonal element
of a matrix, and the weight space for ei is the line {λei : λ ∈ R}.

Let π∗ be the dual of the standard representation. Then the weights are −ei with
corresponding weight spaces generated by ei after identifying R

n with its dual.

Let Π1 ⊕Π2 be a direct sum of two representations acting on V ⊕W , and let

W1 = {μi : i = 1, . . . , n} and W2 = {νj : j = 1, . . . ,m}

be the weights of Π1 and Π2 respectively, with corresponding weight spaces Vi ⊆ V
and Wj ⊆ W . Then the weights of Π1 ⊕Π2 are W1 ∪W2 with weight spaces Vi ⊕{0}
and {0}⊕Wj when μi /∈ W2 and νj /∈ W1. If some μi = νj , then its (common) weight
space is Vi ⊕Wj .

The set of roots of g relative to a, denoted Σ, are the weights of the adjoint
representation. A set Δ of simple roots is a basis of a made up of roots such that any
root for a can be expressed as an integer linear combination of elements of Δ where
all coefficients are non-positive or non-negative.

Example 9.5. A set of simple roots for sl(n,R) with the Cartan subalgebra a
defined above is given by

α1 = (1,−1, 0, . . . , 0), α2 = (0, 1,−1, 0, . . . , 0), . . . , αn−1 = (0, . . . , 0, 1,−1).

The root space for αj is spanned by the matrix Ej,j+1 which has a 1 in the (j, j + 1)
spot and 0 elsewhere.

Given a representation of g, a choice of simple roots endows the set of weights
with a partial ordering (§8.8 in [Hal15]). If {α1, . . . , αn} is the set of simple roots of g
and λ1, λ2 are weights of a representation, we say λ2 � λ1 if there exist non-negative
real numbers c1, . . . , cn such that

λ2 − λ1 = c1α1 + · · ·+ cnαn.

It is a fundamental result (Theorems 9.4 and 9.5 in [Hal15]) that irreducible, finite-
dimensional representations of semisimple Lie algebras (including sl(n,R)) are classi-
fied by their highest weights (which always exist).

To each root α of g is associated a hyperplane Pα = ker(〈α, ·〉). The complement
of these hyperplanes, a \ ∪α∈ΣPα, is a set of simplicial complexes, each connected
component of which is called a Weyl chamber. A choice of a set of simple roots
corresponds to distinguishing a positive Weyl chamber.

Now, we define a special type of Finsler metric built from Minkowski norms which
plays a major role in the theory of compactifications of symmetric spaces.
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Definition 9.6. A polyhedral Finsler metric on a symmetric space is a Finsler
metric such that for each tangent space, the induced unit ball is a polytope.

Theorem 9.7 ([Pla95], Theorem 6.2.1). The following are in natural bijection:
1) the W -invariant convex closed balls in a
2) the Ad(K)-invariant convex closed balls of p
3) the G-invariant Finsler metrics on X = G/K

The idea of this theorem is that, given a Finsler metric on a maximal flat F of
G/K, if it is invariant under the Weyl group action, it can be extended to all of G/K
by enforcing G-invariance. This defines a G-invariant Finsler metric.

Compactifications. Let X be a locally compact space. A compactification of
X is a pair (X, i) where X is a compact space and i : X → X is a dense topological
embedding. If (X1, i1) and (X2, i2) are compactifications of X, we say they are
isomorphic if there exists a homeomorphism φ : X1 → X2 such that φ ◦ i1 = i2. If φ
is only continuous, then it is necessarily surjective, and (X1, i1) is said to dominate
(X2, i2). Domination puts a partial order on the set of compactifications.

In the case of symmetric spaces X = G/K, we are also interested in compact-
ifications that admit a continuous G-action. The relations of G-isomorphism and
G-compactification are extensions of the above definitions with the added condition
of equivariance under the G action.

Horofunction compactifications were introduced by Gromov [Gro81]. Let (X, d)
be a (possibly asymmetric) proper metric space with C(X) the set of continuous real-
valued functions on X endowed with the C0 topology. Denote by C̃(X) the quotient
of C(X) by constant functions. We embed X into C̃(X) as follows:

ψ : X → C̃(X), z �→ [ψz] where ψz(x) = d(x, z).

Definition 9.8. The horofunction compactification X ∪∂horX of X is the topo-
logical closure of the image of ψ:

X
hor

:= cl{[ψz]|z ∈ X} ⊆ C̃(X)

It is known that the horofunction compactification of a non-positively curved,
complete, simply-connected Riemannian symmetric space G/K with its G-invariant
metric is naturally isomorphic to its visual compactification. This holds more generally
for CAT(0) spaces (Theorem 8.13, §II.8 in [BH13]).

Next, we briefly review Satake compactifications of symmetric spaces, first defined
in [Sat60]. See also Chapter IV of [GJT12] and Chapter I.4 of [BJ06], and [HSWW18]
§5.1 for generalized Satake compactifications.

Let X = G/K be a symmetric space associated to a semisimple Lie group G with
maximal compact subgroup K. Let τ : G → PSL(m,C) be an irreducible projective
faithful representation such that τ(K) ⊆ PSU(m). This induces a map

τX : X → P(Hn)

where P(Hn) is the projective space of Hermitian matrices, defined by

τX(gK) = τ(g)τ(g)
T
.
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This is a topological embedding (Lemma 4.36 in [GJT12]).

Definition 9.9. The Satake compactification of X associated to τ is the closure

of τX(X) in P(Hn) and is denoted by X
S

τ .

Two Satake compactifications are G-isomorphic if and only if the highest weights
of their representations lie in the same Weyl chamber face, so there are only finitely
many different G-isomorphism types (Chapter IV, [GJT12]).

Definition 9.10. The maximal Satake compactification of a symmetric space
is a Satake compactification whose highest weight lies in the interior of the positive
Weyl chamber. A minimal Satake compactification of a symmetric space is a Satake
compactification whose highest weight lies in an edge of the Weyl chamber.

It is known that there is a unique (up to G-isomorphism) maximal Satake com-
pactification which dominates all other Satake compactifications, and many minimal
Satake compactifications. For SL(n,R), it is known that the standard representation
induces a minimal Satake compactification [BJ06, Proposition I.4.35].

We will also need generalized Satake compactifications, the definition of which
differs only in that the assumption that τ is irreducible is dropped.

In [HSWW18], Haettel, Schilling, Walsh, and Wienhard related generalized Sa-
take compactifications of a symmetric space to horofunction compactifications of poly-
hedral Finsler metrics.

Theorem 9.11 ([HSWW18] Theorem 5.5). Let τ : G → PSL(n,C) be a projective
faithful representation, and X = G/K be the associated symmetric space, where X
is of non-compact type. Let μ1, . . . , μk be the weights of τ . Let d be the polyhedral
Finsler metric whose unit ball in a Cartan subalgebra is

B = −D◦ = −conv(μ1, . . . , μk)

where conv is the convex hull. Then X
S

τ is G-isomorphic to X
hor

d .

Example 9.12. The horofunction compactification of X = SL(n,R)/SO(n) with
respect to the standard SL(n,R)-invariant Riemannian metric is not isomorphic to a
generalized Satake compactification because the unit ball in a flat is a Euclidean ball,
which is not the convex hull of finitely many points.

Finally, we recall the following very special case of a result of the second author
[Ji97, Theorem 2.4]:

Proposition 9.13. Every Satake compactification X
S

τ of SL(n,R)/SO(n) is
homeomorphic to a closed topological ball.

10. Horofunction and Satake compactifications. In this section, we will
describe horofunction compactifications of T (n) with the Thurston and Teichmüller
metrics defined in Sections 5 and 6.

The Thurston Metric. Recall that the standard representation of SL(n,R)
induces a minimal Satake compactification of T (n). It has the following metric real-
ization.

Proposition 10.1. The following compactifications are G-isomorphic:

T (n)
hor

dTh

∼=G T (n)
S

π
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where Π is the standard representation of G = SL(n,R).

Proof. The weights of the standard representation are simply the standard basis
for ei, i = 1, . . . , n, for Rn. Projecting them onto the hyperplane in R

n corresponding
to a, the set of weights may be given by:

μi := ei −
n∑

j=1

1

n
ej , i = 1, . . . , n.

Following [HSWW18], consider the convex hullD := conv(μ1, . . . , μn). This lies within
the codimension 1 hyperplane

∑
i xi = 0 in R

n. In order to utilize Theorem 9.11, we
now compute the negative of the dual polytope of D. If {a1, . . . , ak} ⊆ R

n are the
vertices of a convex polytope, then the dual polytope is given by:

{y ∈ R
n : 〈ai, y〉 ≥ −1 ∀i}.

The extremal points are those where equality holds. By symmetry, the μi’s are ex-
tremal points for the convex hull D, and the dual must live in the same hyperplane,
so this becomes:

B0 := −D◦ = −{(y1, . . . , yn) ∈ R
n : y1 + · · ·+ yn = 0, yi −

1

n

∑
j

yj ≥ −1 ∀i}

= {(y1, . . . , yn) ∈ R
n : y1 + · · ·+ yn = 0, yi ≤ 1 ∀i}.

By Theorem 9.11, this is a unit ball for a polyhedral Finsler metric whose horofunction
compactification is the Satake compactification of the standard representation.

To complete the proof, we compute the unit ball of the Finsler metric dTh in the
Cartan subalgebra. Using the formula in Proposition 5.13, this is relatively straight-
forward:

B = {(y1, . . . , yn) ∈ R
n : y1 + · · ·+ yn = 0, yi ≤ 2 ∀i}

Because B0 = B up to scaling, we are done.

By Proposition 9.13, it follows that the boundary of the compactification T (n)
S

π

is homeomorphic to the sphere S(n2+n)/2−2.

The Teichmüller metric. We have a similar result for dTeich.

Proposition 10.2. Let Π be the standard representation of G = SL(n,R). Then
the following compactifications are G-isomorphic:

T (n)
hor

dTeich

∼=G T (n)
S

Π⊕Π∗ .

Proof. Consider the faithful representation

Π⊕Π∗ : SL(n,R) ↪→ SL(2n,C),

using the standard and dual representations as a block diagonal acting on the direct
sum of the vector spaces.

The collection of weights, viewed as elements of Rn, is the union of the weights for
the standard and dual representations. We project them onto the hyperplane P ⊆ R

n
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defined by
∑

i yi = 0 to obtain the weights in a. After projection, two of the weights
are given by

a1 :=

(
n− 1

n
,− 1

n
, . . . ,− 1

n

)
, b1 =

(
− n− 1

n
,
1

n
, . . . ,

1

n

)
,

and the others are similar, with ±(1 − 1/n) in the ith component and ∓1/n in the
remaining components. We consider the convex hull D of these points. This defines
a polyhedron in R

n, of which we compute the negative of the dual.

Lemma 10.3. The negative of the dual to the polyhedron D =
conv(a1, . . . , an, b1, . . . , bn) is given by:

−D◦ = {(y1, . . . , yn) ∈ R
n :

∑
i

yi = 0, |yi| ≤ 1 ∀i = 1, . . . , n}.

We prove this lemma below. Now, using Equation 7.3 for the Finsler metric
associated of dTeich, we see that the ball −D◦ is, up to a choice of scaling, the same
as the unit ball for the Teichmüller metric. Theorem 9.11 completes the proof.

Proof of Lemma 10.3. Since all points a1, . . . , bn lie in the hyperplane
∑

i yi = 0,
the dual polyhedron must as well. Now, choose some i ∈ {1, . . . , n} and consider the
condition 〈(y1, . . . , yn)|ai〉 ≥ −1. Expanding, this becomes:

− 1

n
(y1 + · · ·+ yn) + yi ≥ −1

But since
∑

i yi = 0, this simplifies to yi ≥ −1. For bi, we obtain 1 ≥ yi.

11. The Thurston compactification of T (n). Inspired by Thurston’s com-
pactification for Teichmüller spaces of hyperbolic surfaces using projective measured
laminations on the underlying surfaces, we define a natural Thurston-type compactifi-
cation of T (n). It is closely related to T. Haettel’s compactification of SL(n,R)/SO(n)
built from the closure of a projective embedding into P(RZ

n

+ ) in [Hae15], but we pro-
vide a new construction utilizing a geometric interpretation of quadratic forms.

Recall the Satake compactification of SL(n,R)/SO(n) with respect to the stan-
dard representation of SL(n,R), whose boundary points correspond to projective
classes of positive-semidefinite matrices. After relating this compactification to the
Thurston compactification, we have a geometric interpretation of the Satake compact-

ification T (n)
S

π .
Recall (see [FLP12]) that a measured foliation on a surface is a (singular) foliation

with an arc measure in the transverse direction that is invariant under holonomy
(translations along leaves).

Definition 11.1. A measured flat foliation on R
n/Zn is a non-singular measured

foliation (F, μ) with the following requirements:
• The leaves of F are given by parallel hyperplanes.
• The measure μ is invariant under isometries of the torus.
• In the lift to R

n, if V0 is the leaf containing the origin, then there exists an
orthogonal decomposition

V ⊥
0 = V1 ⊕ · · · ⊕ Vk

and positive constants λi, i = 1, . . . , k, such that the lift of an arc γ contained
in subspace Vi has measure μ(γ) = λi�I(γ), where �I is the Euclidean length.
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This is a simple higher-dimensional analog of measured foliations for surfaces
where the leaves are totally geodesic submanifolds. Invariance under isometries im-
plies that we may assume any arc to be measured has a lift that begins at the origin
in R

n. There is an obvious action by R
+ on the set of measured flat foliations by

scaling the measure. Denote the set of projective classes of measured flat foliations
by PMFF .

Lemma 11.2. The collection PMFF is in a natural one-to-one correspondence
with the boundary of the minimal Satake compactification associated to the standard
representation.

Proof. Let Q be a matrix representative of the class [Q] ∈ ∂T (n)
S

π . Define the
leaves of a foliation of Rn by all parallel translations of ker(Q). This descends to the
quotient R

n/Zn. Arc length with respect to Q defines a transverse measure, which
for an arc γ : [0, 1] → R

n/Zn is given by

�Q(γ) =

∫ 1

0

√
〈γ′(t)Q, γ′(t)〉dt.

Because the quadratic form Q is constant across Rn/Zn and diagonalizable, the mea-
sure satisfies the conditions in Definition 11.1.

In this way, Q endows R
n/Zn with a measured foliation. Taking the projective

class gives us the projective measured flat foliation associated to [Q].

Conversely, given (F, [μ]) ∈ PMFF , we can obtain the associated [Q] ∈ ∂T (n)
S

π

as follows. Take any representative (F, μ) of the projective class. Then:

1) Lift the measured foliation to R
n

2) Let v1, . . . , vm be an orthonormal basis of the subspace V0 spanned by the
leaf through the origin

3) For each subspace Vj in the direct sum V ⊥
0 = V1 ⊕ · · · ⊕ Vk from Definition

11.1, choose an orthonormal basis. Label these vectors vm+1, . . . , vn
4) Let λi be the measure of a straight line segment of Euclidean length 1 ex-

tending from the origin in the direction of vi for i = 1, . . . , n
5) Let P be the matrix whose columns are vi for i = 1, . . . , n and let D be the

diagonal matrix whose diagonal entries are λi for i = 1, . . . , n.
6) Let Q = P−1DP . This is a positive-semidefinite symmetric matrix which

induces the same measured foliation we began with.

Taking the projective class of the matrix gives us the associated element of the
Satake compactification. This establishes maps in both directions which are inverses,
as required.

The viewpoint of Lemma 11.2 gives a geometric way to interpret quadratic forms
as measured foliations. Next, we will give the collection T (n) ∪ PMFF a topology.
We do so by giving a notion of convergence to points of PMFF by sequences of points
in T (n) = SL(n,R)/SO(n). Let (F, [μ]) ∈ PMFF , where F is the foliation of T n

and [μ] is the projective class of the transverse measure. Let (Xi)i∈N be a sequence
of elements of T (n).

Definition 11.3. We say the sequence (Xi)i∈N converges to (F, μ) if for

ri = 1/max{λ : λ is an eigenvalue of Xi} (11.4)
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the following holds: there exists a representative μ0 ∈ [μ] such that for all simple
closed curves γ ⊆ T n, we have

�riXi(γ)
i→∞−−−→ μ0(γ)

where �Q(γ) denotes the length of the curve γ with the metric Q.

Remark 11.5. Convergence to points of PMFF may also be viewed more
geometrically: we could also define convergence to PMFF by requiring that the
Hausdorff distance between unit balls goes to 0. This is essentially convergence of
metrics while allowing some directions to degenerate.

Lemma 11.6. The collection T (n) ∪ PMFF is compact.

Proof. We show that every sequence has a convergent subsequence. First, suppose
(Xi)i∈N consists only of elements of T (n), but no subsequence converges to a point of
T (n). Consider then the sequence of matrices riXi, where ri is defined in Equation
11.4. Now, the set of positive-definite symmetric matrices with eigenvalues bounded
above by 1 is compact, so we may assume riXi converges to a positive-semidefinite
matrix M . By Lemma 11.2 and by construction, M corresponds to an element of
PMFF which satisfies the conditions of Definition 11.3.

Now suppose that some Xk ∈ PMFF for some (perhaps infinitely many) k ∈ N.
Pick a sequence (Y k

j )j∈N ∈ T (n) which converges to Xk. Then replace Xk with Y k
k

in the sequence (Xi)i∈N, and use the first case to find a limit for the new sequence.
The original sequence also must converge to this same limit.

We are now prepared to make the following definition.

Definition 11.7. The Thurston compactification of T (n) is

T (n)
Th

:= T (n) ∪ PMFF .

By Lemmas 11.2 and 11.6, we see that the Thurston compactification T (n)
Th

is a
compactification of T (n) built from measured foliations on the underlying structures,
as in Thurston’s compactification for Teichmüller spaces of hyperbolic surfaces.

Lemma 11.8. Let (F, [μ]) ∈ PMFF , and let [Q] ∈ ∂T (n)
Th

be the quadratic
form associated to (F, [μ]). For a sequence (Xi)i∈N ∈ T (n), we have

(Xi)i∈N

i→∞−−−→ (F, [μ]) if and only if (Xi)i∈N

i→∞−−−→ [Q]

where on the right-hand side the convergence is with respect to the topology on the
Satake compactification.

Proof. Notice that convergence on the right-hand side is equivalent to the follow-
ing: if 1/ri is the maximal eigenvalue of Xi for each i, then

riXi
i→∞−−−→ Q

for some representative Q ∈ [Q] as matrices. Let μ0 be the representative of [μ]
associated to the semidefinite form Q. Then �Q(γ) = μ0(γ) for all simple closed
curves γ, and so from Lemma 11.2 we have

Xi
i→∞−−−→ (F, [μ]).
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The reverse implication is nearly identical.

Immediately following from Lemmas 11.2 and 11.8 is the following:

Corollary 11.9. The identity map on T (n) extends to a homeomorphism

T (n)
Th ∼= T (n)

S

π .

Proof. Lemma 11.8 shows that the bijection from Lemma 11.2 preserves conver-
gence in both directions.

Next, we endow PMFF with a SL(n,R)-action. For g ∈ SL(n,R), define:

g · (F, [μ]) = (Fg, [g−1 ∗ μ]).

One can verify that this defines a SL(n,R)-action on PMFF .

Lemma 11.10. This SL(n,R)-action is equivariant with respect to the bijection
of Lemma 11.2.

Proof. Recall from Lemma 11.2 that for any smooth arc γ, if (F, μ0) is a repre-
sentative of the projective class of (F, [μ]) associated to Q ∈ [Q], then

�Q(γ) = μ0(γ).

Now, for g ∈ SL(n,R) we have

�g·Q(γ) = �Q(g · γ) = μ0(g · γ) = g−1 ∗ μ0(γ).

Finally, if γ is a curve contained in a single leaf, then g · γ = γg is then contained in
a leaf of g · F = Fg.

Combining Lemma 11.10 and Corollary 11.9, we arrive at:

Theorem 11.11. The Thurston compactification T (n)
Th

is SL(n,R)-isomorphic

to the Satake compactification with respect to the standard representation T (n)
S

π .

Theorem 1.2 is then the combined results of Theorem 11.11 and Proposition 10.1, and
Corollary 1.3 is immediate.

REFERENCES

[Abi80] W. Abikoff, The real analytic theory of Teichmüller space, volume 820. Springer-
Verlag, 1980.

[APS15] V. Alberge, A. Papadopoulos, and W. Su, A commentary on Teichmüller’s pa-
per “Extremale quasikonforme abbildungen und quadratische differentiale”, in
Athanase Papadopoulos, editor, Handbook of Teichmüller Theory, Volume V,
pp. 485–531. European Mathematical Society Publishing House, 2015.

[BH13] M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, volume
319. Springer Science & Business Media, 2013.

[BJ06] A. Borel and L. Ji, Compactifications of symmetric and locally symmetric spaces,
Mathematics: Theory & Applications, Birkäuser Boston Inc., 2006.
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