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SPECTRA RELATED TO THE LENGTH SPECTRUM∗

CONRAD PLAUT†

Abstract. We extend the Covering Spectrum (CS) of Sormani-Wei to two spectra, called the
Extended Covering Spectrum (ECS) and Entourage Spectrum (ES) that are new metric invariants
related to the Length Spectrum for Riemannian manifolds. These spectra measure the “size” of
certain covering maps called entourage covers that generalize the δ-covers of Sormani-Wei. For
Riemannian manifolds M of dimension at least 3, we topologically characterize entourage covers as
those covers corresponding to subgroups of π1(M) that are the normal closures of finite subsets. We
show that CS⊂ES⊂MLS, where MLS is the set of lengths of closed curves that are shortest in their
free homotopy classes. For Riemannian manifolds these inclusions can be strict. Finally, we give
equivalent definitions for any metric on a Peano continuum, including resistance metrics on fractals,
which have a Laplace Spectrum, opening new fronts in the old problem of the relationship between
the Laplace Spectrum and the Length Spectrum.
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1. Introduction. The Length Spectrum (LS) of a Riemannian manifold is the
set of lengths of closed geodesics, with various notions of multiplicity. The notion goes
back at least to Huber’s papers in the late 1950’s ([16], [17]) in which the notion of LS
is defined for what seems to be the first time. He showed that for compact Riemann
surfaces, LS and the Laplace Spectrum (LaS) determine one another. Put another
way, two Riemann surfaces have the same LS if and only if they are isospectral.
These results have been followed by a decades-long investigation into the relationship
between LS and LaS. We will not give a detailed history here, but will mention the
fundamental open question of whether isospectral compact Riemannian manifolds
have the same Weak Length Spectrum (defined as LS ignoring multiplicities, also
called the Absolute Length Spectrum). For Riemann surfaces it is also known that
LS and LaS are each completely determined by a finite subset, the size of which
is bounded in the first case by the injectivity radius (Theorem 10.1.4, [7]), and in
the second case by the injectivity radius and the genus (Theorem 14.10.1, [7]). This
result suggests that there may be interesting relationships among geometrically and
topologically significant subsets of LS, LaS, and other spectra from geometric analysis.

One of the most important subsets of LS is what Carolyn Gordon called the [L]-
spectrum ([12]) and Christina Sormani and Guofang Wei called the Minimum Length
Spectrum (MLS) in [28]. MLS is the set of lengths of curves that are shortest in
their free homotopy classes. As is well-known (more on this later), in a compact
Riemannian manifold there is always a shortest curve in every free homotopy class
and that curve must be a closed geodesic, hence MLS ⊂ LS. In [12], Gordon showed
that there are isospectral manifolds with distinct MLS, considering multiplicity as the
number of distinct free homotopy classes.

In [28], Sormani-Wei introduced a subset of 1
2MLS called the Covering Spectrum

(CS). The existence of isospectral compact Riemannian manifolds with different CS
was established in 2010 by Bart de Smit, Ruth Gornet and Craig Sutton ([10], dimen-
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sions ≥ 3 and [11], surfaces). Athough CS and MLS are not “spectral invariants”,
these spectra have mathematical applications, some of which we will mention below,
and they may have nicer properties than LS. For example MLS is discrete and CS is
finite for any compact Riemannian manifold, but LS may not be discrete ([25]).

In this paper we show how to extend CS to two spectra, called the Extended
Covering Spectrum (ECS) and the Entourage Spectrum (ES), that are new even
for compact Riemannian manifolds. ECS is discrete for arbitrary metrics on Peano
Continua (compact, connected, locally path connected spaces), but may contain arbi-
trarily small values and so generally is not contained in 1

2LS. ES contains 2CS and is
contained in MLS, and therefore is discrete for Riemannian manifolds, but we do not
know whether it is discrete for arbitrary compact geodesic spaces (metric spaces in
which every x, y are joined by a curve, called a geodesic, of length equal to d(x, y)).

We show by example that for compact Riemannian manifolds, CS may be properly
contained in ECS and ES, and ES may be properly contained in MLS; that is, in
general all of these spectra are distinct. Counting multiplicity, the cardinality of ES,
like MLS but unlike CS, is a topological invariant, independent of any metric.

We also show how to extend the notion of MLS to compact geodesic spaces in
general, where, contrary to statements in [13] and [14], there may be no shortest curve
in a free homotopy class, and when there is one it may not be a closed geodesic ([3]).
For all of these length-type spectra except LS itself, we give equivalent alternative
definitions for geodesic spaces that don’t actually involve lengths of curves. That
is, we define “length spectra” when there may be no length. Of particular interest
are resistance metrics on self-similar fractals such as the Sierpinski Gasket and Car-
pet (which are Peano continua). These metric spaces have a meaningful notion of
Laplacian (see [18], [35] for general references), but they are generally far from being
geodesic spaces. In fact there may be no non-constant rectifiable curves at all, and
hence empty LS. On the other hand, we show in [22] that all of the generalized spectra
discussed in the present paper have infinitely many values for these resistance metric
spaces, hence they provide good proxies for questions about the relationship between
subsets of LS and LaS.

There are at least five characterizations of CS for compact geodesic spaces, most
of which we will use at some point in this paper, and we will add two more. The
original definition of CS due to Sormani-Wei ([28]) begins with a general construction
of Spanier ([34]) that produces a regular covering map determined by an open cover U
of a connected, locally path connected space X. In π1(X), let Γ(U) be the (normal)
subgroup generated by the set of homotopy classes of loops of the form α ∗ λ ∗ α
where λ lies entirely in one of the open sets in U and α starts at the basepoint. Here
∗ denotes concatenation and α is the reverse parameterization of α. According to
Spanier there is a regular covering map of X such that Γ(U) is the image of π1(X) via
the homomorphism induced by the covering map. The deck group π1(X)/Γ(U) of the
covering map is in a sense a “fundamental group at the scale of U” because it “ignores
small holes” contained in elements of U when modding out by Γ(U). Sormani-Wei
took for U the open cover of X by (open) δ-balls B(x, δ), and called the resulting
covering map the δ-cover of X. In the case when X is a compact geodesic space,
Sormani-Wei showed that the equivalence type of δ-covers changes at certain values,
which they called the Covering Spectrum, that are discrete in (0,∞). Viewing δ as
a parameter, as δ shrinks from the diameter of X to 0, X “unrolls” more and more
at the discrete values in CS. If X has a universal cover X̃, then X̃ is the δ-cover
for all sufficiently small δ > 0 and CS is finite. By “universal cover” we mean in a
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categorical sense, which for compact geodesic spaces is equivalent to finiteness of CS
(see Theorem 3.4 in [28] and [36] for related equivalent conditions).

Another way to characterize CS uses the discrete homotopy methods of
Berestovskii-Plaut, developed in 2001 for topological groups ([4]) then uniform spaces
in 2007 ([5]). In 2010, Plaut-Wilkins ([20]) focused on the special case of metric spaces,
where discrete homotopy theory means replacing continuous curves and homotopies
by discrete sequences and homotopies called ε-chains and ε-homotopies, respectively.
An ε-chain is a finite sequence of points {x0, ..., xn} in a metric space such that for
all i, d(xi, xi+1) < ε. Discrete homotopies consist of finitely many steps adding or
removing a single point in an ε-chain (fixing the endpoints) so that the sequence re-
mains an ε-chain at each step. Discrete homotopies “ignore small holes” simply by
skipping over them. As in [4] and [5], one can imitate the classical construction of the
universal covering space, substituting ε-chains for curves and ε-homotopies for homo-
topies. This produces what Plaut-Wilkins called ε-covers φε : Xε → X. The fact
that both ways of “ignoring small holes” are essentially the same (despite the very
different constructions) was shown by Plaut-Wilkins in [21]: for compact geodesic
spaces, the Sormani-Wei δ-covers are equivalent to the Plaut-Wilkins ε-covers when
ε = 2

3δ. Plaut-Wilkins also defined the Homotopy Critical Spectrum (HCS) in [20]
to be the set of all ε such that there is an ε-loop that is not ε-null (homotopic) but
is δ-null when considered as a δ-chain for any δ > ε. They also showed in [21] that
CS = 3

2HCS for compact geodesic spaces. In this paper, since we will refer frequently
to [20] and [21], we will generally use the notation of ε-covers. Plaut-Wilkins also
defined special closed geodesics called “essential circles” whose lengths are precisely
three times the values of HCS, discussed in more detail later in this paper.

ECS, ES, and our generalized definition of MLS involve expanding the class of
ε-covers to a larger class of covering spaces called entourage covers. Entourage covers
are defined using the original construction of Berestovskii-Plaut for uniform spaces
([5]). The present paper is written so that no special knowledge of uniform spaces is
required, and but the language and framework of uniform spaces are useful. If E is an
“entourage” in a uniform spaceX, which is a special symmetric set containing an open
subset of the diagonal inX×X, one may define “E-chains” to be sequences {x0, ..., xn}
such that for all i, (xi, xi+1) ∈ E. Then E-homotopies and the corresponding covering
map φE : XE → X may be defined analogous to ε-homotopies and ε-covers. We
will provide more details in the next section. Compact topological spaces have a
unique uniform structure in which entourages are just any symmetric subsets of X ×
X containing an open set containing the diagonal, and therefore the maps φE are
determined only by the topology (whereas ε-covers are determined by the metric).

In metric spaces there are metric entourages Eε := {(x, y) : d(x, y) < ε} for
ε > 0. Eε-chains and Eε-homotopies are precisely the ε-chains and ε-homotopies
previously described. Metric entourages form a basis for a uniform structure uniquely
determined by the metric (although there may be other uniform structures compatible
with the topology). That is, entourages in a metric space are simply symmetric
subsets of X × X that contain some Eε. We also use an analogous notation for E-
balls: B(x,E) := {y ∈ X : (x, y) ∈ E}. If an E-loop is E-homotopic to the trivial
chain, we say it is E-null.

In general the covering maps φE can be problematic, especially if the balls B(x,E)
are not connected. For example, if X is a compact metric space that is not geodesic,
the ε-covers many have infinitely many components and HCS may not only not be
discrete, it may even be dense in [0, 1] ([8], [37]). Disconnected metric balls also
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may occur in resistance metrics on finite graphs ([2], Remark 7.19) and have been
numerically verified by Cucuringu-Strichartz for certain resistance metrics on the
Sierpinski Gasket ([9], Section 4). For non-geodesic spaces, it is not clear whether
focusing on metric entourages is likely to be a successful strategy. In some sense, these
problems occur because there is a disconnect between the metric and the underlying
topology, which is improperly “viewed” by metric balls.

We address this problem by restricting attention to what we call “chained en-
tourages”: an entourage E is chained if it is contained in the closure of its interior,
which is assumed compact if the space is not, and whenever (x, y) ∈ E, x, y may be
joined by an F -chain that lies entirely in B(x,E)∩B(y,E), for any entourage F . That
is, x and y may be joined in B(x,E)∩B(y,E) by “arbitrarily fine” chains. Entourage
covers are by definition those covers φE such that E is a chained entourage; we will
sometimes call it the E-cover of X. In a geodesic space, metric entourages are always
chained. This is true because by the triangle inequality, any geodesic joining x, y must
stay inside B(x, ε) ∩ B(y, ε). Then one may simply take arbitrarily fine chains along
the geodesic.

One advantage of discrete methods is that they are amenable to counting ar-
guments. For example, while Sormani-Wei showed using convergence methods that
the size of CS is bounded in any Gromov-Hausdorff precompact class, in [20] we ac-
tually give an explicit bound. Moreover, since for compact Riemannian manifolds
π1(M) = πε(M) for all sufficiently small ε > 0, by building a simplicial model of the
space, Plaut-Wilkins were able to give an explicit fundamental group finiteness theo-
rem generalizing those of Anderson ([1]) and Shen-Wei ([26]). Similarly, we are able
to prove the following explicit finiteness theorem, where C(X, ε) denotes the number
of ε-balls needed to cover X and σ(E) := sup{ε : Eε ⊂ E} (which is a measure of
“size” of E).

Theorem 1. Let X be a compact geodesic space and ε > 0. Then the number
NC(ε) of equivalence classes of E-covers φE : XE → X such that σ(E) ≥ ε is at
most

2C(X, ε4 )
40C(X, ε

2
)

.

In order to apply the above theorem in more generality, recall that the Bing-
Moise Theorem ([6], [19]) says, in modern terminology, that every Peano continuum
has a compatible geodesic metric. “Compatible” means precisely that every metric
entourage in the original metric contains a metric entourage in the geodesic metric,
and vice versa. We immediately obtain:

Corollary 2. If X is a Peano Continuum with a given (possibly non-geodesic)
metric and ε > 0, then NC(ε) < ∞.

We are now in a position to modify the original Sormani-Wei definition of CS to
apply to entourage covers. The only complication is that E-covers, unlike ε-covers, are
not totally ordered by the relation of one space covering another. But by Corollary 2
there are certain discrete values of ε such that NC(ε) strictly increases, and we define
ECS to be those values. We may also define the multiplicity of a value ε in ECS to
be NC(ε)−NC(δ) for δ < ε sufficiently close to ε. With a little more effort we show:

Theorem 3. If X is a compact geodesic space then CS ⊂ ECS. For some compact
Riemannian manifolds, ECS may be infinite (while CS is always finite) and hence this
inclusion may be proper.
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An immediate consequence of Corollary 2 is that ECS is discrete in (0,∞) for any
metric on a Peano continuum.

Remark 4. By Gromov’s Precompactness Criterion ([13], [14]), a corollary of
Theorem 1 is that NC(ε), and hence the number of elements of ECS greater than ε,
is uniformly bounded below for any fixed ε in any Gromov-Hausdorff precompact class
of compact geodesic spaces. This extends the corresponding statement about CS.

We aleady know that any ε-cover for any geodesic metric is an entourage cover,
and a natural question is: in general, which regular covers are entourage covers?
We have the following necessary algebraic condition. The meaning of “covering map
corresponding to N” is standard from algebraic topology and will be reviewed as part
of the proof.

Theorem 5. Let X be a semi-locally simply connected Peano continuum and
N ⊂ π1(X) be a normal subgroup. If the covering map corresponding to N is an
entourage cover, then N is the normal closure of a finite set.

Remark 6. The normal closure of a subset of a group is by definition the smallest
normal subgroup containing it. Being the normal closure of a finite set is intimately
connected with the study of finitely presented groups, since a quotient of a finitely
presented group is finitely presented if and only if the kernel is the normal closure
of a finite set. We are unable to find a reference for this equivalence, although the
proof of one implication may be found in [15], Lemma 3, which cites Siebenmann’s
dissertation for the statement. The other implication is an exercise in basic algebra
using the formal definition of “finitely presented”.

Remark 7. Suppose that G is a finitely presented group with a quotient that is
not finitely presented (such G are well-known to exist). Then as is also classically
known, one may construct a compact 4-manifold M with G as its fundamental group.
Therefore M must have a regular cover that is not an entourage cover.

For manifolds of dimension at least 3, the condition in Theorem 5 is also sufficient:

Theorem 8. Let M be any compact smooth manifold of dimension at least 3. If
G ⊂ π1(M) is the normal closure of a finite set then M has a Riemannian metric for
which the cover corresponding to G is an ε-cover for the metric.

Corollary 9. If M is a smooth manifold of dimension at least 3, a normal
subgroup G of π1(X) corresponds to an E-cover if and only if G is the normal closure
of a finite set. Moreover, we may always take E to be an open entourage.

For closed manifolds of dimension 1 there is a simple statement: the only en-
tourage covers of the circle are the trivial and universal covers (which are always
entourage covers for manifolds), see Example 70. We do not know much about the
situation for closed surfaces, including, for example, exactly which covers of the 2-
torus are entourage covers. See also Example 71 concerning the Möbius Band.

“Circle covers” were introduced in [21] as a way to precisely describe the limits
of ε-covers, following a line of inquiry of Sormani-Wei ([28]). Since circle covers are
defined as quotients of ε-covers via the normal closures of finite sets (Definition 22 in
[21]), the following corollary is immediate.

Corollary 10. If M is a compact Riemannian manifold of dimension at least
3 then any circle cover of M is an entourage cover.
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Remark 11. There are various interesting questions at this point. Is Corol-
lary 10 more generally true for compact geodesic spaces, even without the dimension
restriction? Suppose that Xi → X are compact geodesic spaces converging in the
Gromov-Hausdorff metric, Ei is a chained entourage in Xi, and for some ε > 0,
Eε ⊂ Ei for all i. Is it true that, taking a subsequence if necessary, XEi

converges in
the pointed Gromov-Hausdorff metric to XE for some chained entourage E? Due to
issues of dimension, Corollary 9 is not true for compact geodesic spaces in general (at-
tach circle to a 3-sphere at one point, for example). Nonetheless, one may ask whether
the theorem is be true for some special classes of Gromov-Hausdorff limits of compact
Riemannian manifolds of dimension at least 3, for example with Ricci curvature and
volume uniformly bounded below and diameter uniformly bounded above.

We will define later in this paper (Definition 47) a notion of E-homotopy (or
free E-homotopy) of curves, which essentially means the two curves may be “E-
subdivided” into E-chains that are E-homotopic (or freely E-homotopic). Equiva-
lently, the lifts of the curve to a given point in XE have the same endpoints (Lemma
48). We say a chained entourage is “essential” if there is an E-loop that is not E-null.
The next proposition (correctly) generalizes the classical statement mentioned above
about shortest curves in free homotopy classes in Riemannian manifolds. We will use
the term “ε-geodesic” to describe a curve that is arclength parameterized and min-
imizing on all intervals of length ε, i.e. the distance between the endpoints of such
segments is ε. This is similar to the concept of 1

k -geodesic of Sormani ([27]) but we
obtain more precise results by allowing arbitrary values of ε. A closed curve c that is
an ε-geodesic for some ε > 0 for any reparameterization involving a parameter shift
is called a “closed ε-geodesic” or simply a “closed geodesic” if a particular ε isn’t
specified. Briefly, we express this by saying c is minimal on all segments of length
ε, understanding that when c is closed this includes segments that have the common
start/end point in the interior.

Proposition 12. Let X be a compact geodesic space, E be a chained entourage in
X, and c be a closed curve in X. Then c has a shortest curve c in its free E-homotopy
class, and for any such c,

1. c is non-constant if and only if E is essential, and
2. if c is non-constant then c is a closed 3ε

2 geodesic whenever Eε ⊂ E.

We now have the following characterizations of MLS and CS for Riemannian
manifolds. Each pair consists of a statement involving lengths of curves (which in a
general metric space might be infinite), and another that makes sense and is always
finite in any metric space. By the length L(α) of a finite chain α = {x0, ...xn} in a
metric space we mean

∑n
i=1 d(xi−1, xi).

Theorem 13. Suppose that M is a compact Riemannian manifold. Then over
the set of all essential entourages E,

1. MLS is the set of
(a) lengths of non-constant closed curves that are shortest in their free E-

homotopy class.
(b) lengths of non-trivial E-loops that are shortest in their free E-homotopy

class.
2. CS is the set of

(a) half the shortest lengths of closed curves that are not freely E-null.
(b) half the shortest lengths of E-loops that are not freely E-null.
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We may now simply use Theorem 13.1.a as the definition of MLS for compact
geodesic spaces, and with this definition Theorem 13 is true for any compact geodesic
space (Theorem 69). We may use Theorem 13.1b and Theorem 13.2b as the definitions
for arbitrary metric spaces, although if the underlying space is not a Peano continuum
then there may not be many (or any!) essential entourages.

Remark 14. We do not know whether, for arbitrary metric spaces, the definition
using Theorem 13.1b is equivalent to the definition of CS for metric spaces given in
[10], namely that CS is the collection of all ε > 0 such that some covering map is
maximally evenly covered on all ε-balls.

While CS = 3
2HCS for compact geodesic spaces, the approaches of Sormani-Wei

and Plaut-Wilkins diverge when more general E-covers are added to the mix. The
Sormani-Wei playbook leads to ECS as we have already described. To apply the
Plaut-Wilkins approach, for an open, chained entourage E in a metric space X we
define an E-loop λ (resp. curve loop c) to be E-critical if λ (resp. c) is not E-null
but is E-null, where E is the closure of E. If E has a critical E-loop then we will say
that E is critical, and we let ψ(E) := inf{L(λ) : λ is an E-critical E-loop}. We define
the Entourage Spectrum ES to be the set of ψ(E) for all critical entourages E. Note
that this definition does not involve lengths of curves. We show:

Theorem 15. Let X be a compact geodesic space. Then
1. For every open, chained entourage E there is a critical E-loop λ if and only

if there is a critical loop c.
2. If E is a critical entourage then there is a critical E-loop (resp. critical loop

c) such that L(c) = L(λ) = ψ(E).
3. 2CS = 3HCS ⊂ ES ⊂ MLS.
Moreover, there are compact Riemannian manifolds for which both of the above

inclusions are proper. There also are pairs of diffeomorphic Riemannian manifolds
that have the same CS but different ES, and pairs that have the same ES but different
MLS.

Remark 16. The proof of Theorem 15 uses in essential ways the fact that the
metric is geodesic–in particular by lifting the metric to a geodesic metric on XE.
However, the “lifted metric” defined later in this paper is defined for any metric, and
in particular some of these methods may be modified for arbitrary metrics on Peano
continua ([22]).

Remark 17. It seems there are interesting questions involving these metric in-
variants akin to classical results in the metric geometry of Riemannian manifolds.
For example, suppose that M is a compact Riemannian manifold. Are there metrics
having a particular fixed spectrum (pick one of CS, ECS, ES, MLS) that are optimal
with respect to some other geometric parameters, for example having minimal volume
with fixed bounds on sectional curvature? And if so what is the regularity of those
optimal metrics? In effect this question fixes the size of certain significant “holes” in
the space and asks how the space can minimally be stretched to maintain those sizes
while constraining curvature.

Remark 18. Sormani-Wei have explored ways in which to extend ideas related
to CS to non-compact spaces ([30], [31], [32]). Certainly CS has meaning for non-
compact geodesic spaces, for example, but it will “miss” any loops that are homotopic
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to arbitrarily small loops, for example in the surface obtained by revolving the graph
of y = ex around the x-axis. Along these lines, we note that some of the basic and
technical results in this paper only require a kind of uniform local compactness (Re-
mark 39)–which is why we state in the definition of “chained” that the closure of the
entourage is compact when the space is not. An alternative approach to understand
non-compact spaces might be to consider all possible uniform structures that are com-
patible with the underlying topology of a given metric on the space, rather than just
the uniform structure induced by the particular metric. For example, for the surface
mentioned above, the uniform structure compatible with the metric does not “see”
the fundamental group but the uniform structure of the same space metrized as a flat
cylinder has the universal cover as an ε-cover.

2. Basic Constructions. This section has a mixture of background from [5],
extensions of some results in [20], and a completely new basic result called the Ball
Continuity Lemma. The length of a curve is defined in the standard way for metric
spaces and it is a classical result that curves having finite length (i.e. rectifiable
curves) in metric spaces always have monotone reparameterizations proportional to
arclength. We will always assume rectifiable curves are parameterized this way. See
[23] for a review, with references, of many basic concepts from metric geometry.

We now recall a bit of basic terminology for uniform spaces. One should keep
in mind the two fundamental examples mentioned in the Introduction: metric spaces
and compact topological spaces. We have already defined the metric entourage Eε in a
metric space X. In general, a uniform structure on an (always Hausdorff) topological
space X is a collection of symmetric subsets of X × X that contain an open set
containing the diagonal, which are called entourages. Moreover, entourages have the
following properties: (UA) Their intersection is the diagonal (equivalent to Hausdorff),
and (UB) for every entourage E there exists an entourage F such that

F 2 := {(x, z) : for some y, (x, y), (y, z) ∈ F}

is contained in E. For metric entourages we note that it follows from the triangle

inequality that
(
E ε

2

)2 ⊂ Eε. We may also iteratively define, for any entourage F , Fn.
Equivalently, in the terminology from the Introduction, Fn consists of all (x, y) ∈
X ×X such that there is an F -chain {x = x0, ..., xn = y}.

As mentioned in the Introduction, for an entourage E in a uniform space X,
an E-chain consists of a finite sequence α = {x0, ..., xn} in X such that for all i,
(xi, xi+1) ∈ E. We define ν(α) = n. The concatenation of two chains α = {x0, ..., xn}
and β = {y0 = xn, y1, ..., ym} is the chain α ∗ β := {x0, ..., xn = y0, y1, ..., ym} and the
reversal of α is the chain α = {xn, ..., x0}. An E-homotopy between E-chains α and
β consists of a finite sequence {α = η0, ..., ηn = β} of E-chains ηi all having the same
endpoints such that for all i, ηi differs from ηi+1 by one of the following two basic
moves:

(1) Insert a point x between xi and xi+1, which we will denote by

{x0, ..., xi,
︷︸︸︷
x , xi+1, ..., xn}

and which is “legal” provided (xi, x) ∈ E and (x, xi+1) ∈ E.
(2) Remove a point xi (but never an endpoint!), which we will denote by

{x0, ..., xi−1, xi︸︷︷︸, xi+1, ..., xn}
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and which is legal provided (xi−1, xi+1) ∈ E.
The E-homotopy equivalence class of an E-chain α is denoted by [α]E . We

will sometimes abuse notation by dropping brackets, for example writing [x0, ..., xn]E
rather than [{x0, ..., xn}]E . We note that if E ⊂ F then α may also be considered
as an F -chain, and [α]F also makes sense. Fixing a basepoint ∗, the collection of
all [α]E such that the first point of α is ∗ is called XE . For any entourage F ⊂ E
in X, we define F ∗ ⊂ XE × XE to be the set of all ordered pairs ([α]E , [β]E) such
that [α ∗ β]E = [xn, ym]E , where xn, ym are the endpoints of α, β, respectively, and
(xn, ym) ∈ F . The sets F ∗ form (a basis of) a uniform structure on XE , which we
will call the “lifted uniform structure”.

Remark 19. It is an easy exercise, worthwhile for the unfamiliar reader, to
check that this definition of F ∗ is equivalent to the more cumbersome but sometimes
useful original from [5], namely that up to E-homotopy we may write α = {∗ =
x0, ..., xn−1, xn} and β = {∗ = x0, ..., xn−1, yn} with (xn, yn) ∈ F .

Since E-homotopies don’t change endpoints, the endpoint map φE : XE → X,
φE([x0, ..., xn]E) := xn is well-defined, and its restriction to any E∗-ball B([α]E , E

∗)
is a bijection onto its image B(x,E) under φE , where x is the endpoint of α. Since φE

is a local bijection, XE has a unique topology such that φE is a local homeomorphism,
with a basis given by all F ∗-balls with F ⊂ E. This topology is compatible with the
lifted uniform structure.

Concatenation is compatible with E-homotopies–that is, if α1, β1 are E-
homotopic to α2, β2, respectively, then [α2 ∗ β2]E = [α1 ∗ β1]E . Concatenation in-
duces a group structure on the set of all E-homotopy classes πE(X) of E-loops starting
and ending at the basepoint ∗. That is, [λ1]E [λ2]E = [λ1∗λ2]E and [λ]−1

E = [λ]E , with
[∗]E as identity. The group πE(X) acts on XE induced by pre-concatenation of any
loop to an E-chain starting at ∗, and the resulting maps are uniform homeomorphisms
(i.e. preserve the uniform structure). With this topology, φE is a regular covering map
with deck group πE(X) such that the E-balls are evenly covered by disjoint unions of
E∗-balls. Moreover, X is identified with the quotient space XE/πE(X). Two E-loops
λ1 and λ2 are said to be freely E-homotopic if there exist E-chains α and β starting
at a common point x0, to the initial points of λ1 and λ2, respectively, such that

α ∗ λ1 ∗ α is E-homotopic to β ∗ λ2 ∗ β. (1)

It is easy to check, and we will use without reference, the following facts: If we can
satisfy Formula (1) for some x0 then we can do it for any other point, including the
basepoint ∗. Likewise λ1 and λ2 are freely E-homotopic if and only if given an E-chain
α from x0 to the initial point of λ1 then we can always find a β so that Formula 1 is
satisfied.

Remark 20. One can equivalently define free E-homotopies of E-loops by adding
a special “homotopy step” to enable one to move the common start/end point. That
is, “double it” by adding a repeat of the start/end point, then add a new point (which
becomes the new start/end point) between the doubled points. However, this does not
seem simpler in all of its details, or more useful than the definition we have given.

Whenever E ⊂ F there is a natural covering map φFE : XE → XF that simply
treats an E-chain as an F -chain. That is, φFE([α]E) = [α]F . Given D ⊂ E ⊂ F , by
definition φFD = φFE ◦ φED. The restriction of φEF to πF (X) is a homomorphism
denoted by θEF : πF (X) → πE(X). This homomorphism is injective (resp. surjective)
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if and only if φEF is injective (resp. surjective), and plays a critical role in this paper.
Note that the mapping φEF may be identified with the quotient mapping from XF

to XF / ker θEF = XE . In the special case of metric entourages, we denote φEεEδ
by

φεδ as in [20].
We will need the following general lemma, which partly justifies why we require

that the balls in a chained entourage be contained in the closure of their interior.

Lemma 21 (Ball Continuity). Suppose E is an entourage in a metric space X
and xi → x in X. Then

1. If yi → y in X and (xi, yi) ∈ E for all i, then (x, y) ∈ E.
2. If E has compact closure then B(xi, E) is Hausdorff convergent to a subset

of B(x,E).
3. If E is open then B(x,E) is the union of the sets B(x,E) ∩B(xi, E).
4. If E is contained in the compact closure of its interior then B(xi, E) →

H

B(x,E) (meaning convergence in the Hausdorff metric).

Proof. The first part is true in any uniform space: just note that a if U and V
are open sets containing x and y, respectively, then U × V eventually contains some
(xi, yi) ∈ E.

For the second part, let A be the (compact) set of all limits of convergent sequences
(zi) such that zi ∈ B(xi, E). By the first part, A ⊂ B(x,E). For any ε > 0, we may
cover A by finitely many balls B(p1,

ε
2 ), ..., B(pm, ε

2 ). Then for sufficiently large k there
are points p′j ∈ B(xk, E) such that d(pj , p

′
j) < ε

2 , and from the triangle inequality
it follows that the ε-neighborhood of B(xk, E) contains A. Now suppose that for
all k, the ε-neighborhood of A does not contain B(xk, E). That is, for all k there
exist wk ∈ B(xk, E) such that d(wk, z) ≥ ε for all z ∈ A. Since (wk, xk) ∈ E and
E has compact closure, by taking a subsequence if necessary we may assume that
(wk, xk) is convergent to (w, x) ∈ E. By definition, w ∈ A, so d(wk, w) ≥ ε for all k,
a contradiction to wk → w.

For the third part, let y ∈ B(x,E). Since E is open there exist open U, V in
X such that (x, y) ∈ U × V ⊂ E. Then for large enough i, xi ∈ U and therefore
(xi, y) ∈ U × V ⊂ E, i.e. y ∈ B(xi, E).

Finally, in the special case when E is open with compact closure, the fourth
part follows from the second and third parts. The proof in general is now finished
by observing that in general if Ai →

H
A then any sequence of dense subsets of Ai is

Hausdorff convergent to any dense subset of A.

We will now extend the idea of the “lifted metric” from [20] to this more general
situation. The following definition is the same as the corresponding part of Definition
12, [20], with “E” replacing “ε”:

Definition 22. Let X be a metric space and [α]E , [β]E ∈ XE. We define

|[α]E | := inf{L(κ) : [α]E = [κ]E}

and

d([α]E , [β]E) = |[α ∗ β]E | .

The proof that d is a metric on XE is essentially identical to the proof of this
statement (Proposition 13) in [20]. Likewise, one may prove that the deck group
πE(X) acts as isometries. However in [20], Proposition 14, we also proved that φε
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preserves all distances less than ε. We will verify here an important analog of this
statement, namely:

Lemma 23. If X is a metric space, E is an entourage, and ([α]E , [β]E) ∈ E∗ then
d([α]E , [β]E) = d(φE([α]E), φE([β]E)). In particular, if F 2 ⊂ E then the restriction
of φE to any F ∗-ball is an isometry onto an F -ball.

Proof. If ([α]E , [β]E) ∈ E∗ then by definition of E∗, [α ∗ β]E = [xn, ym]E , where
xn, ym are the endpoints of α, β, respectively. Since [xn, ym]E is the shortest possible
E-chain joining xn, ym, d([α]E , [β]E) = d(xn, ym) = d(φE([α]E), φE([β]E)).

To prove the second part, suppose that [α]E , [β]E ∈ B([γ]E , F
∗). By definition,

([α]E , [γ]E) ∈ F ∗ and ([β]E , [γ]E) ∈ F ∗. This in turn means that if the endpoints of
α, β, γ are xn, ym, zk, respectively, then [α ∗ γ]E = [xn, zk]E and [γ ∗ β]E = [zk, ym]E
with (xn, zk), (zk, ym) ∈ F . This implies that (xn, ym) ∈ F 2 ⊂ E. Next note that

[α ∗ β]E = [α ∗ γ ∗ γ ∗ β]E = [xn, zk, zk, ym]E = [xn, zk, ym]E .

Since (xn, ym) ∈ E, removing zk is a legal move for an E-homotopy, proving that
([α]E , [β]E) ∈ E∗. By the first part of this lemma, d([α]E , [β]E) is preserved by φE .
We know from [20] (and it is easy to verify) that the restriction of φE to any F ∗-ball
is a bijection onto an F -ball, finishing the proof.

Since φE is a local isometry, it preserves the lengths of curves. If X is a geodesic
space then the lifted metric is a geodesic metric and φE is distance non-increasing. In
fact, one can check that in this case the metric we have defined is the unique metric
with these properties (cf. [20], Proposition 23).

3. Refinement and Approximation. The underlying assumption for the main
results in [20] and [21] is that the space in question is a geodesic space. Two fun-
damental issues appear when attempting to extend results from metric entourages in
geodesic spaces to entourages in general. First, there is the issue of refinement. In a
geodesic space, when 0 < δ < ε, any ε-chain α = {x0, ..., xn} can always be “refined”
into a δ-chain that is in the same ε-homotopy class as α. This is accomplished simply
by subdividing a geodesic joining xi and xi+1. Lack of some method of refinement
in some sense “causes” the problems observed in [8] and [37] concerning the HCS in
non-geodesic metric spaces. As we will see, restricting to chained entourages solves
this problem.

The second issue in this generality is that metric entourages are totally ordered
by inclusion, but entourages in general are not. This issue is unavoidable and has
many implications. For example, as soon as there are two entourage covers of a space,
neither of which covers the other, then it is impossible that those two entourage covers
may be simultaneously an ε1-cover and an ε2-cover for a single geodesic metric. Hence
it is generally impossible to realize all entourage covers as ε-covers of a single geodesic
metric. On the other hand, as we will see, Theorem 8 shows that for smooth manifolds
of dimension ≥ 3, every entourage cover is realized as an ε-cover for some Riemannian
metric.

Definition 24. Let X be a uniform space, E ⊂ F be entourages, and α =
{x0, ..., xn} be an F -chain. An E-refinement of α is an E-chain of the form

{x0 = m00, ...,m0k0
= x1, ..., xr = mr0, ...,mrkr

= xr+1, ..., xn}

such that each E-chain {xj = mj0, ...,mjkj = xj+1} lies entirely in B(xj , F ) ∩
B(xj+1, F ).
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Remark 25. As mentioned above, in [20] we defined “ε-refinement” of a δ-chain
α in a geodesic space using subdivisions of geodesics joining sucessive pairs of points
in α. An ε-refinement as defined in that paper is an Eε-refinement in the sense of the
present paper, but due to the special method of construction, not every Eε-refinement
in the present sense (even in a geodesic space) is an ε-refinement in the sense of
[20]. For this reason, we will maintain a distinction between ε-refinements and Eε-
refinements. Note also that we cannot expect existence of ε-refinements even in a
geodesic space if the refinement involves a non-metric entourage E. This is because it
is possible that no geodesic joining a pair (x, y) ∈ E stays inside B(x,E) ∩B(y,E).

Remark 26. There is some potential for confusion because any F -chain α may
be considered as a D-chain when F ⊂ D, and the notion of E-refinement depends on
whether we consider α as an F -chain or a D-chain. That is, an E-refinement when
α is considered as an F -chain is always an E-refinement when α is considered as a
D-chain, but not always conversely.

Remark 27. Note that it is immediate from the defintion in the Introduction
that if E is a chained entourage and F ⊂ E then every E-chain has an F -refinement.
We will see later (Lemmas 33 and 34) that F -refinements do not change the E-
homotopy class and have a size that can be uniformly controlled in any Gromov-
Hausdorff precompact class.

Recall that a subset A of a uniform space X is called chain connected if for
every pair of points x, y ∈ A and entourage E there is an E-chain in A joining x
and y (see [5] and note that this definition is equivalent to what is sometimes known
as uniformly connected in the literature). It is easy to check that connected implies
chain connected but the converse is not true (e.g. the rational numbers). For compact
subsets of uniform spaces, connected and chain connected are equivalent. It is also
easy to check that if X has a basis consisting of entourages with open, connected
balls then X is connected if and only if X is chain connected. In particular, any chain
connected geodesic space is connected.

Remark 28. We are using chain connectedness rather than connectedness not
simply to gain a little extra generality. Chain connectedness is a far more natural
condition in the context of these discrete methods; many arguments are simplified
using it even when the sets in question are ultimately known to be connected; see
for example Lemmas 32 and 33. Two easy-to-check and useful properties of chain
connected sets that are not true for connected sets are: the closure A of a set A is
chain connected if and only if A is chain connected; and the Hausdorff limit of a
sequence of chain connected subsets of a metric space is chain connected.

The next lemma complements the definition in the Introduction, and we will use
it without reference.

Lemma 29. An entourage E in a uniform space is chained if and only if E
is contained in the closure of its interior and for every (x, y) ∈ E there is a chain
connected set C ⊂ B(x,E) ∩B(y,E) that contains x and y.

Proof. Sufficiency is obvious. Suppose that for every (x, y) ∈ E and entourage F
there is an F -chain joining x and y in B(x,E) ∩B(y,E). Let C denote the set of all
points z in B(x,E) ∩ B(y,E) such that for every entourage F , z is joined to x and
to y by an F -chain in B(x,E) ∩ B(y,E). If v, w ∈ C then for any F , we may join v
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to x with an F -chain, then x to y with an F -chain, then y to w with an F -chain, all
of them lying in B(x,E) ∩B(y,E). In other words, C is a chain connected subset of
B(x,E) ∩B(y,E), and since it also contains x, y, the proof is complete.

Remark 30. Note that the above lemma implies that every B(x,E) is chain
connected. This in turn has another important consequence: since E-balls are chain
connected, XE is chain connected and for any F ⊂ E, φEF : XF → XE is surjective
(Proposition 71 in [5]).

We will use the following lemma only in the case of a union of two entourages but
this statement isn’t much harder to prove:

Lemma 31. If {Eα} is a collection of entourages in a uniform space X then

E :=
⋃
α

Eα is an entourage and for any x ∈ X, B(x,E) =
⋃
α

B(x,Eα). In addition,

if each Eα is chained then E is chained.

Proof. Clearly E is an entourage. Now y ∈ B(x,E) if and only if (x, y) ∈ Eα

for some α, which is equivalent to y ∈ B(x,Eα) for some α. This proves B(x,E) =⋃
α

B(x,Eα). Next observe that B(x,E) ∩ B(y,E) contains B(x,Eβ) ∩ B(y,Eβ) for

any β, which itself contains a chain connected set containing x and y because Eβ is
chain connected. It is an exercise in elementary point set topology to show that E is
contained in the closure of its interior.

In a geodesic space, not only does every δ-chain α have an ε-refinement when
δ < ε, we can control its size in terms of ν(α). This is because we may choose points
of distance arbitrarily close to δ along a geodesic joining xi, xi+1, which has length
less than ε. So we may always refine by adding at most δ

ε points between any point
and its successor. For more general chained entourages, we are only able to control
this number in compact spaces (but uniformly in any Gromov-Hausdorff precompact
class).

Lemma 32. Let X be a compact metric space and ε > 0 and A be a subset of X.
If two points in A may be joined by an ε-chain in A then they may be joined by an
ε-chain in A having at most 2C(X, ε

2 ) points.

Proof. If x, y ∈ A may be joined by an ε-chain in A then there is an ε-chain
{x = x0, ..., xn = y} in A with a minimal number of points. Let Z be an ε

2 -dense in X
having C(X, ε

2 ) points. For each xi, choose some zi such that d(xi, zi) <
ε
2 . We claim

that each element of Z can be paired in this way at most twice, which completes the
proof. To prove the claim, suppose that zi = zj for some i < j. Then by the triangle
inequality d(xi, xj) < ε. If j > i + 1 then we could reduce the size of the chain by
eliminating the points xi+1, ..., xj−1, contradicting minimality. In other words, if a
point of Z is used more than once, it must be used for precisely two adjacent points
in the chain.

Lemma 33. Suppose that E is a chained entourage in a compact metric space X,
and Eε ⊂ F ⊂ E for some entourage F and ε > 0. Then every E-chain α has an
F -refinement α′ such that ν(α′) ≤ 2ν(α) · C(X, ε

2 ).

Proof. It suffices to show that an E-chain {x0, x1} has an Eε-refinement of at
most 2C(X, ε

2 ) points; such refinements are also F -refinements and may then be
concatenated for a longer chain. By definition of chained entourage, x0 and x1 lie in
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a chain connected set A contained in B(x0, E)∩B(x1, E), and we may apply Lemma
32 to find an ε-chain {x0 = z0, ..., zn = x1} with n ≤ 2C(X, ε

2 ).

The next lemma, while simple, is important because it says that all refinements
stay in the same E-homotopy class.

Lemma 34. Let X be a uniform space and F ⊂ E be entourages. If α =
{x0, ..., xn} is an F -chain in B(x0, E) then α is E-homotopic to {x0, xn}. In par-
ticular, every F -refinement of an E-chain β is E-homotopic to β and any two F -
refinements of β are E-homotopic.

Proof. Since x2 ∈ B(x0, E), {x0,
︷︸︸︷
x1 , x2...xn} is a legal move. Likewise

{x0,
︷︸︸︷
x2 , x3, ...xn} is a legal move and the proof of the first statement is finished

after finitely many steps. The last statements are immediate consequences of the first
and the definitions.

The next lemma formalizes a process that is a discrete version of the Arzela-Ascoli
Theorem, used several times in this paper and originating in [20].

Lemma 35 (Chain Normalizing). Let X be a compact metric space, E be an
entourage in X with Eε ⊂ E, and αi = {xi0, xi1, ..., xini

} be a sequence of E-chains
of length ≤ L. Then

1. Up to E-homotopy we may assume that ni ≤ 4L
ε or ni = n :=

⌈
4L
ε

⌉
for all i.

2. By choosing a subsequence if necessary we may assume that for all 0 ≤ j ≤ n,
xij → xj for some xj ∈ X.

Proof. For any i, choose some representative of [αi]E of length Li ≤ L. We may
assume that the maximum number of values d(xij , xi(j+1)) that are smaller than ε

2 is
at most ni

2 . Otherwise there would have to be two consecutive distances smaller than
ε
2 and we could remove one point while staying in the same E-homotopy class and not

increasing length. In other words, L ≥ Li ≥ ni

2 · ε
2 and we conclude that ni ≤ 4L

ε for

all i. Now by adding repeated points, if needed, we may ensure that ν(αi) =
⌈
4L
ε

⌉
.

The second part is an immediate consequence of compactness.

For many problems it is important to have some version of “close E-chains are
E-homotopic”. Proposition 36 is analogous to Proposition 15 in [20], using E = Eε

and F ⊂ E ε
2
. The proof here uses the same homotopy steps as the one in [20], but

due to the differences in assumptions we write out a full proof here.

Proposition 36. Let X be a uniform space, E be an entourage, and F be an
entourage such that F 2 ⊂ E. If α = {x0, ..., xn} is an F -chain and β = {x0 =
y0, ..., yn = xn} is a chain such (xi, yi) ∈ F for all i, then β is an E-chain that is
E-homotopic to α.

Proof. We will construct an E-homotopy η from α to β, using the fact that
F 2 ⊂ E to see that in each step that the resulting chain is an E-chain, i.e. the step is
legal. For example, the first step in the second line below is justified by the fact that
(x0, x1) ∈ F and (x1, y1) ∈ F , so (x0, y1) ∈ F 2 ⊂ E. The remaining justifications are
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similar.

α = {x0, x1, ..., xn} → {x0,
︷︸︸︷
x1 , x1, ..., xn} → {x0, x1,

︷︸︸︷
y1 , x1, ..., xn}

→ {x0, x1︸︷︷︸, y1, x1, ..., xn} → {x0, y1, x1︸︷︷︸, x2, ..., xn}

→ {x0, y1,
︷︸︸︷
x2 , x2, ..., xn} → {x0, y1, x2,

︷︸︸︷
y2 , x2, ..., xn}

→ {x0, y1, x2︸︷︷︸, y2, x2, ..., xn} → {x0, y1, y2, x2︸︷︷︸, x3, ..., xn} → · · · → β

Proposition 37. Let X be a metric space and E be a chained entourage. Suppose
that αi := {x0 = xi0, ..., xin = xn} is a sequence of E-chains converging to α =
{x0, ..., xn}. Then α is an E-chain such that for all sufficiently large i, αi is E-
homotopic to some (hence any) E-refinement of α.

Proof. The Ball Continuity Lemma (Lemma 21) implies that α is an E-chain.
Note that in any metric space and for any 0 < ε < δ, by continuity of the distance
function,

Eε ⊂ {(x, y) : d(x, y) ≤ ε} ⊂ Eδ.

In particular we may find some closed entourage F such that F 2 ⊂ E. Let α′
i be an

F -refinement of α for every i. Since ν(αi) = n for all i, L(αi) → L(α) and hence
{L(αi)} is bounded. By the Chain Normalizing Lemma (Lemma 35) we may suppose
that for some fixed k, and for all i,

α′
i = {xi0 = mi

00, ...,m
i
0k = xi1, ..., xir = mi

r0, ...,m
i
rk = xr+1, ..., xn}

and that for all j,m, mi
mj → mmj , for some mj ∈ X. In addition,

α′ := {x0 = m00, ...,m0k = x1, ..., xr = mr0, ...,mrk = xr+1, ..., xn}

is an F -chain since F is closed. By the Ball Continuity Lemma (Lemma 21), each
mjk lies in B(xj , E) ∩ B(xj+1, E) and therefore α′ is an F -refinement, hence an E-
refinement, of the E-chain α. For all large enough i and all j,m, (mi

mj ,mmj) ∈ F , and
Proposition 36 tells us that α′

i is E-homotopic to α′. Since each αi is E-homotopic
to α′

i by Lemma 34, the proof is complete.

Corollary 38. Let X be a metric space and E be a chained entourage. Suppose
that αi := {xi0, ..., xin = xi0} is a sequence of E-loops converging to an E-loop α =
{x0, ..., xn = x0}. Then for all sufficiently large i, αi is freely E-homotopic to some
(hence any) E-refinement of α.

Proof. Let β = {∗ = y0, ..., ym = x0} be any E-chain. Then for large enough i,
(x0, xi0) ∈ E and therefore

α′
i := {∗ = y0, ..., x0, xi0} ∗ αi ∗ {xi0, x0, ..., y0 = ∗}

is an E-loop at ∗. Then α′
i → α′ := β ∗ α ∗ β and by Proposition 37, for all large

i, α′
i is E-homotopic to any E-refinement of the E-loop α′. By definition of freely

E-homotopic, the proof is finished.

Remark 39. While we will not need it here, in analogy with the notion of “proper
metric space” (meaning all closed metric balls are compact), one could define a “proper
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uniform space” to be a uniform space Y such that Y × Y has a basis of, and is the
countable union of compact entourages. Of course covering spaces of a compact space
X may not be compact, but one can show that XE is still a proper uniform space for
any chained entourage E. Proposition 37 and various other results in this paper may
be applied to proper uniform spaces.

4. Curves and the Fundamental Group. Many of the next few results extend
basic theorems concerning covering space theory both discrete and classical, with φE

playing the role of the universal covering map. The standard proofs of some of these
results in the classical theory use the homotopy lifting property, which one could try
to emulate here: i.e. lifting F -homotopies to F ∗-homotopies in XE . However, it is
not clear whether this approach is worth the effort. For the results we need, we are
able to get by only with chain lifting. See also [36] for some lifting results concerning
ε-chains in geodesic spaces.

Lemma 40 (Chain Lifting). Let X be a uniform space and E be an entourage.
Suppose that β := {x0, ..., xn} is an E-chain and [α]E is such that φE([α]E) = x0.

Let yi := [α ∗ {x0, ..., xi}]E. Then β̃ := {y0 = [α]E , y1, ..., yn = [α ∗ β]E} is the unique

“lift” of β to [α]E. That is, β̃ is the unique E∗-chain in XE starting at [α]E such

that φE(β̃) = β.

Proof. Since the endpoint of α ∗ {x0, ..., xi} is xi, φE(yi) = xi; i.e., φE(β̃) = β.

Also, by definition of E∗, β̃ is an E∗-chain (in fact this is easiest to see using the
original definition from [5], see Remark 19). So we need only show uniqueness, which
we will prove by induction on n. For n = 0, the starting point [α]E is determined
by assumption, so {[α]E} is the unique lift. Suppose we have proved the statement
for n − 1. Then given β = {x0, ..., xn} and using the above notation we know that
{y0, ..., yn−1} is the unique lift of {x0, ..., xn−1}. But we already know that φE is
injective from B(yn−1, E

∗) onto B(xn−1, E) and therefore xn has a unique preimage
in B(yn−1, E

∗). Therefore yn, which lies in B(yn−1, E
∗) and satisfies φE(yn) = xn, is

the only possibility.

Lemma 41. Let X be a uniform space and E be an entourage. Let [λ]E ∈ πE(X)
and [α]E ∈ XE. Then considering [λ]E as a deck transformation of XE, [λ]E([α]E)
is the endpoint of the lift of α starting at [λ]E in XE. In particular, the unique lift of
α starting at the basepoint ends at [α]E.

Proof. By definition, [λ]E([α]E) = [λ ∗ α]E , which by the Chain Lifting Lemma
(Lemma 40) is the endpoint of the lift of λ ∗ α to [∗]E . But by uniqueness this is the

endpoint of the lift of α starting at the endpoint z of the lift λ̃ of λ starting at [∗]E .
By the Chain Lifting Lemma, z = [λ]E , completing the proof.

We also need to extend the definition of “stringing” from [20], which among other
things allows us to understand the relationship between the fundamental group and
the groups πE(X). Note that the definition below is slightly stronger than the one in
[20], but the new one is more natural and necessary for the current paper; replacing
the definition in [20] by the new one would have essentially no impact on [20].

Definition 42. Let α := {x0, ..., xn} be an E-chain in a metric space X, where
E is an entourage in a uniform space. A stringing of α consists of a path α̂ formed by
concatenating paths γi from xi to xi+1 where each path γi lies entirely in B(xi, E) ∩
B(xi+1, E). Conversely, let c : [0, 1] → X be a curve. An E-subdivision of c is an
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E-chain β = {c(t0), ..., c(tn)}, where 0 = t0 ≤ · · · ≤ tn = 1 are such that c is a
stringing of β.

Remark 43. Note that, unlike the typical definition of partitions, our definition of
E-subdivision allows “repeated points” (as do chains in general) due to the inequality
ti ≤ ti+1. This simplifies matters, for example when considering limits of chains and
curves.

Lemma 44. If X is a metric space, c : [0, 1] → X is a curve and E is an
entourage in X, then c has an E-subdivision. Moreover, any two E-subdivisions of c
are E-homotopic and curves c1 and c2 with the same endpoints are E-homotopic if
and only if any E-subdivision of c1 is E-homotopic to any E-subdivision of c2.

Proof. For existence, it suffices to find an Eε-subdivision for some Eε ⊂ E.
Since c is uniformly continuous there exists some δ > 0 such that if |s− t| < δ
then d(c(s), c(t)) < ε. Now subdivide [0, 1] into intervals of length less than δ with
endpoints t0 = 0 < t1 < · · · < tn = 1. Then the image of the restriction of c to
any interval [ti, ti+1] lies entirely in B(c(ti), ε) ∩ B(c(ti+1), ε) and hence the ε-chain
{c(t0), ..., c(tn)} is an Eε-subdivision.

For the second statement, suppose that α1, α2 are E-subdivisions of c, correspond-
ing to partitions τ1, τ2 of [0, 1]. We claim that s = τ1 ∪ τ2 has the property that if
s = {s0 ≤ ··· ≤ sm} then α := {c(s0), ..., c(sm)} is an E-refinement of both α1 and α2.
This will complete the proof by Lemma 34. Moreover, by symmetry it suffices to show
that α is an E-refinement of α1. Consider some ti ≤ ti+1 ∈ τ1, and suppose that for
some j ≤ k, ti ≤ sj ≤ · · · ≤ sk < ti+1 with sm ∈ τ2. Since α1 is an E-subdivision of c,
the restriction of c to [ti, ti+1] lies entirely in B(c(ti), E)∩B(c(ti+1), E) and hence each
of the points c(sm), which are the added points of α2, lie in B(c(ti), E)∩B(c(ti+1), E).
This shows that α is an E-refinement of α1, as required.

Lemma 45. Suppose that X is a Peano continuum, E is a chained entourage and
α is an E-chain. Then for some chained entourage F ⊂ E, α has an F -refinement
with a stringing. In particular, [α]E contains a representative with a stringing.

Proof. Let X have a geodesic metric (by the Bing-Moise Theorem). Since E is a
chained entourage, there is some Eε-refinement β = {x0, ..., xn} of α when Eε ⊂ E.
Now xi and xi+1 may be joined by a geodesic, which remains inside B(xi, Eε) ∩
B(xi+1, Eε) ⊂ B(xi, E) ∩ B(xi+1, E). The concatenation of these geodesics is an
F -stringing, hence an E-stringing of β.

Remark 46. Note that the stringing of β in the above lemma may not be a
stringing of α since there is no reason why the concatenated curve must lie inside
B(yi, E) ∩ B(yi+1, E), where yi and yi+1 are consecutive points in α. Note also that
the proof of the lemma only requires that X be a uniform space with a uniformly
equivalent geodesic metric–for example any smooth, possibly non-compact, manifold
with the uniform structure given by a particular Riemannian metric.

Definition 47. If c1, c2 are curves in a uniform space starting and ending at
the same point,and E is an entourage, we say that c1 and c2 are E-homotopic (resp.
freely E-homotopic) if there exist E-subdivisions κi of ci, that are E-homotopic (resp.
freely E-homotopic).

Lemma 48. Let E be an entourage in a uniform space X and c1, c2 be curves
starting and ending at the same point. Then c1 and c2 are E-homotopic if and only
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if one lift (equivalently any lifts) of c1 and c2 to XE starting at the same point end at
the same point. In particular, a curve c lifts as a loop to XE if and only if c is freely
E-null.

Proof. By arguments analogous to standard ones for covering space theory involv-
ing concatenations and uniqueness of lifts, the entire statement reduces to showing
the following: If c is a loop at the basepoint then c lifts as a loop at the basepoint if
and only if it is E-null. Let λ := {∗ = c(t0), ..., c(tn) = ∗} be a E-subdivision of c.

By the Chain Lifting Lemma its unique lift λ̃ starting at the basepoint ends at [λ]E ,

i.e. λ̃ is a loop if and only if λ, hence c, is E-null.

The next two statements are extensions of [20], Proposition 20 and Corollary 21,
replacing ε by E or E∗ as appropriate. Note only that E is not assumed to be chained,
so that XE may not be connected (and we are not guaranteed that stringings exist).
But this does not affect the statement or arguments.

Proposition 49. Let E be an entourage in a uniform space X and α be an
E-chain starting at the basepoint. Then the unique lift of any stringing α̂ starting at
the basepoint [∗]E in XE has [α]E as its endpoint.

Proof. By uniqueness in the Chain Lifting Lemma and the second statement in
Lemma 41, it suffices to show that if c : [0, 1] → X is a stringing of α := {x0, ..., xn}
with xi = c(ti), and c̃ is the unique lift of c to the basepoint, then {c̃(t0), ..., c̃(tn)}
is an E∗-chain. But by definition, for any i, the segment of c from xi to xi+1 lies
entirely in B(xi, E), so lifts into B(c̃(ti), E

∗), proving that (c̃(ti), c̃(ti+1)) ∈ E∗.

The next corollary now follows from the homotopy lifting property for covering
spaces, verifying that homotopies of curves are “stronger than” E-homotopies. Recall
that even with a chained entourage in a geodesic space we are not guaranteed that
stringings exist, but Lemma 45 tells us we can always find a stringing of an E-
homotopic E-chain.

Corollary 50. Let E be an entourage in a metric space X and α, β be E-
chains. If there exist stringings α̂ and β̂ that are path homotopic then α and β are
E-homotopic.

Corollary 51. Let X be a Peano continuum, λ = {x0, ..., xn} be an E-loop,
and ci be a path from xi to xi+1, denoting by c the concatenation of those paths. If
the lift of c to any point [α]E in XE ends at [α ∗ λ]E, then c is E-homotopic to some,
hence any stringing of λ.

Proof. The statement and the proof use the Chain Lifting Lemma (Lemma 40),
and we will use it without further explicit reference. First, in order for the hypothesis
to make sense, α must be an E-chain from the basepoint to x0. By Lemma 45, up
to E-homotopy we may let α̂ be a stringing of α. Then λ̂ ∗ α̂ is a stringing of λ ∗ α.
According to Proposition 49, the endpoint of the unique lift

˜̂
λ ∗ α̂ of λ̂ ∗ α̂ is [λ ∗α]E .

By assumption, the lift c̃ of c to [α]E also ends in [λ ∗ α]E . By Lemma 48, λ̂ ∗ α̂ is

E-homotopic to c ∗ α̂ and therefore c is E-homotopic to λ̂ as required.

The above Corollary is useful because it “frees us” from having to rely on string-
ings in some situations; for example the next proposition is useful in the proof of
Theorem 69.

Proposition 52. Let X be a geodesic space and E be a chained entourage. Then
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1. If λ is an E-loop then there is a curve loop c such that some (hence any)
E-subdivision of c is E-homotopic to λ and L(c) = L(λ).

2. Conversely, if c is a curve loop then there is an E-loop λ such that L(c) = L(λ)
and λ is E-homotopic to some (hence any) E-subdivision of c.

Proof. For the first part, let XE have the lifted geodesic metric (see the end of

the second section). Let λ̃ be the unique lift of λ at a point [α]E ∈ XE , which is an

E∗-chain. By Lemma 23, L(λ̃) = L(λ). Since XE is a geodesic space we may join

each point in λ̃ to its successor by a geodesic, concatenating to produce a curve c̃ such
that L(c̃) = L(λ̃) = L(λ). Since φE preserves the lengths of curves, c := φE(c̃) has
the same length as λ. Moreover, the endpoint of c̃, which by uniqueness is the lift of
c at [α]E , is by construction the same as the endpoint of λ̃. That endpoint is equal
to [α ∗ λ]E by Proposition 49.

Now let λ′ be any E-subdivision of c; that is, c is a stringing of λ′. Again by
uniqueness of lifts, the lift λ̃′ of λ′ at [α]E lies on c and also ends at [α ∗ λ]E . By
Proposition 49, [α ∗ λ′]E = [α ∗ λ]E , and hence [λ′]E = [λ]E , completing the proof of
the first part.

For the second part, let F be an open entourage contained in E begin with any
F -subdivision ω of c. By definition of the length of a curve L(ω) ≤ L(c). If the
lengths are equal, we are finished. Otherwise, suppose that δ := L(c)−L(ω) > 0 and
choose any point xi and its successor xi+1 on ω. Since F is open we may choose n
large enough that, setting ε := δ

2n , B(xi, F )∩B(xi+1, F ) contains B(xi, 2ε). Because

the space is geodesic, we may pick a point z ∈ B(xi, 2ε) so that d(xi, z) = δ
2n (for

example just apply the Intermediate Value Theorem to any geodesic from xi to xi+1).
Now we make the following legal moves for an E-homotopy:

{xi,
︷︸︸︷
z , xi+1 → {xi, z,

︷︸︸︷
xi , xi+1 → {xi, z, xi,

︷︸︸︷
z , xi+1

→ {xi, z, xi, z,
︷︸︸︷
xi , xi+1 → · · ·

Each pair of moves, adding z then xi, increases the length of λ by precisely 2δ.
Therefore after n such moves we have attained precisely L(c).

Note that the next statement is not true when replacing “E-homotopic” with
“homotopic”, for example if the space is not semi-locally simply connected.

Proposition 53. Let ci : [0, 1] → X be a sequence of curves in a compact metric
space X of uniformly bounded length, uniformly convergent to c : [0, 1] → X, and let
E be any chained entourage.

1. If the ci have the same start and endpoints then ci is E-homotopic to c for
all large i.

2. If the ci are closed then ci is freely E-homotopic to c for all large i.

Proof. If the statement were not true then we could, by taking a subsequence,
assume that for all i, ci is never E-homomotopic to c. Let ε > 0 be such that
Eε ⊂ E. For every i, let λi = {x0i = ci(0), x1i = ci(t1i), ..., xnii = ci(1)} be an
Eε-subdivision of ci, where 0 ≤ t1i ≤ · · · ≤ t(ni−1)i ≤ 1. By Lemma 33, we may
assume that these chains have bounded length, and hence we may apply the Chain
Normalizing Lemma (Lemma 35). That is, we may assume that ni = n for some fixed
n and all i, and xji → xj for some xj , for all j. Since ci converges uniformly to c,
xj = c(tj) for some tj ∈ [0, 1] with 0 ≤ t1 ≤ · · · ≤ tn = 1. We will next show that
λ = {x0, ..., xn} is an Eε-subdivision, hence an E-subdivision, of c. Let cji denote
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the restriction of ci to [tji, t(j+1)i]; by definition of subdivision, the image of cji lies in
B(xji, E)∩B(x(j+1)i, E). Since {ci} converges uniformly, the Ball Continuity Lemma
(Lemma 21) implies that if cj denotes the restriction of c to [tj , tj+1] then cj lies in
B(xj , Eε) ∩B(xj+1, Eε). This shows that λ is an Eε-subdivision of c. It now follows
from Proposition 37 that λ is an Eε-loop, hence an E-loop that is ε-homotopic (hence
E-homotopic) to λi for all large i. That is, ci is E-homotopic to c, completing the
proof of the first part.

The proof of the second part is the same as the proof of the first, using Corollary
38 rather than Proposition 37.

Remark 54. We do not need it for this paper, but the above statement may be
proved with a little more work without the condition that the curves have uniformly
bounded length. The idea is that even if the curves do not have uniformly bounded
length, the fact that the convergence is uniform allows one to divide any ci into a
concatenation of segments, the number of which is uniformly bounded and each of
which lies in an ε

2 -ball. Each of those segments then has an Eε-subdivision consisting
only of two points, and those together provide an Eε-subdivision of ci with length
bounded independent of i.

The next definition extends a notion from [20]:

Definition 55. If X is a uniform space and E is an entourage, an E-loop of
the form λ = α ∗ τ ∗α, where ν(τ) = 3, will be called E-small. Note that this notation
includes the case when α consists of a single point–i.e. λ = τ . In this case, we will
call λ an E-triad.

Note that any E-small loop is E-null since two of the points in τ may be removed
one by one, followed by the points in α and α.

The next essential proposition is an extension of Proposition 29 in [20], with
a similar proof (essencially replacing ε by E and δ by D). However, we write out
the complete proof here so it is clear how our new definition of refinement is used
(including the obvious fact that the reversal of a refinement is a refinement).

Proposition 56. Let X be a uniform space, D be a chained entourage in X and
E ⊂ D be an entourage. Suppose α, β are E-chains and 〈γ0, ..., γn〉 is a D-homotopy
such that γ0 = α and γn = β. Then [β]E = [λ1 ∗ · · · ∗ λr ∗ α ∗ λr+1 ∗ · · · ∗ λn]E, where
each λi is an E-refinement of a D-small loop.

Proof. We will prove by induction that for every k ≤ n, an E-refinement γ′
k of γk

is E-homotopic to λ1 ∗ · · · ∗α ∗ · · · ∗λk, where each λi is an E-refinement of a D-small
loop. Since the E-refinement γ′

nof γn = β is E-homotopic to β (Lemma 34), this will
complete the proof.

The case k = 0 is trivial. Suppose the statement is true for some 0 ≤ k < n.
The points required to E-refine γk to γ′

k will be denoted by mi. Suppose that γk+1 is
obtained from γk by adding a point x between xi and xi+1. Let {xi, a1, ..., ak, x} be
an E-refinement of {xi, x} and {x, b1, ..., bm, xi+1} be an E-refinement of {x, xi+1},
so

γ′
k+1 := {x0,m0, ..., xi, a1, ..., ak, x, b1, ..., bm, xi+1,mr, ..., xj}

is an E-refinement of γk+1. Defining μk+1 := {x0,m0, ..., xi} and

κk+1 = {xi, a1, ..., ak, x, b1, ..., bm, xi+1,mr, ..., xi}
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we have

[
γ′
k+1

]
E
= [μk+1 ∗ κk+1 ∗ μk+1 ∗ γ′

k]E

and since the homotopy is aD-homotopy, λk+1 := μk+1∗κk+1∗μk+1 is an E-refinement
of a D-small loop. The case when a point is removed from γk is similar, except that
the refined D-small loop is multiplied on the right.

Corollary 57. Let X be a uniform space, D be a chained entourage in X and
E ⊂ D be an entourage. Then ker θDE is equal to the subgroup of πE(X) generated
by all E-homotopy classes of E-refinements of D-small loops.

Proof. It follows from Proposition 56 that every element of ker θED (i.e. an E-
homotopy class of an E-loop that is D-null) is a product of E-homotopy classes of E-
refinements of D-small loops. On the other hand, any concatenation of E-refinements
of D-small loops is D-null and hence its E-homotopy class is in ker θDE .

Further extending the results of [20] we define for any entourage E in a met-
ric space X, a map from fixed-endpoint homotopy classes of continous paths to E-
homotopy classes of E-chains as follows. Suppose c : [0, 1] → X is continuous. We set
ΛE([c]) := [α]E , where α is any E-subdivision of c. By Lemma 44, ΛE is well-defined.
Note that if E is a chained entourage then by Lemma 45 every E-chain α may be
assumed, up to E-homotopy, to have a stringing α. By definition ΛE(α) = [α]E ; that
is, ΛE is surjective. Restricting ΛE to the fundamental group at any base point yields
a homomorphism π1(X) → πE(X) that we will also refer to as ΛE .

Continuing to assume that E is a chained entourage, fix a basepoint and suppose
that [c] ∈ kerΛE . In other words, any E-subdivision {c(t0), ..., c(tn) = c(t0)} := λ is
E-null. Taking D = E in Proposition 56, we see that λ is E-homotopic to a product of
E-small E-loops. Since ΛE is a homomorphism, c is homotopic to the concatenation
of stringings of E-small loops. We have shown:

Theorem 58. Let X be a Peano continuum that has a (compatible) geodesic met-
ric and E be a chained entourage. Then for any basepoint, ΛE : π1(X) → πE(X) is a
surjective homomorphism and kerΛE is the subgroup of π1(X) generated by homotopy
classes of stringings of E-small loops.

Remark 59. The above theorem actually only requires that X have a geodesic
metric compatible with the uniform structure, see Remark 46.

Remark 60. Note that one may also restrict ΛE to the set of equivalence classes
of curves starting a fixed basepoint, which is by definition the universal covering space
of X when X is semi-locally simply connected. According to Theorem 26.2 in [20], if X
is a compact, semi-locally simply connected geodesic space, then ΛEε : π1(X) → πε(X)
is length preserving when ε is a lower bound for HCS. That is, ΛEε

restricts to a

bijection from the universal cover X̃ of X to Xε. That is, we may identify the universal
cover X̃ of X with Xε and π1(X) with πε(X).

Remark 61. In the above theorem we see a hint of the relationship between our
construction and the construction of Spanier used by Sormani-Wei, referred to in the
Introduction. For a metric entourage Eε in a geodesic space, we may take stringings
using geodesics, and such geodesics always remain in B(xi,

3ε
2 ). That is, kerΛEε is

precisely the Spanier subgroup used by Sormani-Wei, and this is how the equivalence
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of ε-covers and δ-covers was proved in [21]. One could take the Sormani-Wei use of
Spanier a bit farther by applying it to the covering of a space by entourage balls for
a fixed entourage, but it seems unlikely that the resulting covering maps would not be
equivalent to entourage covers as we have defined them.

Remark 62. As for basepoints, as was observed in [5], as long as X is chain
connected, the various groups and homomorphisms defined above are independent of
the basepoint, up to natural isomorphisms induced by basepoint change. This is why we
have not included basepoints in our notation. When necessary we can always assume
that all mappings are basepoint-preserving (take basepoints to basepoints).

5. Properties of Entourage Covers. Two chained entourages E1, E2 in a
uniform space will be called equivalent if φE1 and φE2 are equivalent as covering
maps.

Proposition 63. Let X be a uniform space, D ⊂ E be chained entourages, G
be a normal subgroup of πD(X), and π : XD → XD/G = Y be the quotient covering
map. Then there is a covering map h : XE → Y such that h ◦ φED = π if and only if
ker θED ⊂ G. In particular, the cover φE : XE → X and the induced cover φ : Y → X
are equivalent if and only if G = ker θED.

Proof. If ker θED ⊂ G then as mentioned in the background section just prior to
Lemma 21, we have XE = XD/ ker θED and so G/ ker θED acts properly discontinu-
ously on XE with quotient space naturally identified with XD/G (cf. Theorem 1.6.11
in [34]). That is, the quotient map

h : XE = XD/ ker θED → XE/(G/ ker θED) = XD/G = Y

is a (regular) covering map that by definition satisfies h ◦ φED = π.
Conversely, suppose that there is a covering map h : XE → Y such that h◦φED =

π. By composing with a covering equivalence we may suppose that h is basepoint
preserving. Now suppose that θED([λ]D) = [∗]E . Then since h is basepoint preserving,
h ◦ θED([λ]D) = π([∗]D). That is, [λ]D ∈ π−1(π([∗]E) = G.

Corollary 64. Let D, E, F be chained entourages in a uniform space X with
D ⊂ E ∩ F . Then

1. E and F are equivalent if and only if ker θED = ker θFD.
2. There is a non-trivial covering map h : XE → XF if and only if there is some

F -triad with a D-refinement that is not E-null.

Proof. The first statement is an obvious consequence of Proposition 63, which
also says that there is a non-trivial covering map h : XE → XF if and only if ker θED

is a proper subset of ker θFD. Equivalently, there is a D-loop λ that is F -null but not
E-null. Equivalently, by Proposition 56,

[λ]D = [λ1 ∗ · · · ∗ λn]D

where each λi is a D-refinement of an F -small loop, at least one of which is not E-null.
The proof is now finished by the definition of F -small.

Remark 65. Corollary 64 can be considered as an extension of Corollary 31 in
[5] to include the situation when neither E nor F may be contained in the other, but
there is a covering equivalence between φE and φF .
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Theorem 66. If X is a geodesic space and ε > 0 then there is a set S ⊂ πε(X)
with |S| ≤ C(X, ε

4 )
40C(X, ε2 ) such that if E is a chained entourage with Eε ⊂ E then

ker θEEε is the normal closure of some subset of S.

Proof. Let S be the set of all [β]ε ⊂ πε(X) such that L(β) ≤ 10εC(X, ε
2 ). By

Theorem 3.2 of [20] |S| ≤ C(X, ε
4 )

40C(X, ε2 ). Therefore we need only prove that for
any such E, ker θEEε

is the normal closure of a set of elements of length at most
10εC(X, ε

2 ). By Corollary 57, ker θEEε is equal to the subgroup of πε(X) generated
by the collection of all [α ∗ τ ∗α]ε where τ is an Eε-refinement of an E-triad. But it is
an easy algebraic argument that this means that ker θEEε

is the normal closure of ele-
ments of the form [ατ ∗ τ ∗ ατ ]ε, where (1) τ is an element of a set Γ of Eε-refinements
of E-triads that contains exactly one representitive of each free Eε-homotopy class
of Eε-refinements of E-triads, and (2) ατ is any ε-chain from the basepoint to the
start/end point of τ . In fact, any generator of ker θEEε is conjugate to some such
[ατ ∗ τ ∗ ατ ]ε.

According to Lemma 32 the chains ατ from the above paragraph may be chosen
to have at most 2C(X, ε

2 ) points. Likewise, we may produce an Eε-subdivision of τ
having at most 6C(X, ε

2 ), and therefore there are Eε-refinements of the E-small loops
ατ ∗ τ ∗ατ having at most 10C(X, ε

2 ) points and hence length at most 10εC(X, ε
2 ).

Theorem 1 now follows from Theorem 66 and Proposition 64.

Proof of Theorem 3. Suppose that σ is any value of CS. By definition the corre-
sponding σ-cover is not equivalent to any δ-cover for δ > σ. Now suppose that E is
an entourage that contains Eδ for some δ > σ. Then φEEσ

= φEδE ◦ φEδEσ
and since

φEδEσ
is not injective (and all maps are surjective), φEEσ

is not either. That is, there
is at least one chained entourage (namely Eσ) that contains Eσ and is not equivalent
to any E with σ(E) > σ, hence σ ∈ ECS.

Now letX be a flat torus of dimension≥ 3. Then π1(X) contains infinitely distinct
finitely generated subgroups, each of which is is the normal closure of a finite set (since
π1(X) is abelian). According to Corollary 9, X has infinitely many entourage covers.
Theorem 1 now implies that ECS is infinite. But since X is a compact Riemannian
manifold, CS is finite.

Proof of Theorem 5. We may assume that X is a geodesic space by the Bing-
Moise Theorem. Since X is semilocally simply connected, Corollary 43 of [20] implies
that for all sufficiently small ε, φε : Xε → X is the universal covering map of X and
πε(X) = π1(X). By definition, φE is the covering map corresponding to kerEEε and
the proof of Theorem 5 is finished by Theorem 66.

Remark 67. In [5], Theorem 37, Berestovskii-Plaut showed that for any en-
tourage E in a compact uniform space, if φE is chain connected (which is true when
E is chained according to our new definition) then πE(X) is finitely generated. Essen-
tially the same argument as the proof of Theorem 5, together with Remark 6, shows
that if X is a Peano continuum and E is a chained entourage then πE(X) is in fact
finitely presented.

We need some facts from [20] and [21] concerning essential circles, along with a
new result (Proposition 68). Essential circles are defined (Definition 5, [20]) to be
continuous paths of length L that are not ε-null for ε = L

3 (we may also refer to it as
an essential ε-circle). According to Lemma 33, [20] this means that essential circles are
characterized as curves of positive length that are shortest in their ε-homotopy class
for some ε. Essential circles are special closed geodesics that are miminal on half their
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length (“2-geodesics” in the parlance of Sormani-Wei, L
2 -geodesics in our terminology)

whose lengths are three times the lengths of the values in HCS, or equivalently 2
3 the

values of CS ([20], Theorem 6). If C is an essential ε-circle then any triple of points
T = {x0, x1, x2} on C such that d(xi, xj) = ε when i �= j is an essential ε-triad (or
just essential triad when ε is unspecified), meaning that no ε-subdivision of T is ε-null.
Essential triads are characterized by the fact that if the points on them are joined by
geodesics the resulting curve is an essential circle. To summarize, essential triads are
precisely the discrete analogs of essential circles: adding “edges” to an essential triad
creates an essential circle, and any triad of equally spaced points on an essential circle
is an essential triad.

Two essential triads τ1, τ2 are said to be equivalent if they are both essential
ε-triads for some ε > 0, and some, hence any ε-subdivision of τ1 is ε-homotopic to
an ε-subdivision of τ2 or τ2. Two essential circles are said to be equivalent if the
corresponding essential triads are equivalent (see [20] for more details). As we will
now show, the smallest essential circles are generally easiest to find.

Proposition 68. Let X be a compact geodesic space that is semilocally simply
connected. If c is a path loop that is not null-homotopic and whose length is equal to
the 1-systole σ1 of X (i.e. the length of the shortest curve that is not null-homotopic)
then c a shortest essential circle. Moreover, any two shortest essential circles are
equivalent if and only if one is freely homotopic to the other or its reversal.

Proof. The fact σ1 is positive and is the shortest possible length of any essential
circle is part of Corollary 43 in [20]. It follows from Theorem 6 in [20] that there is
at least one essential circle of length σ1. Now suppose that c is not null-homotopic
of length σ1. Taking ε := σ1

3 , to show c is an essential circle we need only show that
it is not ε-null. Suppose it were; that is, some ε-subdivision λ of c must be ε-null.
Taking δ = ε in Proposition 30 of [20] (which is analgous to Proposition 56 in the
present paper), for some choice of α, α ∗ λ ∗ α is ε-homotopic to a product of ε-small
ε-loops, one of which must not be ε-null. But recall that an ε-small loop is of the
form β ∗ τ ∗ β, where τ = {x0, x1, x2, x0} satisfies d(xi, xj) < ε for all i, j. But such a
τ is necessarily ε-null, a contradiction.

Next, suppose that c1, c2 are equivalent shortest essential circles. Reversing c2, if
necessary, this means that for ε = σ1

3 , some essential triad τi on ci has an ε-subdivision
τ ′i that is ε-homotopic to τ ′j for j �= i. That is, c1 is ε-homotopic to c2. By Theorem
26 of [20], Xε is the universal covering space of X, meaning that two loops lift to
a loop in Xε if and only if they are homotopic. But the same statement is true for
ε-homotopic curves by Proposition 49, completing the proof.

In [21], Theorem 27, when 0 < δ < ε, we showed that φεδ : Xδ → Xε is character-
ized as the quotient map of Xδ via the (normal) subgroup Kε(T ) of πε(X) generated
by all ε-loops of the form α ∗ τi ∗ α, where is in a set T = {τ1, ..., τk} containing ex-
actly one essential triad τi representing each equivalence class of essential μ-triads
with ε ≤ μ < δ. Via the argument in the proof of Theorem 66, Kε(T ) is in fact the
normal closure of the finite set of all αi ∗ τi ∗ αi for any specific choice of ε-chain αi.

Proof of Theorem 8. In [10], DeSmit, Gornet, and Sutton introduced (Definition
2.3) the notion of a length map on a group H with identity 1, namely a function
m : H → R+ such that (a) m is positive except m(1) = 0, (b) m(hgh−1) = m(g) for
all g, h ∈ H, and (c) m(gk) ≤ |k|m(g) for all g ∈ H and k ∈ Z. A particular example
of a length map is what Sormani-Wei ([28]) called the Minimum Marked Length
Map mg on a manifold with Riemannian metric g: mg assigns to each element of
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the fundamental group the length of the shortest curve its free homotopy class. So
the values of mg are precisely MLS. We will need Theorem 2.9 of [10], which we
will describe in a weaker simplified form using Example 5.5 [10], and we will shift
the subscripts to improve the exposition for our purposes. Let M be a Riemannian
manifold of dimension at least 3. Let F(M) denote the collection of un-oriented free
homotopy classes of loops in M . Suppose that {c0, ..., ck} is a set of distinct elements
of F(M) with c0 trivial, and l0 = 0 < l1 ≤ · · · ≤ lk is a sequence of real numbers such
that 2l1 ≥ lk. Then by Theorem 2.9 and Example 5.5 of [10] there is a Riemannian
metric g on M such that mg(ci) = li for all i and mg(c) ≥ lk otherwise. In other
words, one may prescribe the length of the shortest geodesic in the free homotopy
class of all ci, and force all other values of MLS to be at least lk.

Suppose that G is the normal closure of a finite set {g1, ..., gk−1}, all distinct and
none of which is trivial. If G is equal to π1(M) then the corresponding covering map is
trivial, hence an ε-cover for any Riemannian metric. Assume there is some nontrivial
gk /∈ G. Now let c0 be the trivial free homotopy class and for each 1 ≤ i ≤ k let ci
be the free homotopy class of some, hence any loop in gi. Define l0 := 0, lk = 1.5 and
li = 1 for i = 1, ..., k − 1. By Example 5.5 in [10] (noting that our indexing begins
with 0 rather than 1) and Theorem 2.9 of [10] there is Riemannian metric g on M
such that mg(ci) = 1 for all i �= 0, k and mg(c) ≥ 1.5 for every free homotopy class
c �= ci for any i < k. Let κi be shortest curves representing each ci with 1 ≤ i ≤ k−1.
By Proposition 68, each κi is a shortest essential circle, and two κi are non-equivalent
as essential circles if and only if they lie in different ci. Moreover, any other essential
circle, being shortest in its homotopy class, must have length at least 1.5.

As discussed in Remark 60, we may suppose that ε > 0 is small enough that we
may identify, via the function ΛEε , Mε with the universal cover M̃ of M and identify
G with a normal subgroup of πε(M) = π1(M). Under this correspondence, G is the
normal closure of {[λi]ε}, where λi is any Eε-subdivision of a loop of the form fi∗ci∗fi,
where fi is any curve from the basepoint to the start point of the essential circle κi.
That is, G is precisely equal to Kσ(T ) (see discussion prior to this proof), where
T := {τi}k−1

i=1 is a collection of essential triads representing all equivalence classes of
smallest essential circles, with exactly one representative τi for each free homotopy
class. On the other hand, letting δ := 1.5

3 = 1
2 , Theorem 27 of [21] states that since T

contains a representative for each essential σ-triad with 1
2 < σ < ε, Kε(T ) = ker θδε.

That the covering space M̃/G is equivalent to Mδ now follows from Proposition 63.

Proof of Proposition 12. The statements about inessential E are obvious. The
proof of the rest is very similar to the proof of the statement for Riemannian manifolds
involving free homotopy classes, replacing the fact that small loops are null-homotopic
by the fact that small loops are E-null. Suppose that E is essential, c is not freely E-
null and let ci : [0, 1] → X be E-loops that are freely E-homotopic to c, parameterized
proportional to arclength, with lengths converging to

L := inf{L(f) : f is a curve loop that is E-homotopic to c}.

Since the lengths of the ci are bounded, a standard application of the Ascoli-Arzela
Theorem shows we may assume, taking a subsequence if needed, that ci converges
uniformly to some c : [0, 1] → X with L(c) ≤ L. By Proposition 53, for all large i,
c is freely E-homotopic to ci hence to c. So c is the desired shortest curve. To see
that any such c is a closed 3ε

2 -geodesic, suppose that a segment S of length ≤ 3ε
2 is

not minimal. By definition we may join its endpoints by a new curve S′ of length less
than 3ε

2 . Then S and S′ together form a loop of length less than 3ε, which is ε-null
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(Lemma 33, [20]), hence E-null. Therefore the curve obtained by replacing S by S′

has length shorter than L and is E-homotopic to c, a contradiction.

Proof of Theorem 13. In any geodesic space, if c is shortest in its E-homotopy
class, it is shortest in its homotopy class by Corollary 50, showing that the set de-
scribed in Part 1a is contained in MLS. On the other hand, suppose that c is shortest
in its homotopy class. As in the proof of Proposition 68, let ε > 0 be small enough
that Xε is the universal covering space of X, so that curves are freely homotopic if
and only if they are freely ε-homotopic. That is, c is shortest in its ε-homotopy class,
i.e. its E-homotopy class for E = Eε. This proves Part 1a. The remaining parts are
true for any compact geodesic space, as will be shown next.

Theorem 69. Theorem 13 holds when M is simply assumed to be a compact
geodesic space, using Theorem 13.1a as the definition of MLS.

Proof. If c is non-constant and shortest in its free E-homotopy class then accord-
ing to Proposition 52.1 there is some E-loop λ having the same length as c that is
E-homotopic to any E-subdivision of c. But Proposition 52.2 now shows that λ must
also be shortest in its E-homotopy class. An analogous argument shows that if λ′ is
shortest in its E-homotopy class then there must be a curve of the same length as λ′

that is shortest in its E-homotopy class. That is, the quantities described by Parts
1a and 1b in Theorem 69 are the same.

For the second part, note that in [10], Section 3, de Smit, Gornet, and Sutton
gave the following equivalent definition of CS in any compact geodesic space X: CS
consists of half the lengths of loops that lift as a non-loop to any covering space of
X. For the covering spaces XE , Lemma 48 implies that this is precisely the length of
a shortest loop that is not E-null, so any value in Part 2a is contained in CS. On the
other hand, CS = 3

2 HCS consists of 3
2 the lengths of all essential circles. Since every

essential ε-circle has length 3ε and curves of length less than 3ε are ε-null (Lemma
33, [20]), then essential circles are the shortest possible loops that are not E-null for
E = Eε. This completes the proof that CS is consists of the values in Part 2a.

Note that if c is a shortest loop that is not E-null then c must be shortest in
its E-homotopy class. Proposition 52.1 tells us that there is an E-loop of the same
length as c that is E-homotopic to any E-subdivision of c. By Proposition 52.2, there
cannot be a shorter such loop. This justifies the term “shortest” in 2b. Moreover, as
in the proof of Part 1, Proposition 52 tells us that the values in 2a and 2b are the
same.

Proof of Theorem 15. For the first part, note that if c is E-critical then any
E-subdivision λ of c, being also an E-subdivision of c, is also E-critical. Likewise,
any stringing λ̂ of an E-critical E-loop λ is also a stringing of λ when considered as
an E-chain. It is immediate that λ̂ is an E-critical loop.

The proof of the second part is similar to the proof of Proposition 12 and we
will only state the essential steps for the argument involving c. Let ci : [0, 1] → X
be E-loops that are E-critical, parameterized proportional to arclength, with lengths
converging to ψ(E). We may assume that ci converges uniformly to some c : [0, 1] → X
with L(c) ≤ ψ(E). For all large i, c is freely E-homotopic and E-homotopic to ci.
That is, c is also E-critical and has shortest length. Proposition 15 now finishes the
proof.

For the third part, recall that HCS consists of 1
3 the lengths of essential triads.

But any essential ε-triad T , having length 3ε, is Eε-null, but by defininition has no
ε-null ε-subdivision. That is, any ε-subdivision of T (which also has length 3ε) is
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Eε-critical. By definition, CS ⊂ ES. On the other hand, if c is a shortest E-critical
curve then c must be shortest in its free E-homotopy class. If not, it would be
E-homotopic, hence E-homotopic to a shorter curve–but that curve would still be
E-critical, a contradiction. The final two statements are shown in Example 73.

6. Examples.

Example 70. Let X be a circle with the unique geodesic metric of circumference
1 and let E be a chained entourage. According to Theorem 58, kerΛE is generated by
homotopy classes of stringings of E-small loops. We will show that every E-triad has
a stringing that represents either the trivial homotopy class or the class of a generator
of π1(X) = Z. From this it follows that the only two possible E-covers of the circle
are the trivial cover and the universal cover. This shows that Corollary 9 fails in
dimension 1.

If an E-triad τ = {x0, x1, x2} has no E-null stringing then in particular all three
points must be distinct. We assume that the points are ordered in the clockwise di-
rection and let Ai denote the arc in the clockwise direction from xi to xi+1. Since
E is chained, each B(xi, E) ∩ B(xi+1) must contain Ai or Aj ∪ Ak with j, k �= i. If
B(xi, E) ∩ B(xi+1) only contains Ai for all i, then the only possible stringings of τ
are E-homotopic to the circle itself, meaning that the φE is trivial.

Otherwise, without loss of generality we may suppose that B(x0, E) ∩ B(x1, E)
contains A1 ∪ A2. Case 1: Suppose that A2 ⊂ B(x2, E) ∩ B(x0, E). There are two
subcases. 1a: A1 ⊂ B(x1, E) ∩ B(x2, E). In this case (slightly abusing notation by
considering each Ai as a path), A2 ∗ A1 ∗ A1 ∗ A2 is a stringing of τ that is clearly
E-null. 1b: A0 ∪ A2 ⊂ B(x1, E) ∩ B(x2, E). In this case, A2 ∗ A1 ∗ A0 ∗ A2 ∗ A2

is a stringing of τ that represents a generator of π1(X). Now observe that we have
considered the three essential cases (up to re-ordering): Each B(xi, E) ∩ B(xi+1)
contains only Ai, exactly two of the B(xi, E) ∩ B(xi+1) contain only Ai, or exactly
one of the B(xi, E) ∩B(xi+1) contains only Ai, so the proof is complete.

The next examples are related to the question of identifying entourage covers for
2-dimensional manifolds (with or without boundary).

Example 71. Let M be the Moebius Band. First note that M is homeomorphic
to RP

2 with a small disk removed. Therefore we may Gromov-Hausdorff approximate
RP

2 by Mobius bands, taking the standard metric on RP
2 and induced geodesic metric

on M with smaller and smaller disks removed. Since the double cover of RP2 is its
universal cover, hence an ε-cover for all sufficiently small ε, the double cover of M
is also an ε-cover for small enough ε with respect to the induced metrics with small
enough disks removed. This follows from the convergence result Proposition 37, [21]–
since small enough ε > 0 is not a homotopy critical value of RP

2. Note that M
deformation retracts onto the circle and yet the double cover of the circle is not an
entourage cover by Example 70. This example shows one way that convergence can be
used to identify entourage covers but also shows the limitations of “enlarging” spaces
to try to find entourage covers.

Remark 72. Let X be a compact geodesic space such that HCS has n elements,
counting multiplicity as defined in [20]. In other words, there are a total of n equiv-
alence classes of essential circles. As pointed out in the proof of Theorem 15, every
essential ε-circle is Eε-critical, and as defined in [20], the multiplicity is the number
of distinct Eε-homotopy classes of ε-circles. Since being E-critical is a topological
property these essential circles will still be critical loops in any other metric on X,
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and by definition their lengths will be elements of ES. That is, ES in any metric will
always have at least n elements, but the lengths of curves, and hence the values and
multiplicities of ES will be different. In particular, as soon as there are two geodesic
metrics with CS having different sizes, then the space with the smaller CS must have
CS strictly contained in ES, counting multiplicity. In the next example we essen-
tially carry this out in a carefully controlled setting, allowing us to insure that the
multiplicities are 1 and hence control the absolute size of the spectra.

Example 73. Let M be a compact smooth manifold of dimension 3 or higher with
fundamental group Z4, which we will denote by {[c0], [c1], [c2], [c3]}. (There are many
other possibilities for π1(M), but we are using Z4 for simplicity.) Denote the double
cover of M (corresponding to the subgroup generated by [c2]) by M ′ and the universal
cover of M by M ′′. By standard covering space theory, c2 is the only loop, up to
free homotopy, that lifts as a loop to M ′. We now make the following assignments:
[c1] → 1.2, [c2] → 1.1, [c3] → 1.2 and apply Theorem 2.9 of [10]. In the resulting
metric, the shortest loop lifting to a non-loop in M ′ must be freely homotopic to either
c1 or c3 and hence has length 1.2. According to Proposition 68, M ′′ is equivalent to
M 1.1

3
. In particular, HCS = { 1.1

3 , 1.2
3 } and CS = { 1.1

2 , 1.2
2 }. Moreover, as pointed out

in the proof of Theorem 15, if c is an essential 1.2
3 -circle then c is E-critical, where

E := E 1.2
3
. Note that since c lifts as a non-loop to ME, c is freely homotopic to c2.

Now use the following assignments: [c1] → 1.1, [c2] → 1.2, [c3] → 1.3 and apply
Theorem 2.9 of [10]. With this metric, any shortest loop lifting as a non-loop to
either M ′ and M ′′ has length 1.1.That is, HCS = { 1.1

3 } and CS = { 1.1
2 }. Since being

E-critical is a topological property, the loop c is still E-critical and by definition the
length of the shortest curve c′ in its free E-homotopy class is an element of ES. But
any curve in the free E-homotopy class of c must lift to a loop in M ′ = ME. Since
c2 is the only such curve, up to free homotopy, c′ must be freely homotopic to c2
and therefore has length 1.2. That is, ES contains {1.1, 1.2} and in particular ES
strictly contains 3HCS = 2CS. Moreover, since we may change the value assigned
to [c2] by any small amount, it is possible for different Riemannian metrics on M
to have the same CS but different ES. Finally, since there are only two non-trivial
entourage covers of M , hence at most two elements in ES, ES = {1.1, 1.2}. But 1.3
is an element of MLS by definition, so ES is strictly contained in MLS. Again, the
value assigned to [c3] may be changed by a small amount without impacting ES, and
therefore one obtains Riemannian metrics on M that have the same ES but different
MLS. This example verifies Theorem 15.2.d-e.

Example 74. In [3], Berestovskii-Plaut-Stallman gave two examples of compact
geodesic spaces with free homotopy classes having no closed geodesics in them. The
first is 1-dimensional, consisting of a circle in the plane with smaller and smaller
straight segments added to join points around the perimeter circle, with the induced
geodesic metric. The circle itself is not a closed geodesic because any segment may
be “bypassed” by a shorter straight segment, but it is, up to monotone reparametiza-
tion, the only curve, hence the shortest curve, in its homotopy class. Now for any
entourage E, the circle is E-homotopic to a shorter curve that is a piecewise segment
and is shortest in its E-homotopy class. Note that although this segment visually has
“corners” in the construction, it is still a closed geodesic with the induced geodesic
metric.

The other example is the infinite torus, the countable product T∞ of circles with
the Tychonoff topology. This space can be metrized by making the sizes of the circles
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square summable and taking the geometric product metric (see [23]). This space is of
course a compact topological group and this metric is bi-invariant. For this example,
Stallman proved in his dissertation that (1) there is a unique 1-parameter subgroup
(i.e. a homomorphism θ : R →T∞) in each free homotopy class of a curve, (2) there
are free homotopy classes containing no rectifiable curves (3) if there are rectifiable
curves then the shortest one is the unique 1-parameter subgroup in it, but (4) the
1-parameter subgroup may not be a closed geodesic. It would be interesting to see
whether the shortest curves in free E-homotopy classes given by Proposition 12 are
also 1-parameter subgroups.
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[8] J. Conant, V. Curnutte, C. Jones, C. Plaut, K. Pueschel, M. Walpole, and J. Wilkins,

Discrete homotopy theory and critical values of metric space, Fund. Math., 227:2 (2014),
pp. 97–128.

[9] M. Cucuringu and R. Strichartz, Infinitesimal resistance metrics on Sierpinski gasket type
fractals, Analysis (Munich), 28:3 (2008), pp. 319–331.

[10] B. de Smit, R. Gornet, and C. Sutton, Sunada’s method and the covering spectrum, J. Diff.
Geom., 86 (2010), pp. 501–537.

[11] B. de Smit, R. Gornet, and C. Sutton, Isospectral surfaces with distinct covering spectra
via Cayley graphs, Geom. Dedicata, 158 (2012), pp. 343–352.

[12] C. Gordon, The Laplace spectra versus the length spectra of Riemannian manifolds, Contem.
Math., 51 (1986), pp. 63–80.

[13] M. Gromov, Structures métriques pour les variétés riemanniennes, Edited by J. Lafontaine
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