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CLASSIFICATION OF UNIFORMLY DISTRIBUTED MEASURES OF
DIMENSION 1 IN GENERAL CODIMENSION∗
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Abstract. Starting with the work of Preiss on the geometry of measures, the classification of
uniform measures in Rd has remained open, except for d = 1 and for compactly supported measures
in d = 2, and for codimension 1 . In this paper we study 1-dimensional measures in Rd for all d and
classify uniform measures with connected 1-dimensional support, which turn out to be homogeneous
measures. We provide as well a partial classification of general uniform measures of dimension 1 in
the absence of the connected support hypothesis.
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1. Introduction. Let (X, d) be a metric space, and μ a Radon measure over X .
• We say that μ is a homogeneous measure if there exists a subgroup G of
isometries of (X, d) such that spt(μ) is G -invariant, G acts transitively on
spt(μ) and I#μ = μ for all I ∈ G .

• We say that μ is uniformly distributed over X if there exists a function
f : [0,+∞) → [0,+∞) such that

For every x ∈ spt(μ) and all r > 0 there holds μ(B(x, r)) = f(r) . (1.1)

• We say that μ is uniformly distributed up to distance r0 > 0 if there exists
f : [0, r0] → [0,+∞) such that the above holds with the restriction 0 < r ≤
r0 . If such r0 > 0 exists then we say that μ is locally uniformly distributed.

One can check that the above notions are expressed in increasing order of generality.

Remark 1.1. Note that the term “uniform measure” also appears in other works
such as [1], with a different definition. We emphasize here that we require (1.1) to
hold only for x ∈ spt(μ) and not for all x ∈ X . To our best knowledge, definition
(1.1) first appeared in [12], in which a first thorough study of uniform measures is
present.

Note that each of the above-mentioned classes of measures is invariant under the
action of dilations and translations and products, but in general not under sums. For
example, for any a, b ∈ X the measure δa + δb is homogeneous, however e.g. for
(X, d) equal to R with the usual distance, the measure μ = δ0 + δ1 + δ2 + δ3 is not
locally uniform up to distance r0 > 0 if r0 ≥ 3.

The present paper is a step in the investigation of uniformly distributed measures
in the case of X = R

n . An important starting point is the following question:

Question 1. What form could the function f(r) in (1.1) take?

Assumption. We concentrate in this paper on the case that (X, d) is the Eu-
clidean space (Rd, d�2) , and we will not mention this hypothesis below.
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The question 1 appears as a natural development of [12, 7, 8], to whom the
following is due. Note that this is only a very specific consequence of the results of
the above works, and is not intended as a summary of them.

Theorem (Marstrand, Mattila, Preiss). If μ is uniformly distributed then there
exist c ∈ R \ {0} and an integer k ≤ n such that f(r) = crk + o(rk) .

In fact, Preiss devotes the entire sections 3 and 4 of his paper to the characteri-
zation and approximation of uniformly distributed measures, which can be viewed as
the main tool in his proof of his by now classical result. In terms of uniform measures,
we may say that for Preiss’ classification is a detailed characterization of “uniformity
up to the first germ of f ”:

Theorem (Preiss). If for an integer k there holds μ(B(x, r)) = crk + o(rk) for
μ -almost every x with c �= 0 independent of x , then μ is a constant multiple of
the Hausdorff measure Hk restricted to a countable union of smooth k -dimensional
submanifolds in R

d .

Note that traditionally, the focus has been on the case c ∈ (0,∞) , from which the
general case easily follows, and this is how the above theorem is usually formulated.
A self-contained explanation of the above theorems is given in the book [2].

Following the breakthrough in [12], Question 1 in Euclidean spaces has been
directly addressed in the related work [5], in which the case f(r) = crn−1 is studied
and the first example of a non-homogeneous uniform measure is given, and [4], which
represents what can be said about Question 1 in the case of general f by general
methods.

Theorem 1.1 (Kirchheim-Preiss). If μ is a uniformly distributed measure over
R

d then

f(r) is analytic in an interval [0, r0) , (1.2)

and in fact there exists an integer 0 ≤ k ≤ d and an analytic variety V ⊂ R
d such

that μ = CHk�V . If V is compact then it is an algebraic variety.

As a consequence of the study in Kowalski-Preiss it is clear that even at the germ
level, V is much more rigid than stated above, but a geometric characterization is at
the moment missing. We only know the complete classification for the case that f
coincides with the distribution function f of a subspace of codimension 1:

Theorem (Kowalski-Preiss). If in the previous Theorem we have k = n− 1 > 0
and f(r) = crn−1 , then V from Theorem 1.1 can be, up to isometry, R

n−1 , or
R

n−m−1 × S
m
r where S

m
r is an m -dimensional sphere of radius r , or R

n−4 × C3 ,
where C3 := {(x1, x2, x3, x4) ∈ R

4 : x2
1 = x2

2 + x2
3 + x2

4} .
A recent result by Nimer [9] produces further examples of non-homogeneous uni-

form measures in codimension higher than 1 (obtained as a union of tangent spheres
in 4 dimensions and the cone over this set in 5 dimensions) and Nimer also proved
a regularity result [10] saying that the singular set of V is of codimension at least
3 inside V , which in particular implies that all 2-dimensional uniformly distributed
measures are nonsingular.

Remark 1.2 (locally uniformly distributed μ). Note that a large amount of work
has been done to understand the properties of f(r) in the case of uniformly distributed
measures. Very little is known for the case of a locally uniformly distributed measure.
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In [4] the uniformly distributed measures over R were completely classified, as
were the uniformly distributed measures of bounded support over R

2 . Restricted
to these two classes, “there was no surprise” in the sense that the only uniformly
distributed measures in these two classes are the homogeneous measures.

Theorem 1.2 (Kirchheim-Preiss). A uniformly distributed measure over R is
either a multiple of the Lebesgue measure, equals up to affine transformations a multi-
ple of the counting measure on Z , or a multiple of the counting measure on Z+{0, b} ,
where b /∈ Z .

A uniformly distributed measure over R
2 with bounded support is either a multiple

of H1 restricted to a circle, or a multiple of the counting measure on the vertices of
a regular n-gon, or a multiple of the counting measure of the union of vertices of two
regular n-gons which are inscribed in a common circle.

Remark 1.3. We emphasize that the above result from [4] is the only known
classification result for uniformly distributed measures beyond the case of f(r) =
crn−1 . This was our motivation to consider in this work the case of 1-dimensional
uniformly distributed measures for general f in any codimension and in an upcoming
work we proceed to the classification of 2-dimensional uniformly distributed measures.

We point out that the below questions (stated in increasing order of difficulty)
are still open:

Question 2 (0-dimensional uniformly distributed measures).
(1) Are there any 0-dimensional uniformly distributed measures which are not

homogeneous?
(2) Are there any 0-dimensional uniformly distributed measures over R

2 which
are not homogeneous?

(3) Can one classify the 0-dimensional uniformly distributed measures in R
d for

d ≥ 2?

In this paper we consider the case of measures which are the Hausdorff 1-
dimensional measure restricted to a curve γ in R

d . We want to calculate the local
constraints imposed from the requirement that H1�γ is a uniformly distributed mea-
sure. In other words, we require that there exists f : [0,+∞) → [0,+∞) and r0 > 0
such that for all r < r0 and for all x ∈ γ there holds

H1(γ ∩B(x, r)) = f(r). (1.3)

It turns out that this translates into a constraint on the curvatures of γ , a fact which
allows us to prove the following classification, which adds to Theorem 1.1 complete
information about the case that μ has 1-dimensional connected support.

Theorem 1.3. Let μ := H1�γ , where γ is a curve in R
d . The following are

equivalent:
(1) μ is a uniformly distributed measure.
(2) γ is a toric knot or a generalized helix, in particular all the curvatures of γ

are constant.
(3) μ is a homogeneous measure.

In order to explain what is meant in the above second point, we recall this classical
differential geometry topic here, see 2.16 of [6] for details.
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Proposition 1.4 (Classification of constant curvature curves). If γ ⊂ R
d is a

curve all of whose curvatures are constant, and assuming that AffSpan(γ) = R
d (or,

equivalently, that all curvatures of γ are everywhere nonzero), then up to translation
and rotation, γ can be parametrized as follows

• γ(t) =
(
r1 cos(α1t), r1 sin(α1t), . . . , r d

2
cos
(
α d

2
t
)
, r d

2
, sin

(
α d

2
t
))

if d is
even,

• γ(t) =
(
r1 cos(α1t), r1 sin(α1t), . . . , r d−1

2
cos
(
α d−1

2
t
)
, r d−1

2
sin
(
α d−1

2
t
)
, bt
)

if d is odd,
where the rotation speeds α1, . . . , α
 d

2 � are nonzero and the radii r1, . . . , r
 d
2 � as well

as the translation speed b are positive.

The curves as in the first part of the above proposition are called toric curves and
the curves as in the second part are called helices. A closed (or equvalently, periodic)
toric curve is called a toric knot.

Remark 1.4. Note that all helices give rise to uniform measures H1�γ , whereas
in the toric curve case H1�γ is locally finite only if the curve γ is actually a toric
knot.

We can extend the statement of Theorem 1.3 to a necessary condition for the non-
connected case with the following result, which can still yield partial classifications in
combination with Theorem 1.2.

Theorem 1.5. Let μ be a uniformly distributed measure of dimension 1 in R
d .

Then there exist
(1) an integer 1 ≤ k ≤ d and a curve γ0 ⊂ R

k × {0}d−k ⊂ R
d with constant

curvatures κj which are zero if and only if j ≥ k ,
(2) a discrete set X ⊂ Isom(Rd) ,

such that μ is, up to isometry of R
d , equal to

cH1�
( ⋃

R∈X

Rγ0

)
.

Furthermore, each pair of the above isometric copies of γ0 are at constant positive
distance from each other, and if γ0 is a helix then all the copies Rγ0 have axes parallel
to the one of γ0 .

We are tempted to conjecture that the above set X has further restrictions to its
structure, like in the case d = 3, see proposition below, but we leave the study of the
general form of this result to future work.

Proposition 1.6. Let μ be a uniformly distributed measure of dimension 1 in
R

3 . Then μ has one of the following forms:
(1) Either μ is the product of a 0-dimensional uniform measure in H with a

1-dimensional uniform measure in H⊥ , where H ⊂ R
2 is an affine subspace

of dimension 1 or 2
(2) Or up to isometry μ = cH1�(X + γ) , where γ(t) = (r1 sin(αt), r1 cos(αt), bt)

and X = {0}2 × ( 2πbn Z ∪ (a+ 2πb
n Z

))
with n ∈ N and a ∈ R .

In the latter case μ is a homogeneous measure.

Let us remark that in the case of point (1) of the above proposition a complete
classification would rely on answering part (3) of Question 2 in dimension d = 2.
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2. Proof of Theorem 1.3.

2.1. Taylor polynomial expansion and preliminaries. We initially follow
the natural setup already utilized in [5] (for tools similar to the ones in [5] and more
general, see also the extrinsic small ball volume asymptotics in [3]), which only uses
the assumption that γ is Ck for k big enough (here we assume k ≥ 3). We will use
the Taylor polynomial approximations of γ, γ′ which we denote as follows:

γ(x) = A1x+A2x
2 + · · ·+Akx

k +R(x) (2.1)

where Aj ∈ R
n, j = 1, . . . , k and R(x) = O(xk+1) . Then we have

|γ(x)|2 =
∑

2≤j<k+2

⎛
⎝ ∑

h+h′=j,h,h′≥1

〈Ah, Ah′〉
⎞
⎠xj +O(xk+2)

=
∑

2≤j<k+2

Cjx
j +O(xk+2), (2.2)

We will parameterize γ by arclength, and thus

|γ′| ≡ 1. (2.3)

Due to this normalization, in (2.2) we have C2 = 〈A1, A1〉 = 1, thus

|γ(x)|2 = x2 +
∑

3≤j<k+2

Cjx
j +O(xk+2). (2.4)

In order to test condition (1.3) we have to integrate |γ′| over the region

γ ∩B(r, 0) = {x : |γ(x)|2 ≤ r2}, (2.5)

and as we normalized |γ′| ≡ 1 the function f from (1.3) is given by the equation

f(r) = f+(r)− f−(r),

where f±(r)are the two solutions of |γ(f(r))|2 = r2.
(2.6)

We will profit of our normalizations in order to solve (2.6), and what we use is the
formula for the formal solution of G ◦F = r2 where G,F are power series in r , with
G being the right hand side of (2.4) and F being the taylor polynomial for f , which
we assume to also be Ck -regular, so that

f(s) =
∑

1≤j<k+2

cjs
j +O(sk+2). (2.7)
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The formal solution F for the power series equation G(F (r)) = r2 has terms up to
order k which coincide with the k -th Taylor polynomial of f .

By explicit computation, from (2.4) and with the notation (2.7), the first terms
in the expansion of |γ(f(s))| around the value s = 0 read as follows

|γ(f(s))|2 = c21s
2 + (2c1c2 + c31C3)s

3

+(c22 + 2c3c1 + 3c21c2C3 + c41C4)s
4 +O(s5) (2.8)

Hence for the two solutions f+ > 0 > f− of the functional equation |γ(f(s))|2 =
s2 we require that c1 = ±1 in order to match the coefficients of s2 , and the values
of the cj , j > 1 are uniquely determined, giving

f±(s) = ±s− C3

2
s2 ∓ 1

2

(
C4 − 5

C2
3

4

)
s3 +O(s4) (2.9)

and thus

f(r) = f+(r)− f−(r) = 2r −
(
C4 − 5

C2
3

2

)
r3 +O(r4). (2.10)

As H1�γ is a uniformly distributed measure, in particular this expression does not
depend on the choice of an origin along γ , and the coefficient C4 appearing above need
to be constant. The coefficient C3 seems to be free but in fact it is vanishing, indeed
since the parametrization is done by arclength, we have C3 = 2〈γ′(0), γ′′(0)〉 = 0.
The generalization of this formula will be part of our proof in Section 2.2 below.

Our aim is to show that we may first choose special coordinates so that some
of the coefficients disappear, and so that the remaining coefficients have a simple
geometric interpretation. We thus completely classify the possible γ as being exactly
the constant-curvature curves. We prove the following:

Proposition 2.1. Assume that d ≥ 1 and γ is a C2d -regular curve parameter-
ized by arclength, γ : R → R

d and let μ := H1�γ . If [a, b] ⊂ R is an interval and we
have

sup
p,q∈[a,b]

lim
r↓0

μ(B(γ(p), r))− μ(B(γ(q), r))

r2d
= 0,

then γ|[a,b] has constant curvatures κ1, . . . , κd−1 .

Corollary 2.2. If γ is a curve in R
d, d ≥ 2 , and H1�γ is a uniform measure,

then γ has constant curvatures κ1, . . . , κd−1 .

This shows that (1) ⇒ (2) in Theorem 1.3. The implication (3) ⇒ (1) is easy to
obtain and is valid in general for measures of any metric space, as already mentioned
in the introduction: Indeed, homogeneity implies that μ(B(x, r)) = μ(I(B(x, r))) for
any isometry I ∈ G , that for any x, y ∈ spt(μ) there exists I ∈ G such that I(x) = y ,
and if I is an isometry this implies that I(B(x, r)) = B(y, r) . This implies that μ
is uniformly distributed. The implication (2) ⇒ (3) is a direct consequence of the
following (more general) proposition:

Proposition 2.3. A finite 1-dimensional measure μ is homogeneous if and only
if it is a constant multiple of H1�(G ·γ) where G ·γ is the orbit of γ under a discrete
subgroup G ⊂ Isom(Rd) and γ is a curve all of whose curvatures are constant.
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The above result is well-known but we were not able to find a proof in the litera-
ture, thus we produce a proof below. Also, we will not discuss here the classification
of possible discrete groups G described above.

In order to recall the definition of the κj , we first work in the absence of degen-
eracies of γ . We say that γ has a degenerate point at x in case we have the following
zero-Wronskian condition:

γ′(x) ∧ γ′′(x) ∧ · · · ∧ γ(n)(x) = 0.

If x is a nondegenerate point then we define the Frenet frame (E1(x), . . . , En(x))
at γ(x) inductively applying the Gram-Schmidt orthogonalization procedure to the
basis (γ′(x), . . . , γ(n)(x)) .

If x is a nondegenerate point of γ then the curvatures κj(x), 1 ≤ j < n can be
directly defined by

κj(x) := 〈E′
j(x), Ej+1(x)〉. (2.11)

In this case the following Frenet-Serret equations follow directly from (2.11) and hold
in a neighborhood of x :

d

ds

⎛
⎜⎜⎜⎜⎝

E1

...

...
En

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0 κ1 0

−κ1
. . .

. . .

. . . 0 κn−1

0 −κn−1 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

E1

...

...
En

⎞
⎟⎟⎟⎟⎠ . (2.12)

Note that we can also define the curvature when the point x is degenerate (e.g. for a
straight line in R

3 ) but we have to be more careful with the definition. In case there
exists a frame (E1(x), . . . , En(x)) at γ(x) for each x in the domain of definition of
x and there exist curvatures κ1(x), . . . , κn−1(x) such that (2.12) holds, then call γ
is called a Frenet curve. Nomizu [11] proved the following (his paper is set up in R

3

for a finite length curve, but the proof generalizes directly to possibly infinite curves
and to general dimension):

Theorem 2.4 (Nomizu 1959). Assume that γ is a C∞ curve such that at each
x there exists mx ∈ N+ such that γ(mx)(x) �= 0 (such curves are called by Nomizu
normal curves). Then γ is a Frenet curve.

The main nontrivial observation in the proof [11] of the above result is that
the normality condition allows, for smooth curves, to deduce that degenerate points
are isolated. After this, one defines the Ej piecewise uniquely along γ by Gram-
Schmidt orthogonalization, and verifies that these definitions agree across the isolated
degenerate points, due to the regularity of γ . We use the following:

Corollary 2.5 (of Theorem 2.4). If γ is an analytic curve then it is Frenet.

This is useful to us in conjunction with the Kirchheim-Preiss theorem 1.1, which
gives a sufficient condition for uniformly distributed measures already mentioned in
the introduction.

Note that an analytic variety can only self-intersect at an at most countable
number of points. By comparing the asymptotics for r → 0 of H1�γ(B(r, x)) when
x is a self-intersection point and when it is not, we conclude that γ has no self-
intersections, and thus we get the following:
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Corollary 2.6 (of Theorem 1.1). If γ is a curve and H1�γ is uniformly
distributed then γ is analytic and embedded.

Summing up all the preliminary results so far, we get:

Corollary 2.7 (of corollaries 2.5 and 2.6). If γ is a curve and H1�γ is uni-
formly distributed, then an orthonormal frame satisfying (2.12) along γ exists.

2.2. Proofs of propositions 2.1 and 2.3.

Proof of Proposition 2.1.

Step 1: Expressing the ck in terms of the Ch .

We consider the general form of the coefficients ci from (2.7), which are deter-
mined by the uniform measure conditions (2.6). We saw above that c21 = 1 is the
condition on the coefficient of r2 , and this gives c1 = ±1. We prove now that the
remaining coefficients of f are determined uniquely in terms of c1 and of the Cj ,
thus we define f± to be the solution determined by c1 = ±1 respectively. The coef-
ficient of sk for k > 2 in the expression of |γ(f(s))|2 for general f can be computed
explicitly, and it equals

∑
2≤k′≤k

Ck′

⎛
⎜⎜⎜⎝

∑
��∈{1,2,...}k′

�1+···+�k′=k

c�1 · · · c�k′

⎞
⎟⎟⎟⎠ .

The highest index �α which can appear in the above expression is �α = k − 1 and
it can appear only for k′ = 2, with a contribution of 2c1ck−1C2 = 2c1ck−1 . The
above sum also contains a single term that features a Ck -factor, and this term is
ck1Ck . Thus for k > 2, imposing that the coefficient of sk is zero and isolating the
ck−1 -contribution in the ensuing equation gives:

ck−1 =
1

2c1

[
P + ck1Ck

]
, P ∈ N[C2, C3, . . . , Ck−1, c1, c2, . . . , ck−2]. (2.13)

This allows to prove by induction on k that for k ≥ 2 the coefficient ck is uniquely
determined as a polynomial of C2, C3, . . . , Ck+1 with coefficients depending on c1 =
±1:

ck = P±,k(C2, . . . , Ck) +
(±1)k−1

2
Ck+1. (2.14)

In particular, f± are uniquely determined (this proves in general that a formula
generalizing (2.9) for f± holds).

Step 2: The ck−1 with k even appear in the Taylor expansion of f(r) without
cancellations.

By symmetry under the transformation s �→ −s we see that f−(s) = f+(s) . Thus
in the calculation of f+ − f− the coefficients ck−1 with k even do not cancel, and
thus stay constant as we vary the choice of origin along γ .

Step 3: Frenet frame coordinates and constancy of κ1 .
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We know from Corollary 2.7 that γ has a Frenet frame E1(s), . . . , En(s) along
γ as in (2.12). In order to continue the proof, we will use this frame coordinates to
express, first the γ(k)(0), and then we carefully discuss which contributions appear
in the formula for Ck .

We fix coordinates in R
n such that for s = 0 there holds

(E1(0), . . . , En(0)) = (e1, . . . , en). (2.15)

Expansion (2.1) gives the following identifications of the first coefficients:

γ′(0) = E1(0) = A1 = e1, γ′′(0) = 2A2 = |γ′′(0)|E2(0) = 2|A2|e2. (2.16)

In particular we have C3 = 2〈A1, A2〉 = 0 and (2.11) gives also

κ1(0) = 〈E′
1(0), E2(0)〉 = 4|A2|2. (2.17)

Differentiating twice the formula |γ′(x)|2 = 1 we obtain also 〈γ′(x), γ′′′(x)〉 =
−|γ′′(x)|2 , thus 〈γ′(0), γ′′′(0)〉 = −4|A2|2 , and we can compute

C4 = |A2|2+2〈A1, A3〉 = |A2|2+2

〈
γ′(0),

γ′′′(0)
6

〉
= |A2|2− 4

3
|A2|2

(2.17)
= − 1

12
κ1(0).

The constancy of the coefficients of f(r) (computed up to O(s5) in (2.10)) as we vary
the choice of origin along γ imply that κ1 is constant on γ .

If κ1 ≡ 0 then γ is a straight line, and the thesis is proved. So we further consider
only the case κ1 ≡ c �= 0.

Step 4: Induction step for the constancy of κh, h ≥ 2 and strategy of proof.

We now prove by induction that the remaining κh , for h < n , are constant as
well. The case h = 1 is proved. For the inductive step, we may assume that κj are
constant and nonzero for 1 ≤ j ≤ h , and we prove that κh+1 is constant too. We note
that, as above, if κh+1 ≡ 0 then γ is contained in an affine subspace of dimension
h + 1 and κh′ ≡ 0 for all h′ > h as well, and the proof is complete. Similarly, if
h+ 1 = n then the proof is complete. If neither of the last two mentioned conditions
are satisfied, then we can continue the induction.

The proof of the inductive step will proceed as follows: first we discuss in a general
setup what terms can and cannot appear in the expression of Ck ; next, we show that,
under the condition that κh and lower curvatures are constant, C2h+3 = 0; next, we
easily show, using the results of steps 1 and 2, that C2(h+2) needs to be constant;
finally, from the constancy of C2(h+2) entails the constancy of κh+1 and allows to
conclude the induction.

Step 5: Encoding Frenet frame expansion of derivative via paths on a graph.

More generally, since α!Aα = γ(α)(0) by Taylor expansion of γ and comparison to
(2.1), we find that Ck is a linear combination of terms of the form 〈γ(α)(0), γ(β)(0)〉 ,
with α+β = k . We can then express γ(α)(0) in the basis (2.15), and use the equations
(2.12) for bookkeeping which terms may and may not occur. We can imagine the
following graph

∗ −→ E1
κ1−→ E2

κ2−→ E3
κ3−→ · · · κn−2−→ En−1

κn−1−→ En, (2.18)

and for fixed α ≥ 1 we consider paths which
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(1) start at “∗” and at the first step move to the position labelled “E1 ”,
(2) at successive steps move between neighbors only, by exactly one position, and

do not visit “∗” ever again,
(3) stop after a number α′ ≤ α of steps.

Now suppose we have such a path P , whose final position is “Ej ”. We now assign a
monomial in the κh ’s and their derivatives to P as follows:

(1) if α′ = 1 then P = 1,
(2) each time P follows an arrow labelled κh from the left to the right, we

multiply by κh our monomial,
(3) each time P follows an arrow labelled κh from the right to the left, we

multiply by −κh our monomial,
(4) if P had length α′ < α then we choose (with repetitions allowed) α − α′

amongst the α′−1 factors κh in our constructed monomial (again considered
including repetitions), and put a derivative on each of them.

To make this clearer, here is an example. Suppose α = 11, α′ = 7. Then a possible P
is the path given by following first ∗ −→ E1 and then arrows κ1κ2κ3(−κ3)(−κ2)κ2 ,
and terminating at position E3 . Then we must distribute α − α′ = 4 derivatives
in total amongst these 6 monomials in one of many possible ways, ending up, for

example, with the resulting monomial κ1κ
(3)
2 κ′

2κ2κ
2
3 .

One can verify by induction on α that with respect to the basis E1(x), . . . , En(x) ,
the Ej(x)-component of γ(α)(x) has coefficient given by the sum of all possible mono-
mials constructed as above associated to paths ending up at “Ej ”. To see this, note
that we need to distribute the α derivatives by Leibnitz rule. When we apply a first
derivative to γ we get E1 , and each time one further derivative falls on the Ek -
component of our expression, we can then apply (2.12) to replace that term by one
among the ones Ek±1 appearing in (2.18) to the immediate left/right, adding the cor-
responding factor of ±κk±1 to our expansion. The further details of the verifications
are left to the reader.

The orthogonality of the Ej ’s and the fact that Ck only features terms coming
from scalar products 〈γ(α)(0), γ(β)(0)〉 with α + β = k , means that the paths P
associated to the γ(α) term and Q associated to the γ(β) term need to terminate on
the same Ej , in order to have a chance of participating to Ck ’s expansion.

Step 6: The coefficients C2h+3 in (2.2) vanish.

If we now consider the scalar products 〈γ(α)(0), γ(β)(0)〉 which participate to
C2h+3 , thus α + β = 2h + 3. We suppose α ≥ β . By the final paragraph of Step 5,
in C2h+3 is a sum of contributions from paths Pα, Pβ with associated monomials in
the κj ’s of degrees α′ ≤ α− 1 and β′ ≤ β− 1 respectively, arriving to some common
endpoint Ej . Thus if we imagine to concatenate Pα and Pβ we obtain a loop inside
the graph (2.18). If h′ is the highest index of κh′ appearing in such a loop, we find

2h+ 1 ≥ α′ + β′ ≥ 2h′ ⇒ h′ ≤ h,

which implies that for h′ ≥ h+1, no derivatives of κh′ can appear in either monomial.
As for h′ ≤ h we have κh′ ≡ const by inductive assumption, it follows that no
derivatives of any κh′ appear at all in the associated monomials, and we have α′ =
α − 1, β′ = β − 1, thus the loop formed by concatenating Pα, Pβ must have length
α+ β = 2h+ 3. However this cannot be, as a loop has even length. This shows that
all contributions to C2h+3 vanish, so that C2h+3 = 0, as claimed.
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Step 7: The coefficients C2(h+2) from (2.2) are independent of the choice of
origin along γ .

We know that C2 = 1 as a consequence of our normalization conditions and
during the induction over h we prove that C2(h′+2) is independent of the choice of
origin for h′ < h and that C2h′+3 = 0 for h′ ≤ h by Step 6. We also know that
coefficient c2h+3 appears in the Taylor expansion of f(r) without canceling, due to
Step 2, and to the fact that 2h + 3 is odd. In formula (2.14) with k = 2h + 3, we
thus have that all the coefficients in the left hand side except the one in C2(h+2) are
independent of the choice of origin along γ , and we have that c2h+3 appears in the
expression for f(r) and thus is independent of the choice of origin as well. This shows
that C2(h+2) is independent of the choice of origin as well, as claimed.

Step 8: The curvature κh+1 is independent of the choice of origin along γ .

To see this, knowing that we know the statement to be true for κh′ , h
′ ≤ h , and

in view of Step 7, we know that C2(h+2) is also independent of the choice of origin,
it will suffice to know that fixing the values of κh′ , h

′ ≤ h and of C2(h+2) determines
κh+1 completely. This will follow once we prove the following:

Claim. We can express C2(h+2) as a polynomial in the κh′ , h
′ ≤ h + 1 ,

and the only monomial featuring κh+1 in this polynomial is a positive multiple of
(κ1κ2 · · ·κh+1)

2 .

Indeed, once we prove the claim, knowing that κh′ , h
′ ≤ h are all with isolated

zeroes, we get that κ2
h+1 is uniquely determined in terms of κh′ , h

′ ≤ h and C2(h+2) .
Thus κh+1 is determined and constant as we move the origin of our coordinates along
γ , up to sign. If κ2

h+1 is zero then we are done, and if it is nonzero then, by regularity
of γ , the value κh+1 cannot jump as we move the origin and thus the sign choice
needs to be constant as well, completing the proof of the current step.

Now we prove the above Claim. To do this we completely classify the contributions
of each term 〈γ(α)(0), γ(β)(0)〉 contributing to C2(h+2) . Like we did in Step 7, we
consider paths Pα, Pβ contributing to the above two terms, assuming that Pα, Pβ

end up in a given Ej . Concatenating these paths gives a loop of length at most
2(h + 2) and since we consider only terms containing κh+1 -factors this loop must
contain vertices “∗” and “Eh+2 ”. Therefore the loop is uniquely determined: it must
be the only loop without backtracking, which goes from “∗” to “Eh+2 ” and back. By
following the assignment of signs in Step 5, we find that if paths Pα, Pβ meet at Ej and
α ≥ β , then Pα is contributing the factors κ1κ2 · · ·κh+1(−κh+1)(−κh) · · · (−κj) and
Pβ is contributing the factors κ1κ2 · · ·κj−1 . Therefore we get indeed the monomial

(κ1κ2 · · ·κh+1)
2 , with a sign of (−1)h−j = (−1)α

′−β′ = (−1)α
′+β′ = (−1)2h+2 = +1.

We thus show that all the coefficients appear with positive sign, completing the proof
of the claim.

As the induction step is complete, we have completed the proof of the proposition
2.1.

Proof of Proposition 2.3. Assume that μ is one-dimensional and homogeneous; in
particular it is uniformly distributed, so that by the result of Kirchheim and Preiss,
see Theorem 1.1, it is cH1 restricted to an analytic subvariety V of dimension 1. We
can assume that c = 1 and that 0 ∈ V without loss of generality. By homogeneity, V
is the orbit of a subgroup G̃ ⊂ Isom(Rn) and G̃ itself has Hausdorff dimension 1. As
V is analytic, we have that G̃ ’s connected components are at positive bounded from
below Hausdorff distance from each other (the elementary proof of this is similar to
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the one of Lemma 3.1 below, and we leave it to the reader), thus G̃ = G×G0 , where
G0 is the connected component of the identity in G̃ and G is a discrete subgroup.
Therefore we may reduce to the case where G is trivial, the orbit of G̃ = G0 is a curve,
and that V = γ is an analytic curve. We find that by homogeneity the curvatures
along γ must be constant, concluding the proof of one implication.

Vice versa, assume that μ = cH1�G · γ and γ has constant curvatures. Without
loss of generality G = id , otherwise we consider μ componentwise. Up to diminishing
the dimension n we may assume that all the curvatures of γ are nonzero, and thus the
Frenet frame (E1, . . . , En) along γ is nondegenerate. This means that there exists a
unique curve of rotations x �→ R(x) ∈ O(n) which sends (e1, . . . , en) to (E1, . . . , En)
calculated at point γ(x) , and up to a change of basis we may suppose that R(0) = id .
We can obtain the group property R(x+y) = R(x)R(y) by uniqueness of the solution
to the Frenet frame equation (2.12) with constant curvatures. Thus R(x) is a one-
parameter subgroup of Isom(Rn) .

Let us recall from the classification stated in the introduction that curves with
constant non-zero curvatures have no axis if their affine span has even dimension, and
they have an axis if the affine span has odd dimension.

3. Proof of Theorem 1.5. We start with the following result. Recall that for
two closed sets A,B ⊂ X in a metric space (below X = R

d with the Euclidean
distance), their distance is defined as

dist(A,B) := inf{d(x, y) : x ∈ A, y ∈ B}.
We start with the following consequence of the Kirchheim-Preiss classification from
Theorem 1.1, and of our Proposition 2.1:

Lemma 3.1. Assume that μ is a uniformly distributed measure of dimension 1 .
Then the connected components of spt(μ) are congruent helices which lie at positive
bounded from below distance from each other.

Proof. By Theorem 1.1 we may suppose μ = H1�V where V is an analytic
variety of dimension 1. Since V is countably 1-rectifiable, locally near regular points
it is an analytic curve, and by applying Proposition 2.1 we find that each component
has constant curvatures, and the values of the constants involved are the same for
each component. As the curve is uniquely determined by its curvatures, and since
connected components of V do not accumulate at every point of V (because μ is
locally finite), we have that connected components of V stay at positive distance from
each other.

We next show that in fact the connected components of spt(μ) are translations
of each other:

Proof of Theorem 1.5. From Lemma 3.1 it follows that V = spt(μ) has at most
countably many connected components, which we denote by γ1, . . . , γn, . . . . We now
call C : γ1 → ⋃

j≥2 γj the multivalued map which associates to each x ∈ γ1 the
indices of other connected components at which the distance to the complement of
γ1 in V is achieved:

C(x) := {j ≥ 2 : dist(x, V \ γ1) = dist(x, γj)} .
We denote the distance between γ1 and its “first neighbors” amongst the connected
components by d1 :

d1 := dist(γ1, V \ γ1).
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Note that C(x) must have constant cardinality, as follows by noting that
limr↓d1 μ(B(x, r)) is independent of x ∈ γ1 . Then, assuming that this constant
cardinality is at least 1, it follows that the subsets of γ1 given by

Sj := {x ∈ γ1 : j ∈ C(x)}

form an at most countable cover of γ1 , thus at least one of the Sj has accumulation
points. Using the fact that the curves γ1, γj are analytic, we find that whenever Sj

has accumulation points then Sj = γ1 . We suppose for the sake of concreteness that
this happens for j = 2, i.e. that S2 = γ1 .

We claim that if γj are helices then the axes of γ1 and γ2 are parallel. Indeed,
were they not, it would imply that for x → ±∞ we have dist(γ2(x), γ1) → ∞ ,
contradicting the fact that S2 = γ1 . Let da ≥ 0 be the distance between the axes of
γ1 and γ2 if they are helices, and the distance between their centers if they are torus
knots.

If for some j the set Sj is composed of isolated points, then we have a contradic-
tion, again by using the property that limr↓d1

μ(B(x, r)) is independent of x ∈ γ1 ,
as above. Thus all the first neighbors γj are translates of γ1 by vectors orthogonal
to its affine span or rotated copies within its associated torus.

We can next repeat the reasoning replacing the role of γ1 by the subset of γ1
and its first neighbors instead of γ1 , we find that also the next distance d2 realized
between γ1 and the “second neighbors” is constant along each one of these second
neighbors, and if they are helices, their axes are parallel too. The same reasoning can
be iterated showing these properties for all the γj . This concludes the proof of the
theorem.

Proof of Proposition 1.6. Assuming that we are not in the first case of the state-
ment corresponds to saying that all the curvatures of a connected component γ are
nonzero, i.e. that connected components are helices, and as a consequence of Theorem
2.3 we know that their axes are parallel.

We show first that the distance da between axes of first-neighbor connected com-
ponents γ1, γ2 cannot be positive. If by contradiction da > 0, then the axis of γ2 is
a translation by v �= 0 of the axis of γ2 , with v perpendicular to both axes. Then
let x−, x+ be points in γ1 with lowest (resp. highest) v -coordinate. We see that
dist(x−, γ2) ≥ da and dist(x+, γ2) ≥ da by comparing with the projection orthogonal
to the axes. Thus we have that the distance between a point in γ1 and the curve γ2 ,
which is constant by Theorem 2.3, must be equal to da , and γ2 = v+γ1 . At the same
time, v must be orthogonal to both curves at each point, which is a contradiction to
the fact that their affine span is R

d . Thus da = 0 and γ1, γ2 have the same axis.
The same reasoning can be applied to each “next-neighbor” connected component to
show that all connected components of the support of μ are helices with the same
axis.

We next use the notation and coordinates from Proposition 1.4 for the helix
connected components of spt(μ) . As the connected components also have the same
periods 2πbZ , we find that by quotienting by the group of periods we obtain a uniform
measure on {x ∈ R

2 : |x| = r1} × Z/2πbZ , whose connected components are circles
at constant distance, thus are parallel circles. Quotienting by the orthogonal of these
circles we find a uniform measure on a circle, which by Theorem 1.2 is given by
two translated (possibly coincident) copies of a regular n -gon. This concludes the
proof.
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