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COMPARING SHAPES OF HIGH GENUS SURFACES∗

YANWEN LUO†

Abstract. In this paper, we define a new metric structure on the shape space of a high genus
surface. We introduce a rigorous definition of a shape of a surface and construct a metric based on two
energies measuring the area distortion and the angle distortion of a quasiconformal homeomorphism.
We show that the energy minimizer in a fixed homotopy class is achieved by a quasiconformal
homeomorphism by the lower semicontinuity property of these two energies.

Key words. Differential geometry, metric geometry.

Mathematics Subject Classification. 53A05, 49Q10.

1. Introduction. How to measure the difference between two shapes is a funda-
mental problem in computer graphics, computer vision, and medical imaging. In this
paper, we investigate the shape comparison problem between two shapes of a surface
of genus at least one by considering the following questions:

1) What is the precise meaning of a “shape” of a surface?
2) How similar are two given shapes of a surface?
3) How to construct the best global alignment of two shapes, namely an “opti-

mal” correspondence between two shapes?
We always assume that the surfaces we discuss have genus at least one. We will
define the shape space as the space of equivalence classes of Riemannian metrics on
a fixed smooth surface, up to isometries isotopic to the identity on the surface. We
show that the shape space has a close connection with the Teichmüller space of a
surface. Then we construct a metric on the shape space by introducing an energy for
quasiconformal homeomorphisms of the surface, which measures the similarity of two
shapes. We show that the infimum of this energy in a fixed homotopy class is achieved
by a quasiconformal homeomorphism, which produces the “optimal” correspondence
between two shapes and realizes the distance between two shapes.

This problem has been studied extensively in the fields of surface registration,
shape matching, shape morphing, and texture mapping. Effective algorithms have
been developed if the topology of the surface is relatively simple, such as with the
2-dimensional disk or 2-dimensional sphere [14, 15, 17]. However, there are few results
about the computation of optimal maps between high-genus surfaces [25, 26, 32, 33].
On the other hand, detecting the change of the shapes of high genus surfaces is crucial
to understanding various applications. For example, the vestibular system in the
inner ear is modelled by a genus-three surface, and the morphometry of the vestibular
system has been an active research field in the analysis of Adolescent Idiopathic
Scoliosis Disease[31]. In the study of deformity of the vertebrae, the vertebrae bone
is modeled by a genus-one surface[23].

Comparing shapes of high genus surfaces is much more challenging than the case
of the 2-sphere. Any two metrics on the 2-sphere are conformal to each other, but for
high-genus surfaces, conformal maps are insufficient to measure the difference between
two shapes. Algorithmically, the main difficulty is how to deal with the topology of
the surfaces. One possible approach is to construct local injective maps from disk-like
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patches to some canonical domain and glue them to form a global map. This method
requires a consistent way to cover the whole surface with patches. An alternative
method is to cut the surface using a system of disjoint loops to a disk-like surface,
but boundary conditions on the loops are not natural.

The key to measuring the difference between two surfaces is finding a metric
structure on the shape space of a surface. More precisely, for a metric d defined on
the shape space, given shapes F1, F2, and F3, we require the following properties:

1) d(F1, F2) ≥ 0;
2) d(F1, F2) = 0 if and only if F1 and F2 represent the same element in the

shape space;
3) d(F1, F2) = d(F2, F1);
4) d(F1, F2) + d(F2, F3) ≥ d(F1, F3).

These properties of metric structures imply that we can distinguish two different
shapes if the two shapes are not isometric, independent of the order and stable under
small perturbations or noise.

The main result of this paper gives a metric structure d on the shape space of
a high genus surface S(F ), based on the energy E(f) for a quasiconformal homeo-
morphism f between two shapes. More precisely, we prove the following theorem in
Section 4 of this paper.

Theorem 1.1. Let F be a closed orientable connected surface of genus g ≥ 1.
The function d induces a metric on the space of shapes S(F ). Moreover, for any
pair of shapes (F, g1) and (F, g2), there exists a quasiconformal homeomorphism f :
(F, g1) → (F, g2) such that E(f) = d((F, g1), (F, g2)).

This paper is organized as follows. In Section 2, we summarize previous work
related to the computation of special maps between surfaces and some necessary
mathematical background. In Section 3, we define the space of shapes S(F ) and
establish its connection with the Teichmüller space. In Section 4, we introduce an
energy E(f) for a quasiconformal homeomorphism f on a surface and prove that this
energy provides a metric d on the shape space S(F ), and an “optimal” correspondence
between two shapes.

2. Prior Work and Preliminary. In this section, we summarize related work
about various definitions of shape spaces and computational methods to find maps
between surfaces. We assume that we have a closed connected orientable surface, a
genus-zero surface S2 or high-genus surface F with genus g ≥ 1. Here we focus on three
types of well-known classes maps between surfaces: conformal maps, harmonic maps,
and quasiconformal maps. A comprehensive survey about surface parametrization
using these maps can be found in Floater and Hormann[13].

2.1. Conformal maps and Harmonic maps. Conformal maps are the most
familiar maps among these three maps. In the smooth theory, the fundamental result
is the Uniformization Theorem (see e.g.[19]).

Theorem 2.1. Every Riemannian metric on a closed surface F is conformally
equivalent to a complete Riemannian metric with constant curvature +1, 0, or -1, the
sign depending on the sign of its Euler characteristic χ(F ). The metric is unique up
to isometry isotopic to the identity if the Euler characteristic is negative.

The general theory of harmonic maps between two n-dimensional manifolds was
developed by Eells and Sampson[8]. We restrict our attention to the case of surfaces.
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The Dirichlet energy of a map between two surfaces f : (F1,m1) → (F2,m2) is defined
by

ED(f) =

∫
F1

||df ||2dA

where df is the differential of f , considered as a section to the bundle T ∗F1⊗TF2 with
a metric induced from m1 and m2. It can be regarded as the measurement of total
stretching of the map f . A map is harmonic if it is a critical point of the Dirichlet
energy among maps in its homotopy class.

One of the earliest results about harmonic maps in the plane is the Rado-Kneser-
Choquet theorem[5].

Theorem 2.2. Suppose φ : D → R
2 is a harmonic map sending the boundary

∂D homeomorphically into the boundary ∂Σ of some convex region Σ ⊂ R
2. Then φ

is one to one.

When it comes to general surfaces, a fundamental question is the existence and
uniqueness of harmonic maps in a given homotopy class of maps between two surfaces.
Here we summarize the results proved by Jost[20], Schoen and Yau[29], Coron and
Helein[4], and Markovic and Mateljevic[27].

Theorem 2.3. Given two Riemannian metrics on a surface F and a diffeomor-
phism f , there exists a diffeomorphism which is a critical point of the Dirichlet energy
in the homotopy class of f . If the genus of F satisfies g > 1, then this diffeomorphism
is unique.

2.2. Quasiconformal maps and the Teichmüller maps. Quasiconformal
maps provide a generalization of conformal maps between surfaces, arising naturally
when we want to compare two conformal structures on a surface. Let f : D → C be
an orientation preserving diffeomorphism from a region D in C. We can consider the
Beltrami coefficient

μf (z) =
fz̄
fz

.

If f is conformal, then fz̄ = 0 so μf = 0. The Jacobian of f is given by J(f) =
|fz|2−|fz̄|2 which is positive by assumption. Hence |μf | varies from 0 to 1, measuring
the deviation of f from a conformal map. An alternative quantity K varying from 1
to ∞, called the dilatation, is defined by

Kf (z) =
1 + |μf |
1− |μf |

.

Geometrically, at each point z in D, df maps circles in TpD to ellipses in Tf(p)C = C.
The dilatation Kf (z) is the ratio of the major axis to the minor axis of the ellipse.
Then we call the map f a K-quasiconformal map if there exists a K > 0 such that

sup
z∈D

Kf (z) = sup
z∈D

1 + |μf (z)|
1− |μf (z)|

≤ K.

The composition of a K1-quasiconformal map with a K2-quasiconformal is a K1K2-
quasiconformal map. Quasiconformal maps can be generalized further to non-
differentiable maps using several mutually equivalent geometric and measure-theoretic
definitions [19].
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1 + |μ|
1− |μ|

K = 1+|μ|
1−|μ|

Fig. 1. Quasiconformal maps

Every quasiconformal map f : D → C gives rise to a Beltrami coefficient μf (z)
defined on D. A remarkable theorem proved by Ahlfors and Bers (see, e.g.[9]) states
the converse is also true.

Theorem 2.4. If μ ∈ L∞(C) and ||μ||∞ < 1, there exists a unique quasicon-

formal homeomorphism f : Ĉ → Ĉ fixing 0, 1, and ∞, satisfying μ = μf almost
everywhere.

Since the composition of quasiconformal maps with conformal maps is again qua-
siconformal with the same maximal dilatation, we can define quasiconformal maps
f : F1 → F2 between Riemann surfaces using local charts. Then the Beltrami coef-
ficient is a (−1, 1)-form μdz̄/dz instead of a function, but |μ| is well-defined on the
surface. We can define the corresponding dilatation of a map f

Kf = sup
p∈F

1 + |μf (p)|
1− |μf (p)|

.

This quantity measures the difference between two conformal structures, or equiv-
alently, two hyperbolic structures for higher genus surfaces. We have the following
extremal problem in a given homotopy class: find a map f0 achieving this infimum of
the dilatation in a homotopy class satisfying

Kf0 = inf{Kf |f in a given homotopy class}.

This map is called an extremal quasiconformal map in the given homotopy class
between two Riemann surfaces . For surfaces Fg with genus g > 1, the extremal
quasiconformal map in certain special coordinates is locally an affine map except for
some singularities, called the Teichmüller map. The fundamental theorem about a
Teichmüller map is the Teichmüller’s theorem (see e.g.[9]).

Theorem 2.5. There exists a unique Teichmüller map in every homotopy class
of homeomorphisms of Fg with g > 1 between two conformal structures on Fg.

3. The Space of Shapes. We need to define rigorously the space of “shapes”
before constructing metrics on it. Various notions of shape spaces of curves and
surfaces in R

2 or R3 have been formulated from different perspectives with applications
in computational geometry and computer graphics. An overview of various notions
about shapes is given by Bauer, Bruveris and Minchor[1].

In this paper, we will introduce the space of shapes on surfaces from an intrinsic
point of view. The idea uses the work by Ebin[7], Fischer and Tromba[11, 30], Earle
and Eells[6]. We will summarize their work, define the shape space of a surface and
complete the picture of its connection with the Teichmüller space.
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3.1. Space of Riemannian metrics and its quotients. From the intrinsic
viewpoint, the natural space to consider is the space of all smooth metric tensors on
a given surface F , denoted by M. Let TF and T ∗F be the tangent and cotangent
bundle, then a metric tensor is a section of S2T ∗F , the bundle of all symmetric
(0,2)-type tensors. Since a metric tenor is positive definite, all metric tensors on F
form a convex subset of the infinite-dimensional vector space of sections of symmetric
2-tensors, denoted by Γ(S2T ∗F ).

The tangent space at any element of M, being a subset of a vector space, is
naturally isomorphic to Γ(S2T ∗F ). In the tangent space at g in M, there is a natural
inner product induced by g on arbitrary tensor fields, defined as

(h, k)g =

∫
F

trg(hk)dvolg

where h and k are in Γ(S2T ∗F ) identified with the tangent space at g and dvolg is
the volume form. In local coordinates, they are represented by

trg(hk) = gijglmhilkjm and dvolg =
√
det(g)dx1dx2.

Clarke[3] explored the basic properties of this metric, showing that this metric,
originally defined as a weak Riemannian metric, was indeed a metric. Furthermore,
it coincides with the Weil-Petersson metric when restricted to the Teichmüller space.

It is hard to compute the natural L2 metric defined above on the space M.
Besides, M contains redundant information: two metric tensors h and k may describe
the isometric surface with different parametrizations. Therefore we would like to
simplify the definition of the space of shapes for a given surface F , as the quotient of
M by certain groups acting on M.

There are three topological groups acting naturally on the space of metrics: the
space P of all smooth functions on surface F , D the orientation-preserving diffeomor-
phism group of F and its normal subgroup D0, the group of diffeomorphisms isotopic
to the identity. The group D acts on M as isometries by pull-back

D ×M → M (f, g) → f∗g.

The action of D0 is its restriction. The action of P on M is the multiplication of
positive functions with metric tensors

P ×M → M (u, g) → eug.

When we consider the two group actions above, an immediate question is whether
we have a bundle structure. The natural topology for M, D and P is the smooth
Frechet topology, which means that two metrics are close if all the coefficients and their
derivatives are close under the supremum norm in every chart. The implicit function
theorem and its consequences are not true in general for this topology. Hence in
Ebin[7] and Fischer[10, 11], M, D, and P are modelled in the corresponding Sobolev
spaces. These spaces contain maps which have square integrable partial derivatives
up to sufficiently large order s > 1 in every local charts, denoted by Ms, Ds+1, and
Ps respectively.

The space Ms forms an open convex subset in the Hilbert space Γs(S2T ∗F ),
hence a Hilbert manifold. The space Ps corresponds to the Sobolev space Hs(F,R).
Then the multiplication and inverse are continuous, hence Ps is an abelian Hilbert Lie
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group. Ebin[7] proved that Ds+1 was also a Hilbert Lie group. Then we can apply
the following theorem in [11] for the action of a Hilbert Lie group on an infinite-
dimensional manifold, which will induce a smooth structure on the shape space, the
space of pointwise conformal classes and the Teichmüller space.

Theorem 3.1. Let a smooth Hilbert Lie group G act on a smooth Hilbert manifold
N . If the action is smooth, proper, and free, then:

• For all x ∈ N , the orbit of x by G, denoted by Gx, is a closed smooth sub-
manifold in N ;

• The quotient space N/G is a smooth manifold;
• The quotient map π : N → N/G is a smooth submersion. It has the structure
of a smooth principle fibre bundle.

Fischer and Tromba[11] considered the action of Ps on Ms, where two metrics
were in the same orbit if they differed by a factor u ∈ Ps, namely they were pointwise
conformal to each other. The quotient manifold of this group action on Ms is the
space of pointwise conformal structures on F , denoted by Cs. By Theorem 3.1 above,
they clarified the differential structure for Cs in [11].

Theorem 3.2. The group action P : Ps×Ms → Ms is smooth, free, and proper.
The quotient space Cs = Ms/Ps by the quotient map π : Ms → Ms/Ps = Cs, is
a contractible smooth Hilbert manifold, and (Ms, Cs, π) has the structure of a trivial
principle fiber bundle with structure group Ps. The orbit Psg for any g is a closed
smooth submanifold diffeomorphic to Ps.

For surfaces with genus at least two, there is a unique hyperbolic metric in each
conformal class of metrics. Let M−1 and Ms

−1 be the space of all smooth hyperbolic
metrics and the corresponding Hilbert manifold, then Fischer and Tromba [11] proved
that Ms

−1 and Cs were diffeomorphic, so we can use them interchangeably.

We can take further quotient of Cs by group action of Ds+1
0 . This quotient gives

a trivial fibre bundle description of the Teichmüller space T s in [6, 11].

Theorem 3.3. Assume a surface F is of genus g > 1. The group action Ds+1
0 ×

Cs → Cs by pullback is smooth, free, and proper. The quotient space is the Teichmüller
space T s, and the quotient map π : Cs → Cs/Ds+1

0 = T s gives a trivial principle fibre
bundle structure to (Cs, T s, π) .

The two groups can be combined to form a semidirect product Ds+1
0 �Ps, which

is called the conformorphism group in Fischer[10] denoted by Es
0 . It acts on Ms by

Es
0 ×Ms → Ms ((f, u), g) → eu · f∗g;

(f1, u1) · (f2, u2) = (f2 ◦ f1, eu2+(u1◦f2)).

The quotient of the group action on Ms gives the Teichmüller space T s. This
follows since Ps is a normal subgroup of Es

0 hence the two-step quotient (Ms/Ps)/Ds
0

is isomorphic structure to Ms/Es
0 [10]. In summary, we have the following diagram

with two trivial fibre bundle structures

Ms

Cs T s

Ps
Es
0

Ds+1
0

.
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Given these two trivial bundle structures, we can formally write Ms = Ps ×
Ds+1

0 × T s. It means that for any given metric g ∈ Ms, there exist elements in
u ∈ Ps, f ∈ Ds and [τ ] ∈ T s such that g = euf∗(σ([τ ])) ∈ Ms. Here we don’t have
a canonical choice for a section σ : T s → Ms

−1, although a global section exists since
the bundle is trivial.

3.2. The space of shapes and its quotient. Motivated by the definition of
the Teichmüller space, we define the space of shapes as follows.

Definition 3.4. Let F be a closed orientable connected surface. The space of
shapes of F , or the shape space, denoted by S(F ), is the space of equivalence classes
of metrics on the surface F , where two metrics g1 and g2 are equivalent if there exists
an isometry f : (F, g1) → (F, g2) isotopic to the identity.

This space is the quotient ofM by the action of D0 as pullbacks. Alternatively, we
can regard the elements in the shape space as equivalence classes of marked surfaces,
denoted by (Fi, φi, gi), where Fi is a surface with metric gi diffeomorphic to F via a
marking φi : Fi → F . Two marked Riemannian surfaces (F1, φ1, g1) and (F2, φ2, g2)
are equivalent if there exists an isometry f : (F1, g1) → (F2, g2) so that f ◦ φ1 is
isotopic to φ2.

We show that Ss, the Hilbert manifold arising as the quotient manifold of the
action by Ds+1

0 on Ms, has a principal bundle structure, which defines the differential
structure on the shape space Ss.

Theorem 3.5. The action by Ds+1
0 on the space Ms is smooth, free, and proper

if the surface F has genus g > 1. Hence the quotient space Ss = Ms/Ds+1
0 is a

smooth Hilbert manifold, and the quotient map π : Ms → Ms/Ds+1
0 = Ss is smooth.

(Ms,Ss, π) has the structure of a principle fibre bundle with structure group Ds+1
0 .

Proof. The smoothness of the action of Ds+1 on Ms was proved in detail by
Ebin[7]. The properness of the action of Ds+1 was given by Palais and Fischer (see,
e.g. [30]) using a straightforward computation, so the same holds for the action of its
normal subgroup Ds+1

0 . Hence we only need to prove that the action is free. We need
to show that if f∗g = g and Ds+1

0 , then f has to be the identity.
We prove it with harmonic maps. By Coron and Helein[4], any smooth har-

monic diffeomorphism between two compact Riemannian surfaces is a minimizer of
the Dirichlet energy in its homotopy class, and it is unique if the genus is larger than
1. Hence for any metric g0 on a surface F , if we have an isometry f : (F, g0) → (F, g0)
isotopic to the identity, it has to be the identity by the uniqueness of harmonic maps,
since the identity is a harmonic map.

In the previous discussions, we consider all the spaces to be in the category of
Hilbert manifolds Ms, Ss, Cs, and T s for sufficient large s > 0, to guarantee the
continuity of metric tensors and their derivatives. By choosing the category of the
Inverse Limit Hilbert structure, or ILH-structure, defined by Omori[28], the results
above also hold for ILH-Lie groups P, D0, and spaces M, M−1, S, T (see, e.g.[11]),
so we will use this category in the rest of this paper. Notice that if the genus g of F is
larger than one, the corresponding spaces M and D0 are contractible in this category,
so the shape space S(F ) is a contractible space, and the bundle structure (M,S, π)
is trivial.

Our next goal is to understand the connection between the space of shapes S
and the Teichmüller space T . There is a natural projection from S to T . By the
Uniformization Theorem, there exists a unique hyperbolic metric ḡ in the conformal
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class of g. The identity map id : (F, g) → (F, ḡ) is conformal, so we can define the
following projection

j : S → T [g] → [ḡ].

Lemma 3.6. The projection map j : S → T is well-defined and smooth.

Proof. Given g1 and g2 representing one equivalent class in S and their confor-
mally equivalent hyperbolic metrics ḡ1 and ḡ2, we have an isometry f : (F, g1) →
(F, g2) isotopic to the identity. It induces a conformal map from (F, ḡ1) to (F, ḡ2) by
f̄ = id ◦ f ◦ id−1, since id−1, f and id are conformal. Then f̄ has to be an isometry
since conformal diffeomorphisms between hyperbolic surfaces are isometries. Hence
ḡ1 and ḡ2 represent the same element in the Teichmüller space.

This projection can be constructed explicitly using the bundle structure of S.
Since the bundle structure of M over S is trivial, there exists a smooth global section
σ : S → M. We can compose this section with the two smooth projections from
M → M−1 and M−1 → T to construct the projection j.

Unfortunately we can’t take the quotient of S by the group action of P directly
to construct a well-defined group action. This is due to the fact that a function u ∈ P
has a fixed value at a fixed point while every element in S can be represented using
different metrics, which achieve possibly different values at a fixed point. It can also
be seen by the fact that D0 is not a normal subgroup of E0, hence E0/(D0, 1) is not
isomorphic to P as groups.

In summary, we have four spaces M, S, C, and T in a commutative diagram

M S

C T

D0

P E0 j

D0

.

The group action D ×M → M is more subtle since certain metric tensors have
non-trivial symmetries. For example, hyperbolic surfaces with genus g may have
isometry groups with order up to 84(g − 1)(see, e.g.[9]).

The diagram above holds for surfaces F with g > 1. For the torus, its diffeomor-
phism group D0 could contain non-trivial isometries, so the action of D0 on M may
not be free. By Earle and Eells[6], D0 is not contractible and has the same homotopy
type as the torus, so the shape space S is not contractible. It does not fit in the pic-
ture for higher genus cases. Nevertheless, we define a metric structure on the shape
space of a surface F , including the torus in the next section.

4. Metrics on the Space of Shapes on Surfaces. In this section, we define
a distance function between two shapes in the shape space S of a closed orientable
surface F of genus g ≥ 1. We first discuss how to compare shapes using diffeo-
morphisms, then define a metric based on two energies defined for quasiconformal
homeomorphisms on F .

4.1. Measurement of distortion. To compare two shapes, we find an “opti-
mal” diffeomorphism between two shapes on a surface and measure its deviation from
an isometry. In general, we can measure the distortion of f : (F, g1) → (F, g2) by the
singular values of its differential, where the differential at a point p is

dfp : (TpF, g1) → (Tf(p)F, g2).
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With an appropriate orthonormal basis in each metric, it can be expressed as

dfp = T =

[
λ1(p) 0
0 λ2(p)

]
.

where λ1(p) and λ2(p) are the singular values of dfp as a linear transformation. The
area distortion of f at p is measured by the Jacobian Jf (p) = λ1(p)λ2(p). The ratio
of the two singular values at p ∈ F corresponds to the eccentricity of the ellipse in the
tangent space at f(p) shown in Figure 1. To measure the angle distortion of f , we
define the dilatation of f at p to be Kf (p) = λ1(p)/λ2(p), assuming λ1(p) ≥ λ2(p).

Notice that we can extend these definitions from diffeomorphisms on F to qua-
siconformal homeomorphisms on F . For a quasiconformal homeomorphism f from a
region Ω ⊂ C into C, fz and fz̄ are locally square-integrable, and f is differentiable
almost everywhere. The Jacobian Jf is well-defined almost everywhere and locally
integrable, and the essential supremum of Kf over the surface is bounded. Then we
can show that both λ1 and λ2 are locally square-integrable, satisfying the relations

λ1(p) =
√
Jf (p)Kf (p) and λ2(p) =

√
Jf (p)

Kf (p)
∀p ∈ Ω.

Since the Jacobian and dilatation of f are local quantities, we can construct charts
on a surface to show that λ1 and λ2 are well-defined and locally square-integrable for
quasiconformal homeomorphisms on the surface F .

Based on the two singular values λ1 and λ2, we can define energies of f measuring
the angle distortion and the area distortion of f respectively.

Definition 4.1. The area distortion energy of a quasiconformal homeomorphism
f : (F, g1) → (F, g2) is

E1(f) =

√∫
F

(1−
√
λ1(p)λ2(p))2dAg1 .

The angle distortion energy of f is

E2(f) =
1

2
|| log λ1(p)

λ2(p)
||∞.

where λ1(p) and λ2(p) are singular values of f at p ∈ F , and || · ||∞ is the essential
supremum norm on the functions on F .

Note that if f is a pointwise area-preserving, then E1(f) = 0. If f is conformal,
E2(f) = 0. Both of them are zero if and only if f is an isometry.

4.2. Metric Structure for Genus Zero Surfaces. Hass and Koehl[17] intro-
duced a metric structure for smooth genus-zero surfaces from the intrinsic point of
view. By the Uniformization Theorem, any two metrics g1 and g2 on S2 are confor-
mally equivalent. There exists a conformal diffeomorphism f : (S2, g1) → (S2, g2)
with a positive function λf , called the conformal factor, such that

f∗(g2) = λ2
fg1 or g2(f

∗(v1), f∗(v2))f(p) = λ2
f (p)g1(v1, v2)p

where v1, v2 ∈ TpS
2 for all p ∈ S2. In looking for an energy minimizing map, we

can restrict to the group of conformal diffeormophisms of the round 2-sphere, which
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coincides with the group of Mobius transformations isomorphic to PSL(2,C). If we
choose an appropriate orthonormal basis in the tangent space for each metric, the
differential of a conformal diffeomorphism has a simple expression [17]

dfp =

[
λf 0
0 λf

]
.

For conformal maps we have E2 = 0 and E1 simplifies to

E1(f) =

√∫
S2

(1− λf )2dAg1 .

This idea leads to the definition of a metric on the space of shapes of S2 as

d((S2, g1), (S
2, g2)) = inf{E1(f)|f : (S2, g1) → (S2, g2) a conformal diffeomorphism}.

In [17], Hass and Koehl showed this function d : S×S → R gave a metric, and the
infimum was achieved by a conformal diffeomorphism. In their framework, the given
two surfaces are mapped to the round 2-sphere by conformal maps c1 and c2. They
found an optimal conformal diffeomorphism c−1

2 ◦m ◦ c1 between the two surfaces by
minimizing the symmetric distortion energy among the group of Mobius transforma-
tions. They proposed an algorithm to compute the distance between two triangulated
surfaces and applied it to describe shapes of proteins and generate evolutionary trees
of species [16, 21, 22].

Fig. 2. A framework to compare genus-zero surfaces. Picture is a courtesy of Hass and Koehl
[17].

4.3. Metric Structure for High Genus Surfaces. There is a fundamental
difference between the shape space of genus-zero surfaces S2 and that of higher genus
surfaces F . Any two shapes on the 2-sphere are conformal, while two shapes on a high
genus surface are not necessarily conformally equivalent. We define a distance between
two shapes by minimizing the sum of the energies E1 and E2 over the quasiconformal
homeomorphisms of F isotopic to the identity. Setting E(f) = E1(f) + E2(f), we
define a distance function as follows.
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Definition 4.2. Let F be a closed connected orientable surface of genus g ≥ 1
and S(F ) be the shape space of F . Then we define a function d : S(F )× S(F ) → R

between two shapes in S(F ) represented by (F, g1) and (F, g2) to be

d((F, g1), (F, g2)) = inf
f∈Q0

E(f) = inf
f∈Q0

⎛
⎝
√∫

F

(1−
√

λ1λ2)2dAg1 +
1

2
|| log λ1

λ2
||∞

⎞
⎠

where Q0 is the space of quasiconformal homeomorphisms from (F, g1) to (F, g2)
isotopic to the identity.

Equivalently, we can use marked surfaces to define this metric on the shape space
S(F ). Let (F1, φ1, g1) and (F2, φ2, g2) represent two different shapes of F , then

d((F1, φ1, g1), (F2, φ2, g2)) = inf
f∈Q

{E(f)}

whereQ is the set of quasiconformal homeomorphisms from (F1, g1) to (F2, g2) isotopic
to φ2 ◦ φ−1

1 .
In the rest part of this section, we will show that the function d is a distance

function on the shape space S(F ), and the energy minimizer is realized by a quasi-
conformal homeomorphism between two surfaces. We will first prove the existence of
the minimizer based on the lower semi-continuity of the energy.

In general, a sequence of homeomorphisms fn of a surface may converge to a
singular map, such as a constant map. We show that singular maps will not occur for
the limit of an energy-minimizing sequence.

Given two hyperbolic surfaces (F, ḡ1) and (F, ḡ2), all K-quasiconformal home-
omorphisms between them are equicontinuous. (See Theorem 4.4.1 in [18].) The
following lemma shows that this result also holds for K-quasiconformal homeomor-
phisms between two flat tori. To prove this lemma, we use the extremal length of
curve families in the annulus (see e.g. [12]).

Lemma 4.3. Let fn : (T2, g1) → (T2, g2) be a family of K-quasiconformal homeo-
morphisms between two flat tori with unit area. Then the maps fn are equicontinuous.

Proof. Let J be the injective radius of (T2, g1), and dgi(x, y) denote the distance
between x and y in the metric gi, where i = 1, 2. Then for any 0 < r < J , if
dg1(x, y) < r, then there exists an embedded annulus A in (T2, g1) centered at the
midpoint of x and y, whose inner radius is r/2 and outer radius is J/2. Moreover,
it separates T

2 into two components, one of which is a flat disk with radius r/2
containing x and y.

Lift A isometrically to a flat annulus Ã in the universal covering R
2, and lift x

and y to x̃ and ỹ contained in the disk bounded by the inner boundary of Ã. We
consider the extremal length λ(Γ) of the family of curves Γ in Ã that separate the
two boundary circles of Ã, with curves not leaving Ã. Then we have (see e.g.[12])

λ(Γ) =
2π

log(J/r)
.

We also lift fn toK-quasiconformal homeomorhisms f̃n : R2 → R
2. Then by the prop-

erty of K-quasiconformal homeomorphisms, f̃n(A) are annulus, and if Γn
1 = f̃n(Γ),

then the curves in Γn
1 are contained in f̃n(A) with their extremal length bounded by

λ(Γn
1 ) ≤ Kλ(Γ).
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By the definition of the extremal length λ(Γ), notice that the area of f̃n(A) is less
than one in the Euclidean metric on R

2, so

λ(Γn
1 ) ≥ L2 ≥ 4d2(f̃n(x̃), f̃n(ỹ)) = 4d2g2(fn(x), fn(y)) ∀n,

where L is the length of the inner boundary curve of f̃n(A). The second inequality
holds because f̃n is a homeomorphism so that f̃n(x̃) and f̃n(ỹ) are in the disk bounded
by the inner boundary curve of f̃n(A), and the last equality holds because there exists
an isometric project from R

2 to (T2, g2). Then we conclude

dg2(fn(x), fn(y)) ≤
√

πK

2 log J
r

∀n.

Notice that dg2(f(x), f(y)) → 0 if r → 0. Hence for any ε > 0, there exists r > 0
such that if dg1(x, y) < r, then dg2(f(x), f(y)) < ε. Notice that r doesn’t depend on
n, hence the maps fn are equicontinuous.

Theorem 4.4. Assume F has genus g ≥ 1. Given two metrics (F, g1), (F, g2)
representing two shapes in S(F ), and an energy-minimizing sequence fn ∈ Q0(F ) such
that E(fn) → d((F, g1), (F, g2)) as n → ∞, there is a subsequence of fn converging to
a quasiconformal homeomorphism f such that E(f) = d((F, g1), (F, g2)).

Proof. Since E(fn) → d((F, g1), (F, g2)), we assume that E(fn) < K for someK >
0. Then the maps fn are K-quasiconformal homeomorphisms on a compact surface F .
Then the maps fn are equicontinuous and bounded with respect to the corresponding
metrics ḡ1 and ḡ2 of constant curvature, and if F is the torus, we normalize ḡ1 and ḡ2
to be metrics with unit area. By Arzela-Ascoli, there exists a subsequence converging
uniformly to a continuous map f . To show f is a homeomorphism, notice that the
inverses of the maps fn are also D-quasi-isometries where D does not depend on n.
Then the equicontinuity of inverses of fn implies that if f−1

n (x) = a and f−1
n (y) = b,

then

dḡ1(a, b) = dḡ1(f
−1
n (x), f−1

n (y)) ≤ C(K)dḡ2(x, y) = C(K)dḡ2(fn(a), fn(b))

where dḡi(x, y) denotes the distance between x and y in the metric ḡi for i = 1, 2.
Taking the limit n → ∞, we conclude that f is injective. Then f is a continuous injec-
tion from a compact 2-manifold to a connected 2-manifold, so it is a homeomorphism
by the properness of f and the theorem of invariance of domain. (see e.g.[24]).

Replace fn by a convergent subsequence and we have fn → f uniformly where f
is a homeomorphism. For the limit map f , notice that its energy is given by

E(f) =

√∫
F

(1−
√

Jf )2dAg1 +
1

2
logKf

where Jf is the Jacobian of f and Kf is the maximal dilatation of f . The lower
semicontinuity property of the maximal dilatations for quasiconformal maps [2] gives

Kf ≤ lim inf
n→∞ Kfn .

Next we will show that by taking a further subsequence of fn, we have∫
F

(1−
√

Jf )
2dAg1 = lim

n→∞

∫
F

(1−
√

Jfn)
2dAg1 .
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Notice that this term has the following decomposition;∫
F

(1−
√

Jfn)
2dAg1 =

∫
F

dAg1 +

∫
F

JfndAg1 − 2

∫
F

√
Jfn

= Area((F, g1)) +Area((F, g2))− 2

∫
F

√
Jfn ,

where Area((F, g)) is the area of the surface F with respect to metric g. Similarly we
have ∫

F

(1−
√
Jf )

2dAg1 = Area((F, g1)) +Area((F, g2))− 2

∫
F

√
Jf .

Consider
√
Jfn as an element in the function space on (F, g1) with L2 norm. The

area of (F, g2) gives a uniform bound;∫
F

(
√
Jfn)

2dAg1 = Area((F, g2)) =

∫
F

(
√
Jf )

2dAg1 .

The unit closed ball in the function space on (F, g1) with L2 norm is weakly
sequentially compact, so we have a subsequence of fn, denoted again by fn such that√
Jfn converges weakly to

√
Jf . Since (F, g1) is compact, constant functions are in

this function space, hence

lim
n→∞

∫
F

√
Jfn · 1dAg1 =

∫
F

√
Jf · 1dAg1 .

Thus, we have

E(f) ≤ lim inf
n→∞ E(fn) = d((F, g1), (F, g2)).

Since f is a quasiconformal homeomorphsim, E(f) ≥ d((F, g1), (F, g2)), hence

E(f) = d((F, g1), (F, g2)).

We are ready to check that d satisfies the conditions for a distance function.

Theorem 4.5. Let F be a closed orientable connected surface of genus g ≥ 1.
The function d induces a metric on the space of shapes S(F ).

Proof. To show the function d is a metric, we need to check that for any three
metrics (F, g1), (F, g2), and (F, g3), we have

(1) d((F, g1), (F, g2)) ≥ 0;
(2) d((F, g1), (F, g2)) = 0 if and only if g1 and g2 are isometric by a diffeomor-

phism isotopic to the identity;
(3) d((F, g1), (F, g2)) = d((F, g2), (F, g1));
(4) d((F, g1), (F, g3)) ≤ d((F, g1), (F, g2)) + d((F, g3), (F, g2)).
The first property is immediate. If two surfaces are isometric, both singular

values of the differential are one at every point on the surface, hence the distance
is zero. If d((F, g1), (F, g2)) = 0, by Theorem 4.4, there exists a quasiconformal f
homeomorphism realizing this energy, then f is a 1-quasiconformal homeomorphism,
hence is a conformal. Moreover, the area distortion is zero, so it is an isometry isotopic
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to the identity, which means that g1 and g2 represent the same equivalence class in
S(F ).

The symmetry property follows from E1(f) = E1(f
−1) and E2(f) = E2(f

−1).
By a similar computation in [17], we have

E1(f
−1) =

√∫
F

(1−
√

1

λ1λ2
)2dAg2 =

√∫
F

(1−
√

1

λ1λ2
)2λ1λ2dAg1

=

√∫
F

(1−
√

λ1λ2)2dAg1 = E1(f).

The singular values of f−1 are 1/λ1 and 1/λ2, so the symmetry of E2 is immediate.
To show the triangle inequality, set f : (F, g1) → (F, g2) and g : (F, g2) → (F, g3),

and we show that

E1(g ◦ f) ≤ E1(g) + E1(f).

Let the singular values of f , g, and g◦f be λ1 and λ2, μ1 and μ2, σ1 and σ2 respectively.
Then by a similar computation in [17], we have

(E1(g) + E1(f))
2 =

∫
F

(1−
√

λ1λ2)
2dAg1 +

∫
F

(1−√
μ1μ2)

2dAg2

+ 2

√∫
F

(1−
√

λ1λ2)2dAg1

∫
F

(1−√
μ1μ2)2dAg2 .

Notice that dAg2 = λ1λ2dAg1 , then by the Cauchy-Schwarz inequality, we have√∫
F

(1−
√

λ1λ2)2dAg1

∫
F

(1−√
μ1μ2)2dAg2

=

√∫
F

(1−
√
λ1λ2)2dAg1

∫
F

(1−√
μ1μ2)2λ1λ2dAg1

≥
∫
F

(1−
√

λ1λ2)(1−
√
μ1μ2)

√
λ1λ2dAg1 .

Hence

(E1(g) + E1(f))
2 ≥

∫
F

(1−
√
λ1λ2)

2 + (1−√
μ1μ2)

2λ1λ2

+ 2(1−
√

λ1λ2)(1−
√
μ1μ2)

√
λ1λ2dAg1

=

∫
F

((1−
√

λ1λ2) +
√
λ1λ2(1−

√
μ1μ2))

2dAg1

=

∫
F

(1−
√
λ1λ2μ1μ2)

2dAg1 .

Since σ1σ2 = Jg◦f = JfJg = λ1λ2μ1μ2, it follows that

(E1(g) + E1(f))
2 ≥ (E1(g ◦ f))2.

To prove the second part of the inequality, namely E2(g ◦ f) ≤ E2(g) + E2(f), we
assume that λ1 ≥ λ2, μ1 ≥ μ2, and σ1 ≥ σ2 for simplicity. Notice that the larger
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singular value is the 2-norm for the differential dfp, and the smaller singular value is
the reciprocal of the 2-norm of the inverse of dfp. The larger singular value of the
composition g ◦ f is bounded by

σ1(p) = ||d(g ◦ f)p||2 = ||dgf(p) ◦ dfp||2 ≤ ||dfp||2||dgf(p)||2 = λ1(p)μ1(p).

Similarly for the inverse, we have

1

σ2(p)
= ||d(f ◦ g)−1

p ||2 = ||df−1
p ◦ dg−1

f(p)||2 ≤ ||df−1
p ||2||dg−1

f(p)||2 =
1

λ2(p)μ2(p)
.

Hence we have

0 < λ2μ2 ≤ σ2 ≤ σ1 ≤ λ1μ1.

Therefore

E2(f) + E2(g) =
1

2
|| log λ1

λ2
||∞ +

1

2
|| log μ1

μ2
||∞ ≥ 1

2
|| log λ1

λ2
+ log

μ1

μ2
||∞

=
1

2
|| log λ1μ1

λ2μ2
||∞ ≥ 1

2
|| log σ1

σ2
||∞ = E2(g ◦ f).

Therefore we show that

E(f) + E(g) ≥ E(g ◦ f).

To pass to the infimum, we choose fn : (F, g1) → (F, g2) and gn : (F, g2) → (F, g3) in
Q0 such that

lim
n→∞E(fn) = d((F, g1), (F, g2)) and lim

n→∞E(gn) = d((F, g2), (F, g3)).

Then we have

E(fn) + E(gn) ≥ E(gn ◦ fn) ≥ d((F, g1), (F, g3)).

Taking the limit as n → ∞ we have

d((F, g1), (F, g2)) + d((F, g2), (F, g3)) ≥ d((F, g1), (F, g3)).

The last thing to check is that the metric d is well-defined on the shape space. Assume
g1 and g̃1 represent the same shape, and g2 and g̃2 represent another shape. Then we
have an isometry i1 : (F, g1) → (F, g̃1) isotopic to the identity and another isometry
i2 : (F, g2) → (F, g̃2) isotopic to the identity. Given f : (F, g1) → (F, g2), consider the
map f̃ : (F, g̃1) → (F, g̃2) defined as

f̃ = i2 ◦ f ◦ i−1
1 .

Since i1 and i2 are isometries, they will not change the singular values, so the singular
values of f̃ are given by λ̃1(p) = λ1(i

−1
1 (p)) and λ̃2(p) = λ2(i

−1
1 (p)). An isometry also

preserves the area, so dAg̃1 = dAg1 . Hence we have

E1(f̃) =

√∫
F

(1−
√
λ̃1(p)λ̃2(p))2dAg̃1

=

√∫
F

(1−
√
λ1(i

−1
1 (p))λ2(i

−1
1 (p)))2dAg1 = E1(f),
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and

E2(f̃) =
1

2
|| log λ̃1

λ̃2

||∞ =
1

2
|| log λ1

λ2
||∞ = E2(f).

Hence we have

E(f̃) = E(f).

Since i1 and i2 are isotopic to the identity, f ∈ Q0 if and only if f̃ ∈ Q0. Taking the
infimum over f ∈ Q0, we conclude that

d((F, g1), (F, g2)) = d((F, g̃1), (F, g̃2)).

Hence d is a well-defined metric on S.
Notice that if we restrict the metric to T , then d will be the Teichmüller metric.
It is not clear whether the minimizer is unique between two general surfaces. In

the special case where both surfaces (F, g1) and (F, g2) are flat tori with unit area, the
minimizers are given by affine maps, because affine maps coincide with Teichmüller
maps on flat tori with unit area, and the Jacobians of affine maps are constant. This
forces the Jacobians to be the constant J ≡ 1 on F . If we fix one point p on F , then
there is a unique affine map fixing p realizing the infimum of the energy.

5. Conclusion and Further Work. We have described a new metric structure
on the shape space of a high-genus surface. We first define the shape space of a surface
and establish its connections with the Teichmüller space. Then we introduce an
energy for quasiconformal maps as a measurement of distortion, and define a distance
function on the shape space by minimizing this energy among all the quasiconformal
homeomorphisms in a given homotopy class of maps between two given shapes. We
prove that the minimizer of this energy is a quasiconformal homeomorphism, which
produces an optimal correspondence between two shapes.

In the future, we will design an algorithm to compute the distance between two
shapes represented by triangulated surfaces. The framework of the algorithm in [25,
26, 32] can be adapted to our case. Also, the uniqueness of the energy-minimizing
map is open.

Acknowledge. The author would like to thank his advisors, Joel Hass and
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ment.
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