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DEFORMATIONS OF CR MAPS AND APPLICATIONS∗

GIUSEPPE DELLA SALA† , BERNHARD LAMEL‡ , AND MICHAEL REITER§

Abstract. We study the deformation theory of CR maps in the positive codimensional case.
In particular, we study structural properties of the mapping locus E of (germs of nondegenerate)

holomorphic maps H : (M,p) → M ′ between generic real submanifolds M ⊂ CN and M ′ ⊂ CN′
,

defined to be the set of points p′ ∈ M ′ which admit such a map with H(p) = p′. We show that this
set E is semi-analytic and provide examples for which E possesses (prescribed) singularities.

Key words. CR maps, deformations of CR manifolds, mapping locus, jet parametrization
property, semi-analytic sets.
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1. Introduction. A classical counting argument due to Poincaré [22] shows
that for ”most” germs of real-analytic submanifolds (M,p) ⊂ (CN , p) and (M ′, p′) ⊂
(CN , p), it is impossible to move one into the other by means of a germ of a holomor-
phic map H : (CN , p)→ (CN , p). This rigidity phenomenon is by now well understood
in the context of real submanifolds of the same dimension by means of jet parametriza-
tion results; we mention here e.g. the paper [15] for a thorough discussion of those.

An extension of the techniques developed in that paper allowed us to study in
[8] the equivalence locus E(p) of p ∈ M , which is defined as the set of points q ∈ M
for which there exists a biholomorphism taking (M,p) into (M, q) and show that
this set is locally a real-analytic submanifold of M . In the present paper, we are
interested in studying the positive codimensional case, and extending results ob-
tained in [9, 10]. Observe the following general rigidity phenomena for mappings
H : (CN , p) → (CN ′

, p′) where N ′ > N : Given a germ of a real-analytic submanifold
(M,p) ⊂ (CN , p) and a subvariety M ′ ⊂ CN ′

, only few points p′ ∈ M ′ allow for a
(nondegenerate) holomorphic map H : (CN , p) → (CN ′

, p′) satisfying H(M) ⊂ M ′.
The general mapping locus is defined as

E =
{
p′ ∈M ′ : ∃H : (CN , p)→ (CN ′

, p′) holomorphic, H(M) ⊂M ′, H≡/ p′
}
;

for our results, we shall have to restrict ourselves to the mapping locus defined for
classes of maps for which we have so-called jet parametrization results. We will see
that in the positive codimensional setting, these mapping loci can only be shown to be
semi-analytic and that there exist examples for which we actually obtain a mapping
locus with singularities.

Before we proceed, we need to introduce some definitions. We denote the ideal
associated to M ′ at the point p′, consisting of all germs of real analytic functions
vanishing on M ′, by Ip′(M ′) ⊂ C{w − p′, w − p′}, and the set of all germs of real-
analytic CR vector fields tangent to M near p by Γp(M). We say that such a map H
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is �-finitely nondegenerate at p if

dimC

{
L̄1 · · · L̄k�

′
w(H(z), H(z))|z=p : L̄j ∈ Γp(M), k ≤ �, �′ ∈ IH(p)(M

′)
}
= N ′.

Given M and M ′ as above, and � ∈ N, we define the (�-finitely nondegenerate)
mapping locus E� ⊂ E ⊂ M ′ consisting of all points p′ ∈ M ′ with the property that
there exists an �-finitely nondegenerate map H : (M,p)→M ′ with H(p) = p′.

The rigidity properties of real objects with respect to holomorphic maps already
alluded to above lead to interesting structural properties of this set. Apart from
this, there are several reasons motivating the study of E. One of the main possible
applications is in the study of the moduli space of CR maps with respect to the actions
of the automorphism groups ofM andM ′ from the right or the left, respectively. This
is particularly interesting (and has been studied a lot) in the case where M and M ′

are spheres. We refer the interested reader to the survey of Huang and Ji [14] on this
matter, and also note that there is a notion of homotopy equivalence in this setting
introduced by D’Angelo and Lebl [7].

Another motivation is that when one studies deformations of proper maps be-
tween domains with real-analytic boundaries, then the existence of such maps finds
obstructions in the existence of maps between the boundaries very naturally, as all
such maps extend holomorphically across the boundary in many settings (see e.g. the
paper by Mir [21]). Let us now state our first theorem:

Theorem 1. If M is real-analytic CR manifold and M ′ ⊂ CN ′
is a real-analytic

subvariety, then for every � ∈ N the mapping locus E� ⊂M ′ is locally a semi-analytic
set.

In particular, we recover one of the main results of [8] for the equivalence locus
E(p): since it is also homogeneous (by definition), E(p) ⊂ M is necessarily a locally
closed submanifold. We remark that the level of generality obtained in the equidi-
mensional case remains currently out of reach in the positive codimensional case; i.e.
our paper makes no claim (and offers no conjectures) regarding the full mapping locus
E.

One might wonder whether the mapping locus E�, in contrast to the equidimen-
sional case, can have singularities if the codimension N ′−N is positive. We construct
an example showing that this is actually the case (even if the source manifold is
assumed to be very nice).

Theorem 2. Let M be the unit sphere in CN . Then there is a real hypersurface
M ′ ⊂ CN+1 such that the mapping locus E�, for any � ≥ 2, is a singular real-analytic
subset of M ′.

Our approach to studying the mapping locus is to consider the variation of the
image point p′ ∈M ′ as a deformation of M ′ and to deduce the semi-analyticity result
from a more general semi-analyticity result valid for general deformations of M ′.

This approach allows us to shed additional light on the mapping locus in some
interesting cases. We point out one instance of this here: the degeneration of the
mapping locus to a point can be checked by a sufficient linear criterion, which allows
us to recover a statement already implicit in results of [11] from our considerations of
deformations.

We recall the necessary definitions: Assume that H : (M,p) → (M ′, p′) is an
�-finitely nondegenerate map. We say that Y (z) ∈ C{z − p}N ′

is an infinitesimal
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deformation of H if Y (p) = 0 and if

Re
(
�w(H(z), H(z)) · Y (z)

) ∣∣
z∈M

= 0.

We note that we shall see later that the set of infinitesimal deformations of H is a
(finite-dimensional) real subspace hol(H) of C{z − p}N ′

, which is tightly related to
the tangent space of the set of possible maps of (M,p) into M ′.

Theorem 3. Let M be a real-analytic CR manifold and M ′ ⊂ CN ′
a real-

analytic subvariety. Assume H is �-finitely nondegenerate and that there exist no
nontrivial infinitesimal deformations of H, i.e. dimR hol(H) = 0. Then there exists
a neighborhood U of p′ such that E� ∩ U = {p′}.

Theorem 1 and Theorem 3 are obtained by a more general study of analytic de-
formations of the target manifold M ′ together with the jet parametrization technique
for CR maps, see Section 2 for all relevant definitions. Their proofs are given in Sec-
tion 3 and Section 4. The proof of Theorem 2 is given in Section 5. Finally, Section 6
contains a list of examples illustrating various properties of the mapping locus.

Acknowledgment. The authors would like to thank 3 anonymous referees for
their careful reading of the paper and pointing out many places where we could
improve it as well as for the numerous typos caught by them.

2. Preliminaries and further results. This section introduces all the relevant
notions and notations used throughout the paper; we also state the more general
theorems from which we will deduce the theorems stated in the introduction.

2.1. Manifolds, maps and deformations. Let H((CN , p),CN ′
) be the set of

germs at p of maps from CN to CN ′
. This space is endowed with the inductive limit

topology with respect to the Banach spaces H((BR(p), p),C
N ′
), where BR(p) denotes

the ball of radius R > 0 in CN centered at p. In the following every subspace of
H((CN , p),CN ′

) will be equipped with the induced topology.

We define H((CN , p), (CN ′
, p′)) ⊂ H((CN , p),CN ′

) as the subset of
H((CN , p),CN ′

) of maps H satisfying H(p) = p′.
LetM ⊂ CN be a generic real-analytic submanifold andM ′ ⊂ CN ′

a real-analytic
subvariety. A holomorphic map H : M → M ′ can be considered as the restriction of
a holomorphic map H defined on a neighborhood of M . We denote by H(M,M ′) the
collection of all holomorphic maps sending M into M ′.

If (M,p) ⊂ CN is a germ of a real-analytic submanifold and (M ′, p′) ⊂ CN ′
is a

germ of a real-analytic subvariety we denote by H((M,p), (M ′, p′)) the collection of
holomorphic maps H sending (M,p) into (M ′, p′) (in particular H(p) = p′).

Often we need to consider subsets of H(M,M ′) or H((M,p), (M ′, p′)) satisfy-
ing certain in some sense good geometric and analytic properties, especially those
admitting a jet parametrization. An example is given by the class of finitely nonde-
generate maps (see Section 4). We will generically denote such a subset of maps by
F ⊂ H(M,M ′) or F ⊂ H((M,p), (M ′, p′)).

In the paper we will need to treat not only the case of a fixed target set M ′, but
also the case of a deformation of M ′; that is a family of subvarieties M ′

ε including
M ′. More precisely, we extend a definition taken from [8]; we assume that the reader
is acquainted with the basics of semi-analytic geometry, but refer to Section 2.6 for a
discussion of the notions we use here.
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Definition 4. Let X be a semi-analytic compact set in some Rm. Let (M ′, p′)
be a germ of a real-analytic subvariety of CN ′

. A deformation D = (M ′
ε, p

′)ε∈X

of (M ′, p′) is given by a family of subvarieties M ′
ε ⊂ CN ′

, depending analytically on
ε ∈ X in the sense that there exist �1(w, w̄, ε), . . . , �d(w, w̄, ε) ∈ Cω(X){w−p′, w − p′}
such that

Ip′(M ′
ε) = (�1(w, w̄, ε), . . . , �d(w, w̄, ε)) ,

and M ′
ε0 = M ′ for some ε0 ∈ X. We write I(D) for the set of all �(w, w̄, ε) ∈

Cω(X){w − p′, w − p′} satisfying �(·, ·, ε) ∈ Ip′(M ′
ε) for every ε ∈ X.

A base-point-type deformation of M ′ is a deformation obtained in the following
way: We choose r > 0 small enough, takeX =M ′∩Br(p′), and for all q′ ∈ X we define
the germ (M ′

q′ , p
′) as (M ′+ p′− q′, p′), where M ′+w′ = {v′+w′ : v′ ∈M ′}, which is

a deformation in our sense, as we can use �j(w, w̄, q
′) = �j(w− (p′−q′), w − (p′ − q′))

for any generating set �1, . . . , �d ∈ Ip′(M ′).

It is useful to study the infinitesimal notion corresponding to deformations of
maps.

Let H :M → CN ′
be a real-analytic CR map satisfying H(M) ⊂M ′. We denote

by ΓH = ΓCR(H
∗(CT (CN ′

))) the space of real-analytic CR sections of the pull back
bundle of CT (CN ′

) with respect to H, cf. [11].

Definition 5. Let (M,p) and D = ((M ′
ε)ε∈X , p′) be as above with M ′

ε =
{�(·, ·, ε) = 0}. Let ε0 ∈ Xreg and Hε0 : (M,p) → (M ′

ε0 , p
′) be in F . We say

that an element (v, Y ) ∈ Tε0X × ΓHε0
is an infinitesimal deformation of Hε0 into D

if Y (p) = 0 and the following equations are satisfied:

2Re
(
�w

(
Hε0(Z), H̄ε0(Z̄), ε0

) · Y (Z))+ �ε
(
Hε0(Z), H̄ε0(Z̄), ε0

) · v = 0,

for all � ∈ I(D) and Z ∈M . We denote the space of all infinitesimal deformations of
Hε0 into D by hol(Hε0 ,D).

Remark 6. If we consider a curve (ε(t), H(t)) with H(t) : (M,p) → (M ′
ε(t), p

′)
for ε(t) ∈ X then (v, Y ) = (ε′(0), d

dt |t=0H(t)) (note that ( d
dt |t=0H(t))(p) = 0) belongs

to hol(H(0),D). The proof is the same as [10, Lemma 21].

Definition 7. Let H(t) ⊂ H(M,CN ′
) be a smooth curve such that H(0) ∈

H(M,M ′
ε0) and ε(t) a smooth curve in X with ε(0) = ε0. We say that (ε(t), H(t)) is

tangent to H(M,M ′
ε) to order r at (ε0, H(0)) if for any local parametrization Z(s) of

M we have that �(H(Z(s), t), H(Z(s), t), ε(t)) = O(tr+1) for any � ∈ IH(0)(M
′
ε). We

denote the set of such parametrized curves by Pr (or Pr
(ε0,H) if we need to emphasize

that ε(0) = ε0 and H = H(0)).

Definition 8. Let (M,p) and D = ((M ′
ε)ε∈X , p′) be as above. Let (ε,H) ∈

Xreg × F . We say that (w, Y ) ∈ (Tε0X)k × Γk
H , where Γ

k
H = ΓH × · · · × ΓH , is an

infinitesimal deformation of H of order k, and write (w, Y ) ∈ holk(H,D) if τk(w, Y ) :=
(ε+ tw1 + · · · tkwk, H + tY1 + · · ·+ tkYk) ∈ H(ε,H)[t] ∩Pk

(ε,H).

Note that for k = 1 we recover hol(H,D) given in Definition 5.
Next, we want to make the connection of infinitesimal deformations of a map

H : M → M ′, introduced and studied in [6, 9, 10, 11], to infinitesimal deformations
into base-point-type deformations.
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Definition 9. Let H ∈ H((M,p), (M ′, p′)). A CR section V ∈ ΓH is called an
infinitesimal deformation of H if the real part of V is tangent to M ′ along H(M).
More precisely, this means that for every real-analytic function � = �(w, w̄) defined
in a neighborhood of H(p) and vanishing on M ′ we have

Re

N ′∑
j=1

Vj(Z)�wj
(H(Z), H(Z)) = 0, ∀ Z ∈M ∩ U,

for some open neighborhood U of p. Here, �w = (�w1
, . . . , �wN′ ) denotes the complex

gradient of �. The space of infinitesimal deformations of H is denoted by hol(H).

We will use the following identity in the next lemma: If σ is a real-valued function
on Cn ∼= R2n we can write σ(p) = σ̃(p, p̄) for p ∈ Cn. Then for any v ∈ Cn we have
σp · v = σ̃p · v + σ̃p̄ · v̄, where the first · denotes the inner product in R2n (hence
v has been written as a vector in R2n) and the second and third · are given by
a · b := a1b1 + · · ·+ anbn for a = (a1, . . . , an) ∈ Cn and b = (b1, . . . , bn) ∈ Cn.

Lemma 10. Let (M,p) be as above, and consider the base-point-type deformation
of M ′ and H : M → M ′ a holomorphic map. Then (v, Y ) ∈ hol(H,D) if and only
if Y + v ∈ hol(H). Moreover, the map hol(H,D) � (v, Y ) → Y + v ∈ hol(H) is an
isomorphism.

Proof. Assume p = 0 and p′ = 0 and denote by �1, . . . , �d a set of generators of
I0(M ′). By definition ρj(Z

′, Z̄ ′, ε) = �j(Z
′ + ε, Z̄ ′ + ε̄) for ε ∈ M ′ and 1 ≤ j ≤ d is

a set of generators for I0(M ′
ε). Since ρjZ′ = �jZ′ and ρjε = 2Re(�jZ′) it holds that

(v, Y ) ∈ hol(H,D) if and only if for 1 ≤ j ≤ d

2Re
(
ρjZ′

(
H(Z), H̄(Z̄), ε

) · Y (Z))+ ρjε
(
H(Z), H̄(Z̄), ε

) · v = 0, Z ∈M,

⇐⇒ 2Re
(
�jZ′

(
H(Z), H̄(Z̄)

) · (Y (Z) + v)
)
= 0, Z ∈M, 1 ≤ j ≤ d.

The last equation is satisfied if and only if Y +v ∈ hol(H). The last statement follows
from the fact that hol(H) �W → (W (0),W +W (0)) ∈ hol(H,D) is an inverse to the
map given in the hypothesis.

Corollary 11. If π1 is the projection on the first factor, then π1(hol(H,D)) =
hol(H)(p) = {X(p) : X ∈ hol(H)}.

We will be particularly interested in studying the set of deformation parameters
ε for which a map between M and M ′

ε exists. We will call this set the mapping locus,
more precisely we have the following definition, cf. the definition of equivalence locus
from [8] for the equidimensional case.

Definition 12. Let (M,p) be a germ of submanifold of CN , and let (M ′
ε, p

′)ε∈X

be a deformation of (M ′, p′) = (M ′
ε0 , p

′) ∈ CN ′
. Let Fε ⊂ H((M,p), (M ′

ε, p
′)) and

F = (Fε)ε∈X . We define the F-mapping locus as the set EF ⊂ X given by

EF = {ε ∈ X|Fε �= ∅}.

In other words, ε ∈ EF if and only if there exists a holomorphic map H : M → M ′
ε

withH(p) = p′ andH ∈ Fε. In particular if we consider base-point-type deformations,
then EF ⊂M ′.



670 G. DELLA SALA, B. LAMEL AND M. REITER

2.2. Jet spaces. We will work with maps by means of their jets through
suitable parametrization results. The following definitions are very standard and
here we mainly aim at establishing the notation used later in the paper. For all
p = (p1, . . . , pN ) ∈ CN we define the space of k-jets at p of holomorphic maps
CN → CN ′

as follows:

Jk
p =

C{Z − p}N ′

�mk+1
p

,

where mp = (Z1 − p1, . . . , ZN − pN ) is the maximal ideal of the ring of power series
centered at p, and jkp denotes the natural projection. For a given k, we will denote

by Λ the coordinates in Jk
p .

2.3. Jet parametrization. It turns out that our structural results hold in
higher generality than the setting discussed in the introduction. The methods ap-
ply equally well to understanding the structure of F if we assume that F satisfies the
following jet parametrization property JPP (see Definition 13).

Jet parametrization results can be proved in a variety of different contexts and
have been used widely in the study of the structure of CR mappings, see e.g. [2, 3,
15, 18, 19]. In the following definition we abstractly define what we need from such a
parametrization to obtain the desired structural results. In Section 4 we are going to
consider classes of maps which satisfy the jet parametrization property.

Definition 13. Let (M,p) be a germ of submanifold of CN , and let D =
(M ′

ε, p
′)ε∈X be a germ of real-analytic deformation of (M ′, p′) = (M ′

ε0 , p
′) ∈ CN ′

,
where ε0 is a distinguished parameter in X. For all ε ∈ X let Fε ⊂ H(M,M ′

ε) be
an open subset of maps. We say that F = (Fε)ε∈X satisfies the jet parametrization
property of order t0 ∈ N if the following holds.

JPP: There exists an open neighborhood V of p in CN , an open neighborhood
W of ε0 in X, a finite index set J , real-analytic functions qj : W × Jt0

p → R, j ∈ J

such that qj(ε,Λ) is polynomial in Λ, and a holomorphic map Φj : Uj → CN ′
(where

Uj = V × Uj and Uj = {qj(ε,Λ) �= 0} ⊂W × Jt0
p ) of the form

Φj(Z, ε,Λ) =
∑

α∈NN
0

pαj (ε,Λ)

qj(ε,Λ)d
j
α

Zα, pαj ∈ C{ε}[Λ], djα ∈ N0, j ∈ J, (1)

such that for every map t → (ε(t), H(t)) belonging to Pr
(ε(0),H(0)) there exists j ∈ J

such that the following holds for all t close enough to 0:
(a) (ε(t), jt0p H(t)) ∈ Uj,
(b) H(Z, t)|V = Φj(Z, ε(t), j

t0
p H(t)) +O(tr+1).

In particular, there exist real-analytic functions cji : W × Jt0
p → R, i ∈ N,

polynomial in Λ such that

Aε := jt0p (Fε) =
⋃
j∈J

{Λ ∈ Jt0
p : qj(ε,Λ) �= 0, cji (ε,Λ, Λ̄) = 0}. (2)

Define A ⊂ X × Jt0
p as A :=

⋃
ε({ε} ×Aε) and set Aj = A∩Uj. Then Λ is the k0-jet

of a map Fε � H : (M,p)→ (M ′
ε, p

′) if and only if (ε,Λ) ∈ A.
Furthermore for any (ε(t), H(t)) ∈ Pr

(ε,H) with Λ(t) = jt0pk
H(t) we have for small

enough t:

cji (ε(t),Λ(t), Λ̄(t)) = O(tr+1), i, j ∈ N. (3)
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Remark 14. Since F ⊂ ⋃
ε∈X H(M,M ′

ε) ⊂ X×H(M,CN ′
) we can equip F with

the induced topology. Similarly as in [10] one can show that Φj : Aj → F is locally a
homeomorphism. For more details we refer to [10, Lemma 19].

Remark 15. Let (ε,Λ) ∈ Areg
j and w ∈ T(ε,Λ)A

reg
j and consider a curve

c(t) = (ε(t),Λ(t)) in Areg
j with c(0) = (ε,Λ) and c′(0) = w. Then a similar com-

putation as in Remark 6 applied to (ε(t), H(t)) with H(t) = Φj(., ε(t),Λ(t)) shows
that DΦj(T(ε,Λ)A

reg
j ) ⊆ hol(H,D) for any (ε,Λ) ∈ Areg

j .

Remark 16. In a similar way as in [11, Remark 18] one can deduce a jet
parametrization for holk(H,D), which for k = 1 implies that hol(H,D) is finite dimen-
sional. As in [10, Cor. 32] one can deduce that X ×Fε � (ε,H) → dim(hol(H,D)) is
upper semicontinuous. Applying this fact to a base-point-type deformation and using
the last statement of Lemma 10 shows that p → dim hol(H)(p) is upper semicontinu-
ous.

2.4. Further results. The results in the introduction actually hold in a more
general setting. In particular Theorem 1 can be formulated for mappings which satisfy
JPP.

Theorem 17. Let (M,p) ⊂ CN and M ′ ⊂ CN ′
be generic real-analytic subman-

ifolds and assume that F satisfies JPP. Then EF is locally a semi-analytic subset of
M ′.

Theorem 1 now follows from Theorem 17 and Theorem 28, which shows that the
class of �-finitely nondegenerate maps satisfies JPP. Note that Theorem 17 can be
regarded as a result for base-point type deformations and hence can be considered as
a special case of the following more general result:

Theorem 18. Let (M,p), (M ′
ε, p

′) and F be as in Definition 13. Then EF is
locally a semi-analytic subset of X.

Theorem 18 is a partial generalization of [8, Theorem 2], its proof is given in
Section 3 below.

The parametrization method can also be used to provide a sufficient linear crite-
rion to show that a given map is isolated in F . The following theorem is a general-
ization of Theorem 3 from the introduction:

Theorem 19. Let M,D and F be as in JPP. Fix H : M → M ′
ε0 with H ∈ Fε0 .

Suppose that dim hol(H,D) = 0, then H is isolated in F .
The following corollary is an immediate consequence of Theorem 19 and Corol-

lary 11.

Corollary 20. If dim hol(H) = 0, then H is isolated in H(M,M ′).

The result can be proved as a consequence of Remarks 15 and 16 in an analogous
way as in [10]. In the following we are only outlining the main steps and refer to [10,
Lemma 23]. We need the following Lemma:

Lemma 21. Let (ε0,Λ0) ∈ Aj, and suppose that dim hol(Φj(ε0,Λ0),D) = �.
Then there exists a neighborhood U of (ε0,Λ0) ∈ X × Jt0

p such that, if N ⊂ Aj is a
submanifold with N ∩ U �= ∅, then dimN ≤ �.
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Proof. Let U be a neighborhood of (ε0,Λ0) such that dim hol(Φj(ε,Λ)) ≤ �
for all (ε,Λ) ∈ U . The existence of U is guaranteed by the upper semicontinuity
property given in Remark 16 and the continuity of Φj . Let N be a submanifold of Aj

intersecting U . Using the rank theorem for Banach spaces as in [10, Lemma 23] we
conclude that DΦj(ε,Λ) is injective on T(ε,Λ)N for (ε,Λ) belonging to a dense open
set in N . By Remark 15 we obtain the following inequalities:

dimN = dimDΦj(ε,Λ)(T(ε,Λ)N) ≤ dim hol(Φj(ε,Λ)) ≤ �,

which concludes the proof.

Proof of Theorem 19. Define Λ0 = jt0p H. There exists j ∈ J such that
(ε0,Λ0) ∈ Aj . By Lemma 21 there exists a neighborhood U of (ε0,Λ0) such that
for any submanifold N in U ∩ Aj it holds that dimN = 0. Then the dimension of
U ∩ Aj is zero, and thus U ∩ Aj consists of isolated points. By Remark 14 the proof
is concluded.

2.5. CR geometry. In this subsection we briefly introduce some standard no-
tation from CR geometry; more details can be found e.g. in [4]. Let M be a generic
real-analytic CR submanifold of CN . It is well known (see [4]) that one can choose
normal coordinates (z, w) ∈ Cn × Cd = CN in such a way that M is written as

w = Q(z, z̄, w̄), (or equivalently : w̄ = Q(z̄, z, w)),

where Q is a germ of a holomorphic map Q : C2n+d → Cd satisfying Q(z, 0, w̄) ≡
Q(0, z̄, w̄) ≡ w̄ and Q(z, z̄, Q(z̄, z, w)) ≡ w.

In the proof of the parametrization results, the notion of Segre maps is also needed.
For j ∈ N let (x1, . . . , xj) be coordinates of C

nj (x� ∈ Cn for � = 1, . . . , j); we also
write x[j;k] := (xj , . . . , xk). The Segre map of order q ∈ N is the map Sq

0 : C
nq → CN

defined as follows:

S1
0(x1) := (x1, 0), Sq

0

(
x[1;q]

)
:=

(
x1, Q

(
x1, S

q−1

0

(
x[2;q]

)))
.

We say that M is minimal at p ∈ M if it does not contain any germ of a CR sub-
manifold M̃ � M of CN through p having the same CR dimension as M at p. The
minimality criterion obtained in [1] states that if M is minimal at 0, then Sq

0 is
generically of full rank for sufficiently large q, and moreover, in this case, for every
neighborhood U ⊂ C2qn there exists x0 ∈ U sucht that S2q

0 (0) = 0 and such that S2q
0

is of full rank at x0 (see e.g. [3]).

2.6. Real-analytic geometry. In order to prove our theorems we work within
the framework of subanalytic and semi-analytic sets; to this end, we recall some basic
notions and results.

A set A ⊂ Rn is called semi-analytic if it is a finite union of intersections of sets
defined by real-analytic equations and inequalities:

A =
k⋃

i=1

N(i)⋂
j=1

Aij , (4)

where Aij is either of the form {hij = 0} or {hij > 0} for some real-analytic hij ∈
R{x1, . . . , xn}. The notion of semi-analytic set is modeled on the notion of semi-
algebraic sets, which are defined in a similar way (with polynomial functions instead
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of analytic ones) and are closed under projections (Tarski-Seidenberg theorem). On
the other hand, semi-analytic sets do not enjoy the same property, and therefore we
will need some more subtle results.

If R is any ring of real functions over a set E, a subset A ⊂ E is called definable
over R if it can be expressed as in (4), with Aij being either of the form {fij = 0} or
{fij > 0} for some fij ∈ R. We have the following (see e.g. [5]):

Theorem 22 (�Lojasiewicz). Let X be an analytic manifold, let A ⊂ X × Rk be
definable over the ring Cω(X)[x1, . . . , xk] and let π : X × Rk → X be the projection
on the first factor. Then π(A) is semi-analytic, i.e., definable over Cω(X).

The family of semi-analytic sets and maps (which are defined as maps whose
graphs are semi-analytic sets) is not closed under projections. If one wants to work
with images of semi-analytic sets, one encounters the subanalytic sets.

A set A ⊂ Rn is called subanalytic if locally A is a projection of a (relatively
compact) semi-analytic set B ⊂ Rn. Similar as for semi-analytic sets, subanalytic
sets enjoy the following properties: Finite unions and intersections of subanalytic
sets as well as the complement of a subanalytic set are subanalytic. In fact, the
class of subanalytic sets agrees with the class of sets obtained by taking finite unions,
intersections and complements of closed images of proper, real-analytic maps of closed
real-analytic sets. A map f : A → Rm, where A ⊂ Rn is a subanalytic set, is called
subanalytic if its graph is a subanalytic subset of Rn ×Rm. For more information on
subanalytic sets we refer the reader to [5].

A (subanalytic) cell decomposition of a subanalytic set A is a finite collection of
subsets {Cq

j } such that each Cq
j is subanalytically homeomorphic to the ball Bq =

{x ∈ Rq : |x| < 1} (Cq
j is then called a cell of dimension q) and satisfies the following

properties:
(1) A =

⋃
j,q C

q
j

(2) The closure C
q

j is the union of C
q
j and cells of strictly smaller dimension.

In this case we say that the sets Cq
j form a stratification.

We will need the following local triviality result of Hardt [13] for bounded suban-
alytic maps.

Theorem 23 (Hardt). Let X and Y be bounded subanalytic sets and f : X → Y
be a continuous subanalytic map. Then there exist a finite subanalytic stratification
{Y1, . . . , Yk} of Y , a collection {F1, . . . , Fk} of bounded subanalytic sets, and subana-
lytic homeomorphisms gj : f

−1(Yj) → Yj × Fj, such that f |f−1(Yj) = π ◦ gj, where π
denotes the projection π : Yj × Fj → Yj.

3. Basic properties of the mapping locus. In this section we describe in
more details some main properties of the mapping locus. In particular we are going
to provide the proof of Theorem 18.

Proof of Theorem 18. We follow the same steps as in [8]. By [12], for any
bounded semi-analytic set B ⊂ X the ring Cω(B) is Noetherian. It follows that the
ring Cω(B)[Λ] is also Noetherian. To prove that EF is locally semi-analytic for any
p ∈ EF we consider an open, bounded semi-analytic neighborhood B of p. We will
show that EF ∩B is semi-analytic.

Let A be as in (2). Notice that by construction, it holds that EF ∩B is precisely
equal to the projection of A∩ (B×Jt0

p ). Write now A =
⋃

j∈J Aj , where Aj = A∩Uj .

Then since EF ∩ B is the union of the projections of Aj ∩ (B × Jt0
p ) and the finite
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union of semi-analytic sets is semi-analytic, it is enough to prove that each projection
of Aj ∩ (B × Jt0

p ) is semi-analytic. In the following we fix j ∈ J and omit the

dependence on j notationally. Furthermore ci ∈ Cω(B) for all i ∈ N. Hence there
exist finitely many indices i1, . . . , i� such that

A ∩ (B × Jt0
p ) = {ci1 = ci2 = . . . = ci� = 0}.

It follows that A∩ (B×Jt0
p ) is definable in the sense of Lojasiewicz. By Lojasiewicz’s

Theorem (cf. [8]), the projection of A∩ (B × Jt0
p ) onto X is a semi-analytic subset of

X.

The next result gives more information about maps Hε : (M,p) → (M ′
ε, p

′) with
ε ∈ EF . More specifically, such maps can be (at least generically) selected to de-
pend on ε in an analytic way. The following result holds, cf. [8, Lemma 8] for the
equidimensional case:

Lemma 24. Suppose EF contains a real-analytic submanifold R ⊂ X. Then, on
an open dense set of R, the jet of the maps Hδ can be taken to depend analytically on
δ.

More precisely, the following holds: let ε ∈ R and fix a neighborhood U ⊂ R of ε.
Then there exist δ1 ∈ U , a neighborhood V of δ1, a real-analytic map L : V ∩R→ Jt0

0

and maps F � Hδ : (M, 0)→ (M ′
δ, 0) such that jt00 Hδ = L(δ) for all δ ∈ V .

Proof. Denote by π : X×Jt0
0 → X the projection onto the first factor, and define

R := π−1(R) ∩ A. Then R is a semi-analytic subset of X × Jt0
0 . Let Rreg be the

regular part of R, which is an open dense smooth semi-analytic subset of R. For any
point a ∈ Rreg define r(a) := rank(π|Rreg(a)) and let r0 := maxa∈Rreg r(a). Define
R̃ := {a ∈ Rreg : r(a) = r0}, then R̃ is an open dense subset of Rreg, and thus of R.
Since π(R) = R by assumption, we note that it holds that R̃ := π(R̃) is open and
dense in R. Let δ1 ∈ U ∩ R̃ and let a1 ∈ R̃ such that π(a1) = δ1, i.e. a1 = (δ1,Λ1)
for a certain Λ1 ∈ Jt0

0 . By the constant rank theorem there is a neighborhood V
of a1 ∈ R̃, a neighborhood V of δ1 in R̃, a ball B in some Rm and an analytic
diffeomorphism ψ : V → V × B, such that ψ(a1) = (δ1, 0), and such that π ◦ ψ = π.
Define N := V ×{0} ⊂ V ×B and consider L := π2◦ψ−1|N , where π2 is the projection
on the second factor, the jet space. Then L is a real-analytic map and the proof is
concluded by setting Hδ := Φ(δ, L(δ)) for all δ ∈ V where Φ is given by (1).

The previous selection lemma can be used to generically estimate the dimension
of the mapping locus by means of the space of infinitesimal deformations, cf. [8,
Theorem 6] for the equidimensional case.

Theorem 25. Let (M ′
ε, 0), ε ∈ X be a deformation of (M ′, 0) as before. Let S

be a semi-analytic subset of EF and Sreg be the set of regular points in S. Then the
tangent space of Sreg at δ is contained in the space of infinitesimal deformations of a
map realizing δ, for almost all δ ∈ Sreg.

More precisely, there exists an open dense subset D of Sreg with the following
properties:

(i) For every ε ∈ D there exists a neighborhood U of ε in Sreg and an analytic
map φ : U → F such that for every δ ∈ U we have φ(δ) : (M, 0) → (M ′

δ, 0)
(note that U as an open subset of Sreg is an analytic submanifold).

(ii) For all δ ∈ D we have:

TδS
reg ⊂ π1(hol(φ(δ),D)).
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(iii) If M ′
ε is a base-point-type deformation (in particular X = M ′), then for all

δ ∈ D we have

TδS
reg ⊂ hol(ψ(δ))(0)

where we define ψ(δ) = φ(δ) + δ.

Proof. Note that since S is semi-analytic, by [5, 20] Sreg is a dense semi-analytic
subset of S. Let D be the set of the points satisfying (i) and (ii): We will show that
D is an open, dense subset of Sreg. Let ε0 ∈ Sreg and let O be a neighborhood of
ε0, and let δ1 ∈ X be the point given by Lemma 24 (with R = O ∩ Sreg): we will
show that δ1 ∈ D. Indeed, take U = V , where V is given by Lemma 24. To show
that property (i) is satisfied, define φ as φ(δ) = Hδ for all δ ∈ U , where Hδ is the
one from Lemma 24. To establish (ii) let v ∈ Tδ1S

reg. Let δ(t) be a smooth curve in
(a neighborhood of δ1 in) D such that δ(0) = δ1 and δ′(0) = v. We define a smooth
curve of maps ct : (M, 0) → (M ′

δ(t), 0) as ct = φ(δ(t)). Let Y be the derivative
dct
dt |t=0 of ct at t = 0, then (v, Y ) ∈ hol(c0,D) = hol(φ(δ(0)),D) = hol(φ(δ1),D) (cf.
Remark 6). Thus v = π1(v, Y ) ∈ π(hol(φ(δ1),D)). Since v is an arbitrary vector
of Tδ1S

reg, we conclude that Tδ1S
reg ⊂ π1(hol(ψ(δ1),D)). In the case of the base-

point-type deformation, (iii) is a direct consequence of Corollary 11. This shows that
δ1 ∈ D. Repeating the same arguments for any δ ∈ U shows that δ ∈ D, hence D is
an open subset of Sreg.

It is worth noting that a stronger selection lemma than in Lemma 24 can be
proved using more advanced results of real-analytic geometry. The following lemma
is the analogous of [8, Lemma 6].

Lemma 26. A generic map Hδ0 : (M, 0) → (M ′
δ0
, 0) with δ0 ∈ EF can be

deformed continuously to a family of maps Hδ : (M, 0)→ (M ′
δ, 0), for δ close to δ0.

A more precise formulation can be given as follows: Let ε ∈ EF , and fix a
neighborhood U of ε. Then there exists δ0 ∈ EF ∩ U such that for every map
F � Hδ0 : (M, 0) → (M ′

δ0
, 0) and every neighborhood W of jt00 Hδ0 there exists a

neighborhood V of δ0 such that the following holds: For all δ ∈ V ∩EF there exists a
map F � Hδ : (M, 0)→ (M ′

δ, 0) such that jt00 Hδ ∈W .

Proof. Let A be as in (2). It is enough to show the conclusion for each Aj , which
we denote by A by an abuse of notation. Just as in the proof of Theorem 18, for a
small ball B ⊂ U we can write A ∩ (B × Jt0

p ) as the intersection of the vanishing set
of finitely many ci. Using the same argument as Hardt (see [13], Step I of the proof
of the main theorem) we can reduce to the case of bounded subanalytic sets, by a
fibrewise projectivization of A; this is possible since A is defined by functions which
are polynomial in the jet variable. By the version of Hardt’s theorem for subanalytic
sets (see [13], in particular the remarks starting at the end of page 291), there exists
a partition of π(A∩B) into subanalytic sets C1, . . . , Cm in such a way that π|π−1(Cj)

is trivial for 1 ≤ j ≤ m. Furthermore we can find a stratification Ci
j of π(A ∩ B)

by smooth subanalytic sets respecting {C1, . . . , Cm} (i.e. Ci

j is the union of Ci
j and

strata of strictly smaller dimension): see [20]. Let d = max{d′ : ∃δ ∈ EF ∩B s.t. δ ∈
Ci

j and dimCi
j = d′}. Let δ0 ∈ EF ∩ B such that δ0 ∈ Ci0

j0
with dimCi0

j0
= d.

Then, by the stratification property, there exists a neighborhood V ′ of δ0 such that
EF∩V ′ ⊂ Ci0

j0
(see for instance [8, proof of Lemma 6]). By Hardt’s theorem there exist

a subanalytic set Y ⊂ Jt0
0 and a subanalytic homeomorphism ψ : π−1(Ci0

j0
)→ Ci0

j0
×Y
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such that π ◦ ψ = π. Let Hδ0 be a map (M, 0) → (M ′
δ0
, 0) and W a neighborhood

of jt00 Hδ0 . Define O := ψ((V ′ ×W ) ∩ π−1(Ci0
j0
)), which is an open neighborhood of

(δ0, j
t0
0 Hδ0) in Ci0

j0
× Y . Then there is an open set V ⊂ V ′ such that for every δ ∈ V

it holds that (δ, jt00 Hδ0) ∈ O. Then (δ, jδ) := ψ−1(δ, jt00 Hδ0) has the property that
jδ ∈W and setting Hδ := Φ(δ, jδ), where Φ is from (1), shows the claim.

4. A class of maps satisfying JPP. We are now going to define a class of maps
satisfying JPP from Definition 13, namely the finitely nondegenerate maps ([17]). The
following definition is taken almost verbatim from [11]; since some adaptations to the
setting of this paper are needed we state the definition again for the convenience of
the reader.

Definition 27. Let M ′ be a real-analytic subvariety of CN ′
, p′ ∈ M ′ and

�1, . . . , �d generators of Ip′(M ′). Let (L1, . . . , Ln) be a basis of CR vector fields of
(M,p). For a multiindex α = (α1, . . . , αn) ∈ Nn we write Lα = Lα1

1 · · ·Lαn
n . Given

a holomorphic map H = (H1, . . . , HN ′) ∈ H((M,p), (M ′, p′)) with H(p) = p′, and
a fixed sequence ι = (ι1, . . . , ιN ′) of multiindices ιm ∈ Nn

0 and N ′-tuple of integers
� = (�1, . . . , �N

′
) with 1 ≤ �k ≤ d′, we consider the determinant

sι,�H (Z) = det

((
Lιj��j ,Z′

k
(H(Z), H(Z̄))

)
1≤j,k≤N ′

)
. (5)

We define the open set Fk((M,p), (M ′, p′)) ⊂ H((M,p), (M ′, p′)) as the set of
maps H for which there exists such a sequence of multiindices ι = (ι1, . . . , ιN ′) sat-
isfying k = max1≤m≤N ′ |ιm| and N ′-tuple of integers � = (�1, . . . , �N

′
) as above such

that sι,�H (p) �= 0. We define Jk0 as the set of all pairs j = (ι, �), where ι = (ι1, . . . , ιN ′)

is a sequence of multiindices with k0 = max1≤m≤N ′ |ιm| and � = (�1, . . . , �N
′
) is

as above. We will say that H with H(M) ⊂ M ′ is k0-nondegenerate at p if k0 =
min{k : H ∈ Fk((M,p), (M ′, p′))} is a finite number. We write Fk0

((M,p), (M ′, p′))
for the (open) subset of H((M,p), (M ′, p′)) containing all k0-nondegenerate maps. A
holomorphic map H with H(M) ⊂ M ′ is called �-finitely nondegenerate if for each
p ∈M the map H is k(p)-nondegenerate at p and � = max{k(p) : p ∈M}.

Let us stress that the distinction between k-nondegeneracy and �-finite non-
degeneracy is important: A map is �-finitely nondegenerate if and only if it is k-
nondegenerate for some k ≤ �. Our next two results show that both k-nondegenerate
and �-finitely nondegenerate maps satisfy the JPP.

Theorem 28. Let (M,p) ⊂ CN be a germ of a generic minimal real-analytic
submanifold of (CN , p) and (M ′

ε, p
′)ε∈X be a deformation. Fix k0 ∈ N and let t be the

minimum integer, such that the Segre map St
p of order t associated to M is generically

of full rank. Then Fk0,ε := Fk0
((M,p), (M ′

ε, p
′)) satisfies Definition 13 with t0 = 2tk0.

The following corollary is immediate from the definition of the JPP and the
preceding theorem.

Corollary 29. Let (M,p) ⊂ CN be a germ of a generic minimal real-analytic
submanifold of (CN , p) and (M ′

ε, p
′)ε∈X be a deformation. Fix � ∈ N and let t be the

minimum integer, such that the Segre map St
p of order t associated to M is generically

of full rank. Then the family (F�
ε )ε∈X , where F�

ε =
⋃�

k=0 Fk,ε, satisfies Definition 13
with t0 = 2t�.
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In order to show Theorem 28 we follow the same line of thought as in [11]. The
next Lemma is an immediate consequence of [17, Prop. 25, Cor. 26] and of standard
parametrization techniques. The key fact we need to use is that in the basic identity
of [17, Prop. 25] the map Ψ will depend analytically on ε, since the Φj appearing in
the proof depend polynomially on finitely many derivatives of the defining function
of M ′. Furthermore the implicit function theorem used to obtain Ψ from the Φj

preserves analyticity in ε; using [11, Prop. 37] allows to prove the following.

Lemma 30. Under the assumptions of Theorem 28 the following holds: For
all � ∈ N and j ∈ Jk0

there exists a holomorphic mapping Ψj
� : X × CN × CN ×

CK(k0+�)N ′ → CN ′
such that for every curve (ε(t), H(t)) ∈ Pr

(ε,H) with H ∈ Fk0,ε

such that sjH(p) �= 0, where sjH is given as in (5), we have for sufficiently small t

∂�H(Z, t) = Ψj
�(ε(t), Z, ζ, ∂

k0+�H̄(ζ, t)) +O(tr+1), (6)

for (Z, ζ) in a neighborhood of (p, p̄) in M, where ∂� denotes the collection of all

derivatives up to order �. Furthermore there exist polynomials P �,j
α,β , Q�,j and integers

e�,jα,β such that

Ψ�,j(ε, Z, ζ,W ) =
∑

α,β∈NN
0

P �,j
α,β(ε,W )

Q
e�,jα,β

�,j (ε,W )

Zαζβ . (7)

The next step is a well-used technique in the study of CR maps, see [11, section
5]. In order to use the minimality criterion from [1], we need to evaluate (6) along
the image of the Segre map of order q and perform an iteration. We proceed as in
the proof of [11, Corollary 41] to obtain the following result. Notice that the Segre
maps involved do not depend on ε, so the analytic dependence on ε is preserved, when
equations of the form (6) are evaluated along the image of the Segre map of order q.

Corollary 31. For fixed j ∈ J, q ∈ N with q even there exists a holomorphic
mapping ϕj

q : X × Cqn × CK(qk0)N
′ → CN ′

such that for every curve (ε(t), H(t)) ∈
Pr

(ε,H) with H ∈ Fk0,ε such that sjH(p) �= 0, where sjH is given as in (5), we have for
sufficiently small t

H(Sq
p(x

[1;q]), t) = ϕj
q(ε(t), x

[1;q], jqk0
p H(t)) +O(tr+1). (8)

Furthermore there exist (holomorphic) polynomials Rq,j
γ , Sq,j and integers mq,j

γ such
that

ϕj
q(ε, x

[1;q],Λ) =
∑

γ∈N
qn
0

Rq,j
γ (ε,Λ)

S
mq,j

γ

q,j (ε,Λ)
(x[1;q])γ . (9)

Proof of Theorem 28. The following is an adaptation of the proof as given in [11,
proof of Thm. 36]. By the choice of t ≤ d + 1, the Segre map St

p is generically of
maximal rank. By Lemma 4.1.3 in [3], the Segre map S2t

p is of maximal rank at p.

Using the constant rank theorem, there exists a neighborhood V of S2t
p in (C{x[1;2t]})N

and a map T : V → (C{Z})2tn such that A ◦T (A) = Id for all A ∈ V. We now define
the holomorphic map

φ : V × (C{x[1;2t]})N ′ → (C{Z})N ′
, φ(A,ψ) = ψ(T (A)). (10)
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Thus we have that φ(A, h ◦A) = h(A(T (A))) = h for all A ∈ V for all h ∈ (C{Z})N ′
.

We define Φj(ε, ·,Λ) = φ(S2t
p , ϕj

2t(ε, ·,Λ)). Note that Φj depends analytically on ε,
applying φ(S2t

p , ·) to both sides of equation (8) with q = 2t we get

H(t) = φ(S2t
0 , H(t) ◦ S2t

0 ) = φ(S2t
0 , ϕj

2t(ε(t), ·, j2tk0
0 H(t)) +O(tr+1))

= Φj(ε(t), ·, j2tk0
0 H(t))) +O(tr+1),

which gives (b) in JPP. By setting qj(ε,Λ) = S2t,j(ε,Λ), where S2t,j is given in (9), a
direct computation using (9) and (10) allows to derive the expansion in (1). Let Uj be
a neighborhood of {p}×Uj in CN such that Φj is convergent on Uj . By applying the
usual procedure of plugging the form (1) into the mapping equation (after choosing a
parametrization t → Σ(t) of M) and developing in powers of t we obtain (2). The cji
appear as coefficients of the powers of t in the expansion and depend analytically on
ε, because Φj and every generator of Ip′(M ′

ε) do. The remaining fact about c
j
i follows

in the same way as in [11, proof of Thm. 36].

5. Construction of a singular mapping locus. In this section we are going
to provide an example of a mapping locus whose irreducible components are singu-
lar. This phenomenon cannot happen in the equidimensional case and highlights one
difference with the positive codimensional case.

Let N,N ′ ∈ N with 2N > N ′. We write coordinates on CN+1 as (Z,w) with
Z = (z1, z2, . . . , zN ), and on CN ′+1 as (Z ′, w′) with Z ′ = (z′1, z

′
2, . . . , z

′
N ′). For any

j, k ∈ N, we denote by N(j, k) the number of monomials in j variables of order less
than or equal to k.

Let M = {Imw = |z1|2 + |z2|2 + . . . + |zN |2} ⊂ CN+1. Let Jk,d0 be the space of

k-jets at 0 of real maps ρ′ : CN ′+1 → Rd such that ρ′(0) = 0, and let J k
0 be the space

of k-jets of holomorphic maps ψ : CN ′+1 → CN ′+1 such that ψ(0) = 0. We can define

a real-algebraic action of J k
0 on Jk,d0 in the natural way: if ψ ∈ J k

0 and ρ′ ∈ Jk,d0 ,
then ψ · ρ′ = jk0 (ρ

′ ◦ ψ).
Our construction is based on the following crucial observation, which gives strin-

gent conditions on possible submanifolds containing the holomorphic image of a unit
sphere. We mention here the related paper of Kossovskiy and Xiao [16] which shows
a similar restriction holds ”the other way round”: only few submanifolds of CN can
be embedded into a hyperquadric in CN ′

.

Lemma 32. There exists k0 ∈ N and a semi-algebraic subset B ⊂ Jk0,d
0 of

positive codimension such that if ρ′ : CN ′+1 → Rd is a local defining function, having
the property that M admits a holomorphic embedding in {ρ′ = 0} passing through 0,
then jk0

0 ρ′ ∈ B.

(With an abuse of notation, we will identify with B the analogous set Bp contained
in the space Jk0,d

p of jets about p �= 0.)

Proof. For any k ∈ N, consider the subset B′
k ⊂ Jk,d0 consisting of the k-jets of

functions ρ′ : CN ′+1 → Rd satisfying the relation

ρ′(Z, 0, u+ i‖Z‖2) = O(k + 1). (11)

For any multi-indices J ∈ N2N+1 and K ∈ N2N ′+1, where J = (j, j, �) with
j = (j1, . . . , jN ), j = (j1, . . . , jN ) and K = (k, k,m) with k = (k1, . . . , kN ′),
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k = (k1, . . . , kN ′) let

DJ =
∂|J|

∂Zj∂Z
j
∂u�

, D′
K =

∂|K|

∂Z ′k∂Z ′k∂u′m
.

Applying the DJ derivative (with |J | ≤ k) to the left hand side of (11), using the
chain rule and evaluating at 0 we obtain

D′
Jρ

′(0) + (algebraic expression in lower order derivatives) = 0 (12)

The system of equations in Jk,d0 given by (12) (with |J | ≤ k) has a Jacobian of full
rank at 0, as can be easily verified by taking in account the triangular structure of
the system. Hence B′

k is a smooth algebraic submanifold of Jk,d0 , of codimension
d ·N(2N + 1, k).

Note that the image H(M) of any holomorphic embedding of M into CN ′+1 can
be turned into the manifold

{z′N+1 = . . . = z′N ′ = 0, Imw′ = |z′1|2 + . . .+ |z′N |2} (13)

by a local change of coordinates. Indeed, if H :M → H(M) is such an embedding, we
can first apply a change of coordinates in CN ′+1 which sends H(CN+1) to the complex
(N + 1)-plane {z′N+1 = . . . = z′N ′ = 0}. After this, we can apply a new coordinate
change involving only z′1, . . . , z

′
N which sends H(M) to the manifold described by

(13).
Thus, for any k ∈ N the set Bk := J k

0 · B′
k (i.e. the orbit of B

′
k by the action of

J k
0 ) contains all the k-jets of local defining functions ρ′ such that {ρ′ = 0} admits a

local embedding of M . Moreover, Bk is a semi-algebraic subset of J
k,d
0 because it is

the image of a (real)-algebraic map defined on (real)-algebraic manifolds. Since the
dimension of J k

0 is 2N(N ′+1, k), the dimension of Bk is at most dim(B
′
k)+2N(N

′+
1, k), and its codimension is at least dN(2N + 1, k)− 2N(N ′ + 1, k). Since 2N > N ′,
there exists k0 such that dN(2N+1, k0)−2N(N ′+1, k0) > 0. The proof of the lemma
is concluded by putting B = Bk0 .

Proof of Theorem 2. Write n = N − 1. Let u, Z = (z1, . . . , zn), τ be coordinates
in R×Cn×C with Z = (z1, . . . , zn), zj = xj+ iyj , τ = s+ it. Let Y ⊂ C be a singular
real-analytic subset defined as Y = {r(s, t) = 0} with r vanishing at 0. For certain
(real) polynomial functions α1, . . . , αn, β, γ : R×Cn×C→ C, to be determined later,
we define the following map φ : R× Cn × C→ CN+1:

φ(u, Z, τ) = (z1, . . . , zn, z
2
1 + . . .+ z2n + τ, u+ i|Z|2) + r(τ, τ̄) (α1, . . . , αn, β, γ) .

Then dφ has (real) rank 2n+3 (at least around the origin) andM ′ = φ(R×Cn×C) ⊂
CN+1 is a real-analytic hypersurface (at least around the origin). We denote by ρ′ the
(uniquely determined) defining function of M ′ of the form ρ′ = Imw′ − f(Z ′,Rew′).

For any τ0 ∈ Y , the map ψτ0 : C
N → CN+1 defined as

ψτ0(Z,w) = (z1, . . . , zn, z
2
1 + . . .+ z2n + τ0, w)

is an embedding of M into M ′. Define

C :=
⋃

τ0∈Y

ψτ0(M).
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Note that C is a real-analytic subset of M ′ of dimension 2N and C ∼= Y ×M . Let
E ⊂ M ′ be the mapping locus, i.e. the set of the points of M ′ admitting a local
holomorphic mapping of M . By construction and the homogeneity of M it holds that
C ⊂ E. We want to show that for a suitable choice of α1, . . . , αn, β, γ the set E is
contained in a proper semi-analytic subset Ẽ of M ′ of dimension 2N . This proves the
theorem, since if C ⊂ E ⊂ Ẽ, where the dimension of Ẽ is equal to the dimension of
C, then E is a singular semi-analytic subset having C as an irreducible component.

Let Ẽ be the set of the p ∈M ′ such that jk0
p ρ′ ∈ B, where B is given in Lemma 32

with d = 1 and N ′ = N ; then Ẽ is a semi-analytic subset of M ′, as a preimage of the
semi-algebraic set B under the analytic map p → jk0

p ρ′. Moreover, by definition E ⊂
Ẽ. Note that, since B is semi-algebraic and of positive codimension, it is contained
in the union of finitely many proper algebraic subvarieties B1, . . . , B� (this can be

seen by disregarding the inequalities in the definition of B). To show that Ẽ is a
semi-analytic subset of positive codimension, then it will be enough to check that for
a suitable choice of α1, . . . , αn, β, γ and of τ0 close enough to 0, putting φ(0, τ0) = p0
we have jk0

p0
ρ′ �∈ Bj for all j = 1, . . . , �. In this case Ẽ is contained in the union of the

real-analytic sets Xj = {p ∈ M ′ : jk0
p ρ′ ∈ Bj}, each of them proper since p0 �∈ Xj ,

and hence it has positive codimension.
To show the claim, choose τ0 = s0 + it0 close enough to 0 such that τ0 �∈ Y ,

consider the change of coordinates s′ = s − s0, t
′ = t − t0, and let q be such that

q(s′, t′) = r(s, t). We have q(0, 0) �= 0, so that we can consider the real power series
centered at 0 defining 1/q. Let δ be any complex-valued power series in the variables
u, Z, τ ′ = s′ + it′, and let α = jk0(δ 1

q ): then α is a polynomial in u, Z, τ ′ and

jk0(qα) = jk0

(
jk0qjk0

(
δ
1

q

))
= jk0

(
jk0(δ)jk0(q)jk0

(
1

q

))
= jk0δ.

In other words we can obtain any prescribed jet of φ at (0, τ0), and hence any pre-
scribed jet of ρ′ at φ(0, τ0) = p0, by the appropriate choice of α1, . . . , αn, β, γ: in

particular we can choose them in such a way that jk0
p0
ρ′ �∈ ⋃�

j=1 Bj .

Remark 33. More specifically, the proof of Theorem 2 shows that any given
singular set Y of C can be realized in the following sense: We can construct a hyper-
surface M ′ ⊂ CN+1 such that there exists an irreducible component C of EF with
the property that C ∼= Y ×M .

6. Examples. We wish to present a list of examples showing the various phe-
nomena that can appear in the geometric structure of the mapping locus. Similar
behaviors can be seen in the (equidimensional) case of the equivalence locus, cf. [8,
§7]. Indeed that one is a special case of our setting. However we would like to
construct examples in the positive codimensional case.

Example 1. Let (M, 0) be the germ at 0 of M = {Imw = |z|2} ⊂ C2, and M ′ =
{Imw′ = |z′1|4+|z′2|4}. In this case we take F = Fk as the set of k-nondegenerate maps
from M into M ′. Then the mapping locus EF is equal to M ′ \ Y , where Y = ({z1 =
0} ∪ {z2 = 0})∩M ′. Indeed, there are no k-nondegenerate maps H from M into M ′,
such that H(0) ∈ Y . This follows from the fact that M ′ is not finitely nondegenerate
at the points of Y and that the image of k-nondegenerate maps is contained in the
set of points of M ′ at which M ′ is at most k-nondegenerate, cf. [17, §3]. Moreover
M ′ \Y ⊂ EF : Let p′ = (ẑ′1, ẑ

′
2, ŵ

′) ∈M ′ \Y and ψ(z′1, z
′
2, w

′) = (z′1
2
, z′2

2
, w′). Denote
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H5 = {Imw′ = |z′1|2 + |z′2|2}. Since p′ �∈ Y there is a neighborhood U ′ of p′ such
that ψ : U ′ → V ′ = ψ(U ′) is a biholomorphism and ψ(U ′ ∩M ′) = H5 ∩ V ′. A map
H :M →M ′ with H(0) = p′ can then be constructed by choosing a 2-nondegenerate
map F from M into H5 such that F (0) = ψ(p′) and taking H = ψ−1 ◦ F .

This example shows that the mapping locus need not be an analytic variety, but
in general it is just semi-analytic, that is, inequalities can indeed occur. The following
example illustrates the situation of Theorem 25.

Example 2. Let (M, 0) be the germ at 0 of M = {Imw = |z|2 + |z|4} ⊂ C2

and M ′ = {Imw′ = |z′1|2 + |z′1|4 + (Re(z′1))
2 Im(z′2)} ⊂ C3. Let F = F2. The map

Hs,t : (z, w) → (z, t, w + s) sends (M, 0) into M ′ for all (s, t) ∈ R2 and belongs to F ,
hence S = {(0, t, s) : (s, t) ∈ R2} ⊂ EF and TpS ⊂ hol(Hs,t)(0), where p = (0, t, s),
cf. Theorem 25. Indeed, a computation shows that TpS = hol(Hs,t)(0).

Example 3. Let M,M ′, H0,t and F be as in Example 2. For a closed subset
Y ⊂ R choose a C∞ function Φ : R → R vanishing exactly on Y . Define the C∞

submanifold M̃ ′ by

Imw′ = |z′1|2 + |z′1|4 + (Re(z′1))
2 Im(z′2) + Φ(Re(z′2))K(z′1, z

′
2,Rew

′),

where we set U := M̃ ′ ∩ {Re(z′2) �∈ Y } and choose K a C∞-function in such a
way that U does not contain any analytic subvariety. Then for t ∈ Y it holds that
H0,t(M) ⊂ M̃ ′, which implies that Y ′ :=

⋃
t∈Y {H0,t(0)} ⊂ EF . We would like to

argue that EF = Y ′: Indeed any holomorphic embedding of M into M̃ ′ has the
property that its image has empty intersection with U , because U does not contain
any analytic submanifold.
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