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GAUSS-KRONECKER CURVATURE AND EQUISINGULARITY AT
INFINITY OF DEFINABLE FAMILIES∗

NICOLAS DUTERTRE† AND VINCENT GRANDJEAN‡

Abstract. Assume given a polynomially bounded o-minimal structure expanding the real num-
bers. Let (Ts)s∈R be a definable family of C2-hypersurfaces of Rn. Upon defining the notion of
generalized critical value for such a family, we show that the functions s → |K|(s) and s → K(s),
respectively the total absolute Gauss-Kronecker and total Gauss-Kronecker curvature of Ts, are
continuous in any neighbourhood of any value which is not generalized critical. In particular this
provides a necessary criterion of equisingularity for the family of the levels of a real polynomial.
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1. Introduction. One of the main goals of equisingularity theory (of families
of subsets, functions, mappings) is to find relations between numerical data and reg-
ularity conditions. In the local complex analytic case, this subject has been widely
studied since the end of the 60’s and many interesting results, some of them now clas-
sical, have been established. For example, Hironaka [Hir] proved that the multiplicity
is constant along the strata of a Whitney stratification of a complex analytic set. In
[Tei1] Teissier proved that a μ∗-constant family of hypersurfaces with isolated singu-
larities is Whitney equisingular. The reverse implication was proved later by Briançon
and Speder [BrSp]. These results were extended to the case of ICIS by Gaffney [Gaf1].
Maybe the most important result of local complex analytic equisingularity theory is
Teissier’s polar equimultiplicity theorem [Tei2], which states that Whitney regular-
ity is equivalent to constancy of polar multiplicities. Teissier’s results were refined
and extended by Gaffney [Gaf2] to obtain sufficient conditions for equisingularity of
a family of mappings.

When one considers global equisingularity problems, the first natural family to
study is the family of fibres of a polynomial mapping. Following [Tho], a polynomial
function from K

n to K, for K = R or C, is a smooth locally trivial fibration above the
connected components of the complement of a (minimal) finite subsetB(f) ofK, called
the set of bifurcation values of f . In the complex plane case, Hà and Lê [HL] gave the
following numerical criterion to characterize bifurcation values: A value c does not
lie in B(f) if and only if the Euler characteristic of the fibres of f is constant in a
neighborhood of c. This result was generalized by Parusiński [Par] to the case of com-
plex polynomials with isolated singularities at infinity, and then by Siersma and Tibăr
[SiTi1] to the case of complex polynomials with isolated W-singularities at infinity.
In [Tib1] Tibăr studies the more general situation of a 1-parameter family of com-
plex hypersurfaces, and proves a global version of the results of Teissier and Briançon
and Speder mentioned above: Considering a family of complex affine hypersurfaces

∗Received February 26, 2019; accepted for publication July 15, 2021.
†Univ Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France (nicolas.dutertre@

univ-angers.fr). The author was partially supported by the ANR project LISA 17-CE400023-01.
‡Departamento de Matemática, Universidade Federal do Ceará (UFC), Campus do Pici, Bloco
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Xτ = {x ∈ C
n : F (τ, x) = 0} given by a polynomial function F : C × C

n �→ C, he
defines the notion of t-equisingularity at infinity and proves, under some additional
conditions, that t-equisingularity at infinity is controlled by the constancy of a finite
sequence of numbers, called the generic polar intersection multiplicities. As a conse-
quence, if the family consists of non-singular affine hypersurfaces, then the constancy
of the generic polar intersection multiplicities at τ0 implies that the family is C∞

trivial at τ0.

In the real semi-algebraic/sub-analytic setting (or more generally in the definable
setting), it is hopeless to expect that constancy of numerical data is equivalent to reg-
ularity conditions. First, because of lack of connectivity, one cannot define invariants
like the μ∗-sequence, polar multiplicities or generic polar intersection multiplicities.
However, using arguments from differential topology and integral geometry, one sees
that these invariants admit geometric characterizations that still make sense in the real
case. For instance, the multiplicity of a complex analytic germ is equal to its density
[Dra] and the μ∗-sequence, the polar multiplicities and the generic polar intersection
multiplicities are related to curvature integrals (see [La, Loe, Dut1, SiTi2]). Unfortu-
nately, in the real situation, these geometric quantities do not belong to discrete sets
and therefore, one cannot expect results relating their constancy to regularity condi-
tions. It is more reasonable to study properties like continuity or Lipschitz continuity
in the parameters of the family. The first result in this direction is due to Comte
[Com], who established a real version of Hironaka’s theorem, proving that the density
is continuous along the strata of a (w)-stratification of a sub-analytic set. This result
was generalized and strengthened by Valette [Val]: continuity of the density holds
for (b)-regular stratifications and the density is Lipschitz continuous along the strata
of (w)-stratifications. Later Comte and Merle [ComMe] established a real version of
Teissier’s theorem [Tei2]. Using tools from integral geometry and geometric measure
theory, they associated with each sub-analytic germ a sequence of numbers, called
the local Lipschitz-Killing invariants, and showed that they are continuous along the
strata of a (w)-stratification of a sub-analytic set. Recently, Nguyen and Valette
[NgVa] extended this continuity result to (b)-stratifications and moreover proved that
these invariants are Lipschitz continuous along the strata of a (w)-stratification (see
also the first author’s work [Dut2] for relations with the densities of polar images).

In the global real context, it is still true that the bifurcation set of a definable
function from R

n to R is a finite set of points (see [NeZa, LoZa, Tib2, d’Ac1]). In
[TiZa] Tibăr and Zaharia provided necessary and sufficient conditions for a real plane
polynomial function to be locally trivial over the neighborhood of a regular value (see
[JoTi] for a generalization to a family of real curves). Unlike the complex case, their
criterion is not only numerical but involves topological conditions at infinity. Later
in [CosPe], Coste and de la Puente proved an equivalent version of Tibăr-Zaharia’s
results in terms of polar curves. Due to the links between polar curves and the
Gauss-Kronecker curvature of the levels of a function provided by exchange formulas,
it seems natural to study the variations of the total curvature of the levels (i.e. the
integral of the Gauss-Kronecker curvature on the level) of a definable function, and
to seek how bifurcation values interfere in these variations.

That is what the second author did in two papers. In [Gra1] he considers a
definable function f : Rn �→ R of class at least C2, and proved that the following
functions:

t �→
∫
f−1(t)

κ(x) dx , and t �→
∫
f−1(t)

|κ|(x) dx
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where κ is the Gauss-Kronecker curvature, admit at most finitely many discontinuities.
Any connected C2 hypersurface of Rn comes naturally equipped with the induced
Euclidean metric. Therefore, integrating with respect to the volume form of such
a hypersurface coincides with integrating with respect to the (n − 1)-dimensional
Hausdorff measure over Rn. In [Gra2] was proved that if the function t �→ ∫

f−1(t)
|κ| dx

is continuous at a regular value c which satisfies an extra condition, then c is not a
bifurcation value of f . He explained that for a real polynomial function with isolated
singularities at infinity this extra condition is always satisfied, so this result can be
interpreted as a real version of Parusiński’s result mentioned above.

The aim of the present paper is to provide a kind of reverse implication of the
latter mentioned result.

We will work in the more general situation of a one parameter family of hy-
persurfaces. More precisely, we consider a definable function over an a priori given
polynomially bounded o-minimal structure F : Rn ×R �→ R of class C2+m with non-
negative integer m. Assuming that 0 is a regular value of F , the 0-level M = F−1(0)
is thus a definable hypersurface in R

n+1 of class C2+m. We use the coordinates (x, t)
in R

n × R and we write tM : M �→ R, (x, t) �→ t for the projection on the t-axis.
For a value c in R, let Mc = t−1

M (c) and Tc = πM (Mc) ⊂ R
n, where πM is the

projection from M to R
n. If c is a regular value, then the hypersurface Tc is oriented

by ∂xF (x, c). Therefore, we consider the Gauss-Kronecker curvature κc of Tc and
define two functions:

c �→ K(c) =

∫
Tc

κc(x) dx , and c �→ |K|(c) =
∫
Tc

|κc|(x) dx.

By a straightforward adaptation of the methods of [Gra1], we show that these two
functions have finitely many discontinuities (Theorem 6.1) and in Theorem 8.1, we give
a criterion on the regular value c of tM for the function t �→ |K|(t) to be continuous
at c. Namely, we prove

Theorem 8.1. Let c be a regular value taken by tM at which it is horizontally
spherical at infinity. Then the total absolute curvature function t �→ |K|(t) is con-
tinuous at c. Consequently the total curvature function t �→ K(t) is continuous at
c.

The notion of horizontally sphericalness at infinity is a regularity condition at
infinity: A regular value c of tM is horizontally spherical at infinity if for any sequence
(pk)k∈N ofM converging at infinity to (u, c), u is orthogonal to the limit of the unitary
gradients ∇tM

|∇tM | (pk). A key ingredient of the proof of our main result, Theorem 8.1 is

Lemma 8.2 stating, informally, that under these hypotheses there is no accumulation
of curvature at infinity nearby the level c.

We also prove that (t)-equisingularity at infinity implies horizontal sphericalness
(Corollary 5.2). Therefore Theorem 8.1 shows that (t)-equisingularity at infinity im-
plies continuity of the function t �→ |K|(t). This can be considered as a first step
towards a real version of Tibăr’s result [Tib1] mentioned above.

To be complete, we show here more than Theorem 8.1. Its conclusion also holds
true in any connected component of the pencil of levels over a small interval of regular
values ]c − ε, c + ε[ (see Theorem 8.3). In other words the connected components of
the pencil of levels cannot compensate altogether the a priori possible discontinuities
of some.

The paper is organized as follows. Section 2 contains material on compactifica-
tions, o-minimal structures and Thom’s (af ) condition. In Section 3, we recall some
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facts about conormal geometry so that we can introduce the notion of t-equisingularity.
Sections 4, 5 and 7 contain definitions and new results on regularity at infinity of defin-
able C2+m-families of hypersurfaces. In Section 6, we generalize the results of [Gra1]
to our situation. Section 8 contains the proof of the main result. Section 9 deals with
the particular case of the levels of a function. Last, some examples can be found in
Section 10.

Acknowledgments. The authors are very grateful to Si Tiep Dinh for useful,
fruitful and inspiring conversations. The second author would like to thank the I2M
and LAREMA for their working conditions while visiting the first author.

2. Miscellaneous material. Let Rn be the Euclidean space of positive dimen-
sion n.

Let 〈−,−〉 be the associated scalar product. For any point x of Rn, let |x| be the
norm

√〈x,x〉 of x.
Let Sq−1

R be the Euclidean sphere of Rq of center the origin and positive radius
R.

Let Bq
R be the closed Euclidean ball of Rq of center the origin and positive radius

R. When q is understood we will only write BR.
Let clos(−) denote the operation ”taking the closure of” in R

n. Each Euclidean
space R

n embeds semi-algebraically in the closed unit-ball Bn
1 , as its interior via the

mapping x �→ x√
1+|x|2 . We may then speak of Bn

1 as the spherical compactification

of Rn (see the next section).
Let M be an o-minimal structure expanding the real field R. Assume it is polyno-

mially bounded and let FM be the field of its exponents ([vdDM, vdD]). Any subset
of any R

p definable in M will be called below definable.
Let X be a subset of Rn. A mapping f : X �→ R

p is definable if its graph is
definable in R

n+p.
We would like to remind the following fact (see [d’Ac1]): Let γ : [1,+∞[ �→ R

n

be a C1 definable arc such that γ(t) �→ ∞ as t goes to +∞. Then there exists a unit
vector u of Sn−1 such that

lim∞
γ

|γ| = u = lim∞
γ′

|γ′| .

Let f : (R≥1,+∞) → R be the germ at +∞ of a continuous definable function.
We write f ∼ te for an exponent e in FM ∪{−∞}, with the convention that t−∞ = 0
for large t, to mean

f ∼ te ⇐⇒ lim
t→+∞

f(t)

te
∈ R

∗ .

Note that there always exists such an exponent e.
Let G(p, n) be the Grassmann manifold of p-vector subspaces of Rn. We denote

G∨(p, n) the space of p-vector subspaces of the space L(Rn,R) of linear forms over
R

n, and sometimes we will call it the dual of G(n− p, n).
We recall Thom’s condition (or relative Whitney’s condition (a)).
Let X,Y be two connected C1 submanifolds of a definable compactification of

R
n, such that Y is contained in clos(X) \X. Let g : (X � Y ) �→ R be a C1 mapping,

for X � Y the disjoint union of X and Y . Let y be a point of Y .
The function g satisfies Thom (ag)-condition at y if the following two conditions

hold:
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(i) For any sequence (xk)k of points of X converging to y such that the sequence
(Txk

X)k converges to T in the appropriate Grassmann bundle, then TyY is contained
in T ;
(ii) For any sequence (xk)k of points of X converging to y, such that the sequence
(Txk

X)k converges to T which contains TyY and the sequence (ker dxk
g)k converges

to K in the appropriate Grassmann bundles, then ker dyg is contained in K.

In practice we want to stratify g with Thom’s condition asking that the stratum
Y is contained in some specified level of g.

3. Compactification and conormal geometry and t-equisingularity at
infinity. Let 0 be the origin of Rn.

As already seen in the previous section, we can compactify R
n as the closed unit

ball Bn
1 . An alternative presentation to the spherical compactification is the spherical

blowing-up bl∞ of Rn at infinity, that is the mapping given by

bl∞ : Sn−1×]0,+∞[ �→ R
n \ {0}

(u, r) �→ u
r

.

It is a Nash diffeomorphism and a re-parametrization of Rn \{0} embedded in Bn
1 . It

is more convenient to look at it this way since it is a good real avatar of the projective
compactification PR

n (which in our definable context is not as relevant as in the
algebraic case).

We denote by Sn−1
∞ := Sn−1× 0 the sphere at infinity. Let us denote and identify

Rn := R
n � Sn−1

∞ = (Sn−1 × [0,+∞[) � 0,

the spherical compactification of R
n at infinity, with boundary ∂Rn := Sn−1

∞ , the
sphere at infinity.

Let Z be the closure of the subset Z of Rn taken into Rn. The tangent link of Z
at ∞ is defined as

Z∞ := Z ∩ Sn−1
∞ .

The tangent cone of Z at infinity C∞(Z) is defined as the (non-negative) cone over
Z∞. Whence Z∞ is not empty (equivalently Z is not bounded) we also observe that

Z∞ := clos

{
u ∈ Sn−1 : ∃Z � (xk)k → ∞ such that

xk

|xk| → u

}
.

If a subset Z of Rn is definable then Z is definable in Rn. Thus whenever a subset
Z of Rn is definable, its tangent link at infinity Z∞ is definable and of dimension at
most dimZ − 1.

Although heavy to define it is convenient to use the formalism of conormal geom-
etry. We are especially interested in conormal geometry at infinity.

Now let Z = {(x, t) ∈ R
n×R : G(x, t) = 0}, where G : Rn×R �→ R is a definable

function of class at least C2, and let Z be its closure in Rn × R.
We assume that 0 is a regular value of G and we consider Z as a definable family

{Zt}t∈R of hypersurfaces in R
n. Let g : Z → R be a definable function which we

assume to be C1. For any regular point (x, t) of the function g, let T(x,t)g be the
subspace of T(x,t)Z tangent at (x, t) to the level of g through (x, t). Let us define the

following subset of Rn × R×G∨(1, n+ 1):

X ∨
g := clos{(x, t, ξ) ∈ Z \ crit(g)×G∨(1, n+ 1) : ξ(T(x,t)g) = 0},
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where G∨(1, n+ 1) is the dual of G(n, n+ 1).

Definition 3.1. The relative conormal space of g is the space X ∨
g .

Let πn+1 : Rn × R × G∨(1, n + 1) �→ Rn × R be the projection given as
πn+1(x, t, ξ) = (x, t).

Definition 3.2. The relative conormal space of g at infinity is the space X ∞
g

defined as

X ∞
g := π−1

n+1(Z
∞) ∩ X ∨

g ,

where Z∞ = Z ∩ (Sn−1
∞ × R).

For any p ∈ Z∞, let (X ∞
g )p be the fibre of X ∨

g above p, that is (X ∞
g )p =

π−1
n+1(p) ∩ X ∨

g .

We introduce now the notion of t-equisingularity [Tib1] adapted to the context
of Section 4.

Let rZ : Z �→ R be defined as (x, t) �→ |x|. It is continuous definable and C1

outside 0× R ∩ Z.
The space of characteristic covectors C of Z at infinity is the subset of Rn×R

n×
G∨(1, n+ 1) defined as

C (Z) := X ∞
rZ .

It is closed and definable.
Let τ : Rn × R be defined as (x, t) �→ t.
The following notion is due to Tibăr [Tib1]:

Definition 3.3. Let p in Z∞.
(i) The family {Zt}t∈R is t-equisingular at p if

C (Z)p ∩ (X ∞
τ )p = ∅.

(ii) The family {Zt}t∈R is t-equisingular at infinity at c if it is t-equisingular at
p for all p in Z∞ ∩ τ−1(c).

The definition above is slightly different from those given in [SiTi1, Tib1, DiRuTi],
since there it is given via the projective compactification of Rn. Anyhow they are
equivalent.

4. Regularities at infinity for definable families of hypersurfaces. We
present here two regularity conditions at infinity for the function restriction of a coor-
dinate projection along a definable one parameter family of hypersurfaces. In the next
section, we will compare altogether these regularity conditions with t-equisingularity,
introduced in the previous section.

Let F : Rn
x×Rt �→ R be a C2+m definable function, for some non-negative integer

m.
Assuming that R

n × R is equipped with the canonical Euclidean structure, let
∇F be the gradient field of F . Without further hypotheses, the real number 0 may
be a critical value of F , and ∇F may be vanishing on the zero level of F .

Working Hypotheses. (i) 0 is a regular value of F .
(ii) There is no connected component of F−1(0) contained in an affine hyperplane of
the form R

n × c.
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Let M be the zero locus F−1(0) of the function F , which is a closed definable
subset of Rn+1 and a C2+m hypersurface. Let M be its closure in Rn × R.

We define two mappings (π, t) : Rn × R �→ Rn × R obtained respectively as the
projections over Rn and over R, and both are semi-algebraic.

Let tM be t|M the restriction of t to M and let πM be the restriction of π to M ,
both are C2+m and definable mappings. Let us write Mc := t−1

M (c) and Tc := πM (Mc)
subset of Rn. Hypothesis (ii) above is equivalent to require that the critical locus
crit(tM ) has positive codimension in M .

Definition 4.1. Let c be a value taken by tM . The function tM is said locally
Ck trivial at c if there exists a positive real number ε such that t−1

M (]c− ε, c+ ε[) is a
trivial Ck-bundle with fibre Mc.

Mimicking what was done for level hypersurfaces of functions [LoZa, TiZa, d’Ac1,
d’AcGr1, d’AcGr2, Gra2], sufficient conditions about the gradient of tM guarantee
trivialization (see below). Since M is definable and each of its connected component
is orientable, let νM be a C1+m globally definable unitary field normal to M . Since 0
is not a critical value of F , we choose

νM :=
∇F

|∇F | = νxM + νtM∂t

where νxM is the component of νM in R
n × 0, and writing ∇F = ∂xF + ∂tF∂t, where

∂xF lies in R
n × 0.

Let p = (x, t) be a point of M . We have

TpM = {(u, w) ∈ R
n × R : 〈∂xF,u〉+ ∂tF · w = 0}.

It is easy to prove the following relation:

∇tM = − ∂tF

|∇F |2 ∂xF +
|∂xF |2
|∇F |2 ∂t = −νtMνxM + |νxM |2∂t (4.1)

and thus

|∇tM | = |∂xF |
|∇F | = |νxM |.

The critical locus of tM is

crit(tM ) = {p ∈ M : ∂xF (p) = 0}.

Since M is a C2+m orientable hypersurface, the function tM is C2+m as well. Since
it is definable, the set of its critical values K0(tM ) := tM (crit(tM )) is finite.

Let ν tM : M \ crit(tM ) �→ Sn be the unitary gradient of ∇tM ,

ν tM :=
∇tM
|∇tM | .

The Local Conical Structure Theorem ensures the existence of a positive number
SM such that for any S > SM the hypersurfaceM is transverse with Sn

S , the Euclidean
sphere of radius S. As a consequence of this fact we also have:
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Lemma 4.2. For any A > maxc∈K0(tM )|c|, there exists RA such that for any
R > RA the definable C2+m hypersurface M ∩ (Rn×] − A,A[) is transverse to the
cylinder Sn−1

R × R.

Proof. Let A � 1 be given. Let us define the following subset

Σ := {(x, t) ∈ M : x ∧∇F (x, t) = 0}.

Note that Σ \ 0 × R is contained in M ∩ {∂tF = 0} and that Σ is a closed definable
subset of M .

Let us assume that the statement of the lemma is not true. Thus there exists a
C1 definable path γ : [1,+∞[ �→ Σ ∩ R

n×]− A,A[ such that γ(s) → (u, c) in M∞ as
s goes to +∞, with |c| < A.

We can parameterize γ in such a way that |γ(s)| = s, which gives the following

γ(s) = (su, 0) + sev(s)

for a C1 and definable mapping s �→ sev(s) ∈ R
n × R such that lim∞ v �= (0, 0) and

e < 1. We also have that s �→ νM (s) = ∇F
|∇F | (γ(s)) goes to ν in Sn as s goes to +∞.

Note that γ′(s)
|γ′(s)| goes to (u, 0) as s goes to +∞. Since

γ(s) ∧ νM (s) = 0 and 〈γ′(s), νM (s)〉 = 0 ,

we deduce that

u ∧ ν = 0 and 〈u, ν〉 = 0,

which is absurd.

We can introduce now the Malgrange regularity condition at infinity.

Definition 4.3. Let c ∈ R be a value.

(i) The function tM satisfies the Malgrange condition at c if there exist positive con-
stants R, ε,Ac such that

|x| > R, |t− c| < ε =⇒ |x| · |∇tM (x, t)| ≥ Ac (4.2)

which is equivalent to

|x| > R, |t− c| < ε =⇒ |x| · |∂xF | ≥ Ac|∇F |. (4.3)

(ii) A value c which is not satisfying the Malgrange condition is called an asymptotic
critical value (ACV for short). Let K∞(tM ) be the set of ACV of tM .

Similarly to the case of real or complex polynomial families [Par, Tib1, Tib2, TiZa]
we find

Theorem 4.4 (see also [LoZa, Kur, d’Ac1, d’AcGr1]). (i) There exists a finite
subset B(tM ) of R such that the function tM is a locally C1+m trivial at any value c
not lying in B(tM ).

(ii) B(tM ) ⊂ K0(tM ) ∪K∞(tM ).

(iii) K∞(tM ) is finite.
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(iv) If c is a regular value taken by tM and does not lie in K∞(tM ), then the local
trivialization can be realized by a vector field colinear to ν tM .

Proof. We are going to sketch the proofs of (iii) following [d’Ac1] and (iv) following
[d’Ac1, d’Ac2, d’AcGr1]. Both (i) and (ii) can be deduced from these two points.

For simplicity we write f for tM .
Since M is polynomially bounded, there exists a definable function ρ : [1,+∞[ �→

R+ such that (see [d’Ac1, Lemma 3.3]):

(1) limR→+∞ R−1ρ(R) = +∞ and (2) K∞(f) = Kρ
∞(f)

where

Kρ
∞(f) :={c ∈ R : ∃(xk, tk) ∈ M , xk → ∞

and tk → c such that ρ(|xk|) · |∇f(xk, tk)| → 0}.
In particular for R large enough there exists an exponent α of (FM)>1 such that
ρ(R) ≥ Rα.

Following the steps of [d’Ac1, Theorem 3.4], we show that Kρ
∞(f) is finite.

Assume that there exists c′ > c such that for each c ≤ t ≤ c′ the level {f = t} is
neither empty nor a critical level. Let us consider the following subset

Δ := {(s, w) ∈ R
2 : ∃(xk) ∈ M : xk → ∞, f(xk) → w and |xk| · |f(xk)| → s}.

This subset is definable. Let θ : [c, c′] �→ [0,+∞[ be the function defined as follows

θ(t) := inf{Δ ∩ {w = t}}.
It is definable. We wish to show that it vanishes only finitely many times on [c, c′].
Assume that θ is identically 0 over [c, c′] (up to work with a smaller c′). Under these
hypotheses the definable subset

Σ := {ρ(|x|) · |∇f(x, t)| < f(x, t)− c}
is not empty outside of a compact subset of M ∩ t−1

M [c− ε, c+ ε] (see [d’Ac1, p. 40]).
By definition of Σ, there exists a C1 definable arc going to infinity γ : [1,+∞[ �→ Σ
such that

lim
+∞ f ◦ γ = c.

Let h = f ◦γ− c, and let us parameterize γ such that |x(γ(R))| = R, so that |γ′| goes
to 1 at infinity. We find

0 < −h′ ≤ h

|ρ| |γ
′| < 2

h

|ρ| .

Let R0 be large enough and let u(R) = 2h(R0)−h(R) once R ≥ R0, and let a > 1 be
such that

lim
+∞R−aρ(R) = +∞.

We deduce for R ≥ R0 (up to taking a larger R0)

0 < u′(R) < 2
u(R)

|ρ(R)| <
u

Ra
.
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Applying the Gronwall Lemma provides for R ≥ R0

u(R) ≤ h(R0) · λ(R0) with λ(R0) := exp

(
1

(a− 1)Ra−1
0

)
.

We know that lim+∞ u = 2h(R0) but we can choose R0 a priori such that λ(R0) < 2,
concluding that the function θ cannot vanish identically over [c, c′].

Point (iv) is of importance for the rest of the paper so we sketch its proof as a
variation of the proof of [d’AcGr1, Theorem 3.5]. Let

χ :=
1

|∇tM |2∇tM .

Any trajectory γ of χ is parameterized by the levels of tM : starting at a point of Mc

we find

tM (γ(s)) = c+ s .

Since the Malgrange condition is not affected by a change of origin of Rn, we can
assume that for every small enough positive real number ε there exists a constant Aε

so that

|x| · |∇tM (p)| ≥ Aε for all p = (x, t) ∈ t−1
M [c− ε, c+ ε] . (4.4)

For |s| ≤ ε we deduce

|γ(s)| ≤ |γ(0)|+
∫ |s|

0

1

|∇tM (γ(z))|dz .

Combining this latter inequality with the Gronwall Lemma provides

|γ(s)| ≤ |γ(0)| · exp
( |s|
Aε

)
.

Since χ is C1+m in M \ crit(tM ), the function tM is C1+m-trivial at c by the flow of
χ with initial conditions along Mc.

Definition 4.5. The set of generalized critical values is defined as

K(tM ) := K0(tM ) ∪K∞(tM ).

The Malgrange condition at a regular value c encodes the geometry at infinity of
the pencil of nearby fibres. Indeed we have the following

Lemma 4.6. Let c be a value taken by tM which is not a generalized critical
value. Let (pk)k be a sequence of points of M converging to (v, c) in Sn−1

∞ ×{c} ∩M
while tM (pk) goes to c. Assume that ν tM (pk) converges in M to ν in Sn. Then ν is
orthogonal to v.

Proof. These limits can be achieved along a C1 definable path ]0, 1[ �→ M, s �→
p(s) = (x(s), t(s)) as s goes to 0 with lim0 p = (v, c) ∈ M∞. We choose the pa-
rameterization of p so that |x(s)| = s−1. Let t(s) := tM (p(s)) and so on. Let us



GAUSS-KRONECKER CURVATURE AND EQUISINGULARITY 825

write

t(s) = c+Asa + o(sa)

x(s) = s−1v + o(s−1)

ν tM (s) = ν + sdν1 + o(sd)

νxM (s) = seνx + o(se)

νtM (s) = sfνt + o(sf )

where a, d, e, f ∈ (FM)≥0 ∪ {+∞} with a, d positive exponents, min(e, f) = 0, and
A ∈ R, ν1 ∈ R

n×R, νx ∈ R
n×0, νt ∈ R are non-zero vectors whence the corresponding

exponent is not ∞ and

ν = −νt
νx

|νx| + |νx|∂t.

We deduce that there exists a continuous definable function ϕ : (R≥0, 0) �→ R

with ϕ(0) = Aa, such that

t′(s) = sa−1ϕ(s) and x′(s) = −s−2v + o(s−2).
Using the Malgrange condition provides

1 ≥ |νxM (s)| = |∇tM (s)| ≥ Ac s

for some positive constant Ac. Thus e ≤ 1. Since

0 = 〈νxM + νtM∂t,x
′ + t′∂t〉 = 〈νxM ,x′〉+ νtMt′

we deduce that

νtM t′ = −〈νxM ,x′〉 = se−2[−〈νx,v〉+ o(1)].

From this last equation we deduce that there exists an exponent e′ ≥ e such that

sa−1+f ∼ |νtM t′| = |〈νxM ,x′〉| ∼ se
′−2,

so that 〈νx,v〉 = 0.

To conclude this section we introduce a final regularity condition.

Definition 4.7. Let c be a regular value of tM taken by tM .
The function tM is horizontally spherical at c at infinity if for any sequence (pk)k

of M converging to (u, c) ∈ M∞, then

〈
lim∞

νxM
|νxM | , u

〉
= 0, (4.5)

where lim∞
νx
M

|νx
M | means the closed set of all the possible accumulation values, as k

goes to infinity, of the unitary vector field of
νx
M

|νx
M | along the sequence (pk)k.

Note that the following holds true:

Lemma 4.8. The condition of Equation 4.5 is equivalent to

〈lim∞ νtM ,u〉 = 0
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along any sequence (pk)k of M converging to a point (u, c) in M∞.

Indeed, similarly to what has been done for definable functions, we have the
following:

Proposition 4.9. Let c be a regular value taken by tM . The function tM is
horizontally spherical at c at infinity if and only if there exists an exponent ec in
FM∩] −∞, 1[ and a positive constant Ec, such that there exist positive real numbers
ε and R such that

(x, t) ∈ t−1
M ([c− ε, c+ ε]) \BR =⇒ |x| · |∇tM | ≥ Ec|tM (x, t)− c|ec . (4.6)

Proof. In this definable and polynomially bounded context, we can show (as in
[d’AcGr2]) that a Bochnak-�Lojasiewicz inequality type at the value c not in K0(tM )
at infinity holds: there exists a positive constant Lc such that there exist positive real
numbers ε and R such that

(x, t) ∈ t−1
M ([c− ε, c+ ε]) \BR =⇒ |x| · |∇tM | ≥ Lc|tM (x, t)− c|. (4.7)

1) Assume tM is horizontally spherical at c at infinity.

Let p :]0, 1[ �→ M be any continuous definable path such that it goes to (u, c) ∈ M∞

as s goes to 0. Writing p = (x, t) and parameterizing as |x(s)| = s−1, we have

p(s) = (s−1u+ o(s−1), c+Asa + o(sa))

for A �= 0 and a ∈ (FM)>0 ∪ {+∞}. The numbers A and a depend on the choice of
the path s �→ p(s). We obtain that along p there exists a′ ≤ a such that

|x| · |∇tM | ∼ sa
′
.

Note that

a′ < a ⇐⇒ lim
0

〈
νtM ,

p

|p|
〉

= 0.

In particular the latter equivalence shows that

tM (x, t) → c as x → +∞ =⇒ |tM (x, t)− c|
|x| · |∇tM (x, t)| → 0 as x → +∞ .

Let ε0 be a small enough positive number such that [c− ε0, c+ ε0] contains only
a single asymptotic critical value: c. Let R0 be a positive large enough number. Let
Vε0,R0 be the definable subset defined as

Vε0,R0
:= {(x, t) ∈ M : |t− c| ≤ ε0 , |x| ≥ R0}.

Let μ0 : [R0,+∞[→ R be defined as

μ0(R) := min{|x| · |∇tM (x, t)| for (x, t) ∈ Vε0,R0
and |x| = R}.

The function μ0 is definable and tends to 0 as R goes to infinity since c is an ACV.
If R0 is large enough, we can write

μ0(R) = A0R
−a0(1 + o(1)) with A0 > 0, a0 ∈ (FM)>0.
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Let V0 be the closure of Vε0,R0 in M , thus V0 is compact in Rn × R. Let W0 be
the part at infinity of V0, that is

W0 := V0 ∩ (Sn−1
∞ × R).

The function

ψ0 : V0 \W0 � (x, t) → |tM (x, t)− c|
|x| · |∇tM (x, t)|

extends continuously and definably over V0 taking the value 0 along W0, by hypothesis
of horizontal sphericalness. In the same way, the function

ρ0 : V0 \W0 � (x, t) → |x|−1

also extends continuously and definably over V0 taking the value 0 along W0. Fur-
thermore we see that

ρ0 = 0 =⇒ ψ0 = 0 .

Thus by a �Lojasiewicz argument, there exist a positive exponent b and a positive
constant B such that in V0 the following inequality holds true:

ψ0 ≤ Bρb0 ⇐⇒ ψ0 ≤ B|x|−b.

Let μ1 be the function defined as follows:

μ1 : V0 \W0 � (x, t) → μ0(|x|).
The function μ1 is definable, continuous and extends continuously to V0 taking the
value 0 along W0. Therefore we deduce that in V0 \W0 we have

|tM (x, t)− c| ≤ C0 · μ
b
a0
1 · |x| · |∇tM (x, t)| ≤ C0 · (|x| · |∇tM (x, t)|)

b+a0
a0

where C0 is a positive constant. This latter inequality provides the announced result.

2) Assume the inequality holds.

Let p :]0, 1[ �→ M be a definable continuous path such that lim0 p = (u, c) ∈ M∞.
Writing p = (x, t) and parameterizing as |x(s)| = s−1, we have that

t(s) = c+Asa + o(sa)

p(s) = (s−1u+ o(s−1), t(s)) ∈ R
n × R

νxM (s) = sbν + o(sb) ∈ R
n × 0

νtM (s) = sd(λv) + o(sd) ∈ R
n × 0

with A �= 0 and a ∈ (FM)>0 ∪ {∞} while b, d ∈ (FM)≥0, min(b, d) = 0, with λ �= 0
and ν ∈ R

n \ 0.
Since the path p lies on M , we know that

〈νM ,p′〉 = 〈νxM ,x′〉+ νtMt′ = 0

from which we deduce

b− 2 ≤ d+ a− 1 . (4.8)
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We want to show that ν is orthogonal to u, in other words b < d+ a+ 1.
We have the following estimates

|∇tM |(s) = |νxM |(s) ∼ sb

|x| · |∇tM |(s) ∼ sb−1.

Using Inequality (4.6), we get

b− 1 ≤ ec · a < a and b < a+ 1. (4.9)

Since d is non negative, this yields the orthogonality of u and ν.

5. Comparing regularity conditions and triviality.
We are working within the context of Section 4.
We have previously introduced three regularity conditions at infinity for the func-

tion tM . We are going to compare them here.
The hypersurface M ⊂ R

n×R is the definable family of the hypersurfaces {Tt}t∈R

of Rn and M is its closure in Rn × R. Let M∞ be the intersection of M with the
boundary at infinity Sn−1

∞ ×R. By Lemma 4.2, the definable function rM : Rn×R �→ R,
defined as (x, t) �→ |x|, is transverse to M ∩R

n ×R×]−A,A[ for some positive given
A whenever x is large enough.

In Section 3 was defined the space of characteristic covectors of M at infinity

C (M) := X ∞
rM ,

which is a closed definable subset of Sn−1
∞ × R×G∨(1, n+ 1).

From Definition 3.3, we also know that: (i) the family {Tt}t∈R is t-equisingular
at p ∈ M∞ if

C (M)p ∩ (X ∞
τ )p = ∅, (5.1)

where τ : Rn×R �→ R is the projection on the last factor and, (ii) the family {Tt}t∈R is
t-equisingular at infinity at c if it is t-equisingular at p ∈ M∞ for all p ∈ M∞∩τ−1(c).

Let p = (u, c) ∈ M∞. The family {Tt}t∈R is t-equisingular at p if for any sequence
pk = (uk, tk) converging to p such that the sequence of T ′

k, the tangent space to the
level of rM through pk, converges to T ′, then the latter is not contained in R

n × 0.
This definition is more geometric than the Malgrange condition, which is of interest
since we have the following:

Proposition 5.1 (see [DiRuTi] for functions). If the family {Tt}t∈R is t-
equisingular at infinity at c then the function tM satisfies the Malgrange condition
at c.

Proof. Let β : Sn−1
∞ ×]0 +∞[×R �→ (Rn \ 0)× R, be defined as (u, s, t) �→ (

u
s , t

)
.

Let p = (u, c) ∈ M∞, and consider a definable path

γ :]0, 1] �→ Z := β−1(M), s �→ (u(s), s, t(s)),

with lim0 γ = p = (u, c) ∈ M∞. Thus rZ(γ(s)) = s. Along β(γ) we also find

|∇tM | = |νxM | ∼ sf , for f ∈ FM.

Note that (X ∞
τ )p consists only of the ”single” 1-form dt. The hypothesis implies the

existence of a definable unit vector path

s �→ ξ(s) = (v(s), 0, a(s)) ∈ Tγ(s)rZ = Tγ(s)Z ∩ (Tu(s)S
n−1 × 0× R)
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with a(s) → a0 �= 0. Since Dβ · ξ is tangent to M along β(γ), we obtain

〈νxM ,v(s)〉+ s · a(s)νtM = 0.

When f > 0, we get νtM → ±1, from which we deduce

|〈νxM ,v(s)〉| ∼ s.

Since |v| ≤ 1, we must have f ≤ 1. Malgrange Condition is satisfied along any
definable arc accumulating at a point of the compact set M∞ ∩R

n × c, therefore the
announced result is proved.

Since we just have seen that t-equisingularity at infinity implies the Malgrange
condition, we need to check if there is a relation between these and sphericalness at
infinity. To this end an obvious corollary of Proposition 4.9 is the following:

Corollary 5.2. Let c not be a generalized critical value. Then tM is horizontally
spherical at c at infinity. In other words t-equisingularity at infinity at c implies
horizontal sphericalness at c at infinity.

Proof. It is just reformulating the fact that Malgrange at c is equivalent to have
ec ≤ 0 in Equation (4.6).

We can now state the last result of this section about local triviality:

Theorem 5.3. Let c be a regular value at which tM is horizontally spherical at
infinity. Then tM is C1+m locally trivial at c.

Proof. Once we have moved the origin of Rn × 0 so that its value is not c, we
just have to integrate the field χ = 1

|∇tM |ν tM as before. Inequality (4.6) now holds

in t−1
M [c− ε, c+ ε] \BR0

for a large positive R0. As in [d’AcGr1, d’AcGr2] combining
it with Gronwall Lemma will show that any trajectory of χ parameterized over [0, ε]
with initial point in Mc ∩BR stays in BKR for some constant K depending only on
c and ε.

As a final remark, there are polynomial examples in [d’AcGr1] with regular values
which are ACV, but with exponent ec < 1.

6. Curvature and absolute curvature of families of definable hypersur-
faces. Some of the material presented here can also be found in [Gra1] (or adapted
from it).

Let H be a definable and oriented hypersurface of Rn of class C1+m with m ≥ 1.
Assume that H is connected and let νH : H �→ Sn−1 be an orientation. The

unitary normal mapping νH is definable and Cm.
Assume that the maximal rank of dxνH when x ranges H is n− 1.
There exist finitely many definable disjoint connected open subsets (Ui)i∈I of

Sn−1 such that

clos(νH(H)) = ∪i∈Iclos(Ui)

and for each i ∈ I, the mapping νH induces a definable finite covering

νH : Hi �→ Ui

where Hi := ν−1
H (Ui) and such that

dim νH(H \ (∪i∈IHi)) ≤ n− 2.
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Denoting κH the determinant of dνH , that is the Gauss-Kronecker curvature of H at
the considered point, the total Gauss curvature K(H) of H is defined (if it exists, and
it does as we see below) as

K(H) :=

∫
H

κH(x)dx.

An application of the formula of change of variables gives
∫
H

κH(x)dx =
∑
i∈I

(−1)divoln−1(Ui)

for (−1)di the degree of the covering mapping νH |Hi
: Hi �→ Ui for each i.

We introduce another average of curvature, namely the total absolute curvature
|K|(H) of H defined as

|K|(H) :=

∫
H

|κH(x)|dx.

Another application of the formula of change of variables yields
∫
H

|κH(x)|dx =
∑
i∈I

ei · voln−1(Ui)

where ei is the number of sheets of the covering νH |Hi
: Hi �→ Ui.

The hypothesis on the rank of dνH guarantees that ei is positive. Otherwise both
curvatures are 0.

Returning to the notations and hypotheses of Section 4, the hypersurface M can
also be seen as a definable family of hypersurfaces FtM := (Tc)c∈Im(tM ) of R

n where
Im(tM ) is the image of the function tM . We can define the following mapping:

N : M \ crit(tM ) �→ Sn−1

(x, t) �→ νx
M

|νx
M |

.

The mapping N is called the Gauss mapping of the family FtM . It is definable
and C1+m. The restriction of N|Tc

is denoted Nc, so that the family of mappings
(Nc)c∈Im(tM )\K0(tM ) is definable. Let κc be the Gauss-Kronecker curvature of Tc.
Thus we can define two functions

K : Im(tM ) \K0(tM ) �→ R

c �→ K(c) :=
∫
Tc

κc(x)dx,

|K| : Im(tM ) \K0(tM ) �→ R

c �→ |K|(c) := ∫
Tc

|κc|(x)dx.

The introductory material of this section guarantees that both functions are well
defined. The paper [Gra1] has dealt with the case where M is a graph. We can state
now the result of this section:

Theorem 6.1. (i) There are finitely many values in Im(tM ) \K0(tM ) at which
the function t �→ K(t) is not continuous

(ii) There are finitely many values in Im(tM ) \ K0(tM ) at which the function t �→
|K|(t) is not continuous
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(iii) If |K| is continuous at c, so is K.

Sketch of Proof. It is a very similar proof to that of [Gra1, Sections 4,5,6].
Let us consider the following definable and C1+m mapping

Ψ : M �→ Sn−1 × R

p �→ (N(p), tM (p)).

It is a local diffeomorphism at any point of M \ crit(Ψ). Let Δ := Ψ(crit(Ψ)) which is
definable, closed and of dimension lower than or equal to n−1. Let U := (Sn−1×R)\Δ.

There exists an integer number pM such that for any (u, t) ∈ U the fibre Ψ−1(u, t)
has at most pM points. For any point (u, t) in U the degree δ(u, t) of Ψ at (u, t) may
range from −pM to pM . In particular the function (u, t) �→ δ(u, t) is definable and

δ(u, t) = degu Nt.

We define the following subsets

Uk := {(u, t) ∈ U : #Ψ−1(u, t) = k}
Ut := {u ∈ Sn−1 : (u, t) ∈ U} = Nt(Tt \ crit(Nt))

Ut,k := {u ∈ Sn−1 : (u, t) ∈ Uk}.

The subsets Ut and Ut,k are open, and we obtain finitely many definable families
(Ut)t∈Im(tM )\K0(tM ) and (Ut,k)t∈Im(tM )\K0(tM ).

Note that Ut = ∪kUt,k and since the function u �→ degu Nt is definable, it is
constant on each connected component of Ut.

Let c be a regular value of tM . Since Hausdorff limits of closed definable subsets
of a given compact space exist, we can set

V +
c := limt→c,t>c clos(Ut) and V +

c,k := limt→c,t>c clos(Ut,k)

V −
c := limt→c,t<c clos(Ut) and V −

c,k := limt→c,t<c clos(Ut,k).

Let V1, . . . , Vdc
be the connected components of Uc. For each i = 1, . . . , s, let ki

be the integer number such that Vi ⊂ Uc,ki
. For each i = 1, . . . , dc there exists l

+
i ≥ ki

and l−i ≥ ki such that

Vi ⊂ V −
c,l−i

and Vi ⊂ V +

c,l+i
.

In particular we deduce that for each i

voln−1(Vi) ≤ min{ voln−1(V
−
c,l−i

) , voln−1(V
+

c,l+i
) } .

Let δi be the degree of Nc at any point of Vi. We find

K(c) =

dc∑
i=1

δi · voln−1(Vi) and |K|(s) =
dc∑
i=1

ki · voln−1(Vi).

From the previous arguments we get that each following limit exists

K+
c := lim

t→c,t>c
K(t) , K−

c := lim
t→c,t<c

K(t) ,

|K|+c := lim
t→c,t>c

|K|(t) , |K|−c := lim
t→c,t<c

|K|(t) ,
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and we obviously get

|K|(c) ≤ min(|K|−c , |K|+c ).

The rest of the proof follows from the following arguments: Assume that each Ut

has dt connected Vt,1, . . . , Vt,dt
. Each such connected component Vt,i lies in Ut,ki(t)

with ki(t) ≤ kj(t) if and only if i ≤ j. Moreover the degree of Nt at any point of
Vt,i is constant and equal to δi(t). These comes from properties of Ψ and U . From
here we deduce that there exists a finite subset Z of R such that for any J connected
component of (R \ Z) ∩ Im(tM ), the numbers dt, ki(t), δi(t) are independent of t in
J . Moreover each function t �→ voln−1(Vt,i) is continuous over J .

7. More on regularity at infinity. Let N : M \crit(tM ) �→ Sn−1 be the Gauss
mapping of the family of the regular levels of tM . Similarly to the conormal geometry
at infinity (in R

n × R) of the function tM , we are interested in the limits of N at
infinity (in R

n).

Let Γ(N), contained in M × Sn−1, be the graph of N, let Γ(N) be its closure in
Rn × R × Sn−1 and N : Γ(N) �→ Sn−1 be the projection onto Sn−1, so that we can
think of it as the extension by continuity of N to Γ(N).

The closed definable subset T∞
c,+ is defined as

T∞
c,+ := {u ∈ Sn−1

∞ : ∃(pk)k ∈ M such that lim∞ pk = (u, c)}.

Let V ∞
c := N(π−1(T∞

c,+ × {c})), in other words it is the definable closed subset

V ∞
c =

{
v ∈ Sn−1 : ∃((xk, τk))k ∈ M such that xk → ∞, τk → c, N(xk, τk) → v

}
,

corresponding to all the limits at infinity of normals to the hypersurfaces (Tt)t as t
tends to c.

For each u ∈ Sn−1
∞ , let V ∞

c,u := V ∞
c ∩N(π−1(u)× {c}), that is

V ∞
c,u =

{
v ∈ Sn−1 : ∃((xk, τk))k ∈ M such that

xk → ∞, τk → c,
xk

|xk| → u, N(xk, τk) → v
}
.

Note that whenever u does not belong to T∞
c,+ we find that V ∞

c,u is empty.
A very rigid consequence of tM being horizontally spherical at c at infinity is the

following:

Lemma 7.1. Let c be a regular value taken by tM at which it is horizontally
spherical at infinity. Then each u in T∞

c,+ and each v in V ∞
c,u are orthogonal.

Proof. Obvious from the definition of the horizontal sphericalness.

Let c be a regular value taken by tM at which it is horizontally spherical at
infinity. Let ε be a positive real number such that for each t ∈ [c − ε, c + ε] the
function tM is horizontally spherical at t at infinity. Let Tc,ε := t−1

M ([c+ ε, c− ε]).
We find that for each for η in ]ec, 1[, there exists a positive real number R such

that for every (x, t) belonging to Tc,ε \ clos(BR), we have

|x| · |∇tM (x, t)| ≥ |t− c|η. (7.1)
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Let ξ be the following definable vector field

ξ :=
1

|∇tM |
νStM
|νStM | , for |(x, t)| ≥ R � 1, and |t− c| ≤ ε.

It is definable and C1+m, non vanishing, tangent to the Euclidean spheres. The flow
of the differential equation

ṗ(t) = ξ(p(t)) and ξ(0) ∈ Tc × {c} \BR

induces a C1+m diffeomorphism (Tc × {c} \BR)× [−ε, ε] �→ Tc,ε \BR.
Using Inequality (7.1) we deduce that the length l(p0,pt) of the trajectory of ξ

between the point p0 of Tc × {c} \BR and pt, point reached after time t, is bounded
as

l(p0,pt) ≤ |p0|
(

t1−η

1− η

)
. (7.2)

Inequality (7.2) implies that the angle θ(t) between the vector pt and p0 tends
to 0 as t goes to 0. This proves the following:

Lemma 7.2. Let c be a regular value taken by the function tM at which it is
horizontally spherical at infinity. Then T∞

c = T∞
c,+, thus T

∞
c,+ is of dimension at most

n− 2.

8. Main result. Our main result Theorem 8.1 presented in this section is a
consequence of results of equisingularity theory and of our context.

Theorem 8.1. Let F : Rn ×R �→ R be a C2+m definable function over a polyno-
mially bounded o-minimal structure, for a non negative integer number m. Assuming
that 0 is regular value of F , let M be the level {F = 0}. Let tM be the projection of
M onto R.

Let c be a regular value taken by tM at which it is horizontally spherical at infinity.
Then the total absolute curvature function t �→ |K|(t) is continuous at c. Consequently
the total curvature function t �→ K(t) is continuous at c.

It is a straightforward consequence of the following

Lemma 8.2. Under the hypotheses of Theorem 8.1, we find

dimV ∞
c ≤ n− 2.

Let us show the main result.

Proof of the main result. Let |K| : t �→ |K|(t) be the total absolute curvature
function of the family of hypersurfaces (Tt)t. By Lemma 8.2 we find that V ∞

c has
(n− 1)-dimensional volume zero. Following [Gra1, Proposition 6.8], we deduce there
is no accumulation of curvature at infinity at c. In other words the function |K| is
continuous at c, and so is K by point (iii) of Theorem 6.1.

Before going into the proof of Lemma 8.2, we observe that it states that there
is no accumulation of curvature at infinity nearby the level c, or equivalently there
are no half-branch at infinity of the generic polar curve along which the function tM
tends to c (see [Tib1, Gra2] for local triviality results with a similar flavor).
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Proof of Lemma 8.2. Let v be a limit of normal direction lying in V ∞
c . By the

Curve Selection Lemma we can find a definable continuous path, going to infinity,
along which this limit is reached: there exists such a path γ such that

N ◦ γ → v and tM ◦ γ → c.

In particular there exists a positive exponent α, in the field of exponents FM of the
structure M such that

tM ◦ γ − c

|γ|α → a ∈ R
∗.

In other words there exists a positive exponent e such that the germ at infinity of γ
lies in

He := {p ∈ Tc,ε \BR : |tM (p)− c| ≤ |p|−e}.

If the exponent e belongs to FM, then He is definable and so is its closure He in
Rn × R. Let us define

V ∞,e
c :=

{
v ∈ Sn−1 : ∃ (pk)k ∈ He such that N(pk) → v

}

which is a closed definable subset of Sn−1 contained in V ∞
c whenever e lies in FM.

LetH∞
e be the intersectionHe∩Sn−1

∞ ×{c}. The function tM extends continuously
and definably to He taking the value c along H∞

e . Let te be the restriction of this
extension to He \BR.

According to [Bek, Loi], we can stratify the pair (te,He \BR) with Thom’s con-
dition. Furthermore we can require that X := He \ BR and Y := H∞

e are union of
strata.

Suppose first that X and Y are strata. The dimension of Y is d ≤ n − 2 since
H∞

e is contained in T∞
c,+, thus of dimension lower than or equal to n − 2 by Lemma

7.2. Let p = (u, c) be a point of Y and let T := TpY which is contained in R
n × 0.

Note that T and u are orthogonal.
Let v be a limit of the normal N at infinity at u taken into He along a path γ.

We will show that v and T ⊕ Ru are orthogonal. We recall that νM = νxM + νtM∂t.
Let ν be the limit of νM along γ as γ goes to infinity and let η be the limit of ν tM .
Writing ν as (νx, νt) in R

n × R, we have

v =
νx

|νx| and η = −νtv + |νx|2∂t.

Thom’s condition implies that η and T are orthogonal. Moreover, by horizontal
spherical-ness at infinity, η and u are also orthogonal, therefore η and T ⊕ Ru are
orthogonal too. Hence, if νt �= 0, then v is orthogonal to T ⊕ Ru since T ⊕ Ru is
contained in R

n × 0. If νt = 0 then v = ν. Using the arguments of the proof of
Lemma 4.6, we see that u and ν are orthogonal. By Whitney’s condition (a), we
know that TpY is a subspace of lim∞ TγM and so TpY and ν are orthogonal. Hence
we conclude that v = ν is orthogonal to TpY ⊕ Ru.

Let V ∞,e
c,u := V ∞,e

c ∩ V ∞
c,u. We have proved that dimV ∞,e

c,u ≤ (n − 1) − (d + 1) =
n− d− 2, and thus dimV ∞,e

c ≤ n− 2.
In the general case the only thing to check is that whenever X contains a (defin-

able) stratum S of dimension s at most n− 1, then its contribution to V ∞
c is at most
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of dimension n − 2. This is so since the graph of N|S is of dimension s, so that its
limits at infinity

{
v ∈ Sn−1 : ∃S � (xk, τk)k such that τk → c , N(xk, τk) → v

} ⊂ V ∞
c

have dimension at most s− 1 ≤ n− 2.
We conclude that V ∞,e

c has dimension lower than or equal to n−2 for any exponent
e of FM.

Since any limit v of V ∞
c belongs to some V ∞,e

c for some e in FM, and since the
family (V ∞,e

c )e∈(FM)>0 is increasing as e goes to 0, we get that V ∞
c is the Hausdorff

limit at e = 0 of V ∞,e
c , thus has dimension lower than or equal to n− 2.

We conclude with an interesting observation. For this purpose we need a few more
preparations. Let c be regular value taken by tM . Let ε be a positive number such
that [c− ε, c+ ε] consists only of regular values. Let Z be a connected component of
t−1
M (]c− ε, c+ ε[). Let us consider now tZ the restriction of tM to Z. Let Zt ×{t} :=
t−1
Z (t) = Mt ∩ Z. Let KZ(t) :=

∫
Zt

κ(x)dx and |K|Z(t) :=
∫
Zt

|κ|(x)dx for t in

]c− ε, c+ ε[. Then we actually have showed the following:

Theorem 8.3. Under the above hypotheses, assume furthermore that tZ is hor-
izontally spherical at infinity at c. Then the functions KZ and |K|Z are continuous
at c.

To rephrase informally Theorem 8.3, the continuity of t �→ |K|(t) nearby the value
c at which the function tM is horizontally spherical at infinity, is equivalent to the
continuity nearby c of each function t �→ |K|Z(t) for each connected component Z of
t−1
M (]c− ε, c+ ε[).

9. The special case of functions. We treat here briefly the case of functions
which is a special case of the context presented here. The continuity of curvatures is
the same property but the regularity conditions are a little bit different.

Let f : Rn �→ R be a C2+m, with non-negative m, definable function. We denote
the level f−1(t) by Ft and its closure in the spherical compactification by Ft. Its
intersection with the sphere at infinity Sn−1

∞ will be denoted F∞
t . Let νf be the

unitary gradient field ∇f
|∇f | .

The function f satisfies theMalgrange condition at c if there are positive constants
R, ε,A such that

|x| > R, |f(x)− c| < ε =⇒ |x| · |∇f(x)| ≥ A.

We would like to introduce what the analogue of horizontal spherical-ness in this
context would be. The function f is spherical at the regular value c at infinity if along
any sequence of points (xk)k of Rn such that |xk| goes to ∞ and f(xk) goes to c, we
have

〈
lim∞ νf (xk) , lim∞

xk

|xk|
〉

= 0,

whenever each limit exists.
This condition is equivalent to the following result already proved in [d’AcGr1,

d’AcGr2] which justified the introduction for families of the notion of horizontal
spherical-ness at infinity.
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Theorem 9.1 ([d’AcGr1, d’AcGr2]). Let c be a regular value of f taken by f .
The function f is spherical at infinity at c if and only if there exists an exponent ec
in FM∩]−∞, 1[ and a positive constant Ec such that

|x| � 1, |f(x− c| � 1 =⇒ |x| · |∇f(x)| ≥ Ec|f(x)− c|ec .

It is well known that t-regularity is equivalent to Malgrange [DiRuTi] (their proof
goes through the definable context) and that Malgrange is equivalent to requiring
having ec ≤ 0, thus spherical-ness at infinity.

Let K(t) be the total Gauss-Kronecker curvature of Ft and |K|(t) be the total
absolute Gauss-Kronecker curvature of Ft. In the context of functions what we have
proved is the following:

Theorem 9.2. Let f : Rn �→ R be a definable C2+m function for some non-
negative integer m. Let c be a regular value at which the function is spherical at
infinity.

(1) Then the function t �→ |K|(t)| is continuous at c, and thus so is t �→ K(t).

(2) As for Theorem 8.3, for any connected component Z of f−1]c − ε, c + ε[ for
positive ε small enough, the function t �→ |K|Z(t) is continuous at c, and thus so is
t �→ KZ(t).

Let us end with a last result on equisingularity of the family of fibres of a function.

Corollary 9.3. Let f : Rn �→ R be a definable C2+m function for some non-
negative integer m. Let c be a regular value at which the function is spherical at
infinity.

If n is odd then the following function is continuous at c

t �→
∫
G(n−1,n)

χ
(
f−1(t) ∩H

)
dH.

If n is even then the following function is continuous at c

t �→
∫
G(n−1,n)

[χ ({f ≥ t} ∩H)− χ ({f ≤ t} ∩H)] dH.

Proof. By Theorem 9.2, we know that the function t �→ K(t) is continuous at
c. Then we apply Theorem 4.5 in [Dut1]. If n is odd, the result is clear because the
function t �→ χ

(
f−1(t)

)
is constant in a neighborhood of c. If n is even, it is enough

to prove that the functions t �→ χ ({f ≥ t}) and t �→ χ ({f ≤ t}) are constant in a
neighborhood of c. By the Mayer-Vietoris sequence, if t > c then we have

χ ({f ≥ c}) = χ ({f ≥ t}) + χ ({c ≤ f ≤ t})− χ
(
f−1(t)

)
.

So if t is close enough to c then χ ({f ≥ c}) = χ ({f ≥ t}), for f is a fibration over
[c, t]. Similarly we can show that χ ({f ≤ c}) = χ ({f ≤ t}) for t > c close enough to
c. The same argument works for t < c.
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10. Some examples. (1) The first obvious situation is to apply our result to
graph of a function, completing the results of [Gra1, Gra2].

(2) Let (x, t) = (x, y, t) ∈ R
3 and consider the polynomial function

F (x, t) := x+ y − t(x2 + y2).

The hypersurface M = F−1(0) (closure in R
3 of the graph of a rational function) is

a regular affine surface. Observe that tM has no critical point. For any value c �= 0,
the level t−1

M (c) = Tc × c is a diffeomorphic to S1. Thus for every c �= 0, we get

K(c) :=

∫
Tc

κc(x)dx = 2π,

where κc(x) is the Gauss-Kronecker curvature of Tc at x. Flowing (by a gradient flow
of ∇tM ) a non-zero level onto a non-zero neighbouring one, we also check that

c �→ |K|(c) :=
∫
Tc

|κc|(x)dx(≥ 2π)

is continuous on R \ 0.
Along the path γ : s �→ (s, s, s−1), as s → +∞, we find out

γ

|γ| → u =

(
1√
2
,
1√
2
, 0

)
while

νxM
|νxM | = −u,

therefore tM is not spherical at infinity at 0. Since the 0-level is the line {x+ y = t =
0}, the value 0 is a bifurcation value of tM . Note that |K|(0) = 0 = K(0).

(3) Let g : Rp → R be a C2+m definable function and let M = g−1(0). We assume
that 0 is a regular value of g. For a unit vector v ∈ Sp−1, let v∗ be the function
y �→ 〈v,y〉, and let v∗

M be its restriction to M .

Lemma 10.1. There exists a closed definable subset Σ ⊂ Sp−1, of positive codi-
mension, such that if v /∈ Σ, then K∞(v∗

M ) = ∅.
Proof. Let Σ be the subset of unit vectors u ∈ Sp−1 such that ∇g

|∇g| tends to u or

−u along a sequence (yk)k in M , going to infinity. The subset Σ is a closed definable
subset of positive codimension [Dut1, Proposition 3.1].
Assume that K∞(v∗

M ) �= ∅. We can further assume that v = (0, . . . , 0, 1). Thus there
exists a sequence of points (yk)k in M going to infinity such that

|yk| · |∂y
′g|

|∇g| (yk) → 0,

where y = (y′, yn). Since |∂y′g| = o(|∇g|) along (yk)k, we deduce that

∇g

|∇g| (yk) → ±v,

in other words v ∈ Σ.

Let p = n + 1 and choose linear coordinates (x, t) in R
n+1, so that v := ∂t /∈ Σ

with g,M as above. Since t−1
M (c) = Tc×c = M ∩{v∗ = c}, the following is a corollary

of the previous lemma and Theorem 8.1.
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Corollary 10.2. Let κc(x) be the Gauss-Kronecker curvature of the hypersur-
face Tc ⊂ R

n at x /∈ crit(tM ). The functions

c �→
∫
Tc

|κc(x)|dx and c �→
∫
Tc

κc(x)dx,

are continuous on R \K0(tM ).
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