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REPRESENTATIONS AND MODULES OF ROTA-BAXTER
ALGEBRAS∗
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Abstract. We give a general study of representation and module theory of Rota-Baxter algebras.
Regular-singular decompositions of Rota-Baxter algebras and Rota-Baxter modules are obtained
under the condition of quasi-idempotency. Representations of a Rota-Baxter algebra are shown to be
equivalent to the representations of the ring of Rota-Baxter operators whose categorical properties are
obtained and explicit constructions are provided. Representations from coalgebras are investigated
and their algebraic Birkhoff factorization is given. Representations of Rota-Baxter algebras in the
tensor category context are also formulated.
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1. Introduction. The study of Rota-Baxter algebras originated from probabil-
ity and combinatorics [4, 9, 38] and has recently found remarkable applications in
diverse areas of mathematics and physics, especially in quantum field theory (QFT)
through the algebraic approach of Connes and Kreimer to renormalization in pertur-
bative QFT [11, 13].

As in the case of common algebraic structures such as associative algebras and
Lie algebras, it is important to study the modules and representations of Rota-Baxter
algebras. Our interest in pursuing this subject here is foremost motivated by inves-
tigations from QFT [16, 17]. There, in the framework of Connes and Kreimer [11],
one starts with a Hopf algebra H (such as the Connes-Kreimer Hopf algebra of Feyn-
man diagrams) and a commutative Rota-Baxter algebra (A,Q) of weight −1 (such
as the algebra of Laurent series with the projection to the pole part). Then with
the convolution product, the space Hom(H,A) of linear maps is an algebra and, by
post-composition, the Rota-Baxter operator Q induces a Rota-Baxter operator P on
Hom(H,A). The Rota-Baxter algebra (Hom(H,A), P ) and its (Atkinson) decompo-
sition encode information of renormalization of QFT. Thus it would be desirable to
obtain a more concrete representation of this algebra so that information could be
extracted more easily. This is the approach taken in [16, 17] where a representation
for the Rota-Baxter algebra (Hom(H,A), P ) is expressed as a matrix Rota-Baxter
algebra Mu

∞(A) where the Rota-Baxter operator is defined entrywise. Another moti-
vation of representations of Rota-Baxter algebra arises from algebraic and differential
geometry, which will be discussed in Section 2.

For an associative algebra or a Lie algebra, any representation over a vector space
can be expressed in the form of a matrix algebra. As we will see in this paper, this
is far from being the case for a Rota-Baxter (associative) algebra. Thus our goal of
this paper is twofold. On the one hand we start a general study of representations of
Rota-Baxter algebras, through modules over a Rota-Baxter algebra and the related
ring of Rota-Baxter operators, inspired by the related study of differential algebras
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and rings of differential operators. On the other hand, we try to understand fur-
ther the algebraic framework that leads to the matrix representation of Rota-Baxter
algebras that arise from the aforementioned applications. Based on this work,1 repre-
sentations of the Rota-Baxter algebra of Laurent series were discussed in [30] where
an interesting connection was found with class numbers in algebraic number theory, a
similar approach to the Rota-Baxter algebra of polynomial algebra was taken in [35],
and derived functors of Rota-Baxter modules were studied in [34].

Here is an outline of the paper. In Section 2 the concept of a Rota-Baxter module
over a Rota-Baxter algebra is introduced and the regular-singular decomposition of a
quasi-idempotent Rota-Baxter module is provided. The classical (additive) Atkinson
factorization of a Rota-Baxter algebra is generalized to Rota-Baxter modules. The
representation of a product Rota-Baxter algebra is discussed in terms of quiver rep-
resentations. For a given Rota-Baxter algebra, the ring of Rota-Baxter operators on
this Rota-Baxter algebra is introduced in Section 3 and its relation with Rota-Baxter
modules is established, by an equivalence between the category of Rota-Baxter mod-
ules and the category of modules over the ring of Rota-Baxter operators. In Section 4
we give a construction of the ring of Rota-Baxter operators with more detailed de-
scription for the special cases of divided powers and Laurent series. In Section 5
we revisit the topic of matrix representations that motivated our study and give a
class of representations of convolution Rota-Baxter algebras by endomorphism and
matrix Rota-Baxter algebras. We also prove an algebraic Birkhoff factorization for
Rota-Baxter modules. Section 6 gives a brief discussion on Rota-Baxter algebras in
the tensor category context.

Notations. Throughout this paper, k denotes a unitary commutative ring. All
algebras, linear maps and tensor products are taken over k unless otherwise specified.
By an algebra we mean a unitary associative algebra while by a nonunitary algebra
we mean an associative algebra which might not have an identity.

2. Rota-Baxter modules and their regular singular decompositions. We
first introduce the concept of a Rota-Baxter module with motivation from a differential
module. We then give some general properties of Rota-Baxter modules before focusing
on the regular-singular decomposition of Rota-Baxter modules over a class of Rota-
Baxter algebras.

2.1. Rota-Baxter modules.

2.1.1. Differential modules. To further motivate the study of modules over
a Rota-Baxter algebra, we recall the well established case of differential algebras for
which we refer the reader to [7] for details. Let (R, d) be a differential algebra [28,
40], defined to be a pair (R, d) with R a k-algebra and d a linear operator on R such
that

d(xy) = d(x)y + xd(y) for all x, y ∈ R.

1The present paper was started a few years ago when the two authors, working in Rota-Baxter
algebra and representation theory respectively, tried to bring the two subjects together. The pa-
per had its various versions with limited circulations, but was not completed as new and inter-
esting connections showing up. In the mean time, several papers motivated by this paper have
appeared [34, 30, 35, 43]. So to imitate Zariski and Samuel in the introduction of their well-known
book [42], this paper has become the unborn mother of several children. These and other recent
developments motivated the present authors to complete the paper while leaving some loose ends to
future treatments.
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An R-module M is called a differential module over (R, d) if there is a linear map
δ : M →M such that

δ(ax) = d(a)x+ aδ(x) for all a ∈ R, x ∈M.

In differential geometry, such a δ is called a connection. See [24] for D-modules in
representation theory and algebraic geometry, and [21] for the more general notion of
differential algebras with weights.

Algebraically, let k[d] be the polynomial algebra in variable d with the standard
Hopf algebra structure coming from the algebra of regular functions on the additive
algebraic k-group Ga, i.e., with the comultiplication defined by d �→ d⊗ 1 + 1⊗ d. R
being a differential algebra is equivalent to R being a k[d]-module algebra in the sense
that R is a k[d]-module such that the multiplication map R⊗R→ R is a k[d]-module
homomorphism and the map of scalar u : k→ R (with u(α) = α1) is a homomorphism
of k[d]-modules. Then we can form the smash product algebra R[d] := R#k[d] with
the product (1#d)(a#1) = d(a)#1 + a#d [12, 41].

As can be easily verified, an R-module M is a differential module over the dif-
ferential algebra (R, d) if and only if M is a module over the smash product algebra
R#k[d]. In particular, the category of all differential modules over a differential alge-
bra (R, d) is an abelian category with enough projective objects.

As a motivating example, let X be an affine algebraic k-variety (with k = C)
and R = k[X] be the algebra of regular functions. A vector field D on X is a
derivation D ∈ Derk(R). An R-module M is a quasi-coherent sheaf on X. The
operator d : M → M making M a differential module over (R,D) is a connection of
the sheaf along the vector field D. In this case, the algebra R#k[D] is exactly the
algebra of differential operators on X generated by D. The study of representations
of Rota-Baxter algebras to be defined below also has this geometric connection as
motivation.

2.1.2. Rota-Baxter modules. For a given λ ∈ k, a Rota-Baxter algebra of
weight λ is defined to be a pair (R,P ) with R a k-algebra and P a linear operator
on R satisfying the Rota-Baxter axiom:

P (x)P (y) = P (xP (y)) + P (P (x)y) + λP (xy) for all x, y ∈ R. (1)

We will often simply denote (R,P ) by R if the operator P is understood from the
context. See [4, 20, 29, 39] for general discussions of Rota-Baxter algebras.

A homomorphism σ : (R,P ) → (R′, P ′) of Rota-Baxter algebras of the same
weight λ is a homomorphism σ : R→ R′ of k-algebras such that P ′ ◦ σ = σ ◦ P . We
note that if (R,P ) is a Rota-Baxter algebra of weight λ, then (R,αP ) is a Rota-Baxter
algebra of weight αλ.

Definition 2.1. Let (R,P ) be a Rota-Baxter algebra of weight λ ∈ k.
(a) A (left)Rota-Baxter module over (R,P ) or simply a (left) (R,P )-module

is a pair (M,p) with an R-module M and a linear map p : M →M satisfying

P (a)p(x) = p(ap(x)) + p(P (a)x) + λp(ax) for all a ∈ R, x ∈M. (2)

We will simply write M for the pair (M,p) when p is understood.
(b) Let (M,pM ) and (N, pN ) be two (R,P )-modules. A homomorphism f :

(M,pM )→ (N, pN ) of Rota-Baxter modules is a homomorphism f : M → N
of R-modules such that f◦pM = pN ◦f . Denote Hom(R,P )(M,N) for the set of
all (R,P )-module homomorphisms, which is a k-submodule of HomR(M,N),
the k-module of all R-module homomorphisms.
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(c) For an (R,P )-module (M,p), an (R,P )-submodule is an R-submodule N
of M such that p(N) ⊆ N . Thus (N, p|N ) is also an (R,P )-module.

Remark 2.2. This definition of Rota-Baxter module is consistent with the Eilen-
berg’s approach to the definition of module, namely the semidirect sum (R⊕M,P+p)
is a Rota-Baxter algebra. Moreover, its quotient by the Rota-Baxter ideal (M,p) is
isomorphic to the initial Rota-Baxter algebra (R,P ).

We also remark that Eq. (2) is compatible with the Rota-Baxter equation (1),
i.e.,

P (a)(P (b)p(x)) = (P (a)P (b))p(x) = P (P (a)b+ aP (b) + λab)p(x) (3)

for all a, b ∈ R and x ∈M . The verification of this is the same as verifying that Eq (1)
is compatible with the associativity in R, in the sense that applying the associativity
(P (a)P (b))P (c) = P (a)(P (b)P (c)) to the left hand side of Eq. (1) leads to the identical
expression on the right hand side.

For a Rota-Baxter module homomorphism f , it is straightforward to verify that
the R-modules ker(f), im(f) and coker(f) are (R,P )-submodules with the obvious
operators induced from p. The category (R,P ) -Mod of (R,P )-modules is an abelian
category. There is a forgetful functor (R,P ) -Mod→ R -Mod forgetting the operator
p, which is exact and faithful.

Given an R-module M there could be many k-linear operators p making (M,p)
a (R,P )-module. Let RBP (M) ⊆ Endk(M), or simply RB(M), denote the set of
all such operators. The R-module automorphism group AutR(M) acts on the set
RBP (M) by conjugations. Two k-linear operators p and p′ on M define isomorphic
(R,P )-modules if and only if they are in the same orbit of the action. Depending
on the ring R and the R-module M , AutR(M) is an algebraic group and RBP (M)
is an algebraic variety. One of the questions is to describe the moduli space of the
isomorphism classes of (R,P )-module structures on M in terms of the algebraic group
AutR(M)-action on RB(M). When R = k((t)) = k[[t]] ⊕ t−1k[t−1] is the Laurent
series field with P being the projection to k[[t]], and M being finite dimensional
(over R), the moduli spaces are studied in [30] and are closed related to the affine
Grassmannian corresponding the t-adic group GLn(k[[t]]).

Similarly, one defines right (R,P )-modules. In particular, (R,P ) is a left (resp.
right) (R,P )-module under the left (resp. right) multiplication.

A left, right or two sided ideal I of R is called a left, right or two sided Rota-
Baxter ideal, respectively, if P (I) ⊆ I. As in the case of usual module theory, any
left or right Rota-Baxter ideal I of (R,P ) is a left or right Rota-Baxter (R,P )-module
under the restriction P : I → I.

We remark that any R-module M automatically defines an (R,P )-module (M, 0).
This defines a full subcategory R -Mod of (R,P ) -Mod whose composition with the
forgetful functor (R,P ) -Mod → R -Mod is the identity. We will see this from the
perspective of the ring of Rota-Baxter operators in Corollary 4.5.

2.2. Regular-singular decompositions of Rota-Baxter modules. A k-
linear operator p on a module M is called quasi-idempotent of weight 0 	= λ ∈ k
if p2 + λp = 0. The usual concept of an idempotent operator is the special case when
λ = −1. For μ ∈ k, let

Mμ : = {x ∈M | p(x) = μx} (4)
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denote the eigenspace of M for the eigenvalue μ. A Rota-Baxter operator P of weight
λ in a k-algebra R is called quasi-idempotent [1] if P 2 + λP = 0.

Proposition 2.3. Let λ ∈ k be given.
(a) Assume that λ is invertible. A linear operator p on a k-module M is quasi-

idempotent of weight λ if and only if there is a k-module decomposition M =
M ′⊕M ′′ such that p is the −λ multiple of the projection from M to M ′ along
M ′′:

p : M = M ′ ⊕M ′′ →M, x = x′ + x′′ �→ −λx′ for all x′ ∈M ′, x′′ ∈M ′′.
(5)

If either of the two equivalent conditions holds, then M ′ = M−λ and M ′′ =
M0.

(b) Let (R,P ) be a Rota-Baxter algebra and (M,p) an (R,P )-module. The Rota-
Baxter operator p is quasi-idempotent if and only if p is P (1)-invariant in the
sense that p(P (1)x) = P (1)p(x) for all x ∈ M . In the case when (M,p) =
(R,P ), P is quasi-idempotent if and only if P is right P (1)-invariant in the
sense that P (uP (1)) = P (u)P (1) for all u ∈ R.

(c) Assume that λ is invertible. A linear operator P on an algebra R is a quasi-
idempotent Rota-Baxter operator of weight λ if and only if there is a k-module
decomposition R = R′⊕R′′ of R into nonunitary subalgebras R′ and R′′ such
that P is the −λ multiple of the projection of R to R′ along R′′ as in Eq. (5)2.
If either of the two equivalent conditions holds, then R′ = R−λ and R′′ = R0.

(d) Assume that λ is invertible. Let P : R → R be a quasi-idempotent Rota-
Baxter operator of weight λ and R = R−λ ⊕ R0 be as in Item (c). Let M be
an R-module and p : M → M an quasi-idempotent k-linear operator. Then
(M,p) is an (R,P )-module if and only the eigenspace M−λ (resp. M0) from
Item (a) is an R−λ-module (resp. R0-module).

Proof. (a) This is a standard linear algebra exercise using the minimal polynomial
p(p+ λ) = 0 and the fact that λ is invertible to get M = M−λ ⊕M0.

(b) The first equivalence follows from

P (1)p(x) = p(P (1)x) + p(p(x)) + λp(x) for all x ∈M.

The second equivalence follows from

P (u)P (1) = P (P (u)) + P (uP (1)) + λP (u) for all u ∈ R.

(c) This fact is already proved in [6].

(d) Let (R,P ) and (M,p) be as given. Then by Item (a), M = M−λ ⊕M0 and p is
the −λ multiple of the projection from M to M−λ along M0. Suppose (M,p) is an
(R,P )-module. By Eq. (2), M−λ = p(M) is an R−λ(= P (R))-module. Further, let
r ∈ R0 = kerP and x ∈M0 = ker p. Then Eq. (2) gives

λp(rx) = P (r)p(x)− p(P (r)x)− p(rp(x)) = 0.

Thus M0 is an R0-module.
Conversely, suppose the eigenspace M−λ (resp. M0) from Item (a) is an R−λ-

module (resp. R0-module). We consider two cases in verifying Eq. (2).

2So P is called a splitting Rota-Baxter operator in [6]
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First consider u ∈ R−λ. Then we have

P (u)p(x) = −λup(x) =
{

0, v ∈M0,
λ2ux, v ∈M−λ.

On the other hand, P (u) = −λu gives

p(up(x)) + p(P (u)x) + λp(ux) = p(up(x))

=

{
0, x ∈M0,
p(u(−λ)x) = −λp(ux) = −λ(−λ)ux, x ∈M−λ.

Here in the last case we applied the assumption that M−λ is an R−λ-module. Thus
Eq. (2) holds in this case.

Next consider u ∈ R0. Then we have P (u)p(x) = 0. On the other hand,

p(up(x)) + p(P (u)x) + λp(ux) = p(up(x)) + λp(ux)

=

{
0, x ∈M0,
p(u(−λx)) + λp(ux) = 0, x ∈M−λ.

Here in the first case, we have applied the property that M0 is a R0-module. Thus
(M,p) is a (R,P )-module.

As an immediate consequence of Proposition 2.3.(b), as well as [6, Lemma 1], we
have

Corollary 2.4. Let P : R→ R be a Rota-Baxter operator satisfying P (1) ∈ k.
Then P is quasi-idempotent. Further for any (R,P )-module (M,p), p is also quasi-
idempotent.

The decomposition M = M−λ⊕M0 in the proposition will be called the regular-
singular decomposition, motivated by the following example. A more detailed
study in this case can be found in [30].

Example 2.5. Let X be a complex manifold and x0 ∈ X be a fixed point. Let
Ox0

and Mx0
be the stalks at x0, of the sheaves O and M of holomorphic func-

tions and meromorphic functions respectively. We know that Ox0
is a C-subalgebra

of Mx0
. Any linear map P : Mx0

→ Ox0
⊆ Mx0

satisfying the Rota-Baxter rela-
tion of weight −1 such that P |Ox0

= IdOx0
defines a regular-singular decomposition

Mx0 = (Mx0)−1 ⊕ Ox0 . This decomposition is the algebraic structure underneath
the algebraic approach of Connes and Kreimer to quantum field theory renormaliza-
tion [11]. For a sheaf F ofM-module, the stalk Fx0

is anMx0
-module. A Rota-Baxter

(Mx0
, P )-module structure p : Fx0

→ Fx0
defines a C-vector space decomposition

Fx0 = (Fx0)−1 ⊕ (Fx0)0 with (Fx0)−1 being the stalk of sheaf of regular sections and
(Fx0)0 being the stalk of sheaf of singular sections.

Example 2.6. Let C be a smooth complex curve and x0 ∈ C. Let Ox0 be the
complete local ring of holomorphic functions at x0 andMx0

be the field of quotients.
Each choice of coordinate z defines a Rota-Baxter algebra structure on R = Mx0

with P (R) = Ox0
and λ = −1. For each vector bundle F on C, each trivialization of

F at x0 defines an (R,P )-module structure on Fx0 = Mx0 ⊗Ox0
F . A classification

of such module structures on the sheaf Fx0 is discussed in [30]. Vector bundles on
curve with trivialization at a point was studied in [5] to describe the conformal blocks
in mathematical physics.
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Suppose that (R,P ) is a Rota-Baxter algebra of invertible weight λ ∈ k and
P (1) ∈ k. By Proposition 2.3, (R,P ) is a quasi-idempotent Rota-Baxter algebra and
by Corollary 2.4, any (R,P )-module (M,p) is quasi-idempotent, giving the regular-
singular decomposition M = M−λ ⊕M0. Let RSD(M) denote the set of all regular-
singular decompositions M = M−λ ⊕M0 as p varies. Then the assignment

p �→ (p(M), ker(p))

defines a bijection from RB(M) to RSD(M). Further AutR(M) acts on RSD(M)
by g(M−λ,M0) = (g(M−λ), g(M0)). Then the bijection from RB(M) to RSD(M) is
AutR(M)-equivariant. Thus the set of isomorphic classes of (R,P )-module structures
on M is in bijection with the set of AutR(M)-orbits in RSD(M). In summary,

Proposition 2.7. Let (R,P ) be a Rota-Baxter algebra of invertible weight λ ∈ k
and P (1) ∈ k. Then for any R-module M , the map RB(M) → RSD(M) defined by
(M,p) �→M−λ ⊕M0 is an AutR(M)-equivariant bijection.

As an application of Proposition 2.3, we give a simple example to demonstrate
the distinction between modules over an algebra and modules over a Rota-Baxter
algebra. Take R = k to be a field and fix λ ∈ k. Then (k,−λ) is a Rota-Baxter
algebra of weight λ. We determine the category of finite dimensional (R,P )-modules.
Such a module is necessarily a finite dimensional k-module, so is of the form M = kn

for n ≥ 0.
First let λ 	= 0. Since trivially P (1) ∈ k, by Proposition 2.3, a linear map

p : kn → kn defines an (R,P )-module structure on kn means p is diagonalizable over
k with eigenvalues 0 and −λ. Thus the category of (R,P )-modules is semisimple with
exactly two irreducible representations (k, 0) and (k,−λ).

In the “limit” case of the Rota-Baxter algebra (R,P ) = (k,−λ) of weight λ when
λ = 0, a pair (M,p) is an (R,P )-module if and only if p2 = 0. Thus the category
of (R,P )-modules is not semisimple with irreducible representation (k, 0) as in the
nonzero weight case. Instead, the category has two indecomposable representations
(k, 0) and (k2, J2) where J2 is a Jordan block of size 2 with eigenvalue 0.

Through the above discussion, we see that the category of (k,−λ)-modules of
weight λ is equivalent to the category of A = k[t]/〈t2 + λt〉-modules. A special case
of such an algebra A is the Hecke algebra of the symmetric group S2 over a field k
which is generated by T subject to the condition (T − q)(T + 1) = 0 with q ∈ k. In
this case we take P = T − q and λ = 1 + q.

Remark 2.8. There is a subtle point that is worth noting, namely the pair
(k, 0) is a Rota-Baxter algebra of weight −1 as well as of weight 0 just discussed.
Representation of this Rota-Baxter algebra depends on its designated weight. In
fact, as a Rota-Baxter algebra of weight −1, its category of modules is semisimple by
Proposition 2.3 applying the same argument as above.

2.3. Dual modules and derived modules of Rota-Baxter modules. We
study the relationship of the adjoint operator P̃ of P and the Atkinson factorization
with the Rota-Baxter modules.

Recall that for any Rota-Baxter algebra (R,P ) of weight λ, the pair (R, P̃ ), with
P̃ := −λ IR−P , is also a Rota-Baxter algebra of the same weight λ. In the same way,
if (M,p) is an (R,P )-module, then (M, p̃) is an (R, P̃ )-module, where p̃ := −λ IM −p.
Furthermore, if f : (M,pM ) → (N, pN ) is an (R,P )-module homomorphism, then
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the same R-module homomorphism f : M → N is an (R, P̃ )-module homomorphism
from (M, p̃M ) to (N, p̃N ). We thus obtain the following

Lemma 2.9. The assignment (M,p) �→ (M, p̃) for (M,p) ∈ (R,P ) -Mod defines
a categorical isomorphism (R,P ) -Mod→ (R, P̃ ) -Mod.

Proof. The resulting functor is an isomorphism since ˜̃P = P and ˜̃p = p.

When we use R to denote the Rota-Baxter algebra (R,P ), we will also simply
use R̃ to denote the Rota-Baxter algebra (R, P̃ ). Similarly, when we abbreviate M
for the module (M,p), then M̃ will denote the module (M, p̃).

Suppose that (R,P ) is a Rota-Baxter algebra of invertible weight λ and P (1) ∈ k.
Then P̃ (1) = −λ − P (1) ∈ k. In this case, by Proposition 2.3 we have R = R−λ ⊕
R0 and any (R,P )-module is an R-module with a decomposition M = M−λ ⊕M0

such that R−λM−λ ⊆ M−λ and R0M0 ⊆ M0. We denote R = R̃−λ ⊕ R̃0 for the
decomposition of R with respect to P̃ . Similarly for any (R,P )-module (M,p), the
pair (M, p̃) is an (R, P̃ )-module with decomposition M = M̃−λ ⊕ M̃0. Then we have

R̃−λ = R0, R̃0 = R−λ, M̃−λ = M0, M̃0 = M−λ.

Recall [20, Thm 1.1.17] that, for any Rota-Baxter algebra (R,P ), there is a new
associative multiplication on R defined by

r1 �P r2 := r1P (r2) + P (r1)r2 + λr1r2 (6)

making (R, �P ) into a nonunitary associative k-algebra. We will denote this k-algebra
by R(P ). Furthermore (R(P ), P ) is still a Rota-Baxter algebra of weight λ and P :
(R(P ), P )→ (R,P ) is a homomorphism of Rota-Baxter algebras.

Now let (M,p) be an (R,P )-module. we define a new linear map

�p : R⊗M →M, r ⊗ x �→ P (r)x+ rp(x) + λrx for all r ∈ R, x ∈M.

The same argument as in the proof of [20, Thm. 1.1.17] shows

Proposition 2.10. Let (R,P ) be a Rota-Baxter algebra and (M,p) a (R,P )-
module.

(a) (M,�p) is a nonunitary R(P )-module. We will denote this R(P )-module by
M (p);

(b) p : M (p) →M is P -semi-linear, i.e.,

p(r �p x) = P (r)p(x) for all r ∈ R, x ∈M ;

(c) (M (p), p) is an (R(P ), P )-module;
(d) The functor from (R,P ) -Mod to (R(P ), P ) -Mod defined by (M,p) �→

(M (p), p) is exact.
(e) r�P̃ s = −r�P s and r�p̃x = −r�px for all (R,P )-module (M,p) with r, s ∈ R

and x ∈M .

Now let R be a k-algebra. If λ ∈ k is torsion free in R, the additive Atkinson
factorization [2, 20] states that Rota-Baxter operators P of weight λ on R are in
one-one correspondence with k-linear maps f : R → R ⊕ R satisfying the following
properties: if r ∈ R with f(r) = (f1(r), f2(r)) then f1(r) + f2(r) = −λr and f(R) is
closed under the following multiplication on R⊕R

(r1, r2)(s1, s2) = (r1s1,−r2s2).
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In fact, we can take f1 := P and f2 := P̃ . The following is a module version of the
additive Atkinson factorization.

Theorem 2.11. Let (R,P ) be a Rota-Baxter algebra of weight λ which is torsion
free in R. Let f = (f1, f2) be the pair of k-linear maps corresponding to P by the
additive Atkinson factorization. Then an (R,P )-module (M,p) is equivalent to a pair
of k-linear maps ρ = (ρ1, ρ2) : M → M ⊕M such that ρ1(x) + ρ2(x) = −λx for all
x ∈M and f(R) ∗ ρ(M) ⊆ ρ(M), where

∗ : (R⊕R)⊗ (M ⊕M)→M ⊕M,

(r1, r2) ∗ (x1, x2) : = (r1x1,−r2x2) for all r1, r2 ∈ R, x1, x2 ∈M.

We remark that when λ is torsion free in R and M , and P (1) is in k, then
ρ : M → ρ1(M) ⊕ ρ2(M) is a linear isomorphism that gives M = M−λ ⊕M0. Thus
the regular-singular decomposition can be regarded as a special case of the additive
Atkinson factorization.

Let (R,P ) be a Rota-Baxter algebra of weight λ. For any α ∈ k, by Eq. (1), the
operator αP ∈ Endk(R) is a Rota-Baxter operator of weight αλ. Thus when k is
a field, the problem of classifying all Rota-Baxter algebra structures (of all weights)
on R is reduced to classifying all Rota-Baxter algebra structures of weight 0 and −1
only.

If (M,p) is an (R,P )-module, then the definition of Rota-Baxter modules in
Eq. (2) implies that (M,αp) is an (R,αP )-module. If f : (M,pM ) → (N, pN ) is a
homomorphism of (R,P )-module, then f : (M,αpM )→ (N,αpN ) is also an (R,αP )-
module homomorphism.

Proposition 2.12. For any α ∈ k, the assignment (M,p) �→ (M,αp) is a
faithful functor. In particular, if α ∈ k is invertible, then this functor is a category
isomorphism between (R,P ) -Mod and (R,αP ) -Mod.

Thus when k is a field, one can restrict to the cases of λ = 0,−1.
2.4. Product of Rota-Baxter algebras. Let (R1, P1) and (R2, P2) be two

Rota-Baxter algebras of weight λ over k. The product k-algebra R = R1 ⊕ R2 with
componentwise multiplication together with P = P1⊕P2 is a Rota-Baxter algebra of
the same weight λ over k. For i = 1 or 2, the projective map (R,P )

πi→ (Ri, Pi) is
a Rota-Baxter algebra homomorphism. In fact (R,P ) is the product of (R1, P1) and
(R2, P2) in the category of Rota-Baxter algebras of fixed weight λ. We note that the
projections (R,P )→ (Ri, Pi) are homomorphisms of Rota-Baxter algebras.

We now describe the (R,P )-modules in terms of those of (Ri, Pi). Writing e1 =
(1, 0) and e2 = (0, 1) for the central idempotents in R, then the composition ejPei is 0
if i 	= j. Each R-module M has a decomposition M = M1⊕M2 with Mi = eiM being
an Ri-module. If (M,p) is an (R,P )-module, then (Mi, pi) is an (Ri, Pi)-module with
pi = eipei. Setting pij := eipej : Mj → Mi, then Eq. (2) implies that, for i 	= j,
ri ∈ Ri, and mj ∈Mj ,

(a) pji(ripij(mj)) = 0;
(b) pi(ripij(mj)) = Pi(ri)pij(mj).
Conversely, given any (Ri, Pi)-modules (Mi, pi) for i = 1, 2, we consider the fol-

lowing diagram

M1

p21 �� M2
p12

��
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of linear maps. Such a diagram gives an (R,P )-module on (M,p) whereM := M1⊕M2

and p := (p1 + p21, p12 + p2) if and only if the k-linear maps p12 and p21 satisfy the
conditions (a) and (b) above.

In the following we use a simple example to illustrate that determining represen-
tations of the product Rota-Baxter algebra R = R1 ⊕R2 is quite non-trivial.

Let k be a field and let R1 = R2 = k with P1 = 0 and P2 = Id. Then (R1, P1)
and (R2, P2) are Rota-Baxter algebras of weight −1. Thus by Proposition 2.3 (see
Remark 2.8), the category of (Ri, Pi)-modules is semisimple with two irreducible mod-
ules (k, 1) and (k, 0). Each module is a k-vector space of the form M = M(0)⊕M(1).
Here to avoid ambiguity in the subscripts, we use M(κ) to denote the eigenspace of

M with eigenvalue κ ∈ k. We will write V =

[
V (0)
V (1)

]
.

In this case, by taking i = 1 and j = 2 in (b) above, we have p1(p12(m2)) = 0,
i.e., p12(M2) ⊆M1(0). Taking i = 2, (b) implies that p2(p21(m1)) = p21(m1). Hence
p21(M1) ⊂M2(1).

Now applying (a) we have p12p21 = 0 and p21p12 = 0. Thus we have the following
diagram

M1(0)
p21

��

M2(0)
p12��

M1(1) p21

�� M2(1)

p12

��

such that any composition of the arrows is zero. Each such diagram, regarded as a
module on a quiver, contains a submodule of the form

M1(0)

��

0��

0 �� M2(1)

��

with the quotient being semisimple. The submodule corresponds to exactly the repre-
sentations of the preprojective algebra of the quiver A2, which is an interesting subject
of study [14]. Bridgeland used representations of the Z/2-graded complexes to con-
struct the whole quantum groups [8]. In particular the category of (R,P )-modules is
not semisimple.

In general an (R,P )-module corresponds to a representation of the quiver Q

(2, 0) �� (1, 0) �� (2, 1)�� (1, 1)�� .

Let kQ be the path algebra of this quiver and I be the ideal generated by all paths of
length at least 2. Then the category of (R,P )-modules is isomorphic to the module
category of the algebra A = kQ/I, which has 4 irreducible modules.

3. The ring of Rota-Baxter operators and Rota-Baxter modules. We
introduce the concept of a ring of Rota-Baxter operators and establish its connection
with Rota-Baxter modules. The structure theorem of this ring will be established in
Section 4.
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3.1. Ring of Rota-Baxter operators. Similar to the ring of differential opera-
tors, we construct the ring of Rota-Baxter operators acting on a Rota-Baxter algebra.
Then the category of Rota-Baxter modules is equivalent to the category of modules
over the ring of Rota-Baxter operators.

Recall that, given k-algebras A and B, the free product k〈A,B〉 of A and B is
the unique k-algebra (up to isomorphism) with k-algebra homomorphisms α : A →
k〈A,B〉 and β : B → k〈A,B〉 satisfying the universal property: for any k-algebra C
and any k-algebra homomorphisms φ : A → C and ψ : B → C, there is a unique
k-algebra homomorphism η : k〈A,B〉 → C such that φ = η ◦α and ψ = η ◦ β. In fact
k〈A,B〉 is the coproduct in the category of associative k-algebras.

Definition 3.1. Let (R,P ) be a Rota-Baxter algebra of weight λ and k[Q] be
the polynomial algebra with variable Q. The ring of Rota-Baxter operators on
(R,P ), denoted by URB(R,P ), is defined to be the quotient

URB(R,P ) = k〈R,k[Q]〉/I,

where I is the two-sided ideal of k〈R,k[Q]〉

I = IR,Q = 〈QrQ− P (r)Q+QP (r) + λQr | r ∈ R〉. (7)

We will simply write URB(R) for URB(R,P ) if P is understood.

See [36, 37] for related constructions and applications to boundary value problems.
We will call an associative algebra A together with a specific element p ∈ A a

pointed associative algebra and denote it by (A, p). A homomorphism between
two pointed associative algebras f : A = (A, p) → (A′, p′) is an associative algebra
homomorphism f : A → A′ such that f(p) = p′. Thus the pair (URB(R,P ), Q) is a
pointed associative algebra.

The definition of URB(R,P ) is translated to the following universal property.

Proposition 3.2. Let σ : R → k〈R,k[Q]〉 → URB(R,P ) be the natural alge-
bra homomorphism. For any pointed associative k-algebra (A, p) and any k-algebra
homomorphism φ : R→ A satisfying

φ(P (r))p = pφ(r)p+ pφ(P (r)) + λpφ(r) for all r ∈ R, (8)

there is a unique pointed associative k-algebra homomorphism η : (URB(R), Q) →
(A, p) such that φ = η ◦ σ.

Proof. Any element p in A together with a k-algebra homomorphism φ : R → A
induces a k-algebra homomorphism k〈R,Q〉 → A sending Q to p. The condition (8)
implies that the ideal IR,Q is in the kernel of this k-algebra homomorphism. Thus this
k-algebra homomorphism induces a unique algebra homomorphism from the quotient
URB(R) to A with the required property.

Because of this universal property, one may call URB(R) the universal enveloping
algebra of the Rota-Baxter algebra (R,P ). However, following the analog of calling the
smash product (or the skew polynomial ring) R#k[d] the ring of differential operators
for a differential algebra (R, d) in Section 2.1.1, we will call URB(R,P ) the ring of
Rota-Baxter operators for (R,P ).

As a consequence of this universal property, the map σ : R→ URB(R) is injective
by taking A = R, p = 0 and φ = IdR. Then we get a k-algebra homomorphism
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η : URB(R)→ R such that IdR = η ◦σ. In particular R = URB(R)/〈Q〉 ∼= R with 〈Q〉
being the ideal generated by Q in URB(R). Thus we can regard R as a subalgebra
of URB(R) and URB(R) = R ⊕ 〈Q〉 as an R-R-bimodule. In the next section we will
describe the two sided ideal 〈Q〉 explicitly.

For a Rota-Baxter module (M,p), the R-module structure on M defines a k-
algebra homomorphism φ : R → Endk(M). The k-linear map p ∈ Endk(M) defines
a k-algebra homomorphism ψ : k[Q] → Endk(M) with ψ(Q) = p. Thus by the
universal property mentioned above, there is a unique k-algebra homomorphism η :
URB(R) → Endk(M), which defines a URB(R)-module structure on M . Conversely,
for any URB(R)-module M , the k-algebra homomorphism η : URB(R) → Endk(M)
restricts to the subalgebra R to give an R-module structure on M . The element
p = η(Q) defines an (R,P )-module structure on M by Eq. (8). If (M,pM ) and
(N, pN ) are (R,P )-modules, an R-module homomorphism f : M → N is an (R,P )-
module homomorphism if and only if f is a URB(R,P )-module homomorphism. Thus
we have

Theorem 3.3. An (R,P )-module structure on an R-module M is exactly a
URB(R)-module structure extending the R-module structure on M . More precisely,
the category of (R,P )-modules is isomorphic to the category of URB(R)-modules.

See Theorem 4.3 for the structure of URB(R). Thus we can identify the category
(R,P )-Mod of (R,P )-modules with the category URB(R)-Mod of URB(R)-modules.
In particular, the category of (R,P )-modules is an abelian category with enough
projective objects.

Example 3.4. We revisit the example at the end of Section 2.2. Let k be any
commutative ring and λ ∈ k, then P = −λ : k → k is a Rota-Baxter operator of
weight λ. Then URB(k, P ) = k[t]/〈t(t+ λ)〉. In fact, URB(k, P ) is the Hecke algebra
of S2 over k with parameter q = λ− 1.

3.2. Categorical properties. We now consider some categorical properties of
Rota-Baxter modules and the ring of Rota-Baxter operators, beginning with proper-
ties of Rota-Baxter modules.

Lemma 3.5.

(a) If (M,p) is an (R,P )-module, then for any k-module V , (V ⊗k M, 1 ⊗ p) is
also an (R,P )-module;

(b) For each fixed k-module V , the assignment

TV : M �→ V ⊗k M for all M ∈ (R,P ) -Mod,

defines an endofunctor of (R,P ) -Mod;
(c) Further the assignment

V �→ TV for all V ∈ k -Mod,

defines a tensor functor k -Mod → End((R,P ) -Mod), where
End((R,P ) -Mod) is the tensor category of all endofunctors F :
(R,P ) -Mod → (R,P ) -Mod with morphisms being natural transforma-
tions;

(d) If V is a unitary k-algebra with unit u : k → V , then the multiplication
m : V ⊗ V → V defines a natural transformation μ : TV ◦ TV → TV which is
associative and, together with the unit η : Tk = Id → TV , makes TV into a
monad on (R,P ) -Mod.
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Proof. Using Theorem 3.3, the lemma follows from the standard argument that,
for any associative k-algebra A, the tensor category k-Mod of k-modules acts on
the category A-Mod of A-modules through the algebra isomorphism A ∼= k ⊗k A.
However, we present a proof using the definition of (R,P )-modules to highlight the
role played by Rota-Baxter operators. In the following ⊗ = ⊗k as usual.

(a) It follows from a simple verification that the standard action of R on V ⊗ M
defined by r(v ⊗ x) = v ⊗ rx satisfies Eq. (2).
(b) For an (R,P )-module homomorphism f : M → M ′ in k -Mod, the map TV (f) :
TV (M)→ TV (M

′) defined by TV (f)(v⊗x) = v⊗ f(x) is a homomorphism of (R,P )-
modules. Thus TV is a functor.

(c) follows since TV⊗V ′ = TV ◦ TV ′ [32, pg. 206, Ex. 2].

(d) Following the standard terminology of a monad [32, Chapter VI], one verifies the
equalities of natural transformations

μ ◦ (TV μ) = μ ◦ (μTV ) : T
3
V → T,

μ ◦ Tη = μ ◦ ηT = idTV
: TV → TV ,

that define a monad on (R,P ) -Mod.

Let f : (R′, P ′)→ (R,P ) be a homomorphism of Rota-Baxter algebras. If (M,p)
is an (R,P )-module, then with the action of R′ on M defined by

r′v := f(r′)v for all r′ ∈ R′, v ∈M,

the (R,P )-module (M,p) becomes an (R′, P ′)-module which we will denote f∗(M,p).
We thus obtain a pullback functor f∗ : (R,P ) -Mod→ (R′, P ′) -Mod of abelian cate-
gories which is exact and faithful. We will see that the functor f∗ admits a left adjoint
functor f! and right adjoint functor f∗ with the help of the ring of Rota-Baxter oper-
ators.

If g : R→ R is a k-algebra automorphism, then (R, g∗(P )) with g∗(P ) = g−1Pg
is a Rota-Baxter algebra and g : (R, g∗(P )) → (R,P )) is an isomorphism of Rota-
Baxter algebras. If (M,p) is an (R,P )-module, then g∗(M) is an R-module as the
pullback of g defined by r · x = g(r)x for all r ∈ R and x ∈M . Then (g∗(M), p) is an
(R, g∗(P ))-module. Thus g∗ is an isomorphism between the categories (R,P ) -Mod
and (R, g∗(P )) -Mod.

Now we turn our attention to the categorical properties of rings of Rota-Baxter
operators.

Proposition 3.6. Let f : (R,PR) → (R′, PR′) be a homomorphism of Rota-
Baxter algebras.

(a) The map

fQ : URB(R)→ URB(R
′), fQ(Q) = Q, fQ(r) = f(r) for all r ∈ R,

is a homomorphism of associative k-algebras. Thus we have a functor URB :
RBAk → Algk.

(b) If f : (R,PR)→ (R′, PR′) is surjective, then so is fQ.

Proof. (a) Let σ′ : R′ → k〈R′,k[Q]〉 → URB(R
′) be the natural algebra homo-

morphism. Then the map R
f→ R′ σ′

→ URB(R
′) satisfies the condition

σ′(f(r))Q = Qσ′(f(r))Q+Qσ′(f(P (r))) + λQσ′(f(r)) for all r ∈ R.
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Then the universal property of URB(R) gives rise to the k-algebra homomorphism
fQ.
(b) If f is surjective, then the induced map F : k〈R,Q〉 → k〈R′, Q〉 and hence its
composition with the quotient map k〈R′, Q〉 → URB(R

′) are surjective. Then the
induced map fQ is also surjective.

Taking the algebra homomorphism fQ : URB(R) → URB(R
′) in Proposition 3.6,

we obtain the pullback functor f∗
Q : URB(R

′) -Mod → URB(R) -Mod. In particular,
when (R,P ) is a Rota-Baxter subalgebra of (R′, P ′), the functor is the restriction
functor. We will simply write f∗ for the functor f∗

Q. This is consistent with the
notation f∗ defined above.

Similarly, the functor f∗ has a left adjoint functor

f! : (R,P ) -Mod→ (R′, P ′) -Mod

defined by f!(M) = URB(R
′) ⊗URB(R) M for M in (R,P ) -Mod, i.e., for any M in

(R′, P ′) -Mod, the pre-composition with the map

M → URB(R
′)⊗URB(R) M,x→ 1⊗ x,

defines an isomorphism of k-modules

Hom(R′,P ′)(f!(M),M) ∼= Hom(R,P )(M, f∗(M)).

There is also a right adjoint functor f∗ : (R,P ) -Mod→ (R′, P ′) -Mod defined by
f∗(M) = HomURB(R)(URB(R

′),M).
In case (R,P ) is a Rota-Baxter subalgebra of (R′, P ′) with f being the em-

bedding, we will call f! the coinduction functor, denote by CoIndR
′

R . The (R′, P )-

module CoIndR
′

R M = URB(R
′) ⊗URB(R) M is called the coinduced module and

IndR
′

R M = HomURB(R)(URB(R
′),M) is called the induced module.

We next discuss some bimodule properties of Rota-Baxter modules.
Let (R,P ) and (S, P ′) be two Rota-Baxter algebras of weights λ and μ respec-

tively. Let M be an R-S-bimodule, i.e., M is a left R-module and right S-module such
that r(ms) = (rm)s for all r ∈ R, m ∈M, s ∈ S. A k-linear map p : M →M is said
to give a strict Rota-Baxter bimodule structure if (M,p) is a left (R,P )-module
and also a right (S, P ′)-module, i.e., for all r ∈ R, m ∈M, s ∈ S

p(m)P ′(s) = p(p(m)s+mP ′(s) + μms), (9)

P (r)p(m) = p(rp(m) + P (r)m+ λrm). (10)

Lemma 3.7. If (M,p) is a strict (R,P )-(S, P ′)-bimodule, then (λ−μ)p(rp(m)s) =
0 for all r ∈ R, m ∈M, s ∈ S. In particular, (λ− μ)p2(m) = 0 for all m ∈M .

This suggests that the interesting case to consider is when λ = μ.

Proof. The identity follows from simplifying the identity (P (r)p(m))P ′(s) =
P (r)(p(m)P ′(s)) by Eqs. (9) and (10).

Since (M,p) is a left (R,P ) -module, it is a left URB(R)-module. Similarly, it is a
right URB(S)-module. If we use Q′ ∈ URB(S) to denote the generator, then we have
two k-algebra homomorphisms URB(R) → Endk(M) and URB(S) → Endk(M) with
both Q and Q′ sent to p.
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Proposition 3.8. (M,p) is an (R,P )-(S, P ′)-bimodule if and only if it is a
URB(R)-URB(S)-bimodule with Qm = mQ′ for m ∈M .

We remark that the definition of a strict bimodule requires that both left and
right module structure share the same operator. In terms of the bimodule for the
rings of Rota-Baxter algebras, this means that the actions of both Q and Q′ on
the module are the same as indicated in the proposition. One could require two
possibly different commuting operators pl, pr : M →M for the left and right module
structures respectively. In this case, we simply say that (M,pl, pr) is a bimodule. This
is a URB(R,PR)-URB(S, PS)-bimodule. For example, URB(R,P ) is a left and right
(R,P )-module with pl and pr simply being the left and right multiplication of the
element Q. As Q needs not be in the center of URB(R,P ), the left multiplication and
right multiplication by Q are two different operators on URB(R,P ). This bimodule
may not be strict.

The following proposition is just a consequence of standard properties of modules
over associative algebras.

Proposition 3.9. Let M be an (R,PR)-(S, PS)-bimodule and let N be a
left (S, PS)-module. Then M ⊗URB(S,PS) N is a left (R,PR)-module and N �→
M ⊗URB(S,PS) N defines a functor (S, PS) -Mod → (R,PR) -Mod. Similarly, if L
is a left (R,PR)-module, then Hom(R,PR)(M,L) is a left (S, P )-module and there is a
natural isomorphism of k-modules

Hom(R,PR)(M ⊗URB(S,PS) N,L) ∼= Hom(S,PS)(N,Hom(R,PR)(M,L)).

We end this section with a followup remark on products of Rota-Baxter modules
in Section 2.4.

Remark 3.10. Let (R1, P1) and (R2, P2) be two Rota-Baxter algebras of
weight λ. In Section 2.4, we constructed the product Rota-Baxter algebra (R,P ) =
(R1 ⊕ R2, P1 ⊕ P2). For i = 1 or 2, the projection map πi : R → Ri, i = 1, 2, is a
homomorphism of Rota-Baxter algebras and thus induces a homomorphism of associa-
tive algebras URB(πi) : URB(R,P )→ URB(Ri, Pi). Hence we have a homomorphism
π : URB(R,P ) → URB(R1, P1) × URB(R2, P2). If we use Qi to denote the variable
Q in URB(Ri, Pi), then π(Q) = (Q1, Q2) ∈ URB(R1, P1)× URB(R2, P2). This homo-
morphism is not an isomorphism as we have seen in terms of representation theory in
Section 2.4. It is not obvious from the definition that π is surjective. We will see in
Remark 4.12 that π is surjective and the kernel will be explicitly constructed.

4. Construction of the ring of Rota-Baxter operators. By Theorem 3.3,
the study of Rota-Baxter modules is reduced to the study of modules over URB(R),
the ring of Rota-Baxter operators. Thus it is necessary to get precise information on
the algebra URB(R). So in this section we provide a general construction of URB(R)
and then consider some special cases.

4.1. The general construction. We first realize the ring URB(R) of Rota-
Baxter operators on a Rota-Baxter algebra (R,P ) as a R-bimodule. Recall that
P̃ = −λIR − P . We note that the relation in Eq. (7):

QfQ− P (f)Q+QP (f) + λQf = 0

can be regarded as the rewriting rule in the context of rewriting systems [3]

QfQ �→ P (f)Q−QP (f)− λQf = P (f)Q+QP̃ (f)
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that replaces a monomial with multiple Q-factors by a linear combination of mono-
mials with fewer Q-factors. Iterations of this process lead to a linear combination of
monomials with only one Q-factor.3 We thus have the following result.

Lemma 4.1. Let 〈Q〉 denote the two-sided ideal generated by Q in URB(R). We
have 〈Q〉 = RQR ⊆ URB(R).

We next determine the multiplication on RQR, characterized by the following
lemma.

Lemma 4.2. Let (R,P ) be a Rota-Baxter algebra. Define a multiplication · on
R⊗R by

(r1 ⊗ s1) · (r2 ⊗ s2) : = r1P (s1r2)⊗ s2 + r1 ⊗ P̃ (s1r2)s2. (11)

Then · defines a nonunitary associative algebra structure on R⊗R.

Proof. To check the associativity, applying the easily verified identity P (r)P (s)+
P (P̃ (r)s) = P (rP (s)), we have

((r1 ⊗ s1) · (r2 ⊗ s2)) · (r3 ⊗ s3)

= (r1P (s1r2)⊗ s2 + r1 ⊗ P̃ (s1r2)s2) · (r3 ⊗ s3)

= r1P (s1r2)P (s2r3)⊗ s3 + r1P (s1r2)⊗ P̃ (s2r3)s3

+r1P (P̃ (s1r2)s2r3))⊗ s3 + r1 ⊗ P̃ (P̃ (s1r2)s2r3)s3

= r1P (s1r2P (s2r3))⊗ s3 + r1P (s1r2)⊗ P̃ (s2r3)s3 + r1 ⊗ P̃ (P̃ (s1r2)s2r3)s3.

This agrees with (r1 ⊗ s1) · ((r2 ⊗ s2) · (r3 ⊗ s3)) by similarly applying the identity
P̃ (r)P̃ (s) + P̃ (rP (s)) = P̃ (P̃ (r)s).

Let α : R ⊗ R → R ⊗ R be defined by (s1 ⊗ r2) �→ P (s1r2) ⊗ 1 + 1 ⊗ P̃ (s1r2).
Then Lemma 4.2 shows that the diagram

R⊗ (R⊗R)⊗R

=

��

IR⊗α⊗IR �� R⊗R⊗R⊗R

m⊗m

��
(R⊗R)⊗ (R⊗R)

· �� R⊗R

commutes. Thus the new multiplication · is an R-R-bimodule homomorphism with
the standard R-R-module structure on R ⊗ R. This property, together with the
balance relation (tr) · t′ = t · (rt′), implies that the associative multiplication · extends
to an associative ring structure on R⊕ (R⊗R).

Theorem 4.3. Let (R,P ) be a Rota-Baxter algebra of weight λ. Then we have
an algebra isomorphism

URB(R) ∼= R⊕ (R⊗R).

Proof. Let S = R ⊕ R ⊗ R denote the k-algebra obtained before the theorem
whose multiplication is still denoted by ·. We note that S is generated by R and

3This rewriting system is also confluent and thus leads to the module structure of URB(R). We
follow a direct approach in order to give the algebra structure.
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1 ⊗ 1 as an R-R-bimodule. In particular, S is generated by R and 1 ⊗ 1 as a k-
algebra. There are the natural embedding of R→ S and the algebra homomorphism
k[Q] → S given by Q �→ 1 ⊗ 1. Thus by the definition of free products, there is a
unique algebra surjection k〈R,k[Q]〉 → S. Furthermore, for any r ∈ R, we have in S

(1⊗1) ·r ·(1⊗1) = (1⊗r) ·(1⊗1) = P (r)⊗1+1⊗ P̃ (r) = P (r) ·(1⊗1)+(1⊗1) · P̃ (r).

Thus by Proposition 3.2 we get a unique algebra homomorphism

η : URB(R)→ S (12)

such that η(〈Q〉) ⊂ R⊗R which then induces a surjective R-R-bimodule map RQR =
〈Q〉 → R⊗R. Since R⊗R is a free R⊗kR

op-module of rank 1 and RQR is generated by
Q as an R⊗Rop-module, the R-R-bimodule map χ : R⊗R→ RQR with 1⊗1 �→ Q is
the inverse of η as an R-R-bimodule map. Hence η is an isomorphism of k-algebras.

Here are some direct consequences of Theorem 4.3.

Corollary 4.4. Let f : (R,P ) → (R′, P ′) be a homomorphism of Rota-Baxter

algebras. The induced map R ⊗ R
f⊗f→ R′ ⊗ R′ together with f : R → R′ defines the

induced algebra homomorphism f̃ : URB(R)→ URB(R
′).

If f is surjective, then so is f̃ . If f is injective, then so is the induced map f̃
provided that R and R′ are flat k-modules.

Corollary 4.5. The projection map R ⊕ (R ⊗ R) → R is a homomorphism
of k-algebras. Thus R -Mod is a full subcategory of (R,P ) -Mod containing those
(R,P )-modules (M,p) with p = 0.

Let (R,P ) be a Rota-Baxter algebra of weight λ. Let Ro be the opposite k-
algebra with multiplication roso := sr. Then (Ro, P o) is also a Rota-Baxter algebra
of weight λ with P o = P as k-linear map on Ro = R as k-vector space. In particular,
(R̃o, P̃ o) = (R̃o, P̃ o). Let URB(R

o) be the ring of Rota-Baxter operators of (Ro, P o).
Then the map

URB(R) = R⊕ (R⊗R)→ Ro ⊕ (Ro ⊗Ro) = URB(R
o, P̃ o)

defined by r �→ ro and r ⊗ s �→ so ⊗ ro is an anti-isomorphism of k-algebras. Indeed,
we can readily check

(r1 ⊗ s1) · (r2 ⊗ s2) �→ (so2 ⊗ ro2) · (so1 ⊗ ro1)

r1P (s1r2)⊗ s2 + r1 ⊗ P̃ (s1r2) �→ so2 ⊗ P (s1r2)
oro1 + so2P̃ (s1r2)

o ⊗ ro1

using s1r2 = ro2s
o
1. Thus we obtain

Proposition 4.6. For any Rota-Baxter algebra (R,P ), the twist map T : R ⊗
R→ R⊗R, with T (r1⊗r2) = r2⊗r1, induces an algebra isomorphism URB(R,P )o ∼=
URB(R

o, P̃ o). In particular, if R is a commutative k-algebra, then URB(R, P̃ ) ∼=
URB(R,P )o.

Corollary 4.7. The category Mod-(R,P ) of right (R,P )-modules is isomorphic
to the category (Ro, P̃ o)-Mod of left (Ro, P̃ o)-modules under the standard isomorphism
Mod-R −→ Ro-Mod together with sending p to −λ − p for any right (R,P )-module
(M,p).
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4.2. Special cases and examples. The results of the last subsection work for
any Rota-Baxter algebra. We now consider some special cases.

First as direct consequences of Theorem 4.3, we display

Corollary 4.8. If (R,P ) is a Rota-Baxter algebra over k which is free over
k with a basis {xi}i∈I . Then URB(R) is also k-free with a basis {xi}i∈I ∪̇{xi ⊗
xj}(i,j)∈I×I . In particular if R is finite dimensional, then URB(R) has dimension
(dimk R)(dimk R+ 1).

Corollary 4.9. If k is a field and (R,P ) is a Rota-Baxter subalgebra of (R′, P ′),
then URB(R) is a subalgebra of URB(R

′).

Corollary 4.10. If R is a free module over k, then URB(R) is free as left and
right R-module.

The Poincaré-Birkhoff-Witt theorem for universal enveloping algebra of a Lie
algebra implies that the universal enveloping algebra does not have zero divisors. As
illustrated below, even if R is an integral domain, URB(R,P ) may have zero divisors.
The correct analogy of URB(R,P ) should be the restricted enveloping algebra for a
restricted Lie algebra over a field of characteristic p. They are algebras with operators.

Let (R,P ) be a Rota-Baxter algebra with P = 0. Then QrQ = −λQr for all
r ∈ R. Thus (r1 ⊗ s1) · (r2 ⊗ s2) = −λr1 ⊗ s1r2s2. In particular, when λ = 0 we have
URB(R) = R[t]/〈t2〉. On the other hand, if P = −λIR is a scalar linear map then
P̃ = 0. Thus (r1 ⊗ s1) · (r2 ⊗ s2) = −λr1s1r2 ⊗ s2.

We next consider some special Rota-Baxter algebras.
Note that any algebra R can be realized as a Rota-Baxter algebra by taking its

Rota-Baxter operator to be the identity operator, a Rota-Baxter operator of weight
−1. In this case, Eq. (11) and its degenerated forms become

(r1⊗s1) ·(r2⊗s2) = r1s1r2⊗s2, r1 ·(r2⊗s2) = r1r2⊗s2, (r1⊗s1) ·s2 = r1⊗s1s2.

In general, for any u1, · · · , uk ∈ R ⊕ (R ⊗ R), with either ui ∈ R or ui ∈ R ⊗ R
being pure tensors, we have u1 · . . . · uk = w1 ⊗w2 where w1 ∈ R is the product of all
factors from R in u1, · · · , uk that appear before the last tensor symbol ⊗ while w2 is
the product of the factors from R after the last tensor symbol ⊗, unless all ui ∈ R
and there is no ⊗ appear. For example,

(r1 ⊗ s1) · r2 · (r3 ⊗ s3) · (r4 ⊗ s4) · s5 · s6 = r1s1r2r3s3r4 ⊗ s4s5s6.

It follows that, for any s1, s2 ∈ R, there is (1⊗ r − r ⊗ 1) · (s1 ⊗ s2) = 0 even though
r ⊗ 1 	= 1 ⊗ r in R if r 	∈ k. Thus URB(R) has zero divisors even if R is an integral
domain.

We next consider the case of divided power Rota-Baxter algebra, given by (R,P )
where

R = ⊕k≥0kuk, umun =

(
m+n

m

)
um+n,m, n ≥ 0,

and P (uk) = uk+1. This is a Rota-Baxter algebra of weight zero, in fact the free
Rota-Baxter algebra of weight zero on the empty set [20]. Then Eq. (11) becomes

(um1 ⊗ un1) · (um2 ⊗ un2) =

(
m1+n1+m2

m1,n1,m2

)
um1+n1+m2 ⊗ un2 (13)
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um1 ·(um2 ⊗un2) =

(
m1+m2

m1

)
um1+m2 ⊗un2 , (um1 ⊗un1) ·un2 =

(
n1+n2

n1

)
um1 ⊗un1+n2 .

Thus the k-algebra URB(R,P ) has basis {ui, uj ⊗ ul | i, j, l ≥ 0} with the above
defined multiplication.

We finally consider the case of the Rota-Baxter algebra of Laurent series with the
projection to the pole part. By a similar computation, we obtain

Proposition 4.11. Let R = k((t)) = k[[t]] ⊕ t−1k[t−1] be the ring of Laurent
series with the Rota-Baxter operator being the projection to the pole part. Then in
the construction of URB(R) in Theorem 4.3, namely URB(R) = R ⊕ (R ⊗k R), the
product is given by

(ti ⊗ tj) · (tk ⊗ t�) =

{
ti+j+k ⊗ t�, j + k < 0,
ti ⊗ tj+k+�, j + k ≥ 0.

More generally, for a =
∑

i≥N ait
i, b =

∑
j≥N bjt

j , c =
∑

k≥N ckt
k and d =∑

�≥N d�t
� in k((t)), we have

(a⊗ b) · (c⊗ d) = (a
∑

j,k≥N,j+k<0

bjckt
j+k)⊗ d+ a⊗ (

∑
j,k≥N,j+k≥0

bjckt
j+kd).

We again revisit the product Rota-Baxter algebras considered in Section 2.4 and
Remark 3.10.

Remark 4.12. Let (R1, P1) and (R2, P2) be two Rota-Baxter algebras of the
same weight λ and (R,P ) := (R1 ⊕R2, P1 ⊕ P2) be the product Rota-Baxter algebra
constructed in Section 2.4. Consider the homomorphism

π : URB(R,P )→ URB(R1, P1)× URB(R2, P2)

defined in Remark 3.10. Noting that R = R1 ⊕R2 as a k-module. Theorem 4.3 gives
the k-module decomposition

R⊕ (R⊗R) =
(
R1 ⊕ (R1 ⊗R1)

)
⊕
(
R2 ⊕ (R2 ⊗R2)

)
⊕
(
(R1 ⊗R2)⊕ (R2 ⊗R1)

)
.

The map π restricted to the subspace
(
R1 ⊕ (R1 ⊗ R1)

)
⊕

(
R2 ⊕ (R2 ⊗ R2)

)
defines

a k-linear isomorphism(
R1 ⊕ (R1 ⊗R1)

)
⊕
(
R2 ⊕ (R2 ⊗R2)

) π−→ URB(R1, P1)× URB(R2, P2).

Thus π is onto with kernel (R1 ⊗ R2) ⊕ (R2 ⊗ R1). The category of URB(R1, P1) ×
URB(R2, P2)-modules is URB(R1, P1) -Mod×URB(R2, P2) -Mod, which is a full sub-
category of URB(R,P ) -Mod consisting of all modules on which (R1⊗R2)⊕ (R2⊗R1)
acts as zero. They are exactly those modules with p12 = 0 = p21 as described in
Section 2.4.

5. Endomorphism Rota-Baxter algebras. After a general study of repre-
sentations of Rota-Baxter algebras, we now turn to the matrix representations which
motivated our study.

Let (A,Q) be a commutative Rota-Baxter algebra (of weight λ). For any positive
integer n, we obtain an operator Q on the algebra of n× n matrices Mn(A) on A by
defining Q entry-wise:

Q([aij ]) = [Q(aij)] .
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It is easy to check [16, 17] that Q is a Rota-Baxter operator of weight λ. Such a
Rota-Baxter algebra is called a matrix Rota-Baxter algebra.

Let (R,P ) be a Rota-Baxter algebra (of weight λ). A matrix representation
with coefficients in A of (R,P ) is a homomorphism

f : (R,P )→ (Mn(A),Q)

of Rota-Baxter algebras, first appearing in renormalization of quantum field the-
ory [16, 17]. We give a general discussion in this section and give an algebraic Birkhoff
factorization for Rota-Baxter modules.

5.1. Homomorphism Rota-Baxter algebras from coalgebras. Let (A,Q)
be a Rota-Baxter algebra. Let Mm,n(A) be the set of all m× n matrices with entries
in A. It is naturally an Mm(A)-Mn(A)-bimodule.

We define Qm,n : Mm,n(A) → Mm,n(A) by Qm,n(rij) = (Q(rij)), which is a
k-linear map.

Lemma 5.1. Let (A,Q) be a Rota-Baxter algebra. For any positive integers
�,m, n, and X ∈M�,m(A) and Y ∈Mm,n(A), we have

Q�,m(X)Qm,n(Y ) = Q�,n(Q�,m(X)Y +XQm,n(Y ) + λXY ). (14)

Proof. Considering the (i, j)-entry of the left hand side matrix, we have

m∑
l=1

Q(xil)Q(ylj) =

m∑
l=1

Q(Q(xil)ylj + xilQ(ylj) + λxilylj)

=
m∑
l=1

Q(Q(xil)ylj) +

m∑
l=1

Q(xilQ(ylj)) +

m∑
l=1

λQ(xilylj)

which is exactly the (i, j)-entry of the matrix on the right hand side of the equation.

Taking � = m = n, one recovers the fact that (Mn(A),Qn,n) is a Rota-Baxter
algebra. Furthermore (Mm,n(A),Qm,n) is a strict (Mm,Qm,m)-(Mn,Qn,n)-bimodule
in the sense of Eq. (9)-(10). More precisely, Mm,n(A) is a left Mm(A)-module, a right
Mn(A)-module and the operator Qm,n is compatible with the operators Qm,m and
Qn,n using Eq. (14).

The above construction works more generally in the context of coalgebras [41].
Take a coalgebra H over k with comultiplication Δ : H → H ⊗ H and co-unit
ε : H → k. We recall that a right comodule of H is a k-module M together with a
linear map

δ : M →M ⊗H

such that

(δ ⊗ 1) ◦ δ = (1⊗Δ) ◦ δ.

If a k-submoduleM ofH is a right coideal ofH in the sense that Δ(M) ⊆M⊗H, then
M is a right comodule ofH. This is the case considered in physics applications [16, 17].
Then the quotient k-module H/M is also a right H-comodule.
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For any associative k-algebra A, the set H(A) := Homk(H,A) is an associative
algebra with the convolution product (f1 ∗ f2) defined by

(f1 ∗ f2)(h) =
∑
(h)

f1(h(1))f2(h(2)) for all f1, f2 ∈ Homk(H,A),

using Sweedler’s notation of Δ(h) =
∑

(h) h(1) ⊗ h(2). In particular, when H is a

bialgebra, then the subset Homk-Alg(H,A) is closed under ∗ and becomes a semigroup.
If A is a Rota-Baxter algebra with Rota-Baxter operator Q, then Homk(H,A), with
the operator P defined by

P (f) = Q ◦ f for all f ∈ Homk(H,A),

is also a Rota-Baxter algebra [18].
We now consider M ⊗ A as a right A-module and EndA(M ⊗ A) as the en-

domorphism algebra of the right A-module. For f ∈ Homk(H,A), define φ(f) ∈
EndA(M ⊗A) by

φ(f)(m⊗ a) =
∑
(m)

m(0) ⊗ f(m(1))a, (15)

where a ∈ A and m ∈M and δ(m) =
∑

(m) m(0) ⊗m(1). Then the map

φ : Homk(H,A)→ EndA(M ⊗A), f �→ φ(f) for all f ∈ Homk(H,A), (16)

is a k-algebra homomorphism: φ(f ∗ g) = φ(g) ◦ φ(f), making M ⊗ A into a right
module for the algebra Homk(H,A).

When (A,Q) is a Rota-Baxter algebra, we define an A-linear operator Q on
Endk(M ⊗A) by

Q(g)(m⊗ a) = (1⊗Q)(g(m⊗ 1))a for all g ∈ Endk(M ⊗A),m ∈M,a ∈ A.

Then the pair (EndA(M ⊗ A),Q) is a Rota-Baxter algebra of weight λ. In fact, for
g1, g2 ∈ EndA(M ⊗A) and m ∈M , denote

g2(m⊗ 1) =
∑
i

mi ⊗ ai, g1(mi ⊗ 1) =
∑
j

mij ⊗ aji.

Then we have

(g1 ◦ g2)(m⊗ 1) =
∑
i,j

mij ⊗ ajiai, Q(g2)(m⊗ 1) =
∑
i

mi ⊗Q(ai),

Q(g1)(mi ⊗ 1) =
∑
j

mij ⊗Q(aji), (Q(g1 ◦ g2))(m⊗ 1) =
∑
i,j

mij ⊗Q(ajiai).

Using these expressions one verifies

(Q(g1) ◦ Q(g2))(m⊗ 1) =
∑
i,j

mij ⊗Q(aji)Q(ai)

=
∑
i,j

mij ⊗Q(ajiQ(ai) +Q(aji)ai + λajiai)

= Q(g1 ◦ Q(g2) +Q(g1) ◦ g2 + λg1 ◦ g2)(m⊗ 1).
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Thus we are led to the following result.

Theorem 5.2. Fix a Rota-Baxter algebra (A,Q) of weight λ, a coalgebra H, and
a right H-comodule M .

(a) The pairs (Homk(H,A), P ) and (EndA(M⊗A),Q) are Rota-Baxter algebras;

(b) The algebra homomorphism φ : Homk(H,A) → EndA(M ⊗ A) defined in
Eq. (15) is a homomorphism of Rota-Baxter algebras;

(c) Equipped with the k-linear operator p : M⊗A→M⊗A defined by p(m⊗a) =
m⊗Q(a), the pair (M ⊗A, p) becomes a (EndA(M ⊗A),Q)-module.

Proof. (a) has been proved before the theorem.

(b) For f ∈ Homk(H,A) and m⊗ a ∈M ⊗A, we have

φ(P (f))(m⊗ a) =
∑
(m)

m(0) ⊗ P (f)(m(1))a =
∑
(m)

m(0) ⊗Qf(m(1))a

and

Q(φ(f))(m⊗ a) = (1⊗Q)(φ(f)(m⊗ 1))a

= (1⊗Q)
(∑

(m)

m(0) ⊗ f(m(1))
)
a

=
∑
(m)

m(0) ⊗Qf(m(1))a.

Hence φ(P (f)) = Q(φ(f)), as needed.
(c) Denote g(m⊗ 1) =

∑
i mi ⊗ ai. We have

Q(g)p(m⊗ a) = Q(g)(m⊗Q(a))

= (1⊗Q)(g(m⊗ 1))Q(a)

= (1⊗Q)
(∑

i

mi ⊗ ai

)
Q(a)

=
∑
i

mi ⊗Q(ai)Q(a) =
∑
i

mi ⊗
(
Q(aiQ(a) +Q(ai)a+ λaia

)

= (1⊗Q)
((∑

i

mi ⊗ ai

)
Q(a) + (1⊗Q)

(∑
i

mi ⊗ ai

)
a

+λ
(∑

i

mi ⊗ ai

)
a
)

= p
(
gp(m⊗ a) +Q(g)(m⊗ a) + λg(m⊗ a)

)
,

as needed.

We now make connection with the matrix representation of Rota-Baxter algebras
in [16, 17].

Consider the bialgebra H = Mn(k) with the standard matrix basis Eij and the
comultiplication Δ(Eij) =

∑
l Eil ⊗ Elj . Then the Rota-Baxter algebra structure on

Mn(A) = Homk(Mn(k), A) is the same as the one defined in Theorem 5.2. If we con-
sider the standard right Mn(k)-comodule M = kn with standard basis {E1, · · · , En}
and δ(Ei) =

∑n
l=1 El⊗Eli, then kn⊗A = An is the right free A-module identified with
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Mn,1(A) as a left Mn(A)-module. Thus a matrix representation of (R,P ) over (A,Q)
can be interpreted as a Rota-Baxter algebra homomorphism (R,P )→ (Mn(A),Q).

There are also other types of matrix Rota-Baxter algebras. Let I> = k-
Span{Eij | i > j}, then I> is a coideal of Mn(k) and its quotient Mu

n (k) := Mn(k)/I>
is the upper-triangulate matrices. Then Mu

n (A) is the Rota-Baxter subalgebra
of Mn(A). One can define many other subalgebras of Mn(A) in a similar way.
We will describe the representation of these algebras. In particular, the counit
ε : H → k is a homomorphism of coalgebras and thus defines a homomorphism
ε∗ : A = Homk(k, A)→ Homk(H,A) of Rota-Baxter algebras. Here ε∗(a)(h) = ε(h)a
for all h ∈ H and a ∈ A.

In general, letM be anH-comodule which is a free k-module with a basisX. Then
the right A-module M ⊗A is a free A-module with the same basis X. Fixing a linear
order on X, then from φ defined in Eq. (16) we obtain a k-algebra homomorphism

f : Homk(H,A)→ EndA(M ⊗A) = M c
|X|×|X|(A),

where M c
|X|×|X|(A) denotes the matrices with finitely many nonzero entries in each

column, giving rise to a matrix representation of H(A) mentioned at the beginning
of this section.

We summarize the above discussion as follows.

Proposition 5.3. Let (A,Q) be a Rota-Baxter commutative algebra of weight λ,
let H be a coalgebra and let M be a right H-comodule. If M is a free k-module with
basis X, then there is a matrix representation

f : Homk(H,A)→M c
|X|×|X|(A)

induced from the algebra homomorphism φ in Theorem 5.2.

Fixing a linear order on X, we define Mu
|X|×|X|(A) as the subalgebra of

M c
|X|×|X|(A) consisting |X| × |X|-upper triangular matrices with entries in A. It still

carries a Rota-Baxter operator acting on a matrix entrywise, giving rise to a matrix
Rota-Baxter algebra. If the H-comodule structure δ : M →M ⊗H has the property
δ(x) =

∑
x′ x′⊗mx′,x withmx′,x = 0 unless x′ ≤ x, then we have imφ ⊆Mu

|X|×|X|(A).

Such representations have appeared in QFT renormalization [16, 17] as alluded to
above.

The definition of φ in Eq. (16) can also be extended to A-modules. Let (V, pV ) be a
left (A,Q)-module and M a right H-comodule. We now define a Homk(H,A)-module
structure on M ⊗ V by

f(m⊗ v) =
∑
m

m(0) ⊗k f(m(1))v for all f ∈ Homk(H,A),m ∈M, v ∈ V. (17)

With the k-linear map 1M ⊗k pV : M ⊗ V → M ⊗ V , we obtain a Rota-Baxter
module for H(A) = Homk(H,A). Let H-Comod denote the category of all right
H-comodules.

Proposition 5.4. The assignment (M, (V, pV )) �→ (M ⊗ V, 1 ⊗ pV ) defines a
bifunctor

H-Comod× (A,Q) -Mod→ (H(A), P ) -Mod .
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If H is a Hopf algebra, then the category H -Comod is a tensor category. If we
take H = k, then H(A) = A. In this case the bifunctor is the same as those described
in Lemma 3.5.

As a natural question, if M is a simple H-comodule and V is a simple (A,Q)-
module, will M ⊗ V be a simple H(A)-module? Further properties of this functor
should be studied relating the categories (A,Q) -Mod and (H(A), P ) -Mod.

We also remark that the H-comodule structure M → M ⊗ H plays the role of
vector bundles with connections, with H being in the coalgebra of differential forms
and the algebra H(A) plays the role of the algebra of differential operators.

5.2. Bifunctors and schemes from Rota-Baxter algebras. In this sub-
section we briefly discuss the bifunctor and group schemes on the Hom functor
H(A) := Homk(H,A) with the additional structure of a Rota-Baxter structure on
either the domain algebra A or the codomain coalgebra H.

5.2.1. Rota-Baxter structure on the codomain. When the algebra A is
equipped with a Rota-Baxter operator Q, we obtain a Rota-Baxter operator on H(A)
by P (f) = Q ◦ f for all f ∈ H(A). If ρ : H → H ′ is a homomorphism of coalgebras,
then the map ρ∗ : Homk(H

′, A)→ Homk(H,A) defined by ρ∗(f) = f ◦ρ is a k-algebra
homomorphism and

P (ρ∗(f)) = Q ◦ (ρ∗(f)) = Q ◦ f ◦ ρ = ρ∗(Q ◦ f) = ρ∗(P (f)).

Thus ρ∗ is a homomorphism of Rota-Baxter algebras. In particular, let I be a coideal
of H and ρ : H → H/I be the quotient homomorphism of coalgebras. Then ρ∗ :
(H/I)(A)→ H(A) is an embedding of Rota-Baxter algebras.

On the other hand, if τ : (A,Q) → (A′, Q′) is a homomorphism of Rota-Baxter
algebras, then for each coalgebra H, the map H(τ) : H(A) → H(A′) defined by
f �→ τ ◦ f is also a homomorphism of Rota-Baxter algebras.

If we use RBAk to denote the category of all Rota-Baxter k-algebras as above and
Coalgk to denote the category of k-coalgebras, then each Rota-Baxter algebra (A,Q)
defines a functor Coalgk → End(RBAk), by H �→ H(A), and each homomorphism
τ : (A,Q)→ (A′, Q′) defines a natural transformation H(A) �→ H(A′). Thus we have
a bifunctor

Coalgk×RBAk → RBAk, (H,A) �→ Homk(H,A)

which is contravariant in the first entry, giving rise to a functor

Coalgopk → End(RBAk), H �→ H(?). (18)

Given two coalgebras H and H ′, since the tensor product coalgebra H ⊗k H ′ is
defined by setting

ΔH⊗H′ = (1⊗ T23 ⊗ 1) ◦ (ΔH ⊗ΔH′),

we have (H ⊗H ′)(A) = H(H ′(A)) by using the adjoint property

Homk(H ⊗H ′, A) = Homk(H,Homk(H
′, A))

of k-modules. In particular, using the isomorphism of coalgebras H⊗kH
′ ∼= H ′⊗kH,

we have H(H ′(A)) ∼= H ′(H(A)).
If H is in addition a bialgebra with multiplication m : H ⊗ H → H, then the

functor TH := Homk(H,−) : RBAk → RBAk is a comonad with m∗ : TH → TH ◦ TH
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and the counit u∗ : TH → Id = Tk defined by the identity u : k → H. This follows
from a similar argument as the monad case in Lemma 3.5.(d). Applying [32], we now
summarize the above construction as follows.

Theorem 5.5. The functor in Eq. (18) is a tensor functor. In particular, monoid
objects in Coalgk corresponds to monads on RBAk.

5.2.2. Rota-Baxter structure on the domain. We next consider the case
when the coalgebra H is equipped with a Rota-Baxter structure and make connection
with affine schemes.

Similar to schemes corresponding to an algebraic k-variety, which is a set functor
k-CAlg → Set. Here k-CAlg is the category of commutative k-algebras. An affine
k-scheme is a representable functor Homk−CAlg(H, ?) with H in k-Coalg. An affine
group scheme is a representable functor Homk−CAlg(H, ?) with H being a commuta-
tive Hopf algebra with the group multiplication being the convolution product.

We now define an affine Rota-Baxter scheme as a functor X : k -Alg → RBAk

defined by

A �→ Homk(H,A)

with H being a fixed Rota-Baxter coalgebra in the sense of [27, 31]. So H is a
coalgebra together with a linear map σ : H → H satisfying the linear dual of the
Rota-Baxter axiom in Eq. (1):

H

1H
��

σ �� H
Δ �� H ⊗H

σ⊗1+1⊗σ+λ1⊗1

��
H

Δ �� H ⊗H
σ⊗σ �� H ⊗H

(19)

As in the above references, we have

Proposition 5.6. Let H be a Rota-Baxter coalgebra. Then for any k-algebra A,
R = Homk(H,A) is an associative algebra with 1 and an operator P : R→ R defined
by P (f) = f ◦ σ such that (R,P ) is a Rota-Baxter algebra of weight λ. In particular
the assignment A �→ (Homk(H,A), P ) is a covariant functor.

Following the philosophy of Grothendieck (see [15] and [25]) one can define more
general Rota-Baxter functors X : k -Alg→ RBAk as an k-algebra functor X together
with a k-linear natural transformation P : X → X . Given a Rota-Baxter k-functor
X , an X -module is a functor M : k -Alg → k -Mod such that for each A ∈ k -Alg,
M(A) is a right A-module and a left X (A)-module with a pA :M(A)→M(A) which
is A-linear (as a right A-module) and such that (M(A), pA) is an (X (A), PA)-module.

For example, let M be an H-comodule and also a Rota-Baxter comodule in the
sense that there is a k-linear map ρ : M →M making the following diagram commute

M
δ ��

δ

��

M ⊗H

ρ⊗1+1⊗σ+λ1⊗1

��
M ⊗H

ρ⊗σ
�� M ⊗H.

(20)

For such a pair (M,ρ), we defineM(A) = M⊗kA. ThenM(A) is a left Homk(H,A)-
module by

f • (m⊗ a) := (1M ⊗mA) ◦ (1M ⊗ f ⊗ 1A) ◦ (δ(m)⊗ a)
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which commutes with the right A-module structure. Further pA := ρ⊗1A : M ⊗A→
M ⊗A is a homomorphism of right A-modules.

For each f ∈ Homk(H,A),

P (f) • p(m⊗ a) = (1M ⊗mA) ◦ (1M ⊗ f ⊗ 1A) ◦ (δ ⊗ 1A)(m⊗ a)

= (1M ⊗mA) ◦ [1M ⊗ f) ◦ [((ρ⊗ 1 + 1⊗ σ + λ1M ⊗ 1H)) ◦ δ(m))⊗ a]

= p
(
P (f) • (m⊗ a) + f • p(m⊗ a) + λf • (m⊗ a)

)
.

Hence (M ⊗A, p) is a Rota-Baxter module for (Homk(H,A), P ).
This is parallel to the representation theory of group schemes, suggesting further

exploration on the representation theory of Rota-Baxter algebra schemes.

5.3. Algebraic Birkhoff factorization for Rota-Baxter representations.
The algebraic Birkhoff factorization lies at the heart of the algebraic approach of
Connes and Kreimer to renormalization of perturbative quantum field theory and its
many applications in mathematics and physics [11, 13, 19, 23].

We first recall the general setup of Algebraic Birkhoff Factorization [11, 18, 19].
For any Rota-Baxter algebra (A,Q), the k-submodule A− := k + Q(A) is a sub-
algebra of A and Q(A−) ⊆ A−. Thus (A−, Q) is a Rota Baxter subalgebra of
(A,Q). Similarly, A+ := k + Q̃(A) is a Rota-Baxter subalgebra of (A, Q̃). Then
for any coalgebra H, H(A−) is a Rota-Baxter subalgebra of H(A). If H is a
Hopf algebra, the subset Homk−Alg(H,A) is closed under the convolution prod-
uct ∗ and Homk−Alg(H,A−) ⊆ Homk−Alg(H,A) is a sub-semigroup. Similarly,
Homk−Alg(H,A+) ⊆ Homk−Alg(H,A) is a sub-semigroup.

Recall that a connected graded Hopf algebra [11, 20] is a Hopf algebra H with
grading H = ⊕n≥0Hn that is compatible with the multiplication and comultiplica-
tion of H and such that H0 = k. Then we have the following algebraic Birkhoff
factorization [11].

Theorem 5.7. Let H = ⊕n≥0Hn be a connected graded Hopf algebra and (A,Q)
be a commutative Rota-Baxter algebra of weight −1 and Q2 = Q. Then there is a map
Homk -Alg(H,A)→ Homk -Alg(H,A−), denoted by ϕ �→ ϕ− such that ϕ+ := ϕ− ∗ ϕ is
in Homk -Alg(H,A+).

The following consequence shows that the algebraic Birkhoff factorization is func-
torial in Rota-Baxter algebras.

Lemma 5.8. If f : (A,QA) → (A′, QA′) is a homomorphism of commutative
Rota-Baxter algebras with Q2

A = QA and Q2
A′ = QA′ , then for any connected graded

Hopf algebra H, the map f∗ : Homk(H,A) → Homk(H,A′) defined by f∗(ϕ) = f ◦ ϕ
has the following properties.

(a) f∗(Homk -Alg(H,A)) ⊆ Homk -Alg(H,A′);
(b) For any ϕ ∈ Homk -Alg(H,A), f∗(ϕ−) = (f∗(ϕ))− and f∗(ϕ+) = (f∗(ϕ))+.

We now consider an algebraic Birkhoff factorization for Rota-Baxter modules. For
a Rota-Baxter (A,Q)-module (V, pV ), the k-module Homk(H,V ) is an A-H-bimodule
with

(aψh)(x) := a(ψ(hx)) for all a ∈ A, h ∈ H,x ∈ H,ψ ∈ Homk(H,V ).

Then Homk(H,A) acts on Homk(H,V ) by

(ϕ ∗ ψ)(h) =
∑
(h)

ϕ(h(1))ψ(h(2)) (21)
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for h ∈ H and Δ(h) =
∑

h h(1) ⊗ h(2). With the linear operator

p′ : Homk(H,V ) −→ Homk(H,V ), p′(ψ) := pV ◦ ψ for all φ ∈ Homk(H,V ),

the pair (Homk(H,V ), p′) is a Rota-Baxter module for the Rota-Baxter algebra
Homk(H,A).

Fix a k-algebra homomorphism ϕ : H → A. An element ψ ∈ Homk(H,V ) is
called ϕ-linear if ψ is an H-module homomorphism, i.e., ψ(hx) = ϕ(h)ψ(x) for all
h ∈ H and x ∈ H. We denote by Homϕ(H,V ) the set of all ϕ-linear elements. Each
ψ ∈ Homϕ(H,V ) is uniquely determined by ψ(1) ∈ V .

We note that for any fixed element v ∈ V , A−v ⊆ V is an A−-submodule.
Similarly, A+v is an A+-submodule of V . Thus Homk(H,A−v) is a module for
the algebra Homk(H,A−) under the action ∗ defined by Eq. (21). In particular
Homk(H,A−v) ⊆ Homk(H,V ).

Theorem 5.9. Let H be a connected Hopf algebra and A a commutative Rota-
Baxter algebra with idempotent operator Q. Suppose (V, pV ) is a (A,Q)-module and
ϕ ∈ Homk -Alg(H,A). For each ψ ∈ Homϕ(H,V ), define ψ+(h) = ϕ+(h)ψ(1) and
ψ−(h) = ϕ−(h)ψ(1). Then we have ψ+ = ϕ− ∗ ψ ∈ Homϕ+

(H,A+ψ(1)) and ψ− ∈
Homϕ−(H,A−ψ(1)).

Proof. Since ϕ− is an algebra homomorphism, there is ϕ−(hh′) = ϕ−(h)ϕ−(h′).
We clearly have ψ− ∈ Homϕ−(H,A−ψ(1)). Similarly, ψ+ ∈ Homϕ+

(H,A+ψ(1)). We
only need to verify ψ+ = ϕ−∗ψ which follows immediately from the algebraic Birkhoff
factorization of ϕ:

ψ+(h) = ϕ+(h)ψ(1) = (ϕ− ∗ ϕ)(h)ψ(1) = (ϕ− ∗ ψ)(h).

6. Rota-Baxter algebras for tensor categories. We now generalize the con-
cept of Rota-Baxter operators to be defined in a tensor category. Earlier we have been
working in the symmetric tensor category T of k-modules. We now assume that T is
a strict symmetric additive tensor category (strict monoidal category with a braiding
bX,Y : X ⊗Y → Y ⊗X such that bX,Y ◦ bY,X = IdY⊗X). The additive structure gives
an abelian group structure on the set of morphisms between two objects. We refer
the readers to [32] for background on monoidal categories.

An algebra object (or monoid object) in T is an object A together with a mor-
phism m : A⊗A→ A. m is associative if m ◦ (m⊗ 1) = m ◦ (1⊗m). A Rota-Baxter
object of weight λ is a triple (A,m,P ) such that (A,m) is an algebra and P ∈ EndT (A)
such that the diagram

A⊗A

P⊗1+1⊗P+λ◦(1⊗1)

��

P⊗P �� A⊗A

m

��
A⊗A

p◦m
�� A.

(22)

Here λ is an element of endomorphism ring of the identity functor Id : T → T .
If m is associative, then (A,m, p) is a Rota-Baxter associative algebra object.

Similarly, (A,m, p) is a Rota-Baxter Lie algebra object if m is a Lie algebra bracket,
i.e., it satisfies the condition m ◦ bA,A = −m and the Jacobian identity

m ◦ (m⊗ 1) ◦ (1 + b123 + b2123) = 0.
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Here b123 = (1⊗ bA,A) ◦ (bA,A ⊗ 1).
Given any associative algebra object (A,m), there is a natural Lie algebra object

(ALie, [, ]) with ALie = A as an object in T and [·, ·] = m ◦ (1 − bA,A). Thus we
have a functor from the category Asso(T ) of associative algebra objects in T to the
category Lie(T ) of Lie algebra objects in T (with morphisms be morphisms in T that
commutes with the structure morphisms). However the existence of the left adjoint
functor from Lie(T ) to Asso(T ) would depend on the category T .

If (A,m,P ) is a Rota-Baxter associative algebra object of weight λ, then
(ALie, [, ], P ) is a Rota-Baxter Lie algebra object.

Recall that for an associative algebra object (A,m), an A-module is an object M
in T together with a morphism σ : A⊗M →M satisfying

σ ◦ (1⊗ σ) = σ ◦ (m⊗ 1). (23)

If (L, [, ]) is a Lie algebra object in T , then an L-module is an object M in T together
with a morphism σ : L⊗M →M such that

σ ◦ ([, ]⊗ 1) = σ ◦ (1⊗ σ) ◦ ((1− bL,L)⊗ 1).

For a Rota-Baxter associative algebra object (A,P ) in T , an (A,P )-module is an
A-module M together with a morphism p : M →M in T such that

A⊗M

P⊗1+1⊗p+λ◦σ
��

P⊗P �� A⊗M

σ

��
A⊗M

p◦σ
�� M.

(24)

The compatibility condition in Eq. (3) is now

σ ◦ (1⊗σ)◦ (P ⊗P ⊗p) = σ ◦ (P ⊗p)◦ (m⊗1)◦ ((P ⊗1+1⊗P +λ(1⊗1))⊗1) (25)

which can be verified directly.
Let us give some examples of symmetric tensor categories, in addition to the cat-

egory k -Mod of all k-modules, where Rota-Baxter algebras and Rota-Baxter modules
might be fruitfully studied.

(a) The category of all Z-graded k-modules with graded tensor product. This cat-
egory has two different braidings, one with the standard switching of tensor factors,
and another with change of sign bX,Y (x ⊗ y) = (−1)ij(y ⊗ x) if x ∈ Xi and y ∈ Yj

are homogeneous elements. The corresponding Lie algebras and associative algebras
in two different braidings are different. With the first standard braiding, they are
graded Lie algebras and graded associative algebras. But in the second signed braid-
ing, the Lie algebra objects are in the super Lie algebra setting. The Rota-Baxter
algebra objects in these tensor categories as well as their representation theory are
very interesting topics. The first standard braiding is closely related to sheaves of the
projective varieties. For the second case, taking the Z/2Z-grading, one gets a super
Rota-Baxter theory.

(b) The category of all differential graded k-modules, whose objects are cochain
complexes of k-modules. The associative algebra objects are differential graded alge-
bras and the Lie algebra objects are dg Lie algebras. Thus the above discussions also
establishes the Rota-Baxter dg associative algebras and dg Lie algebras.
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(c) Let X be a smooth algebraic variety over a field k. The category Coh(X) of
coherent sheaves on X and its bounded derived category Db(Coh(X)) are symmetric
tensor categories. It is interesting to consider Rota-Baxter algebra objects in this
category. The Rota-Baxter algebra structures on the algebra Ω•(X) of differential
forms should be very interesting and have been discussed in connection with singular
hypersurfaces and renormalization on Kausz compactifications [33].

There are many other interesting symmetric tensor categories that have appeared
in geometry and topology, as well as mathematical physics. It is interesting to inter-
pret the Rota-Baxter algebra objects in those contexts as well.

Finally we remark that many properties do not require the symmetric property of
the tensor category T if one is limited to associative algebras only (not Lie algebras).
Then one can consider quantum Rota-Baxter algebras by considering the tensor cat-
egories corresponding to solutions of Yang-Baxter equations. See [22, 26] for braided
Rota-Baxter algebras whose module theory is to be developed.

Categorification of Rota-Baxter algebras has also been considered in [10] in terms
of distributive monoidal category with a duality functor and an endo-functor so that
the Grothendieck ring gives a Rota-Baxter algebra. Examples provided there have
interesting geometric and topological applications and should be pursued further. This
categorification might be related to the categorification in the context of 2-categories
which is still to be developed.
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