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6–DIMENSIONAL FJRW THEORIES OF THE SIMPLE–ELLIPTIC
SINGULARITIES∗

ALEXEY BASALAEV†

Abstract. We give explicitly in the closed formulae the genus zero primary potentials of the three
6–dimensional FJRW theories of the simple–elliptic singularity Ẽ7 with the non–maximal symmetry
groups. For each of these FJRW theories we establish the CY/LG correspondence to the Gromov–
Witten theory of the elliptic orbifold [E/(Z/2Z)] — the orbifold quotient of the elliptic curve by the
hyperelliptic involution. Namely, we give explicitly the Givental’s group elements, whose actions
on the partition function of the Gromov–Witten theory of [E/(Z/2Z)] give up to a linear change of
the variables the partition functions of the FJRW theories mentioned. We keep track of the linear
changes of the variables needed. We show that using only the axioms of Fan–Jarvis–Ruan, the genus
zero potential can only be reconstructed up to a scaling.
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1. Introduction. To a quasi–homogeneous polynomial W , having an isolated
critical point at the origin, and a group G of diagonal symmetries of W , FJRW theory
associates the certain moduli space together with a virtual fundamental cycle giving
rise to a well–defined intersection theory (see [20]). First main application of this
moduli space was to the Witten’s equation. This equation, originating from physics,
is due to E. Witten, but it only became mathematically reasonable on this moduli
space of the FJRW theory. The name “FJRW theory” stands therefore for H.Fan,
T.Jarvis and Y.Ruan, who gave the construction (in [12]) and for E.Witten, whose
idea was a sparkle for it.

This new moduli space can be seen as the generalization on the moduli space of
the stable curves. From this point of view FJRW theory can be seen as the cousin of
the Gromov–Witten theory. It was moreover shown in [12] that for W defining ADE
singularities, and certain symmetry groupsG, the partition function of the intersection
numbers on this moduli space is a tau–function of the Kac–Wakimoto hierarchy. Then
for W = xr+1 and cycling group G, generated by g(x) := exp(2π

√−1/(r + 1))x, this
new moduli space generalizes the moduli space of the r–spin curves, whose Gromov–
Witten partition function is a tau–function of the Gelfand–Dykij hierarchy (see [13]).

Another important application of the FJRW theories lies in the area of mirror
symmetry. In mirror symmetry the pair (W,G) as above is called Landau–Ginzburg
orbifold, and FJRW theory provides the A–side model of it. Several mirror symmetry
results about the FJRW theories were published in [11, 18, 19, 16, 17, 25, 21, 4, 7].
Establishing these mirror symmetry results one had to compute certain intersection
numbers on the moduli space of the FJRW theory. However, the explicit use of
the virtual fundamental cycle appeared to be hard. To our knowledge, in all the
examples known, FJRW theory is not computed by using the virtual fundamental
cycle of Fan–Jarvis–Ruan itself, but only utilizing the certain properties, it satisfies.
These properties were derived already in [12], and called there “axioms”.
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These axioms appeared to be powerful enough for the mirror symmetry purposes,
where usually there is no need to compute the theory completely. For all mirror
symmetry results above except [4], just some small list of intersection numbers was
computed on the FJRW theory side. In particular up to now there is no closed formula
even for the genus zero potential of any FJRW theory except one particular case in loc.
cit.. At the same time even in the computation of the certain intersection numbers,
only the most extreme possible symmetry groups G are considered up to now, except
one particular case in [25], — maximal symmetry groups of W .

The results of this paper come in two groups.

FJRW theory. In this paper we take the “axioms” of [12] as a definition of the
FJRW theory. Namely, we consider the FJRW theory as a Cohomological field theory,
satisfying certain additional list of axioms. We consider the simple–elliptic singularity
Ẽ7 represented by W := x4 + y4 + z2 with the three symmetry groups:

G1 := 〈a1, b1, c1〉, a1(x, y, z) :=
(√−1x,√−1y, z) , b1(x, y, z) := (x,−y, z),

c1(x, y, z) := (x, y,−z),
G2 := 〈a2, b2〉, a2(x, y, z) :=

(√−1x,√−1y,−z) , b2(x, y, z) := (x,−y, z),
G3 := 〈a3, b3〉, a3(x, y, z) :=

(√−1x,√−1y, z) , b3(x.y, z) := (x, y,−z),

All these groups are not maximal for W , and this is the first novelty of this paper. All
three FJRW theories of (Ẽ7, Gk) are 6–dimensional. By using the “axioms” of [12]
only, we reconstruct the genus zero potentials of these FJRW theories up to the scaling
of the variables. We give the closed formulae for the three genus zero potentials (see
Propositions 7.1, 7.4 and 7.6). It turns out that two of these genus zero potentials
can be reconstructed from the axioms only up to the scaling. This shows in particular
that for the questions, where the particular values of the correlators are important,
it’s not enough to consider the axioms of FJRW theory only. It turns out also that
the third genus zero potential we compute has irrational coefficients. This potential
can be written in Q[[t]] only after a rescaling of the variables.

CY/LG correspondence. Currently, working with the non–maximal symmetry
groups on the FJRW theory side makes it hard to speak about the mirror symmetry.
This is because the B side should be considered with the non–trivial symmetry group
then, and an orbifolded Saito theory is not yet constructed (see [8, 9, 6, 7]). However
one could anyway consider one mirror symmetry conjecture in this setting too — the
CY/LG correspondence conjecture. It suggests that the partition functions of the two
different A–side models, being both mirror dual to the same B–model, are connected
by a Givental’s action (acting on the space of all partition functions).

In this paper for the three FJRW theories of the pairs (Ẽ7, Gk) as above we
establish also the CY/LG correspondence. Namely, we provide explicitly the R–
matrices of Givental, s.t. up to the certain S–action of Givental the partition function
of the FJRW theory is obtained by applying the Givental’s action to the partition
function of the Gromov–Witten theory of the orbifold P1

2,2,2,2 :=
[E/(Z/2Z)] — the

orbifold quotient of the elliptic curve by the hyperelliptic involution.

Theorem (Theorem 6.3 in the text). Up to the certain different Givental’s S–
actions S(k) the partition functions of the FJRW theories (Ẽ7, Gk), k = 1, 2, 3 are
connected to the partition function of the Gromov–Witten theory of P1

2,2,2,2 by the
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same Givental’s R–action of:

Rσ′
:= exp(

⎛⎜⎝ 0 . . . σ′
... 0

...
0 . . . 0

⎞⎟⎠ z), for σ′ = − 1

2π2

(
Γ(

3

4
)

)4

,

so that holds:

Z(Ẽ7,Gk) = R̂σ′ · Ŝ(k) · ZP
1
2,2,2,2 , k = 1, 2, 3.

The S–actions are usually considered to be of little importance because they only
stand for the shift of coordinates and a basis choice (in the Chen–Ruan cohomology
ring in our case), and hence do not affect “the geometry” of the Cohomological field
theory. However no explicit computation can be done without knowing these S–
actions. Due to this fact we also keep track of them in this paper.

For the simple–elliptic singularities, CY/LG correspondence conjecture was also
considered in [25] in a beautiful manner. It was explained there in terms of a natural
operation on the space of quasi–modular forms — Cayley transform. However [25]
didn’t derive this particular R–action of Givental giving the CY/LG correspondence
or establish the particular Cayley transform. It was first [4], where the explicit R–
action was given for the simple–elliptic singularities, but with the maximal symmetry
group only.

The proof of the theorem uses extensively the explicit formulae for the genus zero
potentials of P1

4,4,2, P
1
2,2,2,2 Gromov–Witten theories and explicitly computed FJRW

theories of (Ẽ7, Gk). We utilize the fact that genus zero potentials of both Gromov–
Witten theories can be written via the quasi–modular forms. At the same time, even
missing the orbifolded Saito theory, we consider the certain SL(2,C)–action on the
space of WDVV equation solutions, that allows us to connect the genus zero partition
functions of P1

2,2,2,2 and (Ẽ7, Gk). This action was proposed in [5] as a model for the
primitive form change for the Saito theory and was shown to be equivalent to the
particular Givental’s action in [2].

Organization of the paper. In Section 2 we define the FJRW theory as a
CohFT, subject to the certain list of additional axioms. Gromov–Witten theory of
elliptic orbifolds is reviewed in Section 4. We make certain preparations there, needed
to perform the computations. In Section 5 we define the group action on the space of
CohFTs. Section 6 is devoted to the CY/LG correspondence, where we give the proof
of the main theorem with the help of computations, performed in Section 7. This is
the last section too, where we give explicit formulae for the primary potentials of the
FJRW theories of (Ẽ7, Gk), k = 1, 2, 3 as above — see Propositions 7.1, 7.4 and 7.6.
Certain useful formulae are given in Appendix.

Acknowledgement. The author is partially supported by International Labo-
ratory of Cluster Geometry NRU HSE, RF Government grant, ag. 075-15-2021-608
by 08.06.2021. The author is also grateful to Nathan Priddis, Amanda Francis and
Yefeng Shen for the useful discussions and email correspondence.

2. FJRW theory. In this section we define the FJRW theory axiomatically as
a Cohomological field theory Λ(W,G), satisfying some additional system of axioms, as
given in Theorem 4.1.8 of [12]. In this way all our conclusions hold true for the FJRW
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theories of (W,G), defined through the virtual fundamental cycle. At the same time
it’s important to note that to our knowledge almost all computations done up to now
in FJRW theories only use these “axioms” of [12].

2.1. The pair (W,G). Throughout this paper let W = W (x) =
W (x1, . . . , xN ) ∈ C[x] be a quasi–homogeneous polynomial. Namely there are
integers d, w1, . . . , wN , s.t. gcd(w1, . . . , wN ) = 1, and for any λ ∈ C∗ holds
W (λw1x1, . . . , λ

wNxN ) = λdW (x1, . . . , xN ). Denote qk := wk/d for k = 1, . . . , N .
Assume also 0 ∈ CN to be an isolated critical point of W and the weight set to be
unique.

Let GW := {α ∈ (C∗)N | W (α · x) = W (x)} be the so–called maximal group
of symmetries of W (or just Gmax if the polynomial is clear from the context). It’s
non–empty as W is quasihomogeneous. Denote e[α] := exp(2π

√−1α) for any α ∈ Q.
Then for J := (e[q1], . . . , e[qN ]), the group 〈J〉 is a non–empty subgroup of GW .

The group G ⊆ GW is called admissible if 〈J〉 ⊆ G. In what follows, we will
assume d, the degree of W , to be also the exponent of GW , i.e. for each h ∈ GW ,
hd = id. This is not the case in general, but holds in our examples.

2.2. Cohomological field theories. Let (V, η) be a finite–dimensional vector
space with a non–degenerate pairing. Consider a system of linear maps

Λg,n : V ⊗n → H∗(Mg,n),

defined for all g, n such that Mg,n exists and is non–empty. The set Λg,n is called a
cohomological field theory on (V, η), or CohFT, if it satisfies the following axioms.

CohFT 1. Λg,n is equivariant with respect to the Sn–action, permuting the fac-
tors in the tensor product and the numbering of marked points in Mg,n.

CohFT 2. For the gluing morphism ρ :Mg1,n1+1 ×Mg2,n2+1 →Mg1+g2,n1+n2

we have:

ρ∗Λg1+g2,n1+n2
= (Λg1,n1+1 · Λg2,n2+1, η

−1),

where we contract with η−1 the factors of V that correspond to the node in the preimage
of ρ.

CohFT 3. For the gluing morphism σ :Mg,n+2 →Mg+1,n we have:

σ∗Λg+1,n = (Λg,n+2, η
−1),

where we contract with η−1 the factors of V that correspond to the node in the preimage
of σ.

In this paper we further assume the CohFT Λg,n to be unital — i.e. there is a
fixed vector 1 ∈ V called the unit such that the following axioms are satisfied.

U 1. For every α1, α2 ∈ V we have: η(α1, α2) = Λ0,3(1⊗ α1 ⊗ α2).

U 2. Let π :Mg,n+1 →Mg,n be the map forgetting the last marking, then:

π∗Λg,n(α1 ⊗ · · · ⊗ αn) = Λg,n+1(α1 ⊗ · · · ⊗ αn ⊗ 1).
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A CohFT Λg,n on (V, η) is called quasihomogeneous if the vector space V is graded
by a linear map deg : V → Q and there is a number δ, such that for any α1, . . . , αn ∈ V
holds:

((g − 1)δ + n) Λg,n(α1, . . . , αn) =

(
1

2
degcoh +

∑
k

deg(αk)

)
Λg,n(α1, . . . , αn),

where degcoh is the (real) H∗(Mg,n)–cohomology class degree.

Let ψi ∈ H2(Mg,n), 1 ≤ i ≤ n be the so–called psi–classes. The genus g, n–point
correlators of the CohFT are the following numbers:

〈τa1
(eα1

) . . . τan
(eαn

)〉Λg,n :=

∫
Mg,n

Λg,n(eα1
⊗ · · · ⊗ eαn

)ψa1
1 . . . ψan

n .

Denote by Fg the generating function of the genus g correlators, called genus g po-
tential of the CohFT:

Fg :=
∑
α,a

〈τa1
(eα1

) . . . τan
(eαn

)〉Λg,n
Aut({α,a}) ta1,α1 . . . tan,αn .

It is useful to assemble the correlators into a generating function called partition

function of the CohFT Z := exp
(∑

g≥0 �
g−1Fg

)
. We will also make use of the so–

called primary genus g potential that is a function of the finite number of variables
tα := t0,α defined as follows:

Fg := Fg |tα:=t0,α, t�,α=0,∀�≥1

what is also sometimes called a restriction to the small phase space.

Due to some topological properties of M0,n, the small phase space potential
of a CohFT on (V, η) satisfies the so–called WDVV equation. For any four fixed
1 ≤ i, j, k, l ≤ dim(V ) holds:

dim(V )∑
p,q=1

∂3F0

∂ti∂tj∂p
ηp,q

∂3F0

∂tq∂tk∂l
=

dim(V )∑
p,q=1

∂3F0

∂ti∂tk∂p
ηp,q

∂3F0

∂tq∂tj∂l
. (1)

It’s important to note that function F0 is reconstructed unambiguously from F0 due
to the topological recursion relation in genus zero. Hence function F0 contains all
genus zero information of the CohFT.

2.3. Moduli of W–curves. An n–pointed orbifold curve C is a 1–dimensional
Deligne–Mumford stack with at worst nodal singularities with orbifold structure only
at the marked points and the nodes. Moreover the orbifold structure is required to
be balanced at the nodes.

A d–stable curve is a proper connected orbifold curve C of genus g with n distinct
smooth markings p1, . . . , pn such that the n–pointed underlying coarse curve is stable,
and all the stabilizers at nodes and markings have order d. The moduli stack Mg,n,d

parameterizing such curves is proper, smooth and has dimension 3g − 3 + n. It
differs from the moduli space of curves only because of the stabilizers over the normal
crossings.
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Let W be written as

W =

M∑
i=1

ci

N∏
k=1

xaik

k , aik ∈ N, ci ∈ C.

Given line bundles L1, . . . ,LN on the d–stable curve C, we define the line bundle

Wi(L1, . . . ,LN ) :=

N⊗
k=1

L⊗aik

k , 1 ≤ i ≤M.

Definition 2.1. A W–structure is the data (C, p1, . . . , pn,L1, . . . ,LN , ϕ1,
. . . ϕN ), where C is an n–pointed d–stable curve, the Lk are line bundles on C sat-
isfying

Wi(L1, . . . ,LN ) ∼= ωlog = ω(p1 + · · ·+ pn),

and for each k, ϕk : L⊗d
k → ωwk

log is an isomorphism of line bundles.

When G = GW , the following theorem holds.

Theorem 2.2 (Fan–Jarvis–Ruan, [12]). There exists a moduli stack of all W–
structures, denoted by Wg,n,GW

(W ), possessing also the suitable virtual fundamental
cycle [Wg,n,GW

(W )]vir, defining the CohFT of the pair (W,GW ) by the morphism
st :Wg,n,GW

(W )→Mg,n, forgetting the W–structure of a curve.

For the cases when G � GW , consider the following construction. Let Z be a Lau-
rent polynomial, satisfying the following three conditions: (i) it’s quasi–homogeneous
with the same weights qk as W (see Section 2.1 for the notation), (ii) it has no mono-
mials in common with W , (iii) G = GW+Z .

Then one sets: Wg,n,G(W ) :=Wg,n,GW+Z
(W + Z). It turns out that the moduli

space obtained is independent of the choice of Z.
Moreover, there is a universal curve C with the projection π : C → Wg,n,G,

endowed with the universal W–structure (L1, . . . ,LN ).

Example 3. For W = xr+1
1 and G = GW we have Wg,n,GW

∼= Mr

g,n — the
module space of r–spin curves.

3.1. FJRW CohFT of a simple–elliptic singularity. Denote ΩW :=

ΩN
CN ,0

/(
dW ∧ dN−1

CN ,0

)
. It’s a finite dimensional rank one module over the Jacobian

algebra of W in case when W has only isolated critical points. It’s equipped with the
non–degenerate bilinear form 〈·, ·〉W — the Poincaré residue pairing.

For any h ∈ G denote by Fix(h) ⊆ CN the fixed locus of h and Nh := dim(Fix(h)).
Define Wh := W |Fix(h): CNh → C. We call h ∈ G s.t. Nh = 0 the narrow sector
group elements.

For Nh �= 0 we can consider the module ΩWh . Because Wh will have only
isolated critical points too, ΩWh will be finite–dimensional, equipped with the non–
degenerate bilinear form 〈·, ·〉Wh . It also has a (coordinate–wise) G–action on it.

Denote Ωh := (ΩWh)
G

— the G–invariant subspace of ΩWh .
If Nh = 0 we set Ωh := C · e1 with the trivial G–action, s.t. (Ωh)

G = Ωh. It’s
also assumed to have the bilinear form on it. Namely, 〈e1, e1〉Wh := 1.

Note that Fix(h) = Fix(h−1). Let ψh be an isomorphism Ωh
∼= Ωh−1 .

Definition 3.1. We call a unital CohFT Λ = Λ
(W,G)
g,n a FJRW CohFT of (W,G)

if it satisfies the following list of axioms 3.1.1 — 3.1.5.
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3.1.1. State space. Λ is a CohFT on the state space HW,G := ⊕h∈GHh,
where as a vector space Hh

∼= Ωh for all h ∈ G. Equip HW,G with the C–
bilinear pairing 〈·, ·〉W,G := ⊕h∈G〈·, ·〉h, for 〈·, ·〉h : Hh ⊗C Hh−1 → C defined by
〈·, ·〉h := 〈·, ψh−1(·)〉Wh . This pairing is non–degenerate too.

In what follows for any h ∈ G by the element αh ∈ HW,G we will always assume
a vector, belonging to Hh ⊂ HW,G.

For any h ∈ G, let the numbers Θh
k ∈ Q ∩ [0, 1) be s.t. h is represented by the

diagonal GL(N,C)–matrix diag(e[Θh
1 ], . . . , e[Θ

h
N ]).

The vector space HW,G is graded by degW : HW,G → Q, defined by

degW (αh) := Nh + 2 ι(g), αh ∈ Hh,

where the degree shifting number ι(h) is defined as follows.

ι(h) :=

N∑
k=1

(Θh
k − qk).

3.1.2. Degree. Set ĉ :=
∑N

k=1(1 − 2qk) ∈ Q. The class Λ
(W,G)
g,n (αh1 , . . . , αhn)

vanishes unless ĉ(g − 1) +
∑

i ιhi
�∈ Z. Otherwise it has the following degree

2

(
(ĉ− 3)(1− g) + n−

n∑
i=1

ι(hi)−
n∑

i=1

Nhi

2

)
.

3.1.3. Selection rule. The class Λ
(W,G)
g,n (αh1

, . . . , αhn
) is zero unless for all 1 ≤

k ≤ N holds:

qk(2g − 2 + n)−
n∑

i=1

Θhi

k ∈ Z.

3.1.4. GW–invariance. Assume axiom 3.1.1 to hold true. Consider the action
of GW on each Ωh, and extend it to the action of GW on HW,G. The CohFT Λ

(W,G)
g,n

(considered as a system of linear maps) is required to be invariant under this action.

3.1.5. Concavity. Suppose that hi ∈ G are s.t. Fix(hi) = ∅ for all i = 1, . . . , n.
Let π be the projection from the universal curve of the moduli space and L1, . . . ,LN be

the universal W–structure. Let ctop stand for the top Chern class. If π∗
(⊕N

k=1 Lk

)
=

0, then holds:

Λ(W,G)
g,n (αh1

, . . . , αhn
) =

|G|g
deg(st)

PD st∗ctop

((
R1π∗

N⊕
k=1

Lk

)∨)
.

The subspace of HW,G, generated by αh1
, . . . , αhn

is called concave.

3.2. Remarks on the axioms. The state space axiom is usually introduced
via the so–called Lefschetz thimbles of Wh. However they are only used further as the
generators of the vector spaces, that are isomorphic to those we used — Ωh.

Degree axiom we formulate, is exactly Degree axiom of Fan–Jarvis–Ruan, modulo
the notational difference. We give only the degrees of the cohomology classes inMg,n

while in [12] the state space degrees (that of Lefschetz thimbles, treated as homology
classes) are counted too.

It’s immediate to note that the CohFT Λ(W,G) is quasi–homogeneous with δ :=
3− ĉ and the grading degW on HW,G. It’s also unital with the unit — the generator
of ΩJ (which is one–dimensional because Fix(J) = ∅).
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3.3. Concavity axiom. In the list of axioms above it’s clear that the only
source of non–zero quantitative data of FJRW CohFT is concavity axiom and pairing
axiom. The latter one only concerns the three point correlators 〈 〉0,3, hence this is
only concavity axiom giving us the “data”. It’s a surprising fact, that this is indeed
the concavity axiom, providing all non–trivial computations of all mirror symmetry
results, we reference in this paper. In other words, this small source of data appeared
to be powerful enough for the mirror symmetry needs.

After the result of A.Chiodo ([10, Theorem 1.1.1]) theMg,n–cohomology class of
concavity axiom can be written via the well–known Mg,n tautological classes — κd,
ψk, classes of the divisors. In particular for W = x4

1 + x4
2 + x2

3 and G = GW we have:

Λ
(W,GW )
0,4 (αh1

, αh2
, αh3

, αh4
) =

1

2

3∑
i=1

⎛⎝B2(qi)κ1 −
3∑

j=1

B2(θ
hj

i )ψj +
∑
Γ

B2(θ
hΓ
i )[Γ]

⎞⎠ ,

where B2(z) := z2 − z + 1/6, [Γ] is a class of the divisor in M0,4 and the summation
is taken over the possible decorations of such a divisor. Consult [14, Section 3] for
details.

3.4. FJRW theory of a simple–elliptic singularity. Fixing the basis

{φ(h)
k (x)dNhx} of Ωh for all h ∈ G, we will consider the basis

{
[h, φ

(h)
k (x)]

}
h,k

of

HW,G. For narrow h ∈ G, s.t. Nh = 0 we denote αh ∈ Hh ⊂ HW,G by [h, 1].

Associate also to the vector [h, φ
(h)
k (x)] the variable t

φ
(h)
k (x),h

if Nh �= 0 and the

variable th to [h, 1].
In the case of simple–elliptic singularities concavity axiom is in particular power-

ful.

Proposition 3.2. Let W = x4
1 + x4

2 + x2
3 define a simple–elliptic singularity and

G be any admissible group of its symmetries. Then for any h1, . . . , hn, s.t. Nhk
= 0

for all 1 ≤ k ≤ n the subspace generated by αh1 , . . . , αhn is concave.

Proof. The proof copies proof of Proposition 1.6 in [21]. It’s enough to count

the line bundle degrees of Lk. Because
∑3

k=1 qk = 1 and qk < 1 for a point
(C, p1, . . . , pn,L1,L2,L3, φ1, φ2, φ3) on each irreducible component Cv of C holds

deg(|Lk|Cv
) ≤ qk (# nodes(Cv)− 2) < # nodes(Cv)− 1,

where |Lk| denotes the pushforward of Lk to the underlying curve of C. The inequality
obtained finally shows that |Lk| has no section.

Corollary 3.3. For a simple–elliptic singularity W let F
(W,G)
0 and F

(W,GW )
0 be

the genus zero primary FJRW potentials of (W,G) and (W,GW ) respectively. Then
holds:

F
(W,G)
0 |tφ,h=0, h 
∈Gnar = F

(W,GW )
0 |tφ,h=0, h 
∈Gnar

Proof. The full state space HW,GW
is concave. As the vector space HW,G is

defined as the direct sum over all G elements, if αh ∈ HW,G, then there is a vector
α′
h ∈ Hh ⊂ HW,GW

. These two vectors can be identified because Ωh
∼= C. The rest

follows from Concavity axiom because the formula for the correlators of Λ
(W.G)
0,n and

Λ
(W,GW )
0,n is literally the same.
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4. Gromov–Witten theory of elliptic orbifolds. In this paper we make use
of the orbifold Gromov–Witten (that we call later just GW theory). Like FJRW
theory, GW theory also defines certain CohFT. The state space of it is the orbifold
cohomology ring, or Chen–Ruan cohomology ring, and the CohFT is fixed by the
(Poincare dual to the pushforward of) virtual fundamental class of the moduli space
of stable maps.

We skip completely the definition of the Gromov–Witten theory here, referencing
an interested reader to [1]. For the cases we only need in this paper — of the elliptic
orbifolds, we define the Gromov–Witten theory in genus zero by giving explicitly the
CohFT potentials, found in [22, 4, 25].

The so–called elliptic orbifolds P1
a,b,c for (a, b, c) = (3, 3, 3), (4, 4, 2) or (6, 3, 2) —

are smooth orbifold projective lines with only 3 points having the non–trivial orbifold
structure Z/aZ, Z/bZ and Z/cZ. They are called elliptic because each of them can
be realized as a global quotient of the elliptic curve by the finite group action. GW
theory of these orbifolds was found to give the A–model, mirror to the Saito structures
B–model of the simple–elliptic singularities (see the references, given in Introduction).

Apart from the three elliptic orbifold named, there is one more, more mysterious
one – P1

2,2,2,2. This orbifold is obtained as a global quotient of an elliptic curve by
the hyperelliptic involution. Compared to the previously named elliptic orbifolds, this
one was not identified in the context of mirror symmetry until the recent result of
[25].

In what follows denote X2 := P1
2,2,2,2 and X4 := P1

4,4,2. Fix the bases of the
Chen–Ruan cohomology H∗

orb(Xk) as follows.
Let Δ0,Δ−1 be the degree 0 and degree 2 generators of H∗(P1) respectively,

viewed as untwisted sector of H∗
orb(Xk). Let Δi,j be the twisted sector generators,

corresponding to the i–th point with a non–trivial isotropy group. We have:

H∗
orb(X2) ∼= QΔ0 ⊕QΔ−1

4⊕
i=1

QΔi,1, H∗
orb(X4)

∼= QΔ0 ⊕QΔ−1

3⊕
j=1

QΔ1,j

3⊕
j=1

QΔ2,j

⊕
QΔ3,1.

The ring H∗
orb(Xk) is also endowed with the pairing η, an analogue of the Poincaré

pairing. Gromov–Witten theory of Xk expresses the intersection theory of the moduli
space of the stable orbifold maps to Xk. We will be only working with the CohFT it
defines on the moduli space of stable curves.

The genus 0 potential of the Gromov–Witten theory of Xk is a function of the
variables t, being dual to the basis element fixed, and also of the formal Novikov
variable qformal. We will fix the variables t differently in what follows, but we always
keep t0, t−1 to correspond to the basis elements Δ0,Δ−1 respectively.

4.1. Novikov variable. The Novikov variable q = qformal is used to keep track
of the homology class — it appears in the genus g potential as qβ , where β ∈ H2(X).
In our case dim(H2(Xk)) = 1 and by using Divisor equation (of the GW theory)
the Novikov variable q can be identified with exp(t−1) (cf. [24, Section 1.2]). The
correlation functions of the genus 0 potentials after such an identification appear to
coincide with the Fourier expansions of the certain functions. However it’s useful to
work with the function itself rather than the Fourier expansion of it. To do this we
make another identification of the Novikov variable that depends on the orbifold in
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question:

qformal = exp(t−1) = exp

(
2π
√−1τ
k

)
=: qk, for the orbifold Xk. (2)

This identification also affects the cubic terms of the partition function, fixed by the
pairing in Axiom U1. Because of this we can’t just take the change of the variables
t−1 = 2π

√−1τ/k (what would change the CohFT state space) and will treat this
identification carefully.

At the same time only after making an identification of the formal variable we get
the clear holomorphicity property of the genus zero potential and are able to introduce
suitable group action, we use later in the text. For this purpose we introduce new
functions — analytic potentials of P1

2,2,2,2 and P1
4,4,2 GW theories in order to make

the statements about the genuine genus zero potentials. One can do the same for the
remaining two elliptic orbifolds P1

3,3,3 and P1
6,3,2 as well.

4.2. Gromov–Witten theory of P1
2,2,2,2. The genus zero potential of this GW

theory was found explicitly by Satake–Takahashi in [22]. We present their result here
in a slightly modified form that will be useful for us in what follows.

Let the variables {t0, t−1, t1, t2, t3, t4} be dual to the following basis of
H∗

orb(P
1
2,2,2,2) (recall the notation above){

Δ0,Δ−1,
1√
2
(Δ2,1 −Δ4,1) ,

1√
2
(Δ2,1 +Δ4,1) ,

1√
2
(Δ1,1 −Δ3,1) ,

1√
2
(Δ1,1 +Δ3,1)

}
.

Consider the functions ψk, defined by the following formal series in q:

ψ2(q) :=
1

2
+ 2

∞∑
n=1

(−1)n−1 2nqn

1− qn
,

ψ3(q) := 2

∞∑
n=1

(−1)n−1 2nq
n/2

1− qn
,

ψ4(q) := −2
∞∑

n=1

2nqn/2

1− qn
.

In the basis fixed the primary genus zero potential of the GW theory in question
assumes the following form:

F
P
1
2,2,2,2

0 =
1

2
t20t−1 +

1

4
t0

5∑
k=2

t2k −
1

16

(
t23t

2
4 + t21t

2
2

)
ψ4

(
q2
)− 1

16

(
t21t

2
3 + t22t

2
4

)
ψ2

(
q2
)

− 1

16

(
t22t

2
3 + t21t

2
4

)
ψ3

(
q2
)− 1

96

(
5∑

k=2

t4k

)(
4∑

k=2

ψk

(
q2
))

, q = exp(t−1).

WDVV equation on this genus zero potential is equivalent to the following sys-
tem of PDE’s on the functions {X2(q), X3(q), X4(q)}, satisfied by the triple
{ψ2(q

2), ψ3(q
2), ψ4(q

2)}:

q
∂

∂q
X2(q) = X2(q) (X3(q) +X4(q))−X3(q)X4(q),

q
∂

∂q
X3(q) = X3(q) (X2(q) +X4(q))−X2(q)X4(q),

q
∂

∂q
X4(q) = X4(q) (X2(q) +X3(q))−X2(q)X3(q),

(3)
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that we call a Halphen’s system of equations.
Note that up to now we didn’t use the relation between q and t−1. For all τ ∈ H

let the Jacobi theta constants ϑk(τ) be the holomorphic functions on H given by the
following Fourier series:

ϑ2(τ) :=

∞∑
n=−∞

eπ
√−1τ(n−1/2)2 ,

ϑ3(τ) :=

∞∑
n=−∞

eπ
√−1τn2

,

ϑ4(τ) :=

∞∑
n=−∞

(−1)neπ
√−1τn2

.

The function ϑ1(τ) is skipped because it vanishes identically. Consider the functions:

X∞
k (τ) := 2∂τ log ϑk(τ), X∞

k (q) :=
1

π
√−1X

∞
k

(
τ

π
√−1

)
, k = 2, 3, 4.

Then the triple {X∞
2 (τ), X∞

3 (τ), X∞
4 (τ)} is a solution of Haplhen’s system of equa-

tions:

∂

∂τ
X2(τ) = X2(τ) (X3(τ) +X4(τ))−X3(τ)X4(τ).

∂

∂τ
X3(τ) = X3(τ) (X2(τ) +X4(τ))−X2(τ)X4(τ),

∂

∂τ
X4(τ) = X4(τ) (X2(τ) +X3(τ))−X2(τ)X3(τ),

(4)

and {X∞
2 (q), X∞

3 (q), X∞
4 (q)} give solution to Eq. (3). We have the equality:

π
√−1ψk(q) = X∞

k (τ).

Notation 4.1. In what follows we denote by F
P
1
2,2,2,2

an the analytic potential of
P1
2,2,2,2:

F
P
1
2,2,2,2

an =
1

2
t20τ +

1

4
t0

5∑
k=2

t2k −
1

16

(
t23t

2
4 + t21t

2
2

)
X∞

4 (τ)− 1

16

(
t21t

2
3 + t22t

2
4

)
X∞

2 (τ)

− 1

16

(
t22t

2
3 + t21t

2
4

)
X∞

3 (τ)− 1

96

(
5∑

k=2

t4k

)(
4∑

k=2

X∞
k (τ)

)
.

Proposition 4.2. The function F
P
1
2,2,2,2

an is holomorphic on C5×H and is solution
to the WDVV equation.

Proof. This is straightforward by using the definition of the function X∞
k (τ),

Eq. (3) and the properties of F
P
1
2,2,2,2

0 .

The connection between the functions F
P
1
2,2,2,2

0 and F
P
1
2,2,2,2

an is obvious — we have
applied the relation qformal = qk(τ), however in order to obtain the function, that is
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solution to the WDVV equation, we had to make an additional rescaling. In what
follows we are going to use the second function (having only an indirect connection
to the GW theory) in order to make statement about the first function (being indeed
a true potential of the GW theory).

Comparing to the functions ψk(q) and X∞
k (q), big advantage of the functions

X∞
k (τ) is that they are holomorphic in H. Apart from the holomorphicity property,

the functions X∞
k (τ) enjoy another major advantage — there is a SL(2,C) group

action on the space of solutions to the Halphen’s system Eq.(4) written in τ , but not
on that of Eq. (3).

4.3. Gromov–Witten theory of P1
4,4,2. We write this GW theory in the basis

Δi,j , we have considered at the start of the section. Let also the coordinates ti,j be
corresponding to this basis elements. The genus 0 potential of this orbifold is written
completely via the functions x(q), y(q), z(q) and w(q), defined by:

1

4
x(q) := 〈Δ1,1,Δ1,1,Δ1,2〉0,3, 1

4
y(q) := 〈Δ1,2,Δ2,1,Δ2,1〉0,3

−1

8
w(q) := 〈Δ1,1,Δ1,1,Δ1,3,Δ1,3〉0,4, 1

4
z(q) := 〈Δ1,1,Δ2,1,Δ3,1〉0,3.

The functions x(q), y(q), z(q), w(q) have the following expression:

x(q) =
(
ϑ3(q

8)
)2

, y(q) =
(
ϑ2(q

8)
)2

, z(q) =
(
ϑ2(q

4)
)2

,

w(q) =
1

3

(
f(q4)− 2f(q8) + 4f(q16)

)
for the functions ϑk(q) as above and f(q) := 1− 24

∑∞
k=1

kqk

1− qk
.

Proposition 4.3 (Appendix A in [4] and Section 3.2.3 in [24]). The potential

F
P
1
4,4,2

0 has an explicit form via the functions defined above. Namely there exists the

polynomial P
P
1
4,4,2

poly = P
P
1
4,4,2

poly (t0, t−1, ti,j , x, y, z, w) ∈ Q [t0, t−1, ti,j , x, y, z, w], s.t.

F
P
1
4,4,2

0 (t0, t−1, ti,j , q) = P
P
1
4,4,2

poly (t0, t−1, ti,j , x(q), y(q), z(q), w(q)),

for x(q), y(q), z(q) and w(q) as above. Moreover the following homogeneity property
holds:

P
P
1
4,4,2

poly (t0, t−1, ti,j , x, y, z, w) =
1

α2
P
P
1
4,4,2

poly

(
t0, α

2 · t−1, α · ti,j , x
α
,
y

α
,
z

α
,
w

α2

)
,

for any α ∈ C∗.

To make the exposition complete, we give also the potential F
P
1
4,4,2

0 in Appendix B.

In what follows the function z(q) will be sometimes skipped because the following
identity holds:

z(q)2 = 4x(q)y(q).

It was found by Shen–Zhou [24] that WDVV equation on this genus 0 potential is
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equivalent to the following system (written in the Novikov variable)

q
∂

∂q
x(q) = 2x(q)y(q)2 − x(q)(x(q)2 − w(q)),

q
∂

∂q
y(q) = 2x(q)2y(q)− y(q)(x(q)2 − w(q)),

q
∂

∂q
w(q) = w(q)2 − x(q)4.

(5)

The functions ϑk(q) and ψk(q) are connected by the certain equalities (see Ap-
pendix A). Using also double argument formulae for ϑk and comparing the formal
series expansions we find:

x(q) =
1

2

(√
2ψ2(q4)− 2ψ4(q4) +

√
2ψ2(q4)− 2ψ3(q4)

)
,

y(q) =
1

2

(√
2ψ2(q4)− 2ψ4(q4)−

√
2ψ2(q4)− 2ψ3(q4)

)
,

w(q) = ψ2(q
4) +

1

2
ψ3(q

4) +
1

2
ψ4(q

4) +
√
(ψ2(q4)− ψ3(q4))(ψ2(q4)− ψ4(q4)).

(6)

The square roots in the equation above can be unambiguously resolved as being
applied to the formal power series in q with the Q+ coefficients.

Proposition 4.4. WDVV equation on the genus 0 GW potential of P1
4,4,2 is

equivalent to the Halphen’s system of equations.

Proof. This is an easy computation by using Eq. (5) and Eq. (6).

It was found in [24], that the WDVV equation for the other elliptic orbifolds, P1
3,3,3

and P1
6,3,2, can be written in the form similar to Eq. (5). So, there is a special system

of ODE’s in q for each elliptic orbifold, that is equivalent to the WDVV equation. This
is not a subject of this paper, however there is a strong evidence to conjecture that
WDVV equation for the genus zero potentials of GW theory of all elliptic orbifolds
(namely, for P1

3,3,3 and P1
6,3,2 too) is also equivalent to Halphen’s system of equations.

Namely, we believe, that there is a proposition like the one above for the other two
elliptic orbilds too.

Notation 4.5. Fixing some branch of the square root, denote λ2 :=
√
π
√−1

and λ4 := λ2/
√
2. We have then λ2

2 = 2π
√−1/ and λ2

4 = 2π
√−1/4. For q(τ) =

exp
(

2π
√−1
4 τ

)
introduce the functions:

x∞(τ) = λ4 · x(q(τ)), y∞(τ) = λ4 · y(q(τ)), z∞(τ) = λ4 · z(q(τ)),
w∞(τ) = λ2

4 · w(q(τ)).

Recall Proposition 4.3. We call the function F
P
1
4,4,2

an the analytic potential of P1
4,4,2:

F
P
1
4,4,2

an (t0, τ, ti,j) := P
P
1
4,4,2

poly (t0, τ, ti,j , x
∞(τ), y∞(τ), z∞(τ), w∞(τ)).

Namely F
P
1
4,4,2

an (t0, τ, ti,j) is obtained by substituting t−1 = τ , x∞(τ) instead of x(q)
and so on.
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Proposition 4.6. The function F
P
1
4,4,2

an (τ) is holomorphic on C8 × H and is a
solution to WDVV equation.

Proof. The proof is straightforward

It’s important to note that we can write the function F
P
1
4,4,2

an via the functions
X∞

k (τ) too by using the following formulae.

x∞(τ) =
1

2

(√
(X∞

2 (τ)−X∞
4 (τ)) +

√
(X∞

2 (τ)−X∞
3 (τ))

)
,

y∞(τ) =
1

2

(√
(X∞

2 (τ)−X∞
4 (τ))−

√
(X∞

2 (τ)−X∞
3 (τ))

)
,

z∞(τ) =
√
(X∞

3 (τ)−X∞
4 (τ)),

w∞(τ) =
1

4

(
2X∞

2 (τ) +X∞
3 (τ) +X∞

4 (τ)

+ 2
√
(X∞

2 (τ)−X∞
3 (τ)) (X∞

2 (τ)−X∞
4 (τ))

)
,

(7)

where we choose the square root branch as for x(q), y(q), z(q), w(q) in Eq. (6) by using
relation of Notation 4.5.

5. Group actions of the space of genus CohFT potentials. For a fixed
state space (V, η), consider the space of all CohFTs on it. On this space there is a
group action, called Givental’s action, or upper–triangular group action. This was first
proposed by Givental [15] in genus zero and later developed by the other researchers
in the higher genera [23, 13].

The upper–triangular group is defined to be {R ∈ End(V )[[z]] | R(z)R(−z)T =
1}. To its element R = exp(r(z)) one can associate the differential operator R̂, s.t.
for any CohFT partition function Z on (V, η), the function Z ′ := R̂ · Z, is a partition
function of a CohFT on the same state space. The action of the upper–triangular
group element is also called R–action of Givental.

Similarly to the upper–triangular group, one can consider the action of the lower–
triangular group := {S ∈ End(V )[[z−1]] | S(z)S(−z)T = 1}. The action of this group
on a CohFT partition function is equivalent to the linear change of the variables, and
probably, addition of some new terms to F0. The action of the lower–triangular group
element is also called S–action of Givental. We will denote the S–action by Ŝ.

Givental’s action appeared to be a powerful tool in working with the CohFTs
last decades. However it’s usually hard to compute (namely, to give the function
Z̃ := R̂ · Z is a closed form). At the same time, there are the situations, when
the other action can be introduced, acting on the smaller space, compared to the
Givental’s action. Being not that general as Givental’s action, it can, however make
use of some properties, that are specific for this smaller class of CohFTs. In what
follows we will work with this sort of actions.

Finally we formulate our results in terms of Givental’s action, as playing de facto
the role of a canonical group action on the space of CohFT partition functions.

5.1. SL(2,C)–group action on the potentials of elliptic orbifolds. Con-
sider a unital CohFT on the state space (V, η), s.t. V = 〈e1, . . . , en〉, the unit vector
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is e1 and η1,α = δα,n. Then F0(t), the primary genus 0 potential, reads:

F0(t1, . . . , tn) =
t21tn
2

+ t1
∑

1<α≤β<n

ηα,β
tαtβ

|Aut(α, β)| +H(t2, . . . , tn),

where |Aut(α, β)| = 2 if α = β and 1 otherwise.
For any A ∈ SL(2,C) consider another function FA

0 = FA
0 (t1, . . . , tn).

FA
0 (t1, . . . , tn)

:=
t21tn
2

+ t1
∑

1<α≤β<n

ηα,β
tαtβ

|Aut(α, β)| +
c
(∑

1<α≤β<n ηα,β
tαtβ

|Aut(α,β)|
)2

2(ctn + d)

+ (ctn + d)2H

(
t2

ctn + d
, . . . ,

tn−1

ctn + d
,
atn + b

ctn + d

)
for A =

(
a b
c d

)
.

(8)

It’s not hard to see that FA
0 is solution to WDVV equation and hence a genus 0

primary potential of some CohFT.
It was shown in [2] that the SL(2,C)–action F0 → FA

0 can be written via the
Givental’s R–action. In what follows for any CohFT partition function Z and any
Givental’s upper– or lower–triangular group element X we use the notation

X̂ · F0 := res�

(
X̂ · Z

)
where F0 = res� (Z). This notation can also be supported by the fact that only genus
zero correlators of the initial CohFT contribute to the genus zero correlators of the
Givental–transformed CohFT.

For a function f(t) we denote by (f(t))p the expansion of it at the point t = p.

Theorem 5.1 (Theorem 3 and Section 5 in [2]). Fix some A =

(
a b
c d

)
∈

SL(2,C) and τ ∈ C, s.t. cτ + d �= 0. Fix a CohFT with the primary genus zero
potential F0(t). Let F0(t) and FA

0 (t) be convergent in some small neighborhoods of
p1 := (0, . . . , 0, A · τ) and of p2 := (0, . . . , 0, τ) respectively. For σ := −c(cτ + d),
σ′ := −c/(cτ + d) holds:

(
FA
0

)
p2

=
(
ŜA
0

)−1

· R̂σ · (F0) p1,(
FA
0

)
p2

= R̂σ′ ·
(
ŜA
0

)−1

· (F0) p1,

where

Rσ(z) := exp(

⎛⎜⎝ 0 . . . σ
... 0

...
0 . . . 0

⎞⎟⎠ z), SA
0 :=

⎛⎜⎝ 1 . . . 0
... (cτ + d)In−2

...
0 . . . (cτ + d)2

⎞⎟⎠ .

The theorem above has an extension to the higher genera too (Theorem 3 in [2]),
we just don’t give it here because at the moment it doesn’t play a role. Note that the
expansion of the potential at some point can be viewed as an S–action of Givental.
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In [2, Theorem 6] it was shown, that the SL(2,C)–action above is equivalent to
the primitive form change for the simple–elliptic singularities. Due to this fact we
don’t need to consider the action of full upper–triangular group for the CY/LG cor-
respondence when assuming simple–elliptic singularities only — the SL(2,C)–action
above is enough. Big advantage of it is clear from the following sections.

5.2. SL(2,C)–action on the space of Halphen’s system solutions. For any
A ∈ SL(2,C) the triple of functions {XA

2 (τ), XA
3 (τ), XA

4 (τ)} defined as follows is a
solution to the Halphen’s system of equations (4) too1.

XA
k (τ) :=

1

(cτ + d)2
X∞

k

(
aτ + b

cτ + d

)
+

c

cτ + d
, A =

(
a b
c d

)
. (9)

Recall that the analytic genus zero GW potentials of P1
4,4,2 and P1

2,2,2,2 are written via
the functions X∞

k (τ), and the WDVV equation on them is equivalent to the Halphen’s
system of equations. Consider the new functions:

A · F P
1
2,2,2,2

an := F
P
1
2,2,2,2

an |[{X∞
2 ,X∞

3 ,X∞
4 }→{XA

2 ,XA
3 ,XA

4 }],

A · F P
1
4,4,2

an := F
P
1
4,4,2

an |[{X∞
2 ,X∞

3 ,X∞
4 }→{XA

2 ,XA
3 ,XA

4 }],

obtained by substituting one solution to the Halphen’s system {X∞
2 , X∞

3 , X∞
4 } by the

other {XA
2 , XA

3 , XA
4 }. These functions will also be solutions to the WDVV equation

and define the same pairing as the previous two.
The following proposition connects the SL(2,C)–action of Eq. (8) (on the space

of WDVV equation solutions) with the SL(2,C)–action of Eq. (9) (on the space of
Halphen’s equation solutions).

Proposition 5.2. For any A ∈ SL(2,C), the action of it on F
P
1
2,2,2,2

an and F
P
1
4,4,2

an

via Eq.(8) is equivalent to the action of A on the triple {X∞
2 , X∞

3 , X∞
4 } as is Eq.(9):(

F
P
1
2,2,2,2

an

)A

= F
P
1
2,2,2,2

an |[{X∞
2 ,X∞

3 ,X∞
4 }→{XA

2 ,XA
3 ,XA

4 }],(
F

P
1
4,4,2

an

)A

= F
P
1
4,4,2

an |[{X∞
2 ,X∞

3 ,X∞
4 }→{XA

2 ,XA
3 ,XA

4 }]

Proof. This is easy to see from the explicit form of the potential F
P
1
4,4,2

0 (see
Appendix B), Eq. (6) and Proposition 4.3.

In particular for the first step we see that the functions x∞(τ), y∞(τ), z∞(τ)
only get the factor of (cτ + d)−1 if one substitutes X∞

k by XA
k while the function

w∞(τ) gets indeed an additional summand of c/(cτ +d). For the second step we note
that the functions x∞, y∞, z∞ come to the potential so that the factor of (cτ + d)−1

matches the formula of Eq. (8) by Proposition 4.3. And for the last step we note
that this is only the function w∞(τ), that appears with the factor of titjtktl s.t.
η(∂tk , ∂tl)η(∂ti , ∂tj ) �= 0. Hence the additional summand it gets corresponds exactly
to the additional summand of Eq. (8).

Due to this proposition we will use the notations A · F and FA without making
difference between them.

1this can be easily checked by hands
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Notation 5.3. For any A ∈ SL(2,C) denote by xA(τ),yA(τ),zA(τ) and wA(τ)
the functions obtained from x∞(τ),y∞(τ),z∞(τ) and w∞(τ) by the substitution of the
proposition above as in Eq. (7).

The following proposition makes the connection between the SL(2,C)–actions on
FXk
an and FXk

0 (see also Proposition 4.6 in [4]).

Proposition 5.4. For any A ∈ SL(2,C) consider the genus zero potential FXk
0 =

FXk
0 (t) of Xk written in the formal variables t and the analytic potential FXk

an (τ). Let

λk =
√
2π
√−1/k be as in Notation 4.5. The following relation holds:

A · FXk
an (τ) =

(
A′ · FXk

0 (t)
)
|t−1=τ .

where for A =

(
a b
c d

)
, we set A′ :=

(
aλk bλk

cλ−1
k dλ−1

k

)
.

Proof. This follows immediately from the explicit form of the action and Propo-
sition 5.2 above.

5.3. The action of A(τ0,ω0). In what follows we will be in particular interested
in the action of the SL(2,C) elements of the certain form. For any fixed τ0 ∈ H,
ω0 ∈ C∗ define:

A(τ0,ω0) :=

⎛⎜⎜⎝
√−1τ̄0

2ω0Im(τ0)
ω0τ0√−1

2ω0Im(τ0)
ω0

⎞⎟⎟⎠ ∈ SL(2,C).

This special choice of a SL(2,C) element comes from singularity theory assumptions
and was first proposed2 in [5]. It has a special meaning in our treatment and we will
comment on it later.

Notation 5.5. For any any fixed τ0 ∈ H, ω0 ∈ C∗ by using Eq. (9) denote:

X
(τ0,ω0)
k (t) := (X∞

k (t))
A(τ0,ω0)

, 2 ≤ k ≤ 4.

It’s easy to see that the functions X
(τ0,ω0)
k (t) are holomorphic in {t ∈ C | |t| <

|2ω0Im(τ0)|}.
6. CY/LG correspondence. The idea of CY/LG correspondence came from

global Mirror symmetry conjecture. In its framework both FJRW theory and GW
theory appear to be the A–side models. The B–model of the global mirror symmetry is
given by a singularity with a symmetry group fixed. However it should be understood
globally, as varying in a family, given by the different choices of an additional structure
— primitive form of the singularity. On the B–side, different choices of the primitive
form should give (generally) different CohFTs, understood as different phases of the
one B–model.

The A–model is said to be mirror to the B–model if the partition function of the
A–model CohFT coincides up to an S–action of Givental with the partition function

2note however that in the reference given this element was introduced to have det = 1/(2π
√−1)

for any τ0 and ω0. We rescale it here because we want to work with the SL(2,C) element
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of the B–model with some primitive form choice. It can happen that two A–models
are mirror to the same B–model (taken in the different phases). Then two mirror B–
model partition functions differ by a primitive form change. This led to the conjecture,
that there should be a R–action of Givental, connecting two B–model CohFTs of the
same singularity with the different primitive form choice, or, up to a mirror symmetry
equivalently, there should be a R–action of Givental, connecting two A–models, that
are mirror to the same global B–model.

Another important aspect of the global mirror symmetry is the symmetry group,
that should be present on both A and B sides. Namely, everything said above should
hold in the equivariant setting, when both A–model and B–model are considered with
some symmetry groups. This is now ultimately realized on the A–side (by FJRW
theory in particular), but missing in full generality on the B–side (see [8, 9]).

In [5] the action of A(τ0,ω0) was considered as a model for the primitive form
change for simple–elliptic singularities. Even as there is no construction of the orb-
ifolded B–model CohFT, one can use the action A(τ0,ω0), standing (conjecturally, be-
ing equivalent) for the primitive form change of the orbifolded B–model. The results
of this paper support this conjectural usage of it.

6.1. Simple–elliptic singularities with the maximal symmetry group.
The global mirror symmetry program conjectures that for the B–model with the trivial
symmetry group, the symmetry group of the A–model should be maximal — Gmax.
In this case the B–model is given by the so–called Saito–Givental CohFT and several
different mirror symmetry results were proven (see [11, 19, 18, 16, 17, 25, 21, 4]).

From this variety of mirror symmetry results, in this paper the most important
for us is the following Gmax—CY/LG correspondence theorem. Let the basis of
H∗

orb(P
1
4,4,2) be as in Section 4 and λ4 be as in Notation 4.5.

Theorem 6.1 (Theorem 4.1 and Lemma 4.9 in [4]). Consider the FJRW theory
of the pair (Ẽ7, Gmax) and the GW theory of P1

4,4,2. We have:

F
(Ẽ7,Gmax)
0 (t̃) = A(τ0,ω0) · F P

1
4,4,2

an (t),

for τ0 =
√−1, ω0 = λ4

√
2π/ (Γ(3/4))

2
and the certain linear change of variables

t̃ = t̃(t). Moreover for the upper–triangular group element Rσ′
:

Rσ′
:= exp(

⎛⎜⎝ 0 . . . σ′
... 0

...
0 . . . 0

⎞⎟⎠ z), where σ′ = − 1

2π2

(
Γ(

3

4
)

)4

,

up to the certain S–action holds:

F
(Ẽ7,Gmax)
0 = R̂σ′ · Ŝ · F P

1
4,4,2

0 .

The change of the variables t̃(t) is the following one. We need first to fix the basis
in FJRW theory of (Ẽ7, Gmax). For W = x4 + y4 + z2 we have Gmax = 〈ρ1, ρ2, ρ3〉,
where ρ1(x, y, z) = (−√−1x, y, z), ρ2(x, y, z) = (x,−√−1y, z) and ρ3(x, y, z) =
(x, y,−z). The basis of HẼ7,Gmax

can then be written as {[ρi1ρj2ρ3, 1]} for 1 ≤ i, j ≤ 3.
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The change of the variables reads:

t1,1 =
√−1

√
2
(
t̃ρ1ρ2

2ρ3
− t̃ρ2

1ρ2ρ3

)
, t1,2 = −t̃ρ1ρ3

2ρ3
+
√
2 t̃ρ2

1ρ
2
2ρ3
− t̃ρ3

1ρ2ρ3
,

t1,3 =
√−1

√
2
(
t̃ρ2

1ρ
3
2ρ3
− t̃ρ3

1ρ
2
2ρ3

)
, t2,1 =

√
2
(
t̃ρ1ρ2

2ρ3
+ t̃ρ2

1ρ2ρ3

)
,

t2,2 = t̃ρ1ρ3
2ρ3

+
√
2 t̃ρ2

1ρ
2
2ρ3

+ t̃ρ3
1ρ2ρ3

, t2,3 =
√
2
(
t̃ρ2

1ρ
3
2ρ3

+ t̃ρ3
1ρ

2
2ρ3

)
,

t3,1 =
√−1

(
t̃ρ1ρ3

2ρ3
− t̃ρ3

1ρ2ρ3

)
, t0 = t̃ρ1ρ2ρ3

, t−1 = t̃ρ3
1ρ

3
2ρ3

.

It’s not hard to see that this change of the variables is also degree preserving. The
S–action of Theorem 6.1 is given by Ŝ := Ŝτ0 · Ŝ0 for Ŝ0 being the rescaling of the
variables and

Sτ0(z) = exp

⎛⎜⎝( 0 . . . 0
... 0

...
τ0 . . . 0

)
z−1

⎞⎟⎠ ,

so that the action of Ŝτ0 is equivalent to the expansion at the point t−1 = τ0.

Remark 6.2. It’s important to note, that in the proof [4, Section 4] of the theorem
above one doesn’t use the virtual fundamental cycle of Fan–Jarvis–Ruan, but again
only some properties of the FJRW CohFT. It’s easy to check that these are only the
axioms3.1.1 — 3.1.5, we use in this paper, that are used in [4].

Explicit R–matrix of the theorem above will play a decisive role in the computa-
tions we need to perform to prove main theorem of this paper.

Recall that we can write the function A(τ0,ω0) ·F P
1
4,4,2

an (and hence F
(Ẽ7,Gmax)
0 ) via

the (holomorphic) functions X
(τ0,ω0)
k with k = 2, 3, 4. For τ0 and ω0 as in theorem

above the following series expansions hold:

X
(τ0,ω0)
2 (t) =

1

4
− t

16
+

t2

64
− t3

768
+

t4

3072
− t5

20480
+

t6

245760
− 13t7

20643840

+
t8

9175040
+ O

(
t9
)

X
(τ0,ω0)
3 (t) =

t

16
− t3

768
+

t5

20480
− 13t7

20643840
+ O

(
t9
)
,

X
(τ0,ω0)
4 (t) = −1

4
− t

16
− t2

64
− t3

768
− t4

3072
− t5

20480
− t6

245760
− 13t7

20643840

− t8

9175040
+ O

(
t9
)
.

We remind also, that these functions have the particular closed formula by Nota-

tion 5.5, Eq.(9) and satisfy X
(τ0,ω0)
k ∈ Q[[t]] for all k = 2, 3, 4.

6.2. Simple–elliptic singularities with a non–maximal symmetry group.
Consider the simple–elliptic singularity Ẽ7 written by W = x4 + y4 + z2 and the
symmetry groups (recall the notation of Section 2):

G1 := 〈a1, b1, c1〉 : a1(x, y, z) :=
(√−1x,√−1y, z) , b1(x, y, z) := (x,−y, z),

c1(x, y, z) := (x, y,−z),
G2 := 〈a2, b2〉 : a2(x, y, z) :=

(√−1x,√−1y,−z) , b2(x, y, z) := (x,−y, z),
G3 := 〈a3, b3〉 : a3(x, y, z) :=

(√−1x,√−1y, z) , b3(x.y, z) := (x, y,−z),
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Theorem 6.3. Up to the certain different Givental’s S–actions S(k) the partition
functions of all three FJRW theories (Ẽ7, G1), (Ẽ7, G2) and (Ẽ7, G3) are connected to
the partition function of the Gromov–Witten theory of P1

2,2,2,2 by the same Givental’s
R–action of:

Rσ′
:= exp(

⎛⎜⎝ 0 . . . σ′
... 0

...
0 . . . 0

⎞⎟⎠ z), for σ′ = − 1

2π2

(
Γ(

3

4
)

)4

,

so that holds:

Z(Ẽ7,Gk) = R̂σ′ · Ŝ(k) · ZP
1
2,2,2,2 , k = 1, 2, 3.

Proof. We show in Propositions 7.2, 7.5 and 7.7 of the next section that there

are Ak ∈ SL(2,C) for k = 1, 2, 3, s.t. F
(Ẽ7,Gk)
0 = Ak · F P

1
4,4,2

0 , acting as in Eq.(8). By
using topological recursion relation in genus zero together with Theorem 5.1 we get

an R–action of Givental, s.t. F (Ẽ7,Gk)
0 = res�(R̂ ·S(k) · ZP

1
4,4,2

0 ). It turns out that even
though the matrices Ak are not the same in all three cases, the R–action appears to
be the same (however the S–actions needed are anyway different).

The conditions of Theorem 5.1 require also certain analyticity of the potentials.

We know that this holds because of the particular form of F
P
1
4,4,2

0 and X
(τ0,ω0)
k .

Namely, we utilize the fact that Jacobi theta constants and their logarithmic deriva-
tives are holomorphic in H.

The FJRW theories of (Ẽ7, Gk) are all semisimple. One can show it for all three

functions F
(Ẽ7,Gk)
0 by using the explicit expressions of the potentials. In particu-

lar the point t = 0 is not semisimple, however the point in the neighborhood is
semisimple, and this is enough because the property of being semisimple is open. It’s
a computational exercise to see that the point t = (0, 1, 2, 3,−1, 0) is semisimple for

A(τ0,ω0) ·F P
1
2,2,2,2

an . We can apply the reconstruction theorem of Teleman [26], that gives
us that our genus zero equality extends to the higher genera too, what completes the
proof.

Note that applying Theorem 5.1 we made a choice, in which order to apply the
S and R–actions. In the equality of two partition functions this is equivalent to the
choice, on which side to apply the S–action — on the FJRW, or on the GW side.
The S–action used makes a shift of the coordinates. Hence, in order to have the
correlators and make the equality of the partition functions reasonable we should
have some analyticity statement about the partition function, to which the S–action
is applied. We know such a property only on the GW side, what supports the choice
made.

Remark 6.4. For the particular values of τ0 and ω0 as in Theorem 6.1 and

Theorem 6.3, we have X
(τ0,ω0)
k ∈ Q[[t]] for all k = 2, 3, 4. This is indeed a rare

situation (see [3]), making the potential reasonable from the point of view of mirror
symmetry.
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7. Computations in FJRW theory. We first reconstruct explicitly the genus 0
primary potentials of the three FJRW theories in question. The reconstruction pro-
cedure is always the following. We compute the state space of the FJRW theory
and write down the genus 0 potential via the unknown functions, that are restricted
by the selection rule, degree axiom and Gmax–invariance axioms. On the next step
we identify those unknown functions that are in the concave sector and hence can
be taken from the Gmax–FJRW theory by Corollary 3.3. The remaining unknown
functions are further reconstructed by the WDVV equation.

Note that usually setting up some mirror symmetry isomorphism one doesn’t
compute genus zero potentials completely. This is because there is usually a small
number of correlators, that reconstruct genus zero potential unambiguously byWDVV
equation. The steps outlined above force us to work indeed with the genus zero
potentials, and not just some coefficients of their series expansions.

The most amazing example of the reconstruction procedure we perform is the last
one, where the concave sector gives only one function we know explicitly out of the
total 10 building up the potential.

7.1. Notations. In this section we assume τ0 and ω0 to be fixed as in Theo-
rem 6.1. Recall also Notation 5.3 for xA, yA, zA and wA. We keep:

x0 := xA(τ0,ω0)

(t), y0 := yA
(τ0,ω0)

(t), z0 := zA
(τ0,ω0)

(t), w0 := wA(τ0,ω0)

(t).

We make use of the several technical lemmas, that are given in Appendix A.

In this section we write the polynomial W in the C–coordinates x, y, z, rather
then x1, x2, x3, to reduce the number of subscripts appearing.

We also employ the following notation. All g ∈ Gmax are represented by the
triples (α1, α2, α3), s.t.

g(x, y, z) = (e[α1] · x, e[α2] · y, e[α3] · z), αk ∈ Q ∩ [0, 1).

Such set of the rational number is unique for any g.

Recall that the term WDVV equation denotes the system of PDEs (1) for all
indices i, j, k, l. Due to the complicated variable numbering we will say that the
particular PDE (1) with some {i, j, k, l} is fixed by the quadruple {ti, tj , tk, tl}.

7.2. Case 1: 1–dimensional broad sector. Consider W = x4 + y4 + z2 and
the symmetry group G1 := 〈a, b, c〉, where a = (1/4, 1/4, 0), b = (0, 1/2, 0) and
c = (0, 0, 1/2). We have ac = J ∈ G1 and a2J = J−1. The state space H has the
following basis:

H =
{
[J, 1], [aJ, 1], [bJ, 1], [a2bJ, 1], [c, xy], [a2J, 1]

}
.
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By using the selection rule and degree axiom the genus 0 potential of the FJRW –
theory (Ẽ7, G1) reads:

F
(Ẽ7,G1)
0

=
1

2
t2J ta2J + tJ

(
t2aJ
2

+ tbJ ta2bJ +
t2c,xy
32

)
+ t4c,xyg1(ta2J) + tbJ ta2bJ t

2
c,xyg2(ta2J)

+ taJ t
2
a2bJ tc,xyg3(ta2J) + taJ t

2
bJ tc,xyg4(ta2J) + t2aJ t

2
c,xyg5(ta2J) + t2a2bJ t

2
c,xyh1(ta2J)

+ t2bJ t
2
c,xyh2(ta2J) + taJ t

3
c,xyh3(ta2J) + taJ tbJ ta2bJ tc,xyh4(ta2J) + t3aJ tc,xyh5(ta2J)

+ tbJ t
3
a2bJf0,1(ta2J) + t3bJ ta2bJf0,2(ta2J) + t2aJ t

2
a2bJf0,3(ta2J) + t2aJ t

2
bJf0,4(ta2J)

+ t4a2bJf1,1(ta2J) + t2bJ t
2
a2bJf1,2(ta2J) + t4bJf1,3(ta2J) + t2aJ tbJ ta2bJf1,4(ta2J)

+ t4aJf1,5(ta2J).

for some unknown functions gk(t), hk(t) and f1,k(t). However from the selection
rule 3.1.3 we know that all functions gk(t) are odd while the functions hk(t) are even.
The correlators of the (Ẽ7, G1) theory involving narrow insertions only are concave.
Hence we can identify some of the functions above with those from (Ẽ7, Gmax) –
theory. We have:

f0,1(ta2J) = 0, f0,2(ta2J) = 0, f0,3(ta2J) = −x20
8
− x0y0

4
− y20

8
,

f0,4(ta2J) = −x20
8
− x0y0

4
− y20

8
, f1,1(ta2J) = −x20

48
+

x0y0
8

− y20
48

,

f1,2(ta2J) = −w0

2
+

3x20
8
− x0y0

4
− y20

8
, f1,3(ta2J) = −x20

48
+

x0y0
8

− y20
48

,

f1,4(ta2J) = −w0

2
+

x20
4

+
x0y0
2

− y20
4
, f1,5(ta2J) = −w0

8
+

x20
12
− y20

24
,

where the functions x0 = x0(ta2J), y0 = y0(ta2J), z0 = z0(ta2J), w0 = w0(ta2J) are
given at the beginning of this section.

7.2.1. The WDVV equation. Writing the WDVV equation for F
(Ẽ7,G1)
0 we

get the following system:

w′
0(t) = w2

0 − x40, x′0(t) = x0
(
w0 − x20 + 2y20

)
, y′0(t) = y0

(
w0 + x20

)
,

and also

g3(ta2J) = 0, g4(ta2J) = 0, h3(ta2J) = 0, h4(ta2J) = 0, h5(ta2J) = 0,

g1(ta2J) =
x20

3072
− w0

2048
− y20

6144
, g2(ta2J) =

x20
64

+
x0y0
32

− y20
64
− w0

32
,

g5(ta2J) = −x0y0
32

+
x20
64
− w0

64
,

h1(ta2J) =
x20
128

+
x0y0
64

+
y20
128

, h2(ta2J) =
x20
128

+
x0y0
64

+
y20
128

.

In particular it’s obtained by taking Eq. (1) fixed by the indices:{
taJ , taJ , tbJ , tbJ

}
,
{
taJ , taJ , ta2bJ , ta2bJ

}
,
{
tbJ , tbJ , tc,xy, tc,xy

}
,
{
taJ , taJ , tbJ , tbJ

}
,{

taJ , taJ , ta2bJ , ta2bJ

}
,
{
taJ , tbJ , tc,xy, tbJ

}
,
{
tc,xy, tc,xy, ta2bJ , ta2bJ

}
,
{
tc,xy, tc,xy, taJ , taJ

}
.
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The differential part of the system above involves only the functions we know
already and the PDEs written are equivalent to the WDVV of the genus 0 GW
potential of P1

4,4,2 (see Section 4). Hence we do not have to solve the PDEs and we

know all functions building up F
(Ẽ7,G1)
0 explicitly. The potential of this FJRW theory

reads:

F
(Ẽ7,G1)
0 =

1

2
t2J ta2J + tJ

(
t2aJ
2

+ tbJ ta2bJ +
t2c,xy
32

)

+ t4aJ

(
x20
12
− y20

24
− w0

8

)
− t4bJ

(
x20
48
− x0y0

8
+

y20
48

)
− t4a2bJ

(
x20
48
− x0y0

8
+

y20
48

)
+ tbJ ta2bJ t

2
c,xy

(
x20
64

+
x0y0
32

− y20
64
− w0

32

)
+ t2a2bJ t

2
c,xy

(
x20
128

+
x0y0
64

+
y20
128

)
+ t4c,xy

(
x20

3072
− y20

6144
− w0

2048

)
+ t2aJ

[
− t2bJ

(
x20
8

+
x0y0
4

+
y20
8

)
+ tbJ ta2bJ

(
x20
4

+
x0y0
2

− y20
4
− w0

2

)

− t2a2bJ

(
x20
8

+
x0y0
4

+
y20
8

)
+ t2c,xy

(
x20
64
− x0y0

32
− w0

64

)]

+ t2bJ

[
t2a2bJ

(
3x20
8
− x0y0

4
− y20

8
− w0

2

)
+ t2c,xy

(
x20
128

+
x0y0
64

+
y20
128

)]
.

By using Eq.(7) and the definition of the A(τ0,ω0)–action we get the following propo-
sition.

Proposition 7.1. The genus zero primary potential of the FJRW theory of
(Ẽ7, G1) reads:

F
(Ẽ7,G1)
0

=
1

2
t2J ta2J + tJ

(
t2aJ
2

+ tbJ ta2bJ +
t2c,xy
32

)
−
( t4aJ
24

+
t4bJ
48

+
t4a2bJ

48

+
t4c,xy
6144

+
1

4
t2aJ tbJ ta2bJ +

1

8
t2bJ t

2
a2bJ +

1

64
tbJ ta2bJ t

2
c,xy

)(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
+

(
1

128
t2bJ t

2
c,xy +

1

128
t2a2bJ t

2
c,xy −

1

8
t2aJ t

2
bJ −

1

8
t2aJ t

2
a2bJ

)(
X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)
−
(
t4aJ
24
− t4bJ

24
− t4a2bJ

24
+

t4c,xy
6144

+
1

4
t2bJ t

2
a2bJ +

1

64
t2aJ t

2
c,xy

)
X

(τ0,ω0)
3 ,

(10)

where X
(τ0,ω0)
k = X

(τ0,ω0)
k (ta2J) are as in Section 6.1.

7.2.2. CY/LG correspondence. Consider the change of the variables:

tJ = t0, ta2J = τ

taJ =
t1√
2
, tbJ =

t2
2
+

√−1t3
2

, ta2bJ =
t2
2
−
√−1t3

2
, tc,xy = 2

√
2t4.

(11)
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By using Eq. (10) we get:

F
(Ẽ7,G1)
0

=
1

2
t20τ +

1

4
t0

4∑
k=1

t2k −
1

16

(
t23t

2
4 + t21t

2
2

)
X

(τ0,ω0)
2 (τ)− 1

16

(
t21t

2
3 + t22t

2
4

)
X

(τ0,ω0)
4 (τ)

− 1

16

(
t22t

2
3 + t21t

2
4

)
X

(τ0,ω0)
3 (τ)− 1

96

(
4∑

k=1

t4k

)(
4∑

k=2

X
(τ0,ω0)
k (τ)

)
.

It’s obvious that we get:

F
(Ẽ7,G1)
0 (t̃(t)) = A(τ0,ω0) · F P

1
2,2,2,2

an .

In order to derive the equality for the potential F
P
1
2,2,2,2

0 we apply Proposition 5.4. We
proved:

Proposition 7.2. For the linear change of the variables as above holds:

F
(Ẽ7,G1)
0 (t̃(t)) = AG1 · F P

1
2,2,2,2

0 , AG1 :=

⎛⎜⎝ 1

Θ
−πΘ

1

2πΘ

Θ

2

⎞⎟⎠
for Θ =

√
2π/

(
Γ( 34 )

)2
.

7.3. Case 2: 2–dimensional broad sector. Consider W = x4 + y4 + z2 and
the symmetry group G2 := 〈a, b〉, where a = (1/4, 1/4, 1/2), b = (0, 1/2, 0). We have
a = J ∈ G2 and a3J = J−1. The state space H has the following basis:

H =
{
[J, 1], [ab, 1], [a3b, 1], [a2b, xy], [b, x], [a3, 1]

}
.

By using the selection rule, degree axiom and Gmax–invariance axiom the genus 0
potential of the FJRW – theory (Ẽ7, G2) reads

F
(Ẽ7,G2)
0 =

1

2
ta3t2J + tJ

(
tabta3b +

t2b,x
16

+
1

32
t2a2b,xy

)
+ t4b,xg1(ta3) + t2b,xt

2
a2b,xyg2(ta3)

+ t4a2b,xyg3(ta3) + tabta3bt
2
b,xg4(ta3) + tabta3bt

2
a2b,xyg5(ta3) + t2a3bt

2
b,xh1(ta3)

+ t2a3bt
2
a2b,xyh2(ta3) + t2abt

2
b,xh3(ta3) + t2abt

2
a2b,xyh4(ta3) + tabt

3
a3bf0,1(ta3)

+ t3abta3bf0,2(ta3) + t4a3bf1,1(ta3) + t2abt
2
a3bf1,2(ta3) + t4abf1,3(ta3),

for some unknown functions gk(t), hk(t) and fk,l(t). However from the selection
rule 3.1.3 we know that all functions gk(t) are odd while the functions hk(t) are even.
The correlators of the (Ẽ7, G2) theory involving narrow insertions only are concave.
Hence we can identify some of the functions above with those from (Ẽ7, Gmax) –
theory. We have:

f0,1(ta3) = 0, f0,2(ta3) = 0, f1,1(ta3) = −x20
48

+
x0y0
8

− y20
48

,

f1,2(ta3) = −w0

2
+

3x20
8
− x0y0

4
− y20

8
, f1,3(ta3) = −x20

48
+

x0y0
8

− y20
48

.
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7.3.1. The WDVV equation. Writing the WDVV equation for F
(Ẽ7,G2)
0 it’s

enough to consider Eq. (1) with the parameters

{
tab, tab, ta3b, ta2b,xy

}
,
{
ta2b,xy, ta2b,xy, tab, tab

}
,
{
ta3b, ta3b, ta2b,xy, ta2b,xy

}
,{

ta3b, ta2b,xy, tb,x, tab
}
,
{
tb,x, tb,x, ta2b,xy, ta2b,xy

}
,
{
ta2b,xy, tab, ta2b,xy, tab

}
.

We get two cases. The first one is when h2(t) ≡ 0 or h4(t) ≡ 0. This case also
concludes f1,1(t) ≡ 0, what we know to be false. For the second case we have
h2(t)h4(t) �≡ 0 and the following system should be solved:

g′3(t) =
1

2
g5(t)

2 +
2

3
h2(t)h4(t)− 64g3(t)g5(t),

g′5(t) = −32g5(t)2 + 128h2(t)h4(t),

h′
2(t) = 128 (g5(t)− 96g3(t))h2(t),

h′
4(t) = 128 (g5(t)− 96g3(t))h4(t),

and also

f1,1(t) = −h2(t)

h4(t)
(256g3(t)− 4g5(t)) , f1,2(t) = 8 (192g3(t)− g5(t)) , g1(t) = 4g3(t),

g2(t) = 12g3(t)− 1

8
g5(t), g4(t) = 2g5(t), h1(t) = −2h2(t), h3(t) = −2h4(t),

h4(t) �≡ 0, h4(t) �≡ 0.

From the PDEs on h2 and h4 we see that h2(t) = ch4(t) for some non–zero complex

c ∈ C. Hence we get an expression of g3(t) and g5(t) via the functions X
(τ0,ω0)
k and

the constant c.

g3(t) = − 1

24576c

(
(3c+ 1)X

(τ0,ω0)
2 (t) + 2(3c− 1)X

(τ0,ω0)
3 (4t) + (3c+ 1)X

(τ0,ω0)
4 (t)

)
,

g5(t) = − 1

128c

(
(c+ 1)X

(τ0,ω0)
2 (t) + 2(c− 1)X

(τ0,ω0)
3 (4t) + (c+ 1)X

(τ0,ω0)
4 (t)

)
.

However we also have two PDEs on g3(t) and g5(t) that give us the compatibility
condition:

3

2

(
64g3(t)g5(t)− 1

2
g5(t)

2 + g′3(t)
)

=
1

128

(
32g5(t)

2 + g′5(t)
)

Putting the explicit expressions of g3(t) and g5(t) via the functions X
(τ0,ω0)
k here we

get that this condition is satisfied if and only if c2 = 1. Knowing the functions g3(t)
and g5(t) explicitly we resolve the function h2(t) as the square root.

This gives us two solutions to the WDVV equation and consider them both in
what follows.
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7.3.2. Positive solution. For c = 1 we get the following solution to this system:

f1(t) =
1

48

(
−X(τ0,ω0)

2 + 2X
(τ0,ω0)
3 −X

(τ0,ω0)
4

)
,

f2(t) = −1

8

(
X

(τ0,ω0)
2 + 2X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g1(t) = − 1

1536

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g2(t) = − 1

512
X

(τ0,ω0)
3 ,

h1(t) = h3(t) = − 1

64

√(
X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)2

,

h2(t) = h4(t) =
1

128

√(
X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)2

,

g3(t) = − 1

6144

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g4(t) = − 1

32

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
,

g5(t) = − 1

64

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
.

7.3.3. Negative solution. For c = −1 we get the following answer.

f1(t) =
1

48

(
2X

(τ0,ω0)
3 −X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)
,

f2(t) = −1

8

(
X

(τ0,ω0)
2 + 2X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g1(t) = − 1

3072

(
X

(τ0,ω0)
2 + 4X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g2(t) = − 1

1024

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
,

h1(t) = −h3(t) = 2h4(t) = −2h2(t) =
1

32

√(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3

)(
X

(τ0,ω0)
3 −X

(τ0,ω0)
4

)
,

g3(t) = − 1

12288

(
X

(τ0,ω0)
2 + 4X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

g4(t) = − 1

16
X

(τ0,ω0)
3 , g5 = − 1

32
X

(τ0,ω0)
3 .

7.3.4. Comparison of the two solutions. In both “negative” and “positive”
solutions above, some square roots need to be resolved. This makes one more sign
choice for both cases. However it’s easy to see that this sign choice can be realized
as the scaling of the variables tab, ta3b, preserving the cubic terms. Because we make
our computation modulo such rescaling here, we can make a particular choice of this
square root resolution in both cases.

Let F+
0 and F−

0 be the two primary genus zero potentials given by the “posi-
tive” and “negative” solutions to the WDVV above respectively. We establish the
connection between them.

Proposition 7.3. Let F+
0 be written in coordinates t+g,φ(x) and F−

0 be written

in coordinates t−g,φ(x). Then they are connected by the following linear change of the
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variables:

t−J = K−2t+J , t−J−1 = K2t+J−1 ,

t−ab =
(1−√−1)K√

2
t+ab, t−a3b =

(1 +
√−1)K√
2

t+a3b, t−a2b,xy = Kt+a2b,xy, t−b,x = Kt+b,x,

where K = eπ
√−1/2.

Proof. It’s enough to compare the 4–point correlators, what in our case amounts

to the comparison of the potentials with X
(τ0,ω0)
k evaluated at the point t = 0. The

rest is straightforward.

Proposition 7.4. Up to a scaling of the variables the genus zero primary poten-
tial of the FJRW theory of (Ẽ7, G2) reads:

F
(Ẽ7,G2)
0

= tabta3btJ +
1

2
ta3t2J +

1

16
tJ t

2
b,x +

1

32
tJ t

2
a2b,xy −

( t4ab
48

+
t4a3b

48
+

t4b,x
1536

+
t4a2b,xy

6144
+

1

8
t2abt

2
a3b +

1

32
tabta3bt

2
b,x +

1

64
tabta3bt

2
a2b,xy

)(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
+

(
1

64
t2abt

2
b,x +

1

64
t2a3bt

2
b,x −

1

128
t2abt

2
a2b,xy −

1

128
t2a3bt

2
a2b,xy

)(
X

(τ0,ω0)
4 −X

(τ0,ω0)
2

)
+

(
t4ab
24

+
t4a3b

24
− t4b,x

1536
− t4a2b,xy

6144
− 1

4
t2abt

2
a3b −

1

512
t2b,xt

2
a2b,xy

)
X

(τ0,ω0)
3

where X
(τ0,ω0)
k = X

(τ0,ω0)
k (ta3) are as in Section 6.1.

Proof. It’s easy to see that Proposition 7.3 above performs the scaling

X
(τ0,ω0)
k (t) → √−1 ·X(τ0,ω0)

k

(√−1t). This can be obviously realized as an S–action
of Givental. Together with the previous section we get the proof.

7.3.5. CY/LG correspondence. By using explicit expression of all the func-

tions coming to F+
0 via X

(τ0,ω0)
k (t) and applying the following change of variables:

tJ = t0, ta3 = τ.

tab =
1

2

(
t1 +

√−1t2
)
, ta3b =

1

2

(
t1 −

√−1t2
)
, ta2b,xy = 2

√
2t3, tb,x = 2t4.

we get:

F
(Ẽ7,G2)
0

=
1

2
t20τ +

1

4
t0

5∑
k=2

t2k −
1

16

(
t23t

2
4 + t21t

2
2

)
X

(τ0,ω0)
3 (t)− 1

16

(
t21t

2
3 + t22t

2
4

)
X

(τ0,ω0)
4 (t)

− 1

16

(
t22t

2
3 + t21t

2
4

)
X

(τ0,ω0)
2 (t)− 1

96

(
5∑

k=2

t4k

)(
4∑

k=2

X
(τ0,ω0)
k (t)

)
.

It’s obvious that we get:

F
(Ẽ7,G2)
0 (t̃(t)) = A(τ0,ω0) · F P

1
2,2,2,2

an .
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In order to derive the equality for the potential F
P
1
2,2,2,2

0 we apply Proposition 5.4. We
get:

Proposition 7.5. For the linear change of the variables holds:

F
(Ẽ7,G2)
0 (t̃(t)) = AG2 · F P

1
2,2,2,2

0 , AG2 :=

⎛⎜⎝ 1

Θ
−πΘ

1

2πΘ

Θ

2

⎞⎟⎠
for Θ =

√
2π/

(
Γ( 34 )

)2
.

7.4. Case 3: 3–dimensional broad sector. Consider W = x4 + y4 + z2 and
the symmetry group G3 := 〈a, b〉, where a = (1/4, 1/4, 0) and b = (0, 0, 1/2). We have
ab = J ∈ G3 and a2J = J−1. The state space H has the following basis:

H =
{
[J, 1], [aJ, 1], [b, x2], [b, xy], [b, y2], [a2J, 1]

}
.

By using the selection rule, degree axiom and Gmax–invariance axiom the genus 0
potential of the FJRW – theory (Ẽ7, G3) reads:

F
(Ẽ7,G3)
0

=
1

2
t2J ta2J + tJ

(
t2aJ
2

+
t2b,xy
32

+
1

16
tb,x2 tb,y2

)
+ t4b,y2g1 (ta2J) + t4b,xyg2 (ta2J)

+ tb,x2 t2b,xytb,y2g3 (ta2J) + t2b,x2 t
2
b,y2g4 (ta2J) + t4b,x2g5 (ta2J) + t2aJ t

2
b,xyg6 (ta2J)

+ t2aJ tb,x2 tb,y2g7 (ta2J) + taJ tb,xyt
2
b,y2h1 (ta2J) + taJ t

2
b,x2 tb,xyh2 (ta2J) + t4aJf1,1 (ta2J) ,

for some unknown functions gk(t), hk(t) and f1,1(t). However from the selection
rule 3.1.3 we know that all functions gk(t) and also f1(t) are odd while the functions
hk(t) are even.

Note that the correlators of (Ẽ7, G) involving the insertions of [J, 1], [a2J, 1] and
[aJ, 1] only are concave. Hence we have an explicit expression for the function f1,1
that we have found in (Ẽ7, Gmax).

f1,1(t) =
1

4

(
−w0(t)

8
+

x0(t)
2

12
− y0(t)

2

24

)
. (12)

For simplicity we are going to rescale this function for what follows: f(t) := −16f1,1(t).
Then we get:

f(t) =
2

3
X

(τ0,ω0)
2 (t) +

2

3
X

(τ0,ω0)
3 (t) +

2

3
X

(τ0,ω0)
4 (t).

7.4.1. The WDVV equation. Writing the WDVV equation of F
(Ẽ7,G3)
0 we

get two cases: when h1(t)h2(t) ≡ 0 and h1(t)h2(t) �≡ 0. The first case gives system of
equations that can be integrated explicitly giving f1,1(t) as a rational function. We

know from Eq.(12) and the series expansion of X
(τ0,ω0)
k (t) that this is not true. The

second case is equivalent to the following system of equations:

g′5(t) =
16

3
h2(t)

2 − 64g5(t)g7(t),

g′7(t) = 512h1(t)h2(t)− 32g7(t)
2,

h′
1(t) =

64h1(t) (192g5(t)h1(t)− g7(t)h2(t))

h2(t)
,

h′
2(t) = 64(192g5(t)h1(t)− g7(t)h2(t)).

(13)
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and also:

g1(t) =

(
h1(t)

h2(t)

)2

g5(t), g2(t) =
1

64

(
g7(t)− 128

h1(t)g5(t)

h2(t)

)
, g3(t) =

g7(t)

16
,

g4(t) =
g7(t)

16
− 6

h1(t)g5(t)

h2(t)
, g6(t) =

g7(t)

2
, f(t) =

8192g5(t)h1(t)− 64g7(t)h2(t)

h2(t)
.

(14)
To get the system above one should consider Eq. (1) given by the following quadruples:{

taJ , taJ , tb,x2 , tb,x2

}
,
{
taJ , taJ , tb,x2 , tb,xy

}
,
{
taJ , taJ , tb,x2 , tb,y2

} {taJ , taJ , tb,xy, tb,xy} ,{
taJ , taJ , tb,xy, tb,y2

}
,
{
taJ , taJ , tb,y2 , tb,y2

}
,
{
taJ , taJ , tb,x2 , ta2J

}
, {taJ , taJ , tb,xy, ta2J} .

7.4.2. Solving the WDVV equation. From Eq.(13) we conclude that h1(t) =
ch2(t) for some non–zero constant c.

We are going to use now the relation between the functions g5(t), g7(t), f(t) and

explicitly known functions X
(τ0,ω0)
k (t). Due to the oddness of the functions g5(t) and

g7(t) and Eq. (14) we see that there is an odd function p(t), s.t. holds:

g7(t) =
1

64
p(t)− X

(τ0,ω0)
3

32
,

g5(t) =
1

8192c
p(t) +

1

12288c

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4 − 2X

(τ0,ω0)
3

)
.

From the first two PDEs on g5 and g7 we get the compatibility condition:

3

16
(g′5(t) + 64g5(t)g7(t)) =

1

512c

(
g′7(t) + 32g7(t)

2
)
,

that gives us the expression of p′(t) via p(t) and X
(τ0,ω0)
k :

p′(t) = p(t)
(
p(t) + 2

(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3 +X

(τ0,ω0)
4

))
.

From the PDE on g7(t) we get the expression of h2(t), that we put into the PDE of
h2(t) and get by using the formula for p(t) above:

3p(t)
(
p(t) + 2

(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3

))(
p(t) + 2

(
X

(τ0,ω0)
4 −X

(τ0,ω0)
3

))
= 0,

from where we find the function p(t) to be one of the following three:

p(t) = 0, p(t) = −2
(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3

)
, p(t) = 2

(
X

(τ0,ω0)
3 −X

(τ0,ω0)
4

)
giving the different solutions:

g7(t) = − 1

32
X

(τ0,ω0)
3 , g5(t) =

1

12288c

(
X

(τ0,ω0)
2 − 2X

(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

h2(t) =
1

128

√
−1

c

(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3

)(
X

(τ0,ω0)
3 −X

(τ0,ω0)
4

)
.

(15a)

g7(t) = − 1

32
X

(τ0,ω0)
2 , g5(t) =

1

12288c

(
−2X(τ0,ω0)

2 +X
(τ0,ω0)
3 +X

(τ0,ω0)
4

)
,

h2(t) =
1

128

√
1

c

(
X

(τ0,ω0)
2 −X

(τ0,ω0)
3

)(
X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)
.

(15b)
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g7(t) = − 1

32
X

(τ0,ω0)
4 , g5(t) =

1

12288c

(
X

(τ0,ω0)
2 +X

(τ0,ω0)
3 − 2X

(τ0,ω0)
4

)
,

h2(t) =
1

128

√
1

c

(
X

(τ0,ω0)
2 −X

(τ0,ω0)
4

)(
X

(τ0,ω0)
3 −X

(τ0,ω0)
4

)
.

(15c)

Actually only one of them — Eq. (15a) is correct for the FJRW theory because

g7(t) is odd by the selection rule and from the series expansions of X
(τ0,ω0)
k we know

that only X
(τ0,ω0)
3 is odd.

At the same time it’s clear that the rescaling of the variables tb,y2 → tb,y2/c and

tb,x2 → ctb,x2 preserves the pairing fixed by F
(Ẽ7,G3)
0 and in the new coordinates this

constant c doesn’t appear in the potential anymore.
Hence up to this rescaling we can set c = 1 and the WDVV equation has the

unique solution. We get:

Proposition 7.6. Up to a scaling of the variables the primary FJRW potential
reads:

F
(Ẽ7,G3)
0

=
1

2
t2aJ tJ +

1

2
t2J ta2J +

1

32
tJ t

2
b,xy +

1

16
tJ tb,x2tb,y2

+

(
t4b,x2

12288
+

t4b,y2

12288
− t4b,xy

6144
− t4aJ

24
− t2b,x2t2b,y2

2048

)(
X

(τ0,ω0)
2 +X

(τ0,ω0)
4

)
+

1

128

(
taJ tb,xyt

2
b,y2 + taJ t

2
b,x2tb,xy

)√(
X

(τ0,ω0)
3 −X

(τ0,ω0)
2

)(
X

(τ0,ω0)
3 −X

(τ0,ω0)
4

)
−
(

1

24
t4aJ +

t4b,x2

6144
+

1

64
t2aJ t

2
b,xy +

t4b,xy
6144

+
1

32
t2aJ tb,x2tb,y2 +

1

512
tb,x2t2b,xytb,y2

+
t2b,x2t2b,y2

1024
+

t4b,y2

6144

)
X

(τ0,ω0)
3 ,

where X
(τ0,ω0)
k = X

(τ0,ω0)
k (ta2J) are as in Section 6.1. Moreover there is an S–action

of Givental, performing the scaling of the variables, s.t. Ŝ · F (Ẽ7,G3)
0 ∈ Q[[t]]

Proof. The first part follows immediately from the preceding sections.

From the explicit series expansions of the functions X
(τ0,ω0)
a we have:

g1(t), . . . , g7(t) ∈ Q[[t]], f1,1(t) ∈ Q[[t]],

and

h1(t), h2(t) ∈
√−1Q[[t2]].

Hence we see that F
(Ẽ7,G3)
0 �∈ Q[[t]].

Consider the rescaling X
(τ0,ω0)
a (t) → √−1X(τ0,ω0)

a (
√−1t), that can be easily re-

alized as a scaling of the variables, preserving the cubic terms. Note also that we have
the relations

√−1X(τ0,ω0)
a (

√−1t) = X(τ0,ω1)
a (t)
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for ω1 := exp(−π√−1/2)ω0, that is equivalent to the rescaling discussed. We get:

ga(t)→
√−1ga

(√−1t) ∈ Q[[t]], f1,1(t)→
√−1f1,1

(√−1t) ∈ Q[[t]],

because these functions are odd, and

ha(t)→
√−1ha(

√−1t) ∈ Q[[t2]],

because these functions are even.

7.4.3. CY/LG correspondence. Note that all three solutions from Eq. (15)

to the WDVV equation (13) differ just by the permutations of the functions X
(τ0,ω0)
a .

All three solutions give some genus zero primary CohFT potentials, but only one of
them is indeed a FJRW–theory genus zero primary potential as we have shown above.

Denote the genus zero primary potential of the third WDVV solution — Eq. (15c)
by F aux

0 . We identify this potential with the A(τ1,ω1)–transformed potential of

F
P
1
2,2,2,2

0 . Then Lemma A.3 gives the CY/LG correspondence action.

7.4.4. Computation of F aux
0 . Comparing to the previously computed FJRW

theories here we also make use of Lemma A.1 and Lemma A.2. We get:

4 · 32 · g7(4t) = − (4X∞
4 (4t))

(τ0,ω0) = −1

2

(
(2X3 (2t))

(τ0,ω0) + (2X4 (2t))
(τ0,ω0)

)
= −1

2

(
X

(τ1,ω1)
3 (t) +X

(τ1,ω1)
4 (t)

)
where τ1 = 2τ0 and ω1 = ω0/

√
2. Similarly we have:

4 · 12288c · g5(4t)
= (4X∞

2 (4t))
(τ0,ω0) + (4X∞

3 (4t))
(τ0,ω0) − 2 (4X∞

4 (4t))
(τ0,ω0)

= 2X
(τ1,ω1)
2 (t)−X

(τ1,ω1)
3 (t)−X

(τ1,ω1)
4 (t) ,

4 · 128√c · h2(4t)

=

√(
(4X∞

2 (4t))
(τ0,ω0) − (4X∞

4 (4t))
(τ0,ω0)

)(
(4X∞

3 (4t))
(τ0,ω0) − (4X∞

4 (4t))
(τ0,ω0)

)
=

1

2

(
X

(τ1,ω1)
3 (t)−X

(τ1,ω1)
4 (t)

)
.

Applying the following linear change of the variables:

tJ = t0, ta2J = τ

taJ =
1

2
(t1 − t3) , tb,x2 = 2t2 + 2

√−1t4, tb,xy = 2 (t1 + t3) , tb,y2 = 2t2 − 2
√−1t4.

to the potential F aux
0 we get:

F aux
0 (t)

=
1

2
t20τ +

1

4
t0

5∑
k=2

t2k −
1

64

(
t23t

2
4 + t21t

2
2

)
X

(τ1,ω1)
4

(τ
4

)
− 1

64

(
t21t

2
3 + t22t

2
4

)
X

(τ1,ω1)
2

(τ
4

)

− 1

64

(
t22t

2
3 + t21t

2
4

)
X

(τ1,ω1)
3

(τ
4

)
− 1

4 · 96

(
5∑

k=2

t4k

)(
4∑

l=2

X
(τ1,ω1)
l

(τ
4

))
.
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Applying again Lemma A.2 we have for τ2 = τ1/4 and ω2 = 2ω1:

F aux
0 (t)

=
1

2
t20τ +

1

4
t0

5∑
k=2

t2k −
1

16

(
t23t

2
4 + t21t

2
2

)
X

(τ2,ω2)
4 (τ)− 1

16

(
t21t

2
3 + t22t

2
4

)
X

(τ2,ω2)
2 (τ)

− 1

16

(
t22t

2
3 + t21t

2
4

)
X

(τ2,ω2)
3 (τ)− 1

96

(
5∑

k=2

t4k

)(
4∑

l=2

X
(τ2,ω2)
l (τ)

)
.

Therefore, for τ3 = 1 + τ0/2 and ω3 =
√
2ω0 holds:

F
(Ẽ7,G3)
0 (t̃(t)) = A(τ3,ω3) · F P

1
2,2,2,2

an ,

In order to derive the equality for the potential F
P
1
2,2,2,2

0 we apply now Proposition 5.4.
We have got:

Proposition 7.7. For the linear change of the variables as above holds:

F
(Ẽ7,G3)
0 (t̃(t)) = AG3 · F P

1
2,2,2,2

0 , AG3 :=

⎛⎜⎝2
√−1 + 1

2Θ
πΘ

(√−1− 1

2

)
1

πΘ
Θ

⎞⎟⎠
for Θ =

√
2π/

(
Γ( 34 )

)2
.

Appendix A. Some formulae on the theta constants. The Jacobi theta
constants have the following connection to the Fourier series ψk(q), k = 2, 3, 4 of
Section 4:

(ϑ2(q))
4
= 2(ψ3(q)−ψ4(q)), (ϑ3(q))

4
= 2(ψ2(q)−ψ4(q)), (ϑ4(q))

4
= 2(ψ2(q)−ψ3(q)).

Note that these equalities are not enough to express ψk(q) via the theta constants.
We also have the following double argument formulae:

(
ϑ2(q

2)
)2

=
1

2

(
(ϑ3(q))

2 − (ϑ4(q))
2
)
,

(
ϑ3(q

2)
)2

=
1

2

(
(ϑ3(q))

2
+ (ϑ4(q))

2
)
,(

ϑ4(q
2)
)2

= ϑ3(q)ϑ4(q).

Combining these formulae with the definition of the functions X∞
k (q) we get:

2X∞
2 (q2) =

X∞
3 (q) (ϑ3(q))

2 −X∞
4 (q) (ϑ4(q))

2

(ϑ3(q))
2 − (ϑ4(q))

2 ,

2X∞
3 (q2) =

X∞
3 (q) (ϑ3(q))

2
+X∞

4 (q) (ϑ4(q))
2

(ϑ3(q))
2
+ (ϑ4(q))

2 ,

2X∞
4 (q2) =

1

2
(X∞

3 (q) +X∞
4 (q)) .

The following lemma is only applicable to the scaling of τ by 2 and uses double
argument formulae of the theta constants.
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Lemma A.1. For any A ∈ SL(2,C) we have the following equalities:

(2X2(2τ))
A
=

XA
3 (τ)TA

3 (τ)−XA
4 (τ)TA

4 (τ)

TA
3 (τ)− TA

4 (τ)
,

(2X3(2τ))
A
=

XA
3 (τ)TA

3 (τ) +XA
4 (τ)TA

4 (τ)

TA
3 (τ) + TA

4 (τ)
,

(2X4(2τ))
A
=

1

2

(
XA

3 (τ) +XA
4 (τ)

)
,

where

TA
k (τ) :=

1

cτ + d

(
ϑk

(
aτ + b

cτ + d

))2

, k = 2, 3, 4.

Proof. First of all note that we can not apply A to the function X∞
k (2τ) because

the latter one doesn’t solve the Halphen’s system. Let’s apply it to 2X∞
k (2τ). We

only do it in one example, while all the other are similar. Let:

A =

(
a b
c d

)
∈ SL(2,C), and τ ′ :=

aτ + b

cτ + d
.

Using the double argument formula for X∞
2 above we have:

(2X∞
2 (2τ))

A
=

1

(cτ + d)2
· 2X∞

2

(
2
aτ + b

cτ + d

)
+

c

cτ + d
,

=
1

(cτ + d)2
X∞

3 (τ ′)ϑ2
3(τ

′)−X∞
4 (τ ′)ϑ2

4(τ
′)

ϑ2
3(τ

′)− ϑ2
4(τ

′)
+

c

cτ + d

=
[X∞

3 (τ ′) + c(cτ + d)]ϑ2
3(τ

′)− [X∞
4 (τ ′) + c(cτ + d)]ϑ2

4(τ
′)

(cτ + d)2(ϑ2
3(τ

′)− ϑ2
4(τ

′))
.

The other two cases are treated in the same way.

For a more general scaling we have.

Lemma A.2. For any τ0 ∈ H, ω0 ∈ C∗ and k ∈ Q>0 holds:

(kX∞
a (kτ))

(τ0,ω0) = (X∞
a (τ))

(τ1,ω1) , 2 ≤ a ≤ 4,

where τ1 = kτ0, ω1 = ω0/
√
k.

Proof. First of all note that the formula given makes sense. Namely, the triple
of functions kX∞

a (kτ) is solution of the Halphen’s system too. The rest follows from
the following equalities.

(kX∞
a (kτ))(τ0,ω0) = A(τ0,ω0) · (kX∞

a (kτ))

= k
(2ω0Im(τ0))

2

(
√−1τ + 2ω2

0Im(τ0))2
X∞

a

(
k ·
√−1τ τ̄0 + τ0 · 2ω2

0Im(τ0)√−1τ + 2ω2
0Im(τ0)

)
− 1

τ − 2
√−1ω2

0Im(τ0)
= A(τ1,ω1) · (X∞

a (τ)) .
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Lemma A.3. For any τ0 ∈ H and ω0 ∈ C∗ holds:

X
(τ0,ω0)
2 (t) = X

(τ1,ω0)
2 (t), X

(τ0,ω0)
3 (t) = X

(τ1,ω0)
4 (t), X

(τ0,ω0)
4 (t) = X

(τ1,ω0)
3 (t),

for τ1 := τ0 + 1.

Proof. This follows immediately from the identities X∞
2 (t+1) = X∞

2 (t), X∞
3 (t+

1) = X∞
4 (t), X∞

4 (t+ 1) = X∞
3 (t) and the definition of the the A(τ0,ω0) –action.

Appendix B. Gromov–Witten potential of P1
4,4,2. In order to shorten the

formulae let tk := t1,k for 1 ≤ k ≤ 3, tl := t2,l−3 for 4 ≤ l ≤ 6, t7 := t3,1. Let
x = x(q), y = y(q), z = z(q), w = w(q) be as in Section 4. The following expression
for the genus zero GW potential of P1

4,4,2 was published in [4].

F
P
1
4,4,2

0

= −
(
x6 − 5x4y2 − 5x2y4 + y6

)
4128768

(
t83 + t86

)
+

xy
(
x4 + 14x2y2 + y4

)
294912

t23t
2
6

(
t43 + t46

)
+

z
(
8x4 + 8y4 + 19z4

)
294912

t36t7t
3
3 +

x
(
x2 + y2

)2
73728

(
t2t

6
3 + t5t

6
6

)
+

y
(
x2 + y2

)2
73728

(
t63t5 + t2t

6
6

)
+

5x2y2
(
x2 + y2

)
73728

t46t
4
3 −

(
x4 − 6x2y2 + y4

)
30720

(
t1t

5
3 + t4t

5
6

)
−

(
x4 − 3x2y2

)
3072

(
t22t

4
3 + t25t

4
6

)
+

(
3x2y2 − y4

)
3072

(
t43t

2
5 + t22t

4
6

)
+

xyz
(
x2 + y2

)
6144

t3t6
(
t43 + t46

)
t7

+
x2y

(
x2 + 4y2

)
6144

t23t
2
6

(
t2t

2
3 + t5t

2
6

)
+

xy2
(
4x2 + y2

)
6144

t23t
2
6

(
t23t5 + t2t

2
6

)
+

xy
(
x2 + y2

)
1536

(
t23t

2
6 (t1t3 + t4t6) + t2t5

(
t43 + t46

))
+

x2y2

1536
t3t6

(
t33t4 + t1t

3
6

)
+

xz
(
x2 + 7y2

)
1536

t3t6t7
(
t23t5 + t2t

2
6

)
+

yz
(
7x2 + y2

)
1536

t3t6t7
(
t2t

2
3 + t5t

2
6

)
+

xy
(
x2 + y2

)
512

t23t
2
6

(
t22 + t25

)
+

x2y2

384

(
t43 + t46

)
t27 +

x
(
x2 + y2

)
384

(
t1t2t

3
3 + t4t5t

3
6

)
+

y
(
x2 + y2

)
384

(
t1t

3
3t5 + t2t4t

3
6

)
+

(
x2 + y2

)
z

384
t7

(
t33t4 + t1t

3
6

)
+

x3

384

(
t32t

2
3 + t35t

2
6

)
+

y3

384

(
t23t

3
5 + t32t

2
6

)−
(
3w − x2 + 2y2

)
384

(
t42 + t45

)
+

xy2

128
t2t5

(
t23t5 + t2t

2
6

)
+

x2y

128
t2t5

(
t2t

2
3 + t5t

2
6

)
+

x2y2

128
t2t5t

2
6t

2
3 +

xy
(
x2 + y2

)
128

t26t
2
7t

2
3 +

(
2x2 − y2 − 3w

)
96

t47 +
xy2

64
t3t6 (t2t3t4 + t1t5t6)

+
x2y

64
t3t6 (t3t4t5 + t1t2t6) +

xyz

192
t3t6t7

(
3t22 + 3t1t3 + 3t25 + 3t4t6 + 4t27

)
+

z
(
x2 + y2

)
64

t2t5t6t7t3

−
(
w − x2

)
64

(
2t25t

2
7 + t22t

2
5 + 2t22t

2
7

)−
(
2w − x2 + y2

)
64

(
t21t

2
3 + t24t

2
6

)
+

xy2

32

(
t2t

2
7t

2
3 + t5t

2
6t

2
7

)
+

x2y

32

(
t5t

2
7t

2
3 + t2t

2
6t

2
7

)
+

xy

32

(
2t1t2t5t3 + t21t

2
6 + t24t

2
3

)− w

32

(
t4t

2
5t6 + t1t

2
2t3

)
+

(
x2 − y2 − w

)
32

(
t1t

2
5t3 + t22t4t6

)−
(
w − x2

)
16

(
t1t

2
7t3 + t1t4t6t3 + t4t6t

2
7

)
+

xy

16
t2t5

(
t4t6 + 2t27

)
+

xz

16
t7 (t2t4t3 + t1t5t6) +

yz

16
t7 (t3t4t5 + t1t2t6) +

x

8

(
t21t2 + t24t5

)
+

y

8

(
t2t

2
4 + t21t5

)
+

z

4
t1t4t7

+
1

8
t0

(
t22 + t25 + 2t27 + 2t1t3 + 2t4t6

)
+

1

2
t20t−1.
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