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EVEN AND ODD INSTANTON BUNDLES ON FANO THREEFOLDS∗

VINCENZO ANTONELLI† , GIANFRANCO CASNATI‡ , AND OZHAN GENC§

Abstract. We define non–ordinary instanton bundles on Fano threefolds X extending the notion
of (ordinary) instanton bundles introduced in [14]. We determine a lower bound for the quantum
number of a non–ordinary instanton bundle, i.e. the degree of its second Chern class, showing the
existence of such bundles for each admissible value of the quantum number when iX ≥ 2 or iX = 1
and rk Pic(X) = 1. In these cases we deal with the component inside the moduli spaces of simple
bundles containing the vector bundles we construct and we study their restriction to lines. Finally
we give a monadic description of non–ordinary instanton bundles on P3 and the smooth quadric
studying their loci of jumping lines, when of the expected codimension.
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1. Introduction. Let X be a threefold over the complex field C. We say that X
is a Fano threefold if its anticanonical line bundle ω−1

X is ample. The greatest integer
iX such that ωX

∼= OX(−iXh) for some ample OX(h) ∈ Pic(X) is called the index of
X: it is well–known that such an OX(h) is uniquely determined and it is called the
fundamental line bundle of X.

The very first examples of Fano threefold are P3 and the smooth quadric Q ⊆ P
4.

In this cases iP3 = 4 and iQ = 3 respectively and the fundamental line bundle is
the one cut out by the hyperplanes. Thus the origin of the study of vector bundles
supported on Fano threefolds may be traced back to the seminal papers [7, 29, 24],
inspecting the case of the projective 3–space, and to [49, 48] for Q.

In the aforementioned papers, the authors focus their attention on μ–stable bun-
dles. Recall that the number μ(F) = c1(F)h2/rk(F) is defined for each torsion–
free sheaf F . The torsion–free sheaf F is called μ–semistable (resp. μ–stable) if
for all proper subsheaves G with 0 < rk(G) < rk(F) we have μ(G) ≤ μ(F) (resp.
μ(G) < μ(F)).

Among the μ–stable rank two vector bundles on P
3, a relevant role is played by

instanton bundles, i.e. μ–stable rank two vector bundles E such that c1(E) = 0 and
h1

(
E(−2)

)
= 0. Instanton bundles on P

3 carry many interesting properties and they
have been thoroughly studied in the past and recent years.

Starting from P
3, the notion of instanton bundle has been widely generalized, e.g.

to projective space and smooth quadrics of any dimension. A first generalization to
the Fano threefolds with Picard number �X := rkPic(X) = 1 can be found in [25]
(see also [38]). More precisely, an instanton bundle is defined in [25] as a μ–stable
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rank 2 bundle with c1(E) = (2qX − iX)h and h1
(
E(−qXh)

)
= 0 where qX =

[
iX
2

]
.

The existence of instanton bundles according to this definition is proved for iX = 2, 3
in [25] and for iX = 1 in [10].

In [41], the authors extended the notion of instanton bundle to the flag manifold
F (0, 1, 2) which is a Fano threefold with �X = 2. More recently, the definition has
been further generalized to each Fano threefold, regardless of iX or �X : see [14,
Definition 1.2]. Moreover, the existence of instanton bundles according to the latter
definition has been settled on some Fano threefolds: see [14, 17, 4, 3].

In any case, each instanton bundle E on X satisfies c1(E) ∈ {0,−h} according to
the parity of iX . E.g. c1(E) = 0 when X ∼= P

3. Nonetheless, rank 2 vector bundles E
with c1(E) = −1 on P

3 are certainly interesting and they have been classical object
of study (e.g. see [31, 11, 23]) for low values of c2(E).

Motivated by the above considerations, in this paper we give the following defi-
nition, where for ε ∈ {0, 1} we set

qεX =

[
iX + 1− ε

2

]

and we denote the integral cohomology of X by Hi(X).

Definition 1.1. Let X be a Fano threefold.
A vector bundle E of rank 2 on X is called an instanton bundle if the following

properties hold:
• c1(E) = −εh, where ε ∈ {0, 1};
• E is μ–semistable with respect to OX(h) and (1− ε)h0

(
E
)
= 0;

• h1
(
E(−qεXh)

)
= 0.

The class c2(E) ∈ H4(X) and its degree are respectively called (topological) charge
and quantum number of E .

We spend now a few words in order to better explain Definition 1.1 above. When
ε = 1 we do not require the vanishing h0

(
E
)
= 0 in the above definition. On the

one hand, in spite of this apparent asymmetry, the vanishing of h0
(
E
)
when ε = 1

is actually a direct consequence of the μ–semistability of E , because μ(E) < 0. On
the other hand, when ε = 0 the vector bundle E := O⊕2

X certainly satisfies all the
properties of Definition 1.1 but h0

(
E
)
= 0. Moreover, when iX ≤ 2 it is not difficult

to give further examples of non–trivial rank 2 bundles with an analogous behaviour
and with arbitrarily large quantum number: e.g. every rank 2 bundle associated via
the Serre correspondence to a disjoint set of integral curves of degree 3− iX in X.

In order to have a rough idea of the meaning of the instantonic condition, i.e. the
vanishing condition for the degree 1 cohomology in Definition 1.1 above, we will show
in Lemma 2.4 that h1

(
E(th)

)
= 0 for t ≤ −qεX for each μ–semistable rank 2 vector

bundle E on X with c1(E) = −εh, ε ∈ {0, 1}. If X ∼= P
3, thanks to [40, Theorem 7]

the vanishing

h1
(
E((1− qε

P3)h)
)
= h1

(
E(−h)

)
= 0,

implies that E is a direct sum of line bundles: the same is true for X ∼= Q and ε = 0.
In particular, in these cases, −qεX = −2 is the greatest integer such that there could
exist an indecomposable E as above with h1

(
E(th)

)
= 0 for t ≤ −qεX .

In Section 2 we list some helpful facts about vector bundles and Fano threefolds
that we will use throughout the whole paper.
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When �X = 1, each instanton bundle E is μ–stable, hence simple, i.e.

HomX

(
E , E

) ∼= H0
(
E ⊗ E∨

) ∼= C.

When �X ≥ 2 this is no longer true. Nevertheless in Section 3 we prove the following
result characterizing the group of endomorphisms of an instanton bundle.

Theorem 1.2. Let X be a Fano threefold.

If E is an instanton bundle on X, the following assertions hold.

(1) If E is indecomposable, then it is simple.
(2) If E is decomposable, then E ∼= OX(D)⊕OX(−D−εh), where Dh2 = −εh3/2

and

h0
(
OX(D)

)
= h0

(
OX(−D − εh)

)
= 0,

h1
(
OX(D − qεXh)

)
= h1

(
OX(−D − (ε+ qεX)h)

)
= 0.

(1.1)

In this case, HomX

(
E , E

) ∼= C
⊕2 acting diagonally.

When iX − ε is even, instanton bundles in the sense of Definition 1.1 coincide
with instanton bundles as defined in [25] and [14], because qX = qεX . For this reason,
we give the following definition.

Definition 1.3. Let X be a Fano threefold.

An instanton bundle E on X with c1(E) = −εh is called even or odd (resp.
ordinary, non–ordinary), if ε (resp. iX − ε) is even or odd respectively.

As we already pointed out above, ordinary instanton bundles have been widely
studied. The present paper is essentially focused on the non–ordinary instanton bun-
dle, studying their elementary properties, constructing examples and studying the
corresponding points in the moduli spaces where they sit.

More precisely, in Section 4 we deal with non–ordinary instanton bundles and we
prove the following lower bound for the quantum numbers of such bundles (see [14,
Lemma 4.2] for a similar bound in the ordinary case).

Theorem 1.4. Let X be a Fano threefold.

If E is an indecomposable non–ordinary instanton bundle on X, then its quantum
number is even and satisfies

k ≥
{

2 if either iX ≥ 3 or iX = 2 and h3 ≤ 5,
4 if either iX = 2 and h3 ≥ 6 or iX = 1.

(1.2)

The above lower bound is actually sharp when iX ≥ 2. Indeed, in Construction
5.2 we use the Serre correspondence to associate certain bundles of rank 2 to a suitable
set of pairwise disjoint conics, which enables us to prove the following result in Section
5 extending [29, Example 3.1.2].

Theorem 1.5. Let X be a Fano threefold with iX ≥ 2 and very ample OX(h).

For each even integer k satisfying Inequality (1.2), Construction 5.2 gives a μ–
stable, non–ordinary instanton bundle E with quantum number k.
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When iX = 1 the existence of even instanton bundles is slightly less immediate.
Indeed Construction 5.2 returns rank 2 bundles which are certainly not instanton,
because they have non–zero sections. In particular the approach via Serre correspon-
dence is certainly not possible if X is a prime Fano threefold, i.e. a Fano threefold
such that �X = 1 as we show at the beginning of Section 6.

We also describe therein a completely different approach based on a suitable chain
of deformations of the bundles obtained via Construction 5.2, showing that such an
approach leads to instanton bundles and proving the following result extending [9,
Theorem 4.1] at least when X is ordinary, i.e. it contains a line with normal bundle
OP1 ⊕OP1(−1).

Theorem 1.6. Let X be an ordinary prime Fano threefold with very ample
OX(h).

For each even integer k ≥ 4, there exists a μ–stable, even instanton bundle with
quantum number k.

Again k = 4 is the minimal admissible value for the quantum number of an even
instanton bundle on an ordinary prime Fano threefold given by Theorem 1.4. Thus
Theorem 1.4 is sharp also if iX = 1, at least in the case �X = 1.

The problem of the existence of instanton bundles when �X ≥ 2 remains wide
open in general, though it is not difficult to show the existence of even instanton
bundles in several specific cases via Serre construction. Finally, in Remark 6.7 we
suggest a completely different possible approach for constructing minimal instanton
bundles when �X ≥ 2.

An important property of instanton bundles on P
3, occasionally assumed in some

classical definitions, is that they are trivial when restricted to the general line, thanks
to the Grauert–Mülich theorem (see [46, Corollary 2 of Theorem II.2.1.4]). A line on
X is a curve L with Hilbert polynomial t+1, i.e. such that deg(L) = 1 and pa(L) = 0:
if OX(h) is very ample, then lines on X are exactly the curves which are lines with
respect to the embedding induced by OX(h). In what follows we will denote by Λ(X)
the Hilbert scheme of lines on X.

Definition 1.7. Let X be a Fano threefold.
We say that an instanton bundle E on X with c1(E) = −εh is generically trivial

on the component Λ(X)0 ⊆ Λ(X), if h1
(
E((iX + ε − 2qεX − 1)h) ⊗ OL

)
= 0 when

L ∈ Λ(X)0 is general. E is generically trivial, if it is generically trivial on each
component.

When iX ≥ 2, then each Fano threefold is covered by lines, while this is no longer
true if iX = 1.

Generically trivial ordinary instanton bundles have been constructed on several
Fano threefolds ([25, 41, 4, 17, 3]). Thus it is quite natural to analyze the behaviour
of the instanton bundles whose existence is guaranteed by Theorems 1.5 and 1.6 when
restricted to general lines: we make such an analysis in Section 7 where we prove the
following result.

Theorem 1.8. Let X be a Fano threefold with very ample OX(h).
Then the bundles obtained via Construction 5.2 are generically trivial. Moreover,

the general bundle as in Theorem 1.6 is generically trivial.

In the same section, we also show that such bundles also behave well when re-
stricted to smooth and irreducible divisors (see Proposition 7.2).
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Theorem 1.2 implies that indecomposable instanton bundles correspond to points
inside the moduli space SX of simple torsion–free sheaves (see [1] for details about
such a space). Moreover, the instantonic condition implies by semicontinuity that
such points fill an open subset SIX .

When X ∼= P
3, the moduli space of instanton bundles with fixed charge is ir-

reducible (see [50, 51]) and smooth (see [37]). In [25], the author proves that for
many other families of Fano threefolds X with �X = 1 the moduli space of instanton
bundles with fixed charge has a generically smooth irreducible component. Similar
results have been obtained in [41, 14, 4, 17, 3] for other families of Fano threefolds.

In Section 8 we check that the instanton bundles given by Construction 5.2 rep-
resent smooth points of one and the same component of their moduli space (see
Proposition 8.1).

An instanton bundle is called minimal, if its quantum number k is as small as
possible: they typically carry additional properties (e.g. see [14, Remark 4.3]). As a
by–product of Theorem 1.5 we infer that the moduli space of minimal non–ordinary
instanton bundles E on Fano threefolds X with iX = 2 and �X = 1 is irreducible
and smooth, because such bundles are the ones studied in [49] (see Remark 8.3). In
particular such minimal non–ordinary instanton bundles are aCM (with respect to
OX(h)), i.e. hi

(
E(th)

)
= 0 for i = 1, 2 and each t ∈ Z (see also [6]).

Moreover, we also show that each instanton bundle obtained as in Theorem 1.6
is a smooth point inside the component of the moduli space which contains it (see
Proposition 8.5).

Finally, in the last Section 9, we focus on non-ordinary instanton bundles on the
two Fano threefolds with iX ≥ 3. In particular we show that non-ordinary instanton
bundles on P

3 can be realized as cohomology of a monad, similarly to the classical
ordinary case. Using such a monad we are also able to explicitly describe the locus of
jumping lines for non–ordinary instanton bundles.

Acknowledgements. The authors express their thanks the referee for her/his
comments, remarks and suggestions which have considerably improved the whole ex-
position correcting several inaccuracies. The authors also thank R. Notari for a fruitful
discussion about the proof of Proposition 8.2.

2. General results. We list below some general helpful results used throughout
the whole paper. Let X be any smooth variety with canonical line bundle ωX .

Let F be a vector bundle of rank 2 on X and let s ∈ H0
(
F
)
. In general its zero–

locus (s)0 ⊆ X is either empty or has codimension at most 2. We can always write
(s)0 = Z ∪S where Z has codimension 2 (or it is empty) and S has pure codimension
1 (or it is empty). In particular F(−S) has a section vanishing on Z, thus we can
consider its Koszul complex

0 −→ OX(S) −→ F −→ IZ|X(−S)⊗ det(F) −→ 0. (2.1)

Moreover we also have the standard exact sequence

0 −→ IZ|X −→ OX −→ OZ −→ 0 (2.2)

Sequence 2.1 tensored by OZ yields IZ|X/I2Z|X ∼= F∨(S) ⊗ OZ , whence the normal
bundle of Z inside X satisfies

NZ|X ∼= F(−S)⊗OZ . (2.3)
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Thus Z is locally complete intersection inside X, because rk(F) = 2. In particular, it
has no embedded components.

The Serre correspondence allows us to revert the above construction as follows.

Theorem 2.1. Let Z ⊆ X be a local complete intersection subscheme of codi-
mension 2.

If det(NZ|X) ∼= OZ ⊗ L for some L ∈ Pic(X) such that h2
(
L∨

)
= 0, then there

exists a vector bundle F of rank 2 on X such that:
(1) det(F) ∼= L;
(2) F has a section s such that Z coincides with the zero–locus (s)0 of s.

Moreover, if H1
(
L∨

)
= 0, the above two conditions determine F up to isomorphism.

Proof. See [5].

If F and G are coherent sheaves on X, then the Serre duality holds

ExtiX
(
F ,G ⊗ ωX

) ∼= Ext
dim(X)−i
X

(
G,F

)∨
(2.4)

(see [30, Proposition 7.4]). Moreover, we define

χ(G,F) :=
dim(X)∑
i=0

dimExtiX
(
G,F

)
.

Notice that if G is locally free, then χ(G,F) = χ(F⊗G∨). If F is locally free, Equality
(2.4) gives χ(G,F) = (−1)dim(X)χ(G ⊗ F∨ ⊗ ωX).

Consider a locally complete intersection subscheme Z ⊆ X. Then

Ex tiX
(
OZ ,OZ

) ∼= Ex ti−1
(
IZ|X ,OZ

) ∼= ∧iNZ|X (2.5)

where N∨Z|X := IZ|X/I2Z|X ∼= IZ|X ⊗OZ .
The Riemann–Roch formula for a vector bundle F on a threefold X is

χ(F) = rk(F)χ(OX) +
1

6
(c1(F)3 − 3c1(F)c2(F) + 3c3(F))

− 1

4
(ωXc1(F)2 − 2ωXc2(F)) +

1

12
(ω2

Xc1(F) + c2(ΩX)c1(F))
(2.6)

(see [28, Theorem A.4.1]).
We now assume that X is a Fano threefold. The following lemma will be helpful.

Lemma 2.2. Let X be a Fano threefold.
If F is a simple vector bundle on X, then Ext3

(
F ,F

)
= 0.

Proof. Equality (2.4) implies Ext3X
(
F ,F

)∨ ∼= HomX

(
F ,F(−iXh)

)
. In order

to prove the statement, it then suffices to check that the latter space is zero. On
the one hand, ϕ ∈ HomX

(
F ,F(−iXh)

)
, hence det(ϕ) ∈ H0

(
OX(−iXrk(F)h)

)
= 0.

On the other hand HomX

(
F ,F(−iXh)

)
⊆ HomX

(
F ,F

)
, because h0

(
OX(h)

)
�= 0

(see [34, Theorem 2.3.1]). As F is simple, each non zero endomorphism of F is an
automorphism. We deduce that necessarily ϕ = 0.

We are interested in μ–semistable bundles, hence the following lemmas will be
useful.

Lemma 2.3. Let X be a Fano threefold.
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If F is a rank 2 vector bundle on X, then F is μ–stable (resp. μ–semistable) with
respect to OX(h) if and only if h0

(
F(−D)

)
= 0 for each divisor D ⊆ X such that

Dh2 ≥ μ(F) (resp. > μ(F)).

Proof. The group Pic(X) is free, hence it suffices to apply [36, Corollary 4].

The following proposition partially clarifies the importance of the number qεX
defined in the introduction.

Lemma 2.4. Let X be a Fano threefold with very ample OX(h).
If E is a rank 2 μ–semistable bundle on X such that c1(E) = −εh with ε ∈ {0, 1}

and h1
(
E(−qεXh)

)
= 0, then

(1) h1
(
E(th)

)
= 0 for t ≤ −qεX ;

(2) h2
(
E(th)

)
= 0 for t ≥ −qεX + 1 when iX − ε is odd and for t ≥ −qεX when

iX − ε is even.

Proof. IfD is a general surface of degree −t−qεX ≥ 1, then E⊗OD is μ–semistable,
thanks to [42, Theorem 3.1]. If iX − ε �= 0, then qεX ≥ 1 and Lemma 2.3 implies

h0
(
E(−qεXh)⊗OD

)
= 0. (2.7)

If iX − ε = 0, then ε = 1 and qεX = 0. In this case μ(E ⊗ OD) = h2D/2 < 0, hence
again Equality (2.7) above holds true. The cohomology of the exact sequence

0 −→ OX(−D) −→ OX −→ OD −→ 0 (2.8)

tensored by E(−qεXh) yields the first assertion.
Thanks to Equality (2.4) we also obtain h2

(
E(th)

)
= h1

(
E(−th)

)
= 0 for t ≥

−qεX + 1 when iX − ε is odd and for t ≥ −qεX when iX − ε is even.

A helpful characterization of ordinary instanton bundles on a Fano threefold is
related to the naturality of their cohomology in a certain range. We show below that
such a characterization actually holds also in the non–ordinary case.

Proposition 2.5. Let X be a Fano threefold.
Every μ–semistable bundle E of rank 2 on X such that (1− ε)h0

(
E
)
= 0, c1(E) =

−εh and with natural cohomology in degree −qεX is an instanton bundle.
Every instanton bundle E on X has natural cohomology in degree t in the range

ε− iX ≤ t ≤ 0. More precisely, hi
(
E(λh)

)
= 0 unless either 1− qεX ≤ t ≤ 0 and i = 1,

or ε− iX ≤ t ≤ ε− iX − 1 + qεX and i = 2.

Proof. The case when iX − ε is even is covered by [14, Proposition 4.1], hence we
can restrict our attention to the odd iX − ε case. In this case 2qεX = iX + 1− ε ≥ 2,
hence qεX ≥ 1. If ε = 1, then we know that h0

(
E
)
= 0, because E is μ–semistable. If

ε = 0 the same vanishing holds by definition.
Assume that E has natural cohomology in degree −qεX . We have

h0
(
E(−qεXh)

)
≤ h0

(
E
)
= 0, h3

(
E(−qεXh)

)
= h0

(
E((1− qεX)h)

)
≤ h0

(
E
)
= 0.

If OX(dh) is very ample, then E ⊗ OS is μ–semistable for general S ∈ |dh|, thanks
to [42, Theorem 3.1]. Thus 4hc2(E) ≥ ε2h3 by Bogomolov inequality. A case by case
computation yields χ(E(−qεXh)) ≥ 0. We deduce that h1

(
E(−qεXh)

)
= 0 necessarily,

hence E is an instanton bundle.
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Conversely, let E be an instanton bundle. Equality (2.4) implies

hi
(
E(th)

)
= h3−i

(
E(−(iX − ε+ t)h)

)
= h3−i

(
E((1− 2qεX − t)h)

)
. (2.9)

Thus the cohomology of E in the range ε− iX = 1− 2qεX ≤ t ≤ 0 is known when it is
known in the range 1− qεX ≤ t ≤ 0.

If iX − ε = 1, then qεX = 1, hence t = 0. The assertion then follows from the
hypothesis. If iX − ε = 3, then qεX = 2, hence t = 0, 1. Moreover, in this case X is
either P3 or Q, hence OX(h) is very ample. Thus the statement follows by combining
the definition, Equality (2.9) and Lemma 2.4.

3. Endomorphism group of instanton bundles. In this section we deal with
the endomorphism group of an instanton bundle. The lemma below is well–known.

Lemma 3.1. Let X be a smooth variety of dimension n ≥ 2 endowed with an
ample line bundle OX(h).

If E is a strictly μ–semistable bundle of rank 2 on X, then it fits into an exact
sequence

0 −→ OX(D) −→ E −→ IZ|X(−D)⊗ det(E) −→ 0 (3.1)

where μ(OX(D)) = μ(E) and Z is either empty or of pure codimension 2.

Proof. By definition, there is a subsheaf L ⊆ E of rank 1 such that μ(L) = μ(E).
Let Q := E/L and denote by M the kernel of the natural morphism E → Q/T ,

where T ⊆ Q is the torsion subsheaf. By construction M is torsion–free and of rank
1: moreover, μ(M) ≥ μ(L) = μ(E), hence μ(M) = μ(E) because E is μ–semistable.
Since E/M is torsion–free, it follows that M is also normal thanks to [46, Lemma
II.1.1.16]. Thus [46, Lemma II.1.1.12] implies that M is reflexive, hence it is a line
bundle, thanks to [46, Lemma II.1.1.15]. We deduce that M ∼= OX(D) for some
divisor D on X.

Let s ∈ H0
(
E(−D)

)
be a non–zero section: with the notation introduced in the

previous section we write (s)0 = Z ∪ S and we can construct Sequence (2.1) with
F := E(−D). In particular we have an injective map OS(D + S) → E and we can
write the chain of inequalities

0 ≤ Shn−1 = (D + S)hn−1 −Dhn−1 ≤ μ(E)− μ(OX(D)) = 0,

i.e. S = 0, because OX(h) is ample (we are using the Nakai–Moishezon criterion: see
[28, Theorem A.5.1] and the references therein). Thus tensoring Sequence (2.1) with
F := E(−D) by OX(D) we obtain Sequence (3.1).

Theorem 1.2 stated in the Introduction is an immediate by–product of the fol-
lowing proposition.

Proposition 3.2. Let X be a smooth variety of dimension n ≥ 2 endowed
with an ample line bundle OX(h). Assume that Pic(X) has no non–trivial 2–torsion
elements and OX(h) is not 2–divisible.

If E is a rank 2 indecomposable μ–semistable bundle on X such that c1(E) = −εh
with ε ∈ { 0, 1 } and (1− ε)h0

(
E
)
= 0, then E is simple.

Proof. Trivially h0
(
E ⊗ E∨

)
≥ 1, hence we have to prove the opposite inequality

assuming E indecomposable. If E is μ–stable, then it is simple thanks to [46, Theorem
II.1.2.9]. Thus we will assume that E is strictly μ–semistable.
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Lemma 3.1 yields the existence of a divisor D on X with

Dhn−1 = μ(M) = μ(E) = −εhn

2
. (3.2)

and of Sequence (3.1). Tensoring it with E∨ ∼= E(εh) and taking its cohomology we
obtain

h0
(
E ⊗ E∨

)
≤ h0

(
E(D + εh)

)
+ h0

(
E ⊗ IZ|X(−D)

)
. (3.3)

We first show that h0
(
E(D+εh)

)
= 0. The cohomology of Sequence (3.1) tensored

by OX(D + εh) yields the exact sequence

0 −→ H0
(
OX(2D + εh)

)
−→ H0

(
E(D + εh)

)
−→ H0

(
IZ|X

) ∂−→H1
(
OX(2D + εh)

)
.

Equality (3.2) implies (2D + εh)hn−1 = 0.
If h0

(
OX(2D+εh)

)
�= 0, the Nakai–Moishezon criterion would return 2D+εh = 0,

because OX(h) is ample. If ε = 0, hence 2D = 2D + εh = 0, i.e. D = 0, because
Pic(X) has no non–trivial 2–torsion elements. The cohomology of Sequence (3.1)
implies

h0
(
E
)
= (1− ε)h0

(
E
)
≥ h0

(
OX(D)

)
= 1,

a contradiction. If ε = 1, then h = −2D, contradicting that OX(h) is not 2–divisible.
Thus

h0
(
OX(2D + εh)

)
= 0, (3.4)

hence H0
(
E(D + εh)

)
⊆ ker(∂) ⊆ H0

(
IZ|X

)
.

If Z �= ∅, then h0
(
IZ|X

)
= 0. If Z = ∅, then h0

(
IZ|X

)
= h0

(
OX

)
= 1. Since ∂

must be non–zero, because E is indecomposable, it follows that ker(∂) = 0. In both
cases we finally infer the vanishing

h0
(
E(D + εh)

)
= 0. (3.5)

We now prove h0
(
E⊗IZ|X(−D)

)
≤ 1. The cohomology of Sequence (3.1) tensored

by OX(−D) yields

h0
(
E ⊗ IZ|X(−D)

)
≤ h0

(
E(−D)

)
≤ h0

(
OX

)
+ h0

(
IZ|X(−2D − εh)

)
≤ 1 + h0

(
OX(−2D − εh)

)
.

(3.6)

We have (−2D − εh)hn−1 = 0, hence as above we again deduce

h0
(
OX(−2D − εh)

)
= 0. (3.7)

By combining Inequalities (3.3) and (3.6) with Equalities (3.5) and (3.7), we finally
obtain h0

(
E ⊗ E∨

)
≤ 1.

The above proposition leads to the following proof of Theorem 1.2 stated in the
Introduction.

Proof of Theorem 1.2. If E is indecomposable, then the statement follows from
Proposition 3.2, because on a Fano threefold X the fundamental line bundle OX(h)
is not divisible by definition and Pic(X) is torsion–free (see [34]).
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Let E be decomposable. Thus there is a divisor D ⊆ X such that E ∼= OX(D)⊕
OX(−D− εh): necessarily Dh2 = −εh3/2, otherwise E would be unstable. Moreover,
Equalities (1.1) follow from the vanishing h0

(
E
)
= 0 and the instantonic condition.

Equalities (3.4) and (3.7) imply that HomX

(
E , E

)
contains only scalar multiples

of the identity.

Notice that the existence of decomposable instanton bundles strongly depends on
the choice of the Fano threefold X, as the following example shows.

Example 3.3. Decomposable instanton bundles exist on the flag threefold (see
[41, Proposition 2.5]): it is easy to check that that the same is true on P

1 × P
1 × P

1

(see [4]). On the other hand, the blow up of P3 at a point does not support any
decomposable instanton bundle (see [14, Proposition 6.5]).

If E is an indecomposable instanton bundle on a Fano threefold X we then have
h0

(
E ⊗ E∨

)
= 1. Moreover, h3

(
E ⊗ E∨

)
= dimExt3X

(
E , E

)
= 0 thanks to Lemma 2.2.

Thus Equality (2.6) for E ⊗ E∨ yields

h1
(
E ⊗ E∨

)
− h2

(
E ⊗ E∨

)
= 2iXc2(E)h−

iXε deg(X)

2
− 3. (3.8)

4. Quantum numbers of non–ordinary instanton bundles. Before proving
Theorem 1.4 we first briefly recall the classification of Fano threefolds with iX ≥ 2
and very ample OX(h) fixing the notation (see [34] and the references therein).

• X ∼= P
3. In this case h3 = 1, iX = 4 and �X = 1.

• X is a smooth quadric Q ⊆ P
4. In this case h3 = 2, iX = 3 and �X = 1.

• X is a smooth cubic in F3 ⊆ P
4. In this case h3 = 3, iX = 2 and �X = 1.

• X is the smooth complete intersection of two quadrics in F4 ⊆ P
5. In this

case h3 = 4, iX = 2 and �X = 1.
• X is the smooth and proper intersection of the grassmannian of lines in P

4,
F5 := G(2, 5) ⊆ P

9, with a linear subspace in P
9 of dimension 3. In this case

h3 = 5, iX = 2 and �X = 1.
• X is any smooth intersection F6,2 of the image of the Segre embedding of
P
2 × P

2 inside P
8 with a hyperplane H. In this case h3 = 6, iX = 2 and

�X = 2.
• X is the image F6,3 of the Segre embedding of P1×P

1×P
1 inside P7. In this

case h3 = 6, iX = 2 and �X = 3.
• X is the blow up F7 of P3 at a point p embedded in P

8 via the linear system
induced by the quadrics through p. In this case h3 = 7, iX = 2 and �X = 2.

Recall that we already introduced in the Introduction the notion of line on a
Fano threefold and we denoted by Λ(X) their Hilbert scheme. A conic C ⊆ X is a
curve with Hilbert polynomial 2t + 1 or, in other words, such that deg(C) = 2 and
pa(C) = 0. From now on Γ(X) will denote the Hilbert scheme of conics in X.

It is helpful to identify lines and conics on X. We exploit such an identification
in the following remarks that will be used several times in the paper. In what follows
H∗(X) denotes the integral cohomology ring of X.

Remark 4.1. Let �X = 1.
If X ∼= P

3, then H∗(X) ∼= Z[h]/(h4), where h is the class of a plane. The classes
of lines and conics on X are 	 := h2 and 2h2 respectively. By definition Λ(X) is the
Grassmannian G(2, 4) of lines in P

3. The scheme Γ(X) is a projective bundle on |h|
with fibre isomorphic to the P

5 of conics in a plane.



EVEN AND ODD INSTANTON BUNDLES 91

If X is the smooth quadric Q ⊆ P
4, then H∗(X) ∼= Z[h]/(h2 − 2	, h4), where

OX(h) := OP4(1) ⊗ OX and 	 is the class of a line. The class of a conic on X is h2:
each conic in X is the intersection of X with a unique plane in P

4, hence Γ(X) is the
grassmannian G(3, 5) of planes in P

4. On X there is also an indecomposable rank 2
bundle S called spinor bundle whose sections vanish exactly on the lines inside X.
We have c1(S) = −h, c2(S) = 	, hi

(
S(th)

)
= 0 for t ∈ Z and i = 1, 2, h0

(
S
)
= 0,

hence S is μ–stable. Moreover, S fits into an exact sequence of the form

0 −→ S −→ O⊕4
X −→ S∨ −→ 0

(see [47] for all the details on spinor bundles on X). It follows that Λ(X) ∼= P
3.

Let δ := h3 ∈ { 3, 4, 5 }. Thus X contains a line: if 	 is its class in H4(X),
then h2 = δ	 and the class of a conic on X is 2	. In this case Λ(X) and Γ(X)
are respectively a smooth surface and a smooth fourfold: for more details see [39,
Propositions 2.2.10 and 2.3.8] and the references therein.

Remark 4.2. Let h3 = 6 and �X = 2, i.e. X = F6,2.
If πi : F6,2 → P

2 denotes the projection to the ith factor, then OF6,2(hi) :=
π∗iOP2(1) is globally generated, h = h1 + h2 and

H∗(F6,2) ∼=
Z[h1, h2]

(h2
1 − h1h2 + h2

2, h
3
1, h

3
2)
.

The fibres of πi are lines with class h2
i . Conversely, let β1h

2
2 + β2h

2
1 ∈ H4(F6,2) be

the class of a line L. Thus β1 + β2 = hL = 1 and βi = Lhi ≥ 0, hence the class of L
is h2

i and L is a fibre of πi. In particular two distinct lines in the same class do not
intersect. We conclude that Λ(F6,2) has two components both isomorphic to P

2.
Now let β1h

2
2 + β2h

2
1 ∈ H4(F6,2) be the class of a conic C, i.e. a curve of degree

2 with pa(C) = 0. Thus β1 + β2 = hC = 2 and βi = Chi ≥ 0. We then infer that the
class of C is either h1h2 (coinciding with h2

1 + h2
2 as cycles) or 2h2

i .
Let us consider the latter case. If C is reducible, then it is the union of two fibres

of πi which are skew lines, hence pa(C) = −1, a contradiction. Thus C must be a
double structure on a line L with class h2

i . Since h3
i = 0, it follows that each divisor

in |hi| intersecting L actually contains it, hence there is an exact sequence

0 −→ OF6,2(−2hi) −→ OF6,2(−hi)
⊕2 −→ IL|F6,2

−→ 0. (4.1)

We have I2L|F6,2
⊆ IC|F6,2

⊆ IL|F6,2
, hence a surjective morphism

ν : N∨L|F6,2

∼= IL|F6,2
/I2L|F6,2

−→ IL|F6,2
/IC|F6,2

∼= IL|C .

On the one hand, Sequence (4.1) restricted to OL yields NL|F6,2
∼= O⊕2

P1 . On the other
hand, the latter sheaf is the kernel of the natural map OC → OL, hence its Hilbert
polynomial is t. Since I2L|F6,2

⊆ IC|F6,2
, it follows that IL|C is a sheaf of rank 1 on L.

We deduce that IL|C ∼= OP1(−1), hence the morphism ν cannot exist. In particular,
this case cannot occur.

Thus the class of C is necessarily h1h2. If C is integral, then the equalities
h1h2hi = 1 and h0

(
OF6,2(hi)

)
= 3 imply that C is contained in the complete intersec-

tion of two divisors in |h1| and |h2|, hence it must coincide with it by degree reasons.
This implies the existence of an exact sequence of the form

0 −→ OF6,2
(−h) −→ OF6,2

(−h1)⊕OF6,2
(−h2) −→ IC|F6,2

−→ 0. (4.2)
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If C is not integral, then it must be the union of a fibre L1 of π1 and a fibre L2 of
π2. In particular there are pencils Σi ⊆ |hi| with base locus Li. Thus we can find a
divisor inside Σ1 containing a second point in L2 besides L1 ∩ L2, hence the whole
C because h1h

2
2 = 1. Similarly there is a divisor in Σ2 containing C and we get the

above sequence again.
Notice that the Cohomology of Sequence (4.2) tensored by OF6,2

(hi) yields the
uniqueness of the divisors in |hi| containing C. In particular, Γ(F6,2) is |h1| × |h2| ∼=
P
2 × P

2.

Remark 4.3. Let h3 = 6 and �X = 3, i.e. X = F6,3.
If πi : F6,3 → P

1 denote the ith–projection, then OF6,3
(hi) := π∗iOP1(1) is globally

generated, h = h1 + h2 + h3 and

H∗(F6,3) ∼=
Z[h1, h2, h3]

(h2
1, h

2
2, h

2
3)

.

The fibres of πi are smooth quadrics with class hi. Thus the fibres of πi × πj have
class hihj , hence they are lines. Conversely, let β1h2h3+β2h1h3+β3h1h2 ∈ A2(F6,3)
be the class of a line L. Thus β1 + β2 + β3 = hL = 1 and βi = Lhi ≥ 0, hence the
class of L is hihj and L is a fibre of πi × πj . In particular two lines in the same class
do not intersect. In particular, Λ(F6,3) has three components isomorphic to P

1 × P
1.

Now let β1h2h3 + β2h1h3 + β3h1h2 ∈ A2(F6,3) be the class of a conic C. Thus
β1+β2+β3 = hC = 2 and βi = Chi ≥ 0. Up to permutations of the indices, we then
infer that the class of C is either h1(h2 + h3), or 2h1h2. As in Remark 4.2, one can
exclude the latter case and find an exact sequence of the form

0 −→ OF6,3
(−h) −→ OF6,3

(−h1)⊕OF6,3
(−h2 − h3) −→ IC|F6,3

−→ 0. (4.3)

As in Remark 4.2 computing the Cohomology of Sequence (4.3) tensored by
OF6,3

(h1) and OF6,3
(h2 + h3) one checks that Γ(F6,3) ∼= P

1 × P
3.

Remark 4.4. Let h3 = 7, hence X = F7.
We have two natural projections, i.e. the blow up map σ : F7 → P

3 and the map
π : F7 → P

2 induced by the projection from p onto a plane P
2: we define OF7(ξ) :=

σ∗OP3(1) and OF7(f) := π∗OP2(1). Notice that both OF7(ξ) and OF7(f) are globally
generated. The map π induces an isomorphism F7

∼= P(OP2 ⊕OP2(1)), h = ξ+ f and

H∗(F7) ∼=
Z[ξ, f ]

(f3, ξ2 − ξf)
.

The fibres of π are lines with class f2. Moreover, F7 also contains the exceptional
divisor E ∼= P

2 of σ. We have { E } = |ξ − f |, hence E is also embedded in P
8 as a

plane, because Eh2 = 1. Trivially each line inside E is also a line in F7 whose image
via π is a line. Conversely, arguing as in the previous remarks one deduces that all
the lines on X are of the above form. In particular, Λ(F7) has two components both
isomorphic to P

2.
Now let β1ξf+β2f

2 ∈ A2(F7) be the class of a conic C. Thus 2β1+β2 = hC = 2,
β1 = Cf ≥ 0 and β1 + β2 = Cξ ≥ 0. It is easy to check that the class of C is ξf , or
2(ξ− f)f , or f2 and one can exclude the latter case as in Remark 4.2. Notice that in
the first case C does not intersect E, while in the second C ⊆ E. Again as in Remark
4.2 one obtains the existence of exact sequences

0 −→ OF7(−h) −→ OF7(−ξ)⊕OF7(−f) −→ IC|F7
−→ 0, (4.4)
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if the class of C is ξf , and

0 −→ OF7(−h) −→ OF7(−ξ + f)⊕OF7(−2f) −→ IC|F7
−→ 0, (4.5)

if the class of C is 2(ξ − f)f .
Thus Γ(F7) is the union of two components. One of them consists of conics

in E ∼= P
2, hence it is isomorphic to P

5. The other one is given by the complete
intersections of divisors in |f | and |ξ|. As in Remark 4.2, one deduces from the
analysis of Sequences (4.4) and (4.5) that the divisor in A ∈ |f | through C is unique
and that h0

(
OF7

(ξ) ⊗ OA

)
= 3, hence the second component is a projective bundle

over |f | ∼= P
2 with fibre P

2. In particular it has dimension 4.

We finally prove the main theorem of the section.

Proof of Theorem 1.4. We know that h0
(
E
)
= 0 by definition. Moreover, if E is

non–ordinary, then qεX ≥ 1. Table 1 will be sometimes helpful in what follows.

iX 4 4 3 3 2 2 1 1

ε 0 1 0 1 0 1 0 1

iX − ε 4 3 3 2 2 1 1 0

qεX 2 2 2 1 1 1 1 0

ordinary yes no no yes yes no no yes

Table 1: Values of iX , ε, iX − ε, qεX .

We have hi
(
E
)
= h3−i

(
E((ε − iX)h)

)
, thanks to Equality (2.4). One checks

directly that ε − iX ≤ −qεX ≤ 0, hence h3
(
E
)
= h0

(
E((ε − iX)h)

)
= 0. Lemma 2.4

implies h2
(
E
)
= 0 if iX − ε �= 0, i.e. if (ε, iX) �= (1, 1).

Thanks to Equality (2.6), when (ε, iX) �= (1, 1), we then obtain

ε− 2 +
iX − ε

2
hc2(E) = −χ(E) = h1

(
E
)
≥ 0. (4.6)

Thus hc2(E) must be even and positive when iX−ε is odd, i.e. when E is non–ordinary.
Moreover, in this case iX − ε �= 0, hence Inequality (4.6) returns

hc2(E) ≥
{

2 if iX ≥ 2,
4 if iX = 1.

Thus, in order to complete the proof of the statement, we have only to check that
there is no non–ordinary indecomposable instanton bundle E such that c2(E)h = 2
when iX = 2 and h3 ≥ 6. If it exists, then h2

(
E(h)

)
= 0 thanks to Lemma 2.4. It

follows that h0
(
E(h)

)
≥ χ(E(h)) = h3, thanks to Equality (2.6). Let s ∈ H0

(
E(h)

)
be a non–zero section.

We first assume that the zero–locus of the section s is the union of a curve Z and
an effective divisor D ⊆ X. Thus, there is a non–zero section of E(h −D) vanishing
exactly along Z whose class inside A2(X) is c2(E(h − D)) = c2(E) − hD + D2. We
know that

Dh2 − h3 = (D − h)h2 = μ(OX(D − h)) ≤ μ(E) = −h3

2
,
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because E is μ–semistable, thanks to Lemma 2.3. We deduce that

2Dh2 ≤ h3. (4.7)

Let X = F6,2. If D ∈ |α1h1 + α2h2|, then α1 = Dh2
2 ≥ 0, because D is effective:

similarly α2 ≥ 0. Inequality (4.7) yields α1 + α2 ≤ 1, hence without restricting we
can then assume D = h1. It then follows hc2(E(h − D)) = 0, hence Z = ∅ and the
Koszul complex of s becomes

0 −→ OF6,2
−→ E(h2) −→ OF6,2

(h2 − h1) −→ 0.

Such an exact sequence splits, because Ext1F6,2

(
OF6,2

(h2 − h1),OF6,2

)
= 0 (see [15,

Proposition 2.5]), hence we infer E ∼= OF6,2
(−h1)⊕OF6,2

(−h2).

Let X = F6,3. Arguing as in the previous case, we can still assume that D = h1

and we still deduce Z = ∅. The cohomology of the Koszul complex of s and the
Künneth formulas imply h0

(
E(h1)

)
�= 0, contradicting the μ–semistability of E , hence

this case cannot occur.

Let X = F7. If D ∈ |α1ξ + α2f |, then α1, α1 + α2 ≥ 0, because D is effective,
and Inequality (4.7) yields 8α1 + 6α2 ≤ 7. It follows that either D = f or D = ξ − f
and we can easily deduce as in the previous case that such a case cannot occur too.

We now assume that the zero–locus of s is a curve Z. The degree of Z is 2: the
Koszul complex of s and the inequality h0

(
E(h)

)
≥ h3 imply that Z is contained in a

plane. We deduce that Z is a possibly non–integral conic, hence ωZ
∼= OX(−h)⊗OZ .

In what follows we will again make a case by case analysis.

If X = F6,2, then we have Sequence (4.2). Recall that we also have the Kosxul
complex of s, i.e.

0 −→ OF6,2 −→ E(h) −→ IZ|F6,2
(h) −→ 0.

Equality (2.4) and the cohomology of Sequence (2.2) tensored by OF6,2
(−h) yield

Ext1F6,2

(
IZ|F6,2

(h),OF6,2)
∨ ∼= Ext2F6,2

(
OF6,2 , IZ|F6,2

(−h)
)

∼= H1
(
OF6,2

(−h)⊗OZ

) ∼= H0
(
OZ

) ∼= C.

Taking account of the equality h1
(
OF6,2(−h)

)
= 0, Theorem 2.1 and Sequence 4.2, we

deduce that E ∼= OF6,2
(−h1)⊕OF6,2

(−h2) taking into account Sequence 4.2, because
there is only one non–trivial extension of IZ|F6,2

(h) by OX .

We exclude the two remaining cases again using the μ–semistability of E . If X =
F6,3 and Z is the complete intersection of divisors in |h1| and |h2+h3|, the cohomology
of Sequence (4.3) tensored by OF6,3

(h1) yields h
0
(
E(h1)

)
= h0

(
IZ|F6,3

(h1)
)
�= 0. Since

μ(OF6,3
(−h1)) = −2 > −3 = μ(E), it follows from Lemma 2.3 that this case does not

occur.

A similar argument can be applied also to the case h3 = 7, i.e. X := F7, by com-
puting the cohomology of Sequences (4.4) and (4.5) respectively tensored by OF7

(f)
and OF7

(ξ − f).

Remark 4.5. As shown in the above proof, when iX = 2 and �X ≥ 2 the only
instanton bundle with quantum number k = 2 is OF6,2

(−h1)⊕OF6,2
(−h2).
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5. Non–ordinary instanton bundles when iX ≥ 2. The existence of ordinary
instanton bundles on a Fano threefold X with very ample OX(h) has been the object
of several papers. More precisely ordinary instanton bundles always exist when iX ≥ 2
and in several cases when iX = 1 (see the introduction and the references therein for
further details).

In this section we will show that X also supports non–ordinary instanton bundles
when iX ≥ 2. The first step in this direction is the following result.

Lemma 5.1. Let X be a Fano threefold with iX ≥ 2 and very ample OX(h).
For each non–negative integer s, there is a curve Z ⊆ X whose connected compo-

nents are s pairwise disjoint integral conics.

Proof. The statement is trivial if iX ≥ 3, hence we only need to examine the case
iX = 2 in what follows. Let d := h3 be the degree of X: we know that 3 ≤ d ≤ 7.

In this case the general hyperplane section H of X is a del Pezzo surface obtained
by blowing up r = 9 − d points in general position on P

2. Thus Pic(H) is generated
by the pull–back 	 of the class of a general line in P

2 and by the classes e1, . . . , er of
the exceptional divisors. Moreover, 	2 = −e2i = 1, 	ei = eiej = 0 for 1 ≤ i < j ≤ r.

Since the class of the hyperplane section of H is 3	−∑r
k=1 ek, it follows that that

every element in |	− e1| is a conic. Notice that two such conics do not intersect.

Now let us fix a Fano threefold X with iX ≥ 2 and consider ε ∈ { 0, 1 } such
that iX −ε is odd. The following construction extends [29, Example 3.1.2] to all Fano
threefolds with iX ≥ 2.

Construction 5.2. Let X be a Fano threefold with very ample OX(h). For
each even integer k ≥ 2, we consider the union Z of s := (k + 2qεX − 2)/2 pairwise
disjoint integral conics on X. The adjunction formula on X and the definition of Z
imply det(NZ|X) ∼= OX((iX − 1)h)⊗OZ . Since hi

(
OX(th)

)
= 0 for i = 1, 2 and each

t ∈ Z, it follows the existence of an exact sequence

0 −→ OX −→ F −→ IZ|X((iX − 1)h) −→ 0, (5.1)

thanks to Theorem 2.1. The definition of qεX implies iX − 1 = 2(qεX − 1) + ε, hence
the above sequence yields

0 −→ OX((1− qεX − ε)h) −→ E −→ IZ|X((qεX − 1)h) −→ 0. (5.2)

On the one hand, if iX = 1, then the above construction does not lead to any
instanton bundle E for every value of k, because h0

(
E
)
= 1 in this case. On the other

hand, in what follows we will show that the construction above leads to non–ordinary
instanton bundles for all the admissible values of the quantum number k given in
Bound (1.2) when iX ≥ 2.

We are now ready to prove Theorem 1.5. We first start by proving that all the
admissible values of the quantum number k can be obtained when �X = 1.

Proof of Theorem 1.5 when �X = 1. Since �X = 1 we know that each divisor D
on X is linearly equivalent to dh. Moreover, such a D is effective if and only if d ≥ 1.

It is immediate from Construction 5.2 that c1(E) = −εh and hc2(E) = k. The
cohomology of Sequence (5.2) implies h0

(
E
)
≤ h0

(
IZ|X((qεX − 1)h)

)
. The above

vanishing is trivial if qεX = 1. Thus we have to deal with P
3 and the smooth quadric

Q ⊆ P
4: in this case qεX = 2.
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In both cases Z is the union of s = (k + 2)/2 ≥ 2 pairwise disjoint conics. Thus,
if X ∼= P

3, then Z is not contained in any plane, hence h0
(
IZ|X(h)

)
= 0. Assume

X ∼= Q and let h0
(
IZ|X(h)

)
�= 0. Each hyperplane H ⊆ P

4 intersects Q along a
quadric QH ⊆ H ∼= P

3 which has rank at least 3, hence it is integral as well. It is
easy to check that two conics on an integral quadric in P

3 always intersect. It follows
that a h0

(
IZ|X(h)

)
= 0 necessarily. Consequently, h0

(
E
)
= 0 also when X is either

P
3 or Q.

Let D be a divisor on X such that μ(OX(D)) ≥ μ(E). If dh is its class, then such
a condition forces d ≥ −ε/2 ≥ −1/2, hence d ≥ 0 necessarily. Thus h0

(
E(−D)

)
≤

h0
(
E
)
= 0. Thanks to Lemma 2.3, we deduce that E is μ–stable.

We now deal with the case �X ≥ 2 distinguishing two cases.

Proof of Theorem 1.5 when �X ≥ 2. The proof is similar to the previous one. We
have only to put some more care in showing that E is μ–(semi)stable.

We have three distinct cases to deal with. The threefold X can be F6,2 ⊆ P
8, or

F6,3 ⊆ P
7, or F7 ⊆ P

8.

Let X := F6,2. Recall that conics on F6,2 were described in Remark 4.2, where
we showed that Γ(F6,2) ∼= |h1| × |h2|. Thus two distinct components of Z cannot be
contained in the same divisor in either |h1| or |h2|.

We show that E is μ–(semi)stable using Lemma 2.3 and [15, Proposition 2.5]. To
this purpose let OF6,2(D) ∼= OF6,2(α1h1 + α2h2): we have μ(OF6,2(D)) ≥ μ(E) if and
only if α1+α2 ≥ −1. Thus either both αi’s are non–negative, or one of them is strictly
negative and the other one non–negative. In both cases h0

(
OF6,2

(−h−D)
)
= 0 thanks

to [15, Proposition 2.5]. The cohomology of Sequence (5.2) yields

h0
(
E(−D)

)
≤ h0

(
IZ|F6,2

(−D)
)
. (5.3)

If αi ≥ 1 for some i, then the dimension on the right–hand side of Inequality (5.3)
vanishes. Thus we must deal with the case α1, α2 ≤ 0. If equality holds, then again
the dimension on the right vanishes. In particular E is certainly at least μ–semistable.
It then remains to deal with the case −D = hi for some i. In this case [15, Proposition
2.5] yields h1

(
OF6,2

(−h + hi)
)
= 0, hence h0

(
E(hi)

)
= h0

(
IZ|F6,2

(hi)
)
. Since k ≥ 4,

it follows that Z has at least two connected components: as we showed above such
components cannot be contained in the same divisor in |hi|, hence h0

(
IZ|F6,2

(hi)
)
= 0.

It follows that E is μ–stable in this range, hence it is also indecomposable.

Let X := F6,3. Recall that each irreducible component in Z is the complete
intersection of divisors in |hi| and |h − hi| and that two distinct components of Z
cannot be contained in the same divisors in either |hi| or |h−hi|. We will deal with the
μ–semistability of E as in the previous case using Lemma 2.3 and Künneth formulas.
In this case if OF6,3(D) ∼= OF6,3(α1h1 + α2h2 + α3h3) we have μ(OF6,3(D)) ≥ μ(E) if
and only if α1 +α2 +α3 ≥ −3/2. Thus either all the αi’s are non–negative, or one of
them is strictly negative and one non–negative. In both cases h0

(
OF6,3

(−h−D)
)
= 0,

hence we can use the same argument used for proving the μ–stability in the previous
case.

Finally we examine the μ–stability of E when X := F7 using Lemma 2.3 and [16,
Proposition 2.7]. The argument is essentially the same used before, but we need some
more care because the geometry of F7 is slightly richer. Indeed in this case Γ(F7) is
the union of the fourfold of conics which are complete intersection of divisors in |ξ|
and |f |, with the P

5 of conics inside E, as we showed in Remark 4.4. Anyhow there
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are still no divisors in |f | containing more than one component of Z. In this case if
OF7(D) ∼= OF7(α1ξ + α2f), then μ(OF7(D)) ≥ μ(E) if and only if

4α1 + 3α2 ≥ −7/2. (5.4)

The cohomology of Sequence (5.2) yields

h0
(
E(−α1ξ − α2f)

)
≤ h0

(
OF7

(−(α1 + 1)ξ − (α2 + 1)f)
)
+ h0

(
IZ|F7

(−α1ξ − α2f)
)
.

If α1 ≥ 1 the last member is zero, because −α1 = (−α1ξ − α2f)f
2. Thus we have to

deal with the case α1 ≤ 0. In this case Inequality (5.4) yields

−(α1 + 1)− (α2 + 1) ≤ −α1 +
8α1 + 7

6
− 2 =

2α1 − 5

6
< 0

hence h0
(
OF7(−(α1 + 1)ξ − (α2 + 1)f)

)
= 0. Moreover,

−α1 − α2 ≤ −α1 +
8α1 + 7

6
=

2α1 + 7

6
.

If −α1 − α2 ≤ −1, then h0
(
IZ|F7

(−α1ξ − α2f)
)
≤ h0

(
OF7

(−α1ξ − α2f)
)
= 0. Thus

we have to check the cases −α1 − α2 = 1 and −α1 − α2 = 0.
In the former case α2 = −1− α1, hence Inequality (5.4) returns 2α1 ≥ −1. The

hypothesis α1 ≤ 0 then forces α1 = 0 and we have to check if h0
(
IZ|F7

(f)
)
= 0.

In the latter case α2 = −α1 and we have to check if h0
(
IZ|F7

(−α1ξ + α1f)
)
= 0.

This is true if α1 = 0, hence we consider the case α1 ≤ −1 in what follows. In this
case h0

(
OF7(−α1ξ + α1f)

)
= 1, hence the linear system | − α1ξ + α1f | only contains

the divisor −α1E. Since we are assuming k ≥ 4, then Z has at least two connected
components, which cannot be contained simultaneously in either a divisor in |f | or in
E, as explained above. Thus the proof of the μ–stability of E is complete.

6. Non–ordinary instanton bundles on ordinary prime Fano threefolds.
In this section we will give some results on instanton bundles on an ordinary prime
Fano threefold X, proving Theorem 1.6. We will also assume that OX(h) is very
ample.

In this case H2(X) and H4(X) are respectively generated by the hyperplane class
h and by the class 	 of a line. Equality (2.6) returns

χ(OX(h)) =
h3

2
+ 3.

Thus deg(X) = h3 is an even integer. The number gX := χ(OX(h)) − 2 is usually
called the genus of X. If �X = 1, then 3 ≤ gX ≤ 12 and gX �= 11.

In this case the irreducible components of Λ(X) and Γ(X) have dimensions 1
and 2 respectively (see [39, Lemmas 2.2.3 and 2.3.4]). Moreover, there is component
Γ(X)0 ⊆ Γ(X) whose general point is an integral conic Z by [35, Theorem 4.4]. The
conics in Γ(X)0 cover X by [39, Lemma 2.3.4], hence the normal bundle of Z satisfies
NZ|X ∼= O⊕2

P1 by [35, Proposition 4.3].

Lemma 6.1. Let X be an ordinary prime Fano threefold with very ample OX(h).
If Z ∈ Γ(X)0 is general, then the general conic in Γ(X)0 and the general line in

each component of Λ(X) do not intersect Z.
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Proof. There exists a conic C not intersecting Z: see [9, Proof of Step 1 of the
proof of Theorem 4.1] where it suffices to replace H0

2(X) with Γ(X)0. Thus the same
is true for the general conic in Γ(X)0.

Let us now prove that there is a also a line in each component of Λ(X)i ⊆ Λ(X)
not intersecting Z. Assume that all the conics in Γ(X)0 intersect each line in Λ(X)i.
The scheme Ri :=

⋃
L∈Λ(X)i

L ⊆ X is an irreducible surface. If Z ∈ Γ(X)0 is general,

then Z ∩ Ri is a finite set of points, because X is dominated by Γ(X)0. Since the
surfaces Ri are irreducible, it follows that we can find a point vi ∈ Z ∩Ri lying on all
the lines in Ri. Thus each Ri is a cone with vertex vi and the general conic in Γ(X)0
passes necessarily through all such points, hence it intersects Z, contradicting what
we proved above.

In what follows we want to construct instanton bundles on each prime Fano three-
fold. On the one hand, the only line bundle we can actually use in Serre construction
for obtaining instanton bundles is OX . Thus the only admissible construction by
means of Serre correspondence is actually Construction 5.2. On the other hand, such
a construction does not return instanton bundles E because in this case h0

(
E
)
= 1, as

pointed out in the previous section. For this reason we need a different and smarter
approach for prime Fano threefolds.

The existence of minimal instanton bundles on a Fano threefold X follows from
[9, Theorem 4.1]. Thanks to an easy induction on the quantum number, it is possible
to prove the existence of even instanton bundles on each prime Fano threefold for
every admissible quantum number.

We will prove the existence of instanton bundles by induction on k. The proof
of the inductive step essentially coincides with few differences with the proof of [9,
Theorem 4.1] which suffices to prove the existence of minimal instanton bundles.
Anyhow, in order to start with our induction we need some more properties of such
minimal bundles. The proofs of these properties can be found in [9], but they are a
little hidden in the proofs and not explicitly indicated in the statements. Thus, for
reader’s benefit we explain how to recover them in what follows and how to adapt the
proof in [9] to get the inductive step.

To this purpose we introduce a new construction.

Construction 6.2. Let X be a prime Fano threefold with very ample OX(h).
If k = 2, let E2 be the bundle F obtained via Construction 5.2 from a general

Z ∈ Γ(X)0 and η : OX → E2 the corresponding inclusion map. By construction the
bundle E2 is strictly μ–semistable: moreover, restricting Sequence (5.1) to a general
integral conic Y ∈ Γ(X)0, we deduce that E2 ⊗OY

∼= O⊕2
P1 .

If k ≥ 4 is even, let Ek be a μ–stable even instanton bundle with quantum number
k, such that Ek ⊗OY

∼= O⊕2
P1 for the general Y ∈ Γ(X)0 and Ext2X

(
Ek, Ek

)
= 0.

Thus, if C ∈ Γ(X)0 is general, then the general ϕ : Ek → OC is surjective. We
define Ek,ϕ := ker(ϕ). By construction there is the exact sequence

0 −→ Ek,ϕ −→ Ek −→ OC −→ 0. (6.1)

While the existence of E2 is clear, the existence of Ek when k ≥ 4 will be proved
in what follows. Anyhow Ek,ϕ, if it exists, is not locally free at the points of C, thus it
cannot be an instanton bundle, though it enjoys many properties of instanton bundles
as we will show in the following proposition.

Proposition 6.3. Let X be an ordinary prime Fano threefold with very ample
OX(h).
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For each even k ≥ 2, the sheaf Ek,ϕ defined in Construction 6.2 satisfies the
following properties.

• Ek,ϕ is torsion–free and c1(Ek,ϕ) = 0, hc2(Ek,ϕ) = k + 2, c3(Ek,ϕ) = 0.
• h0

(
Ek,ϕ

)
= h1

(
Ek,ϕ(−h)

)
= 0.

• Ek,ϕ is simple.
• For the general Y ∈ Γ(X)0, then Ek,ϕ ⊗OY

∼= O⊕2
P1 .

• dimExt1X
(
Ek,ϕ, Ek,ϕ

)
= 2k + 1, Ext2X

(
Ek,ϕ, Ek,ϕ

)
= Ext3X

(
Ek,ϕ, Ek,ϕ

)
= 0.

Proof. Trivially Ek,ϕ is torsion free, because it is contained in the vector bundle
Ek. By combining Sequences (5.1) and (2.2) we obtain

0 −→ OX −→ F −→ OX −→ OC −→ 0. (6.2)

We deduce that the product of the Chern polynomials of F and OC must be 1, hence
c1(OC) = 0, c2(OC) = −C and c3(OC) = 0. Using these informations we compute
the Chern classes of Ek,ϕ from Sequence (6.1) obtaining c1(Ek,ϕ) = 0, c2(Ek,ϕ) =
c2(Ek) + C, hence hc2(Ek,ϕ) = hc2(Ek) + 2, and c3(Ek,ϕ) = 0.

When k ≥ 4, the vanishings h0
(
Ek,ϕ

)
= h1

(
Ek,ϕ(−h)

)
= 0 follow trivially from the

cohomology of Sequence (6.1), because the same vanishings hold for Ek by induction
and h0

(
OC ⊗OX(−h)

)
= 0.

Let k = 2. Notice that im(η) �⊆ E2,ϕ, hence the restriction ϕ ◦ η : OX → OC

is surjective. Combining Sequences (5.1) and (6.1), the Snake lemma implies the
existence of an exact sequence

0 −→ IC|X −→ E2,ϕ −→ IZ|X −→ 0, (6.3)

whence we deduce h0
(
E2,ϕ

)
= h1

(
E2,ϕ(−h)

)
= 0.

Let us prove that Ek,ϕ is simple. If k = 2 then it follows from [9, Lemma 4.5].
If k ≥ 4, then Ek,ϕ is actually μ–stable, because each sheaf destabilizing Ek,ϕ, also
destabilizes Ek, because μ(Ek,ϕ) = μ(Ek). Thus Ek,ϕ is also simple thanks to [33,
Corollary 1.2.8].

By Lemma 6.1, a general Y ∈ Γ(X)0 does not intersect C. Restricting Sequence
(6.1) to Y we then obtain Ek,ϕ ⊗OY

∼= E ⊗ OY
∼= O⊕2

P1 . In the remaining part of the

proof, we will compute dimExtiX
(
Ek,ϕ, Ek,ϕ

)
, for i ≥ 1.

Recall that Ext3X
(
Ek, Ek

)
= 0 for each k ≥ 4, thanks to Lemma 2.2, because Ek is

simple. If k = 2, then the isomorphism E2 ∼= E∨2 and Equality (2.4) yield

dimExt3X
(
E2, E2

)
= h0

(
E2 ⊗ E2(−h)

)
.

The cohomologies of Sequences (5.2) and (2.2) tensored by E2(−h) imply

h0
(
E2 ⊗ E2(−h)

)
≤ 2h0

(
E2(−h)

)
.

Again the cohomologies of the same sequences tensored by OX(−h) imply that the
dimension on the right is zero. Similarly, Ext2X

(
Ek, Ek

)
= 0 when k ≥ 4 by hypothesis.

If k = 2, then Ext2X
(
E2, E2

)
= 0 thanks to [9, Lemma 4.4].

If we apply HomX

(
Ek,−

)
to Sequence (6.1), then ExtiX

(
Ek, Ek,ϕ

) ∼= ExtiX
(
Ek, Ek

)
for i ≥ 2, because ExtiX

(
Ek,OC

) ∼= Hi
(
O⊕2

C

)
= 0 for i ≥ 1. It follows that

Ext3X
(
Ek, Ek,ϕ

)
= Ext2X

(
Ek, Ek,ϕ

)
= 0 for each k ≥ 2. Thus,

Ext3X
(
Ek,ϕ, Ek,ϕ

)
= 0, Ext2X

(
Ek,ϕ, Ek,ϕ

)
⊆ Ext3X

(
OC , Ek,ϕ

)
,
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for each k ≥ 2, by applying HomX

(
−, Ek,ϕ

)
to Sequence (6.1).

Equality (2.4) implies Ext3X
(
OC , Ek,ϕ

) ∼= HomX

(
Ek,ϕ,OC⊗OX(−h)

)
: notice that

OC ⊗OX(−h) ∼= OP1(−2). Thus from NC|X ∼= O⊕2
P1 we deduce

Ex t1X
(
OC ,OC ⊗OX(−h)

) ∼= OP1(−2)⊕2

(see Equalities (2.5)). By the above equalities, applying HomX

(
−,OP1(−2)

)
to Se-

quence (6.1) we obtain the exact sequence

0 −→ OP1(−2) −→ OP1(−2)⊕2 −→ HomX

(
Ek,ϕ,OP1(−2)

)
−→ OP1(−2)⊕2 −→ 0,

because, being Ek locally free, we have Ex t1X
(
Ek,OP1(−2)

)
= 0. Trivially the injective

map on the left has a section. Thus taking the cohomology of the induced short exact
sequence yields

HomX

(
Ek,ϕ,OP1(−2)

)
= H0

(
HomX

(
Ek,ϕ,OP1(−2)

))
= 0,

hence Ext2X
(
Ek,ϕ, Ek,ϕ

)
= 0. Thus dimExt1X

(
Ek,ϕ, Ek,ϕ

)
= 1 − χ(Ek,ϕ, Ek,ϕ). By ap-

plying HomX(Ek,ϕ,−
)
, HomX(−, Ek

)
and HomX(−,OC

)
to Sequence (6.1) we deduce

that

χ(Ek,ϕ, Ek,ϕ) = χ(Ek, Ek)− χ(Ek,OC)− χ(OC , Ek) + χ(OC ,OC).

We have χ(Ek,OC) = 2χ(OC) = 2 and χ(OC , Ek) = −2χ(OC ⊗ OX(−h)) = 2.
Equality (2.6) returns χ(Ek, Ek) = 4−2k. From Sequence (6.2) we obtain χ(OC ,OC) =
2χ(OX ,OC)− χ(F ,OC) = 0, because F ⊗OC

∼= NC|X ∼= O⊕2
C . We deduce from the

above computations that dimExt1X
(
Eϕ, Eϕ

)
= 2k + 1.

The proof of the statement is then complete.

Before starting the proof of Theorem 1.6 we collect below some helpful remarks.
We use the same notation as in Construction 6.2.

Remark 6.4. If Y ⊆ X is any pure 1–dimensional scheme, then

Ext1X
(
OY , Ek,ϕ

)
=

{
0 if C �= Y ,
1 if C = Y .

Indeed, by applying HomX

(
OY ,−

)
to Sequence (6.1) and taking into account Equality

(2.4) we obtain

Ext1X
(
OY , Ek,ϕ

) ∼= HomX

(
OY ,OC

) ∼= H0
(
HomX

(
OY ,OC

))
.

We conclude by noticing that

HomX

(
OY ,OC

)
=

{
0 if C �= Y ,
OC if C = Y .

Remark 6.5. By applying HomX

(
−, Ek

)
to Sequence (6.1) and taking into

account Equality (2.4) we obtain HomX

(
Ek,ϕ, Ek

) ∼= C.

By applying HomX

(
−,OX

)
to Sequence (6.1) we deduce E∨∨k,ϕ

∼= Ek, because OC

is a torsion sheaf on X and Ex t1X
(
OC ,OX

) ∼= Ex t1X(
OC , ωX

)
⊗OX(2h) = 0.
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The above isomorphisms show that the inclusion Ek,ϕ → Ek can be uniquely
identified with the canonical monomorphism Ek,ϕ → E∨∨k,ϕ, i.e. Sequence (6.1) is
canonically isomorphic with

0 −→ Ek,ϕ −→ E∨∨k,ϕ −→ OC −→ 0.

Let SX
(
2;−εh, ζ, 0

)
⊆ SX be the locus of simple rank 2 torsion–free sheaves with

fixed Chern classes −εh ∈ H2(X), ζ ∈ H4(X) and 0 ∈ H6(X) in what follows In
Proposition 6.3 we proved that Ek,ϕ represents a point in SX

(
2; 0, (k + 2)	, 0

)
. The

core of the proof of Theorem 1.6 is the following proposition.

Proposition 6.6. Let X be an ordinary prime Fano threefold with very ample
OX(h).

For each even k ≥ 2, a general deformation E ∈ SX
(
2; 0, (k + 2)	, 0

)
of Ek,ϕ is a

μ–stable vector bundle such that Ext2X
(
E , E

)
= 0 and E ⊗OY

∼= O⊕2
P1 for each general

Y ∈ Γ(X)0.

Proof. In what follows we will denote by S(2) the locus inside SX
(
2; 0, 2	, 0

)
of

bundles obtained via Construction 5.2 from a general Z ∈ Γ(X)0 and by S(k + 2)
the component of SX

(
2; 0, (k+2)	, 0

)
containing the point corresponding to the sheaf

Ek,ϕ for each even k ≥ 2. Moreover, S(k + 2) is smooth at Ek,ϕ of dimension

dimExt1X
(
Ek,ϕ, Ek,ϕ

)
= 2k + 1.

Let Sbad(k+2) ⊆ S(k+2) be the locus of sheaves obtained via Construction 6.2. We
claim that

dim(Sbad(k + 2)) ≤ 2k. (6.4)

If k = 2, then the points in Sbad(k+2) are parameterized by two points in Γ(X)0
(the conics Z and C) and elements in P

(
Ext1X

(
IZ|X , IC|X

))
(the Sequence (6.3)).

Thanks to the computations in [9, Proof of Step 3 of the proof of Theorem 4.1], we
know that the latter projective space reduces to a single point, whence we deduce
that Inequality (6.4) is fulfilled.

If k ≥ 4 is even, then the points in Sbad(k + 2) are parameterized by the
points of S(k) (the choice of Ek), the points in Γ(X)0 (the conic C) and elements
in P

(
HomP1

(
O⊕2

P1 ,OP1

))
(the morphism HomX

(
Ek ⊗ OC ,OC

)
up to scalars). Thus

Inequality (6.4) is again fulfilled.
It follows the existence of a flat family of torsion–free sheaves in S(k + 2) over

a smooth connected curve E → S with Es0
∼= Ek,ϕ and Es �∈ Sbad(k + 2) for s �= s0.

Thanks to [12, Satz 3] we can assume Ext2X
(
Es,Es

)
= 0 for general s ∈ S.

For each s ∈ S we have a natural exact sequence of sheaves over X

0 −→ Es −→ (Es)
∨∨ −→ Ts −→ 0. (6.5)

where Ts is a torsion sheaf on X and the dual is taken with respect to OX . Since Es is
torsion–free, it follows that the support Ts of Ts has codimension at least 2 in X (see
[46, Corollary to Theorem II.1.1.8]). Thanks to Proposition 6.3, by semicontinuity
we can assume that Es is simple and μ–semistable, h0

(
Es

)
= h1

(
Es(−h)

)
= 0 and

Es ⊗ OY
∼= O⊕2

P1 for a general Y ∈ Γ(X)0. Actually, we have two possible cases,
namely either Ts = ∅ for general s ∈ S or Ts �= ∅ for each s ∈ S.
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In the former case we can find s ∈ S such that Es
∼= (Es)

∨∨ is reflexive. We
deduce that Es is a vector bundle, because c3(Es) = 0, thanks to [27, Proposition
2.6]. We already know that Ext2X

(
Es,Es

)
= 0: an easy computation returns also the

other dimensions. Moreover, E ⊗ OY
∼= O⊕2

P1 for each general Y ∈ Γ(X)0. Finally,
h0

(
Es

)
= 0 by semicontinuity and Proposition 6.3, hence Es can be assumed μ–stable

by Lemma 2.3 as well. Thus the statement is proved with E := Es.
In what follows we will show that the case Ts �= ∅ for each s ∈ S does not occur.

First we notice that if h0
(
(Es)

∨∨(−h)
)
�= 0, then we can find a subsheaf L ⊆ (Es)

∨∨

with μ(L) = h3 > 0. If K := L ∩ Es, then μ(K) = μ(L), because the cokernel
of the map K → L induced by Es → (Es)

∨∨ has support contained in Ts: this fact
contradicts the μ–semistability of Es, because K ⊆ Es. It follows from the cohomology
of Sequence (6.5) tensored by OX(−h) that

h0
(
Ts(−h)

)
= 0, (6.6)

hence Ts cannot contain embedded points, i.e. it has pure dimension 1. Equality (6.6)
implies

χ(Ts(th)) = −h1
(
Ts(th)

)
(6.7)

for each t ≤ −1. Since (Es)
∨∨ is reflexive, it follows that h1

(
(Es)

∨∨(th)
)
= 0 for

t� 0 thanks to [27, Remark 2.5.1]. Thus the cohomology of Sequence (6.5) tensored
by OX(th) yields

h1
(
Ts(th)

)
≤ h2

(
Es(th)

)
≤ h2

(
Ek,ϕ(th)

)
(6.8)

when t� 0 by semicontinuity.
We have c1((Es)

∨∨) = c1(Es). Moreover, we know that c3((Es)
∨∨(th)), c3(Es(th))

and c2(Ts(th)) are independent of t for each t ∈ Z, thanks to [27, Lemma 2.1]. An
easy Chern class computation from Sequence (6.5) then yields

c1(Ts(th)) = 0, hc2(Ts(th)) = hc2((Es)
∨∨)− k − 2,

c3(Ts(th)) = c3((Es)
∨∨)− 2thc2(Ts),

because ci(Es) = ci(Ek,ϕ). Equality (2.6) for the sheaf T(th) yields

χ(Ts(th)) =
c3((Es)

∨∨)− hc2(Ts)

2
− thc2(Ts). (6.9)

Since Ek is locally free, we know that hi
(
Ek(th)

)
= 0 for t� 0 and i = 1, 2, hence

the cohomology of Sequence (6.1) tensored by OX(th) returns

h2
(
Ek,ϕ(th)

)
= h1

(
OC(th)

)
= −χ(OC(th)) = −2t− 1, (6.10)

for t� 0.
By combining Equalities (6.9) and (6.10) with Inequalities (6.8) and (6.7) we

finally obtain

1

2
(c3((Es)

∨∨)− hc2(Ts))− thc2(Ts) ≥ 2t+ 1

for t � 0. Thus hc2(Ts) ≥ −2: it follows that either the irreducible components of
Ts are up to two lines or Ts is an integral conic.
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In what follows we prove that the first configuration cannot occur. Let L ⊆ Ts

be a line: if equality holds, then there is an integer a such that Ts
∼= OL(a). Assume

that L �= Ts, so that deg(Ts) = 2. Let M ⊆ X be another line such that L+M = Ts

in A2(X). The restriction map OTs
→ OL induces an exact sequence

0 −→ B −→ Ts −→ A −→ 0, (6.11)

where A is supported on L and B on M . Since Ts is torsion free, then again there
are integers a, b such that A ∼= OL(a) and B ∼= OM (b).

We claim that for each line N ⊆ X and integer t we have

Ext1X
(
ON (t),Es

)
= 0. (6.12)

Indeed, by semicontinuity it suffices to check that Ext1X
(
ON (t), Ek,ϕ

)
= 0. To show

such a vanishing we apply the functor HomX

(
ON (t),−

)
to Sequence (6.1) obtaining

the exact sequence

HomX

(
ON (t),OC

)
−→ Ext1X

(
ON (t), Ek,ϕ

)
−→ Ext1X

(
ON (t), Ek

)
.

Notice that the space on the left vanishes because C ∈ Γ(X)0 is general, hence integral,
thanks to Remark 6.4. Equality (2.4) implies that

Ext1X
(
ON (t), Ek

) ∼= Ext2X
(
Ek,ON (t)⊗OX(−h)

) ∼= H2
(
Ek(−h)⊗ON (t)

)
= 0,

hence the claimed Vanishing (6.12) is completely proved.
By applying HomX

(
−,Es

)
to Sequence (6.11), we deduce that Ext1X

(
Ts,Es

)
= 0,

thanks to Vanishing (6.12), hence Sequence (6.5) should split. Thus Ts should be the
torsion subsheaf of (Es)

∨∨, which is reflexive, hence torsion free, a contradiction.
Therefore Ts is an integral conic and Ts

∼= OTs(U) where U ⊆ Ts
∼= P

1 is a
divisor linearly equivalent to up for some point p ∈ Ts. Equality (6.9) with t = 0
and the Riemann–Roch theorem on Ts yields 2u = c3((E)

∨∨). On the one hand,
the sheaf (Es)

∨∨ is reflexive, thus the locus where it is not locally free has degree
c3((Es)

∨∨) ≥ 0, thanks to [27, Proposition 2.6], hence u ≥ 0. On the other hand,
Equality (6.6) forces u− 2 < 0. We conclude that u ∈ { 0, 1 }.

Let u = 1: we will prove that such a case cannot occur, by showing that
Ext1X

(
OTs

(U),Es

)
= 0 as above. By semicontinuity it suffices to check that

Ext1X
(
OTs

(U), Ek,ϕ
)
= 0. To this purpose we apply the functor HomX

(
OTs

(U),−
)
to

Sequence (6.1) obtaining the exact sequence

HomX

(
OTs

(U),OC

)
−→ Ext1X

(
OTs

(U), Ek,ϕ
)
−→ Ext1X

(
OTs

(U), Ek
)
.

Equality (2.4) implies that

Ext1X
(
OTs(U), Ek

) ∼= Ext2X
(
Ek,OTs(U)⊗OX(−h)

) ∼= H2
(
Ek(−h)⊗OTs(U)

)
= 0.

We certainly have HomX

(
OTs(U),OC

) ∼= H0
(
HomX

(
OTs(U),OC

))
. The hy-

pothesis u = 1 and Remark 6.4 then imply HomX

(
OTs

(U),OC

)
= 0.

Thus the case u = 1 is not possible, i.e. u = 0, hence Ts
∼= OTs for each s ∈ S. It

follows the existence of a morphism S → Γ(X)0, such that T is exactly the pull–back
of the universal conic on Γ(X)0.

Thus T → S is a flat family and the flatness of the families E → S and T → S
yields the flatness of the induced family

⋃
s∈S(Es)

∨∨ → S. In particular (Es0)
∨∨ ∼= Ek
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thanks to Remark 6.5, hence (Es)
∨∨ ∈ S(k + 2) and, consequently, Es ∈ Sbad(k + 2)

for general s ∈ S, contradicting our initial choice. We conclude that the case Ts �= ∅
for each s ∈ S cannot occur.

It follows that for general s ∈ S the sheaf E := Es is a vector bundle. Since the
locus of μ–stable sheaves inside SX(2; 0, (k + 2)	, 0) is open, it follows that we can
assume that E is μ–stable. By semicontinuity, thanks to Proposition 6.3 and [12], we
know that Ext2X

(
E , E

)
= 0 and E ⊗ OY

∼= O⊕2
P1 for each general Y ∈ Γ(X)0.

We are finally ready to prove Theorem 1.6 stated in the introduction by induction
on even integers k ≥ 4. The base step is [9, Theorem 4.1].

Proof of Theorem 1.6. If k = 2, then Proposition 6.6 guarantees that the general
deformation E ∈ SX(2; 0, 4	, 0) of E2,ϕ is a vector bundle such that Ext2X

(
E , E

)
= 0.

Moreover, by semicontinuity we can also assume h1
(
E(−h)

)
= 0 and h0

(
E
)
= 0. We

deduce that E is μ–stable by Lemma 2.3, hence it is an instanton bundle with quantum
number hc2(E) = hc2(E2) + hC = 4.

Let k ≥ 4 be even and assume the existence of a μ–stable instanton bundle Ek with
quantum number k such that Ext2X

(
Ek, Ek

)
= 0 and Ek ⊗OY

∼= O⊕2
P1 for each general

integral Y ∈ Γ(X)0. The same argument used in the base step implies the existence
of a μ–stable instanton bundle E ∈ SX(2; 0, (k + 2)	, 0), such that Ext2X

(
E , E

)
= 0

and E ⊗ OY
∼= O⊕2

P1 for each general Y ∈ Γ(X)0.

We conclude this part by showing another possible approach to the construction
of even instanton bundles on a Fano threefold X with iX = 1.

Remark 6.7. Each Fano threefold X with iX = �X = 1 and gX ≥ 4 contains
a canonical curve Z ⊆ P

gX+1 as pointed out in [13, Proposition 8]. Indeed, if E is
the bundle constructed in [9, Theorem 4.1], then E(h) is globally generated and its
general section in H0

(
E(h)

)
vanishes on a canonical curve Z with pa(Z) = gX + 2.

The same is true if gX = 3 and we restrict to general X.
More in general, let X be any Fano threefold with iX = 1 and very ample OX(h).

If X contains a canonical curve Z ⊆ P
gX+1, then ωZ

∼= OX(h)⊗OZ , pa(Z) = gX +2
and deg(Z) = 2gX +2. Since hi

(
OX(h)

)
= 0 for i = 1, 2, it follows from Theorem 2.1

the existence of vector bundle E fitting into the exact sequence

0 −→ OX(−h) −→ E −→ IZ|X(h) −→ 0. (6.13)

Notice that c1(E) = 0 and c2(E) = Z − h2. Thus hc2(E) = 4.
If �X = 1, then E is a minimal μ–stable even instanton bundle E . Indeed, the

cohomology of Sequence (6.13) returns h0
(
E
)
= 0, because Z, being a canonical curve,

is non–degenerate inside P
gX+1. Lemma 2.3 then implies that E is μ–stable.

The cohomology of Sequence (2.2) yields h1
(
IZ|X)

)
= 0, because Z is inte-

gral. Thus again the cohomology of Sequence (6.13) tensored by OX(−h) returns
h1

(
E(−h)

)
= 0.

If �X ≥ 2, then the μ–(semi)stability of E cannot be deduced as easily as when
�X = 1. Indeed, if μ(OX(D)) ≥ μ(E) = 0 for a line bundle OX(D) ⊆ E , then
Sequence (6.13) implies h0

(
IZ|X(h−D)

)
= h0

(
E(−D)

)
. It follows that E is μ–stable

if there are no surfaces S ⊆ X through Z with deg(S) ≤ 2gX − 2.
Notice that there always exists an infinite family of surfaces of degree 2gX + 1

through Z, namely the cones projecting Z from its points. For some results on the
computation of the minimal degree of surfaces through a canonical curve see [21].
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7. Some further properties of instanton bundles. In this sections we first
study the instanton bundles obtained in the previous section when restricted to suit-
able divisors. Then we will inspect their splitting behaviour when restricted to lines.

The following property has been introduced in [14]

Definition 7.1. Let X be a Fano threefold.
We say that an instanton bundle E on X with c1(E) = −εh is earnest if

h1
(
E(−qεXh−D)

)
= 0 for each smooth integral divisor D ⊆ X.

Let us spend few words on earnest instanton bundles. Let D be an integral,
smooth divisor on X and assume that OX(h) is very ample. When �X = 1, then
OX(D) is very ample, hence the cohomology of Sequence (2.8) tensored by E(−qεX)
implies h1

(
E(−qεXh − D)

)
= h0

(
E(−qεXh) ⊗ OD

)
. When qεX ≥ 1 the dimension on

the right vanishes by [42, Theorem 3.1]. When qεX = 0, then iX = ε = 1: in this case
μ(E ⊗ OD) < 0 and we can argue as in the previous case.

When �X ≥ 2 such a deduction does not hold. Indeed there could be integral
smooth divisors D such that OX(D) is even not ample. E.g. such an issue always
occurs for ordinary instanton bundles on the blow up of P3 at a point or along a line:
see respectively [14, 17, 3]. Nevertheless, in these cases ordinary earnest instanton
bundles E are characterized by a finite number of further exotic instantonic conditions,
i.e. vanishings h1

(
E(−qεXh−D)

)
= 0 for a suitable divisor D ⊆ X.

In the case of the non–ordinary instanton bundles obtained in the previous sec-
tions we can prove the following result.

Proposition 7.2. Let X be a Fano threefold with very ample OX(h) and let E
be any bundle whose existence is guaranteed by Theorems 1.5 and 1.6.

(1) If X �∼= F7, then E is earnest.
(2) If X ∼= F7, then E is earnest if and only if dim(Z ∩E) = 0. Moreover, if E is

not earnest, then h1
(
E(−h−D)

)
= 0 for each smooth integral divisor D �= E

and h1
(
E(−h− E)

)
= 1.

Proof. As pointed out above E is automatically earnest if �X = 1. Thus we have
to prove the statement only when X is one of the following threefolds: F6,2, F6,3, F7.

The proof that E is earnest when X is either F6,2 or F6,3 is similar, hence we will
deal with the first case in what follows. If D ∈ |α1h1+α2h2| �= ∅, then α1 = Dh2

2 ≥ 0
and α2 = Dh2

1 ≥ 0. In particular OF6,2
(D) is globally generated, hence OF6,2

(h+D)
is ample. It follows from [42, Theorem 3.1] that h1

(
E(−h − D)

)
= 0 because E is

μ–semistable (see the argument relating the earnest property with the μ–semistability
of the restriction of E to any ample divisor).

IfX ∼= F7, then |α1ξ+α2f | contains a smoothD if and only if either α1 = −α2 = 1
or α1, α2 ≥ 0 (see [14, Remark 5.7]). In the latter case h+D is actually ample, hence
h1

(
E(−h − D)

)
= 0 thanks to [42, Theorem 3.1]. We deduce that E is earnest if

and only if h1
(
E(−h − E)

)
= 0. Since h + E = 2ξ and 2h + E = 3ξ + f , it follows

from the cohomology of Sequences (5.2) and (2.2) tensored by OF7(−h−E) and [14,
Proposition 5.4] that

h1
(
E(−h− E)

)
= h1

(
IZ|F7

(−h− E)
)
= h0

(
OZ(−h− E)

)
.

Notice that the dimension on the right is the sum of h0
(
OC(−h−E)

)
as C ∼= P

1 runs
over the conics contained Z. If the class of C in A2(F7) is ξf , then (h + E)C = 2,
hence h0

(
OC(−h−E)

)
= 0. If the class of C is 2(ξ − f)f , then (h+E)C = 0, hence

h0
(
OC(−h−E)

)
= 1. Since the components of Z are pairwise disjoint, then at most
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one of them can be contained in E ∼= P
2. We deduce that if dim(Z ∩ E) = 0, then

h0
(
OZ(−h− E)

)
= 0, while if dim(Z ∩ E) = 1, then h0

(
OZ(−h− E)

)
= 1.

We are interested in the splitting behaviour of instanton bundles when restricted
to general lines. Indeed we finally prove also Theorem 1.8 stated in the Introduction.

Proof of Theorem 1.8. Assume that E is obtained via Construction 5.2.
Let us first consider the case �X = 1. Since E is μ–stable, it follows that when

X ∼= P
3, i.e. iX = 4, then E is generically trivial thanks to [46, Corollary 1 of Theorem

II.2.1.4]. The same is true when iX = 3, thanks to [20, Proposition 5.3].
Now let iX = 2, L ⊆ Λ(X) × X the universal line and λ : L → Λ(X) the

projection to the first factor: the natural projection map χ : L → X is finite if
h3 ≥ 4 (e.g. see [39, Remark 2.2.7]). If h3 = 3 then it is generically finite and its
fibres have positive dimension at most in 30 points (e.g. see [19, p. 315 and Section
10]). It follows that for each conic C ⊆ X, then λ(χ−1(C)) ⊆ Λ(X) is a union of a
finite number of curves. Since Λ(X) is a surface (e.g. see [34, Propositions 3.5.6 and
3.5.8]), it follows that the general line on X does not intersect C.

Thus the definition of Z implies the existence of a line L ∼= P
1 which does not

intersect Z. It follows that the restriction of Sequence (5.2) to L induces a surjection
E ⊗ OL � OP1 , hence E ⊗ OL

∼= OP1 ⊕OP1(−1).
If �X ≥ 2 the argument is analogous and easier. Indeed, in this cases we know

exactly the structure of Λ(X) and Γ(X) (see Remarks 4.2, 4.3, 4.4), hence it is im-
mediate to check that the general line does not intersect Z in these cases.

Finally consider a bundle E obtained as in Theorem 1.6. Thanks to Lemma 6.1,
we know that given general Z,C ∈ Γ(X)0 the general line L in each component
of Λ(X) does not intersect them. Restricting Sequence (5.2) to L, we then deduce
E2 ⊗ OL

∼= O⊕2
P1 . Thus the restriction of Sequence (6.1) to the same line yields

E2,ϕ⊗OL
∼= O⊕2

P1 too. In particular every general deformation E ∈ SX
(
2; 0, (k+2)	, 0

)
of E2,ϕ enjoys the same property by semicontinuity.

If we now assume the existence of a generically trivial μ–stable even instanton
bundle Ek with quantum number k ≥ 4, then the same argument as above yields
the existence of a generically trivial μ–stable even instanton bundle E with quantum
number k + 2, hence the statement is proved by induction on k.

8. Moduli spaces of non–ordinary instanton bundles. In this section we
deal with the component of the moduli spaces of instanton bundles defined in the
previous sections.

Each instanton bundle E obtained via Construction 5.2 is μ–stable, hence simple.
Thus it represents a point in an open subset SIX

(
ε, ζ) of SX

(
2;−εh, ζ, 0

)
where

ζ ∈ H4(X) is such that ζh = k.

Proposition 8.1. Let X be a Fano threefold with iX ≥ 2 and very ample OX(h).
For each even integer k satisfying Inequality (1.2) all the bundles obtained via

Construction 5.2 such that the class ζ ∈ H4(X) of Z satisfies ζh = k represent
smooth points in one and the same irreducible component SI0X

(
ε, ζ) ⊆ SIX

(
ε, ζ

)
with

dimension

dim(SI0X
(
ε, ζ)) =

⎧⎨
⎩

8k − 5 if iX = 4,
6k − 3 if iX = 3,
4k − h3 − 3 if iX = 2.

Proof. In order to prove the statement, it suffices to check that 5.2

h0
(
E ⊗ E∨

)
= 1, h2

(
E ⊗ E∨

)
= h3

(
E ⊗ E∨

)
= 0, (8.1)
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thanks to Equality (3.8).
To this purpose, since E is simple, it follows that h0

(
E ⊗E∨

)
= 1 and, by Lemma

2.2, also h3
(
E ⊗ E∨

)
= 0. It remains to check that h2

(
E ⊗ E∨

)
= 0. We have

hi
(
E((1− qεX)h)

)
= h3−i

(
E(−qεXh)

)
.

thanks to Equality (2.4). In particular

h3
(
E((1− qεX)h)

)
= h0

(
E(−qεXh)

)
≤ h0

(
E
)
= 0,

h2
(
E((1− qεX)h)

)
= h1

(
E(−qεXh)

)
= 0.

Thus the cohomology of Sequence (5.2) tensored by E∨ ∼= E(εh) yields

h2
(
E ⊗ E∨

)
= h2

(
IZ|X ⊗ E((qεX − 1 + ε)h)

)
.

The cohomology of Sequence (2.2) tensored by E((qεX − 1 + ε)h) implies

h2
(
IZ|X ⊗ E((qεX − 1 + ε)h)

)
≤ h2

(
E((qεX − 1 + ε)h)

)
+ h1

(
OZ ⊗ E((qεX − 1 + ε)h)

)
.

(8.2)

On the one hand, again the cohomologies of Sequences (5.2) and (2.2) tensored
by E((qεX − 1 + ε)h) and OX((iX − 1)h) respectively imply

h2
(
E((qεX − 1 + ε)h)

)
= h2

(
IZ|X((iX − 1)h)

)
≤ h1

(
OX((iX − 1)h)⊗OZ

)
.

The latter dimension is zero because Z is the disjoint union of rational curves. Thus
the first righthand summand in Inequality (8.2) vanishes.

On the other hand, for each integral conic C ⊆ Z, Equality (2.3) implies

OC ⊗ E((qεX − 1 + ε)h) ∼= NC|X ∼= OP1(a1)⊕OP1(a2)

where a1 ≤ a2 and a1 + a2 = 2iX − 2 by adjunction on X. If iX ≥ 3, then C is
the complete intersection of hypersurfaces of degrees 1 and iX − 2, hence (a1, a2) =
(2, 2iX−4). Let iX = 2 and choose a general hyperplane section H ⊆ X containing C.
Thus NH|X ∼= OX(h) ⊗ OH and there exists a surjective morphism NC|X → NH|X .
It follows that (a1, a2) is either (0, 2) or (1, 1). Since Z is the disjoint union of conics
in X, it follows that

h1
(
OZ ⊗ E((qεX − 1 + ε)h)

)
= h1

(
NZ|X

)
= 0

regardless of iX . Thus the second righthand summand in Inequality (8.2) vanishes
too and the proof of the Equalities (8.1) is complete.

The vanishing h2
(
E ⊗ E∨

)
= 0 implies that E in SX

(
2;−εh, ζ, 0

)
is smooth and

lies in a component of dimension dimExt1X
(
E , E

) ∼= h1
(
E ⊗E∨

)
. Moreover, E is in the

image of the natural rational map Γ(X)×s ��� SX
(
2;−εh, ζ, 0

)
. Thus all the bundles

obtained via Construction 5.2 lie in the same component of SIX
(
ε, k

)
.

When �X = 1, each instanton bundle E is automatically μ–stable because h0
(
E
)
=

0. In [41, 4] the authors proved the existence of ordinary instanton bundles which are
not μ–stable on F6,2 and F6,3. When X ∼= F7, each instanton bundle with quantum
number k ≤ 14 is μ–stable (see [14]).

The picture for non–ordinary instanton bundles is clearer.
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Proposition 8.2. Let X be a Fano threefold with iX ≥ 2 and very ample OX(h).
Each non–ordinary instanton bundle on X is μ–stable if and only if X �∼= F6,2.

Proof. If �X = 1 each instanton bundle is μ–stable, hence we have to deal only
with the case �X ≥ 2. To this purpose, thanks to Lemma 2.3, it suffices to look at
the divisors D such that μ(OX(D)) = μ(E), when X is F6,2, F6,3, F7.

Since μ(E) is either −3 or −7/2 according X is either F6,2 and F6,3 or F7 respec-
tively, it follows that we can restrict to the two cases F6,2 and F6,3. In the latter case,
using the notation of Remark 4.3, we know that h2 = 2(h2h3 + h1h3 + h1h2), hence
μ(OX(D)) is certainly even.

Thus, the only case we have to deal with is X := F6,2. In this case, we claim
the existence of a strictly μ–semistable non–ordinary instanton E . To this purpose,
thanks to Lemma 2.3, it suffices to show that h0

(
E(−α1h1 − α2h2)

)
= 0 for each

OF6,2(α1h1 +α2h2) ⊆ E such that 3(α1 +α2) = μ(OF6,2(α1h1 +α2h2)) > μ(E) = −3,
i.e. α1 + α2 ≥ 0, and that h0

(
E(h1)

)
> 0.

In order to prove the claim, recall that F6,2 can be also viewed as the incidence
variety { (p, L) | p ∈ L } ⊆ P

2 × (P2)∨. If we fix coordinates u0, u1, u2 on P
2 and

we denote by v0, v1, v2 the dual coordinates in (P2)∨, then the F6,2 coincides with
intersection of the image of the Segre map P

2 × (P2)∨ → P
8 defined by

(x0, . . . , x8) = (u0v0, u0v1, u0v2, u1v0, u1v1, u1v2, u2v0, u2v1, u2v2)

with the hyperplane H := { x0 + x4 + x8 = 0 } corresponding the incidence relation
p ∈ L translated analytically as u0v0 + u1v1 + u2v2 = 0. Thus the ideal of F6,2 inside
H ∼= P

7 with coordinates x0, . . . , x7 is generated by the 2× 2–minors of the matrix⎛
⎝ x0 x1 x2

x3 x4 x5

x6 x7 −x0 − x4

⎞
⎠ .

If L ⊆ F6,2 is a line with class h2
1, then it is the fibre of the projection map on

the u–plane P
2. It follows that up to an automorphism of F6,2 we can assume that

L := { x0 = · · · = x5 = 0 }. Thanks to [45, Theorem 2.4] (or using any software for
symbolic computation) one checks that the ideal

IC := (x0, . . . , x5)
2 + (x2, x5, x0 − x4, x1x6 − x0x7, x4x6 − x3x7)

defines a scheme C ⊆ F6,2 with deg(C) = 2 and pa(C) = −2. The curve C is obtained
by doubling the line L inside the surface S with ideal

IS := (x2, x5, x0 − x4, x1x6 − x0x7, x4x6 − x3x7).

It is easy to check that IC + IF6,2
= (x2

1, x
2
3) + IS + IF6,2

and x2
4 ∈ IS + IF6,2

. It
follows that the localization of IC + IF6,2 at the prime ideals (x7) and (x6) coincides
with the localizations of the ideals (x2

1)+ IS + IF6,2 and (x2
3)+ IS + IF6,2 respectively.

Thus C is locally complete intersection inside F6,2 because S is smooth at the points
of L.

Moreover, each Cartier divisor on C is completely identified by its degree which
is twice the degree of the same divisor restricted to L: see [8, Propositions 4.1 and
4.2]. Since deg(ωC) = −6 and OF6,2(−h1 − 3h2) ⊗ OL

∼= OP1(−3), it follows that
ωC

∼= OF6,2
(−h1 − 3h2)⊗OC . Thus

det(NC|X) ∼= ωC ⊗OF6,2
(2h) ∼= OF6,2

(h1 − h2)⊗OC ,
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by adjunction. Since OF6,2
(h1) is globally generated and h3

1 = 0, it follows that

OF6,2
(−h1 − 2h2)⊗OC

∼= OF6,2
(−2h)⊗OC .

Thus [18, Theorem 2.1] yields h0
(
OF6,2

(−2h)⊗OC

)
= h1

(
IC|P7(−2h)

)
= 0.

Let Z be the union of s := (k − 2)/2 pairwise disjoint schemes of degree 2 and
genus −2 in F6,2 supported on lines in class h2

1 as above. The above discussion and
Theorem 2.1 yield the existence of a vector bundle E fitting into the exact sequence

0 −→ OF6,2(−h1) −→ E −→ IZ|F6,2
(−h2) −→ 0.

It is immediate to check that c1(E) = −h, hc2(E) = k, h0
(
E
)
= 0 and h1

(
E(−h)

)
=

h1
(
IZ|F6,2

(−h1 − 2h2)
)
. Thus

h1
(
IZ|F6,2

(−h1 − 2h2)
)
= h0

(
OF6,2(−h1 − 2h2)⊗OZ

)
= sh0

(
OF6,2(−2h)⊗OC

)
= 0,

whence we finally deduce h1
(
E(−h)

)
= 0. Moreover, h0

(
E(−α1h1 − α2h2)

)
= 0 if

α1 + α2 ≥ 0 and h0
(
E(h1)

)
= 1. Thus the claim is proved and the proof of the

proposition is complete.

If k = 2, then the bundle constructed in the proof of Proposition 8.2 splits as
OF6,2

(−h1)⊕OF6,2
(−h2): hence the above construction extends Remark 4.5 to higher

quantum numbers. Moreover, it is possible to show that h2
(
E ⊗ E∨

)
= 0 regardless

of the value of k.
In order to conclude the analysis in the case iX ≥ 2, we deal below with non–

ordinary instanton bundles with low quantum numbers and their moduli spaces. Re-
call that the minimal non–ordinary instanton bundles are the ones with quantum
number k = 2 when �X = 1 and k = 4 when �X ≥ 2 (see Theorems 1.4 and 1.5).

Remark 8.3. If �X = 1, then each instanton bundle is automatically μ–stable.
The moduli space SIX

(
ε, k	

)
is the open non–empty subset of bundles E such that

h1
(
E(−qεXh)

)
= 0 inside the Maruyama moduli space MX(2;−εh, k	) of μ–stable

rank 2 bundles (see [43] and [44]).
If iX = 4, 3, 2 and ε = 1, 0, 1 respectively, then the space MX(2;−εh, 2	), hence

SIX
(
ε, 2

)
, is irreducible and smooth: moreover it is also rational (see [31, Theorem

3.1], [48, Theorem 2.1] and [49] for the proof of this facts in the cases iX = 4, 3, 2
respectively). In particular SIX(ε, 2	

)
= SI0X(ε, 2	

)
in these cases and it actually

coincides with MX(2;−h, 2	) when iX �= 3 (see [31, Proposition 2.3] and [49, Propo-
sition 2.1]).

If X = P
3, then the moduli space MP3(2;−h, 4	) has been described in [11,

Theorems 1 and 2]. More precisely (see [11, Section 1.1]) such a moduli space has
two components, both rational. One of them is smooth of dimension 28 and its points
represent bundles E such that h1

(
E(−2h)

)
= 1, thus it does not contain any point

corresponding to an instanton bundle. The second component has dimension 27 and
its points represent bundles E such that h1

(
E(−2h)

)
= 0: it follows that it coincides

with SIP3(1, 4	) = SI0
P3(1, 4	

)
. More generally in [52] the author defines a component

M ⊆ MP3(2;−h, k	) for each even k, shows that it is different from SI0
P3(1, k	

)
for

k = 6 and conjectures that this is true for all k ≥ 6.
If X = Q, then MQ(2; 0, 4	), hence SIQ

(
0, 4	

)
, is irreducible, reduced and uni-

rational (see [48, Theorem 3.4]). It follows that SIQ(0, 4	
)
= SI0Q(0, 4	

)
.

When �X ≥ 2, then h3 ≥ 6 and minimal non–ordinary instanton bundle must
have quantum number 4. We showed in Theorem 1.5 that such bundles exist.



110 V. ANTONELLI, G. CASNATI AND O. GENC

We have h2
(
E(h)

)
= 0 for such an E by Lemma 2.4. Thus Equality (2.6) implies

h0
(
E(h)

)
≥ h3 − 3 ≥ 3. If s ∈ H0

(
E(h)

)
is a non–zero section whose zero–locus is a

curve Z, then deg(Z) = hc2(E(h)) = hc2(E) = 4. Equality (2.3) implies

det(NZ|X) ∼= det(E(h))⊗OZ
∼= OX(h)⊗OZ ,

hence the adjunction formula yields

ωZ
∼= ωX ⊗OX(h)⊗OZ

∼= OX(−h)⊗OZ .

Thus pa(Z) = −1.
We conclude the analysis of the case iX ≥ 2 by characterizing minimal instanton

bundles on F6,2 which are not μ–semistable as the ones associated to double structures
Z with pa(Z) = −2 on lines inside F6,2.

Remark 8.4. In what follows we will use the notation of Remark 4.2. It is easy
to see that the condition μ(OF6,2

(D)) = μ(E) forces the existence of an integer α such
that D = αh1 − (1 + α)h2. Let s ∈ H0

(
OF6,2

(−D)
)
be a non–zero section. If the

zero–locus of s contains a surface S, then

deg(S) = Sh2 = μ(OF6,2(S)) ≤ μ(E(−D)) = μ(E)− μ(OF6,2(D)) = 0.

We deduce that (s)0 = Z is a curve with degree c2(E(−D))h. One easily checks that
c2(E(−D))h = 2(1 − α − α2) which is negative, unless α ∈ { −1, 0 }, i.e. D = hi.
Thus we deduce deg(Z) = 2.

Let β1h
2
2+β2h

2
1 be the class of Z. Since βi = Zhi ≥ 0 and β1+β2 = deg(Z) = 2,

it follows that the possible values of (β1, β2) are (2, 0), (1, 1) and (0, 2). Let D = h1:
Equality (2.3) and the adjunction formula imply 2pa(Z) − 2 = (−h1 − 3h2)Z. Thus
pa(Z) is −2, −1 and 0 respectively in the three cases.

If the class of Z is 2h2
2, then pa(Z) = 0, hence Z would be a conic supported on

a line. We can exclude this case as in Remark 4.2.
If the class of Z is h2

1 + h2
2, then pa(Z) = −1. In this case Z is either the union

of two disjoint lines, or a double structure on a line. The latter case cannot occur
because h2

1+h2
2 is not divisible in A2(F6,2), hence Z is the union of lines Li with class

is h2
i ∈ A2(F6,2). Equality (2.3) implies that

det(NLi|F6,2
) ∼= det(E(h1))⊗OLi

∼= det(OF6,2(h1 − h2))⊗OLi

because L1 ∩L2 = ∅. Thus this case cannot occur too, because (h1−h2)h
2
1 = −1 and

NL1|F6,2
∼= O⊕2

P1 as shown above.
It follows that the class of Z is 2h2

1 and pa(Z) = −2. Thus Z is necessarily a
double structure on a line L with class h2

1 and Sequence (2.1) becomes

0 −→ OF6,2
−→ E(h1) −→ IZ|F6,2

(h1 − h2) −→ 0,

hence h0
(
E(h1)

)
= 1, i.e. the curve Z completely identifies E .

Tensoring the above sequence by OF6,2
(h2 − h1), one deduces h0

(
E(h2)

)
= 0.

Thus if we make a similar construction with h2 instead of h1, we obtain a different
family of μ–semistable minimal instanton bundles.

The instanton bundles obtained in Theorem 1.6 are μ–stable, hence simple. Thus
they represent points in an open subset SIX

(
ε, k	) ⊆ SX

(
2;−εh, k	, 0

)
.
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Theorem 1.6 is less explicit than Construction 5.2. Thus we have no way to
confront the bundles constructed in Section 6 in order to show that they lie in the
same component. Nevertheless, at least the following statement holds.

Proposition 8.5. Let X be an ordinary prime Fano threefold with very ample
OX(h).

For each even integer k satisfying Inequality (1.2) there exists an earnest instan-
ton bundle E with quantum number k representing a smooth point in an irreducible
component SI0X

(
ε, k	) ⊆ SIX

(
ε, k	

)
with dimension

dim(SI0X
(
ε, k	)) = 2k − 3.

Proof. As pointed out in the proof of Theorem 1.6 we can construct a μ–stable
instanton bundle E with Ext2X

(
E , E

)
= 0 and quantum number k. Thanks to Equality

(3.8) we obtain dimExt1X
(
E , E

)
= 2k − 3.

9. Monads for non–ordinary instanton bundles when iX ≥ 3. In this
section we prove the existence of monads for the bundles we are interested in when
X is either P3 or Q.

Proposition 9.1. Each odd instanton bundle E on P
3 with quantum number k

is the cohomology of a monad C• of the form

0 −→ (H ⊗OP3(h))∨
uψ∨(−h)−→ (K⊗ΩP3(2h))∨⊕K⊗ΩP3(h)

ψ−→H ⊗OP3 −→ 0, (9.1)

where H and K are vector spaces with

dim(H) =
3k

2
− 1, dim(K) =

k

2
,

and

u : (K ⊗ ΩP3(2h)⊕ (K ⊗ ΩP3(h))∨)(−h)→ (K ⊗ ΩP3(2h))∨ ⊕K ⊗ ΩP3(h)

is skew–symmetric.
Conversely, if the cohomology E of the monad C• is a vector bundle, then E is an

odd instanton bundle with c2(E) = k on P
3.

Proof. If E is an odd instanton bundle on P
3, then it is the cohomology in degree

0 of a complex C• with ith–module

Ci :=
⊕

p+q=i

Hq
(
E(ph)

)
⊗ Ω−p

P3 (−ph)

where, as usual, Ωt
P3 := ∧tΩP3 , thanks to [2, Beilinson’s Theorem (Strong form)]. Our

first task is to prove that hq
(
E(ph)

)
is the number in position (p, q) in table 2.

0 0 0 0 q = 3

3k
2 − 1 k

2 0 0 q = 2

0 0 k
2

3k
2 − 1 q = 1

0 0 0 0 q = 0

p = −3 p = −2 p = −1 p = 0

Table 2: The values of hq
(
E(ph)

)
for P3
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Indeed, thanks to Proposition 2.5 the cohomology of E is natural in degree 0,
hence hq

(
E
)
= 0 when q �= 1. Moreover, h2

(
E(−h)

)
= h1

(
E(−2h)

)
= 0 by definition.

The vanishing h0
(
E
)
= 0 implies h0

(
E(ph)

)
= 0 for −3 ≤ p ≤ 0. Equality (2.4)

then returns h3
(
E(−ph)

)
= 0 in the same range. For the same reason hq

(
E(ph)

)
=

h3−q
(
E((−p − 3)h)

)
for p = 0,−1 and q = 1, 2. In order to compute h1

(
E
)

=

h2
(
E(−3h)

)
and h1

(
E(−h)

)
= h2

(
E(−2h)

)
we apply Equality (2.6) to E and E(−h)

respectively.
Let H := H1

(
E
)
and K := H1

(
E(−h)

)
. Equality (2.4) implies

H2
(
E(−3h)

) ∼= H1
(
E
)∨

, H2
(
E(−2h)

) ∼= H1
(
E(−h)

)∨
,

hence the existence of a monad C• of the form

0 −→ H∨ ⊗OP3(−h) η−→ (K ⊗ ΩP3(2h))∨ ⊕K ⊗ ΩP3(h)
ψ−→H ⊗OP3 −→ 0,

follows directly from the isomorphism Ωt
P3(4h) ∼= (Ω3−t

P3 )∨ and Table 2 above.
The monads C• and (C•)∨ satisfy the hypothesis of [46, Lemma II.4.1.3], hence

the skew–symmetric isomorphism E∨(−h) ∼= E induces an isomorphism of the monads
(C•)∨(−h) ∼= C• such that the map u : C∨0 (−h) → C0 is skew–symmetric. The same
argument described after the proof of [46, Corollary 2 of Lemma II.4.1.3] finally yields
Monad (9.1).

Conversely, if the cohomology E of Monad (9.1) is a vector bundle, then it is
easy to check that rk(E) = 2, c1(E) = −1, c2(E) = k. We have to check that
h0

(
E
)
= h1

(
E(−2h)

)
= 0. To this purpose consider the two short exact sequences

0 −→ K −→ (K ⊗ ΩP3(2h))∨ ⊕K ⊗ ΩP3(h) −→ H∨ ⊗OP3 −→ 0,

0 −→ H ⊗OP3(−h) −→ K −→ E −→ 0.
(9.2)

The cohomology of Sequences (9.2) easily yields

2h0
(
E
)
≤ kh0

(
Ω∨

P3(−2h)
)
+ kh0

(
ΩP3(h)

)
,

2h1
(
E(−2h)

)
≤ kh1

(
Ω∨

P3(−4h)
)
+ kh1

(
ΩP3(−h)

)
.

The statement then follows by computing the cohomology of suitable twists of the
Euler exact sequence and its dual.

Remark 9.2. As pointed out in [23, Section 5.1], if E is an odd instanton bundle
on P

3 with quantum number k, then it is the cohomology of a monad of the form

0 −→ OP3(−2h)⊕k ⊕OP3(−h)⊕t0 −→ OP3(−h)⊕k+t0+1 ⊕O⊕k+t0+1
P3

−→ O⊕t0
P3 ⊕OP3(h)⊕k −→ 0

where t0 is the number of minimal generators of
⊕

t∈Z H
1
(
OP3(t)

)
lying in H1

(
OP3

)
.

We now turn the attention to even instanton bundles on Q. If E is even, then it
is μ–stable. Thus, we have the following well–known result.

Proposition 9.3. Each even instanton bundle E on Q with c2(E) = k	 is the
cohomology of a monad C• of the form

0 −→ H∨ ⊗OQ(−h)
uψ∨
−→K ⊗OQ

ψ−→H ⊗OQ(h) −→ 0, (9.3)
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where H and K are vector spaces with

dim(H) =
k

2
, dim(K) = k + 2

and

u : K ⊗OQ → K∨ ⊗OQ

is skew–symmetric.
Conversely, if the cohomology E of the monad C• is a vector bundle, then E is an

even instanton bundle with c2(E) = k	 on Q.

Proof. For the existence of a monad see [48, Proposition 1.1]. We can deduce its
self–duality as in the proof of Theorem 9.1. In the same way we prove the converse
part of the statement.

Remark 9.4. As pointed out in [22, Theorem 3.5] a rank 2 bundle E on Q is
the cohomology of Monad (9.3) if and only if there is at most one i ≥ 0 such that
hi
(
E(−th)

)
�= 0 where −2 ≤ t ≤ 0, at most one i ≥ 0 such that hi

(
E ⊗ S(−2h)

)
�= 0

and hi
(
E ⊗ S(−h)

)
= 0 for all i ≥ 0.

Thus Theorem 9.3 guarantees that all such sets of vanishings are automatically
satisfied by an even instanton bundle on Q. Notice that the first set of vanishings
above is exactly Proposition 2.5.

Thanks to [46, Corollary 2 of Theorem II.2.1.4] and [20, Proposition 5.3] every
instanton bundle E on either P

3 or Q is always generically trivial. We conclude the
section by dealing with the locus of lines where the splitting of E is not balanced.

Definition 9.5. Let X be a Fano threefold with very ample OX(h).
If E is an instanton bundle on X with c1(E) = −εh, then a line L ⊆ X is called

jumping line of E if h1
(
E((iX + ε− 2qεX − 1)h)⊗OL

)
�= 0. The locus of jumping lines

of E inside Λ(X) will be denoted by JE .
We say that E has expected splitting type if the codimension of all the components

of JE inside Λ(X) is 1 + ε.

Example 9.6. If iX ≥ 3 and E is an even instanton bundle, then [46, Corollary
2 of Theorem II.2.1.4] and [20, Proposition 5.3] imply that E has expected splitting
type. This is no longer true if iX ≤ 2. Indeed in this case the projection χ : L → X
can have disconnected fibres as pointed out in [38, Section 3.7], hence the standard
approach of [46, 20] does not work.

WhenX = P
3 and E is odd with quantum number 2, then E has expected splitting

type, thanks to [31, Section 4]. As far as we know, there are no other general results
even when iX ≥ 3: indeed one cannot say anything even about the analogous problem
for bundles on P

2: see [32, Example 10.7.2].

Let λ̂ and χ̂ the natural projections Λ(X) × X on the first and second factor
respectively. We will denote by λ and χ their restrictions to the universal line L ⊆
Λ(X)×X. The following lemma follows immediately by the above definition.

Lemma 9.7. Let X be a Fano threefold with very ample OX(h).
If E is an instanton bundle on X with c1(E) = −εh, then the locus JE ⊆ Λ(X) is

the support of the sheaf R1λ∗χ∗E((iX + ε− 2qεX − 1)h).
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Proof. The open locus Λ(X) \ JE is by definition 9.5 the set of L ∈ Λ(X) such
that h1

(
E((iX + ε − 2qεX − 1)h) ⊗ OL

)
= 0. Thanks to [28, Corollary III.12.9], it is

thus the locus where R1λ∗χ∗E((iX + ε− 2qεX − 1)h)) = 0.

We first deal with instanton bundles on P
3. Recall that Λ(P3) = G(2, 4) is the

Grassmannian of lines in P
3 which is a quadric in P

5 endowed with the induced natural
polarization OΛ(P3)(1). In this case JE is the support of the sheaf R1λ∗χ∗E .

The quadric Λ(P3) contains two families of planes which are classically known as
α–planes (the lines through a fixed point) and β–planes (the lines contained in a fixed
plane). Both these families of planes correspond to the non–zero sections of the two
rank 2 spinor bundles on Λ(P3) (see [47]).

As pointed out in [26, Section 1.5], H∗(Λ(P3)) is generated by the Schubert cycles.
More precisely, H2(Λ(P3)) is generated by σ1 (representing the set of lines in Λ(P3)
intersecting a fixed one), A2(Λ(P3)) by σ2 and σ1,1 (representing respectively the
classes of the α–planes and β–planes in Λ(P3)). Moreover, the relation σ2

1 = σ2+σ1,1

holds inside Λ(P3).
Let S be the spinor bundle corresponding to the α–planes.

Proposition 9.8. Let E be an odd instanton bundle on P
3 with quantum number

k.
If E has expected splitting type, then JE ⊆ Λ(P3) is endowed with a sheaf G fitting

into

0 −→ OΛ(P3)(−k) −→ (K ⊗OΛ(P3)(1))
∨ ⊕ (K ⊗ S)

Ψ−→H ⊗OΛ(P3) −→ G −→ 0.
(9.4)

Moreover, the class of JE in H∗(Λ(P3)) is

k2

2
σ2 +

k(k − 1)

2
σ1,1.

Proof. Splitting Monad (9.1) we obtain the exact sequences

0 −→ χ∗K −→ (K ⊗ χ∗ΩP3(2h))∨ ⊕ (K ⊗ χ∗ΩP3(h)) −→ H ⊗ χ∗OP3 −→ 0,

0 −→ H∨ ⊗ χ∗OP3(−h) −→ χ∗K −→ χ∗E −→ 0.
(9.5)

As in the previous proof we apply the functor λ∗ to the two above sequences. In par-
ticular we have to identify for all i ≥ 0 the sheaves Riλ∗χ∗Ω∨P3(−2h), Riλ∗χ∗ΩP3(h),
Riλ∗χ∗OP3(−th) where t = 0, 1.

The structure sheaf of the universal line fits into an exact sequence of the form

0 −→ OΛ(P3)(−1)�OP3(−2h) −→ S �OP3(−h)
−→ OΛ(P3)×P3 −→ OL −→ 0.

(9.6)

We will compute Riλ∗χ∗Ω∨P3(−2h), Riλ∗χ∗ΩP3(h), Riλ∗χ∗OP3(−th) where t = 0, 1

by applying the functor λ̂∗ to Sequence (9.6) tensored by χ̂∗Ω∨
P3(−2h), χ̂∗ΩP3(h),

χ̂∗OP3(−th) where t = 0, 1, making use of the projection formula [28, Exercise III.8.3]

and taking into account that λ̂∗F̂ ∼= λ∗F for each sheaf supported on L .
Let G be a sheaf on P

3. For each L ∈ Λ(P3) we denote by k(L) the residue field of
OΛ(P3) at L. Trivially hi

(
χ̂∗G⊗k(L)

)
= hi

(
G
)
, hence the function L �→ hi

(
χ̂∗G⊗k(L)

)
is constant on Λ(P3). Thus [28, Corollary III.12.9] implies that

Riλ̂∗(OΛ(P3)(−s)� G) ∼= OΛ(P3)(−s)⊗Riλ̂∗χ̂∗G ∼= OΛ(P3)(−s)⊗Hi
(
G
)
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In this way we deduce that

R0λ∗χ∗OP3 ∼= OΛ(P3), R0λ∗χ∗Ω∨P3(−2h) ∼= OΛ(P3)(−1), R0λ∗χ∗ΩP3(h) ∼= S,

all the otherRi’s being zero. Replacing the above isomorphisms in the first of Sequence
(9.5) and taking into account that the second of such sequences gives Riλ∗χ∗K ∼=
Riλ∗χ∗E we finally obtain the exact sequence

0 −→ λ∗χ∗E −→ (K ⊗OΛ(P3)(1))
∨ ⊕ (K ⊗ S)

Ψ−→H ⊗OΛ(P3) −→ R1λ∗χ∗E −→ 0,
(9.7)

where the map Ψ is induced by ψ∨(−h). In particular R1λ∗χ∗E has rank 1. Since
E has expected splitting type, then all the components of JE have codimension 2.
In this case c1(R

1λ∗χ∗E) = 0, hence computing it from Sequence (9.7) we obtain
λ∗χ∗E ∼= OΛ(P3)(−k). Taking into account such a latter isomorphism, Sequence (9.4)
is exactly Sequence (9.7).

In order to complete the proof, notice that the class of JE inside H∗(Λ(P3)) is

−c2(G) = c2
(
(K ⊗OΛ(P3)(1))

∨ ⊕ (K ⊗ S)
)

= c2
(
(K ⊗OΛ(P3)(1))

∨)+ c2 (K ⊗ S) + c1
(
(K ⊗OΛ(P3)(1))

∨) c1 (K ⊗ S) .

By direct computation one checks that

c1
(
(K ⊗OΛ(P3)(1))

∨) = c1 (K ⊗ S) = −k

2
σ1,

c2
(
(K ⊗OΛ(P3)(1))

∨) = k(k − 2)

8
σ2
1 , c2 (K ⊗ S) = k(k − 2)

8
σ2
1 +

k

2
σ2.

The statement then follows by combining the above equalities

Now we turn our attention to the quadric Q ⊆ P
4. Recall that Λ(Q) ∼= P

3. In
this case JE is the support of the sheaf R1λ∗χ∗E(−h) and it is a divisor (see Example
9.6).

Proposition 9.9. Let E be an even instanton bundle on Q with quantum number
k.

Then JE ⊆ Λ(Q) is a divisor of degree k endowed with a sheaf G fitting into

0 −→ H∨ ⊗OΛ(Q)(−2) Ψ−→H ⊗OΛ(Q) −→ G −→ 0. (9.8)

Moreover, JE is a hypersurface of degree k.

Proof. Splitting Monad (9.3) we obtain the exact sequences

0 −→ χ∗K(−h) −→ K ⊗ χ∗OQ(−h) −→ H ⊗ χ∗OQ −→ 0,

0 −→ H∨ ⊗ χ∗OQ(−2h) −→ χ∗K(−h) −→ χ∗E(−h) −→ 0.
(9.9)

As in the previous proof we apply the functor λ∗ to the two above sequences. In
particular we have to identify the sheaves Riλ∗χ∗OQ(−th) for t = 0, 1, 2 and i ≥ 0.

Recall that Λ(Q) ∼= P
3 is endowed with the standard polarization OP3(1) and OL

fits into the exact sequence

0 −→ OΛ(Q)(−2)�OQ(−h) −→ OΛ(Q)(−1)� S
−→ OΛ(Q)×Q −→ OL −→ 0

(9.10)
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where S is the unique spinor bundle on Q, whose non–zero sections vanish exactly on
the lines inside Q. We then compute Riλ∗χ∗OQ(−th) by applying the functor λ̂∗ to
Sequence (9.10) tensored by χ̂∗OQ(−th). We then deduce

R1λ∗χ∗OQ(−2h) ∼= OΛ(Q)(−2), R0λ∗χ∗OQ
∼= OΛ(Q),

all the other Ri’s being zero. Replacing the above isomorphisms in Sequences (9.9)
we finally obtain Sequence (9.8) where G ∼= R1λ∗χ∗E(−h) and Ψ is induced by the
map ψ : H∨ ⊗ χ∗OQ(−2h)→ K ⊗ χ∗OQ(−h).

Finally observe that G is supported on the vanishing locus of det(Ψ). The state-
ment then follows by noticing that Ψ is represented by a k/2 square matrix of degree
two homogenous forms (see Sequence (9.8)).
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[11] C. Bănică and N. Manolache, Rank 2 stable vector bundles on P3(C) with Chern classes
c1 = −1, c2 = 4, Math. Z. 190 (1985), pp. 315–339.
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