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OBSTRUCTIONS TO REPRESENTATIONS UP TO HOMOTOPY
AND IDEALS∗

M. JOTZ†

Abstract. This paper considers the Pontryagin characters of graded vector bundles of finite
rank, in the cohomology vector spaces of a Lie algebroid over the same base. These Pontryagin
characters vanish if the graded vector bundle carries a representation up to homotopy of the Lie
algebroid. In other words, strong obstructions to the existence of a representation up to homotopy
on a graded vector bundle of finite rank are found. In particular, if a graded vector bundle E0[0]⊕
E1[1] → M carries a 2-term representation up to homotopy of a Lie algebroid A → M , then all the
(classical) A-Pontryagin classes of E0 and E1 must coincide.

This paper generalises as well Bott’s vanishing theorem to the setting of Lie algebroid represen-
tations (up to homotopy) on arbitrary vector bundles. As an application, the main theorems induce
new obstructions to the existence of infinitesimal ideal systems in a given Lie algebroid.
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1. Introduction. Representations up to homotopy of Lie algebroids were found
by Arias Abad and Crainic [2] to be a convenient geometric setting for defining the
adjoint representation of a Lie algebroid. They showed in [1] that the adjoint represen-
tation up to homotopy is the right notion of adjoint representation of a Lie algebroid
since it can be used to define its Weil algebra. The precursor notion of strong homo-
topy representation could be found already much earlier in [40], in the context of con-
strained Poisson algebras – incidentally, in the study of ideals in constrained Poisson
algebras. Further, 2-term representations up to homotopy are super-representations
in the sense of Quillen [37].

Gracia-Saz and Mehta found in [18] that these 2-representations are equivalent to
splittings of VB-algebroids. This latter insight in particular led in the last ten years
to advances in the study of VB-algebroids with an additional geometric structure –
see [8], [22, 24, 20], [23, 26, 27], [17], [29], [15], [38] among others. Representations up
to homotopy, in particular 2-representations, were further richly studied in e.g. [5],
[7], [34], [41], [3], [26], [4].

Obstructions to the existence of n-representations. Recall the definition
of an n-term representation up to homotopy [2], also called flat superconnection in
[18] following [37], but named here n-representation for short.

Definition ([2, 18]). Let A → M be a Lie algebroid. Then an n-representa-
tion of A is a graded vector bundle E = E0[0] ⊕ . . . ⊕ En−1[n − 1] → M with an
operator1

D : Ω(A,E)• → Ω(A,E)•+1
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1Here, Ω(A,E)• is the space of A-forms with values in E, see Section 2.1.
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that increases the total degree by 1 and satisfies D2 = 0 as well as

D(ω ∧ η) = dAω ∧ η + (−1)lω ∧ Dη (1)

for ω ∈ Ωl(A) and η ∈ Ω(A,E)•.

An n-connection (or n-term connection up to homotopy) of a Lie algebroid
A on a graded vector bundle E = E0[0] ⊕ . . . ⊕ En−1[n − 1] → M is defined to
be an operator D as in the definition above, but without the condition D2 = 0, see
e.g. [37, 18, 33].

The A-Pontryagin classes of a vector bundle E measure “the failure of E to have
a flat A-connection” – or in other words to carry a representation of A. Therefore,
it is natural to ask if there are characteristic classes of a graded vector bundle E =
E0[0]⊕ . . .⊕ En−1[n− 1]→ M that measure its failure to carry an n-representation
of a Lie algebroid A.

This paper explores the fact that the Chern-Weil construction of Pontryagin char-
acters carries over almost word by word to the setting of n-connections, if the graded
trace on2 End(E) replaces the trace on endomorphisms of an ordinary vector bundle
[37, 33]. In short, given an n-connection, its curvature D2 is (graded) Ω•(A)-linear
and “equals” a form RD ∈ Ω(A,End(E))• of total degree 2. The graded trace ŝtr(Rl

D)

of the l-th power of this form is just an element of Ω2l(A), with dA

(
ŝtr(Rl

D)
)
= 0,

hence defining a cohomology class[
ŝtr(Rl

D)
]
∈ H2l(A),

called here the l-th Pontryagin character of the graded vector bundle. These
classes, for l ∈ N, do not depend on the choice of the n-connection on E, and they
generate together the A-Pontryagin algebra of the graded vector bundle E, as
an R-subalgebra of H•(A). Obviously the A-Pontryagin algebra of E vanishes if E
carries an n-representation of A.

A connection ∇ : Γ(A)× Γ(E)→ Γ(E) that preserves the grading is an example
of an n-connection of A on E. Therefore the generators above of Pont•A(E) are
alternating sums of the classical Pontryagin characters of the terms Ei of E, i =
0, . . . , n − 1. This immediately yields the following theorem, which seems to have
been overlooked so far in the literature.

Theorem A. Let E = E0[0] ⊕ . . . ⊕ En−1[n − 1] be a graded vector bundle over
a smooth manifold M , and let A → M be a Lie algebroid. If there exists an n-
representation D of A on E, then the Pontryagin characters σl

A(Ei), l > 1, of the
vector bundles Ei, i = 0, . . . , n− 1, satisfy the equations

n−1∑
i=0

(−1)iσl
A(Ei) = 0 ∈ H2l(A) (2)

for all l > 1.

In particular, for a graded vector bundle with grading concentrated in degrees 0
and 1, this theorem gives a simple obstruction to the existence of a 2-representation.

2The notation End emphasises the fact that the endomorphism space of a graded vector bundle
E is considered itself as a graded vector bundle.
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Theorem B. Let E0 and E1 be smooth vector bundles over M , and let A → M
be a Lie algebroid. If there is a 2-representation of A on E0[0] ⊕ E1[1], then the
A-Pontryagin classes of E0 and E1 are equal:

plA(E0) = plA(E1) ∈ H l(A)

for all l ≥ 0.

Using the adjoint representation up to homotopy of a Lie algebroid A → M ,
which is a 2-representation of A on A[0]⊕ TM [1], this yields the following result.

Theorem C. Let A be a vector bundle over a smooth manifold M , and let ρ : A→
TM be a vector bundle morphism over the identity. If A→M carries a Lie algebroid
structure with anchor ρ, then the Pontryagin classes of A and TM satisfy

ρ�
(
pl(A)

)
= ρ�

(
pl(TM)

) ∈ H l(A)

for all l ≥ 1.

This is in fact a special case of the following theorem, which is proved using a
similar method.

Theorem D. Let A and B be Lie algebroids over M . If there is a Lie algebroid
morphism φ : B → A over the identity on M , then

φ∗plA(A) = plB(A) = plB(B) = φ∗plA(B) ∈ H l(B)

for all l ≥ 1.

Theorems A, B, C and D are proved in Section 4.4.

Bott’s vanishing theorems and obstructions to the existence of ideals in
Lie algebroids. The starting point of this paper is actually Bott’s vanishing theorem
[6] on Pontryagin classes and foliations:

Theorem ([6]). Let M be a smooth manifold and let F be a subbundle of codi-
mension q of TM . If F is involutive, then the Pontryagin spaces

Pontl (TM/F ) ⊆ H l(M)

of TM/F are all trivial for l > 2q.

Since an involutive subbundle F ⊆ TM is always represented on the normal bun-
dle TM/F via the Bott connection [6], this theorem is a special case of the following
result (see Section 3.1 and Theorem 4.15 for the counterpart of this theorem in the
context of representations up to homotopy).

Theorem E. Let E be a smooth vector bundle over a smooth manifold M and let
A be a Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension
q with a linear representation ∇ : Γ(B)×Γ(E)→ Γ(E), then the A-Pontryagin spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > 2q.

The generalisation of this theorem to the setting of Pontryagin algebras of a
graded vector bundle is given by Theorem 4.15. Although it does not yet lead to
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additional obstruction results for particular examples, its proof is given in detail for
completeness and future applications.

The author’s original motivation for proving Theorem E is her search for topo-
logical obstructions to the existence of ideals in Lie algebroids. Jointly with Ortiz,
the author identified in [29] what they consider the “right notion” of ideals in Lie al-
gebroids. These objects are called infinitesimal ideal systems and defined as follows.

Definition 1.1 ([29], [19]). Let (q : A→M,ρ, [· , ·]) be a Lie algebroid, F ⊆ TM
an involutive subbundle, J ⊆ A a subbundle over M such that ρ(J) ⊆ F , and ∇ a flat
partial F -connection on A/J with the following properties:

(1) If a ∈ Γ(A) is ∇-parallel3, then [a, j] ∈ Γ(J) for all j ∈ Γ(J).
(2) If a, b ∈ Γ(A) are ∇-parallel, then [a, b] is also ∇-parallel.
(3) If a ∈ Γ(A) is ∇-parallel, then ρ(a) is ∇F -parallel, where

∇F : Γ(F )× Γ(TM/F )→ Γ(TM/F ), ∇F
X Ȳ = [X,Y ]

is the Bott connection associated to F .
Then the triple (F, J,∇) is an infinitesimal ideal system in A.

The first axiom implies immediately that J ⊆ A is a subalgebroid of A. Infinites-
imal ideal systems are an infinitesimal version of the ideal systems in [21, 31] – the
latter are exactly the kernels of fibrations of Lie algebroids [21]. Infinitesimal ideal
systems already appear in [19] (not under this name) in the context of geometric
quantization as the infinitesimal version of polarizations on groupoids. Moreover, the
special case where F = TM has been studied independently in [13] in relation with a
modern approach to Cartan’s work on pseudogroups.

Consider an involutive subbundle F ⊆ TM and the Bott connection
∇F : Γ(F ) × Γ(TM/F ) → Γ(TM/F ) associated to it. Then the triple (F, F,∇F )
is an infinitesimal ideal system in the Lie algebroid TM . Therefore, Bott’s vanishing
theorem provides an obstruction result for this particular class of infinitesimal ideal
systems. The general goal of this paper is to find adequate generalisations of Bott’s
vanishing theorem, yielding obstructions to the existence of infinitesimal ideal systems
in a given Lie algebroid A→M in terms of the Pontryagin classes of A and TM .

The following result (see Propositions 5.4 and 5.5) gives the first information that
can be extracted from Theorem E and the definition of an infinitesimal ideal system.

Theorem F. Let (F, J,∇) be an infinitesimal ideal system in a Lie algebroid
A → M . Let s be the codimension of J in A and let q be the codimension of F in
TM . Then

(1) the Pontryagin spaces Pontl(A/J) and Pontl(TM/F ) in H•(M) all vanish
for l > 2q, and

(2) the Pontryagin spaces PontlA(A/J) and PontlA(TM/F ) in H•(A) all vanish
for l > 2min{s, q}.

However, this result turns out to be rather unsatisfactory on its own because it
uses only very few of the axioms of an infinitesimal ideal system: (1), (2) and (3)
in the definition are not used in the proof of this proposition. These three axioms
ensure [15] that an infinitesimal ideal system in a Lie algebroid A → M defines a
subrepresentation J [0] ⊕ F [1] of the adjoint representation up to homotopy of A on

3A section a ∈ Γ(A) is said to be ∇-parallel if ∇X ā = 0 for all X ∈ Γ(F ). Here, ā is the class
of a in Γ(A/J) � Γ(A)/Γ(J).



OBSTRUCTIONS TO REPRESENTATIONS UP TO HOMOTOPY 141

A[0]⊕ TM [1], after the choice of a suitable connection. Theorem B hence translates
this fact to the context of A-Pontryagin classes of F and J . More precisely, the results
in [15] and Theorem B lead to further obstructions to the existence of an infinitesimal
ideal system in a Lie algebroid A (see Theorem G):

Theorem G. Let (A→M,ρ, [· , ·]) be a Lie algebroid. If (F, J,∇) is an infinites-
imal ideal system in A, then

plA(J) = plA(F )

for all l ≥ 1.

Outline of the paper. Section 2 recalls in detail the Chern-Weil construction of
the Pontryagin classes of a vector bundle, using the powerful modern language exposed
in [14]. The author recommends here as well the reference [42], which summarises
in a beautiful manner the construction of characteristic classes associated to vector
bundles and principal bundles, as well as some of their applications in geometry and
topology.

Section 3 proves the first generalisation of Bott’s vanishing theorem in [6], and
proves a refinement of it in the case where an appropriate Atiyah class vanishes.

Section 4 studies connections up to homotopy and the Pontryagin algebras of
graded vector bundles of finite rank. The obstruction to the existence of represen-
tations up to homotopy is also proved there, as well as Bott’s vanishing theorem for
graded vector bundles.

Section 5 finally applies the prior results to the study of characteristic classes
defined by infinitesimal ideal systems in Lie algebroids.

Throughout the paper, all the considered manifolds and vector bundles are as-
sumed to be smooth.

Outlook. The construction of the A-Pontryagin algebra of a graded
vector bundle presented here can be extended to a construction of the
(M,Q)-Pontryagin algebra of a graded vector bundle, for a Lie n-algebroid (M,Q).
This is the subject of a project in progress that is joint with Theocharis Papantonis.

Acknowledgements. The author warmly thanks her student Jannick Rönsch
for writing his Bachelor thesis about Section 2.2 and Theorem E, which could already
be found in an earlier draft of this article. The review of his thesis, as well as the
supervision meetings, were a source of motivation for the author to continue her
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careful reading, Thomas Schick for inspiring discussions, and Jim Stasheff and anony-
mous referees for useful comments and suggestions.

Terminology. Let A→M be a Lie algebroid. The A-Pontryagin characters of a
vector bundle should not be confused with its A-Pontryagin classes. They are another
set of generators of the A-Pontryagin algebra of the vector bundle. To be precise, they
are the images under the Chern-Weil morphism of the polynomials X 	→ tr(Xi), i ∈ N

– see Section 2.3. In the complex case, these polynomials yield the Chern characters
which, up to multiplications with some complex coefficients, sum up to the Chern
character of the complex vector bundle.
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2. Preliminaries. This section recalls the modern definition of Pontryagin
classes of a vector bundle. It begins with some background on linear connections
on vector bundles and the associated calculus on differential forms. The second sub-
section recalls the definition of the Pontryagin classes of a vector bundle. In this
section, the main reference is [14], but A-Pontryagin classes of a vector bundle were
defined in [16].

2.1. Notation and vector-valued forms. Given a Lie algebroid A→M , the
Lie algebroid cohomology defined by the complex (Ω•(A),dA) is written H•(A). The
cohomology H•(TM) is just written H•(M) since the cohomology of the standard
Lie algebroid TM →M is just the de Rham cohomology of M .

Let A be a Lie algebroid over a manifold M and let E →M be a vector bundle.
Then Ω•(A,E) := Γ(∧•A∗ ⊗ E). If A = TM is the standard tangent Lie alge-
broid, then Ω•(TM,E) is written Ω•(M,E) for simplicity. The degree of a (degree-
homogeneous) element ω of Ω•(A,E) is written |ω| ∈ N.

For K ∈ Ωl(A,Hom(E,E′)), the graded Ω•(A)-linear operator K̂ : Ω•(A,E) →
Ω•+l(A,E′) is defined by K̂(ω) = K ∧ ω, i.e.

K̂(ω)(a1, . . . , as+l) =
∑

σ∈S(l,s)

(−1)σK(aσ(1), . . . , aσ(l))(ω(aσ(l+1), . . . , aσ(l+s)))

for ω ∈ Ωs(A,E) and a1, . . . , as+l ∈ Γ(A). Here, S(l,s) is the set of (l, s)-shuffles,
i.e. the permutations σ ∈ Sl+s such that σ(1) < . . . < σ(l) and σ(l+1) < . . . < σ(l+s).

The space of graded-Ω•(A)-linear operators Ω(A,E) → Ω(A,E′)
is denoted by Hom•Ω(A)(Ω(A,E),Ω(A,E′)). That is, an element K of

Homs
Ω(A)(Ω(A,E),Ω(A,E′)), for s ≥ 0, is a map K : Ω•(A,E) → Ω•+s(A,E′)

satisfying K(ω ∧ η) = (−1)s·|ω|ω ∧ K(η) for all ω ∈ Ω•(A) and η ∈ Ω•(A,E).

The map Ω•(A,Hom(E,E′)) → Hom•Ω(A)(Ω(A,E),Ω(A,E′)) given by K 	→ K̂

is a bijection [2], with inverse sending K : Ω•(A,E) → Ω•+s(A,E′) to K0 ∈
Ωs(A,Hom(E,E′)) defined by

K0(a1, . . . , as)(e) = K(e)(a1, . . . , as)
for a1, . . . , as ∈ Γ(A) and e ∈ Γ(E) = Ω0(A,E).

Let now E = ⊕z∈ZEz[z] be a graded vector bundle over M . As always, the Ω•(A)-
module of E-valued forms Ω(A,E)• has a total grading given by deg η = j + l for
η ∈ Ωj(A,El). Here also, there is a bijection between elementsK ∈ Ω(A,Hom(E,F ))s
and graded-Ω•(A)-linear operators K : Ω(A,E)• → Ω(A,F )•+s that increase the total
degree by s. An element K ∈ Ω(A,Hom(E,F ))s can be written

K =

s∑
i=0

∑
j−l=s−i

Ki,l,j ∈
s⊕

i=0

⊕
j−l=s−i

Ωi(A,Hom(El, Fj)),

i.e. withKi,l,j the component ofK in Ωi(A,Hom(El, Fj)) for i, l, j. The corresponding

K̂ ∈ HomΩ•(A)(Ω(A,E),Ω(A,F ))s is given by

K̂ =
s∑

i=0

∑
j−l=s−i

K̂i,l,j ,

with K̂i,l,j : Ω•(A,El) → Ω•+i(A,Fj) defined as before. The inverse to the map ·̂ is
easily defined as above.
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Finally, the graded commutator of degree-homogeneous elements
K1,K2 ∈ Ω(A,End(E))• can now be defined by

̂[K1,K2] =
[
K̂1, K̂2

]
= K̂1 ◦ K̂2 − (−1)|K1|·|K2|K̂2 ◦ K̂1.

2.2. Linear connections on vector bundles, and vector valued forms.
Let E →M be a vector bundle, and let (A→M,ρ, [· , ·]) be a Lie algebroid over the
same base. Then a linear A-connection ∇ : Γ(A) × Γ(E) → Γ(E) is equivalent to an
operator d∇ : Ω•(A,E)→ Ω•+1(A,E) satisfying

d∇(ω ∧ η) = (dAω) ∧ η + (−1)lω ∧ d∇η (3)

for ω ∈ Ωl(A) and η ∈ Ω•(A,E). Given ∇, the operator d∇ is defined by (3) and by

d∇e = ∇·e ∈ Ω1(A,E)

for e ∈ Γ(E) = Ω0(A,E). For instance, if E = R ×M with the canonical flat A-
connection ∇af = £ρ(a)(f), then Ω•(A,E) � Ω•(A) and d∇ =: dA, which satisfies
in addition d2

A = 0 and defines the Lie algebroid cohomology H•(A). In general,

d2
∇ = R̂∇ : Ω•(A,E)→ Ω•+2(A,E),

with R∇ ∈ Ω2(A,End(E)) the curvature tensor of ∇.
Let E1 and E2 be vector bundles over M , and let ∇1 and ∇2 be linear A-

connections on E1 and E2, respectively. The reader is invited to check (see also
[14]) that for K ∈ Ωs(A,Hom(E1, E2)),

d∇2 ◦ K̂ − (−1)sK̂ ◦ d∇1 = ̂d∇HomK, (4)

where∇Hom : Γ(A)×Γ(Hom(E1, E2))→ Γ(Hom(E1, E2)) is defined by
(∇Hom

a φ
)
(e) =

∇2
a(φ(e))− φ

(∇1
ae
)
for a ∈ Γ(A) and e ∈ Γ(E1). If E1 = E2 and ∇1 = ∇2, then[
d∇, K̂

]
= d∇ ◦ K̂ − (−1)kK̂ ◦ d∇ = ̂d∇EndK. (5)

The trace operator tr : Γ(End(E)) → C∞(M) can be understood as an el-
ement of Ω0(A,Hom(End(E),R)), and so defines as above an Ω•(A)-linear map
t̂r : Ω•(A,End(E))→ Ω•(A) that preserves the degree.

Equip R×M as above with the flat A-connection £ : Γ(A)×C∞(M)→ C∞(M),
and the vector bundle End(E) with the connection induced by ∇ : Γ(A) × Γ(E) →
Γ(E). Then the induced connection

∇Hom : Γ(A)× Γ
(
Hom

(
End(E),R

))→ Γ
(
Hom

(
End(E),R

))
applied to the trace operator reads

(∇Hom
a tr)(φ) = £ρ(a)(tr(φ))− tr

(∇End
a φ

)
for a ∈ Γ(A) and φ ∈ Γ(End(E)).

Lemma 2.1. With the choices of connections above, ∇Hom
a tr = 0 for all a ∈ Γ(A).
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Proof. Take a local frame (e1, . . . , ek) of E over an open set U ⊆M and consider
the dual local frame (ε1, . . . , εk) of E∗. It is easy to see that for each i, j = 1, . . . , k
and each a ∈ ΓU (A):

(∇Hom
a tr)(ei ⊗ εj) = £ρ(a)(δij)− tr(∇End

a (ei ⊗ εj)) = −
k∑

s=1

〈εs,∇End
a (ei ⊗ εj)(es)〉

= −
k∑

s=1

〈
εs,∇a(δjsei)− 〈εj ,∇aes〉ei

〉
= −〈εj ,∇aei〉+ 〈εj ,∇aei〉 = 0.

Since the sections ei⊗ εj , i, j = 1, . . . , k, of End(E) build a frame for End(E) over U ,
this shows that ∇Hom

a tr = 0.

Lemma 2.1 and (4) yield the equality

dA ◦ t̂r = t̂r ◦ d∇End : Ω•(A,End(E))→ Ω•+1(A). (6)

2.3. A-Pontryagin characters of a vector bundle. As before, consider a Lie
algebroid A→M , and a vector bundle E →M of rank k, with a linear A-connection
∇ : Γ(A)× Γ(E)→ Γ(E). Let R∇ ∈ Ω2(A,Hom(TM,A)) be the curvature of ∇.

Define for i ≥ 1 the form Ri
∇ ∈ Ω2i(A,End(E)) by

R̂i
∇ = R̂∇

i
= d2i

∇ ∈ EndΩ•(A)(Ω
•(A,E)).

Then (5) shows ̂d∇EndRi
∇ =

[
d∇, R̂i

∇
]
=

[
d∇, R̂∇

i
]
=

[
d∇,d2i

∇
]
= 0, and so with (6):

dA(t̂r(R
i
∇)) = t̂r(d∇EndRi

∇) = 0. (7)

Therefore, t̂r(Ri
∇) defines a cohomology class in H2i(A).

Lemma 2.2. Let E → M be a vector bundle and let A → M be a Lie algebroid.
Then the cohomology class

[
t̂r(Ri

∇)
] ∈ H2i(A) does not depend on the choice of A-

connection ∇ on E, for i ≥ 1.

Definition 2.3. Let E be a vector bundle over M and let A → M be a Lie
algebroid.

(1) Choose any linear A-connection ∇ on E. The cohomology classes

σi
A(E) :=

[
t̂r(Ri

∇)
] ∈ H2i(A),

for i ≥ 0, are called the A-Pontryagin characters of E.
(2) The A-Pontryagin algebra of E is the R-subalgebra Pont•A(E) ⊆ H•(A)

generated by the A-Pontryagin characters in (1).

This proof of Lemma 2.2 is standard; in the context of Lie algebroid Pontryagin
characters, it is due to [16] following a classical method. The proof is omitted here, but
done later in the more general setting of Pontryagin algebras defined by connections
up to homotopy (see Proposition 4.6, and Appendix A); in the same manner as in
[37] for superconnections.

Note that the A-Pontryagin characters of E are not its A-Pontryagin classes, but
another set of generators of its A-Pontryagin algebra, see the next paragraph. The
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terminology ‘characters’ is in line with the definition of the Chern characters of a
complex vector bundle.

The Pontryagin algebra is also called the characteristic algebra in [42]. It is easy
to see that PontlA(E) = 0 for l an odd number. It is a standard fact that even
PontlA = 0 for l not divisible by 4. For completeness, Bott’s proof of this fact [6] is
quickly recalled here. Equip the vector bundle E with a smooth metric (i.e. a positive
definite fibrewise pairing), and take the A-connection ∇ : Γ(A)× Γ(E)→ Γ(E) to be
metric: 〈∇ae, e

′〉+ 〈e,∇ae
′〉 = £ρ(a)〈e, e′〉 for a ∈ Γ(A), e, e′ ∈ Γ(E). Then it is easy

to check that 〈R∇(a, b)e, e′〉 = −〈e,R∇(a, b)e′〉 for all a, b ∈ Γ(A), e, e′ ∈ Γ(E), and
inductively

〈Ri
∇(a1, b1, a2, b2, . . . , ai, bi)e, e

′〉 = (−1)i〈e,Ri
∇(a1, b1, a2, b2, . . . , ai, bi)e

′〉
for i ≥ 1. Then immediately t̂r(Ri

∇) = 0 for i odd, and so Pont2iA (E) = 0 for i odd.

Finally, the A-Pontryagin classes of the vector bundle E can be defined; see
e.g. [42] for detailed explanations. Consider Gl(k,R)-invariant polynomial functions
p : gl(k,R)→ R, i.e. such that for all g ∈ Gl(k,R) and X ∈ gl(k,R)

p(gXg−1) = p(X).

The Gl(k,R)-invariant polynomials on gl(k,R) form an R-algebra, which is generated
as an R-algebra by the polynomials Σ0,Σ1, . . . defined by

Σi(X) = trace(Xi)

for all X ∈ gl(k,R) (see for instance [6]). It follows from Definition 2.3 that each
Gl(k,R)-invariant polynomial p on gl(k,R) defines a closed form p(R∇) ∈ Ω•(A) and
an element [p(R∇)] ∈ H•(A). More precisely, if p = q(Σi1 , . . . ,Σil) ∈ R[Σ1,Σ2, . . .],
then

p(R∇) = q(Σi1(R∇), . . . ,Σil(R∇)).

For instance, p = Σ2 − (Σ1)
2 gives p(R∇) = t̂r(R2

∇)− t̂r(R∇) ∧ t̂r(R∇). This defines
the Chern-Weil morphism of R-algebras

cwA(E) : Sym•(gl(k,R))Gl(k,R) → H2•(A), p 	→ [p(R∇)] .

The R-subalgebra Pont•A(E) ⊆ H•(A) is the image of this morphism, i.e. the subalge-
bra of all cohomology classes [p(R∇)] defined by Gl(k,R)-invariant polynomial p on
gl(k,R).

For i a positive integer, the characteristic polynomial

det (λ · Ik +X) =

k∑
i=0

fi(X)λk−i (8)

defines homogeneous polynomials fi of degree i on gl(k,R), for k ≥ i ≥ 0. These
polynomials are obviously Gl(k,R)-invariant, and so for each i ≥ 1, the i-th A-
Pontryagin class of E can be defined as

piA(E) :=

[
f2i

(
i

2π
R∇

)]
∈ H4i(A),
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for any choice of connection ∇ : Γ(A) × Γ(E) → Γ(E). The A-Pontryagin classes of
E generate together Pont•A(E) (see for instance [6]). The total A-Pontryagin class
of E is defined by

pA(E) =

[
det

(
Ik +

i

2π
R∇

)]
= 1 + p1A(E) + p2A(E) + . . .+ p�

k
2 	 ∈ Pont•A(E).

Remark 2.4. Given an ordinary linear connection ∇ : X(M)× Γ(E)→ Γ(E) on
a vector bundle E of rank k, a Lie algebroid A → M defines a linear A-connection
∇A : Γ(A)× Γ(E)→ Γ(E) by ∇A

a e = ∇ρ(a)e. It is easy to see that

[p(R∇A)] = ρ�[p(R∇)] ∈ H•(A)

for any Gl(k,R)-invariant polynomial p on gl(k,R). Here, ρ� is the cochain map

ρ� : (Ω•(M),d)→ (Ω•(A),dA),

ρ�(ω)(a1, . . . , as) = ω(ρ(a1), . . . , ρ(as)) for ω ∈ Ωs(M) and a1, . . . , as ∈ Γ(A).
As observed by Fernandes in [16], this yields Pont•A(E) = ρ�(Pont•(E)), or more

precisely cwA(E) = ρ� ◦ cw(E).

3. Bott’s vanishing theorem in a more general setting. This section
rephrases Bott’s proof of the vanishing Pontryagin classes of the normal bundle to
an involutive subbundle of the tangent [6]. Since the decisive object is the Bott con-
nection, i.e. a flat F -connection on a vector bundle TM/F , that can be extended to
a linear TM -connection in order to define Pontryagin characters or classes, one can
easily prove a similar result for the existence of a flat partial connection on a gen-
eral smooth vector bundle. Further, the construction is adapted to the more general
A-Pontryagin classes of a vector bundle E.

3.1. Bott’s vanishing theorem. Let A be a Lie algebroid over a manifold
M , and let B be a subalgebroid of A over M . Let n be the rank of A, and let q
be the codimension of B in A. Let E be a vector bundle over M , with a flat B-
connection ∇. It is not difficult to see4 that ∇ can be extended to an A-connection
∇̃ : Γ(A)× Γ(E)→ Γ(E), satisfying

∇̃be = ∇be (9)

for all b ∈ Γ(B) and e ∈ Γ(E).
Define the space I•(B) ⊆ Ω•(A) as the ideal in Ω•(A) generated by the 1-forms

vanishing on B. That is, it is generated by the sections of the annihilator B◦ ⊆ A∗

of B. It is explicitly given by I0(B) = {0} ⊆ Ω0(A) = C∞(M) and

Ir(B) = {ω ∈ Ωr(A) | ω(b1, . . . , br) = 0 for all b1, . . . , br ∈ Γ(B)}

for r ≥ 1.
Choose an open set U ⊆M trivialising A and B. That is, there is a smooth frame

(a1, . . . , an) for A over U such that (aq+1, . . . , an) is a smooth frame for B. Consider
the dual frame (α1, . . . , αn) of A

∗ over U . By construction, (α1, . . . , αq) is a smooth

4Just find a complement C of B in A and any A-connection ∇A on E. Then set ∇̃b+ce =
∇be+∇A

c e for all b ∈ Γ(B) and c ∈ Γ(C).
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frame for B◦ over U . Since I•(B) is generated as an ideal by Γ(B◦), for r ≥ 1, an
element ω of IrU (B) can be written as

ω =

q∑
i=1

ωi ∧ αi

with ωi ∈ Ωr−1
U (A). Therefore, since B◦ has rank q, the wedge product

(I•(B))q+1 = I•(B) ∧ . . . ∧ I•(B)︸ ︷︷ ︸
q+1 times

must necessarily vanish.
It is easy to see that (9) implies

R∇̃(b, b
′)e = R∇(b, b′)e = 0

for b, b′ ∈ Γ(B) and all e ∈ Γ(E), and so R∇̃ ∈ I2(B)⊗C∞(M)Γ(End(E)). This implies

Ri
∇̃ ∈ (I2(B))i⊗C∞(M) Γ(End(E)) and so t̂r(Ri

∇̃) ∈ (I2(B))i. More generally, for p a

Gl(k,R)-invariant polynomial of degree d on gl(k,R), the 2d-form p(R∇) ∈ Ω2d(A) is
an element of (I2(B))d and so p(R∇) = 0 for d > q.

As a summary, this section has proved the following result.

Theorem E. Let E be a vector bundle over a manifold M and let A be a Lie
algebroid over M . If there exists a Lie subalgebroid B of A of codimension q with a
linear representation ∇ : Γ(B)× Γ(E)→ Γ(E), then the Pontryagin spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > 2q.

Using Remark 2.4, this yields the following obstruction result in terms of the
classical Pontryagin spaces of E.

Corollary 3.1. Let E be a vector bundle over a manifold M and let A be a Lie
algebroid over M . If there exists a Lie subalgebroid B of A of codimension q with a
linear representation ∇ : Γ(B)× Γ(E)→ Γ(E), then the Pontryagin spaces

Pontl(E) ⊆ H l(M)

all lie in the kernel of ρ� : H•(M)→ H•(A) for l > 2q.

If a Lie algebroid A has a subalgebroid B of codimension q; then B is represented
on A/B via the flat Bott-connection

∇B : Γ(B)× Γ(A/B)→ Γ(A/B), ∇B
b ā = [b, a].

Hence PontlA(A/B) ⊆ H l(A) is trivial for l > 2q. This yields obstructions to a
subalgebroid structure on B ⊆ A of codimension q.

However, in the case A = TM , the algebroid B =: F is in fact more than just a
subalgebroid: it carries as well an infinitesimal ideal system (F, F,∇F ) [29]. The goal
of this paper is the generalisation of Bott’s vanishing theorem [6] as a statement on
ideals.
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3.1.1. Massey products. As already emphasised in [6], Theorem E shows more
than the vanishing of the Pontryagin classes plA(E) for l > 2q. It shows the vanishing of
all A-characteristic classes of E defined by invariant, degree-homogeneous polynomials
of degree d > q. In [39], Bott’s vanishing theorem is refined as we explain now in our
general setting.

Let A→M be a Lie algebroid and [α], [β], [γ] ∈ H•(A) be classes such that

[α] ∧ [β] = 0 and [β] ∧ [γ] = 0.

Then α ∧ β = dAω and β ∧ γ = (−1)|α|dAη for some forms ω and η ∈ Ω•(A). As a
consequence, dA(ω ∧ γ) = α ∧ β ∧ γ = dA(α ∧ η), which shows that the class

〈[α], [β], [γ]〉 := [ω ∧ γ − α ∧ η] ∈ H•(A)

is defined. As mentioned in [6], this is called the Massey triple product [32] of
[α], [β], [γ] ∈ H•(A); it is well-defined up to an element of the ideal generated by [α]
and [γ] in H•(A).

Consider the situation of Theorem E and take any three classes [α], [β] and [γ]
in Pont•A(E) such that |α| + |β| > 2q and |β| + |γ| > 2q. Then α, β, γ ∈ Ω•(A)
can be chosen α = pα(R∇), β = pβ(R∇) and γ = pγ(R∇) for ∇ as in the proof
of Theorem E and pα, pβ , pγ Gl(k,R)-invariant polynomials on gl(k,R) of degrees
|α|/2, |β|/2 and |γ|/2, respectively – where k is the rank of E. Then by definition5,
α∧β = (pα ·pβ)(R∇), which must vanish by the proof of Theorem E and |α|+|β| > 2q,
and in the same manner β ∧ γ = 0. Then by definition, 〈[α], [β], [γ]〉 = 0. This proves
the following theorem, which is attributed to Shulman in [6].

Theorem 3.2. Let E be a vector bundle over a manifold M and let A be a
Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension q
with a linear representation ∇ : Γ(B)× Γ(E)→ Γ(E), then for all [α], [β] and [γ] in
Pont•A(E) such that |α|+ |β| > 2q and |β|+ |γ| > 2q,

〈[α], [β], [γ]〉 = 0.

3.2. Reducible vector bundles – a short discussion. Consider a fibration
of vector bundles

E

qE

��

φ �� E′

qE′
��

M
f

�� M ′

i.e. a fibrewise surjective vector bundle morphism φ over a smooth surjective submer-
sion f . Assume that E and E′ have the same rank, so that φ restricted to each fibre
is a bijection. If f has connected fibres, then M ′ can be identified with the leaf space
of the involutive subbundle T fM := ker(Tf) ⊆ TM and the morphism φ defines a
flat T fM -connection [29] ∇ : Γ(T fM)× Γ(E)→ Γ(E) by

∇Xe = 0 for all X ∈ Γ(T fM) :⇔ ∃ e′ ∈ Γ(E′) : φ ◦ e = e′ ◦ f.
5The dot · denotes the product of polynomial functions.
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That is, the∇-flat sections of E are the sections of E that are φ-projectable to sections
of E′.

Conversely, consider a vector bundle E → M , an involutive subbundle F ⊆ TM
and a flat connection ∇ : Γ(F )× Γ(E)→ Γ(E). If F is simple, i.e. if the space M/F
of leaves of F is smooth, and if ∇ has no holonomy, then they induce a fibration of
vector bundles [29]

E

qE

��

π �� E/∇
[qE ]

��
M

πM

�� M/F

where E/∇ is the quotient of E by parallel transport.
We say that E is n-reducible if there is a fibration of vector bundles

E

qE

��

φ �� E′

qE′
��

M
f

�� M ′

such that dimM ′ = n and rankE = rankE′. Then the Pontryagin classes of E of
degree greater than n must necessarily vanish. This is because the Gauss map gE of
E then factors as gE = gE′ ◦ f , and so Pont•(E) = f∗ Pont•(E′). Therefore, in that
case, Bott’s vanishing theorem (Theorem E) is satisfied even with n as lower bound.

Pontryagin classes are invariants of a vector bundle that vanish if it is trivializable.
In particular, the Pontryagin classes of E of rank k all vanish if there is a smooth
morphism of vector bundles

E

qE

��

π �� Rk

��
M �� {pt}

that restricts to an isomorphism on each fibre. The consideration above shows that
much finer geometrical information can be extracted from Pontryagin classes, and that
they could be seen as obstructions to (constant rank) fibrations to low dimensional
manifolds. For instance, if Pontl(E) �= {0} for some l ≥ 4, then the vector bundle E
is not 1-reducible, and if Pontl(E) �= {0} for some l > 4, then the vector bundle E is
not 2-reducible, etc.

3.3. Bott’s vanishing theorem and the Atiyah class. If E → M has a
flat F -connection, but F is not simple (i.e. M/F is not a smooth manifold) or the
holonomy of ∇ is not trivial, then the vector bundle E still is “infinitesimally sym-
metric along F”, but only prove Bott’s vanishing theorem with lower bound 2q can be
proved. However, following ideas by Molino [36] (see also [30]), Theorem E holds with
the lower bound q instead of 2q if the Atiyah class of the connection vanishes. On the
other hand, the new, more general version of Bott’s vanishing theorem in Theorem
E, might be useful in the search for examples where E has a flat F -connection, with
F of codimension q, but its k-th Pontryagin class does not vanish for some k > q

2 .
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Let A be a Lie algebroid over a manifold M , and let B be a subalgebroid of A
over M , of codimension q. Let E be a vector bundle over M , as before with a flat
B-connection ∇. Take again an extension ∇̃ : Γ(A) × Γ(E) → Γ(E) of ∇ as in (9).
Then define the form ω∇̃ ∈ Ω1(B,Hom(A/B,End(E))) by

ω∇̃(b, ā)(e) = R∇̃(b, a)e.

The flat B-connection ∇ on E and the flat Bott-connection ∇B : Γ(B)× Γ(A/B) →
Γ(A/B) combine to a flat B-connection ∇Hom on Hom(A/B,End(E)), and then
d∇Homω∇̃ = 0 [36, 10, 25].

The class α∇ = [ω∇̃] ∈ H1(B,Hom(A/B,End(E))) is called the Atiyah class
of the representation of B ⊆ A on E. It does not depend on the choice of the
extension ∇̃ of ∇, and it is zero if and only if there is an extension ∇̃ such that
R∇̃(b, a) = 0 for all b ∈ Γ(B) and all a ∈ Γ(A) [36, 10, 25]. That is, α∇ = 0 if and

only if there is an extension ∇̃ such that R∇̃ ∈ Γ(∧2B◦ ⊗ End(E)).

For all l ≥ 0 the form t̂r(Rl
∇̃) is a section of ∧2lB◦ and so t̂r(Rl

∇̃) = 0 for 2l > q.
This proves the following theorem.

Theorem 3.3. Let E be a vector bundle over a manifold M and let A be a
Lie algebroid over M . If there exists a Lie subalgebroid B of A of codimension q
with a linear representation ∇ : Γ(B) × Γ(E) → Γ(E) with vanishing Atiyah class
α∇ ∈ H1(B,Hom(A/B,End(E))), then the Pontryagin spaces

PontlA(E) ⊆ H l(A)

are all trivial for l > q.

If A = TM , B =: F , and ∇ is defined as in the previous section by a fibration to
a vector bundle over M/F , then the Atiyah class α∇ vanishes (see [25]). With Section
3.2, this yields the following corollary.

Corollary 3.4. Let E be a vector bundle over a manifold M . If there exists
an involutive subbundle F of TM of codimension q with a flat connection ∇ : Γ(F )×
Γ(E)→ Γ(E) such that

E

qE

��

π �� E/∇
[qE ]

��
M

πM

�� M/F

is a smooth fibration of vector bundles, then the Atiyah class
α∇ ∈ H1(F,Hom(TM/F,End(E))) vanishes and the Pontryagin spaces
Pontl(E) ⊆ H l(M) are all trivial for l > q.

4. Pontryagin algebras of graded vector bundles. This section studies con-
nections up to homotopy on graded vector bundles, and explains how Pontryagin or
characteristic algebras are defined by those objects, in the same manner as the clas-
sical Pontryagin algebras of a vector bundle are defined by linear connections on it
[37, 33].
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4.1. The graded trace operator. In the following, consider a Lie algebroid
(A→M,ρ, [· , ·]), and a graded vector bundle E = ⊕z∈ZEz[z] over the same manifold
M , with grading concentrated in finitely many degrees (i.e. all but finitely many of
the vector bundles Ez, z ∈ Z are trivial). Equivalently, E has finite (total) rank.

The graded trace operator str : Γ(End(E))→ C∞(M), i.e.

str ∈ Ω0(A,Hom(End(E),R))

is defined by

str(φ) = (−1)i tr(φ)
for φ ∈ Γ(End(Ei)). It yields a (graded) Ω•(A)-linear map

ŝtr : Ω(A,End(E))• → Ω•(A).

The operator ŝtr vanishes by definition on Ω•(A,End(E)i) for all i �= 0, and so only
‘sees’ the part Ω•(A,End(E)0) of Ω(A,End(E))•.

The signs are chosen such that for K1 ∈ Ω0(A,Hom(Ei, Ej)) = Γ(Hom(Ei, Ej))
and K2 ∈ Ω0(A,Hom(Ej , Ei)) = Γ(Hom(Ej , Ei)), i.e. with compositions K1 ◦K2 ∈
Γ(End(Ej)) and K2 ◦K1 ∈ Γ(End(Ei)):

str(K1 ◦K2) = (−1)j tr(K1 ◦K2) = (−1)j tr(K2 ◦K1)

= (−1)i+j str(K2 ◦K1) = str((−1)(j−i)(i−j)K2 ◦K1)

= str((−1)|K1|·|K2|K2 ◦K1)

since i+ j and (j − i)(i− j) = 2ij − j2 − i2 have the same parity. That is,

str[K1,K2] = 0 (10)

for K1 ∈ Γ(Hom(Ei, Ej)) and K2 ∈ Γ(Hom(Ej , Ei)). More generally, this yields

ŝtr([K1,K2]) = 0 (11)

for K1,K2 ∈ Ω(A,End(E))•, see also [37].

4.2. Connections up to homotopy. The notion of superconnection dates back
to Quillen [37]. Connections up to homotopy appeared in [18] in the more recent
literature. The notion of connection up to homotopy defined by Crainic in [11, 12] is
a different6 one.

Let A→M be a Lie algebroid and let E →M be a graded vector bundle of finite
rank, i.e. the grading is concentrated in finitely many degrees. Then a connection
up to homotopy of A on E is an operator

D : Ω(A,E)• → Ω(A,E)•+1

6There, a connection up to homotopy on a 2-term complex (E, ∂) of vector bundles

E0
∂
�
∂

E1

is an R-bilinear map ∇ : X(M) × Γ(E) → Γ(E) such that ∂ ◦ ∇ = ∇ ◦ ∂, that satisfies as usual the
Leibniz condition in the second argument, but which is not C∞(M)-linear in the X(M)-entry. Instead,
the failure of the C∞(M)-linearity is measured by the commutator of ∂ with a map H∇ : C∞(M)×
Γ(E) → Γ(End(E)), which is R-linear and local in its entries.
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that increases the total degree by 1 and satisfies

D(ω ∧ η) = dAω ∧ η + (−1)|ω|ω ∧ Dη (12)

for ω ∈ Ω•(A) and η ∈ Ω(A,E)•.
If E = E0[0] ⊕ . . . ⊕ En−1[n − 1], then a connection up to homotopy of A on

E is called for simplicity an n-connection. Of course, an n-connection D is an n-
representation, i.e. an n-term representation up to homotopy in the sense of [2] if in
addition D2 = 0.

Example 4.1 (Degree-preserving connections are connections up to homotopy).
Let E → M be a graded vector bundle of finite rank. Choose for all z ∈ Z a linear
A-connection ∇z : Γ(A) × Γ(Ez) → Γ(Ez). Then the connections define together a
connection up to homotopy

D : Ω(A,E)• → Ω(A,E)•+1

by D(ω) = d∇zω ∈ Ω•+1(A,Ez) for ω ∈ Ω•(A,Ez).

Example 4.2 (2-connections in more detail). Take E = E0[0] ⊕ E1[1] over M
and A→M a Lie algebroid. Then a 2-connection

D : Ω(A,E)• → Ω(A,E)•+1

is completely defined by its values

D(e0) ∈ Ω1(A,E0)⊕ Ω0(A,E1) and D(e1) ∈ Ω1(A,E1)⊕ Ω2(A,E0)

for arbitrary e0 ∈ Γ(E0) and e1 ∈ Γ(E1). It is easy to check that

D(e0) = d∇0e0 + ∂(e0) and D(e1) = d∇1e1 + K̂(e1)

for ∇i : Γ(A) × Γ(Ei) → Γ(Ei) linear connections, i = 0, 1, a vector bundle mor-
phism ∂ : E0 → E1 over the identity, i.e. ∂ ∈ Ω0(A,Hom(E0, E1)), and K ∈
Ω2(A,Hom(E1, E0)).

In general, connections up to homotopy can be described as follows.

Proposition 4.3. Let A → M be a Lie algebroid and let E → M be a graded
vector bundle of finite rank. Then a connection up to homotopy

D : Ω(A,E)• → Ω(A,E)•+1

can always be written

D = d∇ + D̂

with a linear connection ∇ : Γ(A) × Γ(E) → Γ(E) that preserves the grading as in
Example 4.1, and D ∈ Ω(A,End(E))1. The connection ∇ and the form D can even
be chosen such that

D ∈
⊕
s �=1

Ωs(A,End(E)1−s).
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Proof. Take any degree-preserving connection ∇ : Γ(A) × Γ(E) → Γ(E) as in
Example 4.1. Then D − d∇ : Ω(A,E)• → Ω(A,E)•+1 is easily seen to be graded

Ω•(A)-linear. Hence D − d∇ = D̂ for a D ∈ Ω(A,End(E))1.

Now writeD =
∑

s∈Z Ds ∈
⊕

s∈Z Ω
s(A,End(E)1−s). ThenD1 ∈ Ω1(A,End(E)0)

and so ∇′ := ∇+D1 is a new connection on E that preserves the grading, such that

D = d∇ + D̂ = d∇′ + D̂ −D1.

Finally, a connection up to homotopy of A on E defines an induced connection
up to homotopy

DEnd : Ω(A,End(E))• → Ω(A,End(E))•+1

of A on End(E) by

̂DEnd(K) = D ◦ K̂ − (−1)|K|K̂ ◦ D
for all K ∈ Ω(A,End(E))• and e ∈ Γ(E). That is, as before,

[D, K̂] := D ◦ K̂ − (−1)|K|K̂ ◦ D = D̂EndK (13)

for all K ∈ Ω(A,End(E))•. More generally, if D is a connection up to homotopy of
A on E and D′ is a connection up to homotopy of A on E′, then define the induced
connection up to homotopy

DHom : Ω(A,Hom(E,E′))• → Ω(A,Hom(E,E′))•+1

of A on Hom(E,E′) by

̂DHom(K) = D′ ◦ K̂ − (−1)|K|K̂ ◦ D
for all K ∈ Ω(A,Hom(E,E′))•.

As in the case of superconnections, this yields the following lemma [37], see also
[33].

Lemma 4.4. In the situation above,

ŝtr ◦ DEnd = dA ◦ ŝtr. (14)

Proof. Write the connection up to homotopy D as in Proposition 4.3 as

D = d∇ + D̂

with ∇ : Γ(A) × Γ(E) → Γ(E) a linear connection that preserves the grading, and
D ∈ Ω(A,End(E))1. Then for K ∈ Ω(A,End(E))•:

D̂EndK = d∇ ◦ K̂ + D̂ ◦ K̂ − (−1)|K|K̂ ◦ d∇ − (−1)|K|K̂ ◦ D̂ = ̂d∇EndK + [̂D,K].

This yields DEndK = d∇EndK + [D,K] and so by (11)

ŝtr (DEndK) = ŝtr (d∇EndK) . (15)

The connection d∇End and the flat connection dA : Ω•(A)→ Ω•+1(A) yield as before
the connection

d∇Hom : Ω(A,Hom(End(E),R))• → Ω(A,Hom(End(E),R))•+1.

Equation (15) and the proof of Lemma 2.1 now give

dA ◦ ŝtr− ŝtr ◦ DEnd = dA ◦ ŝtr− ŝtr ◦ d∇End = ̂d∇Hom str = 0.
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4.3. Curvature of a connection up to homotopy, and Pontryagin char-
acters. Now if D is a connection up to homotopy of A on E, then (12) implies
immediately

D2(ω ∧ η) = ω ∧ D2η

for ω ∈ Ω•(A) and η ∈ Ω(A,E)•. That is, D2 is (graded) Ω•(A)-linear and there is

a unique RD ∈ Ω(A,End(E))2 with D2 = R̂D. The form RD ∈ Ω(A,End(E))2 is the
curvature form of D.

Of course, an n-connection is an n-representation if and only if its curvature form
vanishes. As before, define Ri

D ∈ Ω(A,End(E))2i by

R̂i
D = R̂D

i
= D2i

for i ≥ 1. The Bianchi identity

DEndR
i
D = 0 (16)

then holds for all i ≥ 1 since

̂DEndRi
D = [D, R̂i

D] = [D,D2i] = D2i+1 − (−1)2iD2i+1 = 0.

As a consequence, the curvature form RD satisfies

dA(ŝtr(R
i
D))

(14)
= ŝtr(DEnd(R

i
D))

(16)
= 0

for all i ≥ 1.

Example 4.5. In the situation of Example 4.1, it is easy to see that for each
i ≥ 1

Ri
D =

∑
z∈Z

Ri
∇z ∈

⊕
z∈Z

Ω2i(A,End(Ez)) ⊆ Ω(A,End(E))2i.

In this case, all the results follow easily from the considerations in §2.3, and

ŝtr(Ri
D) =

∑
z∈Z

(−1)z t̂r(Ri
∇z )

which is obviously a dA-closed element of Ω2i(A) by (7). This is already observed in
[37] in the context of superconnections.

Now one can construct as before the Pontryagin algebras defined by the powers
of the curvature form.

Proposition 4.6. Choose a graded vector bundle E of finite rank over a manifold
M , and a Lie algebroid A over M . Then the cohomology classes[

ŝtr(Ri
D)

]
∈ H2i(A)

do not depend on the choice of the connection up to homotopy D on E.

As observed in [33], the proof of Proposition 4.6 follows the standard techniques,
exactly as done in [37] in the situation of superconnections. For the convenience of
the reader, it is carried out in detail in Appendix A.
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Definition 4.7. Choose a graded vector bundle E of finite rank over a manifold
M , and a Lie algebroid A over M . Then the A-Pontryagin algebra of the graded
vector bundle E

Pont•A(E) ⊆ H•(A)

is the subalgebra generated by the A-Pontryagin characters of E

σi
A(E) :=

[
ŝtr(Ri

D)
]
∈ H2i(A), i ≥ 1,

defined by any choice of connection up to homotopy D of A on E.

Here also, it is easy to show using Example 4.1 and Proposition 4.6 that

Pont•A(E) = ρ� Pont•(E).

As usual, Pont•(E) denotes the TM -Pontryagin algebra of E.

Remark 4.8. This paper does not define Pontryagin classes of a graded vector
bundle as images of special invariant polynomials under a suitable Chern-Weil homo-
morphism – this is not needed for the obstruction theorems below. However, consider
a graded vector bundle E =

⊕
z∈Z Ez[z] and set V :=

⊕
z∈Z R

rankEz [z], a (finite
dimensional) graded R-vector space. Set A(V ) ⊆ P(gl(V )) to be the subalgebra of
polynomials that is generated by the polynomials

φ 	→ str(φl),

for l ≥ 1. Then there is an obvious Chern-Weil homomorphism A(V )→ Pont•A(E) of
R-algebras, but A(V ) cannot be understood as a subalgebra of the Gl(V )-invariant
polynomials on gl(V ) since for φ ∈ gl(V ), A ∈ Gl(V ) and l ≥ 1:

str((AφA−1)l) = (−1)|A|+l|φ|·|A| str(φl)

by (10).

Example 4.9. In the situation of Example 4.2,

D : Ω(A,E0[0]⊕ E1[1])• → Ω(A,E0[0]⊕ E1[1])•+1

equals

D = d∇ + ∂̂ + K̂

with ∇ : Γ(A) × Γ(E) → Γ(E) a linear connection that preserves the degree,
∂ ∈ Γ(Hom(E0, E1)) = Ω0(A,End(E)1) and K ∈ Ω2(A,Hom(E1, E0)) =
Ω2(A,End(E)−1).

Then

D2 = d2
∇ + d∇ ◦ ∂̂ + d∇ ◦ K̂ + ∂̂ ◦ d∇ + ∂̂ ◦ K̂ + K̂ ◦ d∇ + K̂ ◦ ∂̂

= d2
∇ +

[
d∇, ∂̂

]
+
[
d∇, K̂

]
+
[
∂̂, K̂

]
= R̂∇ + d̂∇End∂ + ̂d∇EndK + [̂∂,K].

(17)

In this equation, R∇ + [∂,K] ∈ Ω2(A,End(E)0), d∇End∂ ∈ Ω1(A,End(E)1) and
d∇EndK ∈ Ω3(A,End(E)−1). This shows that the 2-connection is a 2-representation
if and only if [2, 18]

R∇0 +K ◦ ∂ = 0, R∇1 + ∂ ◦K = 0, ∇1 ◦ ∂ = ∂ ◦ ∇0 and d∇EndK = 0.
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The form ŝtr(D2) is

ŝtr(R∇ + [∂,K]) = t̂r(R∇0 +K ◦ ∂)− t̂r(R∇1 + ∂ ◦K).

The form ŝtr(D4) is the graded trace of

R2
∇+R∇∧[∂,K]+[∂,K]∧R∇+[∂,K]2+(d∇End∂)∧(d∇EndK)+(d∇EndK)∧(d∇End∂) ,

etc.

4.4. Application: Obstructions to the existence of an n-representation.
Example 4.1 shows that a degree-preserving linear A-connection on E is an example
of an A-connection up to homotopy on E. Consider a graded vector bundle E of
finite rank k over a manifold M , and a Lie algebroid A over M , and set E := ⊕z∈ZEz.
If E is concentrated in even degrees, then by Proposition 4.6 and Example 4.5, the
Pontryagin characters of Definition 2.3 satisfy

σi
A(E) = σi

A(E)

for all i ≥ 1. If E has grading in odd degrees only,

σi
A(E) = −σi

A(E) ∈ H•(A),

for all i ≥ 1. That is, the Pontryagin algebra of the graded vector bundle E is then
just the Pontryagin algebra of the vector bundle E obtained by forgetting the grading
on E.

This shows that Pontryagin algebras of graded vector bundles only lead to new
information if the grading is on mixed odd and even degrees. In general, Proposition
4.6, Example 4.1 and Example 4.5 lead to the following formula.

Corollary 4.10. Let E =
⊕

z∈Z Ez be a graded vector bundle of finite rank over
a manifold M , and let A→M be a Lie algebroid. Then for l ≥ 1, the A-Pontryagin
characters σl

A(E) of E equal

σl
A(E) =

∑
z∈Z

(−1)zσl
A(Ez) ∈ H2l(A). (18)

Proof. Choose linear connections ∇ : Γ(A) × Γ(Ez) → Γ(Ez) for each z ∈ Z and
let D be the induced connection up to homotopy of A on E as in Example 4.1. Then
by Proposition 4.6 and Example 4.5:

σl
A(E) =

[
ŝtr(Rl

D)
]
=

∑
z∈Z

(−1)z [t̂r(Rl
∇z )

]
=

∑
z∈Z

(−1)zσl
A(Ez).

Remark 4.11. Using the formula in the last corollary, it is again easy to show
that PontlA(E) �= 0 implies l = 4z for some z ∈ N.

Corollary 4.10 gives a necessary condition for the existence of an n-representation
on a given graded vector bundle E = E0[0]⊕ . . .⊕ En−1[n− 1].

Theorem A. Let E = E0[0] ⊕ . . . ⊕ En−1[n − 1] be a graded vector bundle over
a manifold M , and let A→M be a Lie algebroid. If there exists an n-representation
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D of A on E, then the A-Pontryagin characters σl
A(Ei), l > 1, of the vector bundles

Ei, i = 0, . . . , n− 1, satisfy the equations

n−1∑
i=0

(−1)iσl
A(Ei) = 0 ∈ H2l(A) (19)

for all l > 1.

Proof. Since there is an n-connection D with D2 = 0, the left-hand side of (18)
vanishes.

Theorem B. Let E0 and E1 be vector bundles over M , and let A→M be a Lie
algebroid. If there is a 2-representation of A on E0[0]⊕ E1[1], then

Pont•A(E0) = Pont•A(E1) ⊆ H•(A).

More precisely, the A-Pontryagin classes of E0 equals the A-Pontryagin classes of E1.

Proof. In this case, (19) yields immediately

σl
A(E0) = σl

A(E1)

for all l ≥ 0. Therefore, since the generators of the Pontryagin algebras are equal, the
Pontryagin algebras and the Pontryagin classes of E0 and E1 must be equal.

The reader acquainted with the equivalence of decomposed VB-algebroids with
2-representations [18], and of decomposed double Lie algebroids with matched pairs of
2-representations [17] might find interesting the two following corollaries of Theorem
B.

Corollary 4.12. Let B and C be vector bundles over M , and let (A →
M,ρ, [· , ·]) be a Lie algebroid. If there is a VB-algebroid (D → B,A → M) with
core C, then the total Pontryagin classes coincide:

pA(B) = pA(C) ∈ H•(A).

That is, ρ�pl(B) = ρ�pl(C) for all l ≥ 1.

Corollary 4.13. Let C be a vector bundle over M , and let A→M and B →M
be two Lie algebroids. If there is a double Lie algebroid (D,A,B,M) with core C, then

pA(C) = pA(B) ∈ H•(A), and pB(C) = pB(A) ∈ H•(B).

4.4.1. Example: the double 2-representation defined by a connection.
Let A → M be a Lie algebroid and E a vector bundle over M . Then any linear A-
connection∇ : Γ(A)×Γ(E)→ Γ(E) defines as follows a representation up to homotopy
of A on E[0]⊕ E[1], see [2, 18]. The operator

D : Ω(A,E[0]⊕ E[1])• → Ω(A,E[0]⊕ E[1])•+1

is defined by7

D(e0) = d∇(e0) + e0 ∈ Ω1(A,E[0])⊕ Ω0(A,E[1])

7Here, e0 is considered first a section of E[0], but its image under the degree 1 operator id : E[0] →
E[1] is considered a section of E[1].
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for e0 ∈ Ω0(A,E[0]) = Γ(E[0]), and

D(e1) = d∇(e1)− R̂∇(e1) ∈ Ω1(A,E[1])⊕ Ω2(A,E[0])

for e1 ∈ Ω0(A,E[1]) = Γ(E[1]). Here, R∇ is seen as an element of
Ω2(A,Hom(E[1], E[0])) ⊆ Ω(A,End(E))1. It is easy to check that D2 = 0 – use (17)
in Example 4.9 with ω = −R∇ ∈ Ω2(A,Hom(E[1], E[0])) and ∂ = idE : E[0]→ E[1].
This representation up to homotopy is called the double representation up to homotopy
of A on E [2, 18].

Let K ⊆ E be a vector subbundle. Take an A-connection ∇K on K and an
A-connection ∇̄ on E/K. Then K ⊕ E/K � E and the sum ∇K + ∇̄ defines an
A-connection on E. The A-Pontryagin characters of E, K and E/K satisfy

σi
A(E) = σi

A(K) + σi
A(E/K) ∈ H2i(A)

for i ≥ 0. This is usually formulated as pA(E) = pA(K)∧pA(E/K) (see e.g. [35, 42]).
In other words the generators of Pont•A(E/K) are given by

σi
A(E/K) = σi

A(E)− σi
A(K) ∈ H2i(A) (20)

for i ≥ 0. Likewise, the linear A-connections on K and on E define together a 2-
connection D of A on K[0]⊕E[1]. Hence, the A-Pontryagin characters of K[0]⊕E[1]
are

ŝtr(Ri
D) = σi

A(K)− σi
A(E) ∈ H2i(A) (21)

for i ≥ 0. Up to a sign, they equal the generators of Pont•A(E/K). This yields the
following proposition.

Proposition 4.14. Let E →M be a vector bundle, and let A be a Lie algebroid
over M . Let K ⊆ E be a vector subbundle of E. Then

Pont•A(K[0]⊕ E[1]) = Pont•A(E/K). (22)

4.4.2. Example: the adjoint 2-representation of a Lie algebroid. Let
A → M be a Lie algebroid with anchor ρ and Lie bracket [· , ·]. Then any choice of
linear connection ∇ : X(M)× Γ(A) → Γ(A) defines as follows a representation up to
homotopy of A on A[0]⊕ TM [1], see [2, 18]. The operator

Dad : Ω(A,A[0]⊕ TM [1])• → Ω(A,A[0]⊕ TM [1])•+1

is defined by

Dad(a) = d∇bas(a) + ρ(a) ∈ Ω1(A,A[0])⊕ Ω0(A, TM [1])

for a ∈ Ω0(A,A[0]) = Γ(A), and

Dad(X) = d∇bas(X)− R̂bas
∇ (X) ∈ Ω1(A, TM [1])⊕ Ω2(A,A[0])

for X ∈ Ω0(A, TM [1]) = X(M). Here, Rbas
∇ ∈ Ω2(A,Hom(TM,A)) is defined by

Rbas
∇ (a, b)X = −∇X [a, b] + [∇Xa, b] + [a,∇Xb] +∇∇bas

b Xa−∇∇bas
a Xb
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for a, b ∈ Γ(A) and X ∈ X(M), and the two basic connections

∇bas : Γ(A)× X(M)→ X(M) and ∇bas : Γ(A)× Γ(A)→ Γ(A)

are defined by

∇bas
a X = [ρ(a), X] + ρ(∇Xa), ∇bas

a b = [a, b] +∇ρ(b)a

for a, b ∈ Γ(A) and X ∈ X(M). A computation using (17) shows RDad
= D2

ad = 0.
This representation up to homotopy is called the adjoint representation up to

homotopy of A [2, 18]. The following result follows from Theorem B

Theorem C. Let A be a vector bundle over a manifold M , and let ρ : A→ TM
be a vector bundle morphism over the identity. If A → M carries a Lie algebroid
structure with anchor ρ, then

ρ�
(
pl(A)

)
= ρ�

(
pl(TM)

) ∈ H4l(A)

for all l ≥ 1.

4.4.3. Example: the 2-representations defined by a morphism of Lie
algebroids. More generally, let A → M and B → M be two Lie algebroids, with
a Lie algebroid morphism φ : B → A over the identity on M . Then any choice of
linear connection ∇ : Γ(A) × Γ(B) → Γ(B) defines as follows a representation up to
homotopy of B on B[0]⊕A[1] – see [28].

The operator

D : Ω(B,B[0]⊕A[1])• → Ω(B,B[0]⊕A[1])•+1

is defined by

D(b) = d∇φ(b) + φ(b) ∈ Ω1(B,B[0])⊕ Ω0(B,A[1])

for b ∈ Ω0(B,B[0]) = Γ(B), and

D(a) = d∇φ(a)− R̂φ
∇(a) ∈ Ω1(B,A[1])⊕ Ω2(B,B[0])

for a ∈ Ω0(B,A[1]) = Γ(A). Here, Rφ
∇ ∈ Ω2(A,Hom(X,A)) is defined by

Rφ
∇(b1, b2)a = −∇a[b1, b2] + [∇ab1, b2] + [b1,∇ab2] +∇∇φ

b2
ab1 −∇∇φ

b1
ab2

for b1, b2 ∈ Γ(B) and a ∈ Γ(A), and the two connections

∇φ : Γ(B)× Γ(B)→ Γ(B) and ∇φ : Γ(B)× Γ(A)→ Γ(A)

are defined by

∇φ
b1
b2 = [b1, b2] +∇φ(b2)b1, ∇φ

b a = [φ(b), a] + φ(∇ab)

for b1, b2 ∈ Γ(B) and a ∈ Γ(A). A computation shows D2 = 0 and so RD = 0. The
following result follows then from Theorem B.

Theorem D. Let A and B be Lie algebroids over M . If there is a Lie algebroid
morphism φ : B → A over the identity on M , then

plB(A) = plB(B)

for all l ≥ 1.

Vaisman defines characteristic classes of morphisms of Lie algebroids in [43]; by
considering the graphs of these morphisms. The result above does not consider these
classes; but it would be interesting to compare the two approaches.
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4.5. Bott’s vanishing theorem for graded vector bundles. This section
proves a more general formulation of Bott’s vanishing theorem [6] and of Theorem E,
on Lie subalgebroids with n-representations.

For B ⊆ A a subalgebroid, the space Ω(B,E)• can be (non-canonically) embedded
as follows as a C∞(M)-submodule of Ω(A,E)•. Fix a splitting p : A → B of the
inclusion ι : B ↪→ A. Then the C∞(M)-linear map p� : Ω(B,E)• → Ω(A,E)• is
defined by

p�(ω)(a1, . . . , as) = ω(p(a1), . . . , p(bs))

for ω ∈ Ωs(B,Ei) and ajA for j = 1, . . . , s. In the same manner,

p� : Ω(B,End(E))• → Ω(A,End(E))•

is defined.
Similarly, the inclusion ι : B → A induces the C∞(M)-linear map

ι� : Ω(A,E)• → Ω(B,E)•,

defined by (ι�ω)(b1, . . . , bs) = ω(b1, . . . , bs) for ω ∈ Ωs(A,El). By construction, ι� ◦
p� = IdΩ(B,End(E))• .

Let now A → M be a Lie algebroid and let E = E0[0] ⊕ . . . ⊕ En−1[n − 1] be a
graded vector bundle over M . Let k be the (total) rank of E. Assume that there is a
Lie subalgebroid B ⊆ A of codimension q, with an n-representation

D : Ω(B,E)• → Ω(B,E)•+1.

Then, as in Proposition 4.3, the n-representation D equals D = d∇ + D̂, with a B-
connection ∇ on E preserving the grading, and a form D ∈ Ω(B,End(E))1. Using
the second part of Proposition 4.3, assume without loss of generality that D has no
component in Ω1(B,End(E)0). Extend the B-connection ∇ on E to an A-connection
∇̃ on E that preserves the grading, and extend the form D to the form p�(D) ∈
Ω(A,End(E))1.

Then

D̃ = d∇̃ + p̂�(D) : Ω(A,E)• → Ω(A,E)•+1

is an n-connection of A on E. Take ω ∈ Ωs(A,El). Then

D̃(ω) =
rankA∑
i=0

(D̃ω)i ∈
rankA⊕
i=0

Ωi(A,Es+l+1−i)

and easy computations yield the following identities:
• For i = s+ 1:

(D̃ω)i(b1, . . . , bi) = (d∇̃ω)(b1, . . . , bi) = d∇(ι�ω)(b1, . . . , bi)
= (D(ι�ω))i(b1, . . . , bi)

for b1, . . . , bi ∈ Γ(B), and
• For i �= s+ 1:

(D̃ω)i(b1, . . . , bi) = (p̂�(D)ω)i(b1, . . . , bi) = (D̂(ι�ω))i(b1, . . . , bi)

= (D(ι�ω))i(b1, . . . , bi)
for b1, . . . , bi ∈ Γ(B).
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This proves ι� ◦ D̃ = D ◦ ι� and as a consequence ι� ◦ D̃2 = D2 ◦ ι�. Therefore,
the equality D2 = 0 yields ι�(RD̃) = ι�(D̃2) = 0. That is,

RD̃ ∈
(
I•(B)⊗C∞(M) Γ(End(E))

)
2
=

⊕
j≥1

Ij(B)⊗C∞(M) Γ(End(E)2−j),

and so

Rl
D̃ ∈ (I•(B))l ⊗C∞(M) Γ(End(E))

for all l ≥ 1. This yields Rl
D̃ = 0 for l > q, and, as in the classical case, the following

theorem.

Theorem 4.15. Let A→M be a Lie algebroid and let E = E0[0]⊕. . .⊕En−1[n−
1] be a graded vector bundle over M . Assume that there is a Lie subalgebroid B ⊆ A
of codimension q, with an n-representation

D : Ω(B,E)• → Ω(B,E)•+1.

Then the A-Pontryagin spaces of the graded vector bundle E

PontlA(E) ⊆ H l(A)

all vanish for l > 2q.

Example 4.16. Let E → M be a vector bundle, and let A be a Lie algebroid
over M . Let K ⊆ E be a vector subbundle of E and let B ⊆ A be a subalgebroid.
Consider a linear A-connection ∇ on E, that preserves K. Define the linear B-
connection ∇̄ : Γ(B) × Γ(E/K) → Γ(E/K) by ∇̄be = ∇be for all b ∈ Γ(B) and
e ∈ Γ(E), where e ∈ Γ(E/K) is the class of the section e.

The connection ∇̄ is flat if and only if the 2-representation of A on E[0] ⊕ E[1]
defined by ∇ as in §4.4.1 restricts to a 2-representation of B on K[0]⊕E[1]; see [15].
Then, by Theorem 4.15,

PontlA(K[0]⊕ E[1]) ⊆ H l(A)

all vanish for l > 2q. By (22), this is a reformulation in the graded setting of Theorem
E applied to B ⊆ A and the flat connection ∇̄ on E/K.

5. Infinitesimal ideal systems and Pontryagin classes. The main motiva-
tion for the results above was the search for obstructions to the existence of infinites-
imal ideal systems in a given Lie algebroid, in terms of the A and TM -Pontryagin
classes of A and TM . This section first recalls some of the main examples of in-
finitesimal ideal systems. Then the first and second subsections present the obtained
obstructions.

Recall that infinitesimal ideal systems are defined as in Definition 1.1. The three
main classes of examples of infinitesimal ideal systems are the following.

Example 5.1 (The usual notion of ideals in Lie algebroids). An ideal I in a
Lie algebroid A → M is a subbundle over M such that [a, i] ∈ Γ(I) for all i ∈ Γ(I)
and all a ∈ Γ(A). The inclusion I ⊆ ker(ρ) follows immediately and shows that
this definition of an ideal is very restrictive. These ideals, called here naive ideals,
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correspond obviously to the ideal systems (F = 0, J = I,∇ = 0) in A. In particular,
an ideal in a Lie algebra is an infinitesimal ideal system.

Example 5.2 (The Bott connection). Consider an involutive subbundle F ⊆ TM
and the Bott connection

∇F : Γ(F )× Γ(TM/F )→ Γ(TM/F ), ∇F
X Ȳ = [X,Y ]

associated to it. Then it is straightforward to check that the triple (F, F,∇F ) is an
infinitesimal ideal system in the Lie algebroid TM .

Example 5.3 (The ideal system associated to a fibration of Lie algebroids). Let

A
ϕ ��

qA

��

A′

qA′
��

M
f

�� M ′

be a fibration of Lie algebroids, i.e. the map f is a surjective submersion (with con-
nected fibers) and ϕ! : A → f !A′ is a surjective vector bundle morphism over the
identity on A.

Then J := ker(ϕ) ⊆ A is a subalgebroid of A and F = T fM ⊆ TM is an
involutive subbundle. The equality Tf ◦ ρ = ρ′ ◦ ϕ yields immediately ρ(J) ⊆ F .

Define a connection ∇ϕ : Γ(F ) × Γ(A/J) → Γ(A/J) by setting ∇ϕ
X ā = 0 for

all sections a ∈ Γ(A) that are ϕ-related to some section a′ ∈ Γ(A′), i.e. such that
ϕ ◦ a = a′ ◦ f . Then the properties of the Lie algebroid morphism (ϕ, f) imply that
(F, J,∇ϕ) is an infinitesimal ideal system in A.

Conversely, if the leaf space M/F of the foliation defined by F is smooth and
∇ has no holonomy, then a Lie algebroid A over M can be “quotiented out” by an
infinitesimal ideal system (F, J,∇) [29], just as a Lie algebra modulo an ideal gives
a new Lie algebra. More precisely let (F, J,∇) be an infinitesimal ideal system in
a Lie algebroid A. Assume that M̄ = M/F is a smooth manifold and that ∇ has
trivial holonomy. Then the quotient defined by parallel transport along the leaves
of F , (A/J)/∇, inherits a Lie algebroid structure over M/F such that the canonical
projections π : A→ (A/J)/∇ and πM : M →M/F define a fibration of Lie algebroids
[29].

5.1. Pontryagin classes associated to an infinitesimal ideal system. First
of all, since an infinitesimal ideal system consists among other ingredients of an invo-
lutive subbundle F ⊆ TM and a flat F -connection on A/J , the following proposition
is immediate.

Proposition 5.4. Let (F, J,∇i) be an infinitesimal ideal system in a Lie alge-
broid A → M . Let q be the codimension of F in TM . Then the Pontryagin spaces
Pontr(A/J) and Pontr(TM/F ) are all trivial for r > 2q.

Next, it is easy to see that J is a subalgebroid of A. The Bott connection associ-
ated to J ⊆ A is the flat J-connection ∇J on A defined by

∇J : Γ(J)× Γ(A/J)→ Γ(A/J), ∇J
j a = [j, a] (23)
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for j ∈ Γ(J) and a ∈ Γ(A). In addition, there is a flat J-connection on TM/F , defined
by

∇ : Γ(J)× Γ(TM/F )→ Γ(TM/F ), ∇jX = [ρ(j), X] = ∇F
ρ(j)X (24)

for j ∈ Γ(J) and X ∈ X(M). This, Proposition 5.4 and Remark 2.4 yield the following
result.

Proposition 5.5. Let (F, J,∇i) be an infinitesimal ideal system in a Lie alge-
broid A→M . Let s be the codimension of J in A and let q be the codimension of F
in TM . Then the Pontryagin spaces PontrA(A/J) and PontrA(TM/F ) are all trivial
for r > 2min{s, q}.

Of course, Propositions 5.4 and 5.5 can be refined using Theorem 3.3 and the
Atiyah classes defined by extensions of the four flat connections (23), (24), the Bott
connection ∇F and the infinitesimal ideal system connection ∇i.

5.2. Finer obstructions. The obstructions found above are too “rough” for
being really meaningful – the proofs use very little of the structure of infinitesimal
ideal systems. This section uses the Pontryagin algebras of graded vector bundles
in order to find further (finer!) obstructions to the existence of infinitesimal ideal
systems in a given Lie algebroid.

In order to do this, let us recall some results found in [15]. Let A → M be
a Lie algebroid. Let F ⊆ TM be an involutive subbundle and let J ⊆ A be a
smooth subbundle. Let ∇ : Γ(F ) × Γ(A/J) → Γ(A/J) be a flat connection, and let
∇̃ : X(M)×Γ(A)→ Γ(A) be an extension of ∇. That is, ∇̃Xj ∈ Γ(J) for all X ∈ Γ(F )
and j ∈ Γ(J) and the induced quotient connection equals ∇. Recall from §4.4.3 that
∇̃ defines the two basic connections

∇̃bas : Γ(A)× Γ(A)→ Γ(A), ∇̃bas : Γ(A)× X(M)→ X(M)

and the basic curvature Rbas
∇̃ ∈ Ω2(A,Hom(TM,A)) – that is, ∇̃ defines the adjoint

representation ad∇̃ as in §4.4.3.
Then (F, J,∇) is an infinitesimal ideal system in A if and only if [15]:
(1) ρ(J) ⊆ F ;
(2) The basic connection ∇̃bas : Γ(A)× Γ(A)→ Γ(A) preserves J ;
(3) The basic connection ∇̃bas : Γ(A)× X(M)→ X(M) preserves F ;
(4) The basic curvature Rbas

∇̃ ∈ Ω2(A,Hom(TM,A)) restricts to an element of

Ω2(A,Hom(F, J)).
That is, (F, J,∇) is an infinitesimal ideal system in A if and only if the adjoint
2-representation ad∇̃ of A on A[0] ⊕ TM [1] defined by the anchor and the basic
connections and curvature restricts to a 2-representation of A on J [0]⊕F [1]. Theorem
4.12 yields immediately the following result.

Theorem G. Let (A → M,ρ, [· , ·]) be a Lie algebroid. Let J ⊆ A and F ⊆ TM
be vector subbundles. If F is involutive and there is a flat F -connection on A/J such
that (F, J,∇) is an infinitesimal ideal system, then

plA(J) = plA(F ) ∈ H4l(A)

for all l ≥ 1.

Example 5.6. Example 5.1 and the last proposition show that if I ⊆ A is an
ideal, then Pont•A(I) = {0}. This is easy to see directly since A is represented on I
by the Lie bracket.
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In the situation of Example 5.2, the statement of the last proposition is trivial
since J = F . However, Example 5.3 and the last proposition show that if ϕ : A→ A′

is a fibration of Lie algebroids over a smooth submersion f : M → M ′, then with
T fM := ker(Tf) ⊆ TM :

plA(T
fM) = plA(kerϕ) ∈ H4l(A)

for all l ≥ 1.

Remark 5.7. Obstructions to the holomorphy of a complex Lie algebroid bracket
on a holomorphic vector bundle. Let A→M be a complex Lie algebroid; i.e. a com-
plex vector bundle, equipped with a C-Lie algebra bracket on Γ(A), that is anchored
by a C-linear morphism ρ : A→ TCM , see [9].

The constructions in Sections 2.3 and 4.3 work the same for an A-connection
up to homotopy on a complex graded vector bundle E → M and yield the A-Chern
characters of E inH•(A)– as the classical Chern characters of a complex vector bundle
E are defined by C-linear TM -connections on E.

Now let A→M be a Lie algebroid and assume that A and TM both have complex
fibers. More precisely, assume the existence of vector bundle morphisms j : A → A
and JM : TM → TM over the identity on M , with j2 = − idA and J2

M = − idTM .
In particular, M has an almost complex structure. Consider the complexification
AC →M of the Lie algebroid A. That is, AC is a complex Lie algebroid, with bracket
the complexification of the bracket on sections of A: for a1, a2 ∈ Γ(A) and z1, z2 ∈ C,

[a1 ⊗ z1, a2 ⊗ z2]C = [a1, a2]⊗ z1z2.

The anchor ρC : AC → TCM is the complexification of the anchor ρ of A. Denote as
usual the i and −i eigenspaces of the complexification JC

M : TCM → TCM of JM by
T 1,0M and T 0,1M , and the i and −i eigenspaces of the complexification jC : AC → AC

of j by A1,0 and A0,1.
Assume next that JM is integrable and that the vector bundle A → M is a

holomorphic vector bundle (with complex fibers defined by j), such that the Lie
bracket sends holomorphic sections of A to a holomorphic section of A, and the an-
chor sends holomorphic sections of A to holomorphic vector fields on M . That is,
assume that A → M is a holomorphic Lie algebroid. Then the Dolbeault opera-
tor ∂̄ : Γ(T 0,1M) × Γ(A1,0) → Γ(A1,0) defines a complex infinitesimal ideal system
(T 0,1M,A0,1, ∂̄) in AC, see [20]. Here, A1,0 is identified with AC/A

0,1.
As a consequence, the complex analogue of Theorem G yields the following the-

orem.

Theorem 5.8. Let A → M be a Lie algebroid and assume that A and TM
both have complex fibers; j : A → A and JM : TM → TM with j2 = − idA and
J2
M = − idTM . Consider the complexification AC →M of the Lie algebroid A.

If A → M is a holomorphic Lie algebroid, then all the AC-Chern classes of A0,1

and of T 0,1M must coincide.

Appendix A. Proof of Proposition 4.6. Let D and D′ be two connections up
to homotopy of a Lie algebroid A→M on a graded vector bundle E = ⊕k∈ZEz[z]→
M of finite rank. The difference D′ − D is graded-Ω•(A)-linear and there exists

an element D ∈ Ω(A,End(E))1 such that D′ − D = D̂. For each t ∈ [0, 1] set
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Dt = D + tD̂. Then Dt is a connection up to homotopy of A on E for all t ∈ [0, 1],

with D0 = D and D1 = D′. Its curvature at time t reads R̂Dt = D2
t = (D + tD̂)2 =

D2 + t
[
D, D̂

]
+ 1

2 t
2
[
D̂, D̂

]
, which leads to

d

dt
R̂Dt

=
[
D, D̂

]
+ t

[
D̂, D̂

]
=

[
Dt, D̂

]
(13)
= D̂t,EndD,

and so to d
dtRDt

= Dt,EndD. Next, this implies

d

dt
Ri
Dt

=

i∑
s=1

R
(s−1)
Dt

∧ Dt,EndD ∧Ri−s
Dt

and so

d

dt
ŝtr

(
Ri
Dt

)
= i · ŝtr (Ri−1

Dt
∧ Dt,EndD

) (16)
= i · ŝtr (Dt,End

(
Ri−1
Dt

∧D
))

(14)
= i · dA

(
ŝtr

(
Ri−1
Dt

∧D
))

.

Using this, conclude that

ŝtr
(
Ri
D
)− ŝtr

(
Ri
D′
)
= dA

∫ 1

0

i ·
(
ŝtr

(
Ri−1
Dt

∧D
))

dt,

and so ŝtr
(
Ri
D
)
and ŝtr

(
Ri
D′
)
define the same cohomology class in H2i(A).
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