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STRATIFICATIONS IN GOOD REDUCTIONS OF SHIMURA
VARIETIES OF ABELIAN TYPE∗

XU SHEN† AND CHAO ZHANG‡

Abstract. In this paper we study the geometry of good reductions of Shimura varieties of
abelian type. More precisely, we construct the Newton stratification, Ekedahl-Oort stratification,
and central leaves on the special fiber of a Shimura variety of abelian type at a good prime. We
establish several basic properties of these stratifications, including the non-emptiness, closure relation
and dimension formula, generalizing those previously known in the PEL and Hodge type cases. We
also study the relations between these stratifications, both in general and in some special cases, such
as those of fully Hodge-Newton decomposable type. We investigate the examples of quaternionic
and orthogonal Shimura varieties in details.
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Introduction. Understanding the geometric properties of Shimura varieties in
mixed characteristic has been a central problem in arithmetic algebraic geometry
and Langlands program. In this paper we study the geometry of good reductions of
Shimura varieties of abelian type, based on the works of Kisin [22], Kim-Madapusi
Pera [21] and Vasiu [50] where smooth integral canonical models for these Shimura
varieties were already available, and following the genereal guideline proposed by
He-Rapoport in [19] (see also [44]) where basic axioms were postulated to study var-
ious stratifications on the special fibers of certain integral models of Shimura varieties.

Let (G,X) be a Shimura datum with reflex field E. For any open compact (neat)
group K ⊆ G(Af ), by the works of Shimura, Deligne, Milne and Borovoi, we have the
attached Shimura variety ShK(G,X) over E. The datum (G,X) is said to have good
reduction at a prime p, if GQp extends to a reductive group GZp over Zp. We will fix
a place v of E over p, and write OE,(v) for the ring of v-integers. For Kp = GZp(Zp),
Langlands and Milne conjectured (cf. [38] section 2) that the pro-variety

ShKp(G,X) := lim←−
Kp

ShKpKp(G,X),

where Kp runs through compact open subgroups of G(Ap
f ), has an integral canonical

model

SKp
(G,X)

over OE,(v). The prime to p Hecke action of G(Ap
f ) on ShKp

(G,X) should extend to
SKp

(G,X), and when Kp varies the inverse system of

SKpKp(G,X) := SKp
(G,X)/Kp
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should be a system of smooth models of ShKpKp(G,X) with étale transition mor-
phisms. Thanks to the works of Kisin [22], Vasiu [50] and Kim-Madapusi Pera [21]
(for p = 2), smooth integral canonical models are known to exist if the Shimura datum
(G,X) is of abelian type. Thus it is natural to investigate geometry of the (geometric)
special fibers

SKpKp,0(G,X)

over1 κ of these models, where κ is the residue field of OE,(v). In the following, (G,X)
will always be a Shimura datum of abelian type with good reduction at p.

It turns out that the geometry of Shimura varieties in characteristic p is much
finer than that in characteristic 0, in the sense that there are several invariants in
characteristic p, which are stable under the prime to p Hecke action, leading to various
natural stratifications of the special fiber SKpKp,0(G,X). Following Oort (in the
Siegel case, see [41] for example), Viehmann-Wedhorn (in the PEL type case, cf. [54])
and many others (see the references of [54, 53] for example), we mainly concentrate
on the Newton stratification, the Ekedahl-Oort stratification, and the central leaves in
this paper. In fact in this paper we will only be concerned with some basic properties
of these stratifications, and the relations between these strata. Our study here can be
put2 in the general framework proposed by He-Rapoport in [19], where more group
theoretic aspects are emphasized (compare also [44, 12, 14]).

If (G,X) is of PEL type, then we can use the explicit moduli interpretation to
treat the geometry of the special fibers. In the more general Hodge type case, at the
current stage we do not know whether there exists moduli interpretation in mixed
characteristic. However, there still exists an abelian scheme together with certain
tensors over the special fiber of a Hodge type Shimura variety, and we can make use
of it to study the geometry modulo p, cf. [17, 57, 60, 61] for example. If now (G,X)
is a general abelian type Shimura datum, which is the case we want to treat in this
paper, then there is no abelian schemes nor p-divisible groups over the associated
Shimura varieties at all. Nevertheless, we can study them by choosing some related
Hodge type Shimura varieties. This usually requires the study of some finer geometric
structures on these Hodge type Shimura varieties. Along the way, we will also see
some close relations between the strata of different Shimura varieties.

To a certain extent, many of our following main results were previously known
in the PEL type and Hodge type cases. Our modest goal here is to extend them
to the abelian type case and hence in the full generality when integral canonical
models exist, and to provide a useful documentary literature with a point of view
toward possible applications to Langlands program. On the other hand, there are
many natural examples of Shimura varieties of abelian type but not of Hodge type:
for example, the Shimura varieties associated to a general (not totally indefinite)
quaternion algebra or the special orthogonal group SO. We discuss our constructions
for these Shimura varieties in details, which we hope to find interesting applications.
For example, the orthogonal Shimura varieties play very important roles in Kudla’s
program ([29]) and the arithmetic Gan-Gross-Prasad conjecture ([11]). We expect
that our results will be found useful to these fields.

1Here in the introduction we work uniformly over κ for simplicity. We remind the reader
that in the body part of this paper, we denote by SKpKp,0(G,X) the special fiber over κ and
by SKpKp,κ(G,X) the geometric special fiber over κ.

2In fact the main part of [19] is to work with all parahoric levels at p. Here we restrict to the
hyperspecial levels, as a first step toward the verification of the axioms in [19] in the abelian type
case.
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Now we state our main results. Let {μ} be the Hodge cocharacter attached to
the Shimura datum (G,X). The parametrizing set of the Newton stratification is
the finite Kottwitz set B(G,μ) (cf. [27] section 6), which may be viewed as the set
of isomorphism classes of F -isocrystals with G-structure associated to (geometric)
points in S0 := SKpKp,0(G,X). Recall that there is a partial order ≤ on B(G,μ), cf.
2.1. In the classical Siegel case, one can realize B(G,μ) as the set of Newton polygons
of the polarized p-divisible groups attached to points on the special fiber. The basic
properties of the Newton stratification are as follows3 (cf. Theorem 2.3.6).

Theorem A. Each Newton stratum S b
0 is non-empty, and it is an equi-

dimensional locally closed subscheme of S0 of dimension

〈ρ, μ+ νG(b)〉 −
1

2
defG(b).

Here ρ is the half-sum of positive roots of G, νG(b) is the Newton point associated to

[b] ∈ B(G,μ), and defG(b) is the number defined in Definition 2.1.4. Moreover, S b
0 ,

the closure of S b
0 , is the union of strata S b′

0 with [b′] ≤ [b], and S b
0 −S b

0 is either

empty or pure of codimension 1 in S b
0 .

We remark that the non-emptiness was conjectured by Rapoport (cf. [44] Con-
jecture 7.1) and by Fargues (cf. [10] page 55), and it has been proved by Viehmann-
Wedhorn in the PEL type case ([54]), and Dong-Uk Lee, Kisin-Madapusi Pera and
Chia-Fu Yu respectively in the Hodge type case, see [31, 59] for example. The other
statements are due to Hamacher in the PEL type and Hodge type cases, cf. [17, 16].
The dimension formula in the Hodge type case was proved independently by the
second author in [61].

Let W = WG be the (absolute) Weyl group of G, and we have a certain subset
JW ⊂W defined by {μ} equipped with a partial order 	, cf. 3.2. The parametrizing
set of the Ekedahl-Oort stratification is the set JW , which classifies isomorphism
classes of G-zips (or “F -zips with G-structure”) associated to (geometric) points in
S0 = SKpKp,0(G,X). In the classical Siegel case, JW classifies the p-torsions of the
polarized abelian varieties attached to points on the special fiber. The basic properties
of the Ekedahl-Oort stratification are as follows (cf. Theorem 3.4.7).

Theorem B.

(1) Each Ekedahl-Oort stratum S w
0 is an equi-dimensional locally closed sub-

scheme of S0. Moreover, S w
0 , the closure of S w

0 , is the union of strata S w′
0

with w′ 	 w.
(2) For w ∈ JW , S w

0 is of dimension of l(w), the length of w, if non-empty.
Moreover, each S w

0 is non-empty if p > 2.
(3) Each stratum S w

0 is smooth and quasi-affine.

We remark that the non-emptiness is due to Viehmann-Wedhorn in the PEL type
case ([54]), and Chia-Fu Yu in the Hodge type case ([59]). In the projective Hodge type
case, Koskivirta proved the non-emptiness independently, cf. [25]. We also reamrk
that the non-emptiness here (as well as in Theorem C) relies on [23] Proposition 1.4.4,
where p > 2 has to be assumed. The other statements in the PEL type case are due
to Viehmann-Wedhorn ([54]). In the Hodge type case, the quasi-affiness is due to

3In fact the Newton stratification is defined over κ, and these properties are also true over κ, see
subsections 2.2 and 2.3.
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Goldring-Koskivirta ([15]), and the closure relation and dimension formula are due to
the second author ([60]).

Attached to the Shimura datum (G,X) we have a set4 C(Gad, μ), which may
be viewed as the set (often infinite) of isomorphism classes of F -crystals with Gad-
structure associated to points in SKpKp,0(G,X). Here Gad is the adjoint group
associated to G. We have surjections C(Gad, μ) � B(Gad, μ) 
 B(G,μ) and
C(Gad, μ) � JWGad 
 JWG which, roughly speaking, send F -crystals with Gad-
structure to the associated F -isocrystals with Gad-structure and Gad-zips respectively.
Associated to an element [c] ∈ C(Gad, μ), we can define a central leaf, which is a finer
structure than the above Newton and Ekedahl-Oort strata. In the Siegel case, a cen-
tral leaf is the locus where one fixes an isomorphism class of the polarized p-divisible
groups. The basic properties of central leaves are as follows (cf. Theorem 4.2.5).

Theorem C. Each central leaf is a smooth, equi-dimensional locally closed sub-
scheme of S0. It is closed in the Newton stratum containing it. Any central leaf in a
Newton stratum S b

0 is of dimension 〈2ρ, νG(b)〉 if non-empty. Here as above ρ is the
half sum of positive roots of G. Moreover, central leaves are non-empty if p > 2.

The non-emptiness in the abelian type case follows from that in the Hodge type
case, which is in turn a consequence of the non-emptiness of the Newton strata. In
the PEL type case, see [54] Theorem 10.2. The other statements in the Hodge type
case are due to Hamacher (cf. [17]; see also [16] in the PEL type case) and the second
author ([61]) respectively.

The ideas to prove the above theorems are as follows. We consider first the
Hodge type case, where most of the above are known, see the above remarks after
each theorems. To extend to the abelian type case, we first work with a Shimura
datum of abelian type such that the group G is adjoint. By using a lemma of Kisin
(cf. Lemma 2.3.2), we can find a Hodge type Shimura datum (G1, X1) such that

(1) (Gad
1 , Xad

1 )
∼−→ (G,X) and ZG1

is a torus;
(2) if (G,X) has good reduction at p, then (G1, X1) in (1) can be chosen to have

good reduction at p, and such that E(G,X)p = E(G1, X1)p.
Then the integral canonical model for (G,X) is given by

SKp
(G,X) = [A (GZ(p)

)×SK1,p
(G1, X1)

+]/A (G1,Z(p)
)◦

= [A (GZ(p)
)×SKp

(G,X)+]/A (GZ(p)
)◦,

where A (GZ(p)
),A (G1,Z(p)

)◦ and A (GZ(p)
)◦ are the groups defined in [22] 3.3.2 (see

also 1.2.4). On geometrically connected components we have

SKp
(G,X)+ = SK1,p

(G1, X1)
+/Δ

with

Δ = Ker(A (G1,Z(p)
)◦ → A (GZ(p)

)◦).

To show that the induced Newton stratification, Ekedahl-Oort stratification, central
leaves on SK1,p,0(G1, X1)

+ desecend to SKp,0(G,X)+, we need to show that the
Newton strata, Ekedahl-Oort strata, and central leaves of SK1,p,0(G1, X1)

+ are stable
under the action of Δ, and their quotients by Δ are well defined. By [24] 4.4 the action

4Here the more natural set should be C(G,μ); however, there will be no difference if the center
ZG of G is connected, cf. Lemma 4.2.1.
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of Δ can be described by certain construction of twisting of abelian varieties. This
leads us to study the effect to p-divisible groups with additional structures under
the construction of twisting abelian varieties in [24]. Using the fact that ZG1 is
a torus, we can show that this twisting does not change the associated p-divisible
groups with additional structures, and thus the Newton strata, Ekedahl-Oort strata,
and central leaves of SK1,p,0(G1, X1)

+ are stable under the action of Δ, and their
quotients by Δ are indeed well defined. For a general Shimura datum of abelian
type (G,X), we first pass to the associated adjoint Shimura datum (Gad, Xad) and
apply the above construction to (Gad, Xad). Then we define the Newton stratification,
Ekedahl-Oort stratification, and central leaves on SKp,0(G,X) by pullling back those
on SKad

p ,0(G
ad, Xad) under the natural morphism

SKp,0(G,X)→ SKad
p ,0(G

ad, Xad).

In fact, there is an alternative way (however we need to assume p > 2 here) to
define the Newton stratification, Ekedahl-Oort stratification, and central leaves on
SKp,0(G,X), by using the filtered F -crystal with Gc-structure

ωcris : RepZp
(Gc)→ FFCrys

ŜKp (G,X)

on SKp
(G,X) constructed by Lovering in [34], which may be viewed as a crystalline

model of the universal de Rham bundle ωdR : RepQp
(Gc) → Fil∇

ŜKp (G,X)rig
, see [32].

Here Gc = G/Znc
G and Znc

G ⊂ ZG is the largest subtorus of ZG that is split over R
but anisotropic over Q, ŜKp

(G,X) is the p-adic completion of SKp
(G,X) along its

special fiber, ŜKp(G,X)rig is the associated adic space, and FFCrys
ŜKp (G,X)

(resp.

Fil∇
ŜKp (G,X)rig

) is the category of filtered F -crystals (resp. filtered isocrystals) on

ŜKp
(G,X) (resp. ŜKp

(G,X)rig), cf. 5.1. This construction in turn uses ideas from
[33] where one constructs an auxiliary Shimura datum of abelian type (B, X ′), such
that there is a commutative diagram of Shimura data

(B, X ′)

��

�� (G1, X1)

��
(G,X) �� (Gad, Xad)

inducing a commutative diagram of (integral models of) Shimura varieties

SKB,p
(B, X ′)

��

�� SK1,p
(G1, X1)

��
SKp

(G,X) �� SKad
p
(Gad, Xad).

Using the auxiliary Shimura datum of abelian type (B, X ′), one can then con-
struct the universal filtered F -crystal with Gc-structure on SKp

(G,X) from that
on SK1,p

(G1, X1). If (G,X) is of Hodge type, it is easy to see the construction of the
Newton stratification, Ekedahl-Oort stratification, and central leaves using the filtered
F -crystal with Gc-structure coincides with the construction above. From this we can
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deduce that the two constructions of the Newton and Ekedahl-Oort stratifications via
passing to adjoint and via using filtered F -crystal with Gc-structure respectively co-
incide for a general abelian type Shimura datum (G,X), cf. 5.4.3, 5.4.4. If the center
ZG is connected, we can show the two constructions of central leaves also coincide.
In the general case, except the non-emptiness, all the other statements in the above
Theorem C also hold for the canonical central leaves defined via the F -crystal with
Gc-structure on SKp,0(G,X) in Definition 5.3.2. For more details, see 5.4.5.

We also study the relations between the Newton stratification, Ekedahl-Oort
stratification, and central leaves using the group theoretic methods in [40, 12, 14].
The main results are summarized as follows, cf. Proposition 6.2.3, Corollary 3.4.8,
Examples 6.2.4, Propositions 6.2.5 and 6.2.7. As above, after fixing a prime to p level
Kp ⊂ G(Ap

f ), we simply write S0 = SKpKp,0(G,X). Note that there is no confusion
for the notion of central leaves in the following theorem.

Theorem D.

(1) Assume that each central leaf is non-empty (which holds when p > 2). Each
Newton stratum contains a minimal Ekedahl-Oort stratum (i.e. an Ekedahl-
Oort stratum which is a central leaf). Moreover, if G splits, then each Newton
stratum contains a unique minimal Ekedahl-Oort stratum.

(2) The ordinary Ekedahl-Oort stratum (i.e. the open Ekedahl-Oort stratum)
coincides with the μ-ordinary locus (i.e. the open Newton stratum), which is
a central leaf. In particular the μ-ordinary locus is open dense in S0.

(3) Assume that each central leaf is non-empty (which holds when p > 2). For any
[b] ∈ B(G,μ) and w ∈ JW (which we view as an element of the μ-admissible
subset of the extended affine Weyl group, cf. 6.1.4 and 6.1.5), we have

S b
0 ∩S w

0 
= ∅ ⇐⇒ Xw(b) 
= ∅,
where Xw(b) := {gK | g−1bσ(g) ∈ K ·σ IwI} ⊆ G(L)/K, with L =
W (κ)Q,W = W (κ),K = G(W ), σ is the Frobenius on L and W , I ⊂ G(L)
is the Iwahori subgroup, and K ·σ IwI is as in 6.1.6.

(4) Let (G,X) be a Shimura datum of abelian type with good reduction at p whose
attached pair (GQp

, μ) is fully Hodge-Newton decomposable (cf. Definition
6.1.10 and [14]), then
(a) each Newton stratum of S0 is a union of Ekedahl-Oort strata;
(b) each Ekedahl-Oort stratum in a non-basic Newton stratum is a central

leaf, and it is open and closed in the Newton stratum, in particular,
non-basic Newton strata are smooth;

(c) if (GQp
, μ) is of Coxeter type (cf. 6.1.7 and [12]), then for two Ekedahl-

Oort strata S 1
0 and S 2

0 , S 1
0 is in the closure of S 2

0 if and only if
dim(S 2

0 ) > dim(S 1
0 ).

Here the first statement was proved in the PEL case by Viehmann-Wedhorn ([54])
under certain condition and by Nie in [40]. The proof of [40] is based on some group
theoretic results, thus it also applies to our situation. In the Hodge type case the
statement (2) is due to Wortmann, see [57]. In the statement (3), the set Xw(b) can
be viewed as an Ekedahl-Oort stratum of the affine Deligne-Lusztig variety X(μ, b),
see 6.1.6. The statements in (4) are first due to Görtz-He-Nie ([14], see also [12, 13])
under the assumption that the axioms of [19] are verified. Here we do not use any
unproved hypothesis or axioms.

We now briefly describe the structure of this article. In the first section, we
first review the construction of integral canonical models for Shimura varieties of



STRATIFICATIONS IN SHIMURA VARIETIES OF ABELIAN TYPE 173

abelian type following [22]. We then study twisting of p-divisible groups in a general
setting which will be used later. In sections 2-4, we construct and study the Newton
stratification, Ekedahl-Oort stratification, and central leaves respectively by using
the approach of passing to adjoint. We discuss the example of quaternionic Shimura
varieties in each section. In section 5, we revisit our constructions of stratifications
using the filtered F -crystal with Gc-structure of [34]. In section 6, we study the
relations between the Newton stratification, the Ekedahl-Oort stratification, and the
central leaves both in the general and special setting. Finally, in section 7 we discuss
our results in the setting of GSpin and SO Shimura varieties in details.
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1. Good reductions of Shimura varieties of abelian type. In this section,
we recall the construction of integral canonical models for Shimura varieties of abelian
type in [22] and [21]. We will start with the construction for those of Hodge type,
and then pass to abelian type as in [22].

1.1. Integral models for Shimura varieties of Hodge type. Let (G,X) be
a Shimura datum of Hodge type with good reduction at p. We recall the construction
and basic results about the integral canonical models for the associated Shimura
varieties.

For a symplectic embedding i : (G,X) ↪→ (GSp(V, ψ), X ′), by [22] Lemma 2.3.1,
there exists a Zp-lattice VZp ⊆ VQp , such that iQp : GQp ⊆ GL(VQp) extends uniquely
to a closed embedding GZp

↪→ GL(VZp
). So there is a Z-lattice VZ ⊆ V such that

GZ(p)
, the Zariski closure of G in GL(VZ(p)

), is reductive, as the base change to Zp

of GZ(p)
is GZp

. Moreover, by Zarhin’s trick, we can assume that ψ is perfect on VZ.
Let Kp = GZp

(Zp) and K = KpK
p for a sufficientally small open compact subgroup

Kp ⊂ G(Ap
f ). The integral canonical model SK(G,X) of ShK(G,X) is constructed

as follows. Let K ′
p = GSp(VZ(p)

, ψ)(Zp), we can choose K ′ = K ′
pK

′p ⊆ GSp(V, ψ)(Af )
with K ′p small enough and containing Kp, such that ShK′(GSp(V, ψ), X ′) affords a
moduli interpretation, and that the natural morphism

f : ShK(G,X)→ ShK′(GSp(V, ψ), X ′)E

is a closed embedding. Let g = 1
2dim(V ), and Ag,1,K′ be the moduli scheme of prin-

cipally polarized abelian schemes over Z(p)-schemes with level K ′p structure. Then
ShK′(GSp(V, ψ), X ′) is the generic fiber of Ag,1,K′ , and the integral canonical model

SK(G,X)

is defined to be the normalization5 of the Zariski closure of ShK(G,X) in Ag,1,K′ ⊗
OE,(v).

5By the recent work of Xu [58], the normalization step in the construction of SK(G,X) is in
fact redundant.
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Theorem 1.1.1 ([22] Theorem 2.3.8, [21] Theorem 4.11). The OE,(v)-scheme
SK(G,X) is smooth, and morphisms in the inverse system lim←−Kp

SK(G,X) are étale.

The scheme SK(G,X) is uniquely determined by the Shimura datum and the
group K in the sense that SKp(G,X) := lim←−Kp

SK(G,X) satisfies a certain extension

property (see [22] 2.3.7 for the precise statement). This implies that the G(Ap
f )-action

on lim←−Kp
ShK(G,X) extends to lim←−Kp

SK(G,X).

Let A → SK(G,X) be the pull back to SK(G,X) of the universal abelian scheme
on Ag,1,K′/Z(p)

. Consider the vector bundle

V := H1
dR(A/SK(G,K))

over A/SK(G,K). There are certain sections of V⊗ which will play an important
role in this paper. Let VShK(G,X) be the base change of V to ShK(G,X), which is
H1

dR(A/ShK(G,K)) by base change of de Rham cohomology. By [22] Proposition
1.3.2 and [21] Lemma 4.7, there is a tensor s ∈ V ⊗

Z(p)
defining GZ(p)

⊆ GL(VZ(p)
). This

tensor gives a section sdR/E of V⊗
ShK(G,X), which is actually defined over OE,(v). More

precisely, we have the following result.

Proposition 1.1.2 ([22] Corollary 2.3.9, [21] Proposition 4.8). The section
sdR/E of V⊗

ShK(G,X) extends to a section sdR of V⊗.

Let D(A) be the Dieudonné crystal of A[p∞], then sdR (and hence s) induces
an injection of crystals scris : 1 → D(A)⊗, such that scris[

1
p ] : 1[

1
p ] → D(A)⊗[ 1p ] is

Frobenius equivariant. We will simply call scris a tensor of D(A)⊗.
1.1.3. We need to work with geometrically connected components. Fix a con-

nected component X+ ⊆ X. For a compact open subgroup K ⊆ G(Af ) as before, i.e.
K = KpK

p with Kp = GZ(p)
(Zp) and Kp ⊆ G(Ap

f ) open compact and small enough,

we denote by ShK(G,X)+ ⊆ ShK(G,X)C the geometrically connected component
which is the image of X+ × 1. Then by [22] 2.2.4, ShK(G,X)+ is defined over Ep,
the maximal extension of E which is unramified at p. Let O(p) be the localization at
(p) of the ring of integers of Ep, we write

SK(G,X)+

for the closure of ShK(G,X)+ in SK(G,X)⊗O(p), and set

SKp
(G,X)+ := lim←−

Kp

SK(G,X)+.

Recall that by [22] 3.2 there exists an adjoint action of Gad(Q)+ on ShKp(G,X)
induced by conjugation of G. The adjoint action of Gad(Z(p))

+ on ShKp(G,X) ex-
tends to SKp

(G,X). It leaves ShKp
(G,X)+ stable, and hence induces an action on

SKp
(G,X)+. We will describe this action following [24] in the next subsection.
We remark that the special fiber of SKp

(G,X)+ is connected. Indeed, by [35], it

has a smooth compactification SKp(G,X)+tor such that the boundary is either empty

or a relative divisor. Let H0 be the ring of regular functions on SKp
(G,X)+tor. It

is a finite O(p)-algebra in Ep. Noting that H0 is normal, we have H0 = O(p). By

Zariski’s connectedness theorem, the special fiber of SKp(G,X)+tor is connected, and
hence that of SKp

(G,X)+ is connected.
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1.2. Integral models for Shimura varieties of abelian type. Recall that a
Shimura datum (G,X) is said to be of abelian type, if there is a Shimura datum of
Hodge type (G1, X1) and a central isogenyGder

1 → Gder which induces an isomorphism
of adjoint Shimura data (Gad

1 , Xad
1 )

∼→ (Gad, Xad).

1.2.1. In order to explain the construction of integral canonical models for
Shimura varieties of abelian type, and also for the convenience of the next subsection,
we recall briefly Kisin’s construction of twisting abelian varieties. The main reference
is [24] 4.4.

Let R be a commutative ring, Z be a flat affine group scheme over SpecR, and
P be a Z-torsor. Then P is flat and affine. We write OZ and OP for the ring of
regular functions on Z and P respectively. Let M be a R-module with Z-action, i.e.
a homomorphism of fppf sheaves of groups Z → Aut(M), then the subsheaf MZ is a
R-submodule of M . By [24] Lemma 4.4.3, the natural homomorphism

(M ⊗R OP)Z ⊗R OP →M ⊗R OP (1.2.2)

is an isomorphism.

1.2.3. Let R ⊆ Q be a normal subring. For a scheme S, we define the R-isogeny
category of abelian schemes over S to be the category of abelian schemes over S by
tensoring the Hom groups by ⊗ZR. An object A in this category is called an abelian
scheme up to R-isogeny over S. For T an S-scheme, we set A(T ) = MorS(T,A)⊗ZR.
We will write AutR(A) for the R-group whose points in an R-algebra A are given by

AutR(A)(A) = ((EndSA)⊗R A)×.

Now we assume that Z is of finite type over R ⊆ Q. Suppose that we are given a
homomorphism of R-groups Z → AutR(A), we define a pre-sheaf AP by setting

AP(T ) = (A(T )⊗R OP)Z .

By [24] Lemma 4.4.6, AP is a sheaf, represented by an abelian scheme up to R-isogeny.

1.2.4. Before describing the construction of integral canonical models for
Shimura varieties of abelian type, we need to fix some notations. Let H/Z(p) be
a reductive group. For a subgroup A ⊆ H(Z(p)), we write A+ for the pre-image in A

of Had(R)+, the connected component of identity in Had(R); and A+ for A∩H(R)+.
We write H(Z(p))

− (resp. H(Z(p))
−
+) for the closure of H(Z(p)) (resp. H(Z(p))+) in

H(Ap
f ). Let Z be the center of H, we set

A (H) = H(Ap
f )/Z(Z(p))

− ∗H(Z(p))+/Z(Z(p)) H
ad(Z(p))

+

and

A (H)◦ = H(Z(p))
−
+/Z(Z(p))

− ∗H(Z(p))+/Z(Z(p)) H
ad(Z(p))

+,

where X ∗Y Z is the quotient of X � Z defined in [5] 2.0.1. By [5] 2.0.12 and [22]
3.3.2, A (H)◦ depends only on Hder and not on H.

Now we turn to the construction of integral models.
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1.2.5. Let (G,X) be a Shimura datum of abelian type with good reduction
at p. By [22] Lemma 3.4.13, there is a Shimura datum of Hodge type (G1, X1)
with good reduction at p, such that there is a central isogeny Gder

1 → Gder inducing
an isomorphism of Shimura data (Gad

1 , Xad
1 )

∼→ (Gad, Xad). Let GZ(p)
be a reductive

group over Z(p) with generic fiber G. By the proof of [22] Corollary 3.4.14, there exists

a reductive model G1,Z(p)
of G1 over Z(p), such that the central isogeny Gder

1 → Gder

extends to a central isogeny Gder
1,Z(p)

→ Gder
Z(p)

.

We can now follow discussions as in 1.1.3. Let X+
1 ⊆ X1 be a connected com-

ponent. For K1 = K1,pK
p
1 , let ShK1(G1, X1)

+ ⊆ ShK1(G1, X1) be the geometrically
connected component which is the image of X+

1 × 1. Then ShK1(G1, X1)
+ is defined

over Ep
1 , where E1 is the reflex field of (G1, X1), and Ep

1 is the maximal extension of
E1 which is unramified at p. Let O(p) be the localization at (p) of the ring of integers
of Ep

1 , we write

SK1
(G1, X1)

+

for the closure of ShK1
(G1, X1)

+ in SK1
(G1, X1)⊗O(p), and

SK1,p
(G1, X1)

+ := lim←−
Kp

1

SK1
(G1, X1)

+.

The Gad
1 (Z(p))

+-action on ShK1,p
(G1, X1)

+ extends to SK1,p
(G1, X1)

+, which (after
converting to a right action) induces an action of A (G1,Z(p)

)◦ on SK1,p
(G1, X1)

+.
Here A (G1,Z(p)

)◦ is as we introduced in 1.2.4.

The action of Gad
1 (Z(p))

+ on SK1,p(G1, X1) is described in [24] as follows. Let
(A, λ, ε) be the pull back to SK1,p

(G1, X1) of the universal abelian scheme (up to
Z(p)-isogeny) with weak Z(p)-polarization and level structure, and Z be the center of
G1,Z(p)

. By [24] Lemma 4.5.2, there is a natural embedding

Z → AutZ(p)
(A),

where AutZ(p)
(A) is as in 1.2.3. For γ ∈ Gad(Z(p))

+, and P the fiber of G1,Z(p)
→ Gad

Z(p)

over γ, by 1.2.3 again, we have AP , an abelian scheme up to Z(p)-isogeny. Moreover,
by [24] Lemma 4.4.8 (resp. Lemma 4.5.4), λ (resp. ε) induces a weak Z(p)-polarization
λP(resp. level structure εP) on AP . By [24] Lemma 4.5.7, this gives a morphism

SK1,p
(G1, X1)→ SK1,p

(G1, X1),

such that on generic fiber it agrees with the morphism induced by conjugation by γ.
This action stabilizes SK1,p

(G1, X1)
+.

Theorem 1.2.6. The quotient

SKp
(G,X) := [A (GZ(p)

)×SK1,p
(G1, X1)

+]/A (G1,Z(p)
)◦

is represented by a scheme over O(p) which descends to OE,(v). Moreover, it is the
integral canonical model of ShKp

(G,X).

Proof. This is [22] Theorem 3.4.10 when p > 2, and [21] Theorem 4.11 when
p = 2. See also the Errata for [Ki 2] in [23] for a fully corrected proof.

We have also

SKp(G,X) = [A (GZ(p)
)×SKp(G,X)+]/A (GZ(p)

)◦,
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where SKp
(G,X)+ ⊂ SKp

(G,X) is a geometrically connected component over O(p)

given by

SKp
(G,X)+ := SK1,p

(G1, X1)
+/Δ

with

Δ := Ker(A (G1,Z(p)
)◦ → A (GZ(p)

)◦).

For each open compact subgroup Kp ⊂ G(Ap
f ) which is small enough, we get the

integral canonical model

SKpKp(G,X) := SKp
(G,X)/Kp

of ShKpKp(G,X). In this paper, we are mainly interested in the geometry of the
special fiber

SKp,0(G,X)

of SKp(G,X), i.e. the special fibers SKpKp,0(G,X) of SKpKp(G,X) when Kp varies,
so we will sometimes work with SKp(G,X)⊗OE,v. Here OE,v is the p-adic completion
of OE,(v).

We consider the following example of Shimura varieties of abelian type, which will
be investigated continuously in the rest of this paper. Another interesting example
will be given in section 7.

Example 1.2.7. Let D be a quaternion algebra over a totally real extension F
of Q of degree n. Let ∞1,∞2, · · · ,∞d be the infinite places of F at which D is split.
We will always assume that d > 0 in the discussion. Let G = ResF/Q(D

×) and

h : S→ GLd
2,R ⊆ D×

R = GR

be the homomorphism given by z �→ (z, z, · · · , z) ∈ GLd
2,R. One checks easily that h

induces a Shimura datum denoted by (G,X). The associated Shimura variety is of
dimension d, and it is defined over the totally real number field

E = Q(

d∑
i=1

∞i(f) | f ∈ F ) ⊆ C,

here we view ∞i as an embedding F → R.
If d = n, then (G,X) is of PEL type; and if d < n, it is of abelian type but not of

Hodge type, as the weight cocharacter is not defined over Q. We are mainly interested
in the second case here. By [46] Part I §1, fixing an imaginary quadratic extension
K/F together with a subset PK of archimedean places of K such that the restriction
to F induces a bijection of from PK to {∞d+1,∞d+2, · · ·∞n}, then one can construct
a PEL (coarse) moduli variety MC/E

′ with an open and closed embedding

ShC(G,X)⊗ E′ ↪→ M̃C .

Here E′ ⊇ E is the reflex field of the zero-dimensional Shimura datum determined
by K and PK , G′ a certain unitary group associated to D and K, C ⊂ G′(Af ) is the

open compact subgroup of G′(Af ) associated to C, and M̃C is a certain twist of MC ,
cf. [46] p. 11-13.



178 X. SHEN AND C. ZHANG

If moreover D is split at p, the integral canonical model can be constructed as
follows. Let v be a place of E over p, and OE,v be the p-adic completion of the ring
of integers at v. By assumption G is hyperspecial at p, and we set Cp := G(Zp) and
we consider open compact subgroups of G(Af ) in the form C = CpC

p. Consider the
pro-varieties over Ev:

MCp
= lim←−

Cp

MCpCp , M̃Cp
= lim←−

Cp

M̃CpCp .

By [46] Part I §2, one can choose K and PK , such that E′ ⊆ Ev, and MCp
has an

integral modelM/OE,v, which is smooth (thus it is the integral canonical model) by
our assumption that D is split at p. Indeed, one can check that M coincides with
Kisin’s construction of canonical integral models for general Hodge type Shimura
varieties, cf. [22]. We get a twist M̃ ofM with generic fiber M̃Cp . By construction
we have an open and closed embedding

ShCp(G,X)Ev ↪→ M̃Cp .

The integral model of ShCp
(G,X)Ev

is then its closure in M̃.

1.3. Twisting p-divisible groups. In order to study stratifications induced by
p-divisible groups, it will be helpful to have a theory of twisting p-divisible group.
For our applications, it suffices to think about p-divisible groups coming from abelian
schemes. But we insist to give a general theory here, as it might be useful to study
general Rapoport-Zink spaces.

1.3.1. Consider the setting of 1.2.3 with R = Zp. We will fix a group scheme
Z over SpecR which is flat, affine and of finite type as well as a Z-torsor P over R.
Their rings of regular functions will be denoted by OZ and OP respectively.

Let D be a p-divisible group over a scheme S. Then EndSD is a R-module. We
will write AutR(D) for the R-group whose points in an R-algebra A are given by

AutR(D)(A) = ((EndSD)⊗R A)×.

Suppose now that we are given a homomorphism of R-groups Z → AutR(D). For
each positive integer n, we define a pre-sheaf DP [pn] by setting

DP [pn](T ) = (D[pn](T )⊗R OP)Z .

They form a direct system denoted by DP .

Proposition 1.3.2. DP [pn] is represented by a truncated p-divisible group of
level n over S, and DP is a p-divisible group.

Proof. We proceed as in [24] Lemma 4.4.6, and take a finite, integral, torsion free
R-algebra R′ such that P(R′) is non-empty. Specializing 1.2.2 by the map OP → R′,
we obtain an isomorphism DP [pn]⊗R R′ ∼= D[pn]⊗R R′. DP [pn]⊗R R′ is a truncated
p-divisible group of level n as D[pn]⊗R R′ is isomorphic to the sum of [R′ : R] copies
of D[pn].

We may assume that Fr(R′) is Galois over Qp, then DP [pn] is the Gal(Fr(R′)/Qp)-
invariants of DP [pn]⊗R R′. So DP [pn] is the kernel of a homomorphism of truncated
p-divisible groups of level n, and hence is a group scheme over S. It is necessarily flat
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as it is a direct summand of DP [pn]⊗RR′. By the same argument, after applying the
exact funtor ( )P to

0 �� D[pn−i] �� D[pn] pn−i

�� D[pi] �� 0,

we have an exact sequence

0 �� DP [pn−i] �� DP [pn]
pn−i

�� DP [pi] �� 0 .

This implies that DP is a p-divisible group.

Remark 1.3.3. The ways that we twist abelian schemes and p-divisible groups
are compatible. More precisely, notations and hypothesis as in 1.2.3, but with R ⊆
Z(p). Let R′ = Zp and D = A[p∞]. The map Z → AutR(A) induces a map ZR′ →
AutR′(D), and we have AP [p∞] = DPR′ .

1.3.4. We will need to work with p-divisible groups with additional structure.
Notations as in 1.3.1, we assume that S is an integral scheme which is flat over Z(p),
and that Z is smooth with connected fibers. Let Tp(D) be the p-adic Tate module of D
over the generic point of S, and t ∈ Tp(D)⊗ be a Z-invariant tensor. Using the proof
of [23] Lemmas 4.1.7 and 4.1.5, we have a canonical isomorphism Tp(DP) ∼= Tp(D)P ,
and the tensor t ∈ Tp(D)⊗ is naturally an element of Tp(DP)⊗.

Corollary 1.3.5. Assumptions as above, there exists an isomorphism DP ∼= D
respecting t.

Proof. Noting that Z is smooth with connected fibers, P is a trivial Z-torsor.
Indeed, by Lang’s theorem ([30]) the special fiber PFp is a trivial ZFp -torsor, and the
rational points on PFp lift to rational points of P. Specializing 1.2.2 at w ∈ P(R),
we get an isomorphism DP ∼= D. It is by definition that its induced map on Tate
modules respects t.

2. Newton stratifications. We study the Newton stratifications on the special
fibers of the Shimura varieties introduced in the last section.

2.1. Group theoretic preparations. Let G be a reductive group over Zp, and
μ be a cocharacter of G defined over W (κ) with κ|Fp a finite field. Let W = W (κ),
L = W [1/p] and σ be the Frobenius on them. We need the following objects. Let
C(G) (resp. B(G)) be the set of G(W )-σ-conjugacy (resp. G(L)-σ-conjugacy) classes
in G(L), C(G,μ) be the set of G(W )-σ-conjugacy classes in G(W )μ(p)G(W ), and
B(G,μ) be the image of

C(G,μ) ↪→ C(G) � B(G).

The set B(G) parametrizes isomorphism classes of F -isocrystals with G-structure over
an algebraically closed field of characteristic p, cf. [45] Remark 3.4 (i).

2.1.1. Let T be a maximal torus of G, and X∗(T ) be its group of cocharacters.
Let π1(G) be the quotient of X∗(T ) by the coroot lattice, and WG be the Weyl group
of G. Since G is unramified, we can fix a Borel subgroup T ⊂ B ⊂ G. To a G(L)-σ-
conjugacy class [b] ∈ B(G), Kottwitz defines two functorial invariants

νG([b]) ∈ (X∗(T )Q/WG)
Γ ∼= X∗(T )ΓQ,dom
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and

κG([b]) ∈ π1(G)Γ

in [26]. Here Γ = Gal(Qp/Qp), and X∗(T )Q,dom ⊂ X∗(T )Q is the cone spanned by
dominant coweights corresponding to B. These two invariants determines [b] uniquely.
In the following, we will also write νG(b) and κG(b) for an element b ∈ G(L) for the
two invariants of [b] ∈ B(G), the G(L)-σ-conjugacy class of b.

We consider the partial order ≤ on X∗(T )Q given by χ′ ≤ χ if and only if χ− χ′

is a linear combination of non-negative coroots with positive rational coefficients. We
write μ for the average of the Γ-orbit of μ. By [45] Theorem 4.2, we have νG(b) ≤ μ
and κG(b) = μ∗ for b ∈ G(W )μ(p)G(W ). Here μ∗ is the image of μ in π1(G)Γ. By
works of Gashi, Kottwitz, Lucarelli, Rapoport and Richartz, we have (see [54] 8.6))

B(G,μ) = {[b] ∈ B(G) | νG(b) ≤ μ and κG(b) = μ∗}.

The partial order ≤ on X∗(T )Q induces a partial order on the set B(G,μ), denoted
also by ≤.

Remark 2.1.2. One can define for any algebraically closed field k ⊇ Fp a set
B′(G) exactly as how we define B(G). But by [45] Lemma 1.3, the obvious map
B(G)→ B′(G) is bijective.

Remark 2.1.3. There is a unique maximal (resp. minimal) element in B(G,μ).
For a variety X/κ with a map X(κ)→ B(G,μ), the preimage of this element is called
the μ-ordinary locus (resp. basic locus).

To each G(L)-σ-conjugacy class [b], one defines Mb to be the centralizer in G of
νG(b), and Jb be the group scheme over Qp such that for any Qp-algebra R,

Jb(R) = {g ∈ G(R⊗Qp
L) | gb = bσ(g)}.

The group Jb is an inner form of Mb which, up to isomorphism, does not depend on
the choices of representatives in [b] (see [26] 5.2). Kottwitz introduced the notion of
defect in [28], based on earlier work of Chai [3].

Definition 2.1.4. For [b] ∈ B(G), the defect of [b] is defined by

defG(b) = rankQp
G− rankQp

Jb.

Hamacher gives a formula for defG(b) using root data.

Proposition 2.1.5 ([16] Proposition 3.8). Let w1, · · · , wl be the sums over all
elements in a Galois orbit of absolute fundamental weights of G. For [b] ∈ B(G), we
have

defG(b) = 2 ·
l∑

i=1

{〈νG(b), wi〉},

where {·} means the fractional part of a rational number.

2.2. Newton stratifications on Shimura varieties of Hodge type. No
surprisingly, Newton strata on Shimura varieties of abelian type are, in some manner,
induced by those on Shimura varieties of Hodge type. So we will first recall definition
of Newton strata on Shimura varieties of Hodge type.
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2.2.1. Notations as in 1.1. Let κ be the residue field of OE,(v). The Hodge type
Shimura datum (G,X) determines a G-orbit of cocharacters. It extends uniquely to
a GZp -orbit of cocharacters, and hence has a representative μ : Gm → GW (κ) which
is unique up to conjugacy. We remark that μ has weights 0 and 1 on V ∨

Zp
⊗W (κ).

Let W = W (κ) and L = W [1/p]. Let K = KpK
p with Kp = G(Zp). For

z ∈ SK(G,X)(κ), we will simply write Dz for D(Az[p
∞])(W ). In fact, we have an

F -crystal D(A[p∞]) with a crystalline Tate tensor scris over SK,0(G,X), the special
fiber of SK(G,X). On a point x ∈ SK(G,X)(κ) it gives rise to (Dx, scris,x). Two
points x, y ∈ SK(G,X)(κ) are said to be in the same Newton stratum if there exists
an isomorphism of F -isocrystals

Dx ⊗ L→ Dy ⊗ L

mapping scris,x to scris,y.
For x ∈ SK(G,X)(κ), choosing an isomorphism t : V ∨

Zp
⊗W → Dx mapping s to

scris,x, we get a Frobenius on V ∨
Zp
⊗W which is of the form (id⊗σ) ◦ gx,t with gx,t lies

in G(W )μ(p)G(W ). Moreover, changing t to another isomorphism V ∨
Zp
⊗W → Dx

mapping s to scris,x amounts to G(W )-σ-conjugacy of gx,t. So we have a well defined
map

SK(G,X)(κ)→ C(G,μ).

Similarly, changing t to another isomorphism V ∨
Zp
⊗ L→ Dx ⊗ L mapping s to scris,x

amounts to G(L)-σ-conjugacy of gx,t (in B(G)), and we have a well defined map

SK(G,X)(κ)→ B(G,μ).

It is clear that x, y ∈ SK(G,X)(κ) are in the same Newton stratum if and only if
they have the same image in B(G,μ).

Before stating the results about Newton strata on Shimura varieties of Hodge
type, we need to fix some notations. When there is no confusion about the level K
and the Shimura datum (G,X), we simply denote by S0 = SK,0(G,X) the special
fiber of SK(G,X). For [b] ∈ B(G,μ), we will write S b

0 for the Newton stratum
corresponding to it. It is, a priori, just a subset of S0(κ).

Theorem 2.2.2. The Newton stratum S b
0 is a non-empty equi-dimensional lo-

cally closed subscheme of S0 of dimension

〈ρ, μ+ νG(b)〉 −
1

2
defG(b).

Here ρ is the half-sum of positive roots of G. Moreover, S b
0 , the closure of S b

0 , is

the union of strata S b′
0 with [b′] ≤ [b], and S b

0 − S b
0 is either empty or pure of

codimension 1 in S b
0 .

Proof. That S b
0 is locally closed follows from [45] Theorem 3.6. Let b0 ∈ B(G,μ)

be the basic element. The non-emptiness of S b0
0 is proved by Dong-Uk Lee, Kisin-

Madapusi Pera and Chia-Fu Yu respectively, one can see for example [31]. Fixing
x ∈ S b0

0 (κ), let X(μ, b0) be the affine Deligne-Lusztig variety attached to b0, we
consider the uniformization map τx : X(μ, b0)→ Ag,K′ . The dimension of S b0

0 is no
bigger than that of the image of τx, which is 〈ρ, μ+ νG(b0)〉 − 1

2defG(b0) by [62]. But
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then the theorem holds by [53] Lemma 5.12. When p > 2, the dimension formula is
also given in [17] and [61].

When the prime to p level Kp varies, by construction the Newton strata S b
KpKp,0

are invariant under the prime to p Hecke action. In this way we get also the Newton
stratification on SKp,0 = lim←−Kp

SKpKp,0.

2.3. Newton stratifications on Shimura varieties of abelian type. The
guiding idea of our construction is as follows. Let (G,X) be a Shimura datum of
abelian type with good reduction at p, Kp ⊂ G(Ap

f ) be a sufficiently small open
compact subgroup, and SK,0(G,X) be the special fiber of the associated integral
canonical model (with K = KpK

p,Kp = G(Zp)). In order to define a stratification
on SK,0(G,X), the easiest way (and also the most direct way) one could think about
is to do this for SKad,0(G

ad, Xad) first, where Kad = Gad(Zp)K
p,ad ⊂ Gad(Af )

containes the image of K under the induced map G(Af ) → Gad(Af ), and then pull
it back via

SK,0(G,X)→ SKad,0(G
ad, Xad).

The goal of this subsection is to explain how to define and study Newton stratifications
for Shimura varieties of abelian type via this “passing to adjoints” approach.

We would like to begin with the following lemma, which says that if one wants to
use B(G,μ) to parameterize all the Newton strata, then he could pass to the adjoint
group freely.

Lemma 2.3.1. Let f : G→ H be a central isogeny of reductive groups over Zp, μ
a cocharacter of G defined over W (κ) with κ|Fp finite, and μH = f ◦ μ the associated
cocharater of H. Then the map B(G,μ)→ B(H,μH) is a bijection respecting partial
orders.

Proof. This follows from [27] 6.5.

The technical starting point is the following result of Kisin. It implies that for
an adjoint Shimura datum of abelian type with good reduction at p, one can always
realize it as the adjoint Shimura datum of a Hodge type one with very good properties.

Lemma 2.3.2 ([23] Lemma 4.6.6). Let (G,X) be a Shimura datum of abelian type
with G an adjoint group. Then there exists a Shimura datum of Hodge type (G1, X1)
such that

(1) (Gad
1 , Xad

1 )
∼−→ (G,X) and ZG1

is a torus; moreover, for any other Hodge
type datum (G2, X2) with (Gad

2 , Xad
2 )

∼−→ (G,X), Gder
2 is a quotient of Gder

1 ;
(2) if (G,X) has good reduction at p, then (G1, X1) in (1) can be chosen to have

good reduction at p, and such that E(G,X)p = E(G1, X1)p.

2.3.3. Let (G,X) be an adjoint Shimura datum of abelian type with good
reduction at p, and (G1, X1) be a Shimura datum of Hodge type satisfying the two
conditions in the above lemma. Then the center of G1,Z(p)

is a torus.
Consider SKp

(G,X). By Theorem 1.2.6, it is given by

SKp(G,X) = [A (GZ(p)
)×SK1,p(G1, X1)

+]/A (G1,Z(p)
)◦

= [A (GZ(p)
)×SKp

(G,X)+]/A (GZ(p)
)◦,

where on connected components we have

SKp
(G,X)+ = SK1,p

(G1, X1)
+/Δ
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with

Δ = Ker(A (G1,Z(p)
)◦ → A (GZ(p)

)◦).

By the last subsection, there is a Newton stratification on SK1,p,κ(G1, X1). We
can restrict it to SK1,p,κ(G1, X1)

+ and then extend it trivially to A (GZ(p)
) ×

SK1,p,κ(G1, X1)
+. We will sometimes call this the induced Newton stratification on

A (GZ(p)
)×SK1,p,κ(G1, X1)

+. Similarly for A (G1,Z(p)
)×SK1,p,κ(G1, X1)

+.

Proposition 2.3.4. The induced Newton stratification on A (GZ(p)
) ×

SK1,p,κ(G1, X1)
+ (resp. A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+) is A (G1,Z(p)

)◦-stable. More-

over, the induced Newton stratification on A (G1,Z(p)
)×SK1,p,κ(G1, X1)

+ descends to
the Newton stratification on SK1,p,0(G1, X1).

Proof. To see the first statement, for ([g, h], x) ∈ A (GZ(p)
) ×SK1,p,κ

(G1, X1)
+,

with g ∈ G(Ap
f ), h ∈ G(Z(p))

+ and x ∈ SK1,p,κ(G1, X1)
+, its p-divisible group is

given by Ax[p
∞]. So, to prove the claim, it suffices to show that for any [g′, h′] ∈

A (G1,Z(p)
)◦ with g′ ∈ G1(Z(p))

−
+, h

′ ∈ Gad
1 (Z(p))

+, the p-divisible group attached to
([g, h], x) · (g′, h′) is isomorphic to Ax[p

∞] respecting additional structure. But this
follows from Corollary 1.3.5. By the same argument, we see that the induced Newton
stratification on A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+ descends to the Newton stratification

on SK1,p,0(G1, X1).

The induced Newton stratification on A (GZ(p)
) ×SK1,p,κ(G1, X1)

+ descends to
a stratification on SKp,0(G,X), and we will call it the Newton stratification. By
construction, one sees easily that this does not depend on the choice of (G1, X1).
More formally, we have the following formulas for (G1, X1):

SK1,p,0(G1, X1) =
∐

[b]∈B(G1,μ1)

SK1,p,0(G1, X1)
b,

SK1,p,κ(G1, X1)
+ =

∐
[b]∈B(G1,μ1)

SK1,p,κ(G1, X1)
+,b,

SK1,p,κ(G1, X1)
b = [A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+,b]/A (G1,Z(p)

)◦,

and for (G,X):

SK,p,0(G,X) =
∐

[b]∈B(G,μ)

SKp,0(G,X)b,

SKp,κ(G,X)+ =
∐

[b]∈B(G,μ)

SKp,κ(G,X)+,b,

SKp,κ(G,X)b = [A (GZ(p)
)×SKp,κ(G,X)+,b]/A (GZ(p)

)◦.

Moreover, we have

SKp,κ(G,X)+,b = SK1,p,κ(G1, X1)
+,b/Δ,

SKp,κ(G,X)b = [A (GZ(p)
)×SK1,p,κ(G1, X1)

+,b]/A (G1,Z(p)
)◦.

The proposition also indicates how to relate Newton strata to the group theoretic
object B(G,μ). For x ∈ SKp,0(G,X)(κ), we can find x0 ∈ SKp,0(G,X)+(κ) which is
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in the same Newton stratum as x. Noting that x0 lifts to x̃0 ∈ SK1,p,0(G1, X1)
+(κ)

whose image in B(G1, μ1) 
 B(G,μ) depends only on x, we get a well defined map

SKp,0(G,X)(κ)→ B(G,μ)

whose fibers are Newton strata of SKp,0(G,X).

2.3.5. Now we are ready to think about general Shimura varieties of abelian
type. Let (G,X) be a Shimura datum of abelian type (not adjoint in general) with
good reduction at p. Let (Gad, Xad) be its adjoint Shimura datum, and (G1, X1) be
a Shimura datum of Hodge type satisfying the two conditions in Lemma 2.3.2 with
respect to (Gad, Xad).

By the previous discussions, we have a commutative diagram

SK1,p,0(G1, X1)(κ) ��

��

B(G1, μ1)

�
��

SKp,0(G,X)(κ) �� SKad
p ,0(G

ad, Xad)(κ) �� B(Gad, μ) B(G,μ).
���

Here for μ (resp. μ1), we use the same notation when viewing it as a cocharacter
of Gad, and we identified B(Gad, μ) and B(Gad, μ1) silently. Now we can imitate
the main results in Hodge type cases. Before stating the results, we fix notations
as follows. Choose a sufficiently small open compact subgroup Kp ⊂ G(Ap

f ). We
simply denote by S0 the special fiber of SK(G,X), and by δKp the induced Newton
map S0(κ) → B(G,μ). For [b] ∈ B(G,μ), we will write S b

0 for the Newton stratum
corresponding to it.

Theorem 2.3.6. The Newton stratum S b
0 is non-empty, and it is an equi-

dimensional locally closed subscheme of S0 of dimension

〈ρ, μ+ νG(b)〉 −
1

2
defG(b).

Here ρ is the half-sum of positive roots of G. Moreover, S b
0 , the closure of S b

0 , is

the union of strata S b′
0 with [b′] ≤ [b], and S b

0 − S b
0 is either empty or pure of

codimension 1 in S b
0 .

Proof. For S0(G
ad, Xad), the statements for S0(G

ad, Xad)b follow by combining
Theorem 2.2.2 with Proposition 2.3.4. On geometrically connected components, the
morphism

Sκ(G,X)+ → Sκ(G
ad, Xad)+

is a finite étale cover, and hence the statements for S b
0 hold.

Thus for a Shimura datum (G,X) of abelian type with good reduction at p, we
have the Newton stratification on the special fiber S0 of SK(G,X)

S0 =
∐

[b]∈B(G,μ)

S b
0 , S b

0 =
∐

[b′]≤[b]

S b′
0 .

As in Remark 2.1.3, there is a unique minimal (closed) stratum S b0
0 , the basic locus,

associated to the minimal element [b0] ∈ B(G,μ); there is also a unique maximal
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(open) stratum S
bμ
0 , the μ-ordinary locus, associated to the maximal element [bμ] ∈

B(G,μ).

Remark 2.3.7. Historically to study the geometry of Newton strata, one usually
first proves that there exists some kind of almost product structure by introducing
certain Igusa varieties over central leaves (cf. section 4) and the related Rapoport-Zink
spaces, and then study the geometry of the associated Igusa varieties and Rapoport-
Zink spaces respectively. This was done in the PEL type case in [37, 16] and in the
Hodge type case in [17, 61]. In the abelian type case, we could also do this, using the
Rapoport-Zink spaces constructed in [47]. However, we will not pursue this aspect
here.

Example 2.3.8. Notations as in Example 1.2.7, we assume that D is split at p
and that F is unramified at p. Let p1, · · · , pt be places of F over p, and Fpi

be the
p-adic completion of F . We will fix an identification

ι : Hom(F,R) ∼= Hom(F,Qp) ∼=
∐
i

Hom(Fpi
,Qp).

After reordering the pi, we can find 1 ≤ s ≤ t, such that for i ≤ s, Hom(Fpi
,Qp)

contains some ∞j with j ≤ d; and for i > s, Hom(Fpi ,Qp) contains only ∞j with
j > d.

Then

GQp
∼=

t∏
i=1

ResFpi
/Qp

GL2,Fpi
:=

t∏
i=1

Gpi .

The Shimura datum gives a cocharacter μ : Gm → GQp
as in 2.2.1. Under the

isomorphism

GQp

∼=
t∏

i=1

( ∏
σ:Fpi

↪→Qp

GL2,Qp

)
,

the cocharacter μ decomposes into

μi : Gm → GpiQp
=

∏
σ:Fpi

↪→Qp

GL2,Qp
.

As ∞j , 1 ≤ j ≤ d, are all the archimedean places where D splits, by our choice of
ordering of the primes pi, μi is trivial for i > s, and for 1 ≤ i ≤ s it is of the form
(reordering the σ : Fpi

↪→ Qp if necessary)

z �→
((

z 0
0 1

)
, · · · ,

(
z 0
0 1

)
,

(
1 0
0 1

)
, · · · ,

(
1 0
0 1

))
.

For 1 ≤ i ≤ s, we will write ai for the number of non-trivial factors of μi. Then

B(G,μ) ∼=
s∏

i=1

B(Gpi , μi) =

s∏
i=1

B(ResFpi
/Qp

GL2,Fpi
, μi),

and we can use [10] 2.1 to compute B(Gpi
, μi).
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Let ni = [Fpi
: Qp]. Let B(Gpi

, μi)2 (resp. B(Gpi
, μi)1) be the subset of

B(Gpi , μi) with 2 slopes (resp. 1 slope). Then B(Gpi , μi)2 is the set of pairs

(
d1
ni

,
d2
ni

)

such that d1, d2 are non-negative integers with d1 > d2 and d1 + d2 = ai, and
B(Gpi

, μi)1 contains only one element which is the pair

(
ai
2ni

,
ai
2ni

).

It is then easy to see that the cardinality of B(Gpi
, μi) is �ai

2 �+1, where as usual for
a real number x, �x� is the smallest integer which is no less than x. The cardinality
of B(G,μ) is the product of those of B(Gpi

, μi).
One sees easily that for each i, B(Gpi , μi) is totally ordered. For [b] ∈ B(G,μ),

its projection to B(Gpi
, μi) is of form (λ1

ni
, λ2

ni
) with λ1 ≥ λ2 and λ1 + λ2 = ai. These

λi are integers unless λ1 = λ2 and ai odd. Let

li(b) := [λ1],

where [x] is the integer part of x. By Theorem 2.3.6, S b
0 is non-empty and equi-

dimensional. One deduces easily from purity that it is of dimension
∑s

i=1 li(b).

3. Ekedahl-Oort stratifications. We study the Ekedahl-Oort stratifications
on the special fibers of the Shimura varieties introduced in the first section.

3.1. F -zips and G-zips. In this subsection, we will follow [39] and [43] to in-
troduce F -zips and G-zips. They should be viewed as a kind of de Rham realizations
of certain abelian motives. They are introduced by Moonen-Wedhorn and Pink-
Wedhorn-Ziegler with the aim to study Ekedahl-Oort strata for Shimura varieties.

Let S be a scheme, and M be a locally free OS-module of finite rank. By a
descending (resp. ascending) filtration C• (resp. D•) on M , we always mean a
separating and exhaustive filtration such that Ci+1(M) is a locally direct summand
of Ci(M) (resp. Di(M) is a locally direct summand of Di+1(M)).

Let LF(S) be the category of locally free OS-modules of finite rank, FilLF•(S) be
the category of locally free OS-modules of finite rank with descending filtration. For
two objects (M,C•(M)) and (N,C•(N)) in FilLF•(S), a morphism

f : (M,C•(M))→ (N,C•(N))

is a homomorphism of OS-modules such that f(Ci(M)) ⊆ Ci(N). We also denote
by FilLF•(S) the category of locally free OS-modules of finite rank with ascending
filtration. For two objects (M,C•) and (M ′, C ′•) in FilLF•(S), their tensor product
is defined to be (M ⊗M ′, T •) with T i =

∑
j C

j⊗C ′i−j . Similarly for FilLF•(S). For
an object (M,C•) in FilLF•(S), one defines its dual to be

(M,C•)∨ = (∨M := M∨, ∨Ci := (M/C1−i)∨);

and for an object (M,D•) in FilLF•(S), one defines its dual to be

(M,D•)∨ = (∨M := M∨, ∨Di := (M/D−1−i)
∨).
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It is clear from the convention that (M,C•)∨ = (∨M, ∨C•) = (M∨, ∨C•), and simi-
larly for D•.

If S is over Fp, we will denote by σ : S → S the morphism which is the identity
on the topological space and p-th power on the sheaf of functions. For an S-scheme
T , we will write T (p) for the pull back of T via σ. For a quasi-coherent OS-module
M , M (p) means the pull back of M via σ. For a σ-linear map ϕ : M → M , we will
denote by ϕlin : M (p) →M its linearization.

Definition 3.1.1. Let S be an Fp-scheme.
(1) By an F -zip over S, we mean a tuple M = (M, C•, D•, ϕ•) where

• M is an object in LF(S), i.e. M is a locally free sheaf of finite rank on S;
• (M,C•) is an object in FilLF•(S), i.e. C• is a descending filtration

on M ;
• (M,D•) is an object in FilLF•(S), i.e. D• is an ascending filtration
on M ;

• ϕi : C
i/Ci+1 → Di/Di−1 is a σ-linear map whose linearization

ϕlin
i : (Ci/Ci+1)(p) → Di/Di−1

is an isomorphism.
(2) By a morphism of F -zips

M = (M,C•, D•, ϕ•)→M ′ = (M ′, C ′•, D′
•, ϕ

′
•),

we mean a morphism of OS-modules f : M → N , such that for all i ∈ Z,
f(Ci) ⊆ C ′i, f(Di) ⊆ D′

i, and f induces a commutative diagram

Ci/Ci+1 ϕi−−−−→ Di/Di−1

f

⏐⏐� ⏐⏐�f

C ′i/C ′i+1 ϕ′
i−−−−→ D′

i/D
′
i−1.

Example 3.1.2 ([43] Example 6.6). The Tate F -zip of weight d is

1(d) := (OS , C
•, D•, ϕ•),

where

Ci =

{
OS for i ≤ d;

0 for i > d;
Di =

{
0 for i < d;

OS for i ≥ d;

and ϕd is the Frobenius.

One can talk about tensor products and duals in the category of F -zips.

Definition 3.1.3 ([43] Definition 6.4). Let M , N be two F -zips over S, then
their tensor product is the F -zip M ⊗ N , consisting of the tensor product M ⊗ N
with induced filtrations C• and D• on M ⊗N , and induced σ-linear maps

griC(M ⊗N)

∼=
��

grDi (M ⊗N)

⊕
j gr

j
C(M)⊗ gri−j

C (N)

⊕
j ϕj⊗ϕi−j �� ⊕

j gr
D
j (M)⊗ grDi−j(N)

∼=

��
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whose linearization are isomorphisms.

Definition 3.1.4 ([43] Definition 6.5). The dual of an F -zip M is the F -zip M∨

consisting of the dual sheaf of OS-modules M∨ with the dual descending filtration
of C• and dual ascending filtration of D•, and σ-linear maps whose linearization are
isomorphisms

(griC(M
∨))(p) = ((gr−i

C M)∨)(p)
(
(ϕlin

−i)
)−1∨

��(grD−i M)∨ ∼= grDi (M∨) .

For the Tate F -zips introduced in Example 3.1.2, we have natural isomorphisms
1(d) ⊗ 1(d′) ∼= 1(d + d′) and 1(d)∨ ∼= 1(−d). The d-th Tate twist of an F -zip M is
defined as M(d) := M ⊗ 1(d), and there is a natural isomorphism M(0) ∼= M .

Definition 3.1.5. A morphism between two objects in LF(S) is said to be
admissible if the image of the morphism is a locally direct summand. A morphism
f : (M,C•) → (M ′, C ′•) in FilLF•(S) (resp. f : (M,D•) → (M ′, D′

•) in FilLF•(S))
is called admissible if for all i, f(Ci) (resp. f(Di)) is equal to f(M) ∩ C ′i (resp.
f(M)∩D′

i) and is a locally direct summand of M ′. A morphism between two F -zips
M → M ′ in F -Zip(S) is called admissible if it is admissible with respect to the two
filtrations.

With admissible morphisms, tensor products, duals and the Tate object 1(0) as
above, F -Zip(S) becomes an Fp-linear exact rigid tensor category (see [43] section
6). By [43] Lemma 4.2 and Lemma 6.8, for a morphism in F -Zip(S), the property of
being admissible is local for the fpqc topology.

We will introduce G-zips following [43]. These may be viewed as F -zips with
G-structure. Note that the authors of [43] work with reductive groups over a general
finite field Fq containing Fp, and q-Frobenius. But we don’t need the most general
version of G-zips, as our reductive groups are connected and defined over Fp.

3.1.6. Let G be a connected reductive group over Fp, and χ be a cocharacter of
G defined over κ, a finite extension of Fp. Let P+ ⊆ Gκ (resp. L ⊆ Gκ, P− ⊆ Gκ) be
the subgroup whose Lie algebra is the submodule of Lie(Gκ) of non-negative weights
(resp. of weight 0, of non-positive weights) with respect to χ composed with the
adjoint action of Gκ on Lie(Gκ). The unipotent subgroup of P+ (resp. P−) will be
denoted by U+ (resp. U−).

Definition 3.1.7. Let S be a scheme over κ.
(1) A G-zip of type χ over S is a tuple I = (I, I+, I−, ι) consisting of

• a right Gk-torsor I over S,
• a right P+-torsor I+ ⊆ I (i.e. the inclusion I+ ⊆ I is such that it is
compatible for the P+-action on I+ and the Gκ-action on I),

• a right P
(p)
− -torsor I− ⊆ I (similarly as for I+ ⊆ I), and

• an isomorphism of L(p)-torsors ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− .

(2) A morphism (I, I+, I−, ι)→ (I ′, I ′+, I
′
−, ι

′) of G-zips of type χ over S consists
of equivariant morphisms I → I ′ and I± → I ′± that are compatible with
inclusions and the isomorphisms ι and ι′.

Here by a torsor over S of an fpqc group scheme G/S, we mean an fpqc scheme
X/S with a G-action ρ : X ×S G → X such that the morphism X × G → X ×S X,
(x, g)→ (x, x · g) is an isomorphism.



STRATIFICATIONS IN SHIMURA VARIETIES OF ABELIAN TYPE 189

The category of G-zips of type χ over S will be denoted by G-Zipχκ(S). When
G = GLn we recover the category of F -zips, cf. [43] subsection 8.1. With the
evident notation of pull back, the G-Zipχκ(S) form a fibered category over the category
of schemes over κ, denoted by G-Zipχκ. Noting that morphisms in G-Zipχκ(S) are
isomorphisms, G-Zipχκ is a category fibered in groupoids.

Theorem 3.1.8 ([43] Corollary 3.12). The fibered category G-Zipχκ is a smooth
algebraic stack of dimension 0 over κ.

3.1.9. Some technical constructions about G-zips We need more informa-
tion about the structure of G-Zipχκ. First, we need to introduce some standard G-zips
as in [43].

Construction 3.1.10 ([43] Construction 3.4). Let S/κ be a scheme. For a
section g ∈ G(S), one associates a G-zip of type χ over S as follows. Let Ig = S×κGκ

and Ig,+ = S×κP+ ⊆ Ig be the trivial torsors. Then I
(p)
g
∼= S×κGκ = Ig canonically,

and we define Ig,− ⊆ Ig as the image of S×κP
(p)
− ⊆ S×κGκ under left multiplication

by g. Then left multiplication by g induces an isomorphism of L(p)-torsors

ιg : I
(p)
g,+/U

(p)
+ = S ×κ P

(p)
+ /U

(p)
+
∼= S ×κ P

(p)
− /U

(p)
−

∼→ g(S ×κ P
(p)
− )/U

(p)
− = Ig,−/U

(p)
− .

We thus obtain a G-zip of type χ over S, denoted by Ig.

Lemma 3.1.11 ([43] Lemma 3.5). Any G-zip of type χ over S is étale locally of
the form Ig.

Now we will explain how to write G-Zipχκ in terms of quotient of an algebraic
variety by the action of a linear algebraic group following [43] Section 3.

Denote by Frobp : L → L(p) the relative Frobenius of L, and by EG,χ the fiber
product

EG,χ

��

�� P (p)
−

��
P+

�� L
Frobp�� L(p).

Then we have

EG,χ(S) = {(p+ := lu+, p− := l(p)u−) : l ∈ L(S), u+ ∈ U+(S), u− ∈ U
(p)
− (S)}. (3.1.12)

It acts on Gκ from the left hand side as follows. For (p+, p−) ∈ EG,χ(S) and g ∈
Gκ(S), set (p+, p−) · g := p+gp

−1
− .

To relate G-Zipχκ to the quotient stack [EG,χ\Gκ], we need the following construc-
tions in [43]. First, for any two sections g, g′ ∈ Gκ(S), there is a natural bijection
between the set

TranspEG,χ(S)(g, g
′) := {(p+, p−) ∈ EG,χ(S) | p+gp−1

− = g′}

and the set of morphisms of G-zips Ig → Ig′ (see [43] Lemma 3.10). So we define a
category X fibered in groupoids over the category of κ-schemes as follows. For any
scheme S/κ, let X (S) be the small category whose underly set is G(S), and for any
two elements g, g′ ∈ G(S), the set of morphisms is the set TranspEG,χ(S)(g, g

′).
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Theorem 3.1.13 ([43] Proposition 3.11). Sending g ∈ X (S) = G(S) to Ig
induces a fully faithful morphism X → G-Zipχκ. Moreover, it induces an isomorphism

of algebraic stacks [EG,χ\Gκ]
∼→ G-Zipχκ.

3.2. Some group theoretic descriptions for the geometry of [EG,μ\Gκ].
Let B ⊆ G be a Borel subgroup, and T ⊆ B be a maximal torus. Note that such
a B exists by [30] Theorem 2, and such a T exists by [6] XIV Theorem 1.1. Let
W (B, T ) := NormG(T )(κ)/T (κ) be the Weyl group, and I(B, T ) be the set of simple
reflections defined by Bκ. Let ϕ be the Frobenius on G given by the p-th power. It
induces an isomorphism

(W (B, T ), I(B, T ))
∼→ (W (B, T ), I(B, T ))

of Coxeter systems still denoted by ϕ.
A priori the pair (W (B, T ), I(B, T )) depends on the pair (B, T ). However, any

other pair (B′, T ′) with B′ ⊆ Gκ a Borel subgroup and T ′ ⊆ B′ a maximal torus is
obtained on conjugating (Bκ, Tκ) by some g ∈ G(κ) which is unique up to right mul-
tiplication by Tκ. So conjugation by g induces isomorphisms W (B, T ) → W (B′, T ′)
and I(B, T ) → I(B′, T ′) that are independent of g. Moreover, the morphisms at-
tached to any three of such pairs are compatible, so we will simply write (W, I) for
(W (B, T ), I(B, T )), and view it as ‘the’ Weyl group with ‘the’ set of simple reflections.

The cocharacter μ : Gm → Gκ as in 3.1 gives a parabolic subgroup P+, and hence
a subset J ⊆ I by taking simple roots whose inverse are roots of P+. Let WJ the
subgroup of W generated by J , and JW be the set of elements w such that w is the
element of minimal length in some coset WJw

′. Note that there is a unique element
in WJw

′ of minimal length, and each w ∈ W can be uniquely written as w = wJ
Jw

with wJ ∈ WJ and Jw ∈ JW . In particular, JW is a system of representatives of
WJ\W .

Furthermore, if K is a second subset of I, then for each w, there is a unique
element in WJwWK which is of minimal length. We will denote by JWK the set of
elements of minimal length, and it is a set of representatives of WJ\W/WK .

Let w0 be the element of maximal length in W , set K := w0ϕ(J). Here we write
gJ for gJg−1. Let

x ∈ KWϕ(J)

be the element of minimal length in WKw0Wϕ(J). Then x is the unique element of

maximal length in KWϕ(J) (see [54] 5.2). There is a partial order 	 on JW , defined
by w′ 	 w if and only if there exists y ∈WJ , such that

yw′xϕ(y−1)x−1 ≤ w

(see [54] Definition 5.8). Here ≤ is the Bruhat order (see A.2 of [54] for the definition).
The partial order 	 makes JW into a topological space.

Now we can state the the main result in [42] of Pink-Wedhorn-Ziegler that gives a
combinatorial description of the topological space of [EG,μ\Gκ] (and hence G-Zipμκ).

Theorem 3.2.1. For w ∈ JW , and T ′ ⊆ B′ ⊆ Gκ with T ′ (resp. B′) a maximal

torus (resp. Borel) of Gκ such that T ′ ⊆ Lκ and B′ ⊆ P
(p)
−,κ, let g, ẇ ∈ NormGκ

(T ′)
be a representative of ϕ−1(x) and w respectively, and Gw ⊆ Gκ be the EG,μ-orbit of
gB′ẇB′. Then
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(1) The orbit Gw does not depends on the choices of ẇ, T ′, B′ or g.
(2) The orbit Gw is a locally closed smooth subvariety of Gκ. Its dimension is

dim(P ) + l(w). Moreover, Gw consists of only one EG,μ-orbit. So Gw is
actually the orbit of gẇ.

(3) Denote by
∣∣[EG,μ\Gκ] ⊗ κ

∣∣ the topological space of [EG,μ\Gκ] ⊗ κ, and still
write JW for the topological space induced by the partial order 	. Then the
association w �→ Gw induces a homeomorphism JW

∼→
∣∣[EG,μ\Gκ]⊗ κ

∣∣.
Remark 3.2.2. There is a unique maximal (resp. minimal) element in JW

(with respect to 	). For a variety X/κ with a map X(κ)→ JW , the preimage of this
element is called the ordinary locus (resp. superspecial locus).

3.3. Ekedahl-Oort stratifications on Shimura varieties of Hodge type.
Now we will explain how to construct Ekedahl-Oort stratification following [60]. No-
tations as in 1.1, we will write V, s and sdR respectively for its reduction mod p, and
L (resp. G, S0) for the special fiber of VZ(p)

(resp. GZ(p)
, SK(G,X)). By [60] Lemma

2.3.2 1), the scheme I = IsomS0

(
(L∨, s)⊗OS0

, (V , sdR)
)
is a right G-torsor.

Setting 3.3.1. Let F : V(p) → V and V : V → V(p) be the Frobenius and
Verschiebung on V respectively. Let δ : V → V(p) be the semi-linear map sending v to
v⊗1. Then we have a semi-linear map F ◦ δ : V → V. There is a descending filtration

V ⊇ ker(F ◦ δ) ⊇ 0

and an ascending filtration

0 ⊆ im(F ) ⊆ V.

The morphism V induces an isomorphism

V/im(F )→ ker(F )

whose inverse will be denoted by V −1. Then F and V −1 induce isomorphisms

ϕ0 : (V/ker(F ◦ δ))(p) → im(F )

and

ϕ1 : (ker(F ◦ δ))(p) → V/(im(F )).

Setting 3.3.2. Let μ be as in 2.2.1, we use the same symbol for its reduction
mod p. The cocharacter μ : Gm,κ → Gκ ⊆ GL(Lκ) ∼= GL(L∨

κ ) induces an F -zip
structure on L∨

κ as follows. Let (L∨
κ )

0 (resp. (L∨
κ )

1) be the subspace of L∨
κ of weight 0

(resp. 1) with respect to μ, and (L∨
κ )0 (resp. (L∨

κ )1) be the subspace of L∨
κ of weight

0 (resp. 1) with respect to μ(p). Then we have a descending filtration

L∨
κ ⊇ (L∨

κ )
1 ⊇ 0

and an ascending filtration

0 ⊆ (L∨
κ )0 ⊆ L∨

κ .
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Let ξ : L∨
κ → (L∨

κ )
(p) be the isomorphism given by l⊗k �→ l⊗1⊗k, ∀ l ∈ L∨, ∀ k ∈ κ.

Then ξ induces isomorphisms

φ0 : (L∨
κ )

(p)/((L∨
κ )

1)(p)
pr2−→ ((L∨

κ )
0)(p)

ξ−1

−→ (L∨
κ )0

and

φ1 : ((L∨
κ )

1)(p)
ξ−1

−→ ((L∨
κ )1 
 L∨

κ/(L
∨
κ )0.

The first main result of [60] is as follows.

Theorem 3.3.3 ([60] Theorem 2.4.1).

(1) Let I+ ⊆ I be the closed subscheme

I+ := IsomS0

(
(L∨

κ ⊇ (L∨
κ )

1, s)⊗OS0
, (V ⊇ ker(F ◦ δ), sdR)

)
.

Then I+ is a P+-torsor over S0.
(2) Let I− ⊆ I be the closed subscheme

I− := IsomS0

(
((L∨

κ )0 ⊆ L∨
κ , s)⊗OS0

, (im(F ) ⊆ V, sdR)
)
.

Then I− is a P
(p)
− -torsor over S0.

(3) Let ι : I
(p)
+ /U

(p)
+ → I−/U

(p)
− be the morphism induced by

I
(p)
+ → I−/U

(p)
−

f �→ (ϕ0 ⊕ ϕ1) ◦ gr(f) ◦ (φ−1
0 ⊕ φ−1

1 ), ∀ S/S0 and ∀ f ∈ I
(p)
+ (S).

Then ι is an isomorphism of L(p)-torsors.

Hence the tuple (I, I+, I−, ι) is a G-zip of type μ over S0.

The G-zip (I, I+, I−, ι) induces a morphism S0 → G-Zipμκ 
 [EG,μ\Gκ] over κ.
In the following we will simply write Sκ = S0,κ = SK,κ(G,X). We will write the
induced morphism over κ as

ζ : Sκ → G-Zipμκ ⊗ κ 
 [EG,μ\Gκ]⊗ κ,

whose fibers are called Ekedahl-Oort strata of Sκ. In the following we will sometimes
abbreviate “Ekedahl-Oort” to “E-O” for short. The main results about the Ekedahl-
Oort stratifications are as follows.

Theorem 3.3.4.

(1) The morphism ζ above is smooth, and it is surjective when p > 2. In partic-
ular,
(a) each E-O stratum is a smooth and locally closed subscheme of Sκ, the

closure of an E-O stratum is a union of strata;
(b) all the strata are in bijection with a subset of JW , and for w ∈ JW ,

the corresponding stratum S w
0 is, if non-empty, of dimension l(w), the

length of w. Moreover, all the S w
0 are non-empty when p > 2.

(2) Each E-O stratum is quasi-affine.
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Proof. For (1), all the statements but non-emptiness follows from [60] Theorem
4.1.2 and Proposition 4.1.4: p > 2 was assumed there, but by [21] section 3, the
arguments in [60] also work when p = 2. To see the non-emptiness of E-O strata
when p > 2, by Theorem 4.1.1, each central leaf in the basic locus is non-empty, and
by the proof of [54] Proposition 9.17, the minimal E-O stratum is a central leaf and
hence non-empty. By flatness of ζ, all the E-O strata are non-empty.

For (2), by [15] Theorem 3.3.1 (2), each E-O is a locally closed subscheme of an
affine scheme, and hence quasi-affine.

When the prime to p level Kp varies, by construction the Ekedahl-Oort strata
S w

KpKp,κ are invariant under the prime to p Hecke action. In this way we get also the
Ekedahl-Oort stratification on SKp,κ = lim←−Kp

SKpKp,κ.

3.4. Ekedahl-Oort stratifications on Shimura varieties of abelian type.
We now explain how to define Ekedahl-Oort stratifications on Shimura varieties of
abelian type. As what we did for Newton strata, we would like to begin with the
following lemma, which says that if one wants to use the topological space of the
quotient stack [EG,μ\Gκ] to parameterize all the Ekedahl-Oort strata, then he could
pass to the adjoint group freely.

Lemma 3.4.1. Let f : G → H be a homomorphism of reductive groups over Fp

and μ be a cocharacter of G defined over a finite field κ. Denote also by μ the induced
cocharacter of H by f . Let UG,−, UH,− and EG,μ, EH,μ be as in 3.1.6 and 3.1.12
respectively.

(1) If UG,− → UH,− induced by f is smooth, then f∗ : [EG,μ\Gκ] → [EH,μ\Hκ]
is smooth.

(2) If f is a central isogeny, then f∗ is a smooth homeomorphism.

Proof. To see (1), for g ∈ G(κ), by the last paragraph of the proof of [60] Theorem
3.1.2, the EG,μ-equivariant morphism UG,− × EG,μ → Gκ given by (u, g′) �→ g′ · (ug)
is smooth at (1, 1) ∈ UG,− × EG,μ. So the induced morphism UG,− → [EG,μ\Gκ] is
smooth at the identity. Similarly f(g) ∈ H(κ) induces a morphism UH,− → [EH,μ\Hκ]
which is smooth at the identity. Consider the commutative diagram

UG,−
f |UG,− ��

��

UH,−

��
[EG,μ\G]

f∗ �� [EH,μ\H],

the composition UG,− → UH,− → [EH,μ\H] is smooth at the identity, and hence f∗
is smooth in a neighborhood of g. But g can be any point, so f∗ is smooth.

To see (2), the smoothness follows from (1), as UG,− → UH,− is an isomorphism.
The homomorphism f is faithfully flat, so is f∗ : [EG,μ\G]→ [EH,μ\H]. The induced
map on topological spaces is then an open surjection. Noting that they both have
cardinality |JW |, it will then be a homeomorphism.

3.4.2. As what we did for Newton stratifications, we consider adjoint groups
first. More precisely, let (G,X) be an adjoint Shimura datum of abelian type with
good reduction at p, and (G1, X1) be a Shimura datum of Hodge type satisfying the
two conditions in 2.3.2.

There is an E-O stratification on SK1,p,κ(G1, X1), we can, as in 2.3.3, restrict it
to SK1,p,κ(G1, X1)

+ and then extend it trivially to A (GZ(p)
) × SK1,p,κ(G1, X1)

+.
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We will sometimes call this the induced E-O stratification on A (GZ(p)
) ×

SK1,p,κ(G1, X1)
+. Similarly for A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+.

Proposition 3.4.3. The induced E-O stratification on A (GZ(p)
) ×

SK1,p,κ(G1, X1)
+ (resp. A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+) is A (G1,Z(p)

)◦-stable. More-

over, the induced E-O stratification on A (G1,Z(p)
)×SK1,p,κ(G1, X1)

+ descends to the
E-O stratification on SK1,p,κ(G1, X1).

Proof. The proof is identical to that of Proposition 2.3.4.

The induced E-O stratification on A (GZ(p)
) × SK1,p,κ(G1, X1)

+ descends to a
stratification on SKp,κ(G,X), this will be called the E-O stratification. As before,
this does not depend on the choice of (G1, X1). More formally, we have the following
formulas for (G1, X1):

SK1,p,κ(G1, X1) =
∐

w∈JWG1

SK1,p,κ(G1, X1)
w,

SK1,p,κ(G1, X1)
+ =

∐
w∈JWG1

SK1,p,κ(G1, X1)
+,w,

SK1,p,κ(G1, X1)
w = [A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+,w]/A (G1,Z(p)

)◦,

and for (G,X):

SKp,κ(G,X) =
∐

w∈JWG

SKp,κ(G,X)w,

SKp,κ(G,X)+ =
∐

w∈JWG

SKp,κ(G,X)+,w,

SKp,κ(G,X)w = [A (GZ(p)
)×SKp,κ(G,X)+,w]/A (GZ(p)

)◦.

Moreover, we have

SKp,κ(G,X)+,w = SK1,p,κ(G1, X1)
+,w/Δ,

SKp,κ(G,X)w = [A (GZ(p)
)×SK1,p,κ(G1, X1)

+,w]/A (G1,Z(p)
)◦.

One can also define E-O stratifications as follows.

Proposition 3.4.4. We have a commutative diagram of smooth morphisms

SK1,p,κ(G1, X1)

f

��

ζ1 �� [EG1,μ\G1,κ]⊗ κ

f∗
��

SKp,κ(G,X)
ζ2 �� [EG,μ\Gκ]⊗ κ

Proof. The morphism SK1,p,κ(G1, X1) → SKp,κ(G,X) is étale. Smoothness of
ζ1 (resp. f∗) was proven in Theorem 3.3.4 (1) (resp. Lemma 3.4.1). We only need to
show how to construct ζ2 : SKp,κ(G,X)→ [EG,μ\Gκ]⊗ κ and why it is smooth.

We use notations as in 1.3.4. Let D be the p-divisible group over
SK1,p,κ(G1, X1)

+, D[p] gives a G1,κ-zip, and hence a Gκ-zip over SK1,p,κ(G1, X1).
For γ ∈ G(Z(p))

+, we write P for the fiber in G1,Zp of γ viewed as an element in
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G(Zp). It is a trivial torsor under the center of G1,Zp
. For γ̃ ∈ P(Zp), the isomor-

phism γ̃ : DP [p] → D[p] induces an isomorphism of G1,κ-zips, which depends only
on γ (i.e. is independent of choices of γ̃) when passing to Gκ-zips. But this means
that the Gκ-zip attached to D[p] on SK1,p,κ(G1, X1)

+ descends to SKp,κ(G,X)+,
and hence induces a morphism SKp,κ(G,X)+ → [EG,μ\Gκ] ⊗ κ which is necessarily
smooth. Putting together these morphisms on geometrically connected components,
we get ζ2 which is necessarily smooth.

Remark 3.4.5. By 5.3.3, ζ2 is actually defined over κ, the field of definition of
SKp,0(G,X).

3.4.6. Now we consider general Shimura varieties of abelian type. Let (G,X)
be a Shimura datum of abelian type (not adjoint in general) with good reduction at
p. Let (Gad, Xad) be its adjoint Shimura datum, and (G1, X1) be a Shimura datum of
Hodge type satisfying the two conditions in Lemma 2.3.2 with respect to (Gad, Xad).

By the previous discussions, we have a commutative diagram

SK1,p,κ(G1, X1) ��

��

[EG1,μ\G1,κ]⊗ κ

��
SKp,κ(G,X) �� SKad

p ,κ(G
ad, Xad) �� [EGad,μ\Gad

κ ]⊗ κ [EG,μ\Gκ]⊗ κ��

Now we can imitate the main results in Hodge type cases. Fix a sufficiently small
open compact subgroup Kp ⊂ G(Ap

f ). Let us simply write Sκ = SK,κ(G,X), and

ζ : Sκ → [EGad,μ\Gad
κ ]⊗ κ.

Theorem 3.4.7.

(1) ζ is smooth, and it is surjective when p > 2. In particular,
(a) each stratum S w

κ is a smooth and locally closed subscheme of Sκ, the

closure of S w
κ is a union of strata S w

κ =
∐

w′�w S w′
κ (recall that the

partial order 	 was introduced above Theorem 3.2.1);
(b) all the strata are in bijection with a subset of JW , and for w ∈ JW ,

the corresponding stratum is of dimension l(w), the length of w, if non-
empty. When p > 2, each S w

κ is non-empty.
(2) Each E-O stratum S w

κ is quasi-affine.

Proof. Noting that SK,0(G,X) → SKad,0(G
ad, Xad) is étale, the smoothness of

ζ is a direct consequence of the previous proposition. All the other statements follow
by combining Theorem 3.3.4 with Proposition 3.4.3.

Recall by Remark 3.2.2, there is a unique maximal length element wμ ∈ JW . We
call the associated open E-O stratum the ordinary E-O stratum. By the above closure
relation, it is dense in Sκ.

Corollary 3.4.8. The μ-ordinary locus in Sκ coincides with the ordinary E-O
stratum. In particular, the μ-ordinary locus is open dense.

Proof. In the Hodge type case, this follows from [57] Theorem 6.10. The abelian
type case follows from the Hodge type case by our construction.
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Thus for a Shimura datum (G,X) of abelian type with good reduction at p, we
have the Ekedahl-Oort stratification on the geometric special fiber Sκ of SK(G,X)

Sκ =
∐

w∈JW

S w
κ , S w

κ =
∐

w′�w

S w′
κ .

As in Remark 3.2.2, there is a unique closed (minimal) stratum S w0

κ (the superspecial
locus), associated to the element w0 = 1 ∈ JW ; there is also a unique open (maximal)
stratum S

wμ

κ (the ordinary locus), associated to the maximal element wμ ∈ JW .

Example 3.4.9. Notations as in 1.2.7, but we will write G for the special fiber
and W for its Weyl group. Then we have

W ∼= (Z/2Z)n, WJ
∼= (Z/2Z)n−d,

and

JW ∼= (Z/2Z)d.

The partial order 	 on JW is the Bruhat order. More explicitly, for w,w′ ∈ JW ,
w 	 w′ if and only if w is obtained from w′ by changing some of the 1 to 0. The
dimension of S w

κ is the number of 1s in w. In particular, for 0 ≤ i ≤ d, there are
(
d
i

)
strata of dimension i. We refer the reader to [48] for some related construction for
these quaternionic Shimura varieties.

4. Central leaves. In this section, we consider a refinement for both the Newton
and the Ekedahl-Oort stratifications studied in the previous two sections.

4.1. Central leaves on Shimura varieties of Hodge type. Central leaves
were first introduced and studied by Oort in the Siegel case, cf. [41]. They were gen-
eralized by Mantovan in the PEL type case in [37] and independently by P. Hamacher
([17]) and C. Zhang ([61]) in the Hodge type case.

Notations as in 1.1, for z ∈ SK(G,X)(κ), we simply write Dz for D(Az[p
∞])(W ),

here W = W (κ). We will also write L = W [1/p] as in 2.1. Two points x, y ∈
SK(G,X)(κ) are said to be in the same central leaf if there exists an isomorphism of
Dieudonné modules Dx → Dy mapping scris,x to scris,y. It is clear from the definition
that the κ-points of a Ekedahl-Oort stratum (resp. Newton stratum) is a union of
central leaves. We can also define classical central leaves by putting together κ-points
with isomorphic Dieudonné modules. Each classical central leaf is locally closed in
SK,κ(G,X).

Let C(G,μ) and B(G,μ) be as at the beginning of 2.1. For x ∈ SK(G,X)(κ),
choosing an isomorphism t : V ∨

Zp
⊗W → Dx mapping s to scris,x, we get a Frobenius

on V ∨
Zp
⊗ W which is of the form (id ⊗ σ) ◦ gx,t with gx,t lies in G(W )μ(p)G(W ).

Moreover, changing t to another isomorphism V ∨
Zp
⊗W → Dx mapping s to scris,x

amounts to G(W )-σ-conjugacy of gx,t. So we have a well defined map

SK(G,X)(κ)→ C(G,μ)

whose fibers are central leaves. The composition

SK(G,X)(κ)→ C(G,μ)→ B(G,μ)

has Newton strata as fibers.
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We denote by S0 the special fiber of SK(G,X), and by νG(−) the Newton map.
For [b] ∈ B(G,μ) (resp. [c] ∈ C(G,μ)), we write S b

κ (resp. S c
κ ) for the corresponding

Newton stratum (resp. central leaf). The main results for central leaves on Shimura
varieties of Hodge type are as follows.

Theorem 4.1.1. For [c] ∈ C(G,μ), S c
κ is a smooth, equi-dimensional locally

closed subscheme of Sκ. It is open and closed in the classical central leaf containing
it, and closed in the Newton stratum containing it. Any central leaf in a Newton
stratum S b

κ is of dimension 〈2ρ, νG(b)〉 if non-empty (this holds when p > 2). Here ρ
is the half sum of positive roots.

Proof. The non-emptiness of S c
κ follows from non-emptiness of Newton strata and

[23] Proposition 1.4.4. All other statements are proved in [17] and [61] respectively,
using different methods.

When the prime to p level Kp varies, by construction the central leaves S c
KpKp,κ

are invariant under the prime to p Hecke action. In this way we get also the central
leaves on SKp,κ = lim←−Kp

SKpKp,κ.

4.2. Central leaves on Shimura varieties of abelian type. We now explain
how to define central leaves on Shimura varieties of abelian type. As before, we
start with a group theoretic result which says that if one wants to use C(G,μ) to
parameterize all central leaves, then he could pass to the adjoint group freely. But
due to technical difficulties, we can only prove the following special case.

Lemma 4.2.1. Let f : G → H be a central isogeny of reductive groups over Zp

with kernel denoted by Z, and μ be a cocharacter of G defined over W (κ) with κ|Fp

finite. If ZQp
is connected, then the map f∗ : C(G,μ)→ C(H,μ) is a bijection.

Proof. The group scheme Z is of multiplicative type, so we have an exact sequence

0 �� TZ
�� Z �� Zfini �� 0 ,

where TZ ⊆ Z is the maximal torus, and Zfini is a finite flat group scheme of mul-
tiplicative type. By our assumption, Zfini

Qp
is trivial, and hence Zfini is trivial. In

particular, Z = TZ is a torus.
Let W be W (κ) and L be W [1/p] as before. To see that f∗ is surjective, noting

that any element in C(H,μ) has a representative in G(L) of form hμ(p) with h ∈
H(W ), it suffices to show that G(W ) → H(W ) is surjective. But f is smooth, so
G(W )→ H(W ) is surjective as it is so for κ-points.

Now we prove that f∗ is injective. Assume that g1μ(p), g2μ(p) ∈ G(L) have the
same image in C(H,μ), then there is h ∈ H(W ) such that

h−1g1μ(p)σ(h) = g2μ(p) ∈ H(L).

Here for i = 1, 2, gi is the image in H(W ) of gi. Take g ∈ G(W ) mapping to h, then

g−1g1μ(p)σ(g)μ(p)
−1g−1

2 = z ∈ Z(W ),

here Z = ker(f) is a torus by the above discussion. We rewrite the above equation as

g−1g1μ(p)σ(g) = zg2υ(p).

To prove that f∗ is injective, it suffices to show that

z = t−1σ(t)
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for some t ∈ Z(W ).
Noting that Z splits over an unramified extension and we are working with W -

points, we can assume that Z = Gm,W . Consider the equation σ(x) = xy. Writing
x = (x0, x1, · · · ) and y = (y0, y1 · · · ) as Witt vectors, the equation becomes

(xp
0, x

p
1, · · · ) = (x0, x1, · · · )(y0, y1 · · · ).

The multiplication on the right is given by a polynomial Pn of degree pn with the
assignment deg(xi) = deg(yi) = pi, so for given (x0, x1, · · · , xn−1) and (y0, y1 · · · , yn),
the equation

xp
n − Pn(x, y) = 0

is of form

xp
n + a1xn + a0 = 0,

and hence always has solution in k. But xp
0 = x0y0 has a non-zero solution for any

y0 
= 0, so by induction, σ(x) = xy has a solution in W× for any y ∈W×.

4.2.2. Let (G,X) be an adjoint Shimura datum of abelian type with good
reduction at p, and (G1, X1) be a Shimura datum of Hodge type satisfying the two
conditions in Lemma 2.3.2. Then the center of G1,Z(p)

is a torus.
By the last subsection, we have central leaves on SK1,p,κ(G1, X1). We can

restrict them to SK1,p,κ(G1, X1)
+ and then extend them trivially to A (GZ(p)

) ×
SK1,p,κ(G1, X1)

+. We will sometimes call these the induced central leaves on
A (GZ(p)

)×SK1,p,κ(G1, X1)
+. Similarly for A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+.

Proposition 4.2.3. Each induced central leaf on

A (GZ(p)
)×SK1,p,κ(G1, X1)

+

(resp. A (G1,Z(p)
) × SK1,p,κ(G1, X1)

+) is A (G1,Z(p)
)◦-stable. Moreover, induced

central leaves on A (G1,Z(p)
) × SK1,p,κ(G1, X1)

+ descend to central leaves on
SK1,p,κ(G1, X1).

Proof. The proof is identical to that of Proposition 2.3.4.

The central leaves of A (GZ(p)
)×SK1,p,κ(G1, X1)

+ descend to locally closed sub-
schemes of SKp,κ(G,X), and we will call them central leaves of SKp,κ(G,X). This
does not depend on the choice of (G1, X1). More formally, we have the following
formulas:

SK1,p,κ(G1, X1)
c = [A (G1,Z(p)

)×SK1,p,κ(G1, X1)
+,c]/A (G1,Z(p)

)◦,

SKp,κ(G,X)c = [A (GZ(p)
)×SKp,κ(G,X)+,c]/A (GZ(p)

)◦.

Moreover, we have

SKp,κ(G,X)+,c = SK1,p,κ(G1, X1)
+,c/Δ,

SKp,κ(G,X)c = [A (GZ(p)
)×SK1,p,κ(G1, X1)

+,c]/A (G1,Z(p)
)◦.

The proposition also indicates how to relate central leaves to the group theoretic
object C(G,μ). For x ∈ SKp,κ(G,X)(κ), we can find x0 ∈ SKp,κ(G,X)+(κ) which is
in the same central leaf as x. Noting that x0 lifts to x̃0 ∈ SK1,p,κ(G1, X1)

+(κ) whose
image in C(G,μ) depends only on x, we get a well defined map

SKp,κ(G,X)(κ)→ C(G,μ)

whose fibers are central leaves of SKp,κ(G,X).
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4.2.4. Now we can pass to general Shimura varieties of abelian type. Let (G,X)
be a Shimura datum of abelian type (not adjoint in general) with good reduction
at p. Let (Gad, Xad) be its adjoint Shimura datum, and (G1, X1) be a Shimura
datum of Hodge type satisfying the two conditions in Lemma 2.3.2 with respect to
(Gad, Xad). In particular the center ZG1

is connected. By Lemma 4.2.1, we have
C(G1, μ1) ∼= C(Gad, μ), and by the above discussions, we have a commutative diagram

SK1,p,κ(G1, X1)(κ) ��

��

C(G1, μ1)

�
��

SKp,κ(G,X)(κ) �� SKad
p ,κ(G

ad, Xad)(κ) �� C(Gad, μ).

Here as in 2.3.5, we use the same notation when viewing μ (resp. μ1) as a cocharacter
of Gad, and identify B(Gad, μ) with B(Gad, μ1) silently.

Now we can imitate the main results in Hodge type cases. We fix a prime to p
level Kp. Let S0 be the special fiber of SK(G,X), and by νG(−) the Newton map.
For [b] ∈ B(G,μ) 
 B(Gad, μ) (resp. [c] ∈ C(Gad, μ)), we write S b

κ (resp. S c
κ ) for

the corresponding Newton stratum (resp. central leaf).

Theorem 4.2.5. Each central leaf is a smooth, equi-dimensional locally closed
subscheme of Sκ. It is closed in the Newton stratum containing it. Any central leaf
in a Newton stratum S b

κ is of dimension 〈2ρ, νG(b)〉 if non-empty (this holds when
p > 2). Here ρ is the half sum of positive roots.

Proof. For S0(G
ad, Xad) and [b] ∈ B(Gad, μ), the statement follows by combining

Theorem 4.1.1 with Proposition 4.2.3. But then the general case follows by noting
that S0(G,X)→ S0(G

ad, Xad) is finite étale.

Example 4.2.6. Notations as in 2.3.8. For [b] ∈ B(G,μ), its projection to
B(Gpi , μi) is of form (λ1

ni
, λ2

ni
) with λ1 ≥ λ2, λ1 + λ2 = ai and these λi are integers

unless λ1 = λ2. Let

ci(b) := λ1 − λ2,

then central leaves in S b
κ are smooth varieties of dimension

∑s
i=1 ci(b).

5. Filtered F -crystals with G-structure and stratifications. In this sec-
tion, we revisit the Newton stratification, the Ekedahl-Oort stratification, and the
central leaves on Shimura varieties of abelian type studied previously from the point
of view of p-adic Hodge theory. We assume p > 2 in this section.

5.1. Filtered F -crystals with G-structure. We will mainly follow [34] in this
and the next subsections. For a scheme X, we will write BunX for the groupoid of
vector bundles (of finite rank) over X. By a filtration Fil• on a vector bundle N/X,
we mean a separating exhaustive descending filtration such that Fili+1 is a locally
direct summand of Fili. The groupoid of vector bundles over X with a filtration is
denoted by FilX . Both BunX and FilX are rigid exact tensor categories.

5.1.1. G-bundles and filtered G-bundles. Let G be an fppf affine group
scheme over S = SpecR. We write RepR(G) for the category of algebraic representa-
tions of G taking values in finite projective R-modules. Let X be a scheme which is
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faithfully flat over S. By a G-bundle on X, we mean a faithful exact R-linear tensor
functor

RepR(G)→ BunX .

By a filtered G-bundle on X, we mean a faithful exact R-linear tensor functor

RepR(G)→ FilX .

For simplicity, we assume that R = Zp and G is reductive from now on.

By [1] Theorem 1.2, to give a G-bundle on X is the same as to give a G-torsor
on X. As explained in [34] 2.2.8, by putting together Propositions 2.1.5 and 2.2.7
of loc. cit., we find that to give a filtered G-bundle on X is the same as to give a
G-torsor I/X together with a G-equivariant morphism I → P. Here P is the scheme
of parabolic subgroups of G.

One can also talk about the type of a filtered G-bundle. More precisely, we fix the
type τ of a conjugacy class of parabolic subgroups of G, it is defined over a finite étale
extension A of R. Assume that the structure map X → S = SpecR factors through
SpecA. Then a filtered G-bundle is said to be of type τ if the associated morphism
I → P factors through Pτ . Here Pτ ⊆ P is the subscheme of parabolic subgroups of
G of type τ . It is smooth over A with geometrically connected fibers.

5.1.2. The functor R. For (N,Fil•) ∈ FilX , we define

R(N) :=
∑
i

p−iFili ⊆ N [p−1].

By the proof of [34] Proposition 2.1.5, R(−) is an exact tensor functor from FilX to
BunX compatible with taking duals. In fact, here our R(−) is just the specialization
of the Rees(−) in loc. cit. to t = p.

5.1.3. Filtered F-crystals. Let κ|Fp be a finite field and Y/W (κ) be a smooth

scheme. We denote by Bun∇Y (resp. Fil∇Y ) the category of vector bundles on Y with
integrable connection (resp. filtered vector bundles on Y with integrable connection
satisfying the Griffiths transversality). Let W = W (κ),K = W [1/p], X be the formal
scheme over W obtained by p-adic completion of Y , and XK be the rigid generic fibre
over Spa(K,W ). We write Bun∇X (resp. Bun∇XK

, Fil∇X , Fil∇XK
) for the similar category

but with the condition that ∇ is topologically quasi-nilpotent. An object in Bun∇X
(resp. Bun∇XK

, Fil∇X , Fil∇XK
) is called a crystal (resp. an isocrystal, a filtered crystal,

a filtered isocrystal). There is an obvious commutative diagram

Fil∇X ��

��

Fil∇XK

��
Bun∇X �� Bun∇XK

,

where the horizontal arrows are the functors which take generic fibers.
Let U ⊆ X be open affine, and σU be a lift of the Frobenius on the special fiber

of U . An F -isocrystal is an isocrystal M/XK together with for each pair (U, σU ) an
isomorphism ϕσU

: σ∗
UMUK

→ MUK
, such that the ϕσU

are horizontal with respect
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to the natural connections on both sides, and that if (U ′, σU ′) is another pair, the
composition

σ∗
UMUK∩U ′

K

ϕσU−→MUK∩U ′
K

ϕσ
U′←− σ∗

U ′MUK∩U ′
K

is the natural isomorphism induced by the connection ∇. One can define an F -crystal
to be a “lattice” of an F -isocrystal. More precisely, it is an F -isocrystal M/XK

together with a crystal N/X and an identification N [1/p] ∼= M . The category of
F -isocrystals (resp. F -crystals) over X is denoted by FIsoCrysXK

(resp. FCrysX).
We have a natural functor FCrysX → FIsoCrysXK

.

A filtered F -crystal on X is then a filtered crystal (N,Fil•,∇) ∈ Fil∇X together
with for each pair (U, σU ) as above a horizontal isomorphism

ϕU : R(σ∗
UNU )→ NU

which forms an isocrystal after inverting p (see also [34] 2.4.6, [8] II. d) and e), and
[9] section 3). Here R(σ∗

UNU ) as in 5.1.2 is canonically a submodule of σ∗
U (NU )[p

−1],
and is equipped with a canonical flat connection by [8] Page 34. In particular, the
words “horizontal” and “isocrystal” make sense. The category of filtered F -crystals
on X is denoted by FFCrysX . Similarly (and more easily) we have the category of
filtered F -isocrystals FFIsoCrysXK

. There is an obvious commutative diagram

FFCrysX ��

��

FFIsoCrysXK

��
FCrysX �� FIsoCrysXK

.

A filtered F -crystal with G-structure is then a Zp-linear faithful exact tensor
functor

ω : RepZp
(G)→ FFCrysX .

Similarly, a filtered F -isocrystal with G-structure is then a Qp-linear exact tensor
functor

ω : RepQp
(G)→ FFIsoCrysXK

.

These objects can be equivalently defined as filteredG-bundles with a flat topologically
quasi-nilpotent connection and certain further structures, for more details, see [34]
2.4.7 and 2.4.9.

5.2. Filtered F -crystals on Shimura varieties. Notations and assumptions

as in 1.2.5. We will write ŜKp
for the p-adic completion of the integral canonical

model SKp
:= lim←−Kp

SK(G,X). This is a formal scheme over OEv
= W (κ) which is

formally smooth. Its generic fiber, as an adic space over Spa(Ev, OEv
), is still denoted

by ShKp
(G,X). We will sometimes simply write ShKp

for it.

5.2.1. Let Znc ⊆ ZG be the largest subtorus of ZG that is split over R but
anisotropic over Q, and set Gc = G/Znc. If (G,X) is a Shimura datum of Hodge
type, then we have G = Gc. Let GZp

(resp. Gc
Zp
) be the reductive model of GQp

(resp. Gc
Qp

). We will write RepQp
(G) (resp. RepZp

(G)) for the category of algebraic
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representations ofGQp
(resp. GZp

) taking values in finite dimensionalQp-vector spaces
(finite free Zp-modules). Similarly for Gc.

Let LisseZp(ShKp) (resp. LisseQp(ShKp) ) be the categroy of Zp-local systems
(resp. Qp-local systems) on ShKp

. By [32] page 340-341, the pro-Galois Gc(Zp)-cover
Sh(G,X)→ ShKp

(G,X) gives a Zp-linear faithful exact tensor functor

ωét : RepZp
(Gc)→ LisseZp

(ShKp
),

which induces a Qp-linear tensor functor

ωét,Qp
: RepQp

(Gc)→ LisseQp
(ShKp

).

By Theorem 1.2 in [32] of Liu and Zhu, it is de Rham and thus by comparison theorem
it extends to a functor

ωdR : RepQp
(Gc)→ Fil∇ShKp

.

This ωdR factors via RepEv
(Gc

Ev
) → Fil∇ShKp

which defines a filtered Gc-bundle IEv

with flat connection on ShKp . Liu and Zhu conjecture (see [32] Remark 4.1 (ii)) that
this should agree with the analytification of the canonical model of the automorphic
vector constructed by Milne in the case when Z(G)◦ is split by a CM field. By using
the theory of abelian motives, this is true in the abelian type case (compare [34]
3.1.3.).

5.2.2. Lovering constructs in [34] a certain filtered F -crystal with Gc
Zp
-structure

over ŜKp
whose underlying filtered isocrystal on the generic fiber is ωdR. Lovering

calls it the “crystalline canonical model” of ωdR (or IEv
). It is characterized by a

CPLF condition (means “crystalline points lattice + Frobenius”, see [34] 3.1.5 for the
precise definition). Roughly speaking, this condition is imposed to ensure that one
can have certain integral crystalline comparison theorem between ωét and ωcris (see
below). By [34] Proposition 3.1.6, a crystalline canonical model, if exists, is unique
up to isomorphism. We will write

ωcris : RepZp
(Gc)→ FFCrys

ŜKp
,

and sometimes I, for the crystalline canonical model of ωdR.
By [33] Lemma 3.1.3, a morphism (G,X) → (G′, X ′) of Shimura data induces a

homomorphism Gc → G′c. If moreover, it comes from a morphism of reductive group
schemes GZ(p)

→ G′
Z(p)

, we have a natural homomorphism Gc
Z(p)
→ G′c

Z(p)
.

Theorem 5.2.3 ([34] 3.4.8, Proposition 3.1.6).
(1) If (G,X) is of abelian type, then the crystalline canonical model of ωdR exists.
(2) Let f : (G,X) → (G′, X ′) be a morphism of Shimura data of abelian type

induced by a homomorphism GZ(p)
→ G′

Z(p)
of reductive groups over Z(p), and

I (resp. I ′) be the crystalline canonical model over ŜKp
(resp. Ŝ ′

K′
p
). Then

we have a canonical isomorphism I ×Gc
Zp G′c

Zp

∼= f∗I ′ of filtered F -crystals

over ŜKp
with G′c

Zp
-structure.

Remark 5.2.4. Notations as in the above theorem. The morphism I×Gc
Zp G′c

Zp

∼=
f∗I ′ in (2) is stated in [34] Proposition 3.1.6 (2) as an isomorphism of weak filtered
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F -crystals with G′c
Zp
-structure. But I ×Gc

Zp G′c
Zp

given by

RepZp
(G′c)→ RepZp

(Gc)→ FFCrys
ŜKp

is by definition a filtered F -crystal with G′c
Zp
-structure, and hence f∗I ′ is a filtered

F -crystal with G′c
Zp
-structure. It is in general difficult to determine whether the base-

change of a filtered F -crystal is again a filtered F -crystal.

Remark 5.2.5. Notations as above. Let τ be a type of parabolic subgroups of

GZp defined over W (κ). Then a filtered F -crystal with Gc
Zp
-structure (over ŜKp) is

said to be of type τ if its underlying filtered Gc
Zp
-bundle is of type τ . Here we view

τ as a type of parabolic subgroups of Gc
Zp
. The crystalline canonical model ωcris of

ωdR is of type μ. Here we write μ for the type of P+ ⊆ Gc
W (κ) where μ is viewed as a

cocharacter of Gc
W (κ).

5.3. Stratifications via filtered F -crystals. We will explain in this subsec-
tion, how to define and study stratifications on Shimura varieties of abelian type using
the filtered F -crystal with Gc

Zp
-structure ωcris. The good point is that, this filtered

F -crystal with Gc
Zp
-structure is intrinsically determined by the Shimura datum, and

once we define stratifications using it, these stratifications will be automatically in-
trinsically determined by the Shimura datum. In the next subsection we will identify
the stratifications with those defined previously in sections 2-4. In particular, our
constructions of the Newton strata, E-O strata, central leaves are independent of the
choice of Hodge type data.

5.3.1. Let A be the p-adic completion of a formally smoothW (κ)-algebra, and σ
be a lifting of the Frobenius of A0 := A⊗W (κ) κ. It is well known that an F -isocrystal
(resp. F -crystal) over A depends only on A0 up to isomorphism. We will simply call
an F -isocrystal (resp. F -crystal) over A (or equivalently, over A0) an F -isocrystal
(resp. F -crystal), and the corresponding category is denoted by FIsoCrysA0

(resp.
FCrysA0

).
Let

ωcris : RepZp
(Gc)→ FFCrys

ŜKp

be the filtered F -crystal with Gc
Zp
-structure over ŜKp

. By forgetting the filtrations,
we get a faithful exact tensor functor

ω : RepZp
(Gc)→ FCrysS

Kp
,0
.

Now we can define stratifications on S
Kp ,0

. We will define Newton strata and
central leaves pointwise first using ω, and then define Ekedahl-Oort strata using Gc

0-
zips. For x ∈ S

Kp ,0
(κ), pulling back the F -crystal with Gc

Zp
-structure ω over S

Kp ,0

to x induces an F -crystal with Gc
Zp
-structure over κ, i.e. a faithful exact Zp-linear

tensor functor

ωx : RepZp
(Gc)→ FCrysκ.

Passing to isocrystals, we get an F -isocrystal with Gc
Qp

-structure, i.e. an exact Qp-
linear tensor functor

ωx,Qp : RepQp
(Gc

Qp
)→ FIsoCrysκ.
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Definition 5.3.2. Two points x, y ∈ S
Kp ,0

(κ) are said to be in the same central
leaf if the F -crystals with Gc

Zp
-structure ωx and ωy are isomorphic. They are said

to be in the same Newton stratum if the F -isocrystals with Gc
Qp

-structure ωx,Qp and
ωy,Qp

are isomorphic.

Let υ = σ(μ) be the cocharacter of GW (κ) with the induced cocharacter of Gc
W (κ)

denoted by the same notation. For x ∈ S
Kp ,0

(κ) with a lift x̃ ∈ SKp
(W (κ)), the

torsor Ix̃ is trivial, and we can take t ∈ Ix̃(W (κ)) such that the filtration in the
filtered F -crystal is induced by υ. For a faithful representation

Gc
Zp
→ GL(L),

Ix̃ gives a filtered F -crystal structure on LW (κ), and the linearization of the Frobenius
ϕ is of form gυ(p), where g ∈ GL(L)(W (κ)) is the composition

LW (κ)
ξ �� Lσ

W (κ)

υ(p)−1

�� R(Lσ
W (κ))

ϕlin

�� LW (κ) .

Here we use the filtration induced by υ to construct R(Lσ
W (κ)), ϕ

lin is the isomorphism
induced by ϕ, and the isomorphism ξ : LW (κ) → Lσ

W (κ) is given by l⊗ k �→ l⊗ 1⊗ k.

Let s ∈ L⊗ be a tensor fixed by Gc
Zp
, then it is also in R(L⊗

W (κ)), and such that

ϕ(s) = s. In paticular, g ∈ Gc
Zp
(W (κ)), and the assignment x �→ σ−1(g) gives well

defined maps

S
Kp ,0

(κ)→ C(Gc, μ)

and

S
Kp ,0

(κ)→ B(Gc, μ).

The fibers of there maps are central leaves and Newton strata respectively.

5.3.3. We now explain how to define the Ekedahl-Oort stratification. Unlike for
central leaves or Newton strata, we can work directly with families using [39] Example
7.3. Let

ωcris : RepZp
(Gc)→ FFCrys

ŜKp

be the crystalline canonical model of ωdR over ŜKp
. To define the morphism

ζ : SKp,0 → [EGc,μ\Gc
κ],

we need to construct a Gc
0-zip (I0, I0,+, I0,−, ι) of type μ on SKp,0. Here Gc

0 is the
special fiber of Gc

Zp
.

One could get I0 and I0,+ (almost) directly from the underlying filtered Gc
Zp
-

bundle of ωcris, and I0,−, ϕ from the filtered F -crystal structure. To get started, we
fix a faithful representation

Gc
Zp
→ GL(L)

and a tensor s ∈ L⊗ defining Gc
Zp
. Then ωcris gives a filtered F -crystal (M,Fil•,∇)

and an embedding of filtered F -crystals scris : OSKp
→M⊗. The reduction mod p of

M (resp. Fil•, scris) is denoted by M0 (resp. C•, scris,0).
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Now set

I0 = Isom((Lκ, s), (M0, scris,0)).

We can also see it without choosing any embedding, as it is the special fiber of the
underlying Gc

Zp
-bundle I. Let L• be the descending filtration on LW (κ) induced by

μ, then set

I0,+ = Isom((Lκ, L
•
κ, s), (M0, C

•, scris,0)).

We still need to show that (M0, C
•) can be “extended” to an F -zip. Let A be an

open affine of SKp
with a Frobenius lifting σ of A0 := A/(p). Let Di|A0

be elements
m ∈ M0 ⊗ A0 such that there exists n ∈ MA with p−iϕ(n) ∈ MA and the image
in M0 ⊗ A0 of p−iϕ(n) is m. By the discussions in [39] Example 7.3, D•|A0

is a
descending filtration on M0 ⊗A0 as in Definition 3.1.1, and p−iϕ induces an F -zip

(M0 ⊗A0, C
• ⊗A0, D•|A0, p

−iϕ).

We remark that we assumed that ϕ is strongly divisible with respect to all (A, σ),
so

(M0 ⊗A0, C
• ⊗A0, D•|A0, p

−iϕ)

is always an F -zip. The flat connection induces canonical isomorphism for different
choices of σ. In particular, these (M0 ⊗ A0, C

• ⊗ A0, D•|A0, p
−iϕ) can be glued into

an F -zip (M0, C
•, D•, φ•) on SKp,0.

Let L• be the ascending filtration on LW (κ) induced by σ(μ), set

I0,− = Isom((Lκ, L•,κ, s), (M0, D•, scris,0)),

and let ι be simply the isomorphism induced by φ•. We remark that the isomorphism
ϕ : R(Mσ) → M respects scris. This implies that the morphism ι : I0,+/U+ →
I0,−/U

(p)
− is well defined.

Definition 5.3.4. Two points in SKp,0(κ) are in the same Ekedahl-Oort stratum
if and only if their attached Gc

0-zip functors are isomorphic.

It is clear by construction that fibers of ζ ⊗ κ are the Ekedahl-Oort strata in
SKp,κ.

5.4. Properties of stratifications. We will study properties of various strati-
fications here. We will mainly deduce these properties from what we know for those
of Hodge type, and also compare the definitions here and those we gave before. It
should be possible to study stratications directly using the filtered F -crystal with
Gc

Zp
-structure, but we would not do it here.

5.4.1. Functoriality: some fundamental diagrams. Notations as in Theo-
rem 5.2.3. We assume moreover that both (G,X) and (G′, X ′) are of abelian type.

As we have remarked, f∗I ′ is a filtered F -crystal with G′c-structure over ŜKp
(G,X).

We have a canonical identification I ×Gc

G′c ∼= f∗I ′ which induces, by our dis-
cussion in the previous parts, commutative diagrams
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SKp(G,X)(κ)

��

�� B(Gc, μ)

��
SK′

p
(G′, X ′)(κ) �� B(G′c, μ)

SKp,κ(G,X)

��

�� [EGc,μ\Gc
κ]

��
SK′

p,κ
(G′, X ′) �� [EG′c,μ\G′c

κ ]

SKp
(G,X)(κ)

��

�� C(Gc, μ)

��
SK′

p
(G′, X ′)(κ) �� C(G′c, μ).

5.4.2. Settings. To study properties of stratifications defined using the filtered
F -crystal with Gc

Zp
-structure, as well as to compare them with those we defined

via passing to adjoint groups (as we will see, they are usually the same thing), we
introduce the following settings.

Let (G,X) be Shimura datum of abelian type as above, and (G1, X1) be a Shimura
datum of Hodge type with ZG1

a torus and (Gad, Xad) ∼= (Gad
1 , Xad

1 ) (see Lemma
2.3.2). Let (B, X ′) be the Shimura datum constructed in [34] Proposition 3.4.2 (see
also [33] 4.6) using Gder

1 and the reflex field of (G1, X1), then there is a commutative
diagram of Shimura data

(B, X ′)

��

�� (G1, X1)

��
(G,X) �� (Gad, Xad)

inducing a commutative diagram of (integral models of) Shimura varieties

SKB,p
(B, X ′)

��

�� SK1,p
(G1, X1)

��
SKp

(G,X) �� SKad
p
(Gad, Xad).

The reflex field of (B, X ′) is the same as that of (G1, X1) by construction (cf. [33]
4.6). By Lemma 2.3.2 (2), the local reflex fields of the Shimura varieties in the above
diagram are the same. As before, we denote by κ the common residue field of the
local reflex field Ev.
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5.4.3. Newton stratifications. Using the fundamental diagram for Newton
strata, we find a commutative diagram

SKB,p
(B, X ′)(κ)

��

��

��

SK1,p
(G1, X1)(κ)

��

��

B(Bc, μ) ��

��

B(Gc
1, μ)

��

SKp(G,X)(κ) ��

��

SKad
p
(Gad, Xad)(κ)

��
B(Gc, μ) �� B(Gad, μ).

This implies that the Newton stratification on SK1,p,κ(G1, X1) (resp.
SKp,κ(G,X)) is a refinement of the pullback of that on SKad

p ,κ(G
ad, Xad), and the

Newton stratification on SKB,p,κ(B, X ′) is a refinement of both the pullback of that on
SK1,p,κ(G1, X1) and that on SKp,κ(G,X). However, noting that the maps on B(−, μ)
are bijective, the Newton stratification on SKB,p,κ(B, X ′) (resp. SK1,p,κ(G1, X1),
SKp,κ(G,X)) is just the pullback of that on SKad

p ,κ(G
ad, Xad).

By the construction of ωcris in the Hodge type case (see [34] Theorem 3.3.3),
the Newton stratification on SK1,p,κ(G1, X1) we defined here coincides with that we
defined in 2.2. So the above discussions also show that the Newton stratification on
SKad

p ,κ(G
ad, Xad) (and hence the Newton stratification on SKp,κ(G,X)) we defined

here coincides with the one we defined in 2.3.5.

5.4.4. Ekedahl-Oort stratifications. By the fundamental diagram for E-O
stratification, we have a commutative diagram of morphisms of stacks

SKB,p,κ(B, X ′)

��

��

��

SK1,p,κ(G1, X1)

��

��

[EBc,μ\Bcκ] ��

��

[EGc
1,μ
\Gc

1,κ]

��

SKp,κ(G,X) ��

��

SKad
p ,κ(G

ad, Xad)

��
[EGc,μ\Gc

κ] �� [EGad,μ\Gad
κ ].

Similar to Newton stratifications, the E-O stratification on SKB,p,κ(B, X ′) (resp.
SK1,p,κ(G1, X1), SKp,κ(G,X)) is just the pullback of that on SKad

p ,κ(G
ad, Xad),

and the E-O stratification on SKad
p ,κ(G

ad, Xad) (and hence the E-O stratification on

SKp,κ(G,X)) we defined in 3.4.6 coincides with the E-O stratification we defined here.
In particular, the morphism SKp,κ(G,X)→ [EGad,μ\Gad

κ ]⊗ κ is smooth surjective.

5.4.5. Central leaves. We have a similar commutative diagram as in 5.4.3
(one only needs to replace B(−, μ) by C(−, μ)). It implies that central leaves on
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SK1,p,κ(G1, X1) (resp. SKp,κ(G,X)) are refinements of the pullback of those on
SKad

p ,κ(G
ad, Xad), and central leaves on SKB,p,κ(B, X ′) are refinements of both the

pullback of those on SK1,p,κ(G1, X1) and those on SKp,κ(G,X). Noting that the
map C(G1, μ)→ C(Gad, μ) is bijective, central leaves on SK1,p,κ(G1, X1) are just the
pullback of those on SKad

p ,κ(G
ad, Xad), and the central leaves on SKad

p ,κ(G
ad, Xad)

we defined in 4.2.2 coincide with the central leaves we defined here.
If the center ZG is connected, then the central leaves on SKp,κ(G,X) defined here

coincide with what we defined before in 4.2.5 by Lemma 4.2.1. In the general case,
let us call fibers of SKp,κ(G,X)(κ)→ C(Gc, μ) canonical central leaves and those of
SKp,κ(G,X)(κ) → C(Gad, μ) adjoint central leaves. In subsequent work we plan to
show the following: a canonical central leaf is a union of connected components in
the adjoint central leaf containing it. The proof is conceptual and hence a little bit
long. We only sketch the idea here: we define and study truncated displays of level m
with Gc and Gad structure respectively, which form algebraic stacks Ccm and Cadm . The
homomorphism Gc → Gad is central, so the induced morphism Ccm → Cadm has discrete
fibers. By [51] Main Theorem 1, for m big enough, Ccm(κ) and Cadm (κ) parameterize
canonical central leaves and adjoint central leaves respectively, so canonical central
leaves are open and closed in adjoint central leaves. In particular, a canonical central
leaf is a smooth locally closed subvariety of SKp,κ(G,X), and it is closed in the
Newton stratum containing it. Moreover, for a Newton stratum SKp,κ(G,X)b, any
canonical central leaf, if non-empty, is of dimension 〈2ρ, νG(b)〉, where ρ is the half
sum of positive roots.

6. Comparing Ekedahl-Oort and Newton stratifications. In this section,
we study the relations between Ekedahl-Oort strata and Newton strata by group
theoretic methods.

6.1. Group theoretic results. We will recall some group theoretic results first.
The settings are as follows. We start with a pair (G,μ) where G is a reductive group
over Zp, and μ : Gm → GW (κ) is a minuscule cocharacter defined over W (κ) with κ|Fp

a finite field. We will write G0 for the special fiber of G, W = W (κ), L = W [1/p],
K = G(W ), and

K1 = Ker(K → G(κ)).

We still denote by G the associated reductive group over Qp, which is in particular
quasi-split. Let B ⊆ G be a Borel subgroup, T ⊆ B be a maximal torus, and I ⊂ G(L)
be the Iwahori subgroup attached to B0, the special fiber of B. Let WG be the Weyl
group with respect to T . Let

W̃G := NormG(T )(L)/T (W )

be the extended affine Weyl group and Wa be the affine Weyl group. There is a
canonical exact sequence

0 �� X∗(T ) �� W̃G
�� WG

�� 0

and we have W̃G
∼= WG � X∗(T ). Let Ω ⊆ W̃G be the stabilizer of the alcove

corresponding to the above Iwahori subgroup I of G(L) given by the preimage of
B(κ). Then we have

W̃G = Wa � Ω.
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We define the length function on W̃G by

l(wr) = l(w), for w ∈Wa, r ∈ Ω. (6.1.1)

The choice of B (resp. I) determines simple reflections (resp. simple reflections

and simple affine roots) in WG (resp. W̃G) denoted by S (resp. S̃). It also gives the

Bruhat order on WG (resp. W̃G), denoted by ≤. Clearly, we have S ⊆ S̃.

6.1.2. Minimal elements and fundamental elements. An element x ∈
G(L) is calledminimal if for any y ∈ K1xK1, there is a g ∈ K such that y = gxσ(g)−1.
By [54] Remark 9.1, if x is minimal, then any element in the K-σ-orbit of x is again
minimal. For an element [c] ∈ C(G), we call it minimal if any representive in the
K-σ-orbit [c] is minimal.

An element w ∈ W̃G is fundamental if IwI lies in a single I-σ-orbit. For an
element w ∈ W̃G, we consider the element wσ ∈ W̃G � 〈σ〉. There exists n ∈ N such
that (wσ)n = tλ for some λ ∈ X∗(T ). Let νw be the unique dominant element in the
WG-orbit of λ/n. It is known that νw is independent of the choice of n, and it is the
Newton point of w when regarding w as an element in G(L). We say that an element

w ∈ W̃G is σ-straight if

l((wσ)n) = nl(w).

Here l(−) is the length. This is equivalent to saying that

l(w) = 〈νw, 2ρ〉,

where ρ is the half sum of all positive roots in the root system of the affine Weyl group.
A σ-conjugacy class of W̃G is called σ-straight if it contains a σ-straight element.

The main results of [40] in the above setting are as follows.

Theorem 6.1.3 ([40] Theorems 1.3, 1.4, Proposition 1.5).

(1) For w ∈ W̃G, it is fundamental if and only if it is σ-straight.
(2) An element g ∈ G(L) is minimal if and only if it lies in a K-σ-conjugacy

class of some fundamental element of W̃G. Moreover, when G is split, each
σ-conjugacy class of G(L) contains one and only one K-σ-conjugacy class of
minimal elements.

(3) If μ is a minuscule cocharacter of T , then each σ-conjugacy class intersecting
Kμ(p)K contains a fundamental element in WGμ(p)WG.

6.1.4. Adm(μ), B(G,μ) and EO(μ). We will introduce some distinguished sets
following [12].

For any subset J of S̃, we denote by WJ the subgroup of W̃G generated by the
simple reflections in J and by JW̃G (resp. W̃ J

G ) the set of minimal length elements

for the cosets WJ\W̃G (resp. W̃G\WJ). We simply write JW̃K
G for JW̃G ∩ W̃K

G .
Let μ be the minuscule cocharacter of G as in the beginning of this section. The

μ-admissible set Adm(μ) is defined to be

Adm(μ) = {w ∈ W̃G | w ≤ txμ for some x ∈WG}.

Here we write tλ for elements in the affine part X∗(T ) of W̃G.
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Let B(W̃G)σ−str be the set of σ-straight conjugacy classes of W̃G. By [14] Theorem
1.3 (1), the map

Ψ : B(W̃G)σ−str → B(G)

induced by the inclusion N(T )(L) ⊂ G(L) is bijective. Let Adm(μ)σ−str be the set of

σ-straight elements in the admissible set Adm(μ) and B(W̃G, μ)σ−str be its image in

B(W̃G)σ−str. Then by [14] Theorem 1.3 (2), we have

Ψ(B(W̃G, μ)σ−str) = B(G,μ).

The set of EO elements EO(μ) is defined to be

EO(μ) = AdmS(μ) ∩ SW̃G = Adm(μ) ∩ SW̃G,

where AdmS(μ) = WSAdm(μ)WS . Here for the second equality, see [19] Theorem
6.10 for example.

There is a partial order 	 on SW̃G as follows. For w,w′ ∈ SW̃G, w 	 w′ if and
only if there exists x ∈ WG, such that xwσ(x)−1 ≤ w′. This partial order restrict to
EO(μ) and will still be denoted by 	.

6.1.5. EO(μ) and G0-zips. Before moving on, let’s explain how to identify
EO(μ) (with the partial order 	) with the topological space of [EG,μ\Gκ].

Let υ = σ(μ). Let T ⊆ W̃G be given by

T = {(w, υ) ∈WG ×X∗(T ) | w ∈ μW},

where μW = JW using the notation of 3.2. The set T is naturally identified with
EO(μ). Let xυ = w0w0,υ where w0 denotes the longest element of WG and where
w0,υ is the longest element of Wυ, the Weyl subgroup of the centralizer of υ. Then
τυ = xυυ(p) is the shortest element of WGυ(p)WG.

By [52] Theorem 1.1 (1), the map assigning to (w, υ) ∈ T the K-σ-conjugacy
class of K1σ

−1(wτυ)K1 is a bijection between T and the set of K-σ-conjugacy classes
in K1\Kμ(p)K/K1. By [57] Proposition 6.7, the assignment

g1μ(p)g2 �→ EG,μ · (g2σ(g1))

induces a bijection from the set of K-σ-conjugacy classes in K1\Kμ(p)K/K1 to the
set of κ-points of [EG,μ\G0,κ]. By Theorem 3.2.1, [EG,μ\G0,κ](κ) ∼= μW . In summary,
we get

EO(μ) = T ∼= μW ∼= [EG,μ\G0,κ](κ) ∼= K1\Kμ(p)K/K1,

and by the arguments in the proof of [52] Corollary 4.7, the induced partial order on
the left hand side coincides with 	. We get a well defined surjective map

ζ̃ : C(G,μ)→ K1\Kμ(p)K/K1
∼= EO(μ) ∼= μW.

Let EO(μ)σ−str ⊆ EO(μ) ⊆ W̃G the subset of σ-straight (equivalently, funda-
mental) elements. Then for any w ∈ EO(μ)σ−str, ζ̃−1(w) consists of a single el-
ement in C(G,μ). That is, we get an injection EO(μ)σ−str ↪→ C(G,μ), with the
image C(G,μ)min, the subset of minimal elements in C(G,μ). Composed with
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the natural map C(G,μ) → B(G,μ), by Theorem 6.1.3 (3) we get a surjection
EO(μ)σ−str � B(G,μ). In summary, we have the following commutative diagram:

B(G,μ)

EO(μ)σ−str
� � ��

		 		

� �





C(G,μ)

�� ��

�� ��
[EG,μ\Gκ](κ) =

μW ∼= EO(μ).

6.1.6. Notations as in 6.1.4. Following [12] 1.5 we have

Y := Kμ(p)K =
⋃

w∈Adm(μ)

KwK =
⋃

w∈AdmS(μ)

IwI.

There is a K-action on G(L)×Y given by g · (h, y) = (hg−1, gyσ(g)−1). Let Z be the
quotient of this action. The map (h, y) �→ (hyσ(h)−1, hK) gives a bijection

Z ∼= {(b, gK) ∈ G(L)×G(L)/K | g−1bσ(g) ∈ Y }.

The projection to the first factor induces a map Z → G(L), and its image is a union
of σ-conjugacy classes indexed by B(G,μ).

For a σ-conjugacy class [b] ∈ B(G,μ), we write Z[b] ⊆ Z for the corresponding
subset. The decomposition

Z =
∐

[b]∈B(G,μ)

Z[b]

is called the Newton stratification of Z. For the basic class [b0] ∈ B(G,μ), the
corresponding stratum Z[b0] is called the basic locus in Z.

Writing x ·σ y for xyσ(x)−1, by [12] Theorem 3.2.1, we have

Y =
∐

w∈EO(μ)

K ·σ IwI.

But then

Z =
∐

w∈EO(μ)

Zw,

where Zw = G(L) ×K (K ·σ IwI). This decomposition is called the Ekedahl-Oort
stratification on Z.

Given w ∈ EO(μ) and [b] ∈ B(G,μ), the intersection Zw ∩ Z[b] is a fiber bundle
over [b], and the fiber over b ∈ [b] is given by

Xw(b) := {gK | g−1bσ(g) ∈ K ·σ IwI} ⊆ G(L)/K.

Recall that attached to the triple (G, {μ}, b) we have the affine Deligne-Lusztig variety

X(μ, b) = {gK | g−1bσ(g) ∈ Kμ(p)K}.
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It admits a perfect scheme structure over κ by [62]. By our discussions in 6.1.4, 6.1.5
and [14] 1.4, we have the following decomposition

X(μ, b) =
∐

w∈JW

Xw(b).

We remark that not every subset Xw(b) in the above decomposition is non-empty (see
Proposition 6.2.5).

6.1.7. (G,μ) of Coxeter type. We also need a subset EOσ,cox(μ) of EO(μ). It

is the subset of elements w such that suppσ(w) is a proper subset of S̃ and w that is
a σ-Coxeter element of Wsuppσ(w). We will not explain this but just refer to [12] 2.2.

A pair (G,μ) with G absolutely quasi-simple is said to be of Coxeter type if

Z[b0] =
∐

w∈EOσ,cox(μ)

Zw.

A complete list for pairs (G,μ) of Coxeter type is given in [12] Theorem 5.1.2. The
Newton and Ekedahl-Oort stratifications on Z have very nice properties which we will
recall.

Recall that a ranked poset is a partially ordered set (poset) equipped with a rank
function ρ such that whenever y covers x, ρ(y) = ρ(x) + 1. We say that the partial
order of a poset is almost linear if the poset has a rank function ρ such that for any
x, y in the poset, x < y if and only if ρ(x) < ρ(y).

Theorem 6.1.8 ([12] Theorems 5.2.1, 5.2.2, [13]). Let (G,μ) be of Coxeter type.
(1) Every Newton stratum of Z is a union of Ekedahl-Oort strata.
(2) For any w ∈ EO(μ) − EOσ,cox(μ) and b ∈ [bw], the σ-centralizer Jb acts

transitively on Xw(b).
(3) The partial order of B(G,μ) is almost linear.
(4) The partial order 	 of EOσ,cox(μ) coincides with the usual Bruhat order and

is almost linear. Here the rank is the length function.

6.1.9. (G,μ) of fully Hodge-Newton decomposable type. Görtz, He and
Nie define and study in [14] a much more general class of pairs (G,μ) with the name
of being fully Hodge-Newton decomposable. They prove that this is equivalent to
property (1) in the previous theorem, and they also give a classification of such pairs.
It turns out all the groups in such pairs are classical groups (i.e. reductive groups
with simple factors of type A, B, C, and D), cf. [14] Theorem 2.5.

Let us recall the notion of fully Hodge-Newton decomposable. As always in this
paper, we restrict to good reduction cases only. Recall as in 2.1 we have the Newton
map ν = νG : B(G)→ X∗(T )ΓQ,dom.

Definition 6.1.10 ([14] Definition 2.1, [4] 4.3).
(1) Let M � GL be a σ-stable standard Levi subgroup. We say that [b] ∈

B(G,μ) is Hodge-Newton decomposable with respect to M if Mν(b) ⊆ M
and μ − ν(b) ∈ R≥0Φ

∨
M . Here Mν(b) ⊆ GL is the centralizer of ν(b), and

μ = 1
n0

∑n0−1
i=0 σi(μ) with n0 ∈ N the order of σ(μ).

(2) We say that a pair (G,μ) is fully Hodge-Newton decomposable if every non-
basic σ-conjugacy class [b] ∈ B(G,μ) is Hodge-Newton decomposable with
respect to some proper standard Levi.
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The following is part of [14] Theorem 2.3 which suffices for our applications.

Theorem 6.1.11. The following statements for (G,μ) are equivalent.
(1) It is fully Hodge-Newton decomposable.
(2) For any w ∈ EO(μ), there is a unique [b] ∈ B(G,μ) such that Xw(b) 
= ∅;

i.e. every Newton stratum of Z is a union of Ekedahl-Oort strata. Here Z,
EO(μ) and Xw(b) are as in 6.1.4.

(3) For any non-basic [b] ∈ B(G,μ), dimX(μ, b) = 0.

We remark that [14] Theorem 2.3 is stated only for quasi-simple groups, but by
discussions just after the theorem there, it holds in general. We also remark that
although it is not stated in the main theorem there, it is true that if (G,μ) is fully
Hodge-Newton decomposable, non-basic elements in EO(μ) are σ-straight (see [14]
Proposition 4.5).

6.2. Applications to stratifications. We will explain how to use group theo-
retic results above to study relations between E-O stratifications and Newton strat-
ifications. Unlike in [12] or [14], we will do this directly and without assuming any
results on existence of Rapoport-Zink uniformizations nor the axioms formulated in
[14].

Notations as in 6.1.6, for (b, gK) ∈ Z with b ∈ G(L) and gK ∈ G(L)/K such
that g−1bσ(g) ∈ Kμ(p)K, the assignment (b, gK) �→ g−1bσ(g) induces a well defined
surjective map

Z � C(G,μ).

Moreover, the maps Z → B(G,μ) and Z → EO(μ) factor through C(G,μ). We have
the following commutative diagram:

B(G,μ)

Z �� ��



 



�� ��

C(G,μ)

�� ��

�� ��
[EG,μ\Gκ](κ) = EO(μ).

Let Zw (resp. Z [b]) be the image of Zw (resp. Z[b]) in C(G,μ) for w ∈ EO(μ) (resp.

[b] ∈ B(G,μ)). By the commutativity of the above diagram, Zw is the fiber of the
canonical projection C(G,μ)→ EO(μ), and similarly for Z [b]. We have (Newton and
E-O) decompositions

C(G,μ) =
∐

[b]∈B(G,μ)

Z [b], C(G,μ) =
∐

w∈EO(μ)

Zw.

Then Z [b] =
∐

i Zwi
if and only if Z[b] =

∐
i Zwi

. Moreover, Zw ∩Z [b] 
= ∅ if and only
if Zw ∩Z[b] 
= ∅, which is then equivalent to that Xw(b) 
= ∅ for some (and hence any)
b ∈ [b].

We fix a prime to p level Kp and simply denote the integral canonical model over
OEv by S = SKpKp(G,X) for a Shimura datum (G,X) of abelian type with good
reduction at p. Its geometric special fiber is denoted by Sκ. We note that the map

S (κ)→ C(Gad, μ)
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constructed in section 4 composed with

ζ̃ : C(Gad, μ)→ [EGad,μ\Gad
κ ](κ)

gives

ζ : S (κ)→ [EGad,μ\Gad
κ ](κ).

In the rest of this section, we will study the Newton stratification, Ekedahl-Oort strat-
ification, and (adjoint) central leaves on Sκ. We start with the following commutative
diagrams.

6.2.1. General relations. If we consider stratifications defined by passing to
the adjoint ones first, we have a commutative diagram induced by a similar diagram
attached to certain Shimura datum of Hodge type satisfying Lemma 2.3.2:

B(Gad, μ)

S (κ) �� ��



 



�� ��

C(Gad, μ)

�� ��

�� ��
[EGad,μ\Gad

κ ](κ).

Note that for any [b] ∈ B(G,μ) = B(Gad, μ) (resp. w ∈ EO(μ)), S b
κ (κ) (resp. S w

κ (κ))
is the inverse image of Z [b] (resp. Zw) under the map

S (κ)→ C(Gad, μ)

and the above decomposition (for Gad) C(Gad, μ) =
∐

[b]∈B(G,μ) Z [b] (resp.

C(Gad, μ) =
∐

w∈EO(μ) Zw).

Similarly, by 5.3.3 and the discussions just before it, for stratifications given by
F -crystals with additional structure, we have a commutative diagram:

B(Gc, μ)

S (κ) ��



 



�� ��

C(Gc, μ)

�� ��

�� ��
[EGc,μ\Gc

κ](κ).

Note that by Lemma 4.2.1, we have C(G,μ) ∼= C(Gc, μ) and the natural map
C(Gc, μ) → C(Gad, μ) is a bijection if ZG is connected. We also remind the read-
ers that the above two diagrams do NOT bring any differences if we just look
at the E-O and Newton stratifications (cf. 5.4.3, 5.4.4): we have B(Gc, μ) =
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B(Gad, μ), [EGc,μ\Gc
κ](κ) = [EGad,μ\Gad

κ ](κ) and the following commutative diagram:

B(Gc, μ) B(Gad, μ)

S (κ) ��

�� ��

�� ��

C(Gc, μ)

�� ��

�� ��

�� C(Gad, μ)

�� ��

�� ��
[EGc,μ\Gc

κ](κ) [EGad,μ\Gad
κ ](κ).

So in the following discussions, we will mean either of these two constructions when
talking about E-O or Newton stratification. On the other hand, by a central leaf we
will mean the adjoint central leaf defined by a fiber of the map S (κ)→ C(Gad, μ).

Definition 6.2.2. An E-O stratum is said to be minimal6 if it is a central leaf.

By our previous discussion, minimal E-O strata are exactly the strata
parametrized by the set EO(μ)σ−str.

Proposition 6.2.3. Each Newton stratum contains a minimal E-O stratum.
Moreover, if G splits, then each Newton stratum contains a unique minimal E-O
stratum.

Proof. The statements follow from Theorem 6.1.3.

Examples 6.2.4.

(1) By Corollary 3.4.8, the ordinary E-O stratum (cf. Remark 3.2.2) coincides
with the μ-ordinary locus (i.e. the open Newton stratum, cf. Remark 2.1.3),
which is a central leaf by Proposition 6.2.3.

(2) The superspecial locus (cf. Remark 3.2.2) is a central leaf, and thus is min-
imal. It is contained in the basic locus (i.e. the closed Newton stratum, cf.
Remark 2.1.3).

Proposition 6.2.5. For any [b] ∈ B(G,μ) and w ∈ EO(μ) ∼= JW , we have

S b
κ ∩S w

κ 
= ∅ ⇐⇒ Xw(b) 
= ∅.

Proof. This follows from the fact that each central leaf is non-empty (cf. Theorem
4.2.5) and [57] 6.2 consequences (3).

6.2.6. Special relations. By Görtz, He and Nie’s classification of fully Hodge-
Newton decomposable pairs ([14] Theorem 2.5) and Deligne’s classification of Shimura
varieties of abelian type ([5] Table 2.3.8), it is natural to discuss fully Hodge-Newton
decomposable Shimura data in the framework of Shimura data of abelian type, in
view of Kisin’s work [22]. If (G,X) is fully Hodge-Newton decomposable, we have the
followings.

Proposition 6.2.7. Let (G,X) be a Shimura datum of abelian type with good
reduction at p whose attached pair (G,μ) is fully Hodge-Newton decomposable. Then

(1) each Newton stratum of Sκ is a union of Ekedahl-Oort strata;

6We remind the readers that this notion is (in general) different from the superspecial locus, i.e.
the unique closed E-O stratum attached to 1 ∈ JW .
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(2) each E-O stratum in a non-basic Newton stratum is a central leaf, and it
is open and closed in the Newton stratum, in particular, non-basic Newton
strata are smooth;

(3) if (G,μ) is of Coxeter type, then for two E-O strata S 1
κ and S 2

κ , S 1
κ is in

the closure of S 2
κ if and only if dim(S 2

κ ) > dim(S 1
κ ).

Proof. Statement (1) follows directly from Theorem 6.1.11. For (2), the first half
follows from our remarks after Theorem 6.1.11 (which is just [14] Proposition 4.5);
and the second half follows from Theorem 4.2.5. Statement (3) follows from Theorem
6.1.8 (4).

Example 6.2.8. Notations as in Example 2.3.8. The pair (G,μ) is fully Hodge-
Newton decomposable if and only if all the integers ai are either 1 or 2. The if part
is clear. To see the only if part, if there is some ai ≥ 3, by the dimension formula
in Example 2.3.8 and Example 4.2.6, the dimension of the maximal non-ordinary
Newton stratum is strictly bigger than that of its central leaves, and hence it is not
fully Hodge-Newton decomposable.

Examples 6.2.9 (See also [14] Theorem 2.5).
(1) The unitary Shimura varieties with signature (1, n− 1)× (0, n)× · · · × (0, n)

at a split prime p studied by Harris-Taylor in [18] is fully Hodge-Newton
decomposable.

(2) Consider G = GU(V, 〈, 〉), the unitary similitude group over Qp associ-
ated to a Hermintain space (V, 〈, 〉). Take {μ} such that it corresponds to(
(1, · · · , 1, 0), 0

)
. Then (G,μ) is fully Hodge-Newton decomposable by the

explicit description of the set B(G,μ) as in [2] 3.1. Globally, these are the
unitary Shimura varieties studied by Bültel-Wedhorn in [2].

(3) The pair (GSp4, μ) is fully Hodge-Newton decomposable, where μ is the
cocharacter corresponding to (1, 1, 0, 0). Globally, these are the Siegel modu-
lar varieties with genus g = 2 (Siegel threefolds).

(4) Consider G = SO(V,B), the special orthogonal group over Qp associated to a
quadratic space (V,B) of dimension n+2. Take {μ} such that it corresponds
to (1, 0, · · · , 0,−1). Then (G,μ) is fully Hodge-Newton decomposable by the
explicit description of the set B(G,μ). Globally, these are the SO-Shimura
varieties of orthogonal type, cf. the next section.

7. Shimura varieties of orthogonal type. We discuss our main results in
the setting of Shimura varieties of orthogonal type. These Shimura varieties play
very important roles in Kudla’s program ([29]) and the arithmetic Gan-Gross-Prasad
conjecture ([11]).

7.1. Good reductions of Shimura varieties of orthogonal type.

7.1.1. The SO-Shimura varieties. Let V be a n + 2-dimensional Q-vector
space equipped with a non-degenerate bilinear form B (whose associated quadratic
form is) of signature (n, 2). Let SO(V ) be the special orthogonal group attached to
(V,B), and

h : S→ SO(V )R

be such that
(1) its induced Hodge structure on V is of type (−1, 1) + (0, 0) + (1,−1) with

dimV −1,1 = 1;
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(2) B is a polarization of this Hodge structure.
It is well known that h gives a Shimura datum (SO(V ), X).

7.1.2. The GSpin-Shimura varieties. Let C(V ) and C+(V ) be the Clifford
algebra and even Clifford algebra respectively. Note that there is an embedding
V ↪→ C(V ) and an anti-involution ∗ on C(V ) (see [36], 1.1).

Let GSpin(V ) be the stabilizer in C+(V )× of V ↪→ C(V ) with respect to the
conjugation action of C+(V )× on C(V ). Then GSpin(V ) is a reductive group over Q,
and the conjugation action of GSpin(V ) on V induces a homomorphism GSpin(V )→
SO(V ). We actually have an exact sequence

1 �� Gm
�� GSpin(V ) �� SO(V ) �� 1 ,

where Gm is identified with invertible scalars in C+(V ).
The homomorphism h in 7.1.1 lifts to GSpin(V ) and induces a Shimura datum

(GSpin(V ), X ′) with X ′ 
 X. Consider the left action of GSpin(V ) on C+(V ), there
is a perfect alternating form ψ on C+(V ), such that the embedding GSpin(V ) ↪→
GL(C+(V )) factors through GSp(C+(V ), ψ) and induces an embedding of Shimura
data

(GSpin(V ), X ′)→ (GSp(C+(V ), ψ),H±).

We refer to [36] 1.8, 1.9, 3.4, 3.5 for details.
To sum up, (GSpin(V ), X ′) is a Shimura datum of Hodge type and (SO(V ), X) is

a Shimura datum of abelian type. One can also see that the reflex field of (SO(V ), X)
(resp. (GSpin(V ), X ′)) is Q if n > 0. We will assume that n > 0 from now on.

Let (G, Y ) be either (SO(V ), X) or (GSpin(V ), X ′). LetK ⊆ G(Af ) be a compact
open subgroup which is small enough, then

ShK := G(Q)\Y × (G(Af )/K)

has a canonical model over Q which will again be denoted by ShK . It has dimension
n. Let K ⊂ GSpin(V )(Af ) be a sufficently small open compact subgroup, and K1 ⊂
SO(V )(Af ) be its image induced by the map GSpin(V )→ SO(V ). Then the induced
map between the corresponding Shimura varieties

ShK(GSpin(V ), X ′)→ ShK1
(SO(V ), X)

is a finite étale Galois cover, cf. [36] 3.2.

7.1.3. Good reductions. Let p > 2 be a prime and L ⊆ V be a Z(p)-lattice
such that the bilinear form B is perfect on it. Then SO(L) is a reductive group over
Z(p) with generic fiber SO(V ). Similarly, we have C(L), C+(L) and GSpin(L), and
GSpin(L) is a reductive group over Z(p) with generic fiber GSpin(V ).

Let (G, Y ) be either (SO(V ), X) or (GSpin(V ), X ′) as above, and we still write
G for its reductive model over Z(p) by abuse of notation. Let Kp = G(Zp) and
Kp ⊆ G(Ap

f ) be a compact open subgroup which is small enough. Let K = KpK
p,

then by Theorem 1.2.6, ShK has an integral canonical model over Z(p) denoted by
SK . Let Kp ⊂ GSpin(V )(Ap

f ) be a sufficently small open compact subgroup, and

Kp
1 ⊂ SO(V )(Ap

f ) be its image induced by the map GSpin(V ) → SO(V ). Set K =

GSpin(V )(Zp)K
p, and K1 = SO(V )(Zp)K

p
1 . Then the induced map between the

corresponding integral canonical models

SK(GSpin(V ), X ′)→ SK1
(SO(V ), X)
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is a finite étale Galois cover, cf. [36] Theorem 4.4.
When the level K is clear, the special fiber of SK is denoted by S0, and the

geometric special fiber is denoted by Sκ.

7.2. Ekedahl-Oort stratifications. Let (G, Y ) and S0 be as above. The
Shimura datum determines a cocharacter μ : Gm,Zp

→ GZp
which is unique up to

conjugation. The special fiber of μ will still be denoted by μ. The cocharacter μ
determines a parabolic subgroup P+ ⊆ GFp

, whose type will be denoted by J . Let W
be the Weyl group of GFp

, and JW together with the partial order 	 be as in 3.3 (be-
fore Theorem 3.2.1). Then Theorem 3.4.7 implies that the structure of Ekedahl-Oort
stratification on Sκ is described by JW together with the partial order 	.

7.2.1. A description of (JW,	). Let’s recall the description of (JW,	) in [56]
(see also [12] 6.4 and 6.6). Let m be the dimension of a maximal torus in SO(LFp).
There are two cases:

Case 1. If n is odd, then the partial order 	 on JW is a total order, and the
length function induces an isomorphism of totally ordered sets

(JW,	) ∼→ {0, 1, 2, · · · , n}.

Note that in this case n+ 1 = 2m.
Case 2. If n is even, noting that in this case n+2 = 2m, then W is generated by

simple reflections {si}i=1,··· ,m, where

si =

{
(i, i+ 1)(n− i+ 2, n− i+ 3), for i = 1, · · · ,m− 1;

(m− 1,m+ 1)(m,m+ 2), for i = m.

Let

wi =

⎧⎪⎨⎪⎩
s1s2 · · · si, for i ≤ m− 1;

s1s2 · · · sm, for i = m;

s1s2 · · · smsm−2 · · · s2m−i−1, for i ≥ m+ 1.

and

w′
m−1 = s1s2 · · · sm−2sm.

Then

JW = {wi}0≤i≤n ∪ {w′
m−1},

and the partial order 	 is given by

w0 = id 	 w1 	 · · · 	 wm−2

	 wm−1, w
′
m−1

	 wm 	 · · · 	 wn.

Applying Theorem 3.4.7 together with 7.2.1, we get the following description for
the E-O stratification on Sκ.

Corollary 7.2.2. Let m and n be as before.
(1) There are 2m Ekedahl-Oort strata on Sκ.
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(2) (a) If n is odd, then for any integer 0 ≤ i ≤ n, there is precisely one stratum
S i

κ such that dim(S i
κ) = i. These are all the Ekedahl-Oort strata on

Sκ. Moreover, the Zariski closure of S i
κ is the union of all the S i′

κ such
that i′ ≤ i.

(b) If n is even, then for any integer i such that 0 ≤ i ≤ n and i 
= n/2,
there is precisely one stratum S i

κ such that dim(S i
κ) = i. There are 2

strata of dimension n/2. These are all the Ekedahl-Oort strata on Sκ.
Moreover, the Zariski closure of the stratum S w

κ is the union of S w
κ

with all the strata whose dimensions are smaller than dim(S w
κ ).

7.3. Newton stratifications.

7.3.1. Orthogonal groups with good reduction at p. Let (V, q) be a non-
degenerate quadratic space of dimension n+ 2 over Qp. Here we always assume that
n > 0 and p > 2. If (V, q) is of good reduction (i.e. the orthogonal group SO(V, q) is
of good reduction) at p, then we can find a basis {e1, e2, · · · , en+2} such that

q = a1x
2
1 + a2x

2
2 + · · ·+ an+2x

2
n+2

with ai ∈ Z×
p .

It is well known that this quadratic space (V, q) is determined up to isomorphism
by its discriminant

d(V, q) :=

n+2∏
i=1

ai

(viewed as an element in Q×
p /Q

×2
p ) and Hasse invariant

ε(V, q) :=
∏
i<j

(ai, aj).

Here (ai, aj) are the Hilbert symbols at p. By our assumption, ε(V, q) = 1 as (ai, aj) =
1 for any i < j. So (V, q) is uniquely determined by its discriminant which is, by
assumption, either 1 or represented by a non-square unit u in Zp.

Fixing a non-square unit u ∈ Zp, one can make the above discussions more explicit
as follows.

Case 1. If n is odd, let

q = x2
1 − x2

2 + x2
3 − x2

4 + · · ·+ x2
2i−1 − x2

2i + · · ·+ x2
n+2

and

q′ = x2
1 − x2

2 + x2
3 − x2

4 + · · ·+ x2
2i−1 − x2

2i + · · ·+ ux2
n+2.

Then (V, q) and (V, q′) are non-isomorphic, and any non-degenerate quadratic space
of rank n + 2 with good reduction is isomorphic to precisely one of them. One sees
easily that both SO(V, q) and SO(V, q′) are split, and hence they are isomorphic in
this case.

Case 2. If n is even, let

q = x2
1 − x2

2 + x2
3 − x2

4 + · · ·+ x2
2i−1 − x2

2i + · · ·+ x2
n+1 − x2

n+2
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and

q′ = x2
1 − x2

2 + x2
3 − x2

4 + · · ·+ x2
2i−1 − x2

2i + · · ·+ x2
n+1 − ux2

n+2.

Then (V, q) and (V, q′) are non-isomorphic, and any non-degenerate quadratic space
of rank n + 2 with good reduction is isomorphic to precisely one of them. One sees
easily that SO(V, q) is split and SO(V, q′) is of rank m−1. Here we set m = (n+2)/2
as before. In particular, they are not isomorphic in this case.

7.3.2. A description of B(GQp
, μ). Now we come back to our usual notations

(used in subsections 7.1, 7.2). It is possible (and not difficult) to describe B(GQp , μ)
in this case using [26] Proposition 6.3. But to keep our arguments short, we use [4]
Corollary 4.3 which describes B(GQp

, μ) in terms of root systems.
More precisely, we fix T0 ⊆ T ⊆ B subgroups of GQp

with T0 a maximal split
torus, T a maximal torus and B a Borel subgroup. Let (X∗(T ),Φ, X∗(T ),Φ∨) be the
attached absolute root datum with simple roots Δ, and (X∗(T0),Φ0, X∗(T0),Φ

∨
0 ) be

the attached relative root datum with simple (reduced) roots Δ0. For α ∈ Δ0, we set

w̃α =
∑

β∈Φ, β|T0
=α

wβ ∈ X∗(T0)Q.

Here wβ is the fundamental weight corresponding to β. Let μ be the average of the
Γ-orbit of μ. Then we have

B(GQp , μ) = {ν ∈ X∗(T0)Q,dom | ν ≤ μ, ∀α ∈ Δ0 with 〈ν, α〉 
= 0, 〈μ− ν, w̃α〉 ∈ N}.

Combined with 7.3.1, we can describe B(GQp
, μ) explicitly.

Case 1. If n is odd, then T0 = T . Set m = (n+ 1)/2 as in 7.2. We can choose a
Qp-basis with respect to which

q = x1x2m+1 + x2x2m + · · ·+ xmxm+2 + ux2
m+1.

Let T = diag(t1, t2, · · · , tm, 1, t−1
m , t−1

m−1 · · · , t−1
1 ) and αi ∈ X∗(T ), 1 ≤ i ≤ m, be

given by the i-th projection. For 1 ≤ i ≤ m, let α∨
i ∈ X∗(T ) be the cocharacter

t �→ diag(1, · · · , 1, t, 1, · · · , 1, t−1, 1, · · · , 1)

where the t and t−1 are at the i-th and 2m + 2 − i-th place respectively. Then
μ = μ = α∨

1 . For

ν =

m∑
i=1

ciα
∨
i ∈ X∗(T0)Q,

it is dominant if and only if ci ≥ 0 for all i and ci ≥ cj for all i < j. Noting that
the trivial cocharacter 1 is the basic element in B(GQp , μ), we only need to consider
non-basic elements, i.e. we will assume that ν ∈ B(GQp , μ) is such that there is j
with ci > 0 for all i ≤ j.

We have

μ− ν = (1− c1)(α
∨
1 − α∨

2 ) + (1− c1 − c2)(α
∨
2 − α∨

3 ) + · · ·

+(1−
m−1∑
i=1

ci)(α
∨
m−1 − α∨

m) + (1−
m∑
i=1

ci)α
∨
m,
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and hence the condition ν ≤ μ means that
∑m

i=1 ci ≤ 1. If cm > 0, we have 〈ν, αm〉 
=
0. Noting that w̃αm = 1

2

∑m
i=1 αi, so 〈μ− ν, w̃αm〉 ∈ N holds only when

∑m
i=1 ci = 1.

We actually have ci = 1/m for all i in this case. Indeed, if there were j < m with
cj > cj+1, then we have 〈ν, αj − αj+1〉 
= 0 and by similar arguments we find that∑j

i=1 ci = 1 which contradicts to our assumption. If cm = 0, we work with j such

that cj+1 = 0 and ci > 0 for all i ≤ j). By similar arguments, we find ν = 1
j

∑j
i=1 α

∨
i .

To sum up, we have in this case

B(GQp , μ) = {α∨
1 ,

1

2
(α∨

1 + α∨
2 ), · · · ,

1

m

m∑
i=1

α∨
i , 1}.

We will simply write bi, 1 ≤ i ≤ m, for 1
i

∑i
j=1 α

∨
j and b0 for 1. One sees easily that

the partial order on B(GQp , μ) is as follows:

b0 ≤ bm ≤ bm−1 ≤ · · · ≤ b1.

Case 2. If n is even, this splits into two cases.
Case 2.a. If GQp is split, we can choose a Qp-basis with respect to which

q = x1x2m + x2x2m−1 + · · ·+ xmxm+1.

Let T0 = T = diag(t1, · · · , tm, t−1
m , · · · , t−1

1 ), and αi ∈ X∗(T ), 1 ≤ i ≤ m, be given
by the i-th projection. By similar arguments as in the previous case, we have in this
case

B(GQp
, μ) = {α∨

1 ,
1

2
(α∨

1 + α∨
2 ), · · · ,

1

m− 1

m−1∑
i=1

α∨
i ,

1

m

m∑
i=1

α∨
i ,

1

m
(
m−1∑
i=1

α∨
i − α∨

m), 1}.

Here besides the bi, 0 ≤ i ≤ m, which we have introduced before, we also set

b′m =
1

m
(
m−1∑
i=1

α∨
i − α∨

m).

The partial order on B(GQp
, μ) is as follows:

b0 ≤ bm ≤ bm−1 ≤ · · · ≤ b1, b0 ≤ b′m ≤ bm−1

Case 2.b. If GQp
is non-split, we can choose a Qp-basis with respect to which

q = x1x2m + x2x2m−1 + · · ·+ xm−1xm+2 + x2
m − ux2

m+1, u ∈ Z×
p non-square.

Let T0 = diag(t1, · · · , tm−1, 1, 1, t
−1
m−1, · · · , t−1

1 ) and T be its centralizer. Using similar
notations and arguments as before, we have

B(GQp , μ) = {α∨
1 ,

1

2
(α∨

1 + α∨
2 ), · · · ,

1

m− 1

m−1∑
i=1

α∨
i , 1}.

Again, we have bi, 0 ≤ i ≤ m − 1, given by the same formula. The partial order on
B(GQp

, μ) is as follows:

b0 ≤ bm−1 ≤ bm−2 ≤ · · · ≤ b1.
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7.3.3. Notations as in 7.1. The pair (SO(V )Qp
, μ) is of Coxeter type if n 
= 2,

and it is always fully Hodge-Newton decomposable. More precisely, in terms of the
list of Coxeter types in [12] Theorem 5.1.2,

• if n ≥ 5 and odd, then it is of type (Bm, ω∨
1 , S);

• if n ≥ 6 and even, then it is of type (Dm, ω∨
1 , S) (resp. (2Dm, ω∨

1 , S)) when
SO(V )Qp

is split (resp. non-split).
For the exceptions,

• if n = 1, it is of type (A1, ω
∨
1 , S);

• if n = 3, it is of type (C2, ω
∨
2 , S);

• if n = 4, it is of type (A3, ω
∨
1 , S) (resp. (2A′

3, ω
∨
1 , S)) when SO(V )Qp

is split
(resp. non-split).

When n = 2, it is no longer of Coxeter type as SO(V )Qp
is no longer absolutely

quasi-simple. But it is still fully Hodge-Newton decomposable. It is
• of type (A1, ω

∨
1 , S)× (A1, ω

∨
1 , S), if SO(V )Qp is split;

• of type (A1 ×A1, (ω
∨
1 , ω

∨
1 ),

1ς0), (see [14] 2.6) otherwise.
Now we can state properties of Newton strata in Shimura varieties attached to

orthogonal groups, as well as relations between E-O strata, Newton strata and central
leaves.

Corollary 7.3.4. Let Sκ be as in the end of 7.1.3, then each of its Newton
stratum is equi-dimensional with closure a union of Newton strata. Moreover, each
Newton stratum is a union of E-O strata, and each non-basic E-O is a central leaf in
the (non-basic) Newton stratum containing it. More precisely, we have

(1) if n is odd, then (m = n+1
2 ):

(a) for bi, i ∈ {1, . . . , n+1
2 }, the Newton stratum S bi

κ is of dimension n +

1− i. Moreover, it coincides with the minimal E-O stratum S n+1−i
κ ;

(b) the basic locus S b0
κ is of dimension n−1

2 , and it is the disjoint union of
E-O strata:

S b0
κ =

n−1
2∐

i=0

S i
κ.

(2) if n is even and SO(V )Qp
is non-split, then (m = n

2 + 1):

(a) for bi, i ∈ {1, . . . , n
2 }, the Newton stratum S bi

κ is of dimension n+1−i.
Moreover, it coincides with the minimal E-O stratum S n+1−i

κ ;

(b) the basic locus S b0
κ is of dimension n

2 , and it is the disjoint union of
E-O strata:

S b0
κ = S

wn
2

κ

∐
S

w′
n
2

κ

n
2 −1∐
i=0

S i
κ.

(3) if n is even and SO(V )Qp is split, then (m = n
2 + 1):

(a) for bi, i ∈ {1, . . . , n
2 }, the Newton stratum S bi

κ is of dimension n+1−i.
Moreover, it coincides with the minimal E-O stratum S n+1−i

κ ;

(b) for m = n
2 + 1, the Newton strata S bm

κ and S
b′m
κ are of dimension n

2 ,
and both of them are minimal E-O strata. More precisely,

• if m is odd, then S bm
κ = S

wn
2

κ and S
b′m
κ = S

w′
n
2

κ ;

• if m is even, then S bm
κ = S

w′
n
2

κ and S
b′m
κ = S

wn
2

κ ;
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(c) the basic locus is of dimension n
2 −1, and it is the disjoint union of E-O

strata:

S b0
κ =

n
2 −1∐
i=0

S i
κ.

Proof. The first two sentences follow from Theorem 2.3.6 and Proposition 6.2.7
respectively.

To see the dimension of basic locus, one can either use [12] 6.4 and 6.6, and
compute the length of maximal elements in the basic locus, or reduce to GSpin-
Shimura varieties and use [20] Theorem 6.4.1 directly. One could then use purity to
deduce dimension formula for general Newton strata. All the other statements except
for the second sentence of (3.b) follow from Proposition 6.2.7 and Corollary 7.2.2 by
simply comparing the dimensions.

Now we explain the second part of (3.b). The basis we have fixed in 7.3.2 case (2.a)
give a Zp-lattice L, which is perfect with respect to the bilinear form corresponding to
q. So SO(L, q) is a split reductive group over Zp, and the torus T we fixed there extends
to a split maximal torus of SO(L, q) which is again denoted by T . We identify the
Weyl group of SO(L, q) and that of SO(LFp , q) whose elements are viewed as elements
in SO(L, q)(Zp) via permutations of the chosen basis.

Let w0 (resp. wJ,0) be the maximal element in W (resp. WJ), then

wn = wJ,0w0 = (1, 2m)(m,m+ 1).

By [57] Remark 6.5.2, the E-O stratum corresponding to wn
2
is given by the orbit

of wn
2
w−1

n = wn
2
wn in SO(LFp , q). Then wn

2
wnμ(p) is obviously a preimage of it in

C(G,μ). One sees by direct computation that

(wn
2
wnμ(p))

m = diag(p, p−1, · · · , p−1, p) = (α∨
1 − α∨

2 − · · · − α∨
m)(p).

So by the second paragraph of 6.1.2, the Newton cocharacter for wn
2
wnμ(p) is

given by the dominant representative (in the Weyl orbit) of 1
m (α∨

1 − α∨
2 − · · · − α∨

m),
which is bm (resp. b′m) when m is odd (resp. even).

For the case (G, Y ) = (GSpin(V ), X ′), in [20] Howard and Pappas have described
the basic locus S b0

κ in terms of some Deligne-Lusztig varieties, by using Rapoport-
Zink uniformation and their local description of the GSpin Rapoport-Zink spaces.
We have then a similar description of S b0

κ for the case (G, Y ) = (SO(V ), X), cf. [47]
sections 7 and 8.

Finally, we refer the readers to [47] section 8 for some further discussions in the
case n = 19 for applications to K3 surfaces and their moduli in mixed characteristic.
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Publ. Math. de l’IHÉS, 128 (2018), pp. 121–218.
[25] J.-S. Koskivirta, Sections of the Hodge bundle over Ekedahl-Oort strata of Shimura varieties

of Hodge type, J. Algebra, 449 (2016), pp. 446–459.
[26] R. Kottwitz, Isocrystals with additional structure, Compos. Math., 56 (1985), pp. 201–220.
[27] R. Kottwitz, Isocrystals with additional structure. II, Compos. Math., 109:3 (1997), pp. 255–

339.
[28] R. Kottwitz, Dimensions of Newton strata in the adjoint quotient of reductive groups, Pure

Appl. Math. Q., 2 (2006), pp. 817–836.
[29] S. Kudla, Special cycles and derivatives of Eisenstein series, in “Heegner Points and Rankin

L-Series” (Berkeley, CA, 2001), Math. Sci. Res. Inst. Publ. Vol. 49, Cambridge Univ. Press,
Cambridge, pp. 243–270, 2004.

[30] S. Lang, Algebraic groups over finite fields, Amer. J. of Math., 78 (1956), pp. 555–563.
[31] D.-Y. Lee, Non-emptiness of Newton strata of Shimura varieties of Hodge type, Algebra &

Number Theory, 12:2, (2018), pp. 259–283.
[32] R. Liu and X. Zhu, Rigidity and a Riemann-Hilbert correspondence for p-adic local systems,

Invent. Math., 207:1 (2017), pp. 207–291.
[33] T. Lovering, Integral canonical models for automorphic vector bundles of abelian type, Algebra

& Number Theory, 11:8 (2017), pp. 1837–1890.
[34] T. Lovering, Filtered F -crystals on Shimura varieties of abelian type, arXiv:1702.06611.
[35] K. Madapusi Pera, Toroidal compactifications of integral models of Shimura varieties of Hodge
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