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ON THE IWASAWA INVARIANTS OF NON-COTORSION SELMER
GROUPS∗

SÖREN KLEINE†

Abstract. We study the variation of Iwasawa invariants of Selmer groups and fine Selmer groups
of abelian varieties over Zp-extensions of a fixed number field K. It is shown that the λ-invariants
can be unbounded if the Λ-coranks of the Selmer groups (respectively fine Selmer groups) vary. In
contrast, the classical Iwasawa λ-invariants of Zp-extensions are expected to be bounded, at least
for small base fields like imaginary quadratic fields. For fine Selmer groups, the boundedness of
λ-invariants is related to the (possible) failure of the weak Leopoldt conjecture.
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1. Introduction. Let p be a prime, let K be a number field, and let A be an
abelian variety defined overK. We study the variation of Iwasawa invariants of Selmer
groups and fine Selmer groups of A over the Zp-extensions of K. It is well-known
that the classical Iwasawa μ-invariants μ(K∞/K) are bounded as K∞ runs over the
Zp-extensions of K; it is not known whether the same holds true in general for the
Iwasawa λ-invariants. In this article, we show that the Iwasawa λ-invariants of Selmer
groups can be unbounded as one runs over the Zp-extensions of K.

In the following, we make this more precise. Greenberg has defined in [Gre73]
a topology on the set E(K) of Zp-extensions of K. For any K∞ ∈ E(K) and every

m ∈ N, we let E(K∞,m) denote the set of Zp-extensions K̃∞ of K which coincide
with K∞ at least up to the m-th layer:

E(K∞,m) = {K̃∞ ∈ E(K) | [(K̃∞ ∩K∞) : K] ≥ pm}.

Greenberg proved in [Gre73] that E(K) is compact with respect to this topology,
and he investigated the behaviour of classical Iwasawa invariants of Zp-extensions of
K contained in open neighbourhoods E(K∞,m). The classical Iwasawa invariants
describe the asymptotic growth of the p-valuations en of the class numbers of the
intermediate fields Kn ⊆ K∞:

en = μ(K∞/K) · pn + λ(K∞/K) · n+ ν(K∞/K) (1)

for each sufficiently large n ∈ N. The Iwasawa invariants μ, λ and ν depend on
the given Zp-extension K∞ of K. Greenberg proved that if no prime of K dividing
p splits completely in a Zp-extension K∞/K, then the μ-invariant is bounded on
some neighbourhood E(K∞,m), i.e. the μ-invariant is locally bounded with respect
to Greenberg’s topology in this case. Moreover, if the μ-invariant vanishes, then the
λ-invariant is locally bounded. More generally, we bounded in [Kle17] the λ-invariants
also in situations where the μ-invariant is non-zero, provided that the μ-invariant was
locally constant.

∗Received September 22, 2021; accepted for publication February 7, 2022.
†Institut für Theoretische Informatik, Mathematik und Operations Research, Universität der

Bundeswehr München, Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany (soeren.kleine@
unibw.de).

373



374 S. KLEINE

It has been shown by Babăıcev (see [Bab81]) and Monsky (see [Mon81, Theo-
rem II]) that the classical Iwasawa μ-invariant is in fact absolutely bounded on the
space E(K) of Zp-extensions of K, i.e. that there exists a constant C ∈ N such that
μ(K∞/K) ≤ C for each K∞ ∈ E(K). Concerning the λ-invariants, it is not known
whether they are bounded as K∞ runs over the Zp-extensions of K. Monsky has
shown that the boundedness of the classical λ-invariants follows from the validity of
Greenberg’s Generalised Conjecture for K if the composite of all Zp-extensions of K
is a Z2

p-extension of K (see [Mon81, Theorem IV]). If there exist more than two inde-
pendent Zp-extensions of K, then the boundedness of λ-invariants on E(K) is much
stronger than Greenberg’s conjecture (see [Kle21b, Example 6.3 and Theorem 6.4]).

In [Kle21a], we studied analogous boundedness questions in suitable neighbour-
hoods of Zp-extensions for the Iwasawa invariants of Selmer groups of abelian va-
rieties, under the assumption that the corresponding Selmer groups are Λ-cotorsion
(here Λ = Zp[[T ]] denotes the Iwasawa algebra). The main motivation for the present
article was to derive similar results in the case where the corresponding Selmer groups
are allowed to have positive Λ-corank. It turns out that the influence of the corank of
the Selmer groups on the variation of Iwasawa λ-invariants outweighs the actual value
of the μ-invariant. In fact, whereas it seems reasonable to believe that the λ-invariants
can be locally bounded also if the μ-invariants vary (cf. the results in Section 4), we
will derive explicit sufficient conditions for the λ-invariants to be unbounded, depend-
ing on the Λ-coranks (see Theorems 1.1 and 1.3 below).

The following is our first result.

Theorem 1.1. Let A be an abelian variety defined over the number field K, and
suppose that A has potentially good ordinary reduction at the primes above p. Let Kc

∞
be the cyclotomic Zp-extension of K.

If the Selmer group of A over Kc
∞ is Λ-cotorsion and has μ-invariant zero, and

if there exists a Zp-extension K∞ of K such that the Selmer group of A over K∞ is
not Λ-cotorsion, then the λ-invariants of Selmer groups of A are unbounded as one
runs over the Zp-extensions of K which are contained in Kc

∞K∞.

A natural candidate for the Zp-extension K∞/K in Theorem 1.1 is the anticy-
lotomic Zp-extension Ka

∞ of an imaginary quadratic number field K. For example,
Bertolini (see [Ber95]) has described settings where the Selmer group of an abelian
variety A over Ka

∞ is known to be non-cotorsion, see also Remark 4.15 below. This
yields the following

Corollary 1.2. Let A = E be an elliptic curve of conductor N defined over Q,
and let K be an imaginary quadratic field such that O×

K = {±1}. We assume that
(1) p � 6Ndisc(K)hK |A/A0|, where hK denotes the class number of K, disc(K) means

the discriminant and A/A0 denotes the group of connected components of the
Néron model of A = E over Spec(OK),

(2) A has good ordinary reduction at each prime of K above p,
(3) the Galois representation ρp : Gal(Q/Q) −→ Aut(A[p∞]) is surjective,
(4) A(kv)[p

∞] = {0} for each prime v of K above p (here kv denotes the finite residue
field of the completion Kv of K at v),

(5) |A(Fp)| �≡ −1(mod p) if p splits in K/Q, and that
(6) every prime dividing the conductor N of A splits in K/Q (this is the so-called

Heegner hypothesis).
Let Kc

∞ denote the cyclotomic Zp-extension of K.
If the μ-invariant of the Selmer group of A over Kc

∞ is zero, then the λ-invariant
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of the Selmer group of A over K∞ is unbounded as K∞ runs over the Zp-extensions
of K.

By the work of Skinner and Urban [SU14] on the Iwasawa main conjecture, the
μ-invariant of the Selmer group of A = E over Kc

∞ is in many cases known to coin-
cide with the μ-invariant of a suitable p-adic L-function Lp(E, s), and therefore the
vanishing of this μ-invariant can be checked numerically (see also Example 7.14).

The main ingredient which forces the λ-invariants to be unbounded in the above
situations is the existence of two suitable Zp-extensions of K over which the Selmer
groups of A have different Λ-coranks (cf. also Section 7.3). As in [Kle21a], informa-

tion about the Iwasawa invariants of the Iwasawa Selmer module X = X
(K∞)
A (cf.

Section 2) is encoded into the cardinalities of certain quotients X/wnX, n ∈ N (one
should have in mind the example wn = (T + 1)p

n − 1, in which case the quotient
X/wnX is closely related to the Selmer group over the n-th layer Kn of K∞). The
main novelty in our approach, compared to [Kle21a], is the introduction of a second
parameter : we consider quotients of the form X/(αk, wn)X, k, n ∈ N, where αk and
wn are relatively prime for each k and n. This idea arised from the wish to obtain
finite quotients even if X is not Λ-torsion. For the price of a more involved analysis,
it is this extra parameter αk which enables us to get rid off the dependancy on the
μ-invariants, and prove a direct link between the boundedness of λ-invariants and the
Λ-coranks of the Selmer groups (see Corollary 4.2 which, together with the denseness
results from Section 7.3, is the key ingredient in all our main theorems).

For fine Selmer groups, the property of being Λ-cotorsion is strongly related to
the weak Leopoldt conjecture (see Remark 5.5 below). Therefore our approach also
yields the following result concerning fine Selmer groups.

Theorem 1.3. Let A be an abelian variety defined over some number field K,
and let p be an odd prime. Suppose that the weak Leopoldt conjecture holds for A over
the cyclotomic Zp-extension Kc

∞, and that there exists a Zp-extension K∞ of K such
that the weak Leopoldt conjecture for A does not hold over K∞.

Then the λ-invariant of the fine Selmer group of A, and therefore also the λ-
invariant of the Selmer group, is unbounded as one runs over the Zp-extensions of K
which are contained in Kc

∞K∞.

Since the Pontryagin duals of fine Selmer groups are closely related to the classical
Iwasawa modules, i.e. projective limits of ideal class groups (see [CS05] and also
Theorem 7.3 below), and as the classical λ-invariants are conjectured to be bounded
on E(K) at least for small base fields K, Theorem 1.3 provides some evidence in favor
of the weak Leopoldt conjecture for A over arbitrary Zp-extensions of K.

In [GK19], C. Greither and the author have proved a result which is kind of an
analogue of Theorem 1.3 for classical Iwasawa modules: if K is a CM-field such that
Leopoldt’s conjecture fails for K, then there exists a degree p-extension L/K such that
the following holds: if μ(Lc

∞/L) = 0 for the cyclotomic Zp-extension Lc
∞ of L, then

the λ-invariants of the Zp-extensions of L are unbounded.

It is known due to work of Babăıcev (see [Bab82, Corollary 3]) that for any number
field K, the weak Leopoldt conjecture (for ideal class groups) holds for a dense subset
of Zp-extensions of K (with respect to Grenberg’s topology), including the cyclotomic
Zp-extension, and that the validity of Leopoldt’s conjecture for K and p implies that
the weak Leopoldt conjecture holds for every Zp-extension of K. In Section 7, we
show that the weak Leopoldt conjecture for an abelian variety A holds over a dense
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subset of Zp-extensions of K, provided that it is true for the cyclotomic Zp-extension
(see Corollary 7.13).

Now we briefly describe the plan of the article. After recapitulating the neces-
sary background and notation in Section 2, we derive certain auxiliary lemmas in
Section 3. In Section 4, we prove the main results concerning local bounds of coranks
and Iwasawa invariants of Selmer groups, with respect to Greenberg’s topology. Most
of these results make use of a uniform control theorem (cf. Theorem 3.4) and therefore
are formulated under the hypothesis that A has potentially good ordinary reduction
at the primes of K above p and that certain hypotheses on the ramified primes and
the primes of bad reduction are satisfied (see Definition 3.3). Interestingly, the λ-
invariants can be bounded partially without these assumptions; we obtain a rather
strong result concerning the common factors of the characteristic power series of the
Selmer group with polynomials of the form wn = (T +1)p

n − 1 (see Theorem 4.8 and
the corollaries of this theorem).

Similar results can be derived for fine Selmer groups (see Section 5). In Section 6,
we briefly discuss the weak Leopoldt conjecture and its impact on the value of coranks
of Selmer groups. Finally, in the last section, we give proofs of our main results.
The rough idea is as follows. In Sections 4 and 5 we prove that, in our setting,
if the λ-invariants of the (fine) Selmer groups of A are bounded in some Greenberg
neighbourhood E(K∞,m), then the Λ-corank of the (fine) Selmer groups is constant in
some (possibly slightly smaller) neighbourhood of K∞ (via a trick, our estimate of the
corank becomes independent of the orders of the kernels and cokernels of the control
theorem homomorphism, see Remark 4.3). In other words, if the (fine) Selmer group
of A over K∞ is not Λ-cotorsion for some Zp-extension K∞ of K, then either the same
holds true for all Zp-extensions contained in some sufficiently small neighbourhood
of K∞ – or the λ-invariants are unbounded as one runs over the Zp-extensions of K
which are close to K∞. In Section 7 we prove that the hypotheses on the (fine) Selmer
group of A over Kc

∞ imply that each Z2
p-extension of K containing Kc

∞ contains only
finitely many Zp-extensions for which the (fine) Selmer group is not Λ-cotorsion.
In particular, we find Zp-extensions with cotorsion (fine) Selmer group which are
arbitrarily close to K∞. By the above, this forces the λ-invariants to be unbounded
near K∞.

Acknowledgements. I would like to thank Katharina Müller for her valuable
comments on an earlier draft of this article, and I am very grateful to Christian
Wüthrich for answering my questions on the weak Leopoldt conjecture. Moreover,
I thank the anonymous referee for carefully reading the manuscript and suggesting
several valuable improvements.

2. Notation and background. We fix a prime p and a number field K. A Zp-
extension of K is a Galois extension K∞/K such that Γ := Gal(K∞/K) is isomorphic
to the group Zp of p-adic integers. Any Zp-extensionK∞ ofK is the union of uniquely

determined intermediate number fields Kn := KΓpn

∞ which are cyclic of degree pn over
K, n ∈ N. The completed group ring Zp[[Γ]] identifies (non-canonically) with the ring
Λ := Zp[[T ]] of formal power series over Zp by mapping a fixed topological generator
γ of Γ to 1 + T ∈ Λ.

The basic approach of Iwasawa theory exploits the well-known structure theory of
finitely generated Λ-modules. Let X be a finitely generated Λ-module. By the central
structure theorem (see [NSW08, Theorem (5.1.10)], X is pseudo-isomorphic to a so-
called elementary Λ-module E = EX (i.e. there exists a Λ-module homomorphism
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ϕ : X −→ EX with finite kernel and cokernel). Here E has the form E = Λr ⊕ E◦

with r ∈ N (the Λ-rank of X) and

E◦ =

s⊕
j=1

Λ/(pmj )⊕
t⊕

i=1

Λ/(hni
i )

for some s, t ∈ N and suitable natural numbers mj and ni. Moreover, each hi ∈ Λ is a
so-called distinguished polynomial. In view of [Was97, Lemma 13.8], we may assume
that each hi is irreducible.

We define μ(X) :=
∑s

j=1 mj , FX := pμ(X) · ∏t
i=1 h

ni
i and λ(X) := deg(FX).

FX ∈ Zp[T ] ⊆ Λ is called the characteristic power series of X, and μ(X), λ(X) are
the Iwasawa invariants of X.

If K∞/K is a Zp-extension, then the projective limit X(K∞) = lim←−n
X(Kn) of the

p-Sylow subgroups of the ideal class groups of the layers Kn, n ∈ N, is well-known
to be a finitely generated torsion Λ-module. The Iwasawa invariants μ(X(K∞)) and
λ(X(K∞)) coincide with the coefficients μ(K∞) and λ(K∞/K) in Iwasawa’s class
number formula (1) (see [Iwa59]).

For elements λ1, . . . , λk ∈ Λ and a finitely generated Λ-module X, we define

rank(f1,...,fk)(X) := vp(|X/((f1, . . . , fk) ·X)|),

whenever this is finite. The following facts concerning ranks of elementary Λ-modules
will be used throughout the article without further notice. If f ∈ Λ is not a unit,
then Λ/(f) is infinite; if f1, f2 ∈ Λ are relatively prime, then Λ/(f1, f2) is finite (see
e.g. [Was97, Lemmas 13.7 and 13.10]).

For any finitely generated abelian group G, we denote by G[p∞] the subgroup of
p-power torsion elements.

Let now A denote an abelian variety which is defined over K. Having fixed K, p
and A, we write Sp = Sp(K) for the set of primes of K above p, and Sbr = Sbr(A)
for the set of primes of K at which A has bad reduction. Both sets are finite, and we
will usually (but not always) assume that Sp ∩ Sbr = ∅. For any algebraic extension
M of K and any finite set S of primes of K, we let S(M) denote the set of primes of
M lying above some v ∈ S.

Let K∞/K be a Zp-extension with intermediate fields Kn. For each n ∈ N and
every prime v of K, we consider the localised Kummer map

κn,v : A(Kn,v)⊗Qp/Zp ↪→ H1(Kn,v, A[p
∞]),

where we denote by Kn,v the completion of Kn at some prime dividing v. We define
the (p-primary subgroup of the) Selmer group of A over Kn as

SelA(Kn) := ker

(
H1(Kn, A[p

∞]) −→
∏
v

H1(Kn,v, A[p
∞])/im(κn,v)

)
,

where v runs over all primes of Kn. Note that

H1(Kn,v, A[p
∞])/im(κn,v) ∼= H1(Kn,v, A)[p

∞]

by the definition of the Kummer map. We furthermore remark that one can define the
Selmer group in a slightly different way: choose any set S of primes which contains
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Sp(K) ∪ Sbr(A) and the infinite primes of K. Then SelA(Kn) is equal to

ker

⎛
⎝H1(Gal(MS(K)/Kn), A[p

∞]) −→
∏

v∈S(Kn)

H1(Kn,v, A[p
∞])/im(κn,v)

⎞
⎠ ,

whereMS(K) denotes the maximal algebraic pro-p-extension ofK which is unramified
outside of S (see [Mil06, Chapter 1, Corollary 6.6] for a proof of the equivalence of
these definitions; for odd p one can drop the assumption that S contains the infinite
primes).

We denote by

X
(Kn)
A := SelA(Kn)

∨ = Homcont(SelA(Kn),Qp/Zp)

the Pontryagin duals, and we define

X
(K∞)
A := lim←−

n

X
(Kn)
A ,

i.e., X
(K∞)
A is the Pontryagin dual of SelA(K∞) := lim−→n

SelA(Kn), where the injective

limit is taken with respect to the restriction maps. Then X
(K∞)
A is a finitely generated

Λ-module, Λ ∼= Zp[[Gal(K∞/K)]] (see [LKM16, Lemma 5.4]).
Now suppose that p is odd. We define the (p-primary subgroup of the) fine Selmer

group of A over Kn as

SelA,0(Kn) := ker

(
H1(Kn, A[p

∞]) −→
∏
v

H1(Kn,v, A[p
∞])

)
,

n ∈ N, where v runs over all primes of Kn. Again, these groups can also be defined
with respect to finite sets S containing Sp(K)∪Sbr. We denote the Pontryagin duals

by Y
(Kn)
A := SelA,0(Kn)

∨, and we define Y
(K∞)
A = lim←−Y

(Kn)
A , where the projective

limit is taken with respect to the corestriction maps.
For every n ∈ N, we have an exact sequence

0 SelA,0(Kn) SelA(Kn)
⊕

v∈Sp(Kn)

A(Kn,v)⊗Qp/Zp (2)

by [CS05, equation (58) on p. 828], since A(Kn,v)⊗Qp/Zp = {0} whenever v � p. In

particular, Y
(K∞)
A is a quotient of the Λ-module X

(K∞)
A .

3. Preliminary results. We fix a number field K and a rational prime p. Let
K∞/K be a Zp-extension, K∞ =

⋃
n Kn. We write Γ = Gal(K∞/K); then Γn = Γpn

fixes the intermediate field Kn of degree pn over K, n ∈ N. Fix an isomorphism
Zp[[Γ]] ∼= Λ, as in Section 2. For any finitely generated Λ-module X and every n ∈ N,
we denote by XΓn

the quotient of Γn-coinvariants of X, i.e. the maximal quotient of
X on which Γn acts trivially. Then

XΓn = X/(wn(T ) ·X),

where wn(T ) = (T + 1)p
n − 1.
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Now let A be an abelian variety defined over K. Recall the definition of the

(Pontryagin duals of the) Selmer groups X
(K∞)
A = lim←−n

X
(Kn)
A from Section 2. The

following result is a crucial ingredient of our approach.

Theorem 3.1 (Mazur’s Control Theorem). Suppose that A has potentially good
ordinary reduction at each prime v ∈ Sp. Then the natural maps

pr(K∞)
n : (X

(K∞)
A )Γn −→ X

(Kn)
A

have finite kernels and cokernels, the orders of which are bounded as n → ∞.

Proof. See [Maz72], and see also [Gre01, Chapter 4] for a very detailed exposition
of the proof.

It turns out that the finiteness of coker(prn) for all n holds in greater generality:

Lemma 3.2. Let A denote any abelian variety defined over the number field K,
and let K∞/K be a Zp-extension. Then the cokernels of the maps

pr(K∞)
n : (X

(K∞)
A )Γn −→ X

(Kn)
A

are finite for every n ∈ N.

Proof. We dualise the statement [Lee20, Lemma 2.0.1].

Recall from the Introduction that E(K∞,m) denotes the set of Zp-extensions

K̃∞/K which coincide with K∞ at least up to the m-th layer Km. The next result
shows that the orders of the kernels and cokernels from Mazur’s Control Theorem can
sometimes be bounded uniformly on E(K∞,m). Since the corresponding hypotheses
will play a prominent role in many of the following results, we give them an explicit
name.

Definition 3.3. Let K∞/K be a Zp-extension, and let A be an abelian variety
defined over K. We say that the pair (K∞, A) has Property (F) if
(1) A has potentially good ordinary reduction at each v ∈ Sp,
(2) each prime v ∈ Sp ramifies in K∞, and
(3) no prime v ∈ Sbr splits completely in K∞/K.

We call this collection of hypotheses the Property (F) because it implies that

X
(K∞)
A is a Fukuda module with locally bounded Fukuda parameters in the sense of

[Kle21a, Definition 3.1 and Theorem 4.5], by the following result.

Theorem 3.4. Let K∞/K be a Zp-extension. If the pair (K∞, A) satisfies
Property (F), then there exist constants m,C1, C2 ∈ N such that

| ker(pr(K̃∞)
n )| ≤ C1 and |coker(pr(K̃∞)

n )| ≤ C2

for every n ∈ N and each K̃∞ ∈ E(K∞,m).

Proof. Since each prime v ∈ Sp ramifies in K∞, the same holds true for any

K̃∞ ∈ E(K∞,m), provided that m has been chosen large enough. Moreover, we may
derive from [Gre03, Proposition 3.2,(ii)] that A(K∞)[p∞] is finite, which was one of
the assumptions in [Kle21a, Theorem 4.5]. Finally, if m is large enough to ensure that
each v ∈ Sbr is inert in Km/Km−1, then no prime v ∈ Sbr splits completely in any
K̃∞ ∈ E(K∞,m). Therefore the assertion follows from [Kle21a, Theorem 4.5].
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Remark 3.5. One can formulate a version of Theorem 3.4 which does not require
the hypothesis that each v ∈ Sp ramifies in K∞/K. If one drops this assumption
and in addition adds the hypothesis that A(K∞)[p∞] is finite, then the statement of
Theorem 3.4 remains valid for the Zp-extensions K̃∞ ∈ E(K∞,m) which have the

same ramification set as K∞/K, i.e. each v ∈ Sp which ramifies in K̃∞ must ramify
also in K∞/K and vice versa (see [Kle21a, Theorem 4.5]).

Similarly, one can allow that the primes v ∈ Sbr split completely in K∞. In

order to nevertheless bound the orders of ker(pr
(K̃∞)
n ), one has to restrict oneself

to the subset U(A,K∞,m) ⊆ E(K∞,m) of Zp-extensions K̃∞/K such that every

v ∈ Sbr which splits completely in K∞ does split completely also in K̃∞. The subset
U(A,K∞,m) in general is much smaller than E(K∞,m), but can be non-trivial (cf.
also [Kle21a, Remark 4.4]).

We note that the boundedness of |coker(pr(K̃∞)
n )| does not require any restriction

on the primes v of K, as long as A(K∞)[p∞] is finite.

For later use, we state a result on quotients of Selmer groups.

Lemma 3.6. Let K∞/K and A be as in Theorem 3.1. Let C1, C2 ∈ N be the

orders of the kernels and cokernels of pr
(K∞)
n for some n ∈ N, and let λ ∈ Λ be an

arbitrary element. We consider the induced map

pr(K∞)
n : X

(K∞)
A /((wn(T ), λ) ·X) −→ X

(Kn)
A /(λ ·X(Kn)

A ).

Then | ker(pr(K∞)
n )| ≤ C1 · C2 and |coker(pr(K∞)

n )| ≤ C2.

Proof. Apply the snake lemma to the commutative diagram

0 λ · (X(K∞)
A )Γn (X

(K∞)
A )Γn (X

(K∞)
A )Γn/λ · (X(K∞)

A )Γn 0

0 λ ·X(Kn)
A X

(Kn)
A X

(Kn)
A /λ ·X(Kn)

A 0.

pr
(K∞)
n pr

(K∞)
n pr

(K∞)
n

Recall the definition of (f1, . . . , fk)-ranks of Λ-modules from Section 2. We will
now study the relation between the ranks of a finitely generated Λ-module X and its
corresponding elementary Λ-module EX . If X is Λ-torsion and k = 1, then it has
been shown in [Kle17, Proposition 3.4] that

rank(f)(X) ≥ rank(f)(EX)

for every f ∈ Λ, provided that (one and therefore both of) the ranks are finite. If the
maximal finite Λ-submodule of X is trivial, then rank(f)(X) = rank(f)(EX) in view
of [Kle17, equation (3.5)]. Now we consider the case k = 2.

Lemma 3.7. Let X be a finitely generated Λ-module with elementary Λ-module
EX . Let α, ω ∈ Λ be two relatively prime elements. We write

EX = Λr ⊕ E1 ⊕ E2,

where r = rankΛ(X), αs · E2 = {0} for some 0 �= s ∈ N, and where multiplication by
α is injective on E1. Then

rank(α,ω)(X) ≥ rank(α,ω)(Λ
r) + rank(α,ω)(E2).
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We stress the symmetry in α and ω: the submodule E2 of E◦
X could have been

defined also with respect to ω, leading to an analogous inequality.

Proof. Let ϕ : X −→ EX be a pseudo-isomorphism with kernel M1 and cokernel
M2. We start from the exact sequence

0 X/M1 EX M2 0.

The snake lemma implies that the kernel of the first map f in the induced exact
sequence

X/(M1 + αX) EX/(αEX) M2/(αM2) 0
f

equals the image of the (finite) Λ-module M2[α] under the connecting homomor-
phism. Let M3 ⊆ X be the pre-image of ker(f) under the canonical surjection
X � X/(M1 + αX).

Now we apply the snake lemma again; note that multiplication by ω is injective
on (Λ/(α))r ⊕ E2/(αE2), since E2/(αE2) is a direct sum of modules Λ/(hj) such that
hj divides α; by assumption, the two elements α, ω ∈ Λ are coprime. We obtain an
exact sequence

(E1/(αE1))[ω] (M2/(αM2))[ω] X/(M1 +M3 + (α, ω)X)

EX/((α, ω)EX) M2/((α, ω)M2) 0.

g

(3)
Since M2/(αM2) is finite, the groups (M2/(αM2))[ω] and M2/((α, ω)M2) have

the same cardinality. Moreover, as E1/(αE1) is finite by the definition of E1, we have

| ker(g)| ≤ |(E1/(αE1))[ω]| = |E1/((α, ω)E1)|.

Therefore it follows from the exact sequence (3) that

|(Λ/(α, ω))r| · |E2/((α, ω)E2)| ≤ |X/(M1 +M3 + (α, ω)X)| ≤ |X/((α, ω)X)|.

We prove one final auxiliary

Lemma 3.8. Let X be a finitely generated Λ-module with elementary Λ-module
EX . We fix a pseudo-isomorphism ϕ : X −→ EX with finite kernel M1 and cokernel
M2. Let f1, . . . , fs ∈ Λ.

Then rank(f1,...,fs)(X) < ∞ if and only if rank(f1,...,fs)(EX) < ∞. In fact,

rank(f1,...,fs)(EX) ≤ rank(f1,...,fs)(X) + vp(|M2|)

and

rank(f1,...,fs)(X) ≤ rank(f1,...,fs)(EX) + vp(C
(s)),

where C(s) = |M1| · |M2|s.
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Proof. The homomorphism ϕ induces a map

ϕ̃ : X/((f1, . . . , fs) ·X) −→ EX/((f1, . . . , fs) · EX).

We have a canonical surjection coker(ϕ) � coker(ϕ̃). On the other hand, suppose
that x ∈ ker(ϕ̃), and choose a representative x ∈ x. Then

ϕ(x) =

s∑
i=1

fi · αi

for suitable elements αi ∈ EX . If each αi lies in the image of ϕ, then

x ∈ (f1, . . . , fs) ·X + ker(ϕ).

This shows that | ker(ϕ̃)| ≤ C(s), where C(s) is defined as in the statement of the
lemma.

4. Bounding Iwasawa invariants of Selmer groups. In this section, we
bound arithmetical invariants of Selmer groups (as the corank, the Iwasawa invari-
ants and the multiplicities of certain factors of the characteristic power series of the
Pontryagin dual) with respect to Greenberg’s topology from the Introduction. In
other words, we fix a prime p, a number field K and an abelian variety defined over

K, and we study the variation of the above invariants for X
(K∞)
A as K∞ runs over

the Zp-extensions of K.

Theorem 4.1. Let A be an abelian variety defined over the number field K,
and let K∞ be a Zp-extension of K. Suppose that A has potentially good ordinary
reduction at each prime v ∈ Sp. Then there exists a neighbourhood U = E(K∞, n)
such that

rankΛ(X
(K̃∞)
A ) ≤ rankΛ(X

(K∞)
A )

for every Zp-extension K̃∞ of K contained in U .
In fact, it suffices to choose n large enough such that

pn ≥ λ(X
(K∞)
A ) + 1. (4)

Proof. Write X = X
(K∞)
A , μ = μ(X) and λ = λ(X) for brevity. We choose n ∈ N

large enough such that pn ≥ λ+ 1, as in the statement of the theorem.
Recall that wn = wn(T ) = (T + 1)p

n − 1, and let U := E(K∞, n). For K̃∞ ∈ U

arbitrary and fixed, we write X̃n := X
(K̃n)
A , X̃ := X

(K̃∞)
A , and r̃ := rankΛ(X̃).

Let Ci = C
(K∞)
i , respectively, C̃i = C(K̃∞) (i = 1, 2) be the cardinalities of the

kernels and cokernels of pr
(K∞)
n and pr

(K̃∞)
n , as in Lemma 3.6 (for the fixed number

n), and let C = C(s) be as in Lemma 3.8, with s = 2 and X = X
(K∞)
A .

In what follows, rank will always denote rank(α,wn), where α ∈ Λ is coprime with
wn (we will make a concrete choice below). Then we obtain a chain of inequalities

rank(EX̃)
3.8≤ rank(X̃) + vp(C̃)

3.6≤ rank(X̃n) + vp(C̃1C̃2C̃)

= rank(X
(Kn)
A ) + vp(C̃1C̃2C̃)

3.6≤ rank(X) + vp(C̃1C̃2C̃C2)

3.8≤ rank(EX) + vp(D),

(5)
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where C̃ = |M2| in the notation from Lemma 3.8, applied to X̃ and rank(α,wn),

C(2) is defined as in Lemma 3.8 and D := C̃1C̃2C̃C2C
(2) for brevity. Note that wn

annihilates both X
(Kn)
A and X̃n (the topological generators of Γ = Gal(K∞/K) and

Γ̃ = Gal(K̃∞/K) can be chosen to coincide on K̃n = Kn), i.e.

rank(X
(Kn)
A ) = rank(α)(X

(Kn)
A ) and rank(X̃n) = rank(α)(X̃n).

The integer D depends on the chosen K̃∞ ∈ U .
Now we choose α = pk, where

k > μpn + vp(D). (6)

Since the cardinality of Λ/(pk, wn) is pkp
n

, and as rank(M) ≤ rank(pk)(M) and
rank(M) ≤ rank(wn)(M) for every Λ-module M , provided that all these ranks are
finite, we may conclude that

rank(EX) ≤ rpnk + μpn + kλ,

where r = rankΛ(X). By assumption (6), it follows that the right hand side of the
above chain of inequalities (5) is smaller than rpnk + kλ+ k.

Now we consider the left hand side. Since rank(Λr̃) = r̃pnk, it follows immediately
from the above and the choice of n in (4) that r̃ ≤ r.

Corollary 4.2. Let A be an abelian variety defined over the number field K, and
let K∞/K be a Zp-extension. Suppose that A has potentially good ordinary reduction
at the primes of K above p. Suppose that there exists an integer m ∈ N such that

λ(X
(K̃∞)
A ) is bounded on E(K∞,m). Then there exists some n ≥ m such that

rankΛ(X
(K̃∞)
A ) = rankΛ(X

(K∞)
A )

for every K̃∞ ∈ E(K∞, n).

Proof. Choose C ∈ N such that λ(X
(K̃∞)
A ) ≤ C for every K̃∞ ∈ E(K∞,m), and

let n ≥ m be large enough such that pn ≥ C + 1. Then

rankΛ(X
(K̃∞)
A ) ≤ rankΛ(X

(K∞)
A )

for each K̃∞ ∈ E(K∞, n), by Theorem 4.1. On the other hand, since K̃∞ ∈ E(K∞, n)
if and only if K∞ ∈ E(K̃∞, n), we have in fact equality of Λ-ranks.

Remark 4.3. Note that the usage of (pk, wn)-ranks for fixed wn and variable k
allows us to make the contributions of X and X̃ to our inequalities independent of
the constants Ci, C̃i from the control theorem. In fact, only the contributions of the
Λ-ranks and the λ-invariants of X and X̃ depend on k.

In the next step, we bound μ-invariants. To this purpose, we use the full Control
Theorem in the version of Theorem 3.4. Therefore we will from now on assume that
Property (F) (see Definition 3.3) holds for the pair (K∞, A). Note: in the following
result, the corresponding hypotheses may be weakened as described in Remark 3.5.

Theorem 4.4. Let A be an abelian variety defined over the number field K,
and let K∞ be a Zp-extension of K. We assume that the pair (K∞, A) has property



384 S. KLEINE

(F). Then there exists a neighbourhood U = E(K∞, n) of K∞ such that for every
Zp-extension K̃∞ of K contained in U ,

μ(X
(K̃∞)
A ) ≤ μ(X

(K∞)
A ) if rankΛ(X

(K̃∞)
A ) = rankΛ(X

(K∞)
A ).

Proof. Let m ∈ N be large enough such that the conclusion of Theorem 3.4 holds
for every Zp-extension K̃∞ ∈ E(K∞,m), and fix corresponding constants C1, C2 ∈ N

and an arbitrary K̃∞ ∈ E(K∞,m).
We use the same notation as in the proof of Theorem 4.1, and we choose n ≥ m

large enough such that
(i) n > μ+ 1, and
(ii) pn > nλ+vp(C1C

2
2C), where C = C(2) is as in Lemma 3.8, applied to a pseudo-

isomorphism ϕ : X −→ EX with s = 2.
We choose α = pn, and we write

EX̃ = Λr̃ ⊕ Ẽ1 ⊕ Ẽ2,

where the decomposition is such that multiplication by α is injective on Ẽ1, whereas
Ẽ2 is annihilated by a suitable power of α (as in Lemma 3.7).

Using Lemma 3.7 instead of the first inequality from Lemma 3.8, we deduce,
analogous to inequality (5) in the proof of Theorem 4.1, a chain of inequalities

rank(Ẽ2) + rank(Λr̃) ≤ rank(EX) + vp(C1C
2
2C). (7)

Now suppose that r̃ = r. Then the summand rpnn = rank(Λr) can be subtracted on
both sides of the inequality, and therefore we derive that

rank(Ẽ2) < (μ+ 1)pn, (8)

using the property (ii) of n.
If Ẽ2 contains a summand Λ/(pi) for some i ≥ n, then the rank of Ẽ2 is at least

npn, which contradicts to (8) in view of hypothesis (i). Therefore Ẽ2 is a direct sum
of modules Λ/(pi) with i < n, and rank(Ẽ2) = rank(wn)(Ẽ2) = μ̃pn. Inequality (8)
now implies that μ̃ ≤ μ.

Remark 4.5. Let A and K∞/K be as in Theorem 4.4. In view of Corollary 4.2,
we obtain a stronger result if the λ-invariants are locally bounded in a neighbourhood
E(K∞,m) of K∞. More precisely, if the λ-invariants are bounded on E(K∞,m), then
we can choose a neighbourhood U = E(K∞,m) such that

rankΛ(X
(K̃∞)
A ) = rankΛ(X

(K∞)
A ) and μ(X

(K̃∞)
A ) ≤ μ(X

(K∞)
A )

for each K̃∞ ∈ U .
If moreover the integers C(2) from Lemma 3.8 (corresponding to pseudo-isomor-

phisms ϕ : X̃ −→ EX̃ , K̃∞ ∈ E(K∞,m)) are bounded, then one can find a neighbour-
hood U = E(K∞,m) such that

μ(X
(K̃∞)
A ) = μ(X

(K∞)
A )

for each K̃∞ ∈ U .
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In the following result, we (partially) bound μ-invariants without any assumption
on the Λ-ranks. Let M be any finitely generated Λ-module with elementary Λ-module

E = Λr ⊕
s⊕

j=1

Λ/(pmj )⊕
t⊕

i=1

Λ/(hni
i ).

Then we define

μ(k)(M) :=

t∑
j=1

min(k,mj).

Lemma 4.6. Let A be an abelian variety defined over the number field K, and let
K∞ be a Zp-extension of K. We assume that the pair (K∞, A) has Property (F).

Let k ∈ N. Then there exists a neighbourhood U = E(K∞, n) of K∞ such that
for every Zp-extension K̃∞ of K contained in U ,

μ(k)(X
(K̃∞)
A ) ≤ μ(k)(X

(K∞)
A ) + k · (rankΛ(X(K∞)

A )− rankΛ(X
(K̃∞)
A )).

Proof. Let m be as in the proof of Theorem 4.4, and choose n ≥ m such that

pn > kλ+ vp(C1C
2
2C).

Considering (pk, wn)-ranks, we obtain that

μ(k)(X
(K̃∞)
A )pn + kpnr̃ ≤ kpnr + pnμ(k)(X

(K∞)
A ) + kλ+ vp(C1C

2
2C)

for each K̃∞ ∈ E(K∞, n), as in (7). Therefore

μ(k)(X
(K̃∞)
A )pn ≤ pn(kr − kr̃ + μ(k)(X

(K∞)
A )) + kλ+ vp(C1C

2
2C).

The statement follows from the choice of n.

In [Kle21a], which deals with the rank zero setting, we bounded the Iwasawa

λ-invariants of Zp-extensions K̃∞/K satisfying μ(X
(K̃∞)
A ) = μ(X). It seems, how-

ever, that bounding λ-invariants is far more involved if rankΛ(X) > 0 (see also Theo-
rem 7.7 below). Recall that λ(X) equals the degree of the characteristic power series
FX ∈ Zp[T ]. In the following results, we distinguish between the common factors of
FX and some wn = (T +1)p

n − 1 on the one hand and the divisors f of FX which are
coprime with every wn on the other hand. We start with the second family, proving
first a boundedness result along the lines of Lemma 4.6.

Let f be a distinguished polynomial. For a finitely generated Λ-module M with
elementary Λ-module

E = Λr ⊕
s⊕

j=1

Λ/(fmj )⊕
t⊕

i=1

Λ/(hni
i )

(here all hi shall be coprime with f , and hi = p is possible), we define

f (k)(M) :=

s∑
j=1

min(k,mj).
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Theorem 4.7. Let A be an abelian variety defined over the number field K, and
let K∞ be a Zp-extension of K. We assume that the pair (K∞, A) satisfies Property
(F).

Let k ∈ N, and let f ∈ Λ be a distinguished polynomial which is coprime with
each wn, n ∈ N. Then there exists a neighbourhood U = E(K∞, n) of K∞ such that
for every Zp-extension K̃∞ of K contained in U ,

f (k)(X
(K̃∞)
A ) ≤ f (k)(X

(K∞)
A ) + k · (rankΛ(X(K∞)

A )− rankΛ(X
(K̃∞)
A )).

Proof. Let Rn = vp(|Λ/(f, wn)|), n ∈ N (this corresponds to pn = vp(|Λ/(p, wn)|)
in the proof of Lemma 4.6). Note that Rn → ∞, n → ∞, and that

Rn =
∑

ζ:ζpn=1

vp(f(ζ − 1)),

where ζ runs over all pn-th roots of unity in some fixed algebraic closure of Qp (we
normalise vp such that vp(p) = 1). In particular,

vp(|Λ/(f i, wn)|) = i ·Rn

for all i, n ∈ N.
Now we choose m as in Lemma 4.6, and we let n ≥ m be large enough such that

Rn > μ(X) deg(fk) + vp(|Λ/(f, FX

fvf (FX)
)|) + vp(C1C

2
2C),

where vf (FX) denotes the largest integer v such that fv divides FX . Using inequal-
ity (7) for rank(fk,wn), we may conclude that

Rn · f (k)(X
(K̃∞)
A ) + kr̃Rn ≤ krRn + rank(fk,wn)(E

◦
X) + vp(C1C

2
2C);

the lemma follows by choosing n sufficiently large.

Now we turn to the investigation of common divisors of FX with some wn, n ∈ N,
using the notation f (k)(X) from Theorem 4.7.

This can be done even if no control theorem 3.4 is known for A overK∞. Therefore
the following theorem holds for any abelian variety A with potentially good ordinary
reduction at p and any Zp-extension K∞ of K, i.e. we do not have to assume that
the pair (K∞, A) satisfies Property (F).

On the other hand, we can handle only the case k = 1.

Theorem 4.8. Let A be an abelian variety defined over K, and let K∞ be a
Zp-extension of K. Suppose that A has potentially good ordinary reduction at each
prime v ∈ Sp. Let n ∈ N be arbitrary, and let U = E(K∞, n). For each non-trivial
divisor f of wn, we have

f (1)(X
(K̃∞)
A ) = f (1)(X

(K∞)
A ) + rankΛ(X

(K∞)
A )− rankΛ(X

(K̃∞)
A )

for every Zp-extension K̃∞ ∈ U of K. In particular, f (1)(X
(K̃∞)
A ) is bounded on U ,

and

f (1)(X
(K̃∞)
A ) = f (1)(X

(K∞)
A )
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if in addition rankΛ(X
(K̃∞)
A ) = rankΛ(X

(K∞)
A ).

We stress that we do not assume that μ(X
(K̃∞)
A ) = μ(X

(K∞)
A ) in this result.

Proof. We fix f , n and K̃∞ ∈ E(K∞, n), and we write X = X
(K∞)
A and

X̃ = X
(K̃∞)
A for brevity. Let r = rankΛ(X) and r̃ = rankΛ(X̃). For a Zp-module

M , we write rankZp(M) := dimQp(M ⊗Zp Qp), whenever this is finite.

Since the kernels and cokernels of pr
(K∞)
n and pr

(K̃∞)
n are finite by Theorem 3.1,

f (1)(X
(K̃∞)
A ) deg(f) = rankZp(X̃/fX̃)− r̃ deg(f)

3.6
= rankZp

(X̃n/fX̃n)− r̃ deg(f)

= rankZp(X
(Kn)
A /fX

(Kn)
A )− r̃ deg(f)

= f (1)(X
(K∞)
A ) deg(f) + (r − r̃) deg(f).

Here we note that Lemma 3.6 can indeed be applied since f divides wn and therefore
rank(f,wn)(M) = rank(f)(M) for every Λ-module M .

Corollary 4.9. In the situation of Theorem 4.8, if a divisor f of wn is relatively
prime to F

X
(K∞)
A

, then it is also coprime with F
X

(K̃∞)
A

for each K̃∞ ∈ E(K∞, n)

satisfying rankΛ(X
(K̃∞)
A ) = rankΛ(X

(K∞)
A ).

Corollary 4.10. Let A be an abelian variety defined over K, and let K∞/K
be a Zp-extension. We assume that A has potentially good ordinary reduction at p.

If rankΛ(X
(K∞)
A ) = 0, then there exists a neighbourhood U = E(K∞,m) such that

T | F
X

(K∞)
A

if and only if T | F
X

(K̃∞)
A

for all K̃∞ ∈ U .

Proof. By Theorem 4.1, we can choose an integer m ∈ N such that

rankΛ(X
(K̃∞)
A ) = 0 for every K̃∞ ∈ E(K∞,m). Now apply Corollary 4.9.

We note that the assertion in this special case also follows from Lemma 3.2 because

(X
(K∞)
A )Γ is finite if and only if rankΛ(X

(K∞)
A ) = 0 and T � F

X
(K∞)
A

.

Remark 4.11. The analogous statement for classical Iwasawa modules, i.e. pro-
jective limits of ideal class groups in Zp-extensions (as defined in Section 2), is not

true in this generality. In fact, the corresponding Iwasawa modules X
(K∞)
A are always

Λ-torsion. However, if T � F
X

(K∞)
A

for some Zp-extension K∞/K, then it is neverthe-

less possible that T | F
X

(K̃∞)
A

for Zp-extensions K̃∞ of K which are arbitrarily close

to K∞ with respect to Greenberg’s topology.
The following example is from [Kle19, Remark 4.8]. Let K be imaginary

quadratic. We suppose that p splits in K/Q and that p does not divide the class
number of K. It is well-known that there exist two unique Zp-extensions of K in
which only one of the two primes of K above p ramifies; our hypotheses imply that
the classical Iwasawa modules are trivial for these two Zp-extensions of K. On the
other hand, in all but these two Zp-extensions of K, both primes above p are ramified.
Since p is totally split in K/Q, it follows from class field theory that the character-

istic power series F
X

(K∞)
A

is divisible by T (i.e. X
(K∞)
A /TX

(K∞)
A is infinite) if K∞ is

different from the two exceptional Zp-extensions of K mentioned above.
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The reason behind this different behaviour of the classical Iwasawa modules is
the lack of a control theorem: in the above example, the kernel of the natural map

(X(K∞))Γn
−→ X(Kn)

has infinite order (here Γn = Gal(K∞/Kn), as in Theorem 3.1).

We note that common factors of F
X

(K∞)
A

with some wn arise naturally if the

Mordell-Weil groups A(Kn) of the layers Kn of K∞ have bounded ranks. As an illus-
tration, we would like to mention the following interesting example given by Wüthrich.

Example 4.12. Let p = 3, and A = E denote the elliptic curve defined by the
equation

E : y2 = x3 + x2 − 18x+ 25.

Then A has good ordinary reduction at p, and Wüthrich has shown that the charac-

teristic power series of X = X
(Q∞)
A is given by w3 ·w9 (see [Wut07, Proposition 11.1]).

We recall that for any number field F , we have an exact sequence

0 A(F )⊗Qp/Zp SelA(F ) XA(F ) 0, (9)

where XA(F ) denotes the so-called Tate-Shafarevich group of A over F .
If K∞ =

⋃
n Kn denotes the Zp-extension of a number field K, then we define

XA(K∞) := lim−→XA(Kn),

where the direct limit is induced by the restriction maps. Note that the Pontryagin

dual XA(K∞)∨ is a finitely generated Λ-submodule of X
(K∞)
A .

Remark 4.13. If rankΛ(X
(K∞)
A ) = 0, then the characteristic power series F

X
(K∞)
A

divides wn · FXA(K∞)∨ for some n ∈ N.

Indeed, since rankΛ(X
(K∞)
A ) = 0, the exact sequences (9) imply that

rankZ(A(Kn)) ≤ λ(X
(K∞)
A )

for every n ∈ N (see the proof of [Gre01, Corollary 4.9]). In particular, we can
choose n ∈ N such that rankZ(A(K∞)) = rankZ(A(Kn)); therefore A(K∞)⊗Qp/Zp

is annihilated by wn. The sequence (9) remains exact if we take direct limits and then
Pontryagin duals, therefore obtaining an exact sequence

0 XA(K∞)∨ X
(K∞)
A (A(K∞)⊗Qp/Zp)

∨ 0

of Λ-modules. Since (A(K∞)⊗Qp/Zp)
∨ ∼= Z

rankZ(A(Kn))
p is annihilated by wn, it

follows that

F
X

(K∞)
A

= FXA(K∞)∨ · f

for some divisor f of wn.
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In other words, the Mordell-Weil groups typically contribute factors of some wn

to F
X

(K∞)
A

; divisors which are coprime with the wn should stem from the Tate-

Shafarevich groups.

Example 4.14. The power series of XA(K∞)∨ can be non-trivial. For example,
let A = E be the elliptic curve defined over Q by the equation

E : y2 + xy = x3 − 6511x− 203353.

Then E has good ordinary reduction at p = 7, and rankZ(E(Qn)) = 0 for each layer
Qn of the cyclotomic Z7-extension Qc

∞ of Q. Therefore F
X

(K∞)
A

= FXE(K∞)∨ . Now

vp(|XE(Qn)|) = pn + 2n− 1

for every n ∈ N (see [Wut14, p. 13, Example 2]). In view of [Kle21a, Remark 5.4],
this means that λ(XA(K∞)∨) = 2.

We conclude the current section by mentioning some known results concerning
the coranks of Selmer groups, focusing on the good ordinary setting.

Remark 4.15. Mazur (see [Maz72, p. 104]) conjectured the following: if K∞ =
Kc

∞ denotes the cyclotomic Zp-extension of K and if A has good ordinary reduction

at the primes v ∈ Sp, then X
(K∞)
A is Λ-torsion.

If this holds true, then Theorem 4.1 implies that there exists some n ∈ N such

that rankΛ(X
(K̃∞)
A ) = 0 for every Zp-extension K̃∞ of K which coincides with the

cyclotomic Zp-extension at least up to the n-th layer. In particular, the statements of
Theorems 4.4, 4.7 and 4.8 simplify. Moreover, one can bound λ-invariants via [Kle21a,
Theorem 4.11] in this case.

It follows from deep results of Kato and Rohrlich (see [Kat04] and [Roh84]) that
Mazur’s Conjecture holds true if (under the hypotheses of the conjecture) K is abelian
over Q and A = E denotes an elliptic curve which is defined over Q.

Moreover, if (in addition to the hypotheses of the conjecture) A = E denotes an
elliptic curve defined over Q, with complex multiplication by the ring of integers of
an imaginary quadratic number field K, and if the prime p �= 2 splits in K/Q, then

X
(Kc

∞)
A is Λ-torsion by results of Rubin (see [Rub88, Theorem 4.4]).

On the other hand, it is known that X
(Ka

∞)
A can be non-torsion for the so-called

anticyclotomic Zp-extension Ka
∞ of an imaginary quadratic number field K; in fact,

if E is an elliptic curve defined over Q with good ordinary reduction at p, and if the
primes dividing the conductor of E are split in K/Q (this is the so-called Heegner

hypothesis), then it is known that rankΛ(X
(Ka

∞)
A ) > 0 by [Ber95, Theorem A] and

[Cor02] (here a set of primes p of density zero has to be excluded from consideraton,
see Corollary 1.2 and [Ber95, Remark on p. 166]). Note that in this situation the
Hasse-Weil L-series L(E/K, s) has an odd order zero at s = 1, and that E does not
have CM by the ring of integers OK of K.

Suppose that A has good ordinary reduction at the primes v ∈ Sp, p �= 2, and
let K∞/K be a Zp-extension such that each prime v ∈ Sp ramifies in K∞ and such
that no prime v ∈ Sbr splits completely in K∞. Under these hypotheses, which are
for example satisfied for the cyclotomic Zp-extension of any number field K, Perrin-
Riou (see [PR92]) constructed a certain p-adic height pairing on Selmer groups. If this

pairing is non-degenerate, then X
(K∞)
A is Λ-torsion (see also related work by Schneider

in [Sch85]).
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In the previous remark, we focused on the good ordinary situation. On the other
hand, if A has good and supersingular reduction at the primes of Sp, then the Λ-

module X
(K∞)
A usually is non-torsion. We will study this situation in more detail in

Section 6.

5. Fine Selmer groups. In this section, we prove results for fine Selmer groups
which are analogous to Theorem 3.4 and Lemma 3.2. These results can be used in
order to obtain bounds on Iwasawa invariants of (Pontryagin duals of) fine Selmer
groups, as in Section 4. Recall the definition of fine Selmer groups from Section 2, and
the notation introduced at the beginning of Section 3. For simplicity, we will assume
throughout this section that p �= 2. Many of the following results are valid without
any restriction on the reduction type of A at p.

Theorem 5.1. Let A be an abelian variety defined over a number field K, and
let K∞/K be a Zp-extension, p an odd prime.
(a) Then the kernels and cokernels of the canonical projection maps

pr
(K∞)
n,0 : (Y

(K∞)
A )Γn

−→ Y
(Kn)
A

are finite and of bounded order as n → ∞.
(b) Suppose that no prime v ∈ S := Sp ∪ Sbr is totally decomposed in K∞/K, and

that A(K∞,v)[p
∞] is finite for every v ∈ S, where K∞,v =

⋃
n Kn,v denotes the

completion at some prime above v.
Then there exist constants m,C1, C2 ∈ N such that

| ker(pr(K̃∞)
n,0 )| ≤ C1 and |coker(pr(K̃∞)

n,0 )| ≤ C2

for each n ∈ N and for every K̃∞ ∈ E(K∞,m).
(c) Suppose that the pair (K∞, A) satisfies Property (F) in the sense of Definition 3.3.

Then the conclusion of (b) is valid.

Remark 5.2. In (c), one can allow primes v ∈ Sbr which are completely split in
K∞/K by restricting to a subset of E(K∞,m), as in Remark 3.5.

Proof of Theorem 5.1. For (a), see [Lim20, Theorem 3.3]. In order to prove (b),
we let

B = A(K∞)[p∞],

and we similarly define B(K̃∞) for each Zp-extension K̃∞ of K. It follows from (the
proof of) [Lim20, Theorem 3.3] that

|coker(pr(K̃∞)
n,0 )| ≤ |H1(Γn, B

(K̃∞))|

for each K̃∞ and every n ∈ N. Note that B(K̃∞) might be infinite. We have exact
sequences

0 B
(K̃∞)
div B(K̃∞) C(K̃∞) 0,

where C(K̃∞) is finite and B
(K̃∞)
div is divisible. Taking Pontryagin duals, we obtain

exact sequences

0 C̃ Ũ Ṽ 0, (10)
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where C̃ = (C(K̃∞))∨, etc.
Note that Ṽ is Zp-free. Since the kernel of multiplication by wn on B(K̃∞) is

equal to A(K̃n)[p
∞] and therefore is finite, it follows that the cokernel (and therefore,

by a dimension argument, also the kernel) of the induced map on Ṽ is finite; as Ṽ is
Zp-free, we may conclude that actually Ṽ [wn] = {0}.

Therefore the snake lemma implies that we have injections

0 C̃Γn
ŨΓn

(11)

for each n ∈ N. Now choose m ∈ N such that

m ≥ vp(|B|) + 1,

and suppose that K̃∞ ∈ E(K∞,m). Since ŨΓn
is isomorphic to the Pontryagin dual

of (B(K̃∞))Γn , we may conclude that

|H1(Γn, C̃)|
(11)

≤ |ŨΓn | = |(B(K̃∞))Γn | = |BΓn | ≤ |B|
for every n ≤ m. By the choice of m, this means that there exists n < m such that

|H1(Γn, C̃)| = |H1(Γn+1, C̃)|;
Nakayama’s Lemma implies that

|C̃| = |H1(Γn, C̃)| ≤ |B|.
We have thus shown that |C(K̃∞)| ≤ |B| for every K̃∞ ∈ E(K∞,m) (see also the end
of the proof of [Kle21a, Theorem 4.5]). Now

|H1(Γn, B
(K̃∞))| = |(B(K̃∞))Γn

| = |ŨΓn | = |C̃Γn | ≤ |C̃|
by the exact sequence (10), since we have already seen that Ṽ Γn = Ṽ [wn] = {0}. This
proves the uniform boundedness of |coker(pr(K̃∞)

n,0 )| on E(K∞,m).
Now suppose that m is moreover large enough to ensure that each v ∈ S is non-

split in Km/Km−1. If K̃∞ ∈ E(K∞,m) is arbitrary, then this means that no prime
v ∈ S splits completely in K̃∞/K; in fact the number of primes of K̃∞ above S is
constant on E(K∞,m).

Following the proof of [Lim20, Theorem 3.3], the order of ker(pr
(K̃∞)
n,0 ) can be

bounded by ∑
vn∈S(Kn)

|H1(Γvn , A(K̃∞,vn
)[p∞])|,

where Γvn = Gal(K̃∞,vn
/K̃n,vn) (here K̃n,vn denotes the completion at vn, and K̃∞,vn

denotes the union of the completions of the finite subextensions K̃l ⊆ K̃∞, l ≥ n, at
some prime dividing vn).

For any vn ∈ S(Kn), the same reasoning as in the first part of the proof,
applied to the Zp-extension K̃∞,vn/K̃n,vn , shows that the local Tamagawa factors

|H1(Γvn , A(K̃∞,vn
)[p∞])| (see also [CS10, Lemma 3.4]) are bounded for n ≥ m and

K̃∞ ∈ E(K∞,m) (here we apply the hypothesis that A(K∞,v)[p
∞] is finite for each

v ∈ S).
This concludes the proof of (b). Finally, (c) follows from [Kle21a, Theorem 5.13].
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Remark 5.3.

(1) Suppose that K∞ is the cyclotomic Zp-extension of K, and that A has good
reduction at some v ∈ Sp. Then the finiteness of A(K∞)[p∞] and A(K∞,v)[p

∞]
follows from a result of Imai (see [Ima75]).

(2) The potential finiteness of A(L∞,v)[p
∞] for infinite extensions L∞,v of Qp has

also been studied in other settings; see for example [Oze09] for a result in the
potentially good ordinary setting.

(3) If A has potentially good ordinary reduction at the primes v ∈ Sp, and if each
v ∈ Sp ramifies in a Zp-extension K∞ of K, then A(K∞)[p∞] is finite by [Gre03,
Proposition 3.2(ii)].

(4) If A has good supersingular reduction at v | p and p does not ramify in K/Q,
then A(K∞,v)[p

∞] is actually trivial by [Maz72, Lemma 5.11] (see also [Kle21a,
Remark 5.12]).

Using the same approach as in Section 4, we can derive from Theorem 5.1 the
following results concerning the ranks and Iwasawa invariants of fine Selmer groups.
In statement (c) below, we make use of the notation f (k) from Theorem 4.7.

Theorem 5.4. Let p be odd, let K∞/K be a Zp-extension, and let A be an
abelian variety defined over K.
(a) Then there exists a neighbourhood U = E(K∞,m) such that

rankΛ(Y
(K̃∞)
A ) ≤ rankΛ(Y

(K∞)
A )

for each K̃∞ ∈ U .
In fact, it suffices to choose m large enough to ensure that

pm ≥ λ(Y
(K∞)
A ) + 1.

If λ(Y
(K̃∞)
A ) is bounded on U , then there exists some n ≥ m such that

rankΛ(Y
(K̃∞)
A ) = rankΛ(Y

(K∞)
A )

for every K̃∞ ∈ E(K∞, n).
(b) Suppose that the hypotheses of either Theorem 5.1,(b) or Theorem 5.1,(c) are

satisfied. Then there exists a neighbourhood U = E(K∞, n) of K∞ such that

μ(Y
(K̃∞)
A ) ≤ μ(Y

(K∞)
A )

for each K̃∞ ∈ U satisfying rankΛ(Y
(K̃∞)
A ) = rankΛ(Y

(K∞)
A ).

(c) Suppose that the hypotheses of either Theorem 5.1,(b) or Theorem 5.1,(c) are
satisfied, and let f ∈ Λ be a distinguished polynomial which is coprime with each
wn, n ∈ N. Then there exists a neighbourhood U = E(K∞, n) such that

f (k)(Y
(K̃∞)
A ) ≤ f (k)(Y

(K∞)
A ) + k · (rankΛ(Y (K∞)

A )− rankΛ(Y
(Ỹ∞)
A )).

for each K̃∞ ∈ U .
(d) Let n ∈ N be arbitrary, and let U = E(K∞, n). Let f be a non-trivial divisor of

wn, and let K̃∞ ∈ U . Then

f (1)(Y
(K̃∞)
A ) = f (1)(Y

(K∞)
A ) + rankΛ(Y

(K∞)
A )− rankΛ(Y

(Ỹ∞)
A ).
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In particular, if rankΛ(Y
(K̃∞)
A ) = rankΛ(Y

(K∞)
A ), then

f (1)(Y
(K̃∞)
A ) = f (1)(Y

(K∞)
A ).

(e) Under the hypotheses of (b), suppose that rankΛ(Y
(K∞)
A ) = 0 and μ(Y

(K∞)
A ) = 0.

Then there exists a neighbourhood U = E(K∞, n) such that

rankΛ(Y
(K̃∞)
A ) = 0, μ(Y

(K̃∞)
A ) = 0 and λ(Y

(K̃∞)
A ) ≤ λ(Y

(K∞)
A )

for every K̃∞ ∈ U .

Proof. For (a), (b), (c) and (d), mimic the proofs of Theorem 4.1, Corollary 4.2
and Theorems 4.4, 4.7 and 4.8. The first part of (e) is a special case of (a) and (b);
for the statement concerning the λ-invariants, one can use the arguments from the
proof of [Kle21a, Theorem 4.11].

Let us discuss situations where Y
(K∞)
A is Λ-torsion (cf. also Remark 4.15).

Remark 5.5. Since Y
(K∞)
A is a quotient of X

(K∞)
A by definition (see also the

exact sequence (2) at the end of Section 2), Y
(K∞)
A is conjectured to be Λ-torsion if

K∞ = Kc
∞ denotes the cyclotomic Zp-extension of K and if A has good ordinary

reduction at the primes v ∈ Sp; see Remark 4.15 for a list of situations where this
conjecture is known to be true.

If A is an abelian variety, p �= 2 and S = Sp ∪ Sbr (more generally, if S is a finite

set of places of K containing Sp and Sbr), then Y
(K∞)
A is Λ-torsion if and only if

H2(Gal(MS(K)/K∞), A[p∞]) = 0 (12)

(see [Lim17, Lemma 7.1]). Here MS(K) denotes the maximal algebraic pro-p-
extension of K which is unramified outside of S, as in Section 2. The condition (12) is
called the weak Leopoldt conjecture for A over K∞. It is conjectured that (12) is true
for the cyclotomic Zp-extension K∞ = Kc

∞, p �= 2, and any abelian variety A defined

over K (see [Gre89, Conjecture 3]). In particular, whereas X
(Kc

∞)
A is conjectured to be

Λ-torsion only if A has good ordinary reduction at the primes of K above p, Y
(Kc

∞)
A

should be a Λ-torsion module independently of the reduction type of A at p. More re-
cently, the validity of a weak Leopoldt conjecture (12) and its relation to the Λ-ranks

of X
(K∞)
A and Y

(K∞)
A has been studied more generally for arbitrary Zp-extensions,

see also Section 6 below.
In addition to the cases from Remark 4.15, Y

(K∞)
A is known to be Λ-torsion if

A = E is an elliptic curve defined over Q having good supersingular reduction at p
and K/Q is abelian, by the deep work of Kato (see [Kat04]); the good supersingular
case of a CM elliptic curve over an imaginary quadratic number field K has also been
studied by McConnell (see [McC96]).

Moreover, it has been shown by Bertolini (see [Ber01, Theorem 5.4] and [Cor02])
that the weak Leopoldt conjecture holds for elliptic curves A = E over the anticyclo-
tomic Zp-extension Ka

∞ of K, provided that E is defined over Q, has good ordinary
reduction at p and that K is an imaginary quadratic field satisfying the Heegner hy-
pothesis (cf. also Remark 4.15); in fact Bertolini has to exclude, for every A = E and
K, a set of primes p of density 0 from consideration (see [Ber01, Assumption B]).

For elliptic curves, Wüthrich defined in [Wut07] a p-adic height pairing on the

fine Selmer group SelA,0(K∞) = (Y
(K∞)
A )∨ over a Zp-extension K∞/K, and he proved
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that Y
(K∞)
A is Λ-torsion if this pairing is non-degenerate (see [Wut07, Theorem 6.1]).

This result does not assume A = E to have good reduction at the primes above p.

We can deduce from Theorem 5.4 that the validity of the weak Leopoldt conjecture
(12) for some Zp-extension is an ‘open condition’ with regard to Greenberg’s topology
(defined in the Introduction). More precisely, we have the following

Corollary 5.6. Let A be an abelian variety defined over the number field K,
and let K∞/K be a Zp-extension (recall that p is odd throughout this section). If the
weak Leopoldt conjecture (12) holds for A over K∞, then there exists a natural number
m such that (12) holds over every Zp-extension K̃∞ of K contained in E(K∞,m).

Proof. We have rankΛ(Y
(K∞)
A ) = 0 by [Lim17, Lemma 7.1]. Theorem 5.4(a) im-

plies that Y
(K̃∞)
A is Λ-torsion for every K̃∞ which is contained in some neighbourhood

E(K∞,m) of K∞.

We note that a similar property is also known for the classical weak Leopoldt
conjecture of ideal class groups: the subset of E(K) of Zp-extensions of K for which
the weak Leopoldt conjecture is true is an open set (see [Bab77, Theorem 3]). In fact
this subset is dense with respect to Greenberg’s topology by [Bab82, Corollary 3]. In
Section 7, we will prove that a similar result is true for the weak Leopoldt conjecture
for abelian varieties: the corresponding subset of E(K) is dense provided that the
conjecture is known over the cyclotomic Zp-extension of K (see Corollary 7.13).

6. Coranks of Selmer groups and the weak Leopoldt conjecture. As we
have already noticed in Remark 5.5, the weak Leopoldt conjecture for A over a Zp-

extension K∞/K holds if and only if Y
(K∞)
A is Λ-torsion. In this section, we study

the relation of this conjecture to the Λ-rank of X
(K∞)
A .

Suppose first that A = E is an elliptic curve defined over Q, with good supersin-

gular reduction at each v ∈ Sp, p �= 2. Then the Pontryagin dual X
(K∞)
A of the Selmer

group, K∞/K any Zp-extension, is known to be non-torsion. In fact, it follows from
[IP06, Proposition 5.3] that

rankΛ(X
(K∞)
A ) ≥ [K : Q] (13)

for every Zp-extension K∞/K. Moreover, if the weak Leopoldt conjecture (12) holds

for A = E over K∞, then rankΛ(X
(K∞)
A ) = [K : Q] (see [IP06, Proposition 6.1]).

For general abelian varieties, M. F. Lim generalised the above results and proved
the following

Theorem 6.1. Let p �= 2, and let A be a g-dimensional abelian variety defined
over a number field K which has good supersingular reduction at each v ∈ Sp. Let
K∞/K be a Zp-extension.

Then the weak Leopoldt conjecture (12) for A over K∞ is true if and only if

rankΛ(X
(K∞)
A ) = g · [K : Q].

Proof. See [Lim22, Theorem 2.2].

In particular, if A has good supersingular reduction at each v ∈ Sp, then the Λ-
corank of the Selmer groups over any Zp-extension of K should, as long as the weak
Leopoldt conjecture holds, be constant. The analogous fact in the good ordinary
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setting is not true, as already the coranks over the cyclotomic and anticyclotomic Zp-
extensions of an imaginary quadratic base field K can differ (see also Remark 4.15).

In fact, the inequality (13) is also valid in a more general setting:

Lemma 6.2. Let p �= 2, let A be an abelian variety of dimension g which is
defined over a number field K, and let K∞/K be a Zp-extension. We assume that
each v ∈ Sp is totally ramified in K∞ and that A has good reduction at every v ∈ Sp.
Then

rankΛ(X
(K∞)
A ) ≥ g ·

∑
v∈Ss

p

[Kv : Qp]− g ·
∑

v∈Sp\Ss
p

[Kv : Qp],

where Ss
p ⊆ Sp shall denote the subset of primes v of K above p at which A has good

supersingular reduction.

In particular, if Sp = Ss
p, then rankΛ(X

(K∞)
A ) ≥ g · [K : Q].

Proof. We can use the same idea as in the proof of [IP06, Proposition 5.3]. Let
S = Sp ∪ Sbr, and let MS(K) denote the maximal algebraic pro-p-extension of K
unramified outside of S, as in Section 2. First, it follows from results of Schneider
(see [Sch85, §3, Lemma 2] and [Sch87, Proposition on p. 596]) that

rankΛ(H
1(Gal(MS(K)/K∞), A[p∞])∨)

is greater than or equal to∑
v∈Sp

g · [Kv : Qp]−
∑
v∈Sp

rankΛ(H
1(K∞,v, A)[p

∞]∨)

and that

rankΛ(H
1(K∞,v, A)[p

∞]∨) = rv · [Kv : Qp]

for each v ∈ Sp, where rv denotes the p-rank of Ã(kv)[p
∞] (here Ã shall be the

reduction of A at v and kv denotes the residue field of the completion Kv). Note that
the set Σ used by Schneider corresponds to the set of all primes of K which ramify
in K∞, and therefore Σ = Sp by assumption.

Since A has good reduction at every v ∈ Sp, it follows that rv = 0 if v ∈ Ss
p, and

rv = g otherwise (see also [Lim22, Lemma 2.3]). Therefore

rankΛ(H
1(Gal(MS(K)/K∞), A[p∞])∨) ≥

∑
v∈Sp\Ss

p

g · [Kv : Qp].

Moreover, it follows from the (S-variant of the) definition of the Selmer group (see
Section 2) by taking Pontryagin duals that we have an exact sequence

∏
v∈S(K∞)

H1(K∞,v, A)[p
∞]∨ H1(Gal(MS(K)/K∞), A[p∞])∨ X

(K∞)
A .

Note that [Lim22, Lemma 2.3] implies that
∏

v∈S(K∞),v�p H
1(K∞,v, A)[p

∞] is Λ-
cotorsion; this even holds if some v ∈ Sbr is completely split in K∞. The lemma
follows because rankΛ(H

1(K∞,v, A)[p
∞]∨) = 0 for each v ∈ Ss

p.

Remark 6.3. Let A be an abelian variety defined over K, and let K∞/K be a
Zp-extension. We assume that A has good supersingular reduction at each v ∈ Sp,
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and that each v ∈ Sp is totally ramified in K∞. Suppose that the weak Leopoldt
conjecture (12) holds for A over K∞. In view of Theorem 6.1, this means that

rankΛ(X
(K∞)
A ) = g · [K : Q],

where g denotes the dimension of A. In fact, it follows from Corollary 5.6 and Theo-
rem 6.1 that

rankΛ(X
(K̃∞)
A ) = g · [K : Q]

for all K̃∞ ∈ E(K∞,m), provided that m is sufficiently large.

This simplifies our results from Section 4: for example, the following corollary
follows from Theorem 4.8.

Corollary 6.4. Let A, K∞/K and E(K∞,m) be as in Remark 6.3.

f (1)(X
(K̃∞)
A ) = f (1)(X

(K∞)
A )

for each non-trivial divisor f of wn and every K̃∞ ∈ E(K∞,m).

7. Proofs of our main boundedness results. Fix a number field K and
a prime p. In this final section we study the (absolute) boundedness of Iwasawa
invariants of Selmer groups on the set E(K) of Zp-extensions of K. Sometimes we fix
a suitable multiple Zp-extension L∞ of K and consider only Zp-extensions K∞ of K
contained in L∞; we write E⊆L∞(K) for the set of these Zp-extensions of K.

As mentioned in the Introduction, it has been shown by Greenberg that the
set E(K) is compact with respect to the topology defined in the Introduction (see
[Gre73, Section 3]); the same proof also implies that the sets E⊆L∞(K) are compact.
Therefore one possible approach for proving the global boundedness of an Iwasawa
invariant could be to prove its local boundedness (in the sense of Section 4) near every
K∞ ∈ E(K). However, as we will see soon (see Section 7.2), this approach seems not
feasible in practice.

7.1. Bounding Λ-ranks. We start with a result bounding the Λ-ranks ofX
(K∞)
A

and Y
(K∞)
A for K∞ ∈ E(K).

Lemma 7.1. Let A be an abelian variety defined over the number field K, and let
p �= 2. Then there exists a constant C1 ∈ N such that

rankΛ(Y
(K∞)
A ) ≤ C1

for every K∞ ∈ E(K). If A has potentially good ordinary reduction at each prime
v ∈ Sp, then there exists a constant C2 ∈ N such that

rankΛ(X
(K∞)
A ) ≤ C2

for every K∞ ∈ E(K).

Proof. Let K∞ be an arbitrary Zp-extension of K. In view of Lemma 3.2 and
Theorem 5.1(a), the canonical maps

pr
(K∞)
0 : (X

(K∞)
A )Γ −→ X

(K∞)
0 = SelA(K)∨,
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Γ = Gal(K∞/K), and

pr
(K∞)
0,0 : (Y

(K∞)
A )Γ −→ Y

(K∞)
0 = SelA,0(K)∨

have finite kernels and cokernels. Since SelA(K)∨ and SelA,0(K)∨ are finitely gener-
ated Zp-modules, it follows that

rankΛ(X
(K∞)
A ) ≤ rankZp

(X
(K∞)
A /(T ·X(K∞)

A )) = rankZp
(SelA(K)∨)

and similarly

rankΛ(Y
(K∞)
A ) ≤ rankZp(SelA,0(K)∨).

Of course we also have rankΛ(Y
(K∞)
A ) ≤ rankΛ(X

(K∞)
A ) for all K∞ ∈ E(K).

7.2. Bounding μ-invariants. Now we turn to the μ-invariants. Let A be an
abelian variety defined over K. If the (fine) Selmer groups are Λ-cotorsion for every
Zp-extension of K, then we can bound μ-invariants by using the results from [Kle21a],
at least in the good ordinary setting. However, without restrictions on the Λ-coranks
the task of bounding μ-invariants is quite delicate.

Let L∞ be a Z2
p-extension of K. If we assume that A has good reduction at each

v ∈ Sp, then Sbr will contain only primes v which do not divide p and therefore must
be infinitely split in L∞/K. In other words, for every v ∈ Sbr there exists a Zp-
extension K∞ ⊆ L∞ of K in which v is totally split. This means that our results on
the local boundedness of μ-invariants (i.e. Theorems 4.4 and 5.4,(b) and Lemma 4.6)
can not be applied to K∞.

We can nevertheless (partially) bound the μ-invariants of the Y
(K∞)
A on E(K)

because the μ-invariants of the fine Selmer groups turn out to be related to the classical
Iwasawa μ-invariants of projective limits of ideal class groups in Zp-extensions. Such
a connection has been obtained first by Coates and Sujatha in the following form (see
[CS05, Theorem 3.4]).

Theorem 7.2 (Coates, Sujatha). Let E be an elliptic curve defined over K, let
p �= 2, and let K∞ = Kc

∞ be the cyclotomic Zp-extension of K. If E[p] ⊆ E(K), then

μ(Y
(K∞)
A ) = 0 if and only if the classical μ-invariant μ(K∞/K) vanishes.

More generally, we can derive from results of Lim and Murty the following result.

Let μ(1)(Y
(K∞/K)
A ) be defined as in Lemma 4.6, and let μ(1)(K∞/K) denote the

number of summands Λ/(pmj ), mj ∈ N, in the elementary Λ-module attached to the
classical Iwasawa module X(K∞) = lim←−n

X(Kn) of ideal class groups (see Section 2).

Theorem 7.3. Let A be a d-dimensional abelian variety defined over a number
field K, and let p �= 2. We assume that A[p] ⊆ A(K). Let K∞/K be a Zp-extension
such that no prime v ∈ Sp ∪ Sbr splits completely in K∞. Then

μ(1)(Y
(K∞)
A ) + rankΛ(Y

(K∞)
A ) = 2d · μ(1)(K∞/K).

More generally, if K∞/K is any Zp-extension, then

|μ(1)(Y
(K∞)
A ) + rankΛ(Y

(K∞)
A )− 2d · μ(1)(K∞/K)| ≤ 6d|Ssplit(K∞/K)|,

where Ssplit(K∞/K) ⊆ Sp ∪ Sbr(A) denotes the subset of primes of bad reduction or
above p which split completely in K∞/K.
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Proof. It follows from (the proof of) [LKM16, Theorem 5.1] that

|rankp(Y (Kn)
A )− 2d · rankp(X(Kn))| ≤ 6d · |S(Kn)|+ 4d,

where S(Kn) denotes the set of primes of Kn dividing some v ∈ Sp ∪ Sbr. If no such
prime splits completely in K∞/K, then |S(Kn)| stays bounded as n → ∞. On the
other hand, if v ∈ Sp∪Sbr is completely split, then the number of primes of Kn above
v equals pn for every n ∈ N.

Now

||Y (K∞)
A /((p, ωn)Y

(K∞)
A )| − p(μ

(1)(Y
(K∞)
A )+rankΛ(Y

(K∞)
A ))·pn | = O(1),

and

||Y (K∞)
A /((p, ωn)Y

(K∞)
A | − |Y (Kn)

A /pY
(Kn)
A || = O(1)

in view of Theorem 5.1(a). In other words,

|rankp(Y (Kn)
A )− (μ(1)(Y

(K∞)
A ) + rankΛ(Y

(K∞)
A )) · pn| = O(1).

Together with the above result of [LKM16], we may conclude that

|2d · rankp(X(Kn))− (μ(1)(Y
(K∞)
A ) + rankΛ(Y

(K∞)
A ))pn| ≤ t, (14)

where t = 6d|Ssplit(K∞/K)| · pn + C for some fixed constant C.
Similarly, one has

|rankp(X(Kn))− μ(1)(K∞/K) · pn| = O(1),

since X(K∞) = lim←−X(Kn) is known to be Λ-torsion. Indeed, one can use [Was97,
Lemma 13.18] as a substitute for Theorem 5.1(a). By this result, letting e ∈ N de-
note the smallest integer such that each prime of K which ramifies in K∞ is totally
ramified in K∞/Ke, and writing Y ⊆ X(K∞) for the kernel of the canonical map
X(K∞) −→ X(Ke), one has

|X(Kn)/pX(Kn)| = |X(K∞)/(p ·X(K∞) + νn,e · Y )|

for every n ≥ e. Here νn,e =
(T+1)p

n−1
(T+1)pe−1

is a polynomial of degree pn−pe, respectively,

and Y ⊆ X(K∞) is of finite index. Therefore

|rankp(X(Kn))− vp(|X(K∞)/((p, νn,e) ·X(K∞))|)| = O(1).

Moreover, since

|vp(|X(K∞)/((p, νn,e) ·X(K∞))|)| − vp(|EX(K∞)/((p, νn,e) · EX(K∞))|)| = O(1)

by Lemma 3.8, it can be derived that

|rankp(X(Kn))− μ(1)(K∞/K) · (pn − pe)| = O(1). (15)

Combining equations (14) and (15), we may conclude that

|pn · (μ(1)(Y
(K∞)
A ) + rankΛ(Y

(K∞)
A )− 2d · μ(1)(K∞/K))|
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is smaller than or equal to

6d · |Ssplit(K∞/K)| · pn + C̃

for some constant C̃ and every sufficiently large n ∈ N. This completes the proof of
the theorem.

Corollary 7.4. Let A be a d-dimensional abelian variety defined over a number
field K, let p �= 2 and assume that A[p] ⊆ A(K). If K∞/K is a Zp-extension such
that no prime v ∈ Sp ∪ Sbr is totally split in K∞/K, and if μ(K∞/K) = 0, then

rankΛ(Y
(K∞)
A ) = 0 and μ(Y

(K∞)
A ) = 0.

Corollary 7.5. Let A be a d-dimensional abelian variety defined over a number
field K, let p �= 2 and assume that A[p] ⊆ A(K). Then there exists a constant B ∈ N

such that

μ(1)(Y
(K∞)
A ) ≤ B

for each Zp-extension K∞/K.

Proof. It follows from results of Monsky (see [Mon81, Theorem II]) that the
classical μ-invariants μ(K∞/K) are bounded as K∞ runs over the Zp-extensions of
K. Since μ(1)(K∞/K) ≤ μ(K∞/K), the result follows from Theorem 7.3.

Remark 7.6. Using a pk-analogue of the result of Lim and Murty, one can derive

similar upper bounds for the invariants μ(k)(Y
(K̃∞)
A ) defined as in Lemma 4.6 (such a

comparison result will also play a prominent role in forthcoming joint work with K.
Müller).

Note: in Lemma 4.6 we were able to bound the invariants μ(k)(X
(K̃∞)
A ) locally in

some neighbourhood U = E(K∞, n) of K∞ only if A has good ordinary reduction at
each v ∈ Sp, each such prime is ramified in K∞ and no prime v ∈ Sbr is completely
split in K∞/K. It follows from the pk-analogue of Theorem 7.3 that at least the local

boundedness of μ(k)(Y
(K̃∞)
A ) (i.e. fine Selmer groups instead of Selmer groups) does

not require any of these assumptions – in particular no assumption on the reduction
type of A at the primes above p is needed.

7.3. Bounding λ-invariants. We now turn to the (un-) boundedness of λ-in-
variants. First, we derive from Corollary 4.2 the following

Theorem 7.7. Let A be an abelian variety defined over a number field K, and let
K∞/K be a Zp-extension. We assume that A has potentially good ordinary reduction

at each prime v ∈ Sp. Suppose that for each n ∈ N there exists K̃∞ ∈ E(K∞, n) such

that rankΛ(X
(K̃∞)
A ) < rankΛ(X

(K∞)
A ).

Then λ(X
(K̃∞)
A ) is unbounded on E(K∞,m) for every m ∈ N.

An analogous statement holds for Pontryagin duals of fine Selmer groups (if p �= 2;
here the assumption on the reduction type of A at p is not necessary).

Proof. This follows from Corollary 4.2 (Selmer groups) and Theorem 5.4(a) (fine
Selmer groups) via contraposition.

In order to describe a situation where this theorem can be applied, we prove

several auxiliary results concerning the variation of Λ-ranks of X
(K∞)
A and Y

(K∞)
A for
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the Zp-extensions K∞/K contained in some fixed Z2
p-extension L∞ of K. To this

purpose, we consider also Selmer groups of abelian varieties A (which are defined over
K) over L∞. These are defined analogously to Selmer groups over Zp-extensions:

SelA(L∞) = lim−→
K⊆L⊆L∞

SelA(L) and SelA,0(L∞) = lim−→
K⊆L⊆L∞

SelA,0(L),

where L runs over all finite subextensions of L∞/K. We let

X
(L∞)
A = lim←−

K⊆L⊆L∞

X
(L)
A and Y

(L∞)
A = lim←−

K⊆L⊆L∞

Y
(L)
A ,

where X
(L)
A = SelA(L)

∨ and Y
(L)
A = SelA,0(L)

∨ for each L. Note that this induces a

Λ2-module structure on X
(L∞)
A and Y

(L∞)
A , where Λ2 = Zp[[Gal(L∞/K)]]; this com-

pleted group ring can be (non-canonically) identified with the ring Zp[[T1, T2]] of
formal power series in two variables over Zp.

Lemma 7.8. Let L∞ be a Z2
p-extension of a number field K, and let A be an

abelian variety defined over K. We assume that L∞ contains the cyclotomic Zp-
extension Kc

∞ of K. Then the following statements hold.
(a) If A has good ordinary reduction at the primes above p, and if

rankΛ(X
(Kc

∞)
A ) = μ(X

(Kc
∞)

A ) = 0,

then rankΛ2
(X

(L∞)
A ) = 0.

(b) For fine Selmer groups, if p �= 2, then rankΛ2(Y
(L∞)
A ) ≤ rankΛ(Y

(Kc
∞)

A ), indepen-
dently of the actual value of the latter rank.

Proof. For elliptic curves, the statement for Selmer groups follows from [CS12,
Theorem 2.1] (in the notation of that theorem, we have L = F = K, F∞ = L∞
and Lcyc = Kc

∞; it follows that X
(L∞)
A is finitely generated over Zp[[Gal(L∞/Kc

∞)]],
and thus is Λ2-torsion). We therefore focus on the fine Selmer groups (but note that
the same proof could also be used for Selmer groups; in the last step we would then
use the fact that the Mordell-Weil ranks of the layers Kn ⊆ Kc

∞ are bounded by the
hypotheses in (a)).

Let Γ∞ = Gal(L∞/Kc
∞); this Galois group is isomorphic to Zp. We start from a

commutative diagram

0 �� SelA,0(K
c
∞) ��

g

��

H1(Kc
∞, A[p∞]) ��

h

��

∏
v H

1(Kc
∞,v, A[p

∞])

��
0 �� SelA,0(L∞)Γ∞ �� H1(L∞, A[p∞])Γ∞ �� ∏

w H1(L∞,w, A[p
∞])Γ∞,w

Here Kc
∞,v and L∞,w denote the localisations of Kc

∞ and L∞ at primes v and
w | v (i.e. the unions of the completions of finite subextensions of Kc

∞ and L∞),
Γ∞,w = Gal(L∞,w/K

c
∞,v), and v, w run over all primes of Kc

∞, respectively, L∞.
Dualising, we obtain a canonical map

f : (Y
(L∞)
A )Γ∞ −→ Y

(Kc
∞)

A .

Choosing the variables T1, T2 ∈ Λ2 properly, we may assume that

(Y
(L∞)
A )Γ∞ = Y

(L∞)
A /(T2 · Y (L∞)

A )
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and Λ2/(T2) = Λ. Using the above commutative diagram and the snake lemma, we
can bound the kernel of f . First, since the projective dimension of Γ∞ ∼= Zp is equal
to 1, the middle vertical arrow is surjective. This means that the cokernel of g can be
bounded in terms of the kernel of the right vertical arrow. By the inflation-restriction
sequence, this kernel is given by∏

w

H1(Γ∞,w, A(L∞,w)[p
∞]);

here the product runs over the primes w of L∞. Note: since no prime of K splits
completely in the cyclotomic Zp-extensionKc

∞, each v � p ofK∞ must split completely
in the Zp-extension L∞/Kc

∞. Therefore Γ∞,w = {0} whenever w � p, and the product
reduces to a finite direct sum over the primes dividing p.

Now fix such a prime w; we assume that Γ∞,w �= {0}. Since U := (A(L∞,w)[p
∞])∨

is finitely generated over Zp by the Lefschetz principle, the submodule UΓ∞,w is also
finitely generated over Zp – but this is precisely the Pontryagin dual of

H1(Γ∞,w, A(L∞,w)[p
∞]) ∼= (A(L∞,w)[p

∞])Γ∞,w

(recall that Γ∞,w
∼= Zp by assumption).

We have therefore shown that the kernel of

f : Y
(L∞)
A /(T2 · Y (L∞)

A ) −→ Y
(Kc

∞)
A

is a finitely generated Zp-module. Therefore

rankΛ2(Y
(L∞)
A ) ≤ rankΛ(Y

(L∞)
A /(T2 · Y (L∞)

A )) ≤ rankΛ(Y
(Kc

∞)
A ).

Now we prove a complementary result.

Lemma 7.9. Let L∞ be a Z2
p-extension of a number field K, and let A be an

abelian variety defined over K. Then rankΛ(X
(K∞)
A ) ≤ rankΛ2

(X
(L∞)
A ) for all but

finitely many Zp-extensions K∞ ⊆ L∞ of K.
If p �= 2, then an analogous statement holds for X replaced by Y .

Proof. We first consider fine Selmer groups. Let K∞ ⊆ L∞ be a Zp-extension of
K. Using a commutative diagram as in the proof of Lemma 7.8, we investigate the
cokernel of

f : (Y
(L∞)
A )Γ∞ −→ Y

(K∞)
A ,

Γ∞ = Gal(L∞/K∞), by studying the kernel of

g : SelA,0(K∞) −→ SelA,0(L∞)Γ∞ .

By the snake lemma, the kernel of g is contained in the kernel of the middle vertical
map h; in view of the inflation-restriction exact sequence, this kernel is equal to
H1(Γ∞, A(L∞)[p∞]). Therefore the dual of ker(g) is a finitely generated Zp-module

and rankΛ(Y
(K∞)
A ) ≤ rankΛ((Y

(L∞)
A )Γ∞), where we let Λ = Zp[[Gal(K∞/K)]] (in fact,

since also ker(f) is finitely generated over Zp by the proof of Lemma 7.8, we have
equality of ranks here).
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We will now show the following fact, which concludes the proof of the lemma: for
all but finitely many Zp-extensions K∞ ⊆ L∞ of K, the Zp[[Gal(K∞/K)]]-rank of
the quotient

(Y
(L∞)
A )Γ∞ , Γ∞ = Gal(L∞/K∞),

is at most equal to rankΛ2
(Y

(L∞)
A ).

Indeed, by a general structure theorem (see [NSW08, Theorem (5.1.10)]), there
exists a pseudo-homomorphism (i.e. a Λ2-module homomorphism ϕ such that both
ker(ϕ) and coker(ϕ) are annihilated by two relatively prime elements of Λ2)

ϕ : Y
(L∞)
A −→ E

for some elementary Λ2-module of the form

E = Λr
2 ⊕

s⊕
i=1

Λ2/(hi),

where hi ∈ Λ2 for every i, and r = rankΛ2
(Y

(L∞)
A ). The product

F
Y

(L∞)
A

:=

s∏
i=1

hi ∈ Λ2

is called the characteristic power series of Y
(L∞)
A , in analogy with the one-dimensional

setting (cf. Section 2).
Let γ∞ be a topological generator of Γ∞, and let T := γ∞ − 1, then

(Y
(L∞)
A )Γ∞ = Y

(L∞)
A /(T · Y (L∞)

A ).

The map ϕ : Y
(L∞)
A −→ E induces an exact sequence

M1 (Y
(L∞)
A )Γ∞ EΓ∞ M2 0, (16)

of finitely generated Zp[[Gal(K∞/K)]]-modules, where the first and the last term are
Zp[[Gal(K∞/K)]]-torsion because the Λ2-modules ker(ϕ) and coker(ϕ) are annihilated
by an element of Λ2 which is coprime with T . In particular,

rankZp[[Gal(K∞/K)]]((Y
(L∞)
A )Γ∞) = rankZp[[Gal(K∞/K)]](EΓ∞).

The latter equals r whenever T does not divide the characteristic power series F
Y

(L∞)
A

of Y
(L∞)
A , since in this case the image of F

Y
(L∞)
A

under the canonical map

Λ2 � Λ2/(T ) ∼= Zp[[Gal(K∞/K)]]

is non-zero, i.e. each summand Λ2/(hi, T ) is then Zp[[Gal(K∞/K)]]-torsion. We will
show that this is true for all but finitely many Zp-extensions K∞ ⊆ L∞.

Let K
(1)
∞ and K

(2)
∞ be two independent Zp-extensions of K spanning L∞, i.e.

K
(1)
∞ ∩K

(2)
∞ = K and K

(1)
∞ ·K(2)

∞ = L∞. Let γ1, γ2 be topological generators of
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Gal(L/K
(1)
∞ ) and Gal(L∞/K

(2)
∞ ). Then for any Zp-extension K∞ ⊆ L∞ of K dif-

ferent from K
(1)
∞ and K

(2)
∞ , the Galois group Gal(L∞/K∞) is generated topologically

by an element γpm

1 · γpn·u
2 with n,m ∈ N, u ∈ Z×

p and n ·m = 0.
Let E◦ =

⊕s
i=1 Λ2/(hi). Since rankΛ2

(E◦) = 0, htΛ2
(Ann(E◦)) ≥ 1. If this

height is greater than or equal to 2, then obviously

ht
Λ

(m,n,u)
1

((Ann(E◦) + ((γpm

1 γpn·u
2 − 1))/(γpm

1 γpn·u
2 − 1)) ≥ 1,

where Λ
(m,n,u)
1 = Λ2/(γ

pm

1 γpn·u
2 − 1) ∼= Λ1.

From now on, we assume that htΛ2
(Ann(E◦)) = 1.

Lemma 7.10. Let M be a Λ2-module such that htΛ2
(Ann(M)) = 1. Then

htΛ2
(Ann(M) + (γpm

1 γpn·u
2 − 1)) ≥ 2

for all but finitely many u ∈ Z×
p and n,m ∈ N satisfying n ·m = 0.

Proof. We use an argument analogous to that from the proof of [Kle21b,
Lemma 3.1]; we will consider only the case m = 0. For each n ∈ N and u ∈ Z×

p , we
define

In,u := Ann(M) + (γ1γ
pn·u
2 − 1),

and we denote by pn,u ⊇ In,u a minimal prime ideal. We want to show that
ht(In,u) ≥ 2 for all but finitely many n and u.

Let I :=
⋂

(n,u):ht(In,u)=1 pn,u. Then ht(I) ≥ 1 because Ann(M) ⊆ I, and we may

assume that in fact ht(I) = 1. Then each pn,u occurring in the definition of I is a
minimal prime ideal of I. Since Λ2 is a Noetherian ring, we may conclude that only
finitely many different prime ideals occur in the definition of I.

Now suppose that pn,u = pñ,ũ for some (ñ, ũ) �= (n, u). Then pn,u contains both

γ1 · γpn·u
2 − 1 and γ1 · γpñ·ũ

2 − 1. These two elements form a Λ2-regular sequence, i.e.
Λ2/pn,u is a finitely generated Zp-module and therefore ht(pn,u) ≥ 2. This proves the
lemma.

Returning to the proof of Lemma 7.9, we may conclude that for all but finitely
many Zp-extensions K∞ ⊆ L∞ of K, the quotient (E◦)Γ∞ , Γ∞ = Gal(L∞/K∞), is a
torsion Zp[[Gal(K∞/K)]]-module.

Finally, the assertion concerning X
(L∞)
A can be proved completely analogously:

using a similar commutative diagram as for the fine Selmer groups, the kernel of

g : SelA(K∞) −→ SelA(L∞)Γ∞

is again contained in H1(Γ∞, A(L∞)[p∞]), and the proof proceeds as above.

Putting together Lemmas 7.8 and 7.9, we may derive the following

Corollary 7.11. Let L∞ be a Z2
p-extension of a number field K, and let A

be an abelian variety defined over K. We assume that L∞ contains the cyclotomic
Zp-extension Kc

∞ of K.
(a) Suppose that p �= 2. If there exists a Zp-extension K∞ ⊆ L∞ of K such that

rankΛ(Y
(K∞)
A ) > rankΛ(Y

(Kc
∞)

A ),

then λ(Y
(K̃∞)
A ) is unbounded on E(K∞,m) for every m ∈ N.
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(b) Suppose that A has good ordinary reduction at the primes of K above p. If

rankΛ(X
(Kc

∞)
A ) = 0 and μ(X

(Kc
∞)

A ) = 0, and if there exists a Zp-extension

K∞ ⊆ L∞ such that rankΛ(X
(K∞)
A ) > 0, then λ(X

(K̃∞)
A ) is unbounded on

E(K∞,m) ∩ E⊆L∞(K) for every m ∈ N.

Proof. We prove only part (b); part (a) can be proved analogously. It follows from

Lemmas 7.8 and 7.9 that rankΛ(X
(K̃∞)
A ) = 0 for all but finitely many Zp-extensions

K̃∞ ⊆ L∞ of K. In particular, if m ∈ N is large enough, then

0 = rankΛ(X
(K̃∞)
A ) < rankΛ(X

(K∞)
A )

for each K̃∞ ∈ E(K∞,m). Therefore the assertion of the corollary follows from
Theorem 7.7.

Remark 7.12. On the contrary, it follows from the results of Sections 4 and 5

and [Kle21a] that (in the good ordinary setting) λ(X
(K̃∞/K)
A ) is bounded on E⊆L∞(K)

if both rankΛ(X
(K̃∞)
A ) = 0 and μ(X

(K̃∞)
A ) = 0 for each K̃∞ ∈ E⊆L∞(K); similarly for

λ(Y
(K̃∞/K)
A ).

Let us stress the following special case of Corollary 7.11,(a):

Corollary 7.13. Let A be an abelian variety defined over the number field K,
and suppose that p �= 2. If the weak Leopoldt conjecture holds for A over Kc

∞, then
the subset of E(K) of Zp-extensions of K over which the weak Leopoldt conjecture for
A holds is dense in E(K).

Proof. We may assume that there exists more than one single Zp-extension of
K. By [Lim17, Lemma 7.1], the weak Leopoldt conjecture for A holds over some

Zp-extension K∞/K if and only if Y
(K∞)
A is Λ-torsion.

For given Kc
∞ �= K∞ ∈ E(K) and n ∈ N, we consider the Z2

p-extension Kc
∞ ·K∞

of K. In view of Lemmas 7.8 and 7.9, the weak Leopoldt conjecture for A holds over
all but finitely many Zp-extensions of K contained in E⊆L∞(K) ∩ E(K∞, n).

Now we turn to the proofs of our main results.

Proof of Theorem 1.1. This follows immediately from Corollary 7.11, (b).

Proof of Corollary 1.2. The hypotheses on A = E imply that rankΛ(X
(Kc

∞)
A ) = 0

and rankΛ(X
(Ka

∞)
A ) > 0 (see also Remark 4.15). Since μ(X

(Kc
∞)

A ) = 0 by assumption,

it follows from Corollary 7.11, or alternatively from Theorem 1.1, that λ(X
(K̃∞)
A ) is

unbounded on E(K) (recall that the composite of all Zp-extensions of an imaginary
quadratic number field K is a Z2

p-extension L∞ of K).

Before, finally, turning to the proof of Theorem 1.3, we mention a concrete ex-
ample.

Example 7.14. Let K = Q(
√−7). We consider the elliptic curve E defined by

E : y2 + y = x3 − x2 − 10x− 20.

The only prime number dividing the conductor of E is 11, which splits in K/Q. We
consider the two primes 37 and 43, both of which are split in K/Q.
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Since E is a semistable elliptic curve, it follows from the Iwasawa main conjecture,

proven in this case by Skinner and Urban in [SU14], that μ(X
(Kc

∞)
A ) equals the μ-

invariant of a p-adic L-function Lp(E, s) interpolating the Hasse-Weil L-series for
each prime p ≥ 11 of good ordinary reduction. A computation with PARI/GP (see
[PAR21]) shows that the Hasse-L-function is not divisible by either 37 or 43.

In view of the data from [LMF21], the image of the p-adic representation

ρp : Gal(Q/Q) −→ Aut(E[p])

contains SL2(Fp) for each prime p < 1000 which is different from 5. The results from
[Ser72] imply that hypothesis (3) from Corollary 1.2 is satisfied for these primes.

A computation with PARI/GP reveals that |E(kv)| = |E(F37)| = 35 for each
v ∈ S37(K), and that |E(kv)| = |E(F43)| = 50 for both v ∈ S43(K). Therefore the

hypotheses (2), (4) and (5) from Corollary 1.2 are also satisfied, and λ(X
(K∞)
A ) is

unbounded as K∞ runs over the Zp-extensions of K, p ∈ {37, 43}.
Proof of Theorem 1.3. If the weak Leopoldt conjecture holds for A over Kc

∞,

then rankΛ(Y
(Kc

∞)
A ) = 0 by [Lim17, Lemma 7.1]. Since, by the second hypothesis,

rankΛ(Y
(Ka

∞)
A ) > 0, the theorem follows by an application of Corollary 7.11.
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[PR92] B. Perrin-Riou, Théorie d’Iwasawa et hauteurs p-adiques, Invent. Math., 109:1 (1992),

pp. 137–185.
[Roh84] D. E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math.,

75 (1984), pp. 409–423.
[Rub88] K. Rubin, On the main conjecture of Iwasawa theory for imaginary quadratic fields,

Invent. Math., 93:3 (1988), pp. 701–713.
[Sch85] P. Schneider, p-adic height pairings. II, Invent. Math., 79:2 (1985), pp. 329–374.
[Sch87] P. Schneider, Arithmetic of formal groups and applications. I: Universal norm sub-

groups, Invent. Math., 87 (1987), pp. 587–602.
[Ser72] J.-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, In-

vent. Math., 15:4 (1972), pp. 259–331.
[SU14] C. Skinner and E. Urban, The Iwasawa main conjectures for GL2, Invent. Math., 195:1

(2014), pp. 1–277.
[Was97] L. C. Washington, Introduction to cyclotomic fields. 2nd ed. New York, NY: Springer,

1997.
[Wut07] C. Wuthrich, Iwasawa theory of the fine Selmer group, J. Algebraic Geom., 16:1 (2007),

pp. 83–108.
[Wut14] C. Wuthrich, Overview of some Iwasawa theory. In “Iwasawa theory 2012”, volume 7

of Contrib. Math. Comput. Sci., pp. 3–34. Springer, Heidelberg, 2014.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
    /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


