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PARABOLIC HIGGS BUNDLES, tt∗CONNECTIONS AND OPERS∗

MURAD ALIM† , FLORIAN BECK‡ , AND LAURA FREDRICKSON§

Abstract. The non-abelian Hodge correspondence identifies complex variations of Hodge struc-
tures with certain Higgs bundles. In this work we analyze this relationship, and some of its rami-
fications, when the variations of Hodge structures are determined by a (complete) one-dimensional
family of compact Calabi–Yau manifolds. This setup enables us to apply techniques from mirror
symmetry. For example, the corresponding Higgs bundles extend to parabolic Higgs bundles to the
compactification of the base of the families. We determine the parabolic degrees of the underly-
ing parabolic bundles in terms of the exponents of the Picard–Fuchs equations obtained from the
variations of Hodge structure.

Moreover, we prove in this setup that the flat non-abelian Hodge or tt∗-connection is gauge
equivalent to an oper which is determined by the corresponding Picard–Fuchs equations. This gauge
equivalence puts forward a new derivation of non-linear differential relations between special functions
on the moduli space which generalize Ramanujan’s relations for the differential ring of quasi-modular
forms.

Key words. Parabolic Higgs bundles, tt∗ equations, opers, mirror symmetry, quasi-modular
forms.
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1. Introduction. The geometry of gauge theories and string theories has in-
spired many fruitful interactions between mathematics and physics and has put for-
ward new structures and relations within mathematics. In this work we focus on
different families of flat G-connections, coming from two entirely different physical
setups.

On the one hand we will consider G-Higgs bundles which originated in [Hit87a,
Hit87b] and were further developed by many people in various directions, see e.g.
[Sim92] for the extension to the parabolic setting and [Don95] for the extension to
G-Higgs bundles1 . The physical origin of G-Higgs bundles are the Hermitian Yang–
Mills equations for a gauge theory with gauge group G ⊂ GL(N,C) in four real
dimensions. The dimensional reduction of the latter to two real dimensions, so-called
Hitchin’s (self-duality) equations, admit a formulation on any Riemann surface C.
These are equations for a pair ((E,ϕ), h) consisting of a G-Higgs bundle (E,ϕ) and
a Hermitian metric h on E. Recall that a G-Higgs bundle is a holomorphic vector
bundle E with a G-structure and a one-form ϕ ∈ Γ(C,KC ⊗ ad(E)) with values in
the adjoint bundle ad(E) associated to E. The Higgs field ϕ encodes the gauge field
data in the two reduced dimensions. The pair ((E,ϕ), h) satisfies Hitchin’s equations
if

FD(∂̄E ,h) +
[
ϕ,ϕ†h] = 0 , ∂̄Eϕ = 0 . (1.1)

Here D(∂E , h) is the Chern connection associated to the holomorphic structure ∂E

on E and the Hermitian metric h. The equations (1.1) are equivalent to the flatness
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of the C×-family

∇ζ
NAH = D(∂̄E , h) + ζ−1ϕ+ ζϕ†h , ζ ∈ C× (1.2)

of G-connections on E. Passing from (E,ϕ) to ∇ζ
NAH and vice versa is the content

of the non-abelian Hodge correspondence2. We therefore refer to the family ∇ζ
NAH as

the family of non-abelian Hodge connections associated to the G-Higgs bundle (E,ϕ).
For our purposes, it is sufficient to consider G = GL(N,C).

On the other hand we consider the geometry emerging from the variation of
Hodge structures (VHS) on the middle dimensional cohomology of certain families of
Calabi–Yau (CY) manifolds which features prominently in the mirror symmetry of CY
threefolds, see e.g. [CK99]. The flat holomorphic Gauß–Manin connection of the VHS
plays an important role in identifying the mirror isomorphism of CY threefolds with
the help of the associated Picard–Fuchs equations. The flatness conditions constrains
the base manifold to be a special Kähler manifold, see [Str90, Fre99] for definitions
and [LMVPV10] for a review.

A vast generalization of special Kähler geometry and the flat holomorphic Gauß–
Manin connection is given by the notion of topological-anti-topological fusion or tt∗-
geometry which was put forward by Cecotti and Vafa in [CV91]. The origin of tt∗-
geometry is the study of families of two dimensional physical field theories with N = 2
supersymmetry. Some of these can be realized as non-linear sigma models into a target
manifold X which could be a CY manifold, or a Fano manifold. Others are only
realizable as Landau-Ginzburg models, which are non-compact manifolds equipped
with a complex-valued function called the superpotential.

In every case, the tt∗-geometry refers to the data of a bundle E, together with
a Hermitian metric h on E and a symmetric complex pairing η on E, over a moduli
space B of theories. Their variation is described by a flat connection ∇tt∗ which is
constructed as a combination of a connection D and a one-form C valued in the endo-
morphisms of the bundle E. Here the connection D is compatible with a Hermitian
metric h as well as with a complex pairing η. The endomorphism-valued one-form C
is given by an underlying Frobenius manifold structure on B defined by the operators
of the two-dimensional theories parameterized by B. The tt∗-geometry on E over B
is then governed by the tt∗-equations:

[D′, D′′] + [C′,C′′] = 0, D′C′′ = 0 = D′′C′, (1.3)

[D′, D′] = 0 = [D′′, D′′], [C′,C′] = 0 = [C′′,C′′], [D′,C′] = 0 = [D′′,C′′]. (1.4)

Here ′ and ′′ denote the (1, 0)- and (0, 1)-part respectively and the commutators
are defined such that [C ′, C ′] is a (2, 0)-form etc. Equations (1.3) and (1.4) are
equivalent to the flatness of the C×-family of tt∗-connections

∇ζ
tt∗ = D + ζ−1C′ + ζC′′, ζ ∈ C×, (1.5)

on E. Here (1.3) is equivalent to F (1,1)

∇ζ
tt∗

= 0, while (1.4) is equivalent to F (0,2)

∇ζ
tt∗

= 0 =

F (2,0)

∇ζ
tt∗
.

A differential-geometric approach to tt∗-equations was given in [Dub93]. A com-
plex geometric framework was given for the tt∗-equations in [Her03] in terms of

2As is well-known, see [Hit87a, Sim92], this correspondence is an equivalence between stable
G-Higgs bundles and irreducible flat G-connections. Stability/Irreducibility does not play a crucial
role in our work so that we suppress it here.



PARABOLIC HIGGS BUNDLES, tt∗ CONNECTIONS & OPERS 457

DCC̃-structures ([Her03, Definition 2.9]) and TERP-structures (cf. [Her03, Definition
2.12]), see [Her06, HS08] for an overview.

Although Hitchin’s equations and the tt∗-equations have different physical ori-
gins, they have a common mathematical structure. More precisely, solutions to
these equations determine twisted (pluri-)harmonic maps from the base manifold to
GL(N,C)/U(N) (cf. [Hit87a, §9], [Don87], [Dub93, Theorem 3], [CS08])). In some
cases, the non-abelian Hodge machinery can be used to produce solutions of the tt∗-
equations. In [GIL15a, GIL15b, GIL20], Guest, Its, and Lin proves the existence
existence of radially-symmetric solutions of the tt∗-equations when the base manifold
is C×. In [Moc14],Mochizuki efficiently proves the existence of the same radially-
symmetric solutions using the Hitchin-Kobayashi correspondence, i.e. he describes
the relevant wild Higgs bundles then produces a harmonic map using the Hitchin-
Kobayashi correspondence.

We take a different perspective to compare the equations, namely we specialize the
tt∗-equation to the following setup. If B is a Riemann surface parametrizing compact
Calabi–Yau manifolds, then solutions of the corresponding tt∗-equations are solutions
of Hitchin’s equations on B which are invariant (up to gauge transformations) under
the C×-action rescaling the Higgs field. On higher-dimensional Kähler manifolds X,
the tt∗-equations are F∇ = 0 while Hitchin’s equations are instead

F2,0
∇ = 0 F0,2

∇ = 0 ΛF1,1
∇ = 0,

where Λ denotes contraction with the symplectic form of X. Thus, on a Kähler
manifold, the tt∗-equations are a special case of Hitchin’s equations.

However, tt∗-equations are more general in other directions. Firstly, they can be
formulated on any complex manifold. Secondly, the physical theories which have a
geometric realization in terms of a non-linear sigma model admit more physical defor-
mations than just the geometric ones. All the additional deformations are governed by
the tt∗-equations as well. A rigorous mathematical framework describing this general
version of the tt∗-equations remains challenging.

In this paper, we relate the two setups in the case where the tt∗-geometry is
governed by a VHS H determined by the middle-dimensional cohomology of a family
π : X → B of CY d-folds with dimC(B) = 1. This is, for example, the context of mirror
symmetry for CY manifolds where the family π : X → B is assumed to be complete,
i.e. locally isomorphic around each u ∈ B to the moduli space of complex structures
on Xu := π−1(u)3. In this context, we explain how various notions that originated on
the tt∗-equation side naturally appear on the Higgs bundle side, and vice versa. This
goes far beyond comparing the equations (1.1) and (1.3) (cf. Remark 4.5).

For example, we show that opers, a distinguished family of flat connections which
play an important role in the geometric Langlands correspondence (see [BD05] and
the discussion of the conformal limit below), are equivalent to variations of Hodge
structures with special sections. We call such a section a generic cyclic vector. Its
derivatives with respect to the Gauß–Manin connection give a basis of the complex
vector bundle H → B on an open and dense subset of B. The existence of a generic
cyclic vector is natural from the perspective of mirror symmetry: if the VHS H is
induced by a complete family X → B of CY manifolds, then H admits a generic cyclic
vector. Hence mirror symmetry provides many concrete examples of opers.

3In the following we adopt the terminology in physics and refer to a ‘moduli space’ as a parameter
space with some non-degeneracy assumption like completeness of the parameterized families of CY
d-folds.
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Parabolic Higgs bundles [Sim90], [Yok93], a generalization of Higgs bundles, nat-
urally arise in the tt∗-geometry under consideration. Typically, the base B is a non-
compact Riemann surface and the family π : X → B extends to a family π̂ : X̂ → B̂
over the compactification B̂ of B. The fibers over D := B̂ −B are usually singular and
each d ∈ D is a regular singular point of the holomorphic Gauß–Manin connection ∇
of H. Equivalently, the Picard–Fuchs equations, which are locally determined by a
(generic) cyclic vector, are regular singular at d ∈ D.

The qualitative behaviour of the (multi-)valued solutions to the Picard–Fuchs
equations at d ∈ D is determined by their so-called exponents associated to d. Af-
ter reviewing how Deligne’s canonical extension of (H,∇) ([Del70], [Sch73]) deter-
mines a parabolic Higgs bundle (Ê, ϕ̂) on B̂ with divisor D (see [Sim91] for D = ∅
and [CMSP17, Chapter 13] for an arbitrary reduced divisor D), we compute the

(parabolic) degrees of (Ê, ϕ̂) in terms of the exponents at each d ∈ D. In the typical

context of mirror symmetry, where D = {0, 1,∞} ⊂ B̂ = CP1, this is sufficient to
explicitly determine the corresponding parabolic Higgs bundles.

We point out that the first computation of the parabolic degrees in terms of the
exponents appeared in [EKZ14, §6] for D = {0, 1,∞} ⊂ B̂ = CP1 and certain VHS
H of weight 3 with rk(H) = 4 in the context of Lyapunov exponents. This was taken
up by [DHT17] for the same base curve but more general VHS in order to compute
Hodge numbers of certain compact Kähler manifolds which are fibered over CP1. Our
approach neither requires a restriction on B̂ nor on H. The previous papers focus on
the underlying parabolic bundles whereas we focus on the parabolic Higgs bundles.

Another motivation for our work comes from Gaiotto’s conjecture ([Gai14, §4.2]).
It relates the family ∇ζ

NAH of non-abelian Hodge connections associated to a Higgs
bundle (E,ϕ) on B to a family of opers, associated to the same Higgs bundle, through
the so-called conformal limit. This limit is obtained by introducing an additional real
parameter R in the family ∇ζ

NAH and taking an appropriate double scaling limit of

∇ζ,R
NAH as R, ζ approach 0, while holding their ratio λ = ζ

R fixed. This conjecture
was proven if B is a compact Riemann surface in [DFK+16, CW19]. Understanding
the precise relation between the two families of flat connections is, in particular,
important for understanding the relation between the exact WKB-analysis4 and the
works of Gaiotto, Moore and Neitzke [GMN09].

All of the parabolic Higgs bundles B = CP1 − {0, 1,∞} coming from the tt∗-
equations are fixed by the natural C×-action ϕ → ζϕ (up to isomorphism). It follows

that the two-parameter family ∇Rλ,R
NAH is independent of R, hence the conformal limit

limR→0 ∇Rλ,R
NAH is simply equal to ∇λ

NAH. While the conformal limit is a trivial process,
the change of frame identifying ∇λ

NAH with the Gauß-Manin connection ∇�

GM contains
highly non-trivial information: it gives a new way to derive certain differential rings on
the moduli space B, see §2.6. In our cases, the Hermitian metric h solving Hitchin’s
equations and the tt∗-equations is expressed in terms of special functions gi on B.
These differential rings are rings with a differential D which are generated by finitely
many special functions gi, i ∈ I, on B. In fact, they are algebraic: the derivatives
Dgi, i ∈ I, are polynomials in the gj , j ∈ I, with holomorphic functions on B as
coefficients. These relations are called differential ring relations and give nonlinear
differential equations for the gi.

If B is a moduli space for elliptic curves, the differential ring relations are directly
related to the differential ring of quasi-modular forms developed by Kaneko and Za-

4See [IN14] and references therein.
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gier [KZ95] as shown in [Hos10, Mov12] (see Appendix A.3 for a short summary). If
B is a moduli space of CY threefolds, then the differential ring relations have strong
implications for mirror symmetry: in [YY04], Yamaguchi and Yau discovered differ-
ential ring relations for the moduli space of the mirror quintic CY threefold. In these
cases, the special functions on the moduli space B are given by the generating func-
tions for higher genus Gromov–Witten invariants on the quintic CY threefold (under
mirror symmetry). Hence the differential ring relations show that all higher genus
Gromov–Witten invariants are determined by finitely many data. These results were
later generalized to arbitrary mirror pairs of CY threefolds in [AL07] and developed
for lattice polarized K3 surfaces in [Ali17].

Besides mirror symmetry, such differential rings are interesting in their own right
because they provide an analogue for CY threefolds of quasi-modular forms for elliptic
curves5. By providing the explicit link between these developments and Higgs bundles,
we hope to further open the door towards new insights and generalizations of these
structures.

The plan of our paper is the following. In §2 we start with an explicit example
of a VHS which appears in the context of mirror symmetry for lattice polarized K3
surfaces with complex one-dimensional moduli spaces. This example will allow us to
elucidate the ingredients and the constructions relevant for our paper. We proceed
in §3 to motivate VHS and to show their precise connection to opers. In §4 we first
review the relation between Deligne’s canonical extensions of VHS and parabolic Higgs
bundles. Afterwards we compute the (parabolic) degrees of the resulting parabolic
Higgs bundles in terms of the associated exponents. Finally, in §5 we give further
examples motivated from mirror symmetry and review the necessary constructions,
we furthermore discuss the general structure of the gauge transformation from the
family of non–abelian Hodge flat connections to the family of opers. In the appendices
we collect basic definitions and notions concerning quasi-modular forms, differentials
rings as well as parabolic Higgs bundles.

In our beginning example in §2 and throughout the paper, we provide a number
of explicit and detailed examples in order to facilitate building a bridge between
the geometry of Higgs bundles on the one side and tt∗-geometry, VHS and mirror
symmetry on the other side.

Acknowledgements. This project was initiated at the American Institute of
Mathematics (San Jose, CA) workshop titled “Singular geometry and Higgs bundles
in String Theory” from October 30 to November 3, 2017. We would like to thank
all the workshop participants for stimulating discussions and especially Szilárd Szabó
and Rodrigo Barbosa for discussions related to this project. The work of the MA and
FB is supported through the DFG Emmy Noether grant AL 1407/2-1. The work of
LF is supported by NSF DMS-2005258. LF was supported by

2. Introductory example. In this section, we walk through the example of
Calabi–Yau manifolds of dimension 2, i.e. K3 surfaces. This example is simple enough
not to be overwhelming but complex enough to showcase some of our findings. For
example, we determine the gauge transformations between the families of opers and of
flat non-abelian Hodge connections attached to the corresponding variations of Hodge
structures of weight 2 and rank 3.

5See e.g. [Mov17] and references therein
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In the following, we consider families

π : X → B, dim(B) = 1 (2.1)

of K3 surfaces and mostly B ∼= CP1 − {0, 1,∞}. Many such examples are obtained
from mirror symmetry of lattice polarized K3 surfaces ([Dol96]). A lattice polarized
(or M̌ -polarized) K3 surface is a pair (X, j) of a K3 surface and a primitive embedding
j : M̌ ↪→ Pic(X) of a lattice M̌ into the Picard group of X.

Example 2.1. Let X be any smooth quartic surface in CP3. Then X is an
algebraic K3 surface with rk(Pic(X)) = 1. More precisely, Pic(X) is generated by
(the isomorphism class of) a line bundle L ∈ Pic(X) with

∫
X
c1(L) ∧ c1(L) = 4. In

particular, M̌ := 〈L〉 is isomorphic to the even lattice 〈4〉 and j : M̌ ↪→ Pic(X) is
primitive. Hence(X, j) is a 〈4〉-polarized K3 surface.

Mirror symmetry of lattice polarized K3 surfaces is a statement about pairs of
complete families6

π̌ : X̌ → BM̌ and π : X → BM (2.2)

of M̌ - and M -polarized K3 surfaces respectively which are dual, or “mirror”, to each
other in a precise sense (see the introduction of [Dol96]). Here BM̌ and BM is the
moduli space of M̌ - and M -polarized K3 surfaces respectively.

The latticeM is obtained from the lattice M̌ as follows. For any algebraic K3 sur-
face X, H2(X,Z) with the natural intersection pairing is isomorphic to the orthogonal
sum

LK3 := U⊥3 ⊥ E⊥2
8 (2.3)

which has signature (t+, t−) = (3, 19). Here U is the lattice of signature (1, 1) and
E8 is the lattice whose intersection product is determined by the E8-root system
and hence of signature (0, 8). The orthogonal complement M̌⊥ of M̌ in LK3 splits
(non-canonically) into M̌⊥ = U ⊥ M . The lattice M is uniquely determined up to

isomorphism and is called the mirror of M̌ . It satisfies ˇ̌M =M . Moreover, if M̌ is of
signature (1, t), then M is of signature (1, 18− t).

The completeness condition on the families (2.2) implies

TǔB̌ ∼= H1,1(X̌ǔ)/jǔ(M̌), TuB ∼= H1,1(Xu)/ju(M).

This makes sense because Pic(X) ⊂ (H1,1(X) ∩H2(X,Z)
) ⊂ H1,1(X) for any alge-

braic K3 surface X. If M̌ is of rank one, which implies that M̌ is isomorphic to one
of the even one-dimensional lattices 〈2n〉, n ∈ Z, then

dim(B) = dimH1,1(Xu)− rk(M) = 20− 19 = 1.

Constructions from mirror symmetry (cf. §5.1) therefore produce many families π :
X → B with dimC B = 1 as mirror families of 〈2n〉-polarized K3 surfaces for n ∈ Z.

Example 2.2. Let π̌ : X̌ → B̌M̌ be a complete family of quartic K3 surfaces so
that M̌ = 〈4〉, cf. 2.1, and

M := 〈4〉∨ ∼= U ⊥ E8 ⊥ E8 ⊥ 〈−2n〉,
6Every tangent space TuB of a complete family X → B is naturally isomorphic to the space

of infinitesimal deformations of the lattice polarized K3 surface (Xu, ju). In particular, a complete
family varies non-trivially if dim(B) > 0.
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see [Dol96, §7]. Then a mirror family π : X → BM , simply called mirror quartic, is a
family of M -polarized K3 surfaces. In fact, B ∼= CP1 − {0, 1,∞}, see [Dol96, §7].

2.1. Hodge decomposition and filtration. Let X be an algebraic K3 surface
so that we have the Hodge structure

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X), H2,0 = H0,2 (2.4)

of weight 2, cf. §3.
Let M̌ = 〈2n〉 and M := M̌ be its mirror. If X is M -polarized, then the full

Hodge structure on H2(X,Z) is too large for our purposes. Instead, we consider

T (X) :=M⊥ = U ⊥ 〈2n〉 ⊂ H2(X,Z). (2.5)

This defines a Hodge substructure of H2(X,Z) of weight 2 and rank 3 wit Hodge
decomposition space T p,q(X). Since T 2,0(X) = H2,0(X) and T 1,1(X) ⊂ H1,1(X), we
write

T p,q(X) = Hp,q(X) (2.6)

by abuse of notation throughout this section. The equivalent data of a Hodge filtration
is denoted by

F 3T (X) = {0} ⊂ F 2(X) = H2,0(X) ⊂ F 1(X) ⊂ F 0(X).

It satisfies T p,q(X) = F pT (X)/F p+1T (X) for p = 0, 1, 2. The Hodge structure T (X)
carries a polarization given by the non-degenerate bilinear form

Q : T (X)× T (X)→ Z , Q(α, β) = −
∫
X

α ∧ β . (2.7)

which extends to T (X,C) := T (X)⊗Z C. The Weil operator W ∈ End(T (X,C)) acts
on T p,q by multiplication with a constant:

W |Hp,q = ip−q . (2.8)

Together with the polarization, it induces the non-degenerate pairing

η : T (X,C)× T (X,C)→ C , η(ωi, ωj) = Q(W (ωi), ωj) , (2.9)

as well as the Hermitian (Hodge) metric,

h : T (X,C)× T (X,C)→ C , h(ωi, ωj) = Q(W (ωi), ωj) , (2.10)

for ωi, ωj ∈ T (X,C) .

2.2. Variation of Hodge structure. We next consider a complete family

π : X → B := CP1 − {0, 1,∞}
of M -polarized K3 surfaces with rk(M) = 18. This setup generalizes Example 2.2
is the most common in mirror symmetry for such lattice polarized K3 surfaces. The
variation of the Hodge filtrations over the base manifold B is governed by the variation
of Hodge structures

(HZ,∇, Q, F •HO).
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Here HO = HZ⊗OB for the locally constant sheaf HZ with stalks H
2(Xu,Z) and ∇ is

the induced Gauß–Manin connection. The decreasing filtration F •HO of holomorphic
sub-bundles F iHO , i = 2, 1, 0, is defined by taking fiberwise the previously defined
Hodge filtration. It satisfies Griffiths’ transversality: ∇F pHO ⊂ F p−1HO ⊗ Ω1

B , see
§3 for more details. Moreover, we write Hp,q = F pHO/F p+1HO as in the fiberwise
case.

Let L = F 2HO be the line bundle over B whose fibers are the spaces H2,0(Xu)
and L−1 be its dual. Further let ω0 be a local frame. By the properties of a VHS,
this form satisfies the following Picard–Fuchs equation in cohomology:

∇3
∂
∂u

ω0 = −b2∇2
∂
∂u

ω0 − b1(u)∇ ∂
∂u

ω0 − b0ω0 , (2.11)

with rational functions bi(u) , i = 0, 1, 2.
This relation in cohomology becomes a third order ODE, the Picard–Fuchs equa-

tion, with regular singular points for the (multi-valued) periods πi , i = 0, 1, 2 obtained
by integrating ω0 over a basis of cycles γ

0, γ1, γ2 ∈ H2(Xu,Z).(
d3

du3
+ b2

d2

du2
+ b1

d

du
+ b0

)
πi(u) = 0 , i = 0, 1, 2 . (2.12)

In this example, the rational functions bi are related to the following Hodge-theoretic
pairing:

Definition 2.3. The Griffiths–Yukawa coupling c ∈ Γ(L−2⊗ ((T ∗B)2) is defined
by

c(ω, ω′) := η(ω,∇2ω′) ∈ Γ(T ∗B)2), ω, ω′ ∈ L. (2.13)

If we have fixed a local frame ω0 and
∂
∂u of L and TB respectively, then we denote by

cuu := η(ω0,∇2
uω0) , ∇u := ∇∂/∂u , (2.14)

the coordinate expression of c.

The next proposition gives the relation to the functions bi in the Picard–Fuchs
equation.

Proposition 2.4. The coordinate expression cuu of the Griffiths–Yukawa cou-
pling satisfies the differential equation:

∂ucuu = −2
3
b2 cuu , (2.15)

where b2 is the rational function appearing in the Picard–Fuchs equation.

Proof. We have

∂ucuu =

∫
Xu

∇uω0 ∧∇2
uω0 +

∫
Xu

ω0 ∧∇3
uω0 , (2.16)

and furthermore ∫
Xu

ω0 ∧∇uω0 = 0 ,
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by type considerations. By differentiating this last equation it follows that

cuu = −
∫
Xu

∇u ω0 ∧∇u ω0 (2.17)

and hence

∂ucuu = −2
∫
Xu

∇uω0 ∧∇2
uω0 ,

the claim follows by substituting this last expression for the first term on the RHS of
(2.16) and the Picard–Fuchs equation for the second term.

2.3. Frame for the bundle and Hermitian metric. We next construct a
local frame ω = (ω0 , ω1 , ω2) for the bundle H with fibers H2(Xu,C) such that ωi ∈
H2−i,i. We choose a local frame ω0 of H2,0 = L and define

e−K := h00̄ = h(ω0, ω0) =

∫
Xu

ω0 ∧ ω0 , (2.18)

where K : B → R defines a Kähler potential for the projective special Kähler metric
G on B. We then proceed to construct ω1 and ω2 from ω0 using the Gauß–Manin
connection. By Griffiths transversality we obtain

(∇u ω0)du ∈ F 1H2(Xu,C)⊗ T ∗B , ∇u := ∇∂/∂u

and hence we make the ansatz

∇u ω0du = Auduω0 + ω1 ,

with Audu ∈ Γ(T ∗B) and ω1 ∈ H1,1(Xu)⊗T ∗B. Thus we obtain Au = −∂uK =: −Ku

from

∂ue
−K = −Kue

−K =

∫
Xu

∇uω0 ∧ ω̄0 = Au

∫
Xu

ω0 ∧ ω0 ,

since −Ku = (h00̄)
−1∂uh00̄, this is also the coordinate expression for the Chern con-

nection one-form, and we have:

ω1 = ((∇u −Du)ω0) du ∈ H1,1(Xu,C)⊗ T ∗B . (2.19)

We proceed by constructing ω2 ∈ H0,2(Xu)⊗ (T ∗B)2 similarly:

ω2 = ((∇u −Du) (ω1))du , (2.20)

with Duω1 = h−1
11̄

∂uh11̄ ω1. We then obtain similarly:

((∇u −Du)ω2) = 0 , (2.21)

with

Du ω2 = h−1
22̄

∂uh22̄ ω2 .

We get the following:
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Proposition 2.5. The expression for the Hermitian metric h = hab̄dt
a ⊗

dt̄b̄ , a, b = 0, 1, 2 in the frame (ω0, ω1, ω2) is given by

(hab̄) =

⎛⎝ e−K 0 0
0 e−KGuududū 0
0 0 e−KG2

uudu
2dū2

⎞⎠ . (2.22)

where Guu = ∂u∂uK. The Kähler metric Guūdu dū further satisfies:

e−K Guū = cuu e
K Guū cuu , (2.23)

where Guū = G−1
uu are the components of the inverse metric. The expression for the

complex pairing η = ηabdt
adtb , a, b = 0, 1, 2 in this frame is:

(ηab) = cuu

⎛⎝ 0 0 1
0 1 0
1 0 0

⎞⎠ du2 . (2.24)

Proof. The metric is diagonal in the frame (ω0, ω1, ω2) because (1) the basis
respects the Hodge decomposition and (2) the polarization of the VHS obeys the
Riemann–Hodge bilinear relations I), II) given in §3.1. We have defined h(ω0, ω0) =
e−K in (2.18), for the other entries we have

h11̄ = h(ω1, ω1) = −
∫
Xu

ω1 ∧ ω1

= −
∫
Xu

(∇uω0 +Kuω0) ∧ (∇ūω0 +Kūω0)du dū

=
(−∂u∂ūe

−K −Kū∂ue
−K −Ku∂ūe

−K −KuKūe
−K
)
du dū

= e−KGuūdu dū .

To obtain h22̄ := h(ω2, ω2) we first note that by construction we have ω2 ∈
H0,2 ⊗ (T ∗B)2. Since H0,2 is spanned by ω0, we make the ansatz

ω2 = ω0 Duu du
2 , (2.25)

with Duudu
2 ∈ (T ∗B)2. On the one hand, the polarization on H2(Xu,Z) together

with the Riemann–Hodge bilinear relations give∫
Xu

ω0 ∧ ω2 =

∫
Xu

ω0 ∧ (∇u −Du)
2ω0du

2

=

∫
Xu

ω0 ∧∇2
u ω0 du

2 = cuu du
2 .

On the other hand, using the ansatz (2.25), we obtain∫
Xu

ω0 ∧ ω2 =

∫
Xu

ω0 ∧ ω0 Duudu
2

= e−K Duudu
2 .

Comparing the previous two equalities gives Duu = cuue
K and hence

h22̄ =

∫
Xu

ω2 ∧ ω2 = e2Kcuucuu

(∫
Xu

ω0 ∧ ω0

)
du2 dū2 = eKcuucuudu

2 dū2 .
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To obtain the expression relating Guu,K, cuu in (2.23) we note that ω1 ∈ H1,1 ⊗
T ∗B; since H1,1 is one-dimensional we must have:

ω1 = ω1 L
ū
u du⊗ ∂

∂ū
, (2.26)

with Lū
u du⊗ ∂

∂ū ∈ T ∗B⊗TB. To determine Lu
u, we compute

∫
X1 ω1∧ω1 in two ways.

First,

−
∫
Xu

ω1 ∧ ω1 = −
(∫

Xu

(∇u −Du)ω0 ∧ (∇u −Du)ω0

)
du2

= −
(∫

Xu

∇u ω0 ∧∇u ω0

)
du2 (2.17)

= cuu du
2 ,

on the other hand, using the ansatz in (2.26) we obtain:

−
∫
Xu

ω1 ∧ ω1 = −
(∫

Xu

ω1 ∧ ω1

)
Lū
udu⊗ ∂

∂ū

= e−KGuū L
ū
udu

2 ,

and hence Lū
u = eKGuūcuu . We have:

e−KGuūdudū = −
∫
Xu

ω1 ∧ ω1 = −e2KGuūGuūcuucuu

∫
Xu

ω1 ∧ ω1

= eKGuūcuucuudu dū ,

this also gives the form the the entry h22̄ in (2.22). The entries of η follow from
(2.14),(2.17).

Remark 2.6. In (2.22) we use the fact that ∇ is an oper to identify Hp,q

with Hp−1,q+1 ⊗ TB via the map ∇ − D (whose (1, 0)-part is the Higgs field, see
Section 4). For example, e−KGuūdudū is a metric on H2,0 ⊗ TB ∼= H1,1. The entry
h22̄ = e−KG2

uūdu
2 dū2 is a metric on H2,0 ⊗ TB⊗2 ∼= H0,2.

2.4. Holomorphic Gauß–Manin and non-abelian Hodge/tt∗ flat con-
nection. The variation of Hodge structure provides the data of a holomorphic Gauß-
Manin connection which is reflected by the Picard–Fuchs equation describing the
variation of Hodge structure in (2.11),(2.12). Assume that ω0 is a cyclic vector, i.e.

ωGM =
(
ω0 ,∇uω0 du ,∇2

uω0 du
2
)
,

is a frame of H (cf. Definition 3.11)7. From (2.11) we see that the Gauß–Manin
connection ∇ is given by

∇GM = d +

⎛⎝ 0 0 −b0
1 0 −b1
0 1 −b2

⎞⎠ du . (2.27)

in this frame. Note that it is a holomorphic connection on H.
7In analogy to Remark 2.6 we do not contract with a vector field here.
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The C×-family of flat non-abelian Hodge (or tt∗)-connections can be explicitly
given in terms of the previously defined entities. We denote the frame, which we have
constructed in Proposition 2.5, by

ωNAH = (ω0 , ω1 , ω2) ,

where ω1 = (∇u −Du)ω0 and ω2 = (∇u −Du)ω1.

Proposition 2.7. The Higgs field ϕ ∈ End(H2(Xu,C))⊗T ∗B in the holomorphic
frame ωNAH is

ϕ =

⎛⎝ 0 0 0
1 0 0
0 1 0

⎞⎠ (2.28)

so that the following relationship is satisfied:

(∇u −Du)ωNAH du = ϕ(ωNAH). (2.29)

The Hermitian metric h = hab̄ dt
a dt̄b̄ , a, b = 0, 1, 2, defined in (2.22), in the frame

ω�

NAH is

(hab̄) =

⎛⎝ e−K 0 0
0 e−KGuududu 0
0 0 e−KGuūGuūdu

2du2

⎞⎠ . (2.30)

Thus the adjoint of the Higgs field with respect to h is:

ϕ† =

⎛⎝ 0 Guūdudu 0
0 0 Guūdudu
0 0 0

⎞⎠ , (2.31)

so that the following relationship holds:

(∇ū −Dū)ωNAH dū = ϕ†(ωNAH) . (2.32)

This gives a solution of Hitchin’s equations (and the tt∗-equations)

[Du, Dū] = − [ϕ,ϕ†] , Dūϕ = 0 , (2.33)

hence we get the family of flat non-abelian Hodge (tt∗)-connections:

∇ζ
NAH =

1

ζ
ϕ+D + ζ ϕ† , ζ ∈ C× , (2.34)

where

D = d + h−1∂uh du.

For the general setup of this proposition, see Section 4.

Proof. The basis elements ω1 and ω2 are defined in (2.19) and (2.20) in such a
way that the difference of the Gauß–Manin and the Chern connection is

(∇u −Du) (ω0 , ω1 , ω2) du = (ω0 , ω1 , ω2)

⎛⎝ 0 0 0
1 0 0
0 1 0

⎞⎠ . (2.35)



PARABOLIC HIGGS BUNDLES, tt∗ CONNECTIONS & OPERS 467

The matrix on the right hand side of this equation is the Higgs field in (2.28). We
then compute ϕ† = h−1ϕTh for h defined in (2.30). The result matches with the
expression in (2.31). The equation Duϕ = 0 imposes no equations on the function K
and Guu featured in h. Meanwhile, the equation [Du, Du] = − [ϕ,ϕ†] imposes that
Guu = ∂u∂uK and that Guu satisfies

∂u∂u logGuu = Guu. (2.36)

The differential ring relation in (2.41) is ∂u logGuu − ∂uK = − 1
3�b2. Taking ∂u of

both sides in the first differential ring relation (2.41) and using that ∂ub2 = 0, we get
(2.36).

We next construct a one–parameter family ∇�

GM of flat connections, � ∈ C∗, from
∇GM. It will be explicitly related to ∇ζ

NAH later on. For the construction, consider a
solution ω�

0 of the �-deformed Picard–Fuchs equations

�3∇3
∂
∂u

ω�

0 (u) = −b2 �
2∇2

∂
∂u

ω�

0 (u)− b1 �∇ ∂
∂u

ω�

0 (u)− b0 ω
�

0 (u) (2.37)

for any � ∈ C∗. Then we consider the frame

ω�

GM :=
(
ω�

0 , �∇uω
�

0 du , �
2(∇u)

2ω�

0 du
2
)
. (2.38)

In this frame we define the connection

∇�

GM = d +
1

�

⎛⎝ 0 0 −b0
1 0 −b1
0 1 −b2

⎞⎠ du (2.39)

where bi = bi(u) as before.

Remark 2.8. The study of the asymptotics in � of the periods of the �-deformed
ω�
0 is subject of the higher rank WKB method, see e.g. [HN19] and references therein.

We note furthermore that the differential equation (2.15) obeyed by the coordinate
expression of the Griffiths–Yukawa coupling becomes:

∂ucuu = − 2

3�
b2 cuu , (2.40)

after using the �-deformed Picard-Fuchs equation (2.37).

2.5. The differential ring relations. We next derive three differential ring
relations between functions associated to the Kähler metric Guū du dū and the coef-
ficient functions of the Picard–Fuchs equation in (2.12). This will be very useful to

explicitly relate the families ∇ζ
NAH and ∇�

GM of flat connections. At the end of this
subsection we comment on how these differential ring relations are related to the ones
found in [Ali17].

Proposition 2.9. Let � ∈ C ,Ku := ∂uK ,Γu
uu := Guū∂uGuū, ω

�
0 ∈ H2,0(Xu,C)

and bi(u) , i = 0, 1, 2 the coefficients of the �-deformed Picard–Fuchs equation describ-
ing the variation of Hodge structure (2.37). The following relations hold:

(1)

Γu
uu −Ku = − 1

3�
b2 , (2.41)
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(2)

∂uKu =
1

2
K2

u − 1

3�
b2Ku − 1

9�2
b22 −

1

6�
∂ub2 +

1

2�2
b1 , (2.42)

(3)

�2 ∂2
ub2 + 2b2� ∂ub2 − 3� ∂ub1 +

4

9
b32 − 2b1b2 + 6b0 = 0 . (2.43)

Proof. The first relation follows from the relation (2.23), proven in Proposition
2.5:

e−K Guū = cuu e
K Guū cuu , (2.44)

by taking the derivative with respect to u and then using the differential equation
satisfied by the Griffiths–Yukawa coupling in (2.40). We obtain the second and third
relations by considering (2.21):

�3 (∇u −Du)ω
�

2 = 0 . (2.45)

This innocent looking equation turns out to be very rich once its ingredients are
spelled out, using the first relation as well as the explicit coordinate expressions for
the Chern connection components we obtain the following equation:

�3 (∇u +Ku − 2Γu
uu) (∇u +Ku − Γu

uu) (∇u +Ku)ω
�

0 = 0 , (2.46)(
�∇u − �Ku +

2

3
b2

)(
�∇u +

1

3
b2

)
(�∇u + �Ku)ω

�

0 = 0 , (2.47)

in this equation we substitute for �3∇3
uω0 using the �-deformed Picard–Fuchs equation

(2.37) and obtain three independent equations in cohomology, namely the coefficients
of �2∇2

uω
�
0 , �∇uω

�
0 and of ω�

0 . The coefficient of �2∇2
uω

�
0 is zero by the algebraic

equations, which were shown to hold in the first part of the proposition. The vanishing
of the coefficient of �∇uω

�
0 gives the second relation of this proposition. Substituting

this relation into the coefficient of ω�
0 gives the third part of the proposition.

Remark 2.10.

• Note that first relation can be derived from the second relation by taking ∂u
of both sides, and then dividing by Guu. Similarly, by taking ∂u of the first
relation we get ∂u∂u logGuu = Guu. This means that Guududu is a metric of
constant curvature −28 on the Riemann surface B = P1 − {0, 1,∞}.

• The function K is a Kähler potential for the metric G determined by the
choice of ω�

0 by (2.18). Given a choice of ω0, the coefficients of the Picard–
Fuchs equation are determined and the differential ring gives algebraic rela-
tions between K, ∂uK and ∂2

uK encoded in (2.42). Different choices of ω�
0

result in different potentials K, namely rescaling ω�
0 by ω0 �→ fω0 shifts the

potential K �→ K + log |f |2. The functions b0, b1, b2 change accordingly. We
note that the third relation doesn’t feature the metric Guududu at all.

8Recall that the curvature of a metric Guududu on a Riemann surface is − 2
Guu

∂u∂u logGuu.
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• We note here that the first and second parts of this proposition were derived in
a different manner in [Ali17], namely by using the explicit expressions for the
curvature of the Chern connection in terms of the Higgs field. The outcome
in [Ali17] are differential ring relations which are determined up to rational
functions on the moduli space which are determined case-by-case. This is due
to the fact that for obtaining the relations in [Ali17] a successive integration
of the ∂ū was used, which yields relations up to holomorphic functions. In
the current derivation, the holomorphic functions are determined by using the
Picard–Fuchs equation. As a qualitative example highlighting the difference
of the approach of [Ali17] to our current approach we note that the resulting
Hitchin equation of the current setup (2.36):

∂u∂u logGuu = Guu ,

can be integrated to give:

Γu
uu −Ku = hol ,

where hol is an undetermined holomorphic function, which is in the ker-
nel of ∂ū. This is in contrast to the relations in cohomology which use the
Picard–Fuchs equations and have no undetermined data. In this example
hol(u) = − 1

3�b2. Moreover the third relation is completely novel to the cur-
rent work. It is a constraint on the coefficients of the Picard–Fuchs equation
which we interpret as the constraint that this Picard–Fuchs equation describes
a polarized variation of Hodge structures.

2.6. Gauge transformation and conformal limit. Using the differential ring
relations, we next give an explicit gauge transformation between the non-abelian
Hodge connection ∇�

NAH and the oper ∇�

GM for any � ∈ C×. As an application we
determine the λ-conformal limit ([Gai14], [DFK+16]) for any λ ∈ C× associated to

the family ∇ζ
NAH of non-abelian Hodge flat connections. For the next proposition, let

ω�

NAH = (ω�
0 , ϕu(ω

�
0 ), ϕ

2
u(ω

�
0 )).

Proposition 2.11. For any � ∈ C× fix ω�
0 solving the �-deformed Picard–

Fuchs equation in cohomology (cf. (2.11)). Then ∇�

NAH = 1
�
ϕ + D + �ϕ† is gauge

equivalent to ∇�

GM. Concretely, let ω�

GM be the frame (2.38) of H�. Define the gauge
transformation A� satisfying

ω�

GM = ω�

NAHA� , (2.48)

which is concretely given by

(A�)−1 =

⎛⎝1 �Ku du �2Buudu
2

0 1 �Ku +
1
3b2

0 0 1

⎞⎠ , (2.49)

with

Buu =
1

2
K2

u − 1

9�2
b22 −

1

6�
∂ub2 +

1

2�2
b1

(2.42)
= ∂uKu +

1

3�
b2Ku .

Then the gauge transformation A� transforms the �-non-abelian Hodge flat connection
∇�

NAH into the oper ∇�

GM, i.e.

∇�

GM = (A�)−1 ◦ ∇�

NAH ◦ A�. (2.50)
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Proof. Recall that in the frame ω�

GM , the connection ∇�

GM is given by

∇�

GM = d +
1

�

⎛⎝ 0 0 −b0
1 0 −b1
0 1 −b2

⎞⎠ du . (2.51)

Then the proof that ∇�

GM = (A�)−1◦∇�

NAH◦A� is a tedious but straightforward com-
putation and follows from Propositions 2.7 and 2.9. We give the details to illustrate
how the differential ring relations in (2.41)-(2.43) and the relation Guu = ∂u∂uK are
used. We compute that

(
(A�)−1 ◦ ∇�

NAH ◦ A� −∇�

GM

)(0,1)
= �

⎛⎝0 ∗(1,2) ∗(1,3)
0 0 ∗(2,3)
0 0 0

⎞⎠ , (2.52)

where

∗(1,2) = Guu − ∂u∂uK ,

∗(1,3) := −∂uBuu +GuuKu ,

∗(2,3) := Guu − ∂u∂uK .

This vanishes since Guu = ∂u∂uK by definition, and similarly ∂uBuu := ∂u(
1
2K

2
u).

The (1, 0)-part is given by

(
(A�)−1 ◦ ∇�

NAH ◦ A� −∇�

GM

)(1,0)
=

⎛⎝0 ∗(1,2) ∗(1,3)
0 ∗(2,2) ∗(2,3)
0 0 ∗(3,3)

⎞⎠, (2.53)

where

∗(2,2) := 1

3�
b2 + Γu

uu −Ku

∗(3,3) := 2

3�
b2 + 2Γu

uu − 2Ku

∗(1,2) := 1

2�
b1 − 1

9�
b22 − 1

6
∂ub2 + �Γu

uuKu − �
1

2
K2

u − �∂uKu

∗(2,3) := 1

2�
b1 − 1

6
∂ub2 − 1

3
b2Ku − �

2
K2

u +
1

3
Γu
uub2 + �Γu

uuKu − �∂uKu

∗(1,3) = 1

�
b0 − 1

6�
b1b2 +

1

27�
b32 − 1

2
∂ub1 +

5

18
b2∂ub2 +

�

6
∂2
ub2 + b1Γ

u
uu − 2

9
b22Γ

u
uu

−�

3
∂ub2Γ

u
uu − b1Ku +

2

9
b22Ku +

�

3
∂ub2Ku − �

3
b2Γ

u
uuKu +

�

6
b2K

2
u +

�

3
b2∂uKu.

These five entries vanish because of the three differential ring relations. Indeed, the
(2, 2)-entry and (3, 3)-entry vanish because Γu

uu −Ku = − 1
3�b2. Similarly the (1, 2)-

entry vanishes because

∗(1,2) (2.42)
= �(−K2

u + Γu
uuKu) +

1

3
b2Ku

(2.41)
= 0.

The (2, 3)-entry vanishes because of (2.41) and (2.42). The (1, 3)-vanishes because
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∗(2,3) (2.41),(2.42)
=

b0
�

− 1

3�
b1b2 +

2

27�
b32 −

1

2
∂ub1 +

1

3
b2∂ub2 +

�

6
∂2
ub2

(2.43)
= 0.

Having studied the relation between the non–abelian Hodge flat connection ∇�

NAH

and the oper ∇�

GM, we will now study the relation between the one–parameter family

of non–abelian Hodge flat connections ∇ζ
NAH and the oper ∇�

GM.

Following [Gai14, DFK+16], we can extend the one–parameter family of ∇ζ
NAH

to a two–parameter family

∇ζ,R
NAH = ζ−1Rϕ+D(hR) + ζRϕ†hR , (2.54)

parameterized by ζ ∈ C× and R ∈ R+. The Hermitian metric hR solves the R-rescaled
Hitchin’s equations

FD(hR) = −R2
[
ϕ,ϕ†hR

]
, Dūϕ = 0. (2.55)

The λ-conformal limit of ∇ζ,R
NAH is defined by taking ζ → 0 and R → 0 but fixing the

ratio ζ/R to be equal to λ ∈ C×, in particular λR = ζ. Gaiotto conjectured [Gai14]

that limR→0 ∇λR,R
NAH is defined and is an oper. In this particular case, Proposition 2.11

will imply that the limit is gauge equivalent to

∇�

GM = d +
1

�

⎛⎝ 0 0 −b0
1 0 −b1
0 1 −b2

⎞⎠ du , (2.56)

an oper (cf. Example 3.7) determined by the �-deformed Picard–Fuchs equation
(2.37).

Corollary 2.12. Consider the two-parameter family of non–abelian Hodge flat
connections

∇ζ,R
NAH =

R

ζ
ϕ+DR +Rζϕ†hR ,

where DR is the Chern connection for the pair (E, hR). Then its λ-conformal limit
exists for any λ ∈ C× and is given by

lim
R→0

∇λR,R
NAH = ∇λ

NAH =
1

λ
ϕ+Dh + λϕ†h , h = h1 .

Moreover, g−1
λ,� ◦ ∇λ

NAH ◦ gλ,� = ∇�

NAH = A� ◦ ∇�

GM ◦ (A�)−1 where

gλ,� =

⎛⎝1 0 0
0 �λ−1 0
0 0 �2λ−2

⎞⎠ , (2.57)

i.e. the λ-conformal limit is gauge equivalent to ∇�

GM for any � ∈ C×.

Proof. This claim essentially follows from the fact that the Higgs bundle (E, ξ ϕ)
is isomorphic to (E,ϕ) for any ξ ∈ C×. More precisely, let hR be the Hermitian
metric which solves the R-rescaled Hitchin’s equations in (2.55). In the frame ω�

NAH

it is given by

hR =

⎛⎝e−K 0 0
0 |R|−2e−KGuududu 0
0 0 |R|−4e−KGuuGuudu

2du2

⎞⎠ . (2.58)
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Now define

gR =

⎛⎝1 0 0
0 R−1 0
0 0 R−2

⎞⎠ (2.59)

with respect to the direct sum decomposition of E . Then we check that
Rϕ = g−1

R ϕgR, hR = g†Rh1gR. (2.60)

Hence it follows that λR2ϕ†hR = λϕ†h1 and similarly D(hR) = D(h1). Consequently,

∇λR,R
NAH is independent of R and the λ-conformal limit is equal to

∇λ
NAH =

1

λ
ϕ+Dh + λϕ†h , (2.61)

for h = h1. One can immediately check that g
−1
λ,� ◦ ∇λ

NAH ◦ gλ,� = ∇�

NAH.

2.7. Quartic example. 9 In the following we will provide the geometric data
of the VHS H of weight 2 attached to the mirror quartic family as a specific example
of the previous discussion. We postpone the definition of the mirror quartic and the
discussion of how to obtain the associated Picard–Fuchs equation to 5.3 in §5 because
we will need some notions of mirror constructions to do this. The moduli space in
this case is B = P1 \ {0, 1,∞}. The Picard–Fuchs equation is given in terms of a local
coordinate z ∈ B centered around 0 as10

LPF = θ3 − z

3∏
i=1

(θ + i/4) , θ = z
d

dz
, (2.62)

the discriminant of this operator is:

Δ = 1− z . (2.63)

And the Griffiths–Yukawa coupling can be computed to be:

czz =
κ

z2Δ
, (2.64)

with κ an integration constant which we set to 1.
The solutions of the Picard–Fuchs (PF) equation, corresponding to the integrals

of the holomorphic form ω0 over a basis of integral cycles, i.e. periods, are given by
[Ali17]:

π0 = 3F2

(
1

4
,
1

2
,
3

4
; 1, 1, z

)
, (2.65)

π1 = i
1

2π3/2Γ(1/4)Γ(3/4)
G2 3

3 3

(
1
4

1
2

3
4

0 0 0
z

)
, (2.66)

π2 =
1

2
(π1)2/π0 . (2.67)

9Here and in the following concrete computations, we do not consider the �- or ζ-dependence of
the solutions which is the starting point of their exact WKB analysis (see e.g. [HN19]). This will be
discussed elsewhere.

10We will use z throughout this paper as a local coordinate whenever it is centered around a regular
singular point or when it is obtained from the toric data of the mirror symmetry constructions of
§5. We will denote by u either the local coordinate of generic point in the base manifold or, if the
context is clear, some explicit coordinate system.
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Here π0, π1 are given in terms of the hypergeometric functions 3F2 and Meijer G-
functions respectively. We define:

τ =
π1

π0
, q = e2πiτ , (2.68)

The integrality and modular properties of the inverse mirror map z(q) have been
addressed in [LY96]. The periods π0, π1, mirror map and Kähler potential of this
example can be expressed in terms of the differential ring of quasi-modular forms
associated to the congruence subgroup Γ0(2) of SL(2,Z). A careful study of the
Picard-Fuchs operator and of the monodromy of its solutions reveals that the mon-
odromy group in this case is Γ0(2)+ [LY96, Hos00]. We will use the quasi-modular
forms, reviewed in Appendix A:

A(τ) = (θ2(τ) + θ3(τ))
1/2 , (2.69)

B(τ) = θ24(2τ) (2.70)

C(τ) =
1√
2
θ22(τ) (2.71)

E(τ) =
1

3
(2E2(2τ) + E2(τ)) , (2.72)

which obey the algebraic relation

A4 = B4 + C4 .

We have moreover the differential ring relations for Γ0(2), given in Appendix A:

∂τA =
1

8
A(E +

A4 − 2B4

A2
) , (2.73)

∂τB =
1

8
B(E −A2) ,

∂τE =
1

8
(E2 −A4) .

We find an expression for the inverse mirror map

z(τ) =
4B(τ)4(A(τ)4 −B(τ)4)

A(τ)8
, (2.74)

and moreover

π0(τ) = A2(τ) . (2.75)

and we obtain for the Kähler potential and metric

e−K = 2|π0|2(Imτ)2 = 2A(τ)2 A(τ̄)2(Imτ)2 , G =
1

4(Im τ)2
dτdτ̄ . (2.76)

We note that G is the Poincaré metric on H/Γ0(2)
+ which is isomorphic to B.

For the coefficients of the Picard–Fuchs equation for the holomorphic form ω0:

∇3
∂
∂z
ω0 = −b2(z)∇2

∂
∂z
ω0 − b1(z)∇ ∂

∂z
ω0 − b0(z)ω0 , (2.77)
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we obtain from (2.62):

b0(z) =
3

32(z − 1)z2
, b1(z) =

51z − 16

16(z − 1)z2
, b2(z) =

6− 9z

2z − 2z2
. (2.78)

We can now verify the differential ring equations 2.73 and map these using the modular
expressions for z, π0 and e−K to the differential ring relations of the quasi–modular
forms of Γ0(2).

Finally, we turn to the parabolic Higgs bundle (Ê, ϕ̂) on B̂ = CP1 with divisor
D = {0, 1,∞} defined by the VHS H of weight 2. As reviewed in detail in §4, the
filtered holomorphic bundle (HO, F •HO) extends to a filtered holomorphic bundle

(ĤO, F̂ •ĤO). Likewise the holomorphic Gauß–Manin connection ∇ extends to a

logarithmic connection ∇̂ on ĤO with logarithmic poles along D.
Define the holomorphic bundle Ê := Ê2,0⊕ Ê1,1⊕ Ê0,2 on B̂ for Êp,q = F̂ p/F̂ p+1.

Together with Griffiths’ transversality, ∇̂ induces the logarithmic Higgs field ϕ̂ =
⊕2

p=0ϕ̂
p with components

ϕ̂p : Ê2−p,p → Ê2−p−1,p+1 ⊗ Ω1(B̂, log(D)).

As an application of Theorem 4.9, we make the bundle Ê explicit for this example.

Example 2.13 (Mirror quartic). The exponents of the Picard–Fuchs equations
at the points d ∈ D = {0, 1,∞} (see (3.20) below for a definition) are given by

d 0 1 ∞
μd
1 0 0 1

4
μd
2 0 1

2
1
2

μd
3 0 1 3

4

Then the induced parabolic Higgs bundle (Ê, ϕ̂) satisfies

Ê = Ê2,0 ⊕ Ê1,1 ⊕ Ê0,2 ∼= OP1 ⊕OP1(−1)⊕OP1(−1).

This follows from Theorem 4.9 and the classification of line bundles over P1. Hence
the logarithmic Higgs field ϕ̂ has components

ϕ̂0 ∈ H0(P1,OP1) ∼= C,

ϕ̂1 ∈ H0(P1,OP1(1))

since Ω1(P1, log(D)) = OP1(1).

3. Variations of Hodge structures and their relation to opers. The aim of
this section is twofold. Firstly, we motivate and review variations of Hodge structures.
Secondly, we show that variations of Hodge structures over a Riemann surface C with
a so-called generic cyclic vector are equivalent to opers.

3.1. Variations of Hodge structures. We begin with a single projective mani-
foldX ↪→ CPN of dimC(X) = n with Kähler class ω ∈ H2(X,Z). For every 0 ≤ k ≤ n,
the cohomology groups Hk(X,C) admit the Hodge decomposition

Hk(X,C) =
⊕

p+q=k

Hp,q(X), Hp,q(X) = Hq,p(X). (3.1)
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It is equivalent to the Hodge filtration F •Hk(X,C) defined by

F pHk(X,C) =
⊕
l≥p

H l,k−l(X), F p ∩ F̄ q = 0 if p+ q = k + 1,

via Hp,q(X) = F pHk(X,C)∩ F̄ qHk(X,C). The group Hk(X,Z) carries an additional
structure, namely the bilinear form Q : Hk(X,Z)⊗Z Hk(X,Z)→ Z,

Q(α, β) = (−1) 12k(k−1)

∫
X

α ∧ β ∧ ω∧n−k. (3.2)

It is symmetric if k is even and skew-symmetric if k is odd. To state the Riemann-
Hodge bilinear relations ([Huy05]) satisfied by Q, we introduce the Weil operator
W ∈ End(Hk(X,C)) defined by

W |Hp,q = ip−q. (3.3)

The Riemann-Hodge bilinear relations are then given by
I) Q(Hp,q, Hr,s) = 0, (r, s) �= (q, p), or equivalently Q(F l, F k−l+1) = 0,
II) for every non-zero primitive cohomology class11 α ∈ Hk

prim(X,Q),

h(α, α) := Q(Wα, ᾱ) > 0. (3.4)

Abstracting these properties yields the following

Definition 3.1. An integral Hodge structure (Z-Hodge structure) of weight k is
a pair (HZ, F

•HC) consisting of a free abelian group HZ of finite rank and a decreasing
filtration F •HC of HC = HZ ⊗ C such that F pHC ∩ F̄ qHC = 0 if p+ q = k + 1.
A polarization on (HZ, F

•HC) is a bilinear map Q : HZ ⊗HZ → Z such that I) and
II) are satisfied. The Hermitian metric h on defined by (3.4) is called Hodge metric.

The notions of a rational or real Hodge structure (Q-/R-Hodge structure) and
polarizations are defined analogously by replacing Z with Q or R.

Example 3.2. Using the Lefschetz decomposition of Hk(X,C), it is possible
to construct a polarization Q on all of Hk(X,C) and not just on the primitive part
Hk

prim(X,Z). However, the polarization is no longer defined over Z in general because

the Lefschetz decomposition is only defined over Q. Hence Hk(X,Q) is a polarizable
rational Hodge structure of weight k.

Example 3.3 (Hodge structures of K3 surfaces). Let X be an algebraic K3
surface, i.e. a compact connected Kähler surface X such that Ω2

X
∼= OX , H

0,1(X) =
0 = H1,0(X) and X admits an integral Kähler class ω ∈ H2(X,Z). Then H2(X,Z)
together with the intersection form (3.2) is a polarized Z-Hodge structure of weight
2. It has the property that

h0,0 = h2,2 = 1, h1,0 = h0,1 = 0, h2,0 = h0,2 = 1, h1,1 = 20

and all other hp,q := dimC Hp,q(X) are zero.

The previous discussion works in the family case as well. More precisely, let π :
X → B be a family of projective manifolds of dimension n over the complex manifold

11Recall that a cohomology class α ∈ Hk(X,Q) is primitive if α ∧ ω∧n−k+1 = 0.
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B. Then the polarized integral Hodge structures (Hk
prim(Xb,Z), F

•Hk
prim(Xb,C), Qb)

of weight k vary nicely over B and determine a polarized integral variation of Hodge
structures ([Gri68]):

Definition 3.4. Let B be any complex manifold. An integral variation of Hodge
structures (Z-VHS) of weight k is a tuple H = (HZ, F

•HO) consisting of
• a locally constant sheaf HZ of free abelian groups of finite rank,
• a decreasing filtration F •HO of the associated holomorphic bundle HO =

HZ ⊗OB in holomorphic subbundles.
These are subject to the conditions

i) the fibers Hb = (HZ,b, F
•HO,b) form an integral Hodge structure of weight k,

and
ii) the filtration F •HO satisfies Griffiths transversality with respect to the holo-

morphic Gauß–Manin connection ∇:
∇F pHO ⊂ F p−1HO ⊗ Ω1

B .

A polarization of a Z-VHS H is a morphism Q : HZ ⊗HZ → ZB, for the constant
sheaf ZB, such that its restriction Qb to the fiber over b is a polarization of the integral
Hodge structure Hb. A Z-VHS together with a polarization Q is called a polarized
Z-VHS. It is called polarizable if it admits a polarization.

Remark 3.5. By working over R = Q,R instead of Z, we obtain the notion of an
R-VHS. A polarization of an R-VHS is defined analogously. In §4 we further review
complex VHS. Clearly, every polarized Z-VHS (H, Q) on B determines a polarized
R-VHS by tensoring with the constant sheaf RB for R = Q,R.

All of the following result in this section hold true for R-VHS for R = Z,Q,R.
We concentrate on Z-VHS because these arise from our geometric examples.

Given a polarized Z-VHS (H, Q) of weight w with Hodge filtration F •HO, we
define the Hodge bundles

Hp,q = F pHO ∩ F̄ qHO ∼= F pHO/F p+1HO. (3.5)

The last isomorphism is only a C∞-isomorphism. However, the bundles on the right-
hand side of (3.5) are holomorphic bundles. Hence each Hp,q is naturally endowed
with a holomorphic structure. The smooth splitting

HO =
⊕

p+q=w

Hp,q (3.6)

therefore endows HO with another holomorphic structure. For better distinction, we
denote the resulting holomorphic bundle as

E =
⊕

p+q=w

Ep,q. (3.7)

As for a single polarized Hodge structure, the polarization Q induces the Hodge metric
h(v, w) = Q(W (v), w) on E and the decomposition (3.7) is orthogonal with respect
to h.

Besides the Hodge metric, we further obtain the non-degenerate pairing

η(v, w) = Q(W (v), w).
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It is related to the Hodge metric h by h(v, w) = η(v, τ(w)) for the complex conjugation
τ(v) = v̄ with respect to HZ. The tuple (H, h, η) is an example of a tt∗-geometry of
Cecotti–Vafa [CV92] (see [Her03] for a mathematical account).

In the following, we concentrate on any Z-VHS over a not necessarily compact
Riemann surface C, generalizing the setup of Section 2.2.

3.2. From Z-VHS to opers and back. We next explain how VHS on a Rie-
mann surface C are related to (GL(r,C)-)opers ([BD05]).

Definition 3.6. A (GL(r,C))-oper over the Riemann surface C is a pair
(F •V,∇) consisting of

• a holomorphic bundle V of rank r with a decreasing filtration

V = F 0V ⊃ · · · ⊃ F r−1V ⊃ F rV = 0

such that rk(GrkFV) = 1 for GrkFV = F kV/F k+1V and all 0 ≤ k ≤ r − 1,
• a holomorphic connection ∇ such that F •V satisfies Griffiths transversality

∇F kV ⊂ F k−1V ⊗ Ω1
C .

Moreover, the OC-linear morphisms GrkFV → Grk−1
F V ⊗ Ω1

C induced by ∇
are isomorphisms for all 0 ≤ k ≤ r − 1.

We call such a filtration of (V,∇) an oper filtration. An oper (F •V,∇) is an SL(r,C)-
oper if ∇ induces the trivial connection on detV.

Example 3.7. Locally, for every oper (V,∇) there is a frame of V such that the
corresponding connection 1-form of ∇ has the form⎛⎜⎜⎜⎜⎜⎜⎝

∗ ∗ · · · · · · ∗
+ ∗ · · · · · · ∗
0

. . .
. . .

. . .
...

...
. . .

. . .
. . .

...
0 · · · 0 + ∗

⎞⎟⎟⎟⎟⎟⎟⎠ .

Here + are nowhere vanishing entries and ∗ are arbitrary ones.
A global standard example is given as follows: let C be a compact Riemann

surface of genus ≥ 2 and L a spin bundle, i.e. L2 ∼= KC . Let

0 L V L∗ 0 (3.8)

be the non-trivial extension. Let g be a Riemannian metric in the conformal class of
C. Then the Levi-Civita connection of g defines a holomorphic connection ∂L on L.
With respect to the smooth splitting of (3.8), define the holomorphic connection

∇ =

(
∂L 0

1 ∂L∗

)
.

Note that 1 makes sense here because KC ⊗ Hom(L,L∗) ∼= OC . Then (V,∇) is an
oper, in fact an SL(2,C)-oper.

Opers are closely related to VHS. The only missing datum is a compatible integral
(or rational/real) structure, i.e. a locally constant sheaf VZ ⊂ V of free abelian groups
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of rank r such that VZ ⊗Z OC
∼= V and ∇ coincides with the canonical connection on

the left-hand side under this isomorphism. Moreover, we require that F • is a Hodge
filtration on VZ ⊗ OC

∼= V. In this case, (VZ, F
•V) is a Z-VHS of weight w = r − 1

and type (1, . . . , 1), i.e. rk(GrpFV) = 1 for all p ∈ {0, . . . , r − 1}.
Example 3.8 (Families of elliptic curves). Let X → C be a family of elliptic

curves over the Riemann surface C and let (HZ, F
•HO) be the induced polarizable

Z-VHS of weight 1 over C. It defines the period map P : C → H/Γ (see [CMSP17,
§4.5]) where Γ ⊂ Aut(H) is the monodromy group of the family X . Here we have
identified the period domain D for Hodge structure of weight 1 and rank 2, i.e. the
space of all Hodge filtrations F 1 ⊂ HC

∼= C2, with H ⊂ CP1.
The condition that (F •HO,∇) is an oper is rephrased as a condition on P as

follows. The tangent space TuH to the period domain D = H is canonically identified
with TuH ∼= Hom(F 1

u , F
0
u/F

1
u). Then the derivative dPu : TuC → TuH of the period

map is identified with

TuC → Hom(F 1
u , F

0
u/F

1
u), v �→ (α �→ ∇vα mod F 1

u), (3.9)

see ([CMSP17, Lemma 5.3.2.]). Hence (F •HO,∇) is an oper if, and only if, dPu is an
isomorphism if, and only if, P is a local isomorphism. If the last condition is satisfied,
then the family X → C is called complete.

Example 3.9 (Families of K3 surfaces). Let (HZ, F
•HO) be a Z-VHS of weight

2 which is determined by a family of algebraic K3 surfaces over a Riemann surface C.
In this case HZ is always of rank 22, compare Example 3.3 and

rk(Gr2F ) = 1, rk(Gr1F ) = 20, rk(Gr0F ) = 1.

Therefore (F •HO,∇) cannot be an oper for dimension reasons. However, by working
with complete families of M -polarized K3 surfaces for M̌ = 〈2n〉, we obtain integral
variations of Hodge structures with a generic cyclic vector, cf. Section 2.1.

Remark 3.10. The previous two examples show that complete families X → C
of elliptic curves and certain lattice polarized K3 surfaces determine an oper over C.
It seems plausible that an analogous statement is true for all complete families of
Calabi–Yau d-folds even over higher-dimensional bases.

To explain how to pass from Z-VHS to opers, we need the notion of a (generic)
cyclic vector:

Definition 3.11. Let (V,∇) be a holomorphic bundle of rank r on the Riemann
surface C with a holomorphic connection∇. A cyclic vector of (V,∇) is a holomorphic
section ω ∈ H0(C,V) such that for each u ∈ C and every holomorphic vector field X
with X(u) �= 0,

∇k
Xω, k = 0, . . . , r − 1 (3.10)

is a local frame of X around u. A generic cyclic vector of (V,∇) is a non-zero
meromorphic section ω ∈ M(C,V) such that ω|C′ is a cyclic vector where C ′ = C−Dω

is the complement of the divisor Dω defined by ω.

Example 3.12. In Example 3.8 we have seen that the filtered holomorphic bundle
(F •HO,∇) with holomorphic connection determined by the family X → C of elliptic
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curves is an oper if, and only if, the period map P : C → H/Γ is a local isomorphism.
This is in turn equivalent to the existence of a generic cyclic vector:

Let ω ∈ M0(C,F 1) be a non-zero meromorphic section and C ′ = C − Dω ⊂ C
the complement of its zeros and poles. Fix u ∈ C ′ and identify F 0

u/F
1
u
∼= H0,1

u . In the
bases ωu ∈ F 0

u = H1,0
u and ω̄u ∈ H0,1

u the homomorphism dPu(v) ∈ Hom(H1,0
u , H0,1

u )
for v ∈ TuC is represented by

Q(ωu,∇vωu)

Q(ωu, ω̄u)
∈ C. (3.11)

This is non-zero for v �= 0 if, and only if, (ω,∇V ω) is a local frame of HO around
u (for an holomorphic vector field V extending v), i.e. if, and only if, ω is a generic
cyclic vector.

A similar discussion holds true for a family X → C of compact Calabi-Yau three-
folds over a Riemann surface C which is complete, i.e. the Kodaira-Spencer map
κu : TuC → H1(Xu, TXu) is an isomorphism for each u ∈ C. We refer [BG83, (1.4)]
for details.

Every generic cyclic vector ω ∈ M(C,V) defines an oper filtration F •
ω . Define

Fw−l
ω , w = r − 1, as the smallest subbundle of V which contains

∇k
Xω, k = 0, . . . , l

for every local holomorphic vector field X. Since ω is a generic cyclic vector,
rk(Fw−l

ω ) = l + 1 and rk(GrkFω
) = 1 for k ∈ {0, . . . , w}.

Proposition 3.13. The filtration F •
ω of (V,∇) is an oper filtration. Conversely,

if (HO,∇) carries an oper filtration F •HO, then (HO,∇) admits a generic cyclic
vector ω ∈ M(C,V) such that F •

ω = F •.
In particular, if a Z-VHS (HZ, F

•HO) of rank r and weight w = r − 1 admits
a generic cyclic vector ω ∈ M(C,Fw), then (F •HO,∇) is an oper with F • = F •

ω .
Hence it is of type (1, . . . , 1).

Proof. Let C ′ = C −D be the complement of the pole and zero divisor D of ω.
By the construction of F •

ω since ω is a cyclic vector, (F •
ω ,∇) is an oper on C ′.

Now let d ∈ D and choose a local coordinate z centered at d. Then ω = zkω′ for
a holomorphic section ω′ with ω′(0) �= 0. Let si be a local flat frame of V around d.
Then the section ω′ is given by

ω′ =
r∑

j=1

fjsj .

We denote by μd
i = vd(fi) the vanishing order of fi at d and assume without loss of

generality that μd
1 ≤ μd

2 ≤ · · · ≤ μd
r . By Remark 3.17 below, we know that

μd
j = j − 1, 1 ≤ j ≤ r. (3.12)

This implies that the k-th derivatives f
(k)
j satisfy

f
(k)
j (0) �= 0 for k = j − 1, f

(k)
j (0) = 0 for k ≥ j. (3.13)

As a consequence,

∇k
d/dzω

′ =
k+1∑
j=1

f
(k)
j (0)sj , k = 0, . . . , l (3.14)
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is a basis of F
(r−1)−l
ω at 0. Therefore ω′ is a cyclic vector around d and hence

(F •
ωHO,∇) is an oper.
Conversely, if (F •HO,∇) is an oper, then there exists a non-zero meromorphic

section ω ∈ M(C,F r−1). By the properties of an oper, ω is a generic cylic vector.
The last claim follows from the fact that the generic cyclic vector ω is a mero-

morphic section of Fw and Griffiths’ transversality.

Hence opers with a compatible integral structure are equivalent to Z-VHS with a
generic cyclic vector.

3.3. From Z-VHS to Picard–Fuchs equations. We next recall the relation
between polarizable Z-VHS with a generic cyclic vector and Picard–Fuchs equations.

Let (HZ, Q, F •) be a polarized Z-VHS of weight w = r− 1 on the punctured disk
Δ∗ ⊂ Δ. Then the monodromy T around 0 ∈ Δ is quasi-unipotent by a result of Borel
([Sch73, Lemma 4.5]) We assume that there exists a cyclic vector ω ∈ H0(Δ∗, Fw).
This implies the existence of aj ∈ O(Δ∗) satisfying

∇r
d/dzω + ar−1(z)∇r−1

d/dzω + · · ·+ a0(z)ω = 0. (3.15)

Definition 3.14. The point 0 ∈ Δ∗ is...
• ... called a regular point of ∇ if aj extends to holomorphic functions at 0;
• ... a regular singular point of ∇ if bj := zjaj extends to a holomorphic
function at 0.

The Gauß–Manin connection is known to be regular singular ([Sch73, Theorem
4.13]), i.e. the limiting point 0 ∈ Δ is either a regular point or a regular singular
point.

Assume that 0 ∈ Δ is a regular singular point so that

∇r
zd/dzω + br−1(z)∇r−1

zd/dzω + · · ·+ b0(z)ω = 0 (3.16)

for bj ∈ O(Δ). If γ ∈ H0(Δ∗,H∨
Z
) is a (multi-valued) section, then the (multi-valued)

function f := Q(γ, ω) satisfies the scalar differential equation

LPFf := θrf + br−1(z)θ
r−1f + · · ·+ b0(z)f = 0, θ = z

d

dz
. (3.17)

It is called the Picard–Fuchs equation associated with ω and is an ordinary differential
equation with a regular singularity at 0. Its solutions, the periods, form a local system
which is denoted by Sol(LPF). The next lemma is immediate.

Lemma 3.15. Let ω ∈ H0(Δ∗, Fw) be a cyclic vector as before. Then the mor-
phism

HZ �→ Sol(LPF), γ �→ Q(γ, ω) (3.18)

is an isomorphism of local systems. In particular, ω =
∑r

i=1 fisi for a multi-valued
frame si of HZ on Δ∗ and fi corresponds to the γj such that Q(γj , si) = δij under
the isomorphism (3.18).

Remark 3.16. If ω is not cyclic but only non-vanishing on Δ∗, then (3.18) is
only a surjection.
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In particular, if T is the local quasi-unipotent monodromy of HZ around a punc-
ture d ∈ D, then the local monodromy of the periods is the dual T∨. If we represent
T as a matrix A with respect to a basis, then T∨ corresponds to (A−1)t in the dual
basis. Under the isomorphism HZ

∼= H∨
Z
induced by Q we therefore identify T with

T∨. In particular, the eigenvalues λi of T do not only satisfy λi ∈ U(1) ⊂ C× but
also λ1 · · ·λr = 1.

These eigenvalues are related to the Gauß–Manin connection: in the frame
∇k

zd/dzω, k = 0, . . . , r − 1, the connection 1-form is given by

B(z)dzz :=

⎛⎜⎜⎜⎜⎝
0 0 0 −b0(z)

1 0
. . . −b1(z)

...
. . .

. . .
...

0 · · · 1 −br−1(z)

⎞⎟⎟⎟⎟⎠ dz
z , (3.19)

cf. Example 3.7. It is known ([Del70, 1.17.2.]) that exp(2πiB(0)) has the same
eigenvalues λj as T . The eigenvalues of exp(2πiB(0)) are in turn of the form λj =
exp(2πiμj) for the eigenvalues μj of B(0). These are the roots of the polynomial

p(X) := Xr + br−1(0)X
r−1 + · · ·+ b0(0) ∈ C[X] (3.20)

(and B(0) is its companion matrix). Since λj = exp(2πiμj) ∈ U(1), we must have
μj ∈ R and we choose the ordering μ1 ≤ · · · ≤ μr.

On the other hand, μj are called exponents of the Picard–Fuchs equation (3.17).
They determine the structure of solutions to (3.17). Let μi1 < · · · < μis be the
pairwise distinct exponents where μij has multiplicity mj . The Frobenius method
([Fro73], [CL55, §3]) shows that a basis of solutions to (3.17) is given by multi-valued
functions of the form

mj∑
k=1

zμij (log z)k−1gjk(z), j = 1, . . . , s, (3.21)

for holomorphic functions gjk on Δ with gjk(0) �= 0.

Remark 3.17. If 0 ∈ Δ is a regular point of ∇, then the monodromy T is trivial
and the Z-VHS canonically extends to 0. In this case the exponents μj are defined as
well and are given as follows. If k = v0(ω) is the order of ω at 0, then μj = k+(j−1).

The previous discussion globalizes: let C◦ ⊂ C be the complement of a reduced
divisor Ds ⊂ C in a compact Riemann surface C. If (HZ, F

•, Q) is a polarized Z-VHS
of weight w = r − 1 on C◦ with a generic cyclic vector ω ∈ M(C◦, Fw), then the
exponents μu

1 ≤ · · · ≤ μu
r are defined for any u ∈ C by the local discussion above.

Note that μu
j are independent of a local chart around each u ∈ C and only depend on

ω. Moreover, if f ∈ M(C) is a non-zero meromorphic function, then the exponents
μ̃u
j defined by ω̃ = fω are given by μ̃u

j = μu
j + vu(f) for the order vu(f) of f at u.

Therefore Z-VHS together with a generic cylic vector determine local Picard-
Fuchs equations and their exponents μu

j . The later will play a crucial role in the
relation between Z-VHS with a generic cyclic vector and (parabolic) Higgs bundles
as we explain next.
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4. From Z-VHS to (parabolic) Higgs bundles. In the beginning of this
section, we review the relationship between (complex) variations of Hodge structures
over a compact Riemann surface C and Higgs bundles (E,ϕ) such that (E,ϕ) is
isomorphic to (E, ζϕ) for any ζ ∈ C×. These are called systems of Hodge bundles,
cf. [Sim91] (also see [CMSP17, Chapter 13]). Afterwards we explain how Z-VHS
determine parabolic Higgs bundles. Finally, we determine, in the presence of a generic
cyclic vector, the degrees of the resulting parabolic Higgs bundles in terms of the
exponents introduced in the last section.

4.1. From Z-VHS to Higgs bundles with harmonic metric. Let H =
(HZ, Q, F •HO) be a polarized Z-VHS of weight w over the Riemann surface C. The
local system HZ induces the flat smooth Gauß–Manin connection ∇C on the smooth
bundle Hsm underlying HO. Griffiths’ transversality and the smooth decomposition
(3.6) implies that

∇C = D+ ϕ+ ψ (4.1)

where12 D : Ω0
sm(Hp,q)→ Ω1

sm(Hp,q) is a connection preserving the (p, q)-types and

ϕ : Ω0
sm(Hp,q)→ Ω1,0

sm(Hp−1,q+1),

ψ : Ω0
sm(Hp,q)→ Ω0,1

sm(Hp+1,q−1).

Note that the holomorphic Gauß–Manin connection ∇ is just the (1, 0)-part of ∇C,

∇ = ∇1,0
C

= D1,0 + ϕ.

In particular, we recover the filtered holomorphic bundle F •HO with holomorphic
connection ∇.

Lemma 4.1. The connection D is the Chern connection for the Hodge metric
h and the direct sum holomorphic bundle E =

⊕
p+q=w Ep,q (with respect to the

holomorphic structure D0,1). Moreover,

h(ϕ(s0), s1) = h(s0, ψ(s1))

for all (local) sections s0, s1 of E so that ψ = ϕ†h .

Proof. First of all, the holomorphic structure on E coincides with D0,1. We prove
that D is compatible with h. Let s0, s1 be local sections of E

p,q. Then we compute
(the sign is determined by (3.3))

dh(s0, s1) = ±i dQ(s0, s̄1)

= ±i (Q(∇Cs0, s̄1) +Q(s0,∇Cs̄1)) (flatness of Q)

= ±i (Q(Ds0, s̄1) +Q(s0,Ds̄1)) (by (4.1))

= h(Ds0, s̄1) + h(s0,Ds̄1),

i.e. D is h-unitary. Thus, D is the Chern connection.
Now let s0 and s1 be (local) sections of E

p,q and Ep′,q′ respectively with p �= p′

(hence q �= q′). A similar computation as before together with h(s0, s1) = 0 shows

0 = h(ϕ(s0), s1) + h(s0, ψ(s1))

12Here Ωk
sm(Hp,q) stands for smooth k-forms with values in the smooth bundle Hp,q (dropping

the subscript ‘sm’ for Hp,q).
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which concludes the proof.

The smooth Gauß–Manin connection and the previous lemma motivates a weaker
notion than an R-VHS for R = Z,Q,R:

Definition 4.2. A complex variation of Hodge structure (C-VHS) of weight w
is a pair (V,∇C) consisting of a smooth bundle V over C with a decomposition

V = ⊕p+q=wV
p,q (4.2)

and a flat connection ∇C admitting a decomposition as in (4.1). A polarization
is a Hermitian metric h on V such that (4.2) is orthogonal with respect to h and
(−1)ph(s, s) > 0 for any non-zero (local) section s of V p,q.

In particular, every (polarized) R-VHS, R = Z,Q,R induces a (polarized) C-VHS.
The converse is false in general. There might not be an underlying locally constant
sheaf of R-modules inducing a Hodge filtration.

Every C-VHS gives rise to a Higgs bundle:

Lemma 4.3 ([Sim91]). Let (V,∇C, h) be a polarized C-VHS of weight w with
decomposition V = ⊕p+q=wV

p,q and ∇C = D+ ϕ+ ϕ†h . Then the pair

(V := (V,D0,1), ϕ) (4.3)

is a Higgs bundle on C. It is the system of Hodge bundles associated to C-VHS.
In particular, (V, ϕ, h) is a harmonic Higgs bundle on C. It is C×-invariant (up to
isomorphism), i.e. (V, ϕ) is isomorphic to (V, λϕ) for each λ ∈ C×. Conversely,
every Higgs bundle with this property is of this form.

Remark 4.4. If C is compact, then every C×-fixed Higgs bundle is induced by a
complex VHS under the non-abelian Hodge correspondence. We emphasize that such
Higgs bundles are often referred to as VHS in the literature. However, in our context
it is crucial to distinguish between VHS and systems of Hodge bundles (as originally
done by Simpson ([Sim91])).

Proof. Type considerations together with the decomposition ∇C = D+ϕ+ϕ†h in
(4.1) imply that the flatness condition∇2

C
= 0 decomposes into the following equations

(D0,1)2 = 0 = (D1,0)2,

Dϕ = 0 = Dϕ†h ,

FD + [ϕ,ϕ†h ] = 0.

(4.4)

For example, Dϕ is the only summand in ∇2
C
= 0 that maps

Hp,q → Ω1
sm(Hp−1,q+1)).

and hence has to be zero. Its (0, 1)-part gives D0,1ϕ = 0 as claimed.
The statement about the C×-invariance follows by a standard argument using a

decomposition of V into the generalized eigenspaces of ϕ.

Remark 4.5. The equations (4.4) are clearly equivalent to the tt∗-equations (1.3)
by setting D = D and C = ϕ+ϕ†h . Note that the equations [C′,C′] = [ϕ,ϕ] = 0, and
analogously for C′′ = ϕ†h , are here trivially satisfied for type and dimension reasons.
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The Higgs field ϕ can be expressed in terms of the holomorphic Gauß–Manin con-
nection: under the isomorphism (3.5), its (w−q, q)-components (all other components
are zero) correspond to

ϕq : Fw−q/Fw−q+1 → Fw−q+1/Fw−q ⊗ Ω1
C ,

s modFw−q+1 �→ ∇s modFw−q.
(4.5)

4.2. Parabolic Higgs bundles from Deligne’s canonical extension. Let
D ⊂ C be a reduced divisor on the compact Riemann surface C and C◦ := C −D be
its complement. Further let H = (HZ, Q, F •) be a polarized integral VHS on C◦.

Example 4.6. Such examples naturally arise from geometry. For example, let
π : X → C be a compact elliptic surface. Then the middle cohomology groups
H1(Xu,Z) of the smooth fibers Xu, u ∈ C, define a polarized Z-VHS of weight 1 over
the smooth locus C◦ ⊂ C of π and D is the divisor of singular fibers.

We give one example of an extension of the VHS H on C◦ to C as a filtered holo-
morphic bundle with logarithmic connection. This is Deligne’s canonical extension
(Ĥ, ∇̂) ([Del70, §II, Proposition 5.4]) which eventually determines a parabolic Higgs
bundle.

Since an extension across u ∈ D is a local question, it suffices to consider the case
C◦ = Δ∗ ⊂ C = Δ. Let

e : H → Δ∗, e(τ) = exp(2πiτ)

be the universal covering of Δ∗ and T ∈ Aut(HZ,z0) be the monodromy of HZ for a
fixed z0 ∈ Δ∗. Recall that T is necessarily quasi-unipotent13. Hence any multi-valued
section s of HZ on Δ

∗ satisfies

e∗s(τ + 1) = T (e∗s)(τ). (4.6)

If T = TsTu is the Jordan decomposition of T into its semisimple part Ts and unipotent
part Tu, then we define

N = Nu +Ns,

Nu =
1

2πi
log Tu, Ns =

1

2πi
log Ts.

Here log Ts is the logarithm of Ts which is determined by requiring that its eigenvalues
ν satisfy

−1 < ν ≤ 0.

In particular, exp(2πiν) ∈ S1 ⊂ C× are the eigenvalues of Ts. Since exp(2πiN) = T ,
the section

ŝ(τ) := exp(−2πiNτ)e∗s(τ), s ∈ HZ(Δ
∗) (4.7)

13All what follows works for C-VHS if we assume that the monodromy around the punctures is
quasi-unipotent. Since we are interested in geometric examples, we phrase everything in terms of
Z-VHS.
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is invariant under monodromy and descends to Δ∗. Sections of the form ŝ define
Deligne’s canonical extension Ĥ on Δ. Deriving equation (4.7) implies that the holo-

morphic Gauß–Manin connection ∇ extends to the logarithmic connection ∇̂ with
residue

res0(∇̂) = −N.

In particular, the eigenvalues of the residue −N lie in [0, 1) which uniquely determines

Ĥ. Finally, the holomorphic subbundles F p ⊂ HO extend to holomorphic subbundles
F̂ p ⊂ ĤO such that

∇̂ : F̂ p → F̂ p−1 ⊗ Ω1
C(logD). (4.8)

This due to [Sch73, Theorem 4.13] for unipotent monodromy and was generalized
by [Kol86, §2.5 (iii)] to quasi-unipotent monodromy.

The extension (Ĥ, ∇̂) of (H,∇) determines a parabolic Higgs bundle on C as
follows. The underlying holomorphic bundle is

Ê =
⊕

p+q=w

Êp,q, Êp,q := F̂ p/F̂ p+1, (4.9)

on C. The logarithmic connection ∇̂ induces the maps

ϕ̂q : Êw−q,q → Êw−q,q ⊗ Ω1
C(logD) (4.10)

analogously constructed as in (4.5). Hence they define the meromorphic Higgs field

ϕ̂ := ⊕q ϕ̂
q : Ê → Ê ⊗ Ω1

C(logD).

To construct the parabolic structure on Êd at d ∈ D, we only look at D = {0} ⊂ C =
Δ to simplify notation. Let 14

0 ≤ −ν1 ≤ −ν2 ≤ · · · ≤ −νr < 1

be the eigenvalues of Ns. Moreover, we let 1 ≤ i1 < · · · < is ≤ r be the indices of
pairwise distinct eigenvalues with multiplicity mj , j = 1, . . . , s. For any ν = νj the
subspace

Hν
z0 = {v ∈ Hz0 | (exp 2πiν − T )Nv = 0 for some N ∈ Z}

is the generalized eigenspaces of T for the eigenvalue exp(2πiν). The span of ŝ(0) ∈ Ĥ0

for s ∈ Hν
z0 defines the subspace Ĥν

0 for ν ∈ (−1, 0] and we set

Ĥ0(ν) =
⊕
α≥ν

Ĥα
0 . (4.11)

These subspaces define

Ê0(ν) =
⊕
p

Ĥ0(ν) ∩ F̂ p
0

Ĥ0(ν) ∩ F̂ p+1
0

⊂ Ê0

14This convention will become clear in when we consider the exponents of Picard–Fuchs equations,
see in particular (4.15) and (4.16).
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and hence determine the parabolic structure (see (B.1))

Ê0 = Ê0(−νi1) � Ê0(−νi2) � · · · � Ê0(−νis) � 0 (4.12)

with parabolic weights 0 ≤ −νi1 < −νi2 < · · · < −νis < 1.

Proposition 4.7. Let H be a VHS of weight w on C◦ and Ĥ Deligne’s canonical
extension to C. Then (Ê, ϕ̂) with the parabolic structure determined by monodromy
at each u ∈ D is a parabolic Higgs bundle.

Proof. Let T be the local monodromy around a puncture u ∈ D and si be a local
multi-valued frame of H. In the local frame ŝi of Ĥ, we have Resu(∇̂) = −N . Since

[T,N ] = 0, it follows that ϕ̂(Êu(−νij )) ⊂ Êu(−νij ).

4.3. Parabolic degrees from Picard–Fuchs equations. As before, let C be
a compact Riemann surface and C◦ = C−D ⊂ C a Zariski-dense subset which carries
a polarizable Z-VHS H of weight w = r − 1. We assume that H admits a generic
cyclic vector ω ∈ H0(C◦, Fw), In this section we express the degree of the extended

Hodge bundle F̂w ⊂ Ĥ of Deligne’s canonical extension in terms of the previously
defined exponents μu

1 ≤ · · · ≤ μu
r for u ∈ C.

To state the results, it is convenient introduce the divisor Dω ⊂ C◦ defined by ω.
By Remark 3.17 it is given by

Dω = {u ∈ C◦ | μu
1 ∈ Z− {0}}. (4.13)

Note that C ′ = C◦−Dω is the largest open subset of C
◦ on which ω is a cyclic vector.

We further define D̂ := Dω +D ⊂ D the divisor in C on which the extension ω̂ of ω
to C, cf. the next proof, possibly vanishes or has poles.

Proposition 4.8. Let H be a polarizable Z-VHS of weight w = r− 1 on C◦ and
ω ∈ H0(C◦, Fw) be a generic cyclic section. Further let μu

1 ≤ · · · ≤ μu
r , u ∈ C, be the

exponents of ω. Then the degree of the extended Hodge line bundle F̂w of Deligne’s
canonical extension Ĥ to C is given by

deg(F̂w) =
∑
u∈C

�μu
1� =

∑
u∈ ̂D

�μu
1�. (4.14)

Even though the exponents μu
j clearly depend on ω, the sum on the right-hand

side of (4.14) is independent of ω. In particular, rescaling by a non-zero meromorphic
function does not change the result.

Proof. As before we order the exponents μu
1 ≤ · · · ≤ μu

r for each u ∈ C. Let
C ′ ⊂ C◦ be the dense subset such that ω is cyclic. In particular, ω(u) �= 0 and μu

1 = 0
for all u ∈ C ′, cf. Remark 3.17. If u ∈ C − C ′, we choose νuj ∈ (−1, 0], as in the

construction of Ĥ, such that15

exp(2πiνuj ) = λu
j = exp(−2πiμu

j ). (4.15)

Here λu
j are the eigenvalues of the monodromy T (u) of HZ around u. Moreover, we

denote by N(u) the logarithm of T (u) determined by νuj .

15Note that (4.15) does not imply νui ≤ νuj for i ≤ j in general. However, this is not important
at the moment because we do not consider the parabolic structures at u here.
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From now on, we drop u from the notation. Let (s1, . . . , sr) be a multi-valued
frame of HZ Then we express

ω = (s1, . . . , sr)

⎛⎜⎝f1...
fr

⎞⎟⎠ = (ŝ1, . . . , ŝr) exp(2πiNτ)

⎛⎜⎝f1
...
fr

⎞⎟⎠ =: (ŝ1, . . . , ŝr)

⎛⎜⎝g1
...
gr

⎞⎟⎠ .

Note that f1, . . . , fr form a basis of solutions to (3.17) by Lemma 3.15 and that
g1, . . . , gr are single-valued holomorphic functions. It follow from (3.21) that they are
of the form

gj(z) = zμj+νjg′j(z)

with holomorphic g′j such that g
′
j(0) �= 0. In order for gj to be holomorphic, we must

have

kj := μj + νj ∈ Z. (4.16)

By the choice of νj , this implies kj = �μj�. Thus we can write⎛⎜⎝g1
...
gr

⎞⎟⎠ = z�μ1�

⎛⎜⎝g′′1
...
g′′r

⎞⎟⎠
with g′1(0) �= 0 so that ω = z�μ1�ω′ for a nowhere vanishing section ω′ ∈ H0(Δ, F̂w).
Therefore we conclude the claim:

deg(F̂w) =
∑
u∈C

�μu
1� =

∑
u∈ ̂D

�μu
1�.

Proposition 4.8 enables us to compute the degrees of the bundles Êp,q constructed
from Deligne’s canonical extension, cf. (4.9). To give the formula, we decompse

D̂ = D̂a + D̂s. Here the divisor

D̂a = {u ∈ D̂ | μu
j ∈ Z for all j = 1, . . . , r} = Da +Dω

is the union of the divisor of apparent singularities Da ⊂ D of the corresponding
Picard–Fuchs equations and the divisor Dω ⊂ C◦ defined by ω. The divisor D̂s ⊂ D
is the divisor of regular singularities of ∇̂.

Theorem 4.9. Consider the line bundle Êk := Êw−k,k, l = 0, . . . , w, where
w = r− 1 is the weight of the Z-VHS (HZ, F

•) with generic cyclic vector ω. Then its
degree is given by16

deg(Êk) =
∑
u∈ ̂D

�μu
k+1� − k

(
|D̂a|+ |D|+ (2gC − 2)

)
(4.17)

for the genus gC of C.

16We denote by |D| the number of irreducible components of a divisor D ⊂ C.
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Remark 4.10. Clearly, the formula (4.17) coincides with (4.14) for k = 0.

Moreover, observe that deg(Êk) for Êk = Êw−k,k is completely determined by ω and
the pair (C,D).

Proof. The components

ϕ̂k : Êk → Êk+1 ⊗ Ω1
C(logD),

k = 0, . . . , w − 1, of the Higgs field ϕ̂ give the formula

deg(Êk+1) = deg
(
Div(ϕ̂k)

)
+ deg(Êk)− deg(Ω1

C(logD))

= deg
(
Div(ϕ̂k)

)
+ deg(Êk)− (|D|+ (2gC − 2))

(4.18)

for the divisor Div(ϕ̂k) defined by ϕ̂k. The order vu(ϕ̂
k) of ϕ̂k at u is given by

vu(ϕ̂
k) =

{
�μu

k+2� − �μu
k+1�, u ∈ Ds,

�μu
k+2� − �μu

k+1� − 1, u ∈ D̂a,
(4.19)

see [EKZ14, Lemma 6.3] and [DHT17, Theorem 2.7]. Note that ϕ̂k is an isomorphism

for the regular points u ∈ Dω ⊂ D̂a because μ
u
k+1 = μu

k+1 in these cases, see Remark
3.17. Summing over u ∈ C gives

deg(Div(ϕ̂k)) =

⎛⎝∑
u∈ ̂D

�μu
k+2� − �μu

k+1�
⎞⎠− |D̂a|. (4.20)

Now we prove (4.17) inductively: For k = 0, combining (4.20) with Proposition
4.8 and (4.18) yields

deg(Ê1) =
∑
u∈D

�μu
2� −

(
|D̂a|+ |D|+ (2gC − 2)

)
.

The induction step k − 1→ k gives:

deg(Êk) = deg(Div(ϕ̂k) + deg(Êk−1)− deg(Ω1
C(logD))

=
∑
u∈ ̂D

�μu
k+1� − k

(
|D̂a|+ |D|+ (2gC − 2)

)
.

Corollary 4.11. Assume μu
r − μu

1 ∈ [0, 1) for all u ∈ Ds. Then the parabolic

degrees of pdeg(Êk), Êk = Êw−k,k, with respect to the induced parabolic structure,
are

pdeg(Êk) = deg(Êk)−
∑
u∈Ds

νuk+1.

for k = 0, . . . , w.

Since μu
k+1 + νuk+1 = �μu

k+1� for u ∈ Ds the parabolic degrees are given by (4.17)

with �μu
k+1� replaced by μu

k+1. Note that �μu
k+1� = μu

k+1 for u ∈ D̂a = D̂ − Ds

anyway.
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Remark 4.12. A formula for pdeg(Êw−k,k) first appeared in Theorem 6.1 of
[EKZ14] in the special case of 14 VHS of Calabi-Yau type over C = CP1, see Example
5.5 for more details. Moreover, [DHT17] give degree formulas in the example of
families of elliptic curves (n = 2) and K3 surfaces (n = 3) over C = CP1.

Proof. The statement is equivalent to the claim that the induced parabolic weights
of Êk at u are −νuk+1 for every u ∈ Ds. Elsewhere the parabolic structure of Ê and

hence of Êk is trivial.

Fix u ∈ Ds. We denote by ij , j = 1, . . . , s, the indices such that 0 ≤ −νi1 < · · · <
−νis < 1 and each νij has multiplicity mj . Observe that this implies

rk(Ê(−νij )) =

j∑
l=1

ml and

s∑
l=1

= r. (4.21)

We claim that

Êk ⊂ Ê(−νij ), Êk ∩ Ê(−νij+1
) = 0 (4.22)

if νk+1 = νij . We first show that

Êk ⊂ Ê(−νi1), Êk ∩ Ê(−νi2) = 0 (4.23)

for k = 0, . . . ,m1−1. Assume the contrary, i.e. Êk ⊂ Ê(−νij ) for some k < m1−1 and
j ≥ 2. By assumption on the exponents at u and (4.19), ϕ̂k

u maps Ê
k
u isomorphically

to Êk+1
u . Since ϕ̂ preserves the parabolic filtration, Êk+1

u ⊂ Ê(−νij ). Inductively, we

see that Êl
u ⊂ Ê(−νij ) for all l ≥ k. But then

rk(Ê(−νij )) >

j∑
l=1

mj

contradicting (4.21) so that (4.23)) follows. Repeating this argument successively we

arrive at (4.22). Finally, (4.22) implies that Êk has parabolic weight −νij = −νk+1

as claimed.

5. Examples and oper gauge transformation. We will discuss examples of
Calabi–Yau manifolds over complex one-dimensional moduli spaces B which arise in
mirror symmetry. These are obtained as mirror families of Calabi–Yau hypersur-
faces Y in toric varieties with dimC H1,1(Y ) = 1. The data of the mirror families
is given by dual polyhedra Δ̌,Δ using Batyrev’s construction [Bat94], equivalently
using Hori–Vafa’s construction [HV00]. We briefly review the necessary ingredients of
these constructions and refer to Refs. [CK99, CR14] and references therein for further
background.

We will start with an analogous discussion to §2 of the rank 2 Higgs bundles
obtained from VHS of general elliptic curves and then specialize to the Legendre and
cubic families. In these cases, Theorem 4.9 together with the classification of line
bundles on CP1 allow us to completely determine the parabolic Higgs bundles which
we illustrate in concrete examples. Moreover, we will see in Example 5.5 that our
formula reproduces the parabolic degrees computed in [EKZ14].



490 M. ALIM, F. BECK AND L. FREDRICKSON

5.1. Mirror construction and Picard–Fuchs equations. To describe the
mirror pair of d-dimensional CY hypersurfaces we use Batyrev’s construction [Bat94].
We consider Δ̌ a reflexive polyhedron in Rd+2 defined as a convex hull of d+3 integral
vertices νi ∈ Zd+2 ⊂ Rd+2 , i = 0, . . . , d+2 lying in a hyperplane of distance one from
the origin. W̌ = PΣ(Δ̌) is the toric variety with fan Σ(Δ̌) defined by the set of cones

over the faces of Δ̌. Δ is the dual polyhedron andW is the toric variety obtained from
Σ(Δ). The mirror pair of CY d-folds given as hypersurfaces in (W̌ ,W ) is denoted by
(X̌ ,X ).

The hypersurface X is determined as the vanishing locus of the equation:

P (X ) =
d+2∑
i=0

aiyi =
∑
νi∈Σ

aiX
νi , (5.1)

where ai are complex parameters and yi certain homogeneous coordinates on W
[HV00]. Xk , k = 1, . . . , d + 1 are inhomogeneous coordinates on an open torus

(C∗)d+1 ⊂ W and Xνi :=
∏

k X
(νi)k
k [Bat94], where (νk) denotes the k−th entry

of νi.
The integral points νi and the homogeneous coordinates yi fulfill one relation

specified in terms of a d+ 3 dimensional vector l:

d+2∑
i=0

liνi = 0 ,

d+2∏
i=0

ylii = 1 . (5.2)

The integral vector l specifies the charge of the matter fields of the gauged linear
sigma model associated with X [Wit93].

The period integrals of the holomorphic d−form on X are given by:

π(ai) =
1

(2πi)d+1

∫
|Xk|=1

1

P (X )
d+1∏
k=1

dXk

Xk
. (5.3)

These periods are annihilated by a system of differential equations of GKZ hy-
pergeometric type17:

L =
∏
li>0

(
∂

∂ai

)li

−
∏
li<0

(
∂

∂ai

)−li

, (5.4)

Zk =

d+2∑
i=0

νi,kθi , k = 1, . . . , d+ 1 , Z0 =

d+1∑
i=0

θi + 1 , (5.5)

where θi := ai
∂

∂ai
. The differential equation Lπ(ai) = 0 is satisfied by definition. The

equations Zkπ(ai) = 0 express the invariance of the period integral under the torus
action and imply that the period integrals depend only on special combinations of the
parameters ai. These are given by:

z := (−1)l0
∏
i

alii , (5.6)

and define local coordinates on the moduli space of complex structures B of X .
17See [GKZ08] for background and definitions.
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5.2. Rank two. For the rank two case we consider families of elliptic curves

π : X → B
with fibers π−1(u) = Xu , u ∈ B. Following the notation of §2, we have a line bundle
L → B whose fibers are the cohomology groups H1,0(Xu). In particular, the associ-
ated VHS H of weight 1 decomposes smoothly into H = L ⊕ L̄. We choose a local
trivialization of L given by a choice of holomorphic one-form ω0. By working on a
local coordinate chart of B with coordinate u, we arrive at the second order equation

�2∇2
uω0 = −b1�∇u ω0 − b0 ω0 , ∇u := ∇∂/∂u (5.7)

where we have considered the one–parameter deformation by � as in the introductory
example. In particular, it yields the Picard–Fuchs equation for the two periods of ω0.
The Griffiths–Yukawa coupling c ∈ Γ(L−2 ⊗ T ∗B) is defined by

c(ω, ω′) := η(ω,∇ω′), ω, ω′ ∈ L, (5.8)

cf. Definition 2.3. Its coordinate expression with respect to u and ω0 is

cu := η(ω0,∇uω0) = i

∫
Xu

ω0 ∧∇uω0 .

From (5.7) we derive the following equation satisfied by cu:
18

∂ucu = −b1
�
cu . (5.9)

We proceed to construct a basis for the fibers of the Hodge bundle that respects the
Hodge decomposition. We construct ω1 ∈ H0,1(Xu)⊗ T ∗B as:

ω1 = (∇u −Du)ω0 du , (5.10)

where Du denotes the Chern connection. Moreover, we define

e−K := h(ω0, ω0) = h00̄ = i

∫
Xu

ω0 ∧ ω0 . (5.11)

Then the Hodge metric h = hab̄dt
adt̄b̄ , a, b,= 0, 1 in the local holomorphic frame

ωNAH = (ω0, ω1) is given by

hab̄ =

(
e−K 0
0 e−KGuududu

)
(5.12)

with Guū := ∂u∂ūK is a Kähler metric on P1 − {0, 1,∞}, we have moreover the
relation

e−K Guū = |cu|2 eK .

As in Proposition 2.9, we next derive the following differential ring relations: let
Γu
uu := Guū∂uGuū be the Levi–Civita connection of the previous Kähler metric and
let Ku := ∂uK. Then we have

Γu
uu − 2Ku = −b1

�
, (5.13)

�2∂uKu = �2K2
u − �b1Ku + b0 , (5.14)

18See also [Ali17].
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Here the bj are the coefficient functions of the Picard–Fuchs equation (5.7). The
coordinate expressions of the Higgs field ϕ and its adjoint ϕ†, as well as the flat
non-abelian Hodge/tt∗ connections ∇�

NAH = limR→0 ∇R�,R
NAH are obtained in complete

analogy to Proposition 2.7. The limit ∇�

NAH = limR→0 ∇�R,R
NAH in the basis ω�

NAH =
(ω0, �ω1) is given by

∇�

NAH = d +
1

�

(
0 0
1 0

)
+

(−Ku 0
0 Γu

uu −Ku

)
du+ �

(
0 Guududu
0 0

)
. (5.15)

The gauge transformation A� between the frame ω�

NAH = (ω0, �ω1) and ω�

GM =
(ω0, �∇uω0 du)

ω�

GM = ω�

NAH A�,

is completely determined by Ku:

(A�)−1 =

(
1 �Ku du
0 1

)
, (5.16)

as can be easily seen by writing out:

�ω1 = �∇uω0 du+ �Ku ω0 du

In particular, we arrive again at

((A�)−1 ◦ ∇�

NAH ◦ A�)0,1 = (A�)−1 ∂ūA�dū+ (Ah)−1ϕ†A�

=

(
0 �(−Guū +Guū)du
0 0

)
dū ,

and

((A�)−1 ◦ ∇�

NAH ◦ A�))−1)1,0

=(A�)−1 ∂uA�du+ (Ah)−1ϕA� + (A�)−1

(−Ku 0
0 Γu

uu −Ku

)
A�du

=

(
0 �

(
Γu
uu Ku − ∂uKu −K2

u

)
1
�

Γu
uu − 2Ku

)
du

(5.13),(5.14)
=

1

�

(
0 −b0
1 −b1

)
du .

And hence

∇�

GM = (A�)−1 ◦ ∇�

NAH ◦ A� , (5.17)

for the family of opers

∇�

GM = d +
1

�

(
0 −b0
1 −b1

)
du . (5.18)

Example 5.1 (Legendre family). We continue with the case of families of elliptic
curves in Example 3.8, but now in the parabolic case. Concretely, let π : X → C = P1

be the elliptic surface determined by the Legendre family

y2 = x(x− 1)(x− u), u ∈ C.
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The fibers are non-singular over C◦ = P1 − {0, 1,∞} and ω0 = dx/y is a cyclic
vector on all of C◦ so that |Ca,pd| = 0. We denote the periods of ω0 over a basis of
integral cycles A,B ∈ H1(Xu,Z) by π0, π1. These are annihilated by the following
Picard–Fuchs operator:19

L = θ2u − u

(
θu +

1

2

)2

, (5.19)

whose exponents are
d 0 1 ∞
μd
1 0 0 1

2
μd
2 0 0 1

2

Hence the formula for the degrees of Ê•,• in (4.17) implies

Ê = Ê1,0 ⊕ Ê0,1 ∼= OP1 ⊕OP1(−1).
The parabolic structure is trivial at d = 0, 1 whereas at d =∞ it is given by

Ê∞ � Ê∞( 12 ) = Ê∞( 12 ) � 0
The former two cases follow because the local monodromy around d ∈ {0, 1} is max-
imally unipotent. For d = ∞, the local monodromy has the eigenvalue i with multi-
plicity 2. In particular, we directly compute

pdeg(Ê) = −1 + 2 · 1
2
= 0,

pdeg(Ê1,0) =
1

2
= −pdeg(Ê0,1).

The solutions of Lπi = 0, , i = 0, 1 are given by:

π0 = 2F1(1/2/1/2, 1, u) , π1 =
i

2
2F1(1/2/1/2, 1, 1− u) , (5.20)

where we chose the normalization such that the modular coordinate is:

τ =
π1

π0
.

Their monodromy group is Γ0(4). Generators of the corresponding quasi-modular
forms (see Appendix A) are given by

A = θ23(2τ) , (5.21)

B = θ24(2τ) , (5.22)

E =
1

3
(4E2(4τ) + E2(τ))− 2

3
E2(2τ) . (5.23)

These satisfy the following differential ring relations:

∂τA =
1

4
A(E +A2 − 2B2) , (5.24)

∂τB =
1

4
B(E −A2) ,

∂τE =
1

4
(E2 −A4) .

19See for example [CMSP17] for the derivation of this operator and for the discussion of the
modular properties.
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We obtain expressions for the geometric data in terms of quasi-modular forms:

π0(τ) = A(τ) , and e−K = 2|A(τ)|2Im τ , z(τ) = 1− B(τ)2

A(τ)2
. (5.25)

From the Picard–Fuchs operator we read off:

b1(u) =
1− 2u

u(1− u)
, b0(u) = − 1

4u(1− u)
. (5.26)

In this case, the coordinate expression for the Griffiths–Yukawa coupling is given
by

cu =
κ

u(1− u)
, (5.27)

where κ is an integration constant which we will set to 1.
One can now easily verify with the Picard–Fuchs coefficients b0, b1 in (5.26) as

well as the modular expressions in (5.25) the differential ring relations (5.13). These
translate into the differential ring relations for the quasi–modular forms for Γ0(4)
(5.24).

Our analysis shows that the data of the oper corresponds to the data of the first
order formulation of the Picard–Fuchs equation describing the VHS. The latter does
however not correspond to the Higgs field of the non-abelian Hodge flat connection as
was assumed in [DM14, Table I]. Rather, the oper data is a combination of the Higgs
field and holomorphic remnants of a gauge transformation.

Example 5.2 (Cubic curve). We consider the cubic curve X̌ given by a section of
the anti-canonical bundle over the projective plane P2 and its mirror X . The vertices
of Δ are given by:

ν0 = (1, 0, 0) , ν1 = (1, 1, 0) , ν2 = (1, 0, 1) , ν3 = (1,−1,−1) , (5.28)

satisfying the relation
∑3

i=0 liνi = 0 where:

l = (−3 1 1 1) . (5.29)

X is defined as a suitable compactification of

{(X1, X2) ∈ (C×)2 | P (X ) = a0 + a1X1 + a2X2 +
a3

X1 X2
= 0} . (5.30)

We define a local coordinate z = − 27a1a2a3

a3
0

on the moduli space B of X and obtain

the Picard–Fuchs operator:

L = θ2 − z(θ + 1/3)(θ + 2/3) , θ = z
d

dz
, (5.31)

with discriminant Δ = 1− z. We determine the exponents to be:
d 0 1 ∞
μd
1 0 0 1

3
μd
2 0 0 2

3
Again Theorem 4.9 implies

Ê ∼= OP1 ⊕OP1(−1).
But the parabolic structure differs from the one in Example 3.8. It is again trivial at
d = 0, 1 but at d =∞ it is given by
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Ê∞ = Ê∞( 13 ) � Ê∞( 23 ) � 0.

It follows that pdeg(Ê1,0) = 1
3 = −pdeg(Ê0,1).

The solutions of Lπi = 0 for i = 0, 1 are given by

π0 = 2F1(1/3/2/3, 1, z) , π1 =
i

2π
√
3
2F1(1/3/2/3, 1, 1− z) , (5.32)

with monodromy group Γ0(3). We chose the normalization such that the modular
coordinate is:

τ =
π1

π0
=

1

2πi
log
( z

27

)
+
5z

9
+
37z2

162
+ . . . (5.33)

As generators of the quasi-modular forms of Γ0(3) we choose

E =
1

4
(E2(τ) + 3E2(3τ)) , (5.34)

A =
(27η(3τ)12 + η(τ)12)1/3

η(τ)η(3τ)
, (5.35)

B =
η(τ)3

η(3τ)
, (5.36)

C =
3(η(τ))3

η(τ)
, (5.37)

which satisfy the algebraic relation:

A3 = B3 + C3 , (5.38)

as well as the differential ring relations:

∂τA =
1

6
(E A+A3 − 2B3) , (5.39)

∂τB =
1

6
B(E −A2) ,

∂τE =
1

6
(E2 −A4) .

As before, the quasi-modular forms completely determine the periods, Kähler
metric and mirror map

π0(τ) = A(τ) , and e−K = 2|A(τ)|2Im τ , z(τ) = 1− B(τ)3

A(τ)3
. (5.40)

From the Picard–Fuchs operator we read off:

b1(z) =
1− 2z

z(1− z)
, b0(z) = − 2

9z(1− z)
. (5.41)

The coordinate expression Griffiths–Yukawa coupling in this case is given by

cz =
κ

z(1− z)
, (5.42)

where κ is an integration constant which we will set to 1.
One can now again verify with the Picard–Fuchs data (5.41) as well as the modular

expressions (5.40) the differential ring relations (5.13), which in turn translate into
the differential ring relations for the quasi–modular forms for Γ0(3) (5.39).
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5.3. Higher rank. For higher rank, we consider (complete) families of Calabi–
Yau d-folds (d ≥ 2)

π : X → B
with fibers π−1(u) = Xu , u ∈ B and again dimC B = 1. In §2 we have explicitly
discussed the rank 3 case attached to the VHS H of mirror lattice polarized K3
surfaces. We will therefore only shortly provide the definition of the mirror without
repeating the analysis of §2.

Example 5.3 (The mirror quartic). We consider the K3 surface X̌ given by a
quartic hypersurface in P3, and its mirror X . The vertices of Δ are given by:

ν0 = (1, 0, 0, 0) , ν1 = (1, 1, 0, 0) , ν2 = (1, 0, 1, 0) ,

ν3 = (1, 0, 0, 1) , ν4 = (1,−1,−1,−1)
satisfying the relation

∑4
i=0 liνi = 0 where:

l = (−4 1 1 1 1) . (5.43)

X is defined by:

X = {P (X ) = a0 + a1X1 + a2X2 + a3X3 + a4(X1X2X3)
−1 = 0 ⊂ (C∗)3} . (5.44)

We define a local coordinate z = 44 a1a2a3a4

a4
0

on the moduli space M of the mirror

quartic X and obtain the Picard-Fuchs operator:

LPF = θ3 − z

3∏
i=1

(θ + i/4) , θ = z
d

dz
. (5.45)

In the following we explain how how the gauge transformation, and hence differ-
ential ring relations, carry over to higher rank.

Let H be the VHS of weight d attached to π with the line subbundle L := F dH.
We choose a local frame ω0 of L, which we may assume to be a cyclic vector, given
by a fiberwise choice of holomorphic d-form ω0, we moreover assume that it depends
further on � ∈ C×. By working on a local coordinate chart of B with coordinate u,
we arrive at the (d+ 1)th order equation

�d+1∇d+1
u ω0 = −

d∑
i=0

bi �
i∇i

u ω0 , ∇u := ∇∂/∂u . (5.46)

It yields the Picard–Fuchs equation for the periods of ω0 (around singular points).
The Griffiths–Yukawa coupling c ∈ Γ(L−2 ⊗ Symd(T ∗B)) is defined by

c(ω) := η(ω,∇dω), ω ∈ L, (5.47)

cf. Definition 2.3. Its coordinate expression with respect to u and ω0 is

cu...u := η(ω0,∇d
uω0).

The frame

ω�

NAH = (ω0, �ω1, . . . , �
dωd)
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of the smooth bundle H is constructed as in §2 or §5.2. In particular, ωi is a local
frame of Hd−i,i. Since ω0 is a cyclic vector,

ω�

GM =
(
ω0 , �∇uω0 du , . . . �

d∇d
uω0 du

d
)

is a frame as well. The gauge transformation A�, which transforms ω�

GM into ω�

NAH,

ω�

GM = ωNAH A� ,

can be explicitly determined by writing out �k (∇u − Du)
kω0 , k = 1, . . . , d and ex-

pressing the result in terms of ω�

GM. As before it satisfies

∇�

GM = (A�)−1 ◦ ∇�

NAH ◦ A�. (5.48)

Here ∇�

NAH is the family of flat tt∗-connections and

∇�

GM = d +
1

�

⎛⎜⎜⎜⎜⎝
0 0 0 −b0

1 0
. . . −b1

...
. . .

. . .
...

0 · · · 1 −bd

⎞⎟⎟⎟⎟⎠ du (5.49)

of the family opers associated to the Gauß–Manin connection as before.

We next determine the parabolic Higgs bundles induced by families of Calabi–Yau
threefolds.

Example 5.4 (Mirror quintic). We consider the quintic threefold X̌ given by
a quintic hypersurface in P4, and its mirror X . This can be described by the toric
charge vector:

l = (−5 1 1 1 1 1). (5.50)

We define a local coordinate z = −3125a1 a2 a3 a4 a5

a5
0

on the moduli space B of the

mirror X and obtain the Picard–Fuchs operator:

L = θ4 − z

4∏
i=1

(θ + i/5) , θ = z
d

dz
. (5.51)

The exponents satisfy
d 0 1 ∞
μd
1 0 0 1

5
μd
2 0 1 2

5
μd
3 0 1 3

5
μd
4 0 2 4

5 .

Hence Ê is given by

Ê = Ê3,0 ⊕ Ê2,1 ⊕ Ê1,2 ⊕ Ê0,3 ∼= OP1 ⊕OP1 ⊕OP1(−1)⊕OP1(−1).

The parabolic structure is only non-trivial at ∞ with

Ê∞ = Ê∞( 15 ) � Ê∞( 25 ) � Ê∞( 35 ) � Ê∞( 45 ) � 0
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Moreover, we compute

pdeg(Ê3,0) =
1

5
= −pdeg(Ê0,3),

pdeg(Ê2,1) =
2

5
= −pdeg(Ê1,2).

Example 5.5 (14 VHS of Calabi-Yau type). The previous example generalizes
to all of the 14 variations of Hodge structures of Calabi-Yau type with three regular
singular points with a maximally unipotent point at 0 and a conifold point at 1 (see
[DM06]). The exponents in these examples satisfy

d 0 1 ∞
μd
1 0 0 μ1

μd
2 0 1 μ2

μd
3 0 1 1− μ2

μd
4 0 2 1− μ1

for 0 < μ1 ≤ μ2 ≤ 1
2 and we immediately obtain

Ê ∼= OP1 ⊕OP1 ⊕OP1(−1)⊕OP1(−1).
The parabolic structure is determined analogously as before. Corollary 4.11 gives

pdeg(Ê3,0) = μ1 = −pdeg(Ê0,3),

pdeg(Ê2,1) = μ2 = −pdeg(Ê1,2),

which in particular reproduces Theorem 6.3 in [EKZ14].

6. Conclusion. In this work we have linked (parabolic) Higgs bundles and opers
to mirror symmetry in non-trivial ways. Along the way, we have shown that opers
with a compatible integral structure on any Riemann surface are equivalent to VHS
with a generic cyclic vector. In these cases, we computed the parabolic degrees of
the induced parabolic Higgs bundles in terms of the exponents of the corresponding
Picard–Fuchs equations which we have worked out explicitly in examples from mirror
symmetry.

In these examples, the tt∗ or non-abelian Hodge flat connections are gauge equiv-
alent to the opers determined by the Gauß–Manin connections. This is because the
corresponding Higgs bundles are fixed points of the C× action ϕ → ζϕ. In all of these
cases, the conformal limit ∇�

NAH := limR→0 ∇R�,R
NAH of [GMN09, DFK+16] is trivial

because ∇R�,R
NAH is independent of R. The gauge transformation relating ∇�

NAH and
the Gauß-Manin connection ∇�

GM gives a new derivation of the differential rings on
B which generalize the Ramanujan relation between quasi-modular forms.

We expect our analysis of the gauge transformation relating the opers to the
non-abelian Hodge flat connection to be useful in the study of exact WKB methods
for higher order differential operators as was done e. g. in [HN19]. Moreover, there
have been many exciting links between Higgs bundles, opers, exact WKB and the
topological recursion, see for example [DM15, DM17]. We expect that the further
investigation of the connections to non-abelian Hodge theory, tt∗ geometry and mirror
symmetry will lead to further exciting insights.

Finally, let us comment on the role of the base curve B and potential generaliza-
tions. In our work, B is both the base of the parabolic bundles as well as the base
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of the tt∗-geometry. In the tt∗ geometries which we have considered in this work, B
is the complex one-dimensional moduli space of a Calabi–Yau d-fold. The techniques
which we have employed for obtaining the frames for the non-abelian Hodge (tt∗) flat
connections, as well as the gauge transformation to the oper can be easily generalized
to higher dimensional B, with higher rank Higgs bundles. The differential rings, which
we re-derived using the gauge transformation are also known for the Hodge bundles of
CY d−folds, with d = 1, 2, 3, see [Ali17]. We note that the holomorphic Gauß-Manin
connnection obtained in these cases would represent a generalization of the notion of
oper used in our work.

We would like to further comment on the relation to the works of Gaiotto, Moore
and Neitzke (GMN) [GMN09], where Hitchin systems and tt∗-like equations feature
prominently. In the setup of GMN, the base curve C of the Higgs bundle is a curve
associated to a physical N = 2 gauge theory in four dimensions, called the UV curve.
A covering of the base curve C, gives the IR curve Σ. The UV curve C of a given
physical theory has a moduli space B, which corresponds to the Coulomb branch of
the physical theory.

To establish the connection to moduli spaces of Calabi-Yau geometries as we have
studied, the GMN setting can be understood as being obtained from a field theory
limit of 10 dimensional string theories living on the four dimensional space times a non-
compact Calabi-Yau manifold. Mirror symmetry in this context refers to the fact that
identical four dimensional theories can be obtained from two different string theories
considered on mirror families of non-compact CY manifolds. The Seiberg–Witten
curves can be understood as a degeneration locus of the non-compact CY manifold
in question on the B-side of mirror symmetry. The relevant data on the curve is
naturally obtained from the variation of Hodge structure and special geometry of the
underlying threefolds, this was first obtained in [KLM+96].

In this geometric setting, the UV curves are, however, not the complex structure
moduli spaces B of the underlying CY threefolds which were used to obtain them.
The curves can nevertheless be understood as moduli spaces of objects living on
the geometry. This interpretation was put forward in the work of Aganagic and
Vafa [AV00], where the mirror curves are identified with the moduli space of branes
ending on points of the curve, giving components of the open string moduli space.
Physically the curves are moduli spaces of defects of the theory. The Hitchin systems
of GMN thus correspond to tt∗-equations on moduli spaces of objects of the underlying
geometry as opposed to the tt∗-equations attached to the geometry itself.

Appendix A. Quasi modular forms and differential rings. In this appendix
we summarize some basic concepts about modular forms and quasi modular forms,
following the exposition of [ASYZ14], and we refer to [DS05, BvdGHZ08] and the
references therein for more details on the basic theory.

A.1. Modular groups and modular curves. The generator for the group
SL(2,Z) are given by:

T =

(
1 1
0 1

)
, S =

(
0 −1
1 0

)
, S2 = −I , (ST )3 = −I . (A.1)

We consider the genus zero congruence subgroups called Hecke subgroups of Γ(1) =
PSL(2,Z) = SL(2,Z)/{±I} given by:

Γ0(N) =

{(
a b
c d

)∣∣∣∣ c ≡ 0 mod N

}
< Γ(1) (A.2)
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with N = 2, 3, 4. A further subgroup that is considered is the unique normal subgroup
in Γ(1) of index 2 which is often denoted Γ0(1)

∗. We write N = 1∗ when listing it
together with the groups Γ0(N).

The group SL(2,Z) acts on the upper half plane H = {τ ∈ C| Imτ > 0} by
fractional linear transformations:

τ �→ γτ =
aτ + b

cτ + d
for γ =

(
a b
c d

)
∈ SL(2,Z) .

The quotient space Y0(N) = Γ0(N)\H is a non-compact orbifold with certain punc-
tures corresponding to the cusps and orbifold points corresponding to the elliptic
points of the group Γ0(N). By filling the punctures, one then gets a compact orbifold
X0(N) = Y0(N) = Γ0(N)\H∗ where H∗ = H ∪ {i∞} ∪ Q. The orbifold X0(N) can
be equipped with the structure of a Riemann surface. The signature for the group
Γ0(N) and the two orbifolds Y0(N), X0(N) could be represented by {p, μ; ν2, ν3, ν∞},
where p is the genus of X0(N), μ is the index of Γ0(N) in Γ(1), and νi are the num-
bers of Γ0(N)-equivalent elliptic fixed points or parabolic fixed points of order i. The
signatures for the groups Γ0(N), N = 1∗, 2, 3, 4 are listed in the following table (see
e.g. [Ran77]):

N ν2 ν3 ν∞ μ p
1∗ 0 1 2 2 0
2 1 0 2 3 0
3 0 1 2 4 0
4 0 0 3 6 0

(A.3)

The space X0(N) is called a modular curve and is the moduli space of pairs
(E,C), where E is an elliptic curve and C is a cyclic subgroup of order N of the
torsion subgroup EN

∼= Z2
N . It classifies each cyclic N -isogeny φ : E → E/C up to

isomorphism, see for example Refs. [DS05, Hus04] for more details.
In the following, we will denote by Γ a general subgroup of finite index in Γ(1).

A.2. Quasi modular forms.

A.2.1. Modular functions. A (meromorphic) modular function with respect
to the a subgroup Γ of finite index in Γ(1) is a meromorphic function f : XΓ → P1.
Consider the restriction of f to YΓ = Γ\H. Since the restriction is meromorphic, we
know f can be lifted to a function f on H. Then one gets a function f : H → P1 such
that

(i) f(γτ) = f(τ), ∀γ ∈ Γ .
(ii) f is meromorphic on H.
(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ �→ f(γτ) (A.4)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).
The third condition requires more explanation. For any cusp class [σ] ∈ H∗/Γ20 with
respect to the modular group Γ, one chooses a representative σ ∈ Q ∪ {i∞}. Then
it is easy to see that one can find an element γ ∈ Γ(1) so that γ : i∞ �→ σ. Then

20We use the notation [τ ] to denote the equivalence class of τ ∈ H∗ under the group action of Γ
on H∗.
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this condition means that the function defined by τ �→ f ◦ γ (τ) is meromorphic near
τ = i∞ and that the function f is declared to be “meromorphic at the cusp σ” if this
condition is satisfied.

Therefore, equivalently, a (meromorphic) modular function with respect to the
modular group is a meromorphic function f : H → P1 satisfying the above properties
on modularity, meromorphicity, and growth condition at the cusps.

A.2.2. Modular forms. Similarly, we can define a (meromorphic) modular
form of weight k with respect to the group Γ to be a (meromorphic) function
f : H → P1 satisfying the following conditions:

(i) f(γτ) = jγ(τ)
kf(τ), ∀γ ∈ Γ , where j is called the automorphy factor

defined by

j : Γ×H → C,

(
γ =

(
a b
c d

)
, τ

)
�→ jγ(τ) := (cτ + d) .

(ii) f is meromorphic on H.
(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ �→ jγ(τ)
−kf(γτ) (A.5)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).

A.2.3. Quasi modular forms. A (meromorphic) quasi modular form of weight
k with respect to the group Γ is a (meromorphic) function f : H → P1 satisfying the
following conditions:

(i) There exist meromorphic functions fi, i = 0, 1, 2, 3, . . . , k − 1 such that

f(γτ) = jγ(τ)
kf(τ) +

k−1∑
i=0

ck−i jγ(τ)
ifi(τ) , ∀γ =

(
a b
c d

)
∈ Γ . (A.6)

(ii) f is meromorphic on H.
(iii) f is “meromorphic at the cusps” in the sense that the function

f |γ : τ �→ jγ(τ)
−kf(γτ) (A.7)

is meromorphic at τ = i∞ for any γ ∈ Γ(1).

We proceed by introducing the modular forms which are used in our paper, start-
ing with the Jacobi theta functions with characteristics (a, b) defined by:

ϑ

[
a
b

]
(z, τ) =

∑
n∈Z

q
1
2 (n+a)2e2πi(n+a)(z+b) . (A.8)

for special (a, b) these are denoted by:
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θ1(z, τ) = ϑ

[
1/2
1/2

]
(u, τ) =

∑
n∈Z+ 1

2

(−1)nq 1
2n

2

e2πinz , (A.9)

θ2(z, τ) = ϑ

[
1/2
0

]
(u, τ) =

∑
n∈Z+ 1

2

q
1
2n

2

e2πinz , (A.10)

θ3(z, τ) = ϑ

[
0
0

]
(u, τ) =

∑
n∈Z

q
1
2n

2

e2πinz , (A.11)

θ4(z, τ) = ϑ

[
0
1/2

]
(u, τ) =

∑
n∈Z

(−1)nq 1
2n

2

e2πinz . (A.12)

We further define the following θ–constants:

θ2(τ) = θ2(0, τ), θ3(τ) = θ3(0, τ), θ4(τ) = θ2(0, τ) . (A.13)

The η–function is defined by

η(τ) = q
1
24

∞∏
n=1

(1− qn) . (A.14)

It transforms according to

η(τ + 1) = e
iπ
12 η(τ), η

(
−1

τ

)
=

√
τ

i
η(τ) . (A.15)

The Eisenstein series are defined by

Ek(τ) = 1− 2k

Bk

∞∑
n=1

nk−1qn

1− qn
, (A.16)

where Bk denotes the k-th Bernoulli number. Ek is a modular form of weight k for
k > 2 and even. The discriminant form and the j invariant are given by

Δ(τ) =
1

1728

(
E4(τ)

3 − E6(τ)
2
)
= η(τ)24, (A.17)

j(τ) = 1728
E4(τ)

3

E4(τ)3 − E6(τ)2
. (A.18)

A.3. Differential ring. The modular forms obey the following differential equa-
tions:

∂τ log η(τ) =
1

24
E2(τ) , (A.19)

∂τ log
√
Im τ |η(τ)|2 = 1

24
Ê2(τ, τ̄) . (A.20)

where we denote by ∂τ :=
1

2πi
∂
∂τ , Ê2 is the non-homolorphic modular completion of

the quasi-modular form E2. E2, E4 and E6 satisfy the following differential ring:
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∂τE2 =
1

12
(E2

2 − E4) ,

∂τE4 =
1

3
(E2E4 − E6) ,

∂τE6 =
1

2
(E2E6 − E2

4) .

(A.21)

For the subgroups Γ0(N) we introduce three modular forms A,B,C of weight 1,
which are given by:

N A B C

1∗ E4(τ)
1
4 (E4(τ)

3
2 +E6(τ)
2 )

1
6 (E4(τ)

3
2 −E6(τ)
2 )

1
6

2 (26η(2τ)24+η(τ)24)
1
4

η(τ)2η(2τ)2
η(τ)4

η(2τ)2 2
3
2
η(2τ)4

η(τ)2

3 (33η(3τ)12+η(τ)12)
1
3

η(τ)η(3τ)
η(τ)3

η(3τ) 3η(3τ)3

η(τ)

4 (24η(4τ)8+η(τ)8)
1
2

η(2τ)2 = η(2τ)10

η(τ)4η(4τ)4
η(τ)4

η(2τ)2 22 η(4τ)4

η(2τ)2

(A.22)

These satisfy by definition

Ar = Br + Cr . (A.23)

with the following values of r:

N 1∗ 2 3 4
r 6 4 3 2

We introduce the analog of the Eisenstein series E2 as a quasi-modular form as follows:

E = ∂τ logB
rCr . (A.24)

The differential ring structure becomes:

∂τA =
1

2r
A(E +

Cr −Br

Ar−2
) ,

∂τB =
1

2r
B(E −A2) ,

∂τC =
1

2r
C(E +A2) ,

∂τE =
1

2r
(E2 −A4) .

(A.25)

Appendix B. Parabolic Higgs bundles. Let D ⊂ C be an effective divisor
in a compact Riemann surface. A parabolic Higgs bundle on (C,D) is a pair (Ê, ϕ̂)
consisting of

• a holomorphic vector bundle Ê on C. Each fiber Ed over d ∈ D is endowed
with a filtration

Êd = Êd(α1) � Êd(α2) � · · · � Êd(αs) � 0 (B.1)

of subspaces. The real numbers 0 ≤ α1 < α2 < · · · < αs < 1 are the
corresponding parabolic weights (which, together with s, depend on d as
well).
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• A holomorphic section ϕ̂ ∈ H0(C,Ω1
C(logD) ⊗ End(Ê)) such that

ϕ̂d(Êd(αj)) ⊂ Êd(αj) for each d ∈ D and every j ∈ {1, . . . , s = s(d)}.
If the Higgs field ϕ̂ satisfies ϕ̂d(Êd(αj)) ⊂ Êd(αj+1) for each d and j, then a parabolic
Higgs bundle is called a strongly parabolic Higgs bundle (see [LM10]). Accordingly,
what we defined as a parabolic Higgs bundle is sometimes defined as a weakly parabolic
Higgs bundle.
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