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ON THE STABILITY OF HOMOGENEOUS EINSTEIN MANIFOLDS∗

JORGE LAURET†

Abstract. Let g be a G-invariant Einstein metric on a compact homogeneous space M = G/K.
We use a formula for the Lichnerowicz Laplacian of g at G-invariant TT -tensors to study the stability
type of g as a critical point of the scalar curvature function. The case when g is naturally reductive
is studied in special detail.
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1. Introduction. Given a compact connected differentiable manifold M and a
transitive action of a compact Lie group G on M , the aim of this paper is to study
the stability of G-invariant Einstein metrics on M within the G-invariant setting. It
is well known that if MG

1 denotes the finite-dimensional manifold of all unit volume
G-invariant metrics on M , then g ∈ MG

1 is Einstein (i.e. Rc(g) = ρg for some ρ ∈ R,
which is necessarily positive if G is non-abelian) if and only if g is a critical point of
the scalar curvature functional

Sc :MG
1 −→ R.

The G-action we have fixed provides a presentationM = G/K ofM as a homogeneous
space, where K ⊂ G is the isotropy subgroup at some origin point o ∈M .

We start by showing in §3 that

TgMG
1 = Tg Aut(G/K) · g ⊕ T T G

g ,

where Aut(G/K) ⊂ Diff(M) is the Lie group of automorphisms of G taking K onto
K, giving rise to trivial variations of g, and T T G

g := (Ker δg ∩Ker trg)
G is the space

of so-called TT-tensors (see §2) which are G-invariant. It is therefore natural to say
that an Einstein metric g ∈MG

1 is G-stable when the second derivative or Hessian of
Sc satisfies that

Sc′′g |T T G
g

< 0,

which in particular implies that g is a local maximum of Sc :MG
1 −→ R. Recall that

without assuming G-invariance, g is called stable if Sc′′g is negative definite on T Tg, the
infinite dimensional space of all unit volume constant scalar curvature (non-trivial)
variations of g (see §2).

Some potential applications of establishing the G-stability type of G-invariant
Einstein metrics include:
• If g is G-non-degenerate (i.e., Sc′′g |T T G

g
is non-degenerate), then g is G-rigid, in the

sense that g is an isolated point in the moduli space EG1 /Aut(G/K) of G-invariant
unit volume Einstein metrics on M . The main long standing open question in the
subject is whether such moduli space is always finite, which has been conjectured
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to hold in the multiplicity-free isotropy representation case by Böhm, Wang and
Ziller in [BWZ] (note that TgMG

1 = T T G
g in that case and so EG1 must itself be

finite).
It is worth noticing that since EG1 is known to be compact (see [BWZ, Theorem 1.6]),
the finiteness of EG1 /Aut(G/K) is equivalent to the G-rigidity of any G-invariant
Einstein metric on M . G-non-degeneracy seems to be a generic property, though
this is hard to put in a rigorous statement.

• In the case when g isG-unstable (i.e., Sc′′g (T, T ) > 0 for some T ∈ T T G
g ), one obtains

that g is also unstable relative to the ν-entropy functional introduced by Perelman
(see [CH]) and so it is dynamically unstable, in the sense that there exists a nontrivial
normalized Ricci flow defined on (−∞, 0] which converges modulo diffeomorphisms
to g as t → −∞ (see [Kr2, Theorem 1.3]). Additionally, it is known that a G-
unstable Einstein metric g does not realize the Yamabe invariant of M (see [BWZ,
Theorem 5.1]).
G-instability is also an expected behavior, as suggested by the graph theorem [BWZ,
Theorem 3.3] and its generalization, the simplicial complex theorem [B1, Theorem
1.5]. However, a rigorous result on this is still lacking.

• Beyond irreducible symmetric metrics and the special case when K is a maximal
subgroup of G (see [WZ2, B1]), G-stability is extremely rare if dimMG

1 > 1, it is
considered a mere coincidence or accident by the experts. It is for instance unknown
whether there can be two non-homothetic G-stable Einstein metrics for a given G.

• Since the normalized Ricci flow on MG
1 is precisely the gradient flow of Sc, its

dynamical behavior is mostly governed by the G-stability types of their fixed points,
the G-invariant Einstein metrics (see [AC] and references therein).
As known, the second variation Sc′′g of the total scalar curvature at any Einstein

metric g on M , say with Rc(g) = ρg, coincides on T Tg with 1
2 (2ρ id−ΔL), where

ΔL is the Lichnerowicz Laplacian of g (see §2). In §4, we consider the self-adjoint
operator

Lp = Lp(g) : sym(p)K −→ sym(p)K ,

defined by ΔL under the usual identifications, where g = k ⊕ p is any reductive
decomposition and sym(p)K := {A : p → p : At = A, [Ad(K), A] = 0}. Note that
the G-stability type of g is therefore determined by how is the constant 2ρ suited
relative to the spectrum of Lp. We use moving bracket approach techniques to prove
the following formula for Lp:

〈LpA,A〉 = 1
2 |θ(A)μp|2 + 2 trMμp

A2, ∀A ∈ sym(p), (1)

where μp := prp ◦[·, ·]|p×p : p× p −→ p and the function M : Λ2p∗⊗ p→ sym(p) is the
moment map from geometric invariant theory (see [LfL, BL1]) for the representation
θ of gl(p) given by

θ(A)λ := Aλ(·, ·)− λ(A·, ·)− λ(·, A·), ∀A ∈ gl(p), λ ∈ Λ2p∗ ⊗ p,

that is,

〈Mμp
, A〉 := 1

4 〈θ(A)μp, μp〉, ∀A ∈ gl(p).

This is actually the main part of Ricci curvature, the Ricci operator of the metric g is
given by Ric(g) = Mμp

− 1
2 Bμ, where 〈Bμ ·, ·〉 := Bg |p×p and Bg denotes the Killing

form of the Lie algebra g.
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As a first application of formula (1), we focus in §5 on the case when g is naturally
reductive with respect to G and p. We have in this case that

TgMG
1 = T T G

g = sym0(p)
K := {A ∈ sym(p)K : trA = 0},

and furthermore, the operator Lp is non-negative and takes the following simpler form:

LpA := − 1
2

∑
[adpXi, [adpXi, A]], ∀A ∈ sym(p)K , (2)

where {Xi} is any g-orthonormal basis of p and adpXi := μp(Xi, ·) (recall that
naturally reductive means that adpXi is skew-symmetric for all i). In particular,
if gB is the Killing left-invariant metric on any compact simple Lie group G, which
satisfies Rc(gB) =

1
4gB, then

Lp(gB) =
1
2 Cτ,−Bg

,

where Cτ,−Bg
is the Casimir operator acting on the representation sym(g) of g given

by τ(X)A := [adX,A]. Thus the G-stability type of gB can be obtained by using
representation theory to compute the spectrum of Cτ,−Bg

(see Table 1). We obtain
that they are all G-stable, except for SU(n), n ≥ 3 and Sp(n), n ≥ 2, where gB is G-

neutrally stable of nullity n2−1 and G-unstable of coindex ≥ 2n(2n−1)
2 −1, respectively.

The picture in the G-invariant setting is therefore analogous to the general case, which
follows from Koiso’s results on the stability of irreducible symmetric spaces (see §2).

On the other hand, we use formula (2) to compute the matrix of Lp in the
multiplicity-free case in terms of the structural constants of the metric. Given any
g-orthogonal decomposition p = p1 ⊕ · · · ⊕ pr in Ad(K)-invariant and irreducible
subspaces, the numbers

[ijk] :=
∑
α,β,γ

g([Xi
α, X

j
β ], X

k
γ )

2,

where {Xi
α} is a g-orthonormal basis of pi, are invariant under any permutation of

ijk by the natural reductivity of g and one has that Rc(g) = ρg if and only if

bk
2 − 1

4dk

∑
i,j

[ijk] = ρ, ∀k = 1, . . . , r,

where −Bg |pk
= bkg|pk

and dk := dim pk. We obtain in §5.2 that the entries of the

matrix of Lp with respect to the orthonormal basis
{

1√
d1
Ip1

, . . . , 1√
dr
Ipr

}
of sym(p)K

are given by

[Lp]kk = 1
dk

∑
j �=k
i

[ijk], ∀k, [Lp]jk = − 1√
dj

√
dk

∑
i

[ijk], ∀j �= k. (3)

This formula is applied in §6 to prove that the standard metric is G-unstable (and
consequently Ricci flow dynamically unstable) on each of the following homogeneous
spaces,
• SU(nk)/S(U(k)× · · · ×U(k)), k ≥ 1,
• Sp(nk)/Sp(k)× · · · × Sp(k), k ≥ 1,
• SO(nk)/S(O(k)× · · · ×O(k)), k ≥ 3,
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where the quotients are all n-times products with n ≥ 3. Note that dimMG = n(n−1)
2 .

We also compute the coindex (see Table 2) and found that the standard metric is a
local minimum of Sc : MG

1 → R in many cases (including SU(3)/T 2) and it is G-
degenerate in some others (e.g., SU(4)/T 3).

As a second application of formula (3), we study in §7 the G-stability of the left-
invariant Einstein metrics found by Jensen in [J2]. Given any simple Lie group H,
one considers the left-invariant metric on H given by

gt = −Bh |a + t(−Bh)|k, t > 0,

where K ⊂ H is a semisimple subgroup and h = a ⊕ k is the Bh-orthogonal decom-
position. g1 is therefore the Killing metric on H and for each t �= 1, the metric gt is
naturally reductive with respect to G = H×K (see [Z] or [DZ, Theorem 1]). If we as-
sume that a is Ad(K)-irreducible (i.e., H/K is isotropy irreducible), then the isotropy
representation of G/ΔK is mutliplicity-free and consists of r + 1 Ad(K)-irreducible
summands, where k = k1⊕ · · · ⊕ kr is a decomposition in simple ideals of k. Note that
therefore dimMG

1 = r. We also assume that Bki = cBh |ki for any i = 1, . . . , r and
some constant c. It is proved in [DZ, Corollary 2, p.44] that Ric(gt) = ρI (t �= 1) if
and only if,

t = tE := dc
(d+2k)(1−c) , 2ρ = c

2tE
+ (1−c)tE

2 ,

where d = dim a and k := dim k. The explicit computation of Spec(Lp) using (3)
shows that every gtE is G-unstable with coindex r, and in particular, gtE is always a
local minimum. This provides at least one H-unstable (and so Ricci flow dynamically
unstable) left-invariant Einstein metric on most simple Lie groups, including one of
coindex ≥ 3 on E6 and one of coindex ≥ 2 on SO(2n), Sp(2n), SU(n2) and E7.

Finally, we would like to mention that this is the first of a series of forthcoming
papers on G-stability of homogeneous Einstein metrics on compact manifolds. In
[LW2], we give a formula for the operator Lp(g) for any G-invariant Einstein metric g
in terms of its usual structural constants [ijk] with respect to a bi-invariant metric on
g. The formula is used to establish the G-stability types of several Einstein metrics
on well-known families of homogeneous spaces, including generalized Wallach spaces
and some generalized flag manifolds. On the other hand, we compute in [LL] the
G-stability types of all the standard Einstein metrics with G simple obtained in the
famous classification by Wang and Ziller in [WZ1].

Acknowledgements. I am very grateful with Emilio Lauret for computing the
first eigenvalue of the Casimir operator in Table 1. I also thank Christoph Böhm,
Ioannis Chrysikos, McKenzie Wang and Wolfgang Ziller for many helpful conversa-
tions.

2. Stability of compact Einstein manifolds. Einstein metrics on a compact
differentiable manifold M , i.e., the Ricci tensor satisfies Rc(g) = ρg for some ρ ∈ R,
were first studied by Hilbert, who proved that they are precisely the critical points of
the total scalar curvature functional

S̃c(g) :=

∫
M

Sc(g) d volg, (4)

restricted to the space M1 of unit volume Riemannian metrics on M (see [B, 4.21]).
A fundamental problem is to determine whether a given Einstein metric g is rigid, in
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the sense that any Einstein metric sufficiently close to g (compact open C∞ topology)
is isometric to g up to scaling. Hilbert’s variational characterization, beyond being
a tool for the existence problem, allows the use of stability theory and calculus of
variations in the study of the rigidity of Einstein metrics.

The case of (M, g) being isometric to a round sphere will be excluded in what
follows. The tangent space TgM = S2(M) (symmetric 2-tensors) of the space M of
all Riemannian metrics on M at a metric g ∈M admits the following decomposition
(see [B, 4.57]):

TgM =
(
LX(M)g ⊕ C∞(M)g

)
⊕⊥g T Tg, (5)

where ⊥g denotes orthogonality with respect to the usual L2 inner product 〈·, ·〉g on
S2(M) defined by g. The three summands are given by:
• LX(M)g = Im δ∗g = Tg Diff(M) · g is the space of trivial variations, where L de-
notes Lie derivative. Here δg : S2(M) → Ω1(M) is the divergence operator
δg(T ) := −∑

i

∇XiT (Xi, ·), where {Xi} is any local orthonormal frame, and δ∗g is

sometimes called the Killing operator as its kernel consists of Killing vector fields.
An alternative decomposition is given by TgM = Im δ∗g ⊕⊥g Ker δg.

• C∞(M)g is the space of conformal variations, i.e., the tangent space at g of the
space of metrics which are conformally equivalent to g. Note that Rg ⊂ C∞(M)g.

• T Tg = Ker δg ∩Ker trg is the subspace of divergence-free (or transversal) and trace-
less symmetric 2-tensors, so-called TT-tensors.

Let us now assume that g is an Einstein metric on M . If

C := {g ∈M : Sc(g) is a constant function onM},

then at any g ∈ C,

TgC =
(
LX(M)g ⊕ Rg

)
⊕⊥g T Tg. (6)

Thus T Tg can also be described as the space of all unit volume constant scalar cur-
vature non-trivial variations of g (see [B, 4.44-4.46]).

We consider the second variation (or Hessian) of S̃c at g, i.e.,

S̃c
′′
g (T, T ) :=

d2

dt2

∣∣∣
0
S̃c(g + tT ), ∀T ∈ S2(M).

Recall that g is a critical point of S̃c|M1
, so for traceless tensors, this can be computed

by using, instead of the line g + tT , any smooth curve g(t) ∈ M such that g(0) = g
and g′(0) = T . The following properties of the second variation are well known (see
[B, 4.60]):

• Decomposition (5) is orthogonal with respect to S̃c
′′
g , so its restriction on each of

the three summands can be studied separately.

• S̃c
′′
g vanishes on LX(M)g and S̃c

′′
g (g, g) = 2 Sc(g).

• S̃c
′′
g is positive definite on C∞(M)g.

• S̃c
′′
g |T Tg is negative definite on the orthogonal complement of a (possibly trivial)

finite-dimensional vector subspace of T Tg (i.e., nullity and coindex are both finite).
These facts motivate the definition of the following concepts.

Definition 2.1. Let g ∈M be an Einstein metric. We call g
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• Sc-stable (or Sc-linearly stable): S̃c
′′
g |T Tg

< 0 (see [K, Definition 2.7] and [CH,

Definition 2.2]). In particular, g is a local maximum of S̃c|C1
if g ∈ M1, where

C1 is the space of all unit volume constant scalar metrics on M (indeed, by (6),
TgC1 = LX(M)g ⊕⊥g T Tg and one uses that T Tg exponentiates into a slice for the
Diff(M)-action; see [B, 12.22] or [Kr1, Lemma 2.6.3]). This is actually the definition
of g Sc-stable in many papers (e.g., [B2, WW]).

• Sc-unstable (or Sc-linearly unstable): S̃c
′′
g (T, T ) > 0 for some T ∈ T Tg (see [K,

Definition 2.7] and [CH, Definition 2.2]).
• infinitesimally non-deformable: KerE′

g ∩T Tg = 0, and otherwise infinitesimally

deformable (see [B, 12.29]). Here, E′
g is the first variation of the operator

E :M−→ S2(M), E(g) := Rc(g)− ˜Sc(g)
n g, (7)

so-called the Einstein operator (see [B, 12.26]). Note that g ∈ M1 is Einstein if
and only if E(g) = 0. Each element of KerE′

g ∩T Tg is called an infinitesimally
Einstein deformation, which may or may not be the velocity of a genuine Einstein
deformation, i.e., a differentiable curve g(t) of Einstein metrics through g.

If Rc(g) = ρg, then for any T ∈ T Tg,

S̃c
′′
g (T, T ) = − 1

2 〈(ΔL − 2ρ id)T, T 〉g and E′
g(T ) =

1
2ΔL(T )− ρT,

where ΔL is the Lichnerowicz Laplacian of g, given by,

ΔLT = −∇∗∇T − 2Rmg(T, ·) + Rcg ◦T + T ◦ Rcg,

and ∇∇∗ denotes the usual rough Laplacian of g (see [B, 4.64] and [B, 12.28’], respec-
tively). This implies that if λL(g) denotes the smallest eigenvalue of ΔL|T Tg

, then
the following characterizations hold (cf. [CH, §4] and [WW, §1]):
• g is Sc-stable if and only if 2ρ < λL(g).
• g is Sc-unstable if and only if λL(g) < 2ρ.
• g is infinitesimally non-deformable if and only if 2ρ /∈ Spec

(
ΔL|T Tg

)
, if and only if

S̃c
′′
g |T Tg

is non-degenerate.
In particular, stability implies infinitesimal non-deformability (cf. [K, Remark (2)
below Definition 2.7]). On the other hand, the fact that any infinitesimally non-
deformable Einstein metric is rigid is a strong result by Koiso (see [K, Proposition
3.3] and [B, 12.66]).

After forty years, the stability picture for symmetric spaces has recently been
completed.

Theorem 2.2 ([K, GG, SW, S]). All compact irreducible symmetric spaces are
Sc-stable, except for

Sp(n) (n ≥ 2), Sp(n)/U(n) (n ≥ 3), SO(5)/(SO(3)× SO(2)),
Sp(p+ q)/(Sp(p)× Sp(q)) (p, q ≥ 2),

which are Sc-unstable and infinitesimally non-deformable, and

SU(n)/SO(n), SU(2n)/Sp(n) (n ≥ 3),
SU(p+ q)/S(U(p)×U(q)) (p ≥ q ≥ 2), Sp(3)/(Sp(2)× Sp(1)),

F4/Spin(9), SU(n) (n ≥ 3), E6/F4,
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which are infinitesimally deformable and not Sc-unstable (i.e., λL(g) = 2ρ), often
called Sc-neutrally stable.

The following questions remain open:
• Are the infinitesimally deformable irreducible symmetric metrics local maxima of
S̃c|C1? The only results we know on this question are that SU(3) and SU(2n)/Sp(n)
are not local maxima (see [J1] and [BWZ, Example 6.7], respectively). We refer to
[LW3] for a more detailed treatment of this question.

• Does there exist a Sc-stable Einstein manifold with Sc > 0 which is not symmetric?
• Are the irreducible symmetric spaces

SU(n)/SO(n), SU(2n)/Sp(n), SU(p+ q)/S(U(p)×U(q)), SU(n), E6/F4,

rigid? Recently, the space SU(2n+ 1) has been shown to be rigid in [BHMW].
Another important kind of stability is ν-entropy stability, relative to the ν-entropy

functional ν :M−→ R introduced by Perelman (see [CH] for the definition). It was
proved in [P] that ν is strictly increasing along any Ricci flow solution unless the
solution consists of a shrinking gradient Ricci soliton (e.g., an Einstein metric with
positive scalar curvature).

Decomposition (5) is also ν′′g -orthogonal and ν′′g also vanishes on LX(M)g (see
[CHI, CH]).

Definition 2.3 ([CH, Definition 3.3]). An Einstein metric g ∈M is said to be,
• ν-stable: ν′′g ≤ 0 (called ν-linearly stable in [WW, Definition 1.2]). Equivalently,
ν′′g |C∞(M)g ≤ 0 and ν′′g |T Tg

≤ 0.
• strictly ν-stable: ν′′g |C∞(M)g < 0 and ν′′g |T Tg

< 0.
• neutrally ν-stable: g is ν-stable and there is a non-zero symmetric 2-tensor T either
in C∞(M)g or in T Tg such that ν′′g (T, T ) = 0.

• ν-unstable: ν′′g (T, T ) > 0 for some T either in C∞(M)g or T Tg.

Remark 2.4. In particular, if g ∈ M1 is strictly ν-stable, then g is a local
maximum of ν among conformal variations of g, as well as a local maximum of ν|C1

by (6) (this is called ν-stable in [WW, Definition 1.2]).

Let λ(g) denote the first eigenvalue of the Laplacian on functions Δ of the metric
g (i.e., the Laplace-Beltrami operator).

Theorem 2.5 ([CHI]). Let (M, g) be a compact Einstein manifold other than
the standard sphere, with Rc(g) = ρg, ρ > 0. Then,
(i) ν′′g (T, T ) > 0 for some T ∈ C∞(M)g if and only if λ(g) < 2ρ (see also [CH,

Lemma 3.5]).
(ii) ν′′g (T, T ) > 0 for some T ∈ T Tg if and only if λL(g) < 2ρ (i.e., g is Sc-unstable).

In particular,
• g is ν-stable if and only if 2ρ ≤ λ(g) and 2ρ ≤ λL(g);
• it is neutrally ν-stable if and only if in addition λ(g) = 2ρ or λL(g) = 2ρ;
• and g is ν-unstable if and only if either λ(g) < 2ρ or λL(g) < 2ρ.

The following notion of stability is more intuitive.

Definition 2.6 ([Kr2, Definition 1.1]). A compact Ricci soliton (M, g) is called
dynamically stable if for any metric g0 near g, the normalized Ricci flow starting at g0
exists for all t ≥ 0 and converges modulo diffeomorphisms to an Einstein metric near
g, as t → ∞. On the other hand, (M, g) is said to be dynamically unstable if there
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exists a nontrivial normalized Ricci flow defined on (−∞, 0] which converges modulo
diffeomorphisms to g as t→ −∞.

Kröncke proved that if a compact shrinking Ricci soliton (M, g) is not a local
maximizer of ν (in particular, if g is ν-unstable), then (M, g) is dynamically unstable
(see [Kr1, Corollary 6.2.5] or [Kr2, Theorem 1.3]). The following implications for a
positive scalar curvature Einstein metric follow:

Sc-instability⇒ ν-instability⇒ dynamical instability.

3. Rigidity and stability of homogeneous Einstein manifolds. In this
section, we consider a connected differentiable manifold M (not necessarily compact)
and assume that M is homogeneous. We also fix the transitive action of a Lie group
G on M , which is assumed to be almost-effective (i.e., only a discrete subgroup of G
acts trivially). This provides a presentation M = G/K of M as a homogeneous space,
where K ⊂ G is the isotropy subgroup at some origin point o ∈M . Neither G nor K
are assumed to be connected.

We denote by S2(M)G the finite-dimensional vector space of all G-invariant sym-
metric 2-tensors on M , and byMG ⊂ S2(M)G, the open cone of G-invariant Rieman-

nian metrics. Note that MG is a differentiable manifold with 1 ≤ dimMG ≤ n(n+1)
2

and tangent space TgMG = S2(M)G at any g ∈MG, where n := dimM .

3.1. G-rigidity. The Lie group Aut(G/K) ⊂ Diff(M) of all Lie automorphisms
of G taking K onto K acts by pullback onMG, so each of its orbits consist of pairwise
isometric metrics and the orbit Aut(G/K) · g can be viewed as the trivial G-invariant
deformations of a metric g ∈MG. In this way, Aut(G/K) acts as the natural ‘gauge
group’ in the G-invariant setting.

Remark 3.1. Two G-invariant metrics belonging to different Aut(G/K)-orbits
may however be isometric via some ψ ∈ Diff(M) which is not an automorphism. This
cannot occur for left-invariant metrics on completely solvable Lie groups (see [A]).
For G compact, one anyhow has that Tg Aut(G/K) · g = Tg(MG ∩ Diff(M) · g) for
any g ∈MG (see Corollary 3.12 below).

Rigidity of Einstein metrics among MG can therefore be naturally defined as
follows.

Definition 3.2. An G-invariant Einstein metric g is called G-rigid if there
exists an open neighborhood U of g in MG such that any Einstein g′ ∈ U belongs to
Aut(G/K) · g up to scaling.

In other words, a G-invariant Einstein metric g is G-rigid when g is an isolated

point in the moduli space EG := EG/R+ Aut(G/K), where

EG := {g ∈MG : g is Einstein},

and R+ := {a ∈ R : a > 0} acts on MG by scaling. We note that EG =
EG1 /Aut(G/K), where EG1 := EG ∩MG

1 and

MG
1 := {g′ ∈MG : detg g

′ = 1}.

Here g denotes a fixed background metric in MG. For G compact, MG
1 is the space

of all G-invariant metrics of a given fixed volume.
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The space EG is a real semialgebraic subset (i.e., the set of solutions of finitely
many polynomial equalities and inequalities) of S2(M)G (see [BWZ, Proposition 1.5]).
The following properties therefore follow from classical theorems of Whitney (see e.g.
[BCR]):
• EG has finitely many connected components.
• There is a (local) stratification of EG into real algebraic smooth submanifolds.
• Path components and connected components coincide, as EG is locally path-
connected.
In the compact case, we have in addition the following major result.

Theorem 3.3 ([BWZ, Theorem 1.6]). Let G be a compact Lie group and M =
G/K be a connected homogeneous space with finite fundamental group. Then each
connected component of EG1 is compact, and the set of possible Einstein constants of
metrics among EG1 is finite.

In particular, in the compact case, the moduli space EG = EG1 /Aut(G/K) is

also compact and hence EG is finite if and only if every g ∈ MG is G-rigid. It is

an open question whether EG is always finite. This has been conjectured for the
multiplicity-free isotropy representation case in [BWZ], where only finitely many triv-
ial deformations are possible, so conjecturally, EG1 is itself a finite set. Classes of

compact homogeneous spaces for which EG is known to be finite include D’Atri-Ziller
metrics (see [DZ]), generalized Wallach spaces (see [LNF]) and spaces with only two
isotropy summands (see [WZ2]), but it is still open in general for generalized flag
manifolds, even for the full flag SU(n)/T for n large.

On the other hand, a left-invariant Einstein metric on a solvable Lie group G is

known to be G-rigid; moreover, EG is either empty or a singleton (see [H] and [BL1,
Corollary 4.3]).

Proposition 3.4. If an Einstein metric g ∈MG is not G-rigid, then there exists
a smooth path g : (−ε, ε)→MG such that g(0) = g, g(s) is Einstein for all s and

g′(0) ⊥g TgR+ Aut(G/K) · g.

Remark 3.5. It follows from the existence of a slice for the R+ Aut(G/K)-action
that the path g(s) is transversal to R+ Aut(G/K)-orbits for sufficiently small ε, in the
sense that g(s) /∈ R+ Aut(G/K) · g(s′) for all s, s′ ∈ (−ε, ε), s �= s′. In other words,

g(s) descends to a genuine curve through the class of g in the moduli space EG.
Proof. As an element of EG, the metric g belongs to a finite number of connected

smooth submanifolds contained in EG, each of which is invariant under the connected
component Aut(G/K)0 of the Lie group Aut(G/K). Since g is not G-rigid, the
dimension of the orbit R+ Aut(G/K)0 · g is strictly less than the dimension of at least
one of these submanifolds, so the existence of the smooth path g(s) follows.

3.2. Variational principle. The manifoldMG is itself naturally endowed with
a Riemannian metric defined at each g ∈MG by

〈T, T 〉g := trA2, where To = go(A·, ·), ∀T ∈ S2(M)G. (8)

Note that the linear map A : ToM → ToM is go-self-adjoint and trg T = trA, detg T =
detA. Equivalently, 〈T, T 〉g :=

∑
To(Xi, Xi)

2, for any go-orthonormal basis {Xi} of
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ToM . In particular, 〈·, ·〉g is precisely the L2 metric considered in §2 if M is compact
and g ∈MG

1 .
In the case when G is unimodular, it is well known (see e.g. [N, H] and [W, (1.11)])

that relative to such metric on MG, the gradient of the scalar curvature function

Sc :MG → R, Sc(g) := trg Rc(g),

is given by

grad(Sc)g = −Rc(g), ∀g ∈MG, (9)

where Rc(g) ∈ S2(M)G is the Ricci tensor of g. Since the tangent space of the
submanifold MG

1 at a metric g ∈MG
1 is precisely

(Rg)⊥g =
{
T ∈ S2(M)G : trg T = 0

}
= Ker trg ∩S2(M)G,

one obtains the following result, which it was first proved by Palais (see [B, 4.23]) for
G compact.

Lemma 3.6. If M = G/K and G is unimodular, then g ∈MG
1 is a critical point

of Sc |MG
1
if and only if g is Einstein.

This variational characterization has been successfully applied for decades, since
the pioneer articles [J1, WZ2], to study the existence of invariant Einstein metrics on
homogeneous spaces (see [BWZ, B1, W] and references therein). In this paper, we
aim to use the second variation of Sc :MG → R to study G-rigidity.

3.3. Trivial variations. According to §3.1, the space of trivial G-invariant vari-
ations of a metric g ∈MG is given by the tangent space Tg Aut(G/K) · g ⊂ S2(M)G.
A distinguished subgroup of Aut(G/K) is the normalizer NG(K), which acts on M
by n · (a · o) = In(a · o) := nan−1 · o and on ToM ≡ g/k by n · X := Ad(n)X.
Alternatively, the Lie group N := NG(K)/K acts on M by G-equivariant diffeo-
morphisms (i.e., ψ(a · p) = a · ψ(p) for all a ∈ G, p ∈ M) in the following way:
n · (a · o) = Rn(a · o) := an · o. Thus N · g is contained in the so-called G-equivariant
isometry class of the metric g, and since R∗

ng = I∗n−1g for any n ∈ N , one obtains
that

N · g = NG(K) · g, ∀g ∈MG. (10)

We consider any reductive decomposition g = k ⊕ p of the homogeneous space
M = G/K (i.e., Ad(K)p ⊂ p), where g and k are respectively the Lie algebras of G
and K, which provides the usual identification ToM ≡ p. Thus S2(M)G will be often
identified, without any further mention, with the vector space of Ad(K)-invariant
symmetric 2-forms on p, and MG with the open cone of positive definite ones. For
each X ∈ p, consider the linear map

adpX := prp ◦ adX|p : p→ p, (11)

where prp : g→ p is the projection on p relative to g = k⊕ p.

As shown in [LW1, Lemma 6.10], at any g ∈ MG, the trivial variations space
satisfies that

Tg Aut(G/K) · g ⊂ {go(S(D)·, ·) : D ∈ Der(g/k)} , (12)
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where S(A) := 1
2 (A+At) denotes the symmetric part of a linear map A with respect

to go and

Der(g/k) := {D ∈ Der(g) : D(k) ⊂ k}, D =

[
∗ ∗
0 D

]
.

We note that if

p0 := {X ∈ p : [k, X] = 0},

then ad p0 ⊂ Der(g/k) and the Lie algebra of NG(K) is given by Ng(k) = k⊕ p0. On
the other hand, go(S(adp p)·, ·) ∩ S2(M)G ⊂ go(S(adp p)

k·, ·), where

S(adp p)
k := {S(adpX) : X ∈ p, [ad k|p, S(adpX)] = 0} ,

and equality holds if K is connected.

Lemma 3.7. For any g ∈MG, S(adp p)
k = S(adp p0) and

TgN · g = go(S(adp p0)·, ·).

Remark 3.8. In the Lie group case, i.e., M = G and K trivial, we have that
S(adp p0) = S(ad g), so it is zero if and only if g is bi-invariant.

Proof. Since [adZ|p, S(adpX)] = S(adp [Z,X]|p) for any Z ∈ k, we obtain that
S(adp p0) ⊂ S(adp p)

k. Conversely, given S(adpX) ∈ S(adp p)
k, we consider the

decomposition X = X0 + X1, where X0 ∈ p := {Y ∈ p : (adp Y )t = − adp Y }
and X1 ⊥ p. Note that both p and its orthogonal complement are ad k|p-invariant
subspaces. Thus [Z,X] and [Z,X0] both belong to p0 and so [Z,X1] = 0 for any
Z ∈ k, from which follows that S(adpX) = S(adpX1) ∈ S(adp p0).

The second equality can be proved using (10) as follows. For any X ∈ g such that
[X, k] ⊂ k,

d
dt

∣∣
0
(Iexp tX)∗g = d

dt

∣∣
0
go(Ad(exp tX)|p·,Ad(exp tX)|p·)

=go(adX|p·, ·) + go(·, adX|p·). = 2go(S(adX|p)·, ·),

Now if X = Xk +Xp, then S(adX|p) = S(adpXp) (since adXk|p is skew-symmetric)
and [Xp, k] ⊂ k ∩ p = 0, i.e., Xp ∈ p0.

Assume from now on in this subsection that G is compact, thus M and K are
also compact. In this case, it is known that N is the group of all G-equivariant
diffeomorphisms of M = G/K (see [Br, Chapter I, Corollary 4.3]) and so N -orbits (or
NG(K)-orbits, see (10)) are precisely the equivariant isometry classes. Since NG(K)
and Aut(G/K) have the same connected components of the identity, an Einstein
metric g is G-rigid if and only if any other G-invariant Einstein metric on M near g
is equivariantly isometric up to scaling to g. Furthermore, one obtains from Lemma
3.7 the following useful description of the space of trivial G-invariant variations.

Corollary 3.9. If G is compact, then at any g ∈MG,

Tg Aut(G/K) · g = TgN · g = go(S(adp p0)·, ·).

Contrary to what happens in the Lie group case (see Remark 3.8), the space of
trivial variations vanishes in many cases if K is non-trivial:
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• If g ∈ MG is naturally reductive with respect to G, i.e., there exists a reductive
decomposition g = k ⊕ p such that adpX is skew-symmetric for any X ∈ p, then
Tg Aut(G/K) · g = 0 by Corollary 3.9.

• Another direct consequence of Corollary 3.9 is that Tg Aut(G/K) · g = 0 for any
g ∈MG if the trivial representation does not appear in the k-isotropy representation
of M = G/K (i.e., p0 = 0).

• If G is compact and the isotropy representation of G/K is mutiplicity-free (i.e.,
any two different Ad(K)-invariant irreducible subspaces are inequivalent as Ad(K)-
representations), e.g., when rk(G) = rk(K), then NG(K) · g is finite and so
Tg Aut(G/K) · g = 0 for any g ∈ MG. Indeed, the multiplicity-free condition
is equivalent to the existence of only finitely many Ad(K)-invariant subspaces of p,
which implies that the connected component NG(K)0 necessarily leaves invariant
any Ad(K)-invariant and irreducible subspace of p and consequently NG(K)0 acts
trivially on MG.

3.4. G-invariant TT-tensors. Recall from §2 the divergence operator δg at-
tached to a Riemannian metric g, and the space of TT-tensors T Tg = Ker δg∩Ker trg.
The proof of the following lemma is strongly based on the proof of [WW, Lemma 2.2].

Proposition 3.10. If G is unimodular and g ∈MG, then

S2(M)G = go(S(adp p0)·, ·)⊕⊥g Ker δg ∩ S2(M)G.

Remark 3.11. In particular, S2(M)G ⊂ Ker δg and so T T G
g = S2(M)G∩Ker trg

under any of the above three assumptions, where

T T G
g := S2(M)G ∩ T Tg

is the space of all G-invariant TT-tensors.

Proof. Let {Xi} be a go-orthonormal basis of p and extend it to a local frame of
Killing vector fields. Consider T ∈ S2(M)G. Then, at the point o we have that

δg(T )(X) =−
∑

(∇XiT )(Xi, X) =
∑

−Xi(T (Xi, X)) + T (∇XiXi, X) + T (Xi,∇XiX)

=
∑

T (Xi, [X,Xi]) + T (Xi,∇XiX) + T (∇XiXi, X)

=
∑

T (Xi,∇XXi) + T (∇XiXi, X)

=
∑

g(∇XXi, Xk)T (Xi, Xk) +
∑

g(∇XiXi, Xk)T (Xk, X).

It follows from the Koszul formula (recall that [Xi, Xj ]o = −[Xi, Xj ]p, where [·, ·]p de-
notes the Lie bracket of g restricted and then projected on p) that the right summand
equals ∑

go([Xk, Xi]p, Xi)T (Xk, X) =
∑
k

T (Xk, X)
∑
i

go([Xk, Xi]p, Xi)

=
∑

T (Xk, X) tr adpXk = 0,

since tr adp Y = tr adY = 0 for any Y ∈ p as G is unimodular, and the left one gives

− 1
2

∑
go([X,Xi]p, Xk)T (Xi, Xk)− 1

2

∑
go([Xi, Xk]p, X)T (Xi, Xk)

+ 1
2

∑
go([Xk, X]p, Xi)T (Xi, Xk) = − 1

2

∑
T ([X,Xi]p, Xi)− 1

2

∑
T ([X,Xk]p, Xk)

=−
∑

T ([X,Xi]p, Xi) = −〈T, go(S(adp X)·, ·)〉g.
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Note that the middle term vanishes since [·, ·]p and T are respectively skew-symmetric
and symmetric bilinear forms. Thus a tensor T ∈ S2(M)G is divergence-free if and
only if T ⊥ go(S(adpX)·, ·) for any X ∈ p, which is equivalent to T ⊥ go(S(adp p0)·, ·)
by Lemma 3.7 and the fact that T is Ad(K)-invariant.

It follows from Corollary 3.9 and Proposition 3.10 that the space of all G-invariant
variations TgMG = S2(M)G admits the following decomposition in the compact case.

Corollary 3.12. If G is compact, then at any g ∈MG,

TgMG = Rg ⊕⊥g Tg Aut(G/K) · g ⊕⊥g T T G
g .

Recall from Remark 3.11 that TgMG = Rg ⊕⊥g T T G
g therefore holds in many

natural cases. Curiously enough, as far as we know, S2 × S3 = SO(4)/SO(2) is the
only homogeneous space G/K with dimK > 0 known such that Tg Aut(G/K) · g is
nonzero for a G-invariant Einstein metric g (see [LW2, Example 3.7]).

3.5. G-stability. Since the function Sc is constant on Aut(G/K) · g, its second
variation Sc′′g vanishes on Tg Aut(G/K) · g. Note that Sc′′(g, g) = 2 Sc(g). On the

other hand, if g ∈ MG is Einstein, then the orbit Aut(G/K) · g consists of Einstein
metrics and so E |Aut(G/K)·g ≡ 0 and E(R+g) = 0, where

E :MG −→ S2(M)G, E(g′) := Rc(g′)− Sc(g′)
n g′,

is the Einstein operator or traceless Ricci tensor (cf. (7)).
At each g ∈MG, we consider the following decomposition,

TgMG = (Rg ⊕ Tg Aut(G/K) · g)⊕⊥g Wg, (13)

where Wg is defined as the 〈·, ·〉g-orthogonal complement of the space Rg ⊕
Tg Aut(G/K) · g of trivial variations. According to Proposition 3.10 and (13), if G
is unimodular, then Wg ⊂ T T G

g , and if in addition G is compact, then by Corollary
3.12,

Wg = T T G
g , (14)

the vector space of G-invariant TT-tensors.

Remark 3.13. The existence of G-invariant Einstein metrics on M = G/K for a
non-compact unimodular G is open. It is proved in [DLM] that G must be semisimple,
hence such existence would provide a counterexample to the Alekseevsky conjecture:
any non-compact and non-flat homogeneous Einstein manifold is isometric to a simply
connected solvmanifold (in particular, diffeomorphic to the Euclidean space). After
the conclusion of the first version of this paper, a proof of the Alekseevsky conjecture
was uploaded to arXiv by C. Böhm and R. Lafuente (see [BL2]).

We are now ready to define the notions of stability and deformability in the
G-invariant setting (cf. Definition 2.1).

Definition 3.14. An Einstein metric g ∈MG
1 is said to be,

• G-stable: Sc′′g |Wg×Wg
< 0 (in particular, g is a local maximum of Sc |MG

1
, by using

a slice for the Aut(G/K)-action on MG).
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• G-unstable: Sc′′g (T, T ) > 0 for some T ∈ Wg (g is a saddle point, unless

Sc′′g |Wg×Wg > 0, see below). The coindex is the dimension of the maximal sub-

space of Wg on which Sc′′g is positive definite.

• G-non-degenerate: Sc′′g |Wg×Wg non-degenerate (thus g is an isolated critical point
up to the Aut(G/K)-action, i.e., g is rigid), and otherwise, G-degenerate. The
nullity is the dimension of the kernel of Sc′′g |Wg×Wg

. Recall from §2 that G-non-
degeneracy is equivalent to G-infinitesimal non-deformability: Ker dE |g ∩Wg = 0,
where dE |g : S2(M)G → S2(M)G is the derivative of E.

• G-neutrally stable: Sc′′g |Wg×Wg
≤ 0 and degenerate (i.e., g is G-degenerate and it

is not G-unstable). Note that this must hold for any local maximum.
• G-strongly unstable: Sc′′g |Wg×Wg > 0 (g is therefore a local minimum of Sc |MG

1
).

Remark 3.15. Recall that the prefix G in the name of the different notions is
referring not only to the group G but also to its action on M , which has been fixed
at the beginning of the section.

If an Einstein metric g ∈ MG is G-stable, then g is clearly G-non-degenerate,
which in turn implies that g is G-rigid by Proposition 3.4. On the other hand, it
follows from (14) and §2 that if G is compact, then

G-instability⇒ Sc-instability⇒ ν-instability⇒ dynamical instability,

and that non-rigidity also follows from the assumption that the corresponding G-
invariant concept holds.

In [WW, Theorems 1.3, 1.4, 1.5], the authors obtained that all Einstein metrics
on Aloff-Wallach spaces are G-unstable, as well as any G-invariant Einstein metric on
a homogeneous space G/K ((G,K) not a symmetric pair) of dimension ≤ 7, except
for SU(2)× SU(2) and the isotropy irreducible Sp(2)/SU(2) (see also [SWW]).

Remark 3.16. In [LW1], the Ricci curvature function

Rc :MG → S2(M)G, g �→ Rc(g),

and its derivative dRc |g : S2(M)G → S2(M)G, at each g ∈ MG, were used in the
study of the prescribed Ricci curvature problem. Given an Einstein metric g ∈ MG,
say Rc(g) = ρg, it is easy to see that restricted to (Rg)⊥g , dE |g = dRc |g − ρ id. On
the other hand, we will show below in §4 that Sc′′g (T, T ) = 〈(ρ id−dRc |g)T, T 〉g, for
any T ∈ S2(M)G. Thus the stability type of g is determined by Spec

(
dRc |g|Wg

)
.

The operator dRc |g, which restricted to Wg is precisely one half of the Lichnerowicz
Laplacian ΔL when G is compact, was computed in [LW1] in terms of the moment
map of the variety of algebras via the moving bracket approach. This is developed in
§4.

4. Second variation of the scalar curvature. Given Mn = G/K as in §3,
we consider any reductive decomposition g = k ⊕ p in order to obtain the usual
identifications ToM ≡ p and

S2(M)G ↔ sym2(p)K , MG ↔ sym2
+(p)

K ,

where sym2(p)K is the vector space of all Ad(K)-invariant symmetric 2-forms on the
n-dimensional vector space p and sym2

+(p)
K the open cone of positive ones.
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Remark 4.1. It is usual in the literature the choice of p as the orthogonal
complement of k relative to some bi-invariant inner product on g, which always exists
for G compact. However, this choice may hide, among other nice properties, the fact
that a metric is naturally reductive with respect to G.

We also fix a background metric g ∈ MG and set 〈·, ·〉 := go ∈ sym2
+(p)

K . This
allows the following alternative identifications in terms of operators:

sym(p)K � A↔ T = 〈A·, ·〉 ∈ sym2(p)K , sym+(p)
K � h↔ 〈h·, h·〉 ∈ sym2

+(p)
K ,

where sym(p) is the vector space of all self-adjoint (or symmetric) linear maps of p with
respect to 〈·, ·〉 and sym+(p) the open subset of those which are positive definite. Note
that A ∈ sym(p) belongs to sym(p)K if and only if [Ad(K)|p, A] = 0 (equivalently,
[ad k|p, A] = 0, if K is connected).

4.1. Ricci curvature. Let μ denote the Lie bracket of g. We extend 〈·, ·〉 in the
usual way to inner products on gl(p) and Λ2p∗ ⊗ p, respectively:

〈A,B〉 := trABt, 〈λ, λ〉 :=
∑

| adλ Xi|2 =
∑

|λ(Xi, Xj)|2,

where {Xi} is any orthonormal basis of p relative to 〈·, ·〉. We also consider the algebra
product,

μp := prp ◦μ|p×p : p× p −→ p, (15)

where prp : g→ p is the projection on p relative to g = k⊕ p, and consider the linear
maps adpX := μp(X, ·), X ∈ p, as in (11).

If G is unimodular, then the Ricci operator Ric(g) of the metric g (see e.g. [LW1,
(5)]) is given by

Ric(g) = Mμp
− 1

2 Bμ, (16)

where 〈Bμ ·, ·〉 := Bg |p×p, Bg denotes the Killing form of the Lie algebra g and

〈Mμp
, A〉 := 1

4 〈θ(A)μp, μp〉, ∀A ∈ gl(p). (17)

Here θ is the representation of gl(p) given by,

θ(A)λ := Aλ(·, ·)− λ(A·, ·)− λ(·, A·), ∀A ∈ gl(p), λ ∈ Λ2p∗ ⊗ p. (18)

The function M : Λ2p∗ ⊗ p → sym(p) is therefore the moment map from geometric
invariant theory (see e.g. [BL1] and the references therein) for the representation θ of
gl(p). Equivalently,

Mμp
= − 1

2

∑
(adpXi)

t adpXi +
1
4

∑
adpXi(adpXi)

t, (19)

or

〈Mμp
X,X〉 = − 1

2

∑
〈μp(X,Xi), Xj〉2 + 1

4

∑
〈μp(Xi, Xj), X〉2, ∀X ∈ p. (20)

It is easy to check that both operators Mμp
and Bμ belong to sym(p)K . The main

part of the Ricci curvature of g is Mμp
, observe that Bμ is just measuring in some

sense how far is g from being standard. It follows from (17) and (18) that trMμp
=

〈Mμp
, I〉 = − 1

4 |μp|2 and so by (16),

Sc(g) = − 1
4 |μp|2 − 1

2 tr Bμ. (21)

We refer to [LfL] for more details on this viewpoint on Ricci curvature.
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4.2. Moving bracket approach. Recall that μ is the Lie bracket of g. Given
h ∈ sym+(p)

K , we consider the new Lie algebra (g, h · μ), where h ∈ GL(g) is defined

by h|k := I, h|p := h. Here h · μ := hμ(h−1·, h−1·) is the usual action of GL(g) on
Λ2g∗⊗g, so h : (g, μ)→ (g, h ·μ) is a Lie algebra isomorphism. Now for any Lie group
Gh·μ with Lie algebra (g, h · μ) such that there is an isomorphism G → Gh·μ with
derivative h, one obtains an isometry between the following Riemannian homogeneous
spaces,

(G/K, 〈h·, h·〉) −→ (Gh·μ/Kh·μ, 〈·, ·〉), (22)

whereKh·μ is the image ofK under the isomorphism. Note thatKh·μ is a Lie subgroup
of Gh·μ with Lie algebra (k, h · μ|k×k) and that g = k⊕ p is a reductive decomposition
for every homogeneous space Gh·μ/Kh·μ, h ∈ sym+(p)

K . Therefore, by varying the
Lie brackets as in the right of (22), one is covering the whole set MG (see [L] and
references therein for further information).

We assume from now on in this section that G is unimodular (see [LW1, §2.2] for
the general case). According to (16), for any h ∈ sym+(p)

K , the Ricci operator of
(Gh·μ/Kh·μ, 〈·, ·〉) is given by

Rich·μ = Mh·μp
− 1

2h
−1 Bμ h

−1. (23)

Note that h−1 Bμ h
−1 is the Killing form operator of the Lie algebra (g, h · μ) and by

(17),

〈Mh·μp
, A〉 := 1

4 〈θ(A)(h · μp), h · μp〉, ∀A ∈ gl(p). (24)

It follows from (22) that the Ricci tensor and the Ricci operator of each metric gh :=
〈h·, h·〉 ∈ MG are respectively given by

Rc(gh) = 〈hRich·μ h·, ·〉, Ric(gh) = h−1 Rich·μ h, ∀h ∈ sym+(p)
K ,

and by (21),

Sc(gh) = − 1
4 |h · μp|2 − 1

2 tr Bμh
−2. (25)

In order to study the different types of G-stability and G-deformability (see Definition
3.14), using the moving-bracket approach described above, we consider the functions

Rc,E : sym+(p)
K −→ sym2(p)K , Sc : sym+(p)

K −→ R, (26)

defined by Rc(h) := Rc(gh), Sc(h) := Sc(gh) and E(h) := E(gh) = Rc(h) − Sc(h)
n gh,

for any h ∈ sym+(p)
K .

4.3. First variation of Sc. Let S : gl(p)→ sym(p) denote the symmetric part
operator S(A) := 1

2 (A+At) relative to 〈·, ·〉.
Lemma 4.2. At any h ∈ sym+(p)

K , if h(t) ∈ sym+(p)
K , h(0) = h, h′(0) = A

(e.g., h(t) = h+ tA or h(t) = heth
−1A), then

Sc
′
h(A) :=

d
dt

∣∣
0
Sc(h(t)) = −2〈Rich·μ, S(Ah−1)〉, ∀A ∈ sym(p)K .

Remark 4.3. At the background metric g, i.e., h = I, in accordance with (9),
the following simpler formula holds:

Sc′g(T ) :=
d
dt

∣∣
0
Sc(g + tT ) = 1

2Sc
′
I(A) = −〈Ricμ, A〉 = −〈Rc(g), T 〉g,
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for any A ∈ sym(p)K , where T ∈ S2(M)G, To = 〈A·, ·〉 ∈ sym2(p)K .

Proof. We first give the following useful formula, which is easy to prove using
(18):

d
dt (h(t) · μp) = θ

(
h′(t)h(t)−1

)
(h(t) · μp) . (27)

It now follows from (25) and (27) that

d
dt

∣∣
0
Sc(h(t)) =− 1

4
d
dt

∣∣
0
|h(t) · μp|2 − 1

2
d
dt

∣∣
0
tr Bμ h(t)

−2

=− 1
2 〈 d

dt

∣∣
0
h(t) · μp, h · μp〉 − 1

2 tr Bμ
d
dt

∣∣
0
h(t)−2

=− 1
2 〈θ(Ah−1)h · μp, h · μp〉+ 1

2 tr Bμ h
−1Ah−2 + 1

2 tr Bμ h
−2Ah−1

=− 2〈Mh·μp
, Ah−1〉+ trh−1 Bμ h

−1S(Ah−1)

=− 2〈Rich·μ, S(Ah−1)〉,

where the last equality follows from (23).

Since d det |hA = (deth) trAh−1, if

sym+(p)1 := {h ∈ sym+(p) : deth = 1},

then

Th sym+(p)
K
1 =

{
A ∈ sym(p)K : trAh−1 = 0

}
,

so the following corollary analogous to Lemma 3.6 follows.

Corollary 4.4. h ∈ sym+(p)
K
1 is a critical point of Sc : sym+(p)

K
1 −→ R if

and only if the metric gh ∈MG is Einstein.

4.4. First variation of Rc. The derivative of the Ricci curvature function at
the background metric g ∈MG (〈·, ·〉 = go) was computed in [LW1]. We consider the
maps

δμp
: gl(p) −→ Λ2p∗ ⊗ p, δtμp

: Λ2p∗ ⊗ p −→ gl(p),

where δμp
(A) := −θ(A)μp (see (18)) and δtμp

is the transpose of δμp
, and define the

following operator,

Lp = Lp(g) : sym(p) −→ sym(p), LpA := 1
2S◦δ

t
μp
δμp

(A)+AMμp
+Mμp

A. (28)

By using (17), it is easy to check that Lp satisfies the following properties (see
[LW1]):
• Lp is a self-adjoint operator.
• Lp I = 0 since δμp

(I) = μp and δtμp
δμp

(I) = δtμp
(μp) = −4Mμp

. Thus Lp sym(p) ⊂
sym0(p) := {A ∈ sym(p) : trA = 0} by self-adjointness.

• 〈LpA,A〉 = 1
2 |θ(A)μp|2 + 2 trMμp

A2 = 1
2 〈
(
θ(A)2 + θ(A2)

)
μp, μp〉, for any A ∈

sym(p).
• Lp sym(p)K ⊂ sym(p)K . This follows by a straightforward computation using that
Ad(z) ∈ Aut(g, μ) and Ad(z)|p is 〈·, ·〉-orthogonal for any z ∈ K.

• Moreover, Lp sym(p)H ⊂ sym(p)H for any g ∈ MH , where H is any intermediate
subgroup K ⊂ H ⊂ NG(K).
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Lemma 4.5 ([LW1, Lemma 6.1]). For any T ∈ S2(M)G, To = 〈A·, ·〉, A ∈
sym(p)K ,

dRc |gT = 1
2dRc|IA = 1

2 〈LpA·, ·〉.

Since ΔLT = 2dRc |gT on T Tg (see [B, 12.28’]), the following formula follows.

Corollary 4.6 ([LW1, Corollary 6.7]). Let M = G/K be a homogeneous space
with G compact, endowed with a reductive decomposition g = k ⊕ p. Then the Lich-
nerowicz Laplacian ΔL of any G-invariant Riemannian metric g on M is given by

ΔLT = 〈LpA·, ·〉, ∀T ∈ T T G
g ,

where To = 〈A·, ·〉 ∈ sym2(p)K ≡ S2(M)G, A ∈ sym(p)K and 〈·, ·〉 = go.

Recall from §3.4 the computation of the space Ker δg ∩ S2(M)G of G-invariant
divergence-free symmetric 2-tensors.

4.5. Second variation of Sc. As expected, at an Einstein metric, the second
derivative of the scalar curvature is strongly related to the first derivative of the Ricci
curvature.

Lemma 4.7. Suppose that the background metric g is Einstein, say Rc(g) = ρg.
Then, for any T ∈ S2(M)G, To = 〈A·, ·〉, A ∈ sym(p)K ,

Sc′′g (T, T ) =
1
4Sc

′′
I (A,A) := 1

4
d2

dt2

∣∣∣
0
Sc(h(t))

=− 1
2 〈LpA,A〉+ ρ trA2 = 1

2 〈(2ρ id−Lp)A,A〉,

where h(t) ∈ sym+(p)
K , h(0) = I, h′(0) = A.

Remark 4.8. Alternatively, Sc′′g (T, T ) = − 1
4 |θ(A)μp|2− 1

2 tr Bμ A
2, which follows

from the fact that Mμp
− 1

2 Bμ = ρI.

Remark 4.9. Since I is a critical point of Sc|sym1(p)
K , the value of Sc

′′
I (A,A)

is well defined if trA = 0, in the sense that it can be computed using any curve

h(t) ∈ sym1(p)
K through I with velocity A. On the other hand, Sc

′′
I (I, I) = 4 Sc(I),

so the formula also holds for A = I and thus Sc′′I (A,A) is well defined for any A.

Proof. If h(t) := etA, then d
dth(t) · μp = θ(A)(h(t) · μp) by (27), and so

d2

dt2

∣∣∣
0
Sc(h(t)) =− 1

2
d
dt

∣∣
0
〈θ(A)h(t) · μp, h(t) · μp〉+ d

dt

∣∣
0
trAe−2tA Bμ

=− 1
2 〈θ(A)2μp, μp〉 − 1

2 〈θ(A)μp, θ(A)μp〉 − 2 trA2 Bμ

=− 〈δtμp
δμp

(A), A〉 − 2 trBμ A
2

=− 2〈LpA,A〉+ 4 trMμp
A2 − 2 trBμ A

2

=− 2〈LpA,A〉+ 4 trRicμ A
2.

We are using formula (28) in the second last equality. The fact that Ricμ = ρI
concludes the proof.
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4.6. First variation of E. The following formula for the derivative of the Ein-
stein operator follows from Lemma 4.5.

Lemma 4.10. If g is Einstein, say Rc(g) = ρg, then

dE |gT = 1
2dE|IA =

〈(
1
2 LpA− ρA

)
·, ·
〉
+ 1

nρ(trA)〈·, ·〉,

for any T ∈ S2(M)G, To = 〈A·, ·〉, A ∈ sym(p)K .

In particular, dE |g = dRc |g − ρ id restricted to (Rg)⊥g .

4.7. Stability in terms of Lp. We assume in this subsection that the back-
ground metric g ∈ MG is Einstein. Under the identifications in terms of operators,
the decomposition of the space of variations analogous to (13) is the following decom-
position of the tangent space TI sym+(p)

K = sym(p)K at the identity map I:

TI sym+(p)
K = (RI ⊕ TI Aut(G/K) · I)⊕⊥ W, (29)

where W is the 〈·, ·〉-orthogonal complement of RI ⊕ Aut(G/K) · I and Aut(G/K)
acts on sym+(p)

K according to the identification sym+(p)
K ≡MG. Recall that if G

is compact, then T T G
g = 〈W ·, ·〉 by Corollary 3.12. Note that

W ⊂ sym0(p)
K ,

and if in addition any of the conditions listed at the end of §3.3 holds, then W =
sym0(p)

K .

It follows from [LW1, Lemma 6.10] that dRc|IS(D) = 2ρS(D) for any D ∈
Der(g/k). We therefore obtain from (12) and Lemma 4.5 that

Lp |TI Aut(G/K)·I = 2ρ id, (30)

where Lp is the operator attached to the metric g as in (28).

According to Definition 3.14, it follows from Lemmas 4.7 and 4.10 that the G-
stability and G-deformability types of the Einstein metric g are both determined by
the spectrum of the operator Lp restricted to W , which coincides with the Lichnerow-
icz Laplacian in the compact case (see Corollary 4.6). All this is summarized in the
following proposition.

Let λp = λp(g) and λmax
p = λmax

p (g) denote, respectively, the minimum and
maximum eigenvalue of Lp = Lp(g) restricted to the subspace W defined in (29).

Proposition 4.11. Let g be a G-invariant metric on a homogeneous space M =
G/K, where G is unimodular, endowed with a reductive decomposition g = k ⊕ p. If
g is Einstein, say Rc(g) = ρg, then the following holds:

(i) g is G-stable if and only if 2ρ < λp.
(ii) g is G-unstable if and only if λp < 2ρ.
(iii) g is G-non-degenerate if and only if G-infinitesimally non-deformable, if and

only if 2ρ /∈ Spec (Lp |W ).
(iv) g is G-neutrally stable if and only if λp = 2ρ.
(v) g is G-strongly unstable if and only if λmax

p < 2ρ.

Remark 4.12. It follows from Corollary 4.6 that λL(g) ≤ λp(g) (see §2).
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In the case of a product homogeneous space, i.e., G = G1 × G2, K = K1 ×K2,
Ki ⊂ Gi, gi = ki⊕pi and g = g1+g2, where gi is a Gi-invariant metric onMi = Gi/Ki,
we obtain that W = W1 ⊕W2 ⊕ RA0, where

A0 := (n2Ip1 ,−n1Ip2) , ni := dimMi,

and Lp(g) = Lp1
(g1) + Lp2

(g2). Since A0 ∈W ∩KerLp, one deduces that λp ≤ 0 and
so any positive scalar curvature homogeneous product Einstein metric g is G-unstable.

5. Naturally reductive case. We consider in this section the case when g ∈
MG is a naturally reductive metric on M with respect to G and some reductive
decomposition g = k⊕p, i.e., the map adpX : p→ p is skew-symmetric for any X ∈ p
(see (11) or (15)). Note that G is necessarily unimodular. We refer to [LW1, §7] and
references therein for further information on naturally reductive metrics.

The moment map takes the simpler form

Mμp
= 1

4

∑
(adpXi)

2, (31)

and the operator Lp also considerably simplifies in the naturally reductive setting (see
Lemma 4.5 and [LW1, Lemma 7.18]):

LpA := − 1
2

∑
[adpXi, [adpXi, A]], ∀A ∈ sym(p)K , (32)

where {Xi} is any orthonormal basis of (p, 〈·, ·〉) and 〈·, ·〉 = go. Note that Lp ≥ 0; in
particular, λp ≥ 0. We also recall that TgMG = Rg⊕T T G

g in the compact case, i.e.,

W = sym0(p)
K .

Since LpA = 0 if and only if [A, adp p] = 0, the following conditions are equivalent
by results due to Kostant [Ko] (see [LW1, §7.1]):
• KerLp = RI.
• g is, up to scaling, the unique naturally reductive metric on M with respect to G
and p.

• g is holonomy irreducible.
• (M̃, g) is de Rham irreducible, where M̃ denotes the simply connected cover of M .
• k is g-indecomposable, in the sense that there exist no nonzero ideals g1 and g2 of
g such that g = g1 ⊕ g2 and k = k ∩ g1 ⊕ k ∩ g2 (e.g., if g is indecomposable).

5.1. Killing metrics on Lie groups. For M = G a compact semisimple Lie
group, we consider the left-invariant metric gB ∈ MG defined by −Bg, where Bg

denotes the Killing form of g. According to (31), Mμp
= − 1

4 Cad,−Bg
= − 1

4I, the
Casimir operator acting on the adjoint representation of g, and so Rc(gB) =

1
4gB by

(16). On the other hand, p = g and it follows from (32) that

Lp = 1
2 Cτ ,

where Cτ = Cτ,−Bg
is the Casimir operator acting on the representation sym(g) of g

given by

τ(X)A := [adX,A],

i.e., Cτ = −∑
τ(Xi)

2, where {Xi} is a −Bg-orthonormal basis of g. The first positive
eigenvalue λτ of Cτ can therefore be computed by using representation theory. We
have collected in Table 1 the values of λτ for each simple Lie algebra g, which together
with Proposition 4.11, give the following. Note that λp = 1

2λτ and 2ρ = 1
2 .

Proposition 5.1. Let G be a connected compact simple Lie group and let gB
denote the Killing metric, which is Einstein with Rc(gB) =

1
4gB.
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Type g n λτ Stab. type

A1 su(2) 3 G-stable

An su(n+ 1) n ≥ 2 1 G-neut. stab.

B3 so(7) 6
5 G-stable

Bn so(2n+ 1) n ≥ 4 2n+1
2n−1 G-stable

Cn sp(n) n ≥ 2 n
n+1 G-unstable

Dn so(2n) n ≥ 4 n
n−1 G-stable

E6 e6
3
2 G-stable

E7 e7
14
9 G-stable

E8 e8
8
5 G-stable

F4 f4
13
9 G-stable

G2 g2
7
6 G-stable

Table 1

First eigenvalue λτ of the Casimir operator Cτ acting on sym(g) with respect to −Bg for a
compact simple g

• For G = SU(n), n ≥ 3, the metric gB is G-neutrally stable with nullity n2 − 1.

• gB is G-unstable on any G = Sp(n), n ≥ 2, with coindex ≥ 2n(2n−1)
2 − 1.

• In all the remaining cases, gB is G-stable.

In particular, gB is a local maximum of Sc |MG
1
in most of the cases. The question

of whether gB on SU(n) is a local maximum of Sc |MG
1
or not is still open for n ≥ 4.

It was proved in [J1] that it is not for n = 3, while it is well known that it is a global
maximum for n = 2. Concerning Sp(n), since λmax

p = 2n+4
2(n+1) >

1
2 = 2ρ, gB is a saddle

point of Sc |MG
1
.

This shows that the picture in the G-invariant setting is completely analogous to
the general case studied by Koiso in [K], as described at the end of §2. In particular,
any bi-invariant metric on any compact simple Lie group G is G-rigid, except possibly
for SU(n), n ≥ 3. Nevertheless, it was proved in [DG, Theorem 22.3] that on SU(n),
gB is indeed G-rigid.

5.2. A formula for Lp in terms of structural constants. Let M = G/K be
a homogeneous space with G compact and reductive decomposition g = k⊕ p. Given
a non-degenerate ad g-invariant symmetric bilinear form Q on g such that Q(k, p) = 0
and Q|p > 0, we consider the metric gQ ∈ MG whose value at o is Q|p. Thus gQ is
naturally reductive with respect to G and p.
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Remark 5.2. According to [Ko, Theorem 4] (see also [DZ, p.4]), if g = p+ [p, p],
then any G-invariant metric on M which is naturally reductive with respect to G and
p is given in this way for a unique Q.

Recall that g is called normal when Q > 0, and if in addition G is semi-simple
and Q = −Bg, then g is called standard. In particular, if G is simple, then gQ is
necessarily standard (up to scaling).

Given any Q-orthogonal decomposition p = p1 ⊕ · · · ⊕ pr in Ad(K)-invariant
and irreducible subspaces p1, . . . , pr (di := dim pi), we consider the corresponding
structural constants given by,

[ijk] :=
∑
α,β,γ

Q([Xi
α, X

j
β ], X

k
γ )

2,

where {Xi
α} is a Q-orthonormal basis of pi. Since gQ is naturally reductive relative

to G and p, the number [ijk] is invariant under any permutation of ijk.
Recall from (16) that the Ricci operator of g is given by Ric(gQ) = Mμp

− 1
2 Bμ.

Since Mμp
is Ad(K)-invariant, for each k we have that the linear map Mμp

restricted
to pk and composed with the orthogonal projection on pk is given by mkIpk

for some
mk ∈ R. It follows from (20) that

mk = − 1
4dk

∑
i,j

[ijk], ∀k = 1, . . . , r; (33)

indeed,

mkdk =trMμp
|pk

=
∑

Q(Mμp
Xk

γ , X
k
γ )

=− 1
2

∑
Q(μp(X

k
γ , X

i
α), X

j
β)

2 + 1
4

∑
Q(μp(X

i
α, X

j
β), X

k
γ )

2

=− 1
2

∑
[kij] + 1

4

∑
[ijk] = − 1

4

∑
[ijk].

Note that this can alternatively be computed using (31). The irreducibility of pk
also gives that −Bg restricted to pk equals bkQ|pk

for some bk ∈ R for any k, and
consequently, the restriction and projection of Bμ is given by −bkIpk

. Note that
bk ≥ 0, where equality holds if and only if pk ⊂ z(g), and that if gQ is standard, then
bk = 1 for all k. We therefore obtain that

Ric(gQ)|pk
= ρkIpk

, ρk = bk
2 − 1

4dk

∑
i,j

[ijk], (34)

and the Einstein equations become: Ric(gQ) = ρI if and only if

ρk = ρ, ∀k = 1, . . . , r and 〈Ric(gQ)pi, pj〉 = 0, ∀i �= j.

We now assume that the isotropy representation of the homogeneous space M = G/K
is multiplicity-free. Thus the right-hand side Einstein conditions above automatically
hold and {

1√
d1
Ip1 , . . . ,

1√
dr
Ipr

}
is an orthonormal basis of sym(p)K . Let [Lp] denote the matrix of Lp(gQ) with respect
to this basis.
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Theorem 5.3. Let gQ ∈MG be the naturally reductive metric on M = G/K (G
compact) attached to a non-degenerate ad g-invariant symmetric bilinear form Q on
g, and assume that G/K is multiplicity-free. Then, the entries of the matrix [Lp] are
given by,

[Lp]kk = 1
dk

∑
j �=k
i

[ijk], ∀k, [Lp]jk = − 1√
dj

√
dk

∑
i

[ijk], ∀j �= k.

Remark 5.4. It is easy to check that the coordinates vector [
√
d1, . . . ,

√
dr]

t of
the identity map is indeed in the kernel of [Lp]. Note that the structural constants of
the form [kkk] are not involved in the above formulas.

Proof. We fix any Q-orthonormal basis {Xi
α} of each pi and denote

adpX
i
α =

⎡
⎢⎢⎢⎣

adp1
Xi

α (adpX
i
α)12 · · · (adpX

i
α)1r

−(adpXi
α)

t
12 adp2

Xi
α · · · (adpX

i
α)2r

...
...

. . .
...

−(adpXi
α)

t
1r −(adpXi

α)
t
2r · · · adpr

Xi
α

⎤
⎥⎥⎥⎦ ,

where (adpX
i
α)jk : pk → pj . We also consider Ejk : pj → pj and Fjk : pk → pk

defined by

Ejk :=
∑
i,α

(adpX
i
α)jk(adpX

i
α)

t
jk, Fjk :=

∑
i,α

(adpX
i
α)

t
jk(adpX

i
α)jk, ∀j < k.

For any diagonal block map

A := [a1Ip1 , a2Ip2 , . . . , arIpr ] ∈ sym(p)K ,

a straightforward computation using (32) gives that the k-th block of LpA is given
by

∑
j<k

(ak − aj)Fjk +
∑
k<j

(ak − aj)Ekj .

In particular, for each l,

Lp Ipl
=

⎡
⎣−E1l, . . . ,−El−1,l,

l−1∑
j=1

Fjl +

r∑
j=l+1

Elj ,−Fl,l+1, . . . ,−Flr

⎤
⎦
t

.

Since Lp sym(p)K ⊂ sym(p)K , this implies that Ejk = ejkIpj
and Fjk = fjkIpk

for all
j < k, for some non-negative ekj , fjk ∈ R. But trEjk = trFjk, so

dkfjk = trFjk =
∑
i

[ijk], ejk = dk

dj
fjk, ∀j < k,

concluding the proof.
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6. Three standard infinite families. In this section, we assume that M =
G/K is one of the following:

SU(nk)/S(U(k)× · · · ×U(k)), k ≥ 1, Sp(nk)/Sp(k)× · · · × Sp(k), k ≥ 1;

SO(nk)/S(O(k)× · · · ×O(k)), k ≥ 3,
(35)

where the quotients are all n-times products with n ≥ 3. The standard block matrix
reductive decomposition is given by

g = k⊕ p12 ⊕ p13 ⊕ · · · ⊕ p(n−1)n,

where every pij = pji (note that always i �= j) has dimension d = 2k2, 4k2, k2,
respectively, and they are all Ad(K)-irreducible and pairwise inequivalent. Thus

G/K is multiplicity-free and dimMG = n(n−1)
2 .

It is easy to check that [pij , pkl]p = 0 if {i, j} and {k, l} are either equal or
disjoint, and [pij , pik]p is nonzero and it is contained in pjk for all j �= k. Moreover,
a straightforward computation gives that any nonzero structural constant [ijk] as in
§5.2 is equal to the same c = c(G, k, n), where c

d is respectively given by

c

d
=

1

2n
,

k

2(nk + 1)
,

k

2(nk − 2)
. (36)

We consider the standard or Killing metric gB on G/K, i.e., Q = −Bg (see §5.2). It
follows from (34) that gB is Einstein with

2ρ = 1− c

d
(n− 2). (37)

On the other hand, according to Theorem 5.3,

[Lp](ij)(ij) =
c

d
2(n− 2), [Lp](ij)(ik) = −

c

d
, ∀j �= k,

and [Lp](ij)(kl) = 0 otherwise. This implies that

[Lp] =
c

d

(
2(n− 2)I −Adj(X)

)
,

where X = J(n, 2, 1) is the Johnson graph with parameters (n, 2, 1) (see [GR, §1.6])
and Adj(X) denotes its adjacency matrix. Since the graph is strongly regular with

parameters (n(n−1)
2 , 2(n− 2), n− 2, 4) for any n ≥ 4 (see [GR, §10.1]), it follows from

[GR, §10.2] that the spectrum of Adj(X) is given by

2(n− 2), n− 4, −2, with multiplicities 1, n− 1,
n(n− 3)

2
,

respectively. Thus Spec(Lp) = {0, λp, λ
max
p }, where

λp =
c

d
n, λmax

p =
c

d
2(n− 1), n ≥ 4, (38)

and have multiplicities n− 1 and n(n−3)
2 , respectively.

For n = 3, X is the complete graph on 3 vertices and so the spectrum of Adj(X)
equals {2,−1}, with multiplicities 1 and 2, respectively. Thus λp = λmax

p = c
d3 and

has multiplicity 2 if n = 3.
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G/K n k Crit.point coindex

SU(3k)/S(U(k)3) 3 k ≥ 1 loc.min. 2

SU(4k)/S(U(k)4) 4 k ≥ 1 G-deg. 3

SU(nk)/S(U(k)n) n ≥ 5 k ≥ 1 saddle n− 1

Sp(3k)/Sp(k)3 3 k ≥ 1 loc.min. 2

Sp(4k)/Sp(k)4 4 k ≥ 1 loc.min. 5

Sp(5)/Sp(1)5 5 1 loc.min. 9

Sp(10)/Sp(2)5 5 2 G-deg. 4

Sp(6)/Sp(1)6 6 1 G-deg. 5

Sp(kn)/Sp(k)n n ≥ 5 otherwise saddle n− 1

SO(3k)/S(O(k)3) 3 k ≥ 3 loc.min. 2

SO(nk)/S(O(k)n) n ≥ 4 k ≥ 3 saddle n− 1

Table 2

Coindex and critical point type of the G-unstable Einstein metric gB on each of the spaces given
in (35).

The following proposition follows from a straightforward comparison between
(36), (37) and (38).

Proposition 6.1. The standard metric gB on each of the homogeneous spaces
given in (35) is always G-unstable, and so Ricci flow dynamically unstable. The
coindex and type of critical point are given in Table 2. They are all G-non-degenerate,
and in particular G-rigid, except

SU(4k)/S(U(k)×U(k)×U(k)×U(k)), k ≥ 1, Sp(10)/Sp(2)5, Sp(6)/Sp(1)6.

We do not know whether gB is still a local minimum in the G-degenerate cases
or not.

7. Jensen’s metrics. Given a simple Lie group H and a semisimple subgroup
K ⊂ H, we consider the Bh-orthogonal decomposition h = a⊕ k and the left-invariant
metrics on H defined by

gt = −Bh |a + t(−Bh)|k, t > 0.

Thus g1 is the Killing metric on H. On the other hand, it was proved in [Z] (see also
[DZ, Theorem 1]) that for each t �= 1, the metric gt is naturally reductive with respect
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to G = H ×K (acting on H by (h, k) · p := hpk−1) and the reductive decomposition

g = Δk⊕ pt, pt := pa ⊕ pk, pa := (a, 0), pk := {( t
1−tZ,−Z) : Z ∈ k}.

Indeed, gt is identified with gQt
, where Qt is the non-degenerate ad g-invariant bilinear

symmetric form on g = (h, 0)⊕ (0, k) given by

Qt := −Bh +
t

1−t (−Bh)|k,

since for any Z ∈ k, the Qt-orthogonal projection of (0, Z) on pt is (t− 1)( t
1−tZ,−Z).

Note that gt is normal (i.e., Qt > 0) if and only if t < 1. If k = k1 ⊕ · · · ⊕ kr is a
Bh-orthogonal decomposition in simple ideals of k, then

pt := pa ⊕ p1 ⊕ · · · ⊕ pr, pi := {( t
1−tZ,−Z) : Z ∈ ki}, i = 1, . . . , r, (39)

is an Ad(ΔK)-invariant Qt-orthogonal decomposition of pt.
We assume from now on that a is Ad(K)-irreducible (i.e., H/K is isotropy irre-

ducible) and that for some constant c, Bki = cBh |ki for any i = 1, . . . , r. In particular,
the summands in (39) are all Ad(ΔK)-irreducible and most of the times pairwise in-
equivalent (see [LL, Remark 4.2] for a counterexample). We assume that they are
pairwise inequivalent, so dimMG

1 = r. It is easy to check that the only nonzero
structural constants are [jjj], [jaa] and [aaa] (see §5.2), which are next computed.

Lemma 7.1. For each j = 1, . . . , r,

[jjj] = (2t−1)2

t cdj , [jaa] = t(1− c)dj , [aaa] = d− 2(1− c)k,

where dj := dim pj = dim kj, d := dim pa = dim a and k := dim k.

Proof. These are straightforward computations which use for [jjj] that

Ikj = Cad,−Bkj
= −

∑(
adkj

1√
c
Zj
i

)2

,

where {Zj
i } is any −Bh-orthonormal basis of kj (recall that [jjj] = −

∑
α
tr(adXj

α|pj
)2

for any orthonormal basis {Xj
α}

dj

α=1 of pj), and for [jaa] and [aaa] that∑
aj(Xi)

taj(Xi) = (1− c)Ikj , ∀j = 1, . . . , r,

where

adh Xi =

⎡
⎢⎢⎢⎣

ada Xi a1(Xi) · · · ar(Xi)
−a1(Xi)

t

... 0
−ar(Xi)

t

⎤
⎥⎥⎥⎦

and {Xi} is a −Bh-orthonormal basis of a.

According to [DZ, Corollary 2, p.44], if t �= 1, then Ric(gt) = ρI if and only if

t = tE :=
dc

(d+ 2k)(1− c)
, 2ρ =

c

2tE
+

(1− c)tE
2

.
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We know from [DZ, Theorem 11, (ii), p.35] that

c <
d+ 2k

2d+ 2k
, that is, tE < 1,

as the exception sp(n−1) ⊂ sp(n) does not appear in this case (see the last paragraph
of the proof of [DZ, Corollary 2, p.44]). In particular, gtE is normal with respect to
G and ptE .

It follows from Theorem 5.3 and Lemma 7.1 that the matrix of the Lichnerowicz
Laplacian Lp(gtE ) relative to the orthonormal basis{

1√
d
Ipa

, 1√
d1
Ip1 , . . . ,

1√
dr
Ipr

}
,

of sym(ptE )
ΔK is given by

[Lp] = tE(1− c)

⎡
⎢⎢⎢⎢⎢⎣

k
d −

√
d1√
d

· · · −
√
dr√
d

−
√
d1√
d

1 . . . 0
...

...
. . .

...

−
√
dr√
d

0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ .

Since the characteristic polynomial of 1
tE(1−c) Lp is f(x) = x(x− 1)r−1(x− (1 + k

d )),

we obtain that

Spec(Lp) =
{
0, tE(1− c), tE(1− c)(1 + k

d )
}
,

with multiplicities 1, r − 1, 1, respectively, and so⎧⎨
⎩

λp = tE(1− c), λmax
p = tE(1− c)(1 + k

d ) r ≥ 2,

λp = λmax
p = tE(1− c)(1 + k

d ), r = 1.

Proposition 7.2. Every gtE is G-unstable with coindex r (in particular, gtE is
always a local minimum).

Proof. We have that

λmax
p = tE(1− c)(1 + k

d ) < 2ρ =
c

2tE
+

(1− c)tE
2

,

if and only if

0 <
c

2tE
− tE(1− c)( 12 + k

d ) =
c

2tE
− c

2
,

if and only if tE < 1, as was to be shown.

If MH denotes the huge space of all left-invariant metrics on H, then MG is
identified with the subset of MH of those metrics which are in addition K-invariant.
In particular, the Einstein metric gtE is also H-unstable, that is, unstable as a left-
invariant metric on H, and so Ricci flow dynamically unstable. Recall that the H-
stability type of the Killing metric g1 on the Lie group H has been established in
Proposition 5.1.
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It follows from the lists of isotropy irreducible homogeneous spaces given in [B,
Tables 7.102, 7.106, 7.107] that Proposition 7.2 provides at least one H-unstable
Einstein left-invariant metric on any simple Lie group, except Sp(2n+ 1), n ≥ 4 and
SO(n) for some odd n’s.

The only cases K ⊂ H with coindex ≥ 2 (i.e., K non-simple) are (see [DZ, p.46]):

SO(n)× SO(n) ⊂ SO(2n), Sp(n)× Sp(n) ⊂ Sp(2n),

SU(n)× SU(n) ⊂ SU(n2) (tensor product),

SU(3)× SU(3)× SU(3) ⊂ E6 Sp(3)×G2 ⊂ E7.
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