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ON THE GLOBAL MODULI OF CALABI-YAU THREEFOLDS∗

RON DONAGI† , MARK MACERATO‡ , AND ERIC SHARPE§

Abstract. In this note we initiate a program to obtain global descriptions of Calabi-Yau moduli
spaces, to calculate their Picard group, and to identify within that group the Hodge line bundle.
We do this here for several Calabi-Yau’s obtained in [DW09] as crepant resolutions of the orbifold
quotient of the product of three elliptic curves. In particular we verify in these cases a recent claim
of [GHKSST16] by noting that a power of the Hodge line bundle is trivial – even though in most of
these cases the Picard group is infinite.
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1. Introduction. Moduli spaces MX of (complex structures on) a compact
Calabi-Yau manifoldX are central to superstring compactifications, mirror symmetry,
conformal field theory, and numerous other branches of both geometry and physics.
They have the familiar complexity of moduli spaces; in particular, there is a stacky
version as well as an underlying coarse moduli space. The stack is smooth. It is often
easier to understand, and we will deal primarily with it.

While a lot is known about the local structure of these moduli spaces, there are
surprisingly few examples where the global geometry is fully understood, and much
of this is for moduli spaces of low complex dimensions, one or two.

Of particular interest is an understanding of the Hodge line bundle λ on MX ,
whose fiber above the (isomorphism class of) a particular X is the line H0(X,ωX)
of top holomorphic forms on X. Some startling predictions have appeared in recent
physics literature [GHKSST16], to the effect that Calabi-Yau moduli spaces MX al-
ways admit a (globally defined) Kähler potential. Our results verify these predictions
in all cases that we consider. In fact, we show that the Hodge line bundle is not
trivial, but some finite power of it is trivial. This implies the existence of a global
Kähler potential.

Over MX there is a universal family πX : X → MX whose fiber above the iso-
morphism class [X] of some X is that X itself. The intermediate Jacobians J(X) fit

into a family JX → MX . In [DM96] it is shown that the pull back J̃X → M̃X is an

analytically completely integrable system. Here M̃X is the space of pairs (X,α) where
X is a complex structure on a Calabi-Yau of a given deformation class, and α is a

holomorphic volume form on X. In other words, M̃X is the complement in LX of the
zero section. This system is integrable analytically but not algebraically: the fibers
are polarized complex tori, but the polarization is not positive definite, so the fibers
are not abelian varieties. (Instead, the polarization is Lorentzian, with h2,1 positive
directions and a single negative direction corresponding to h3,0.) Physically, this cor-

responds to the fact that J̃X approximates, in a large limit, the Ramond moduli space
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of the theory. The new prediction implies that M̃X is just the product MX ×C∗ (up
to a finite cover or a more general covering with constant transition functions), and

the symplectic form on the integrable system J̃X over it splits globally into horizontal
and vertical summands. (When X is not necessarily compact, it is possible for the
JX to be abelian varieties; this happens if the negative direction, i.e. a holomorphic
volume form, coincides with a vanishing cycle. In fact [DDP07], for each Riemann
surface C and each ADE group G it is possible to construct a family of non-compact
Calabi-Yau threefolds whose JX recovers the Hitchin system HC,G. These results have
been extended recently to include the non-simply laced groups BCFG [Beck16].)

It therefore seems worthwhile to construct some global moduli spaces MX and
to test the physics predictions for them. In the case that X is an elliptic curve, the
results are well known to mathematicians, and have been summarized for physicists
in [GS16]. The purpose of this work is to describe some global moduli spaces MX

and to determine their Hodge bundles λ for some genuine, three-dimensional compact
Calabi-Yaus. The moduli spaces we consider themselves will also be three dimensional.

The examples we consider are crepant resolutions X of orbifolds

X := Y/G

of the product Y := E1 × E2 × E3 of three elliptic curves by the action of a finite
group G. The latter contains the subgroup

GS ⊂ G

of its ‘shifts’ or translations, with a quotient group

GT := G/GS .

Elements of GT are called twists. We consider the case where GT is isomorphic to
Z/2×Z/2, acting (up to translations) by nontrivial elliptic involutions (sign changes)
on an even number of the Ei. It turns out [DW09] that all such groups G, and
orbifolds X, can be described explicitly.

In that work, a particular class of such group actions was designated ‘essential’.
It was shown that any orbifold X of this type is isomorphic to one whose group
is essential. Essential groups were shown to be abelian, isomorphic to the product
GS ×GT of their shift and twist parts, and all their non-trivial elements are of order
2. So, essentially, the shift group GS must be a subgroup of the group of points of
order 2 in Y , acting by translations. It is therefore isomorphic to (Z/2)r for some
r, 0 ≤ r ≤ 6. This r is called the rank of G. The full essential group G is then
isomorphic to (Z/2)r+2.

All such orbifolds have been classified in [DW09]. They fall into 35 types. Most
of these are known to be in distinct families, but as explained in [DW09] and reviewed
in our appendix, there are a few gaps where the possible existence of isomorphisms
is still not known. In fact, one pair from the list in [DW09] has since been shown to
be isomorphic, cf. [FRTV13]. After explaining the required notation, we recall that
classification and comment on its current state in the Appendix, in Table 3.

In this work we focus on ten of the families in this table, the ones whose moduli
spaces are three dimensional. For each of these there is a canonical identification:

H3(X,Q) ∼= ⊗1=1,2,3H
1(Ei,Q). (1)
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The best known example, denoted (0-1) in [DW09], was originally studied by [VW95].
In that case the group action has 48 fixed points, leading to singularities of X that
need to be resolved (by a crepant resolution). There are four cases where the group
action is free, leading to smooth quotients of Hodge numbers (3, 3). In [DW09] these
are denoted (0-4), (1-5), (1-11), and (2-12). (The notation (r-i) means that the group
GS has rank r, and that this is the i-th case listed in [DW09] with that given r.) There
are six further cases, including the [VW95] orbifold (0-1), where the group does have
some fixed points but the number of complex moduli happens to still be h2,1 = 3.
We tabulate these ten orbifolds with h2,1 = 3, giving their symbol from [DW09], their
Hodge numbers, whatever alternative descriptions are available, and some references
where they are either analyzed or used:

(0-1) (51,3) The basic Vafa-Witten orbifold [VW95], also a Borcea-Voisin
BV(18, 4, 0) [Bor97, Voi93].

(0-4) (3,3) Occurs in [Ig54, Ue75, OS01, BCDP, T]
(1-1) (27,3) A (Z/2) free quotient of the basic Vafa-Witten orbifold
(1-5) (3,3) A (Z/2) free quotient of (0-4) [DW09, T]
(1-11) (3,3) Another (Z/2) free quotient of (0-4) [DW09, T]
(2-1) (15,3) A (Z/2) free quotient of (1-1)
(2-9) (27,3) An orbifold of the SO(12) torus, related to BNAHE+ free

fermion model [Fa92, Fa93, DF04, DW09]
(2-12) (3,3) A (Z/2) free quotient of (1-11) [DW09, T]
(3-5) (15,3) A (Z/2) free quotient of (2-9)
(4-1) (15,3) Related to ‘enhanced’ BNAHE+ free fermion model

[Fa92, Fa93, DF04, DW09]

Notice that any projective crepant resolution of any of these is a genuine N = 1
Calabi-Yau threefold, in the sense that its h1 vanishes and it has precisely a one-
dimensional space of holomorphic three-forms or covariantly constant spinors. For
the four cases with Hodge numbers (3, 3), the holonomy is a proper subgroup of
SU(3), in fact a finite subgroup. The remaining cases, where h2,1 = 3, h1,1 > 3,
involve some blowups, and their holonomy is all of SU(3).

Below we give a global description of the moduli space MX in each case in which
h2,1 = 3. In doing so, we will also describe a connected component MX (isomorphic to
MX) of the moduli space of complex structures on a particular resolution X. What we
will find is that MX is isomorphic to a global quotient of H3, where H is the complex
upper half plane. We will prove that the Picard group of MX is a finitely generated
abelian group, and calculate the rank of its free part in each case. Despite the fact
that Pic(MX) will often be infinite, we will prove that the Hodge bundle has finite
order in each of these cases. In fact, we will calculate an explicit trivialization of a
tensor power of the bundle, and compute the Kähler potential on MX . In summary:

Theorem 1.1. Let E1, E2, E3 denote elliptic curves, and let G ⊆ Aut(E1×E2×
E3) denote an essential group of automorphisms (in the sense of [DW09], Definition
1.1.1). Let X = (E1 × E2 × E3)/G denote the quotient orbifold, and let MX denote
the connected component of the moduli stack of complex structures on X containing
X. Assume that h2,1(X) = 3.

(1) We have

Pic(MX) � Za ×A

where a is given in Table 2 below (as dimK(H2(H ′,K))) for each case and A
is some (case dependent) 6-torsion finite abelian group.
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(2) The class of the Hodge line bundle λ ∈ Pic(MX) is non-trivial, and torsion.
Furthermore, the moduli stack MX admits a globally defined Kähler potential.

2. The moduli spaces.

2.1. Notation and Terminology.

V := a fixed, 2-dimensional vector space over the field of 2 elements

S := SL(V ) ∼= SL(2,Z/2), acting linearly on V.

Bi ⊂ S := a Borel subgroup, stabilizer of a non-zero vector in V, i = 1, 2, 3.

Ei := elliptic curves, i = 1, 2, 3.

Ei[2] := the subgroup of points of order 2 in Ei

Y := E1 × E2 × E3

Y [2] := the subgroup of points of order 2 in Y

li := a level 2 structure on Ei, i.e. an isomorphism li := V
∼→ Ei[2]

l := Π3
i=1li : V

⊕3 ∼→ Y [2], the induced level 2 structure on Y

M(2) := moduli stack of elliptic curves with level 2 structure

M(4) := moduli stack of elliptic curves with level 4 structure

M := moduli stack of elliptic curves = M(2)/S

Γ := SL(2,Z)

A := (R/Z)2 � Γ

A(3) := A3
� S3

Gmax := Ker ((V × Z/2)3 → (Z/2)3 → Z/2)

G := a subgroup of Gmax mapping onto Ker
(
(Z/2)3 → Z/2

)

GS := Ker
(
G → (Z/2)3 ⊂ (Z/2)3

) ⊂ V ⊕3, the ‘shift’ part of G

GT := a subgroup of G mapping isomorphically to G/GS , the ‘twist’ part of G

H := NA(3)(G)

H ′ := H/G

Hmax := (Z/4)6 � Γ3
� S3 ≤ A(3), where (Z/4)6 ≤ (R/Z)6 is the set of points

of order 4.

H := Complex upper half plane

U := A family of elliptic curves (H× C)/Z2 over H

X := Y/G

M+
X := moduli stack of complex structures on X. (Its dimension is h2,1(X).)

MX := The connected component of M+
X containing the actual quotients X = Y/G.

X := a Calabi-Yau threefold, crepant resolution of X.

MX := moduli stack of the Calabi-Yau threefold X (Its dimension is again h2,1(X)).

It is a covering of MX , the finite fiber parametrizing Kähler resolutions X

of a given X. This is the space we care about!

MX,central := The connected component of MX containing X.

X := The universal Calabi-Yau over MX .

Here are some remarks regarding our terminology. Given a complex algebraic
varietyX, there is a moduli stackMalg

X parameterizing deformations ofX over pointed
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schemes (separated and of finite type) over C. More precisely, a deformation of X over
(S, s0) is a flat and proper morphism f : X → S, together with an isomorphism φ :
f−1(s0) ∼= X. Note that we do not require the data of a polarization on our varieties
(that is, a fixed ample invertible sheaf L on X ), so standard results about the existence
of a quasi-projective coarse moduli scheme [Vie95] would not be available. When
X is a smooth compact Calabi-Yau variety, the Bogomolov-Tian-Todorov theorem
([Bog81, Ti87, To89]) implies that X has unobstructed deformations, and hence Malg

X

is smooth. In the cases of this paper, X will be Calabi-Yau with singularities in at
worst codimension 2, in which case Theorem 4 of [Ra93] implies that Malg

X is still
smooth (Ran actually establishes the more general result that any Calabi-Yau weak
orbiKleinfold nonsingular in codimension 2 has unobstructed deformations).

The stack Malg
X determines an underlying analytic stack (see [BN05], section 3,

for basic definitions regarding complex analytic stacks), which we will refer to as MX

for the rest of this paper. For example, the moduli stack M of elliptic curves over
C has an underlying analytic stack, which is the quotient [H/SL(2,Z)]. Our goal is
to provide a similar global description of MX and ultimately MX , for X a smooth
crepant resolution of X.

Finally, in this paper, the Picard group Pic(MX) will always be understood in
the stack-theoretic sense. Note that this group is in general not isomorphic to the
Picard group of the underlying coarse moduli space. For example, if M denotes the
moduli stack of ellptic curves, then Pic(M) � Z/12, while the Picard group of its
coarse moduli space A1 is trivial.

2.2. More details: the spaces and the maps between them. The moduli
spaces we consider fit into a sequence of maps:

MX,central MX

H3 MX
f

We will describe each of these spaces and the maps between them.
H denotes the complex upper half plane. Over H, there is a family U of elliptic curves

U = (H× C)/Z2

together with a global section s : H → U given by s(τ) = (τ, 0). (Recall that an
elliptic curve (E, 0), often abbreviated to just E, is a smooth genus 1 curve E with a
marked point 0 ∈ E.) The fiber of U over a point τ ∈ H is the complex torus C/Λτ

with the origin s(τ). Here, Λτ is the lattice in C generated by 1 and τ . If M denotes
the moduli stack of elliptic curves, the family U defines a map H → M . In fact, as is
well known, M is the stacky quotient of H by the group

Γ = SL(2,Z),

which acts on H by fractional linear transformations. Note that over the space H3

we have the family U3 → H3 of abelian varieties, which will be cruical for later
developments.

Throughout the paper, G refers to an abelian group isomorphic to (Z/2)r+2,
0 ≤ r ≤ 6, acting on the product Y = E1×E2×E3 of three elliptic curves {Ei}i=1,2,3

according to one of the 36 entries in Table 1 of [DW09]. G is given as an extension

1 �� GS
�� G �� GT

�� 1,
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where the subgroup GS ≈ (Z/2)r of “shifts” acts on Y by translation, so GS can
be identified with a subgroup of Y [2], while each nontrivial element of the group
GT ≈ (Z/2)2 (of “twists”) acts, modulo some translations, as inversion yi �→ −yi on
two of the three Ei.

Now, fix a group G as in Table 1 of [DW09]. G acts naturally on the family
U3 → H3 (acting trivially on the base). Therefore, we have an induced family of
complex orbifolds

η : U3/G → H3.

The fiber of η over the triple (τi)
3
i=1 is the toroidal orbifold(

3∏
i=1

C/Λτi

)
/G.

Since X appears as the fiber of η over some triple (τ1, τ2, τ3) ∈ H3, η determines an
analytic map f : H3 → MX . We will refer to the family U3/G as f∗X.

Finally, we let X denote any Calabi-Yau resolution of the possibly singular X,
and let MX be the moduli space of complex structures on X. There is a forgetful
map MX → MX , whose degree is equal to the number of Kähler resolutions of X.

2.3. The plan. We will construct a discrete group H ′ acting on H3. By lifting
this action to U3/G, we will factor the map f through a map f̄ : [H3/H ′] → MX .
We will then prove that f̄ induces an isomorphism between [H3/H ′] and the moduli
stack MX . Then, we will analyze the Picard groups of MX and MX , and study the
Hodge bundle λ in particular.

3. Automorphisms of f∗X.

3.1. Group actions. In this section we will identify a group H ′ acting on both
f∗X and H3. It is this action that will induce the map f̄ mentioned in section 2.3.

Firstly, the group T 2 = (R/Z)2 acts on U by translations. To be precise, let
ε = (ε0, ε1) ∈ T 2 and (τ, z) ∈ U . Then

ε · (τ, z) := (τ, z + ε0 + ε1τ).

As we have mentioned, there is an action of Γ on H. If γ ∈ Γ is given by

γ =

(
a b
c d

)
,

then

γ · τ =
aτ + b

cτ + d
.

This action of Γ can be lifted to an action on U by defining

γ · (τ, z) =
(
aτ + b

cτ + d
, (cτ + d)−1z

)
.

This action of Γ on U normalizes the previous action of T 2, in the sense that if γ ∈ Γ
and ε ∈ T 2, then there exists an ε′ ∈ T 2 such that for every (τ, z) ∈ U we have

γ · ε · γ−1 · (τ, z) = ε′ · (τ, z).
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(Explicitly, ε′ = aε0 − bε1,−cε0 + dε1.) Therefore Γ acts on T 2 by sending ε to ε′, and
we may form the extension

1 T 2 A Γ 1

as a semi-direct product A = T 2 � Γ. The previous actions of T 2 and Γ on U are
now combined into a single action of A.

Now, A3 acts diagonally on U3. There is also an S3 action on U3 by permutation
of the three factors, as well as an S3 action on A3, so we form the extension

1 A3 A(3) S3 1.

So A(3) acts on U3, combining all of the previous actions. Since the group G acts on
U3 by translations of points of order 2 and elliptic inversions, it embeds naturally into
A(3). Therefore we may form the normalizer

H := NA(3)(G),

and subsequently the quotient

H ′ := H/G.

Since H normalizes G, its action on U3 descends to an action on f∗X = X×MX
H3, the

pullback of the universal Calabi-Yau X → MX to H3. We remark that since G acts
trivially on H3 and f∗X, H ′ acts on both of these spaces. We denote the respective
actions of H ′ on U3 and f∗X by a and ã.

Proposition 3.1. Let h = (ε, γ, σ) denote an element of A(3), where ε ∈ T 6,
γ ∈ Γ3, and σ ∈ S3. Then if h ∈ H, we must have ε ∈ (Z/4)6, the subgroup of points
of T 6 of order dividing 4.

Proof. Let g ∈ G. For hgh−1 to belong to G, its T 6 component must be a point
of order 2. We can write g ∈ A(3) as (δ, ι, 1) where ι is a pure twist (−I on an even
number of factors) and δ has order 2. Firstly, we observe that (0, 1, σ)g(0, 1, σ−1) also
has the form (δ′, ι′, 1) for δ′ a point of order 2 and ι′ a pure twist. Therefore, we
assume without loss of generality that σ = 1. Then we have

hgh−1 = (ε, γ, 1)(δ, ι, 1)(−γ−1 · ε, γ, 1).

By assumption on G, there is a component of ι acting by −I. Referring to this
component as the ith, we will have that the ith component of the above element is

−(−εi) + δi + εi = δi + 2εi.

As we mentioned, this element must have order 2. Since δi has order 2, it follows that
εi has order dividing 4.

Let Hmax denote the A(3) subgroup given by ((Z/4)2 � Γ)3 � S3. The previous
proposition shows that H ≤ Hmax in all cases, hence the name.

Let A(2) denote the subset of A of elements of the form (ε, γ), where ε has order
2 and γ lies in the principal congruence subgroup Γ(2) of Γ.
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Proposition 3.2. A(2)3 is a normal subgroup of Hmax, isomorphic to the direct
product (Z/2)6 × Γ(2)3. Furthermore, A(2)3 is always contained in H.

Proof. Firstly, we must verify that A(2) is a subgroup of A. We note that for any
(τ, z) ∈ U3 and γ ∈ Γ(2), ε ∈ (Z/2)2, an easy calculation shows that

γ · ε · γ−1 · (τ, z) = (τ, z + ε).

Therefore, A(2) is indeed closed under the product. Furthermore, the subgroups
(Z/2)2 and Γ(2) embed naturally into A(2), and the above calculation shows that
they commute. Since they clearly generate A(2) and intersect trivially, we have shown
that A(2) ∼= (Z/2)2 × Γ(2). For normality, we begin by checking that A(2) is normal
in (Z/4)2 � Γ. let γ′ ∈ Γ, ε′ ∈ (Z/4)6, and γ ∈ Γ(2), ε ∈ (Z/2)6. Firstly,

(γ′, 0)(γ, ε)(γ′−1, 0) = (γ′γγ′−1, γ′ · ε).

By the normality of Γ(2) in Γ, γ′γγ′−1 ∈ Γ(2). Furthermore, γ′ must send order 2
points to order 2 points. Therefore, Γ normalizes A(2). Next, we consider

(1, ε′)(γ, ε)(1,−ε′) = (γ,−γ · ε′ + ε+ ε′).

Then 2(γ · ε′ + ε + ε′) = (γ · (2ε′) + 2ε′). Since γ ∈ Γ(2), it fixes points of order
2. Hence this expression is equal to 4ε′ = 0. So we have established that A(2) is
normal in (Z/4)2�Γ. Since A(2)3 is clearly preserved by permutation, it follows that
A(2)3 �Hmax, as claimed. Since every element of Γ(2) fixes points of order 2 in T 2

by conjugation, we see that G lies in the center of A(2)3. In particular, A(2)3 ≤ H.

Based on the previous proposition, we can define a finite group L = H/A(2)3. L
is a subgroup of Lmax := ((Z/2)2 � S)3 � S3, where S = SL(2,Z/2) is the quotient
Γ/Γ(2).

3.2. Computation of L. In this section we explain how to compute the finite
group L, and record the results in all cases in which h2,1(X) = 3. The technique
is straightforward. Since L is by definition the image of H under the quotient map
Hmax → Lmax, we need to determine which elements l ∈ Lmax admit a lift l̃ ∈ Hmax

which normalizes G. Note that if l̃ and l̃′ are two distinct lifts of l, then l̃ normalizes G
if and only if l̃′ normalizes G. This result follows since l̃−1 l̃′ ∈ A(2)3, which commutes
with G.

Therefore, one simply needs to iterate over the elements of Lmax = (Z/2)6 �

S3 � S3, choose a lift for each element, and determine whether or not this element
normalizes G. Since Lmax and G are finite, this algorithm can be easily implemented
on a computer 1. To subsequently determine H, one then finds the preimage of L in
Hmax.

We will not need a complete description of L for the main results of the paper.
The translations by points of order 2, given by (Z/2)6, form a normal subgroup of
Lmax. Let p : Lmax → S3 � S3 be the quotient map, and L0 := p(L) ≤ S3 � S3.
Since L0 is the group that we will need to know to compute the Picard group, we
will record it in all cases. We will also record the group H when it has a particularly

1For example, see https://github.com/mmacerato/Global-Moduli-of-Calabi-Yau-Threefolds

/blob/main/normalizers.py
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simple form. We illustrate the relationships between the groups introduced so far in
the following diagram.

NHmax
(G) = H Hmax = (Z/4)6 � Γ3 � S3

L Lmax = Hmax/A(2)3 ∼= (Z/2)6 � S3 � S3

L0 S3 � S3

We fix some notation. S acts faithfully on the vector space V = (F2)
2, so we will

use this action to refer to elements of S. Namely, we label the nonzero elements of
V as { 1

2 ,
τ
2 ,

1+τ
2 }. There is an isomorphism S ∼= S3, as S acts to permute these three

nonzero elements. We let Bi ≤ S be the stabilizer of the ith element. The subgroup
B̃i ≤ S3 refers to the set of triples with one identity element, and two elements of Bi.
S ≤ S3 refers to the diagonal subgroup. We let Γi and Γ̃i refer to the preimages of
Bi and B̃i under the quotient Γ → S. The results, which we explained how to obtain
earlier, are given in all cases with h2,1 = 3 except (4-1) by Table 1.

Case L0 = p(L) H
(0-1) S3 � S3 (Z/2)6 � Γ3 � S3

(0-4) B3
1 � S3 −

(1-1) B3
2 � S3 (Z/2)6 � Γ3

2 � S3

(1-5) B̃2 � S3 −
(1-11) (B2

2 ×B1)� 〈(1 2)〉 −
(2-1) S � S3 (Z/2)6 � Γ� S3

(2-9) B3
1 � S3 (Z/2× Z/4)3 � Γ3

1 � S3

(2-12) (1×B2
1)� 〈(2 3)〉 −

(3-5) B̃1 � S3 (Z/2× Z/4)3 � Γ̃� S3

Table 1

The group L0 in cases with h2,1 = 3

For case (4-1), L0 is not a semi-direct product. We will note that L0 fits into an
extension

1 N L0 S3 1,

where N ≤ S3 has the property that each projection πi : S
3 → S induces an isomor-

phism N ∼= S. However, N is not the diagonally embedded copy of S in S3.

4. Global geometry of MX . We have described a map f : H3 → MX . In order
to obtain a map f̄ : [H3/H ′] → MX , we must lift the action of H ′ on H3 to an action
on the family f∗X. Of course, we have also done this by defining the action ã. Our
objective now is to prove that f̄ is an isomorphism. The strategy will be to show
that f̄ is proper and étale, and then prove that it has degree 1. We begin with a few
lemmas.

Lemma 4.1. Assume that three elliptic curves Ei are pairwise non-isogenous, Y is
their product, π : Y → X := Y/G the quotient by a G-action on Y , and π′ : Y ′ → X ′
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another quotient in the same family (i.e. with same G). Then any isomorphism
X → X ′ lifts to an isomorphism Y → Y ′.

Proof. Note that if {i, j, k} is a permutation of {1, 2, 3}, the action of G on Y
induces an action on Ei ×Ej , and X maps to the quotient (Ei ×Ej)/G. The generic
fiber is isomorphic to Ek. Indeed, any element of G that acts trivially on Ei × Ej

must be a shift, in GS . But the reduction explained in [DW09] (following Definition
1.1.1) allows us to assume that the group G of automorphisms of X is essential, or
non-redundant, meaning that it does not contain a translation by a nonzero x ∈ Ek.

So our X has three elliptic fibrations, which are distinct because the fibers
E1, E2, E3 are assumed non-isogenous. Further, these are the only elliptic fibrations
on X: in fact, their lifts to Y are the only elliptic fibrations there. To see this, con-
sider a genus 1 fibration π : Y → B, and let E be a generic fiber. Note that the
fixed locus of elements of G is at most one-dimensional, so π−1 of the generic E does
not meet the fixed locus. The inverse image π−1(E) of E in E1 × E2 × E3 is then
an unramified cover of E, so each of its connected components E′ is itself an elliptic
curve in E1 ×E2 ×E3. The assumption about non-isogeny of the Ei implies that E′

can map onto at most one of the Ei. It follows that E′ is isomorphic to one of the
Ei and is embedded in the expected way: parallel to one of the three coordinates. So
the same holds for E.

The isomorphism X → X ′ must therefore take an elliptic fibration of X with
fiber Ei to an elliptic fibration of X ′ with the same fiber Ei. It therefore lifts to an
isomorphism Y → Y ′ as claimed.

Remark 4.1. Note that the isomorphism Y → Y ′ obtained at the end of the
theorem above is only a complex isomorphism, not an isomorphism of abelian vari-
eties. That is, it may fail to map the origin of Y to that of Y ′. It is precisely for that
reason that the group Hmax, and hence H, contains a translation component (Z/4)6.

Lemma 4.2. Assume that three elliptic curves Ei are pairwise non-isogenous, Y is
their product, π : Y → X := Y/G the quotient by a G-action on Y , and π′ : Y ′ → X ′

another quotient in the same family (i.e. with same G). Let φ : X → X ′ be an
isomorphism. Furthermore, assume that we have fixed isomorphisms ψ1 : η−1(τ) ∼= X
and ψ2 : η−1(τ ′) ∼= X ′, for some τ, τ ′ ∈ H3. Then there exists a unique h′ ∈ H ′, such
that

ã(h′)|η−1(τ) ◦ ψ1 = ψ2 ◦ φ.
That is, the restriction of the action of h′ on f∗X to η−1(τ) induces the isomorphism
φ.

Proof. By the above lemma, we have an element σ ∈ S3 together with complex
isomorphisms φi : Ei

∼−→ Eσ(i), such that φ̃ =
∏3

i=1 φi induces φ. Any isomorphism of
two elliptic curves has a lift to an automorphism of the universal cover, C. Since any
automorphism of C is an affine transformation z �→ az+ b, we can find a unique point
εi ∈ T 2 such that ε−1

i ◦φi is origin preserving. In that case, ε−1
i ◦φi is an isomorphism

of elliptic curves, and is therefore induced uniquely by the action of some γ ∈ Γ on the
universal family U (since M ∼= [H/Γ]). Therefore, the action of h = (ε, γ, σ) ∈ A(3)

on f∗X induces the isomorphism φ. Since the action of h descends to f∗X = U3/G,
we must have h ∈ NA(3)(G) = H.

Now for uniqueness. An element h will act trivially on a fiber of f∗X if and only
if it belongs to G. To see this latter claim, assume that h = (ε, γ, σ) acts trivially on
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the fiber X ∼= η−1(τ) ⊂ f∗X. The action of h on X comes from its action on Y , a
fiber of U3. Since h acts trivially on X, we must have for any y ∈ Y that there exists
a gy ∈ G such that gy · y = h · y. Since h · y depends smoothly on y, so must gy · y.
Since G is finite, we then have gy = g, a constant. But then hg−1 acts trivially on Y .
This clearly implies that hg−1 = 1, and h ∈ G. Taking h′ to be the image of h in H ′

then proves the claim.

Let O ⊂ H3 be the subset of triples (τi)
3
i=1 with the propery that the three elliptic

curves Eτi = C/Λτi are non-isogeneous. O is a dense subset of H3. Since O is stable
under the action of H ′, its image O in the quotient [H3/H ′] is then a dense open
substack.

Theorem 4.3. The map f̄ : O → MX is a monomorphism of stacks.

Proof. We must show that f̄ is a fully faithful functor. That is, assume that we
are given an isomorphism

φ∗(f∗X) ψ∗(f∗X)

S S′

∼

∼

of pullbacks of the family f∗X to complex spaces S and S′ via maps φ : S → H3 and
ψ : S′ → H3. Then we must show that there exists a unique h′ ∈ H ′ such that the
following diagram commutes.

φ∗(f∗X) ψ∗(f∗X)

f∗X f∗X

∼

ã(h′)

Fix s ∈ S (not necessarily the basepoint). Let Xs be the fiber of φ∗(f∗X) over s. Let
s′ be the image of s in S′, and X ′

s the fiber of ψ∗(f∗X) over s′. Then φ (resp. ψ)
maps Xs (resp. X ′

s) isomorphically onto some fiber X (resp. X ′) of f∗X. Therefore,
we obtain an induced isomorphism X → X ′. But by Lemma 4.2, this means that we
can find an element h′

s ∈ H ′ whose action on f∗X induces the isomorphism X → X ′.
We can construct such an h′

s for every s ∈ S. But since H ′ is discrete and acts
continuously, we must have h′

s = h′, a constant. Therefore, the claim follows.

Remark 4.2. For the purpose of proving that f̄ is étale and proper, it is per-
mitted to replace [H3/H ′] by a finite étale cover. We have a subgroup Γ(4)3 ≤ H.
This subgroup intersects G trivially, since −I �∈ Γ(4). Therefore, the quotient map
H → H ′ induces an isomorphism between Γ(4)3 and some subgroup of H ′. In this
way, we can regard Γ(4)3 as a subgroup of H ′, and hence M(4)3 as a finite étale cover
of [H3/H ′]. For now, we will work with the induced map M(4)3 → MX .

Theorem 4.4. The induced map M(4)3 → MX has an everywhere injective
differential, and in the 10 cases when h2,1 = 3 it is étale.

Proof. Consider the sum of the the three lines

H1,0(Ei)⊗H1,0(Ej)⊗H0,1(Ek)
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as {i, j, k} runs over cyclic permutations of {1, 2, 3}. The orbifold map E1×E2×E3 →
X embeds the sum of these three lines as the ’bulk sector,’ a direct summand of
H2,1(X). The assumption h2,1 = 3 implies that in those cases, the sum is actually
isomorphic to H2,1(X). By contracting with top forms we switch to tangent spaces,
finding that the sum of the three H1(Ei, TEi

) equals (all of or a direct summand of)
H1(X,TX). This shows that f̄ has injective differential in general, and in the 10 cases
when h2,1 = 3 it is a local isomorphism.

Theorem 4.5. The induced map M(4)3 → MX is proper.

Proof. Over M(4)3 there are three universal bundles whose fibers, respectively,
are the three elliptic Ei. By the valuative criterion for properness, we need to show
that if we have an algebraic family Xt of X’s parametrized by t in a regular algebraic
curve Δ (or, intuitively, in the unit disc) and a lift Yt → Xt over the generic point of
Δ (respectively, a family of lifts parametrized by t in the punctured disc) then we can
complete the curve of lifts (respectively, fill in with a Y0 → X0). The lift gives us three
maps Ei from the punctured disc to M(4), hence to M . We see by the same valua-
tive criterion that each of these maps extends to the compactification: Ei : Δ → M .
We claim that the central fibers Ei,0 must be non-singular. This follows immediately
from the canonical identification (1) ofH3(Xt,Q) with ⊗1=1,2,3H

1(Et,i,Q): The mon-
odromy on H3(Xt,Q), as t goes around the punctured disc, is trivial since the family
extends over Δ. So it must be trivial also on each H1(Et,i,Q), so the elliptic curves
cannot degenerate. The family of Yt, t ∈ Δ is therefore topologically trivial, so the
G action extends to Y0 with quotient X0, proving the theorem.

Corollary 4.6. The map f̄ : [H3/H ′] → MX is an isomorphism in the 10 cases
in which h2,1 = 3.

Proof. We have shown that f̄ is étale, hence unramified. Since it has degree 1 on
the open substack O (Theorem 4.3), the same must be true everywhere, and hence f̄ is
an open embedding. But we have shown that it is also proper. By the connectedness
of MX , f̄ is an isomorphism.

5. Crepant resolutions and the global geometry of MX . In this section
we briefly review the crepant resolutions X → X, such that X is Calabi-Yau. In the
four cases with h1,1 = h2,1 = 3 (namely (0-4), (1-5), (1-11), (2-12)), G acts freely on
Y , so no resolution is needed. However, the other six examples of h2,1 = 3 all have
singularities in their quotient spaces.

5.1. Local structure. The fixed-point loci of our orbifolds X are curves, pos-
sibly with trident singularities. There are two local pictures. At a singular point of a
curve of fixed points, X is locally of the form C3/(Z/2)2, with generators acting as

g1 : (x, y, z) �→ (x,−y,−z),

g2 : (x, y, z) �→ (−x, y,−z).

The curve of fixed points looks locally like the trident xyz = 0, with the three branches
C1, C2, C3 consisting of fixed points of g1, g2, and g3 := g1g2. (We can always arrange
that the local curve Ci is parallel to the global elliptic factor Ei of Y .) At a smooth
point of the curve of fixed points, X is locally of the form C3/(Z/2), with generator
one of the gi. So X looks there like the product of Ci (=one of the three axes) with
an A1 surface singularity in the two other directions.
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We will focus on the first case, C3/(Z/2)2. Its coordinate ring is

C[x2, y2, z2, xyz] = C[a, b, c, d]/(abc = d2). (2)

It has four crepant resolutions. One way to see this is to take advantage of the fact
that this singularity is a toric variety, and we can represent the flops graphically as
cross-sections of a toric fan as follows:

Local coordinates on the central resolution are given by:

A = C[b, c, d11],
B = C[c11, d1, t],
C = C[a, b, w],
D = C[a, b1, c],

where tw = 1, c11d11 = 1, b1d1 = 1, while local coordinates on one of the outlying
resolutions are given by:

A = C[b, c, d11],
G = C[b, c11, t],
H = C[a, d1, w],
C = C[a, b1, c].

The three outlying crepant resolutions as well as the central resolution can be
described as successive blowups. Let i, j, k be a permutation of 1, 2, 3. First blow X
up along a smooth surface containing Ci and Cj , two of the components of the curve
of fixed points in X. (E.g. for i, j, k = 1, 3, 2, the surface is b = d = 0.) Second, blow
up along a smooth surface containing the remaining curve Ck. (In the above case, we
could take this second surface to be c = d/b = 0.) This turns out to leave an isolated
singularity, a conifold. So, third and finally, take a crepant resolution of the conifold.
There are two such resolutions; one will be the k-th outer resolution, and the other,
independently of the permutation i, j, k, will be the central resolution.

5.2. Global structure. Globally there are further subtleties to get a Kähler
resolution. Consider for example the case (0-1). This has curves of A1 singularities
(along sixteen copies of each of the three elliptic curves Ei). These intersect at 64
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fixed points, each of the form of the (Z/2)2 quotient above. There is thus a total of
464 possible resolutions. However, not all of these are Kähler. We have not checked
the total number of Kähler resolutions; it is probably large 2.

In principle, whatever the number n of Kähler crepant resolutions, the forgetful
map MX → MX is a covering of this degree n.

Note that preimage of MX in MX is itself reducible: it has a central component
MX,central, specified by performing the central local resolution at each point of the
zero-dimensional stratum. It has one, two or three additional components of small
degrees over MX , specified by performing the type-i local resolution at each point p
of the zero-dimensional stratum. Recall that each local curve Ci at each point p is
parallel to the global elliptic factor Ei of Y . So on a given X = Y/G it makes sense
to perform the same type-i local resolution at all points p. On the other hand, as
we vary X in its moduli MX , monodromy may permute the Ei: depending on the
image HX/H ′

X of HX in S3, all three of these choices may therefore be on the same
component (of degree three over MX), or on separate components (of degree one), or
two can come together with the third staying separate.

In any event, the map MX,central → MX of connected components is an isomor-

phism in all ten cases with h2,1 = 3.

6. Picard groups and Hodge bundles. In this section we will study the
Picard groups and Hodge line bundles of MX when h2,1 = 3. By Theorem 4.5, we
have that MX

∼= [H3/H ′]. Our strategy is to prove that the structure sheaf OMX
is

acyclic, and apply the exponential sequence on MX . We will then prove that Pic(MX)
is isomorphic to the group cohomology H2(H ′,Z), which we will analyze in detail.

6.1. Picard Groups. We begin with a few lemmas on analytic quotient stacks.
The first is straightforward and serves mainly to remind the reader of some terminol-
ogy.

Lemma 6.1. Let X be a smooth complex manifold, and T a group acting virtually
freely and holomorphically on X (i.e., T has a finite index subgroup T0 acting freely
on X). Let X denote the quotient stack [X/T ]. Then the categorical quotient Xmod =
X/T exists as a complex analytic space, and the natural map f : X → Xmod is a
coarse moduli space for X . Furthermore, f∗OX ∼= OXmod

.

Proof. We have in particular that T acts properly discontinuously on X. Then
[Car57], Xmod = X/T is a normal analytic space. The map f : X → Xmod is induced
by the natural map X → Xmod, since the latter is T equivariant. To see that the map
is a coarse moduli space, note that any map φ from X to a space Y factors through a
map X/T → Y , since any such map φ is by definition a T equivariant map X → Y .
Furthermore, it is immediate that there is a bijection between the closed points of X
and X/T .

For the last claim, note that a section of f∗OX over an open subset U ⊂ Xmod is by
definition a holomorphic function π−1(U) → C (for π the quotient map X → Xmod)
which is T invariant. However, by the universal property of the quotient, this is the
same thing as a section of OXmod

over U .

We recall the following definition.

Definition 6.1 ([GR04]). A complex analytic space (S,OS) is called Stein if
it satisfies Cartan’s Theorem B, namely every coherent analytic sheaf of OS-modules

2P. Aspinwall conjectures that it is on the order of 248.
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on S is acyclic.

Lemma 6.2. Keeping the notation from the previous lemma, let OX denote the
structure sheaf of X . If Xmod is a Stein space, then OX is acyclic (i.e. Hi(X ,OX ) = 0
for i > 0).

Proof. The groupHi(X ,OX ) is by definition the ith equivariant sheaf cohomology
of OX over X with respect to the action of T . In other words, it is the ith right derived
functor of the composition (−)T ◦ Γ, where Γ is the global sections functor and (−)T

is the T -invariants functor. Therefore, we have a spectral sequence

Ep,q
2 = Hp(T,Hq(X,OX)) =⇒ Hp+q(X ,OX ).

Firstly, assume that T is finite. Since Hq(X,OX) is a C vector space, we have that
Ep,q

2 = 0 for p > 0. In particular, there is an isomorphism

Hi(X ,OX ) ∼= H0(T,H2(X,OX)) ∼= Hi(X,OX)T .

Now, since T is finite, the quotient map π : X → X/T is a finite holomorphic mapping.
Therefore by [GR04] (Section I.1, Theorem 5), π∗ induces an isomorphism on coherent
sheaf cohomology and

Hi(X,OX) ∼= Hi(Xmod, π∗OX).

Furthermore, since π is proper, we also have that π∗OX is a coherent sheaf of OXmod

modules ([GR04], Section I.3, Theorem 3). Since Xmod is Stein, Cartan’s Theo-
rem B ensures that π∗OX is then acyclic. Putting everything together, we obtain
Hi(X ,OX ) = 0 for i > 0.

Now, relax the assumption that T is finite. By replacing X by X/T0 and T by
T/T0, we apply the result above to obtain the claim.

We return now to MX . As a consequence of the first lemma, the analytic space
H3/H ′ is a coarse moduli space for MX . We denote it by CX .

Lemma 6.3. The analytic space CX is a Stein space.

Proof. Firstly, we remark that CX is isomorphic to H3/H, since G acts trivially
on H3. Since H is a finite index subgroup of Hmax = (Z/4)6�Γ3�S3, we have a finite
holomorphic mapping CX → Cmax, where Cmax is the quotient H3/Hmax. Let us
determine Cmax. We already know that H/Γ ∼= C, via the j-invariant. Since (Z/4)6

acts trivially on H3, we are reduced to computing C3/S3, i.e. the third symmetric
power C(3). But it is well known that C(3) ∼= C3 (for example, by regarding the C3

as the vector space of monic degree 3 polynomials, the map sending (z1, z2, z3) ∈ C3

to (z − z1)(z − z2)(z − z3) ∈ C3 is a quotient map). We remark that Cmax is Stein.
But since CX → Cmax is a finite holomorphic mapping, we conclude [GR04] that CX

is Stein.

Proposition 6.4. The sheaf OMX
is acyclic.

Proof. By Lemma 6.3, CX is Stein. By Lemma 6.2, the proposition follows.

Now we can prove the main theorem of this section.

Theorem 6.5. In each case with h2,1 = 3, we have Pic(MX) ∼= H2(H ′,Z), where
the latter is the second group cohomology of H ′ with trivial action on Z.
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Proof. On MX , we have the exponential sequence of sheaves

1 Z OMX
O∗

MX
1.

This sequence induces a long exact cohomology sequence, which in particular contains
the following section.

· · · H1(MX ,OMX ) H1(MX ,O∗
MX

) H2(MX ,Z) H2(MX ,OMX ) · · ·c1

By Proposition 6.4, Hi(MX ,OMX
) = 0 for i > 0. Hence by the exactness of the

sequence, the map c1 is an isomorphism. So

Pic(MX) ∼= H2(MX ,Z).

Now, MX is the quotient stack [H3/H ′]. Therefore, there is an isomorphism

H2(MX ,Z) ∼= H2(H3, H ′,Z),

where the latter group is the equivariant sheaf cohomology of H3 with respect to
the sheaf Z and group H ′. Since H3 is contractible, we have Hi(H3,Z) = 0 for
i > 0, and hence there is an isomorphism ([Gro57], Proposition 5.2.4 (5.2.5 in English
translation))

H2(H3, H ′,Z) ∼= H2(H ′,Z),

Now we begin to analyze the group H2(H ′,Z).

6.2. Group cohomology. Let us recall some basic elements of group cohomol-
ogy. A reference for group cohomology is [Br82]. Throughout this subsection, G is an
arbitrary group.

Recall that for any group G, the group cohomology functor Hi(G,−) : ModG →
Ab (for ModG the category of G modules, and Ab the category of abelian groups) is
defined as the ith right derived functor of (−)G : ModG → ModG, which sends a G
module M to its G invariant submodule MG (we may regard (−)G as a functor into
the category of abelian groups, since G acts trivially on MG). Say that G lies in an
extension

1 N G Q 1.

Then for any G-module M , MN acquires the structure of a Q module. Indeed,
(−)G = (−)Q ◦ (−)N . Therefore, the Grothendieck spectral sequence in this case
becomes

Ep,q
2 = Hp(Q,Hq(N,M)) =⇒ Hp+q(G,M).

This spectral sequence is known as the Lyndon-Hochschild-Serre sequence. The asso-
ciated 5-term exact sequence is

1 H1(Q,MN ) H1(G,M) H1(N,M)Q H2(Q,MN ) H2(G,M),

which is known as the inflation-restriction sequence. The map H1(Q,MN ) →
H1(G,M) is known as the inflation map and H1(G,M) → H1(N,M)Q is known
as the restriction map.
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For any abelian group M , we can form Hi(G,M) by equipping M with the trivial
G action. If no action of G is specified, this is what we will mean.

We also recall two useful facts. If G acts trivially on M , then H1(G,M) ∼=
Hom(G,M). Also, if M is an G module which happens to be a K vector space, where
K is a field such that Char(K) does not divide the order of G, then Hi(G,M) = 0
for i > 0.

6.3. Computing H2(H ′,Z). In this section, we will carry out the main group
theoretic calculation.

Lemma 6.6. H2(H ′,Z) is a finitely generated abelian group.

Proof. We begin with a general statement. Let N be a normal subgroup of a
group T , with quotient Q. Assume that Q is finite, and that the integral cohomology
groups of N are finitely generated. Then we show that Hi(T,Z) is finitely generated.
We have the cohomological Lyndon-Hochschild-Serre spectral sequence:

Ep,q
2 = Hp(Q,Hq(N,Z)) =⇒ Hp+q(T,Z)

Since Hq(N,Z) is finitely generated by hypothesis, and Q is finite, the groups Ep,q
2

are finite for any p, q ∈ Z. Therefore, Hp+q(T,Z) admits a finite step filtration with
finitely generated quotients. It follows that Hp+q(T,Z) is finitely generated (since an
extension of finitely generated abelian groups is finitely generated).

Now we apply the lemma. First, A(2) is an extension of a finite group by Γ(2),
hence has finitely generated integral cohomology. Furthermore, we have an exact
sequence

1 A(2)3 H L 1.

Hence, H has finitely generated integral cohomology. Next, consider the sequence

1 G H H ′ 1.

The inflation map Hi(H ′,Z) → Hi(H,Z) has cokernel isomorphic to a subgroup of
Hi(G,Z)H

′
, which is a finite group. The kernel is isomorphic to some subgroup of

Hi−1(G,Z), which is also finite. Since Hi(H,Z) is finitely generated, we conclude
that Hi(H ′,Z) is finitely generated as well.

The previous lemma allows us to decompose H2(H ′,Z) into a free part, Zk, and
a torsion part. By the universal coefficient theorem, we can calculate the rank k as
the dimension of the vector space H2(H ′,Q) over Q. For the rest of this section, let
K be a field of characteristic not equal to 2 or 3.

Lemma 6.7. The inflation map Hi(H ′,K) → Hi(H,K) is an isomorphism for
all i.

Proof. Since the order of |G| (2r+2) is invertible in K, we have Hi(G,K) = 0 for
i > 0. There is an inflation-restriction exact sequence

1 → Hi(H ′,K) → Hi(H,K) → Hi(G,K)H
′ → · · ·

By the vanishing of the cohomology of G, the claim follows.
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Note that Γ(2) contains a free subgroup F2 on two generators [Sa47], generated
by

f1 =

(
1 2
0 1

)
, f2 =

(
1 0
2 1

)
.

From now on, F2 denotes this particular free subgroup. In fact, Γ(2) ∼= Z/2 × F2,
where Z/2 is generated by −I.

Lemma 6.8. Recall that H lies in an extension

1 A(2)3 H L 1.

The Lyndon-Hochschild-Serre spectral sequence associated to this exact sequence in-
duces an isomorphism H2(H,K) ∼= H0(L,H2(A(2)3,K)).

Proof. The terms of this spectral sequence are

Ep,q
2 = Hp(L,Hq(A(2)3,K)) =⇒ Hp+q(H,K).

L is a subgroup of Lmax = (Z/2)6 � S3 � S3, which has order 21032. Therefore, |L|
is invertible in K. Furthermore, Hq(A(2)3,K) is a K vector space, so we have the
vanishing of Ep,q

2 for p > 0. Hence, there is an isomorphism

H2(H,K) ∼= H0(L,H2(A(2)3,K)) ∼= H2(A(2)3,K)L.

Lemma 6.9. The restriction map ρ : H2(A(2)3,K) → H2(F 3
2 ,K) is an isomor-

phism. Furthermore, let p : Lmax → S3 � S3 be the quotient by (Z/2)6. Then, there
is an induced action of L0 := p(L) on H2(F 3

2 ,K), so that

H2(A(2)3,K)L ∼= H2(F 3
2 ,K)L0 ,

under the previously mentioned isomorphism ρ.

Proof. For the first claim, we know that A(2)3 ∼= (Z/2)6×F 3
2 . Since Char K �= 2,

the restriction map ρ is an isomorphism. Via this isomorphism, we can define an action
of Lmax on H2(F 3

2 ,K). For the second claim, we must show that (Z/2)6 ≤ Lmax acts
trivally. Firstly, we use the Künneth formula to decompose H2(F 3

2 ,K).

H2(F 3
2 ,K) ∼=

⊕
i+j+k=2

Hi(F2,K)⊗Hj(F2,K)⊗Hk(F2,K) (3)

Note that H2(F2,K) = 0. Therefore, it suffices to show that (Z/2)2 acts trivially on
H1(F2,K). An element of the latter group is a homomorphism φ : F2 → K. Now we
unwind the definition of the action of (Z/2)2 ≤ Lmax on H1(F2,K) ∼= Hom(F2,K).

Firstly, we extend φ trivially to a homomorphism φ̃ : A(2) → K by defining it to

vanish on (Z/2)2 ≤ A(2). Then, for ε ∈ (Z/2)2 ≤ Lmax, we have ε ·φ = φ̃(ε · (−) ·ε−1).

But φ̃(ε) = 0 by construction, so the claim follows. Therefore, the action of L on
H2(F 3

2 ,K) factors through an action of L0.

By the formula (3), we have H2(F 3
2 ,K) ∼= K12. Our problem is now reduced to

calculating the L0 invariant submodule of M = H2(F 3
2 ,K). To do this, let us explain

in detail how L0 ≤ S3 � S3 acts on M .
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Let us first work out the action of S on H1(F2,K). To fix notation, let

s =

(
0 1
−1 0

)
, t =

(
1 1
0 1

)
, r =

(
1 0
1 1

)
.

So, s̄, t̄, r̄ ∈ S generate the subgroups B3, B1, and B2 respectively. We introduced
before the elements f1 and f2 generating F2. We now define a basis {f̂1, f̂2} for

H1(F2,K), where f̂i(fj) = δij ∈ K. So, we can work out the action of the elements

s̄, t̄, r̄ on f̂i. Firstly, it is easy to check that the following relations hold.

sf1s
−1 = f−1

2 , tf1t
−1 = f1, rf1r

−1 = −f2f
−1
1 ,

sf2s
−1 = f−1

1 , tf2t
−1 = −f1, f

−1
2 rf2r

−1 = f2.

From now on, we will abuse notation and refer to s̄, t̄, r̄ as s, t, r. Then, using the
equations above, we have the following.

s · f̂1 = −f̂2 t · f̂1 = f̂1 r · f̂1 = f̂2 − f̂1
s · f̂2 = −f̂1 t · f̂2 = f̂1 − f̂2 r · f̂2 = f̂2

So, we have described the S module structure on H1(F2,K). S acts trivially on
H0(F2,K) = K. Then, each term Hi(F2,K) ⊗ Hj(F2,K) ⊗ Hk(F2,K) (which we
denote by Hi,j,k) in the decomposition (3) becomes an S3 module via the external
tensor product. H2(F 3

2 ,K) is then the direct sum of these representations. Lastly,
S3 ≤ S3 � S3 acts by permutation of the three summands in (3). Now we come to
the main theorem of this section.

Theorem 6.10. The group H2(H ′,K) is given in Table 2 in each of the ten
cases with h2,1(X) = 3.

Case dimK(H2(H ′,K))
(0-1) 0
(0-4) 1
(1-1) 1
(1-5) 1
(1-11) 2
(2-1) 1
(2-9) 1
(2-12) 3
(3-5) 1
(4-1) 1

Table 2

Cohomology of H′ with coefficients in K

Proof. By the previous lemmas, we are reduced to computing H2(F 3
2 ,K)L0 . The

previous remark described the L0 module structure on H2(F 3
2 ,K). We will break into

cases, using the results of section 3.2 on the form of L0. In all of the ten cases, L0

is an extension of a group T ≤ S3 by a normal subgroup N ≤ S3. Therefore, to find
the L0 invariants, we will firstly determine the N invariant submodule of H2(F 3

2 ,K),
and subsequently the T invariant submodule of the H2(F 3

2 ,K)N .
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As we’ve said, N acts on each term of the sum (3). A general element of H1,1,0

has the form

f =

2∑
i,j=1

λij f̂i ⊗ f̂j ⊗ 1.

We retain the 1 in the expression above in order to distinguish the summands H1,1,0,
H1,0,1, and H0,1,1. For concreteness let us work with this factor H1,1,0. We will
write down some general results that will be used in each case. Namely, we determine
the general form of such an element f which is invariant under (s, 1, 1), (1, s, 1),
(t, 1, 1), (1, t, 1), (r, 1, 1), (1, r, 1), (s, s, 1), (r, r, 1), or (t, t, 1) respectively. In order,
the elements f are given by

λ11f̂1 ⊗ f̂1 ⊗ 1 + λ12f̂1 ⊗ f̂2 ⊗ 1− λ11f̂2 ⊗ f̂1 ⊗ 1− λ12f̂2 ⊗ f̂2 ⊗ 1,

λ11f̂1 ⊗ f̂1 ⊗ 1− λ11f̂1 ⊗ f̂2 ⊗ 1 + λ21f̂2 ⊗ f̂1 ⊗ 1− λ21f̂2 ⊗ f̂2 ⊗ 1,

λ11f̂1 ⊗ f̂1 ⊗ 1 + λ12f̂1 ⊗ f̂2 ⊗ 1,

λ11f̂1 ⊗ f̂1 ⊗ 1 + λ21f̂2 ⊗ f̂1 ⊗ 1,

λ21f̂2 ⊗ f̂1 ⊗ 1 + λ22f̂2 ⊗ f̂2 ⊗ 1,

λ12f̂1 ⊗ f̂2 ⊗ 1 + λ22f̂2 ⊗ f̂2 ⊗ 1,

λ11f̂1 ⊗ f̂1 ⊗ 1 + λ12f̂1 ⊗ f̂2 ⊗ 1 + λ12f̂2 ⊗ f̂1 ⊗ 1 + λ11f̂2 ⊗ f̂2 ⊗ 1,

λ11f̂1 ⊗ f̂1 ⊗ 1 + λ12f̂1 ⊗ f̂2 ⊗ 1 + λ12f̂2 ⊗ f̂1 ⊗ 1− 2λ12f̂2 ⊗ f̂2 ⊗ 1,

−2λ12f̂1 ⊗ f̂1 ⊗ 1 + λ12f̂1 ⊗ f̂2 ⊗ 1 + λ12f̂2 ⊗ f̂1 ⊗ 1 + λ22f̂2 ⊗ f̂2 ⊗ 1.

Checking these expressions is easy, if tedious. Now we are ready for a case by case
analysis.

Case (0-1). L0 = S3 � S3. We begin by finding the S3 invariant elements of
H1,1,0. Imposing invariance under (s, 1, 1) and (1, s, 1) implies that an invariant f has
the form

f = λ(f̂1 ⊗ f̂1 ⊗ 1− f̂1 ⊗ f̂2 ⊗ 1− f̂2 ⊗ f̂1 ⊗ 1 + f̂2 ⊗ f̂2 ⊗ 1).

But then invariance under (t, 1, 1) requires λ21 = 0, so f = 0. The same analysis
applies to H1,0,1 and H0,1,1. Therefore, H2(A(2)3,K)L = 0.

Cases (0-4), (1-1), (2-9). In each case, L0 has the form B3
i � S3. We may

assume without loss of generality that i = 3 by relabelling basis elements, allowing
us to consider the three cases at once. We begin by computing the B3

3 invariant
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submodule of H1,1,0. Imposing invariance under (s, 1, 1) and (1, s, 1) yields that a
general invariant f has the form

f = λ(f̂1 ⊗ f̂1 ⊗ 1− f̂1 ⊗ f̂2 ⊗ 1− f̂2 ⊗ f̂1 ⊗ 1 + f̂2 ⊗ f̂2 ⊗ 1),

for any λ ∈ K. Applying the same analysis to H1,0,1 and H0,1,1 allows us to conclude
that B3

3 invariant submodule of H2(H ′,K) has the form K ⊕K ⊕K. Then S3 acts

to permute these factors (sending e.g. f̂1 ⊗ f̂1 ⊗ 1 to f̂1 ⊗ 1⊗ f̂1), so we conclude that
H2(A(2)3,K) = K, the diagonal.

Case (2-12). L0 = (1 × B2
1) � S3. We begin by computing the 1 × B2

1 invariant
submodule of H1,1,0. We must impose invariance under (1, t, 1). A general invariant
f then has the form

f = λ11f̂1 ⊗ f̂1 ⊗ 1 + λ21f̂2 ⊗ f̂1 ⊗ 1.

Therefore the 1×B2
1 invariant submodule ofH1,1,0 has dimension 2. The same analysis

applies to H1,0,1. However, for H0,1,1, we must impose invariance under both (1, t, 1)
and (1, 1, t). Therefore a general invariant of H0,1,1 has the form

f = λ(1⊗ f̂1 ⊗ f̂1 − 1⊗ f̂1 ⊗ f̂2 − 1⊗ f̂2 ⊗ f̂1 + 1⊗ f̂2 ⊗ f̂2).

So, the 1 × B2
1 invariants of H0,1,1 have dimension 1. Now, S2 acts to permute the

factors H1,1,0 and H1,0,1. Therefore, H2(A(2)3,K)L = K2 ×K = K3.

Case (2-1). L0 = S � S3. Here S ≤ S3 is the diagonal. We start by finding the
S invariant submodule of H1,1,0. We impose invariance under (s, s, s), (t, t, t), and
(r, r, r). A general invariant element f must have the form

f = λ(−2f̂1 ⊗ f̂1 ⊗ 1 + 1⊗ f̂1 ⊗ f̂2 ⊗ 1 + f̂2 ⊗ f̂1 ⊗ 1− 2f̂2 ⊗ f̂2 ⊗ 1).

The same analysis applies to finding the S invariants of H1,0,1 and H0,1,1. They have
the same form. So, the S invariant submodule of H2(A(2)3) has the form K⊕K⊕K,
and S3 permutes these factors. Therefore the S3 invariants are the diagonal, and
H2(A(2)3,K)L = K.

Cases (1-5), (3-5). L0 = B̃i � S3. We may assume without loss of generality
that i = 3. This case is actually identical to that of (0-4), (1-1), (2-9). Indeed, to

find the B̃3 invariant submodule of H1,1,0 we need to impose invariance under (s, 1, s)
and (1, s, s). Since these elements act in the same way as (s, 1, 1) and (1, s, 1) on

H1,1,0, the B̃3 invariants are the same as the B2
3 invariants. Proceeding with the

same analysis as in those former cases, we find that H2(A(2)3,K)L = K.

Case (1-11). L0 = (B2
2 × B1) � S2. We start by finding the B2

2 × B1 invariants
of H1,1,0. By imposing invariance under (r, 1, s) and (1, r, s) we see that a general
invariant element f has the form

f = λf̂2 ⊗ f̂2 ⊗ 1.

Now, we find that B2
2 ×B1 invariants of H0,1,1. We impose invariance under (1, t, 1)

and (1, 1, r). Invariance under (1, t, 1) yields λ21 = λ22 = 0. Invariance under (1, 1, r)
yields λ11 = 0. So, a general invariant element has the form

f = λ(1⊗ f̂1 ⊗ f̂2).
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The same analysis applies to H1,0,1. So, the B2
2 × B1 invariant submodule of

H2(A(2)3,K) has the form K ⊕ K ⊕ K. S2 acts to permute the last two factors,
so we conclude that H2(A(2)3,K)L ∼= K2.

Case (4-1). In this case, L0 is not a semidirect product, but we explained earlier
that it lies in an extension of S3 by a group N . N is generated by the elements
(t, s, r), (s, r, t), and (r, t, s). We begin by finding the N invariants in H1,1,0. Imposing
invariance under (t, s, r) and (s, r, t) forces an element f to have the form

f = λ(f̂1 ⊗ f̂1 ⊗ 1− 2f̂1 ⊗ f̂2 ⊗ 1 + f̂2 ⊗ f̂1 ⊗ 1 + f̂2 ⊗ f̂2 ⊗ 1).

It is then easy to show that such an f is already invariant under (s, r, t). The
same analysis applies to H1,0,1 and H0,1,1. Therefore the N invariant submodule
of H2(A(2)3,K) has the form K ⊕K ⊕K, and S3 acts to permute the three factors.
Therefore, H2(A(2)3,K)L = K. This concludes the proof of the claimed results.

Corollary 6.11. H2(H ′,Z) has no p torsion for p > 3.

Proof. The group H2(H ′,Z/p) has the form (Z/p)a, for some a ∈ N. In contains
a factor of Z/p for each (i) factor of Z in H2(H ′,Z), (ii) factor of Z/pk in H2(H ′,Z)
(k ≥ 1) and (iii) each factor of Z/pk in H3(H ′,Z). The previous theorem establishes
that dimQ(H

2(H ′,Q)) = dimZ/p(H
2(H ′,Z/p)) for p > 3. Hence, there are as many

Z/p factors in H2(H ′,Z/p) as there are factors of Z in H2(H ′,Z). In particular, there
is no p torsion in H2(H ′,Z).

Corollary 6.12. The group Pic(MX), for X such that h2,1 = 3, is isomorphic
to Za×A, where a is given in Table 2 above as dimK(H2(H ′,K)) for each case and A
is some (case dependent) finite abelian group of order 2n3m, n,m ∈ N. In particular,
the Picard group of MX is infinite in 9 out of the 10 cases.

6.4. Hodge Bundles. In this section, we will give two proofs that the Hodge
bundle over MX has finite order. The first proof is as follows.

Theorem 6.13. Let λ denote the Hodge bundle over MX , for h2,1(X) = 3. Then
λ is nontrivial, and has finite order.

Proof. To show that a line bundle L over an analytic stack X has finite order, it
suffices to exhibit a finite étale cover � : Y → X such that �∗L has finite order. In
our case, as we’ve discussed in the remark prior to Theorem 4.4, there is a finite étale
cover � : M(4)3 → MX . It is easy to see that the pullback �∗λ is the Hodge bundle
over M(4)3. Since the Hodge bundle over M(4) has finite order (it is the pullback of
the Hodge bundle on M = M1,1, which has order 12), the second claim follows.

Now we must show that λ is nontrivial. Let π : H3 → [H3/H ′] = MX denote
the quotient map. A global section of λ is determined by a global section of the H ′-
equivariant line bundle π∗λ. Consider the subgroup Γ(2)3 ⊂ H. The map Γ(2)3 →
H → H ′ makes π∗λ into a Γ(2)3-equivairant line bundle, which in turn gives the
descent data for the bundle ρ2 � ρ2 � ρ2 on [H3/Γ(2)3] = M(2)3, where ρ2 is the
Hodge bundle on M(2). To see that this line bundle is nontrivial, it is sufficient to
observe that ρ2 itself is nontrivial.

A global section of ρ2 is a weakly modular form f : H → C of weight 1 and level
2 on H. Any such form not only has a zero, but is in fact identically zero: since
−I ∈ Γ(2), and −I acts trivially on H, we must have f(τ) = −f(τ). This implies
that f = 0.
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For the second approach, we will explicitly construct a trivializing section of
λ⊗12. To do so, we must give a global nonvanishing section of π∗λ over H3 which is
H ′ equivariant. To be precise, a line bundle over [H3/H ′] is an H ′ equivariant line
bundle over H3, i.e. a line bundle L over H3 together with an H ′ action. In these
terms, the definition of the Hodge bundle λ over MX is as follows. The associated
line bundle over H3 is denoted π∗λ, and is by definition equal to the pushforward of
the relative canonical bundle Ω3

U3/H3 to H3. The H ′ action on this bundle is inherited

from the H ′ action on Ω3
U3 , which is obtained by taking the differential of the action

of an element h ∈ H ′ on U3. Then to give a trivialization of λ is to give a trivialization
of π∗λ which is equivariant with respect to the H ′ actions on H3 and π∗λ.

So, we will seek a global nonvanishing section of π∗λ of the form

f(τ1, τ2, τ3)dz1 ∧ dz2 ∧ dz3,

for f a nonvanishing analytic function on H3. Before we write down such a section,
recall that the modular discriminant Δ : H → C is defined to be η24, where η is the
Dedekind η function

η(τ) = q
1
24

∞∏
n=1

(1− qn),

with q = e2πiτ . Note that Δ is a modular form of weight 12.

Theorem 6.14. The section σ : H3 → (π∗λ)⊗12 defined by

σ =

(
3∏

i=1

Δ(τi)

)
(dz1 ∧ dz2 ∧ dz3)

⊗12

descends to a trivialization of λ⊗12 over MX .

Proof. To check that σ is equivariant under H ′, it suffices to show that it is
equivariant under Γ3 and S3 (since the translations (Z/4)6 certainly act trivially
on σ). The claim of equivariance under S3 is immediate, since the only effect of a
permutation is to introduce a sign coming from the wedge product dz1 ∧ dz2 ∧ dz3.
Equivariance under Γ3 follows from the fact that Δ is modular of weight 12. Since Δ
is also nonvanishing, this concludes the proof that σ defines a trivializing section of
λ⊗12.

We proceed to write down a globally defined Kähler potential onMX . We consider
the following function defined on H3

K = log ‖η(τ1)η(τ2)η(τ3)‖2.
Clearly, K is invariant under the action of S3. Furthermore, while η is not invariant
under Γ (i.e. it is not modular), it satisfies η(γτ) = εη(τ), where γ ∈ Γ and ε is some
12th root of unity. Therefore, K is invariant under the action of H ′ on H3. Hence, it
is well defined on the moduli space MX . We can then define

ω =
i

2
∂∂̄K,

which defines a (1,1) form on MX . Since this form is positive definite, we see that ω
defines a Kähler form on MX . ω is in fact the curvature of the Hodge bundle. Indeed,
we may define a C∞ section of λ given by

σ̃ = ‖η(τ1)η(τ2)η(τ3)‖2 dz1 ∧ dz2 ∧ dz3.



608 R. DONAGI, M. MACERATO AND E. SHARPE

This section is well defined for the same reason that K is well defined. If h denotes
the Weil-Petersson norm of σ̃, then (after potentially rescaling σ̃ by a constant) we
have K = log h. Hence, ω is the curvature of λ with respect to the Weil-Petersson
metric.

7. Open problems. In general, it seems that very little is known about global
Calabi-Yau moduli spaces. Is their Picard group always finitely generated? If not, is
the Hodge line bundle still of finite order? Can the Hodge bundle ever be divisible?
Are the coarse moduli spaces always affine?

Clearly, it would be useful to have a global description of more examples. The
cases previously understood are 1-dimensional (for example the mirror of the quintic
threefold) or 2-dimensional. What about general toric hypersurfaces and complete
intersections? An obvious starting point might be the quintic threefold itself. How-
ever, the large symmetry groups present (and the large dimension) may make this
case particularly dificult.

At the opposite extreme, one might prefer to consider Calabi-Yau hypersurfaces
in particularly ugly (or: random) toric varieties, ones whose only symmetries come
from the torus action. In that case, one can hope to write down a normal form and
get a global description of the moduli space. An example of such a normal form
is in [CDLW07]. These authors describe a two-dimensional moduli space of lattice-
polarized K3s, which are compactifications of the Inose family. These can in turn be
described also as hypersurfaces in weighted projective space WP(5, 6, 22, 33).

More generally, it may be possible to describe the global geometry and Picard
groups of the analogous moduli spaces for Borcea-Voisin CYs, using the fact that
moduli spaces of complex structures of K3s and lattice-polarized K3s are locally ho-
mogeneous spaces. In particular, one should be able to do this with the family in
[CDLW07] to get another three-dimensional Calabi-Yau moduli space.

A question closer to our actual results concerns the components of MX and their
Picard groups. We have seen that MX has finitely generated Picard group; what
about the non-central components? Likewise, is there a more direct way to compute
Pic (MX) that could obtain the 2 and 3 torsion subgroups?
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Appendix A. Summary of results from [DW09]. In this section, in Table
3, we summarize the results we need from [DW09], listing group actions and pertinent
properties of crepant resolutions of the resulting quotient.

As in [DW09], a group action labelled (r-n) refers to an action of the group
(Z/2)r+2, where GT

∼= (Z/2)2 and GS
∼= (Z/2)r. The number n merely indexes

different actions of the same group. We take the periods of the i-th elliptic curve to
be 1, τi. (In [DW09] the periods were doubled to 2, 2τi in order to avoid halves in
the half-periods. In our current notation, the half-periods are 1/2, τi/2.) A symbol
such as 0±, 1±, or τ± denotes a reflection plus a translation by a half period on one
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elliptic factor. Explicitly, 0± indicates that the generator acts as

z �→ ±z,

1± indicates that the generator acts as

z �→ ±z + 1/2,

and τ± indicates that the generator acts as

z �→ ±z + τ/2.

An element of the twist group GT is denoted by a triple of such symbols (with
an even number of negative signs.) The entries in the shift subgroup GS are pure
translations by (half of) the indicated amount; we drop the unneeded ±. For example,
(τ, τ, 0) indicates that the generator acts as

z1 �→ z1 + τ/2, z2 �→ z2 + τ/2, z3 �→ z3.

We also list the Hodge numbers of a crepant resolution, as well as the fundamental
group π1 of the same. Possible fundamental groups are denoted as follows, in the same
notation as [DW09][Table 1]:

A: the extension of Z/2 by Z2,
B: any extension of (Z/2)2 by Z6,
C: Z/2,
D: (Z/2)2.

The available information is displayed in two tables in [DW09]. A complete list,
including 36 types, is given in Table 1. It is still not known exactly which pairs
from that list may coincide. The possible coincidences were summarized in a second
table (on page 17 of [DW09]), listing all undistinguished cases that may or may not
turn out to coincide: this list consisted of seven pairs and one triple of items from
Table 1 of [DW09]. A subsequent work [FRTV13] used a computer search to carefully
analyze all those equivalences of distinct entries in Table 1 of [DW09] that happen
to be induced by affine linear transformations (twists and shifts) of the product of
3 tori. That work confirmed the completeness of the list in Table 1 of [DW09], and
showed that precisely one pair of the previously undistinguished cases (items (3-1)
vs (3-2)) coincided under such an equivalence. In the table below, we have therefore
deleted entry (3-2). As far as we know, no progress has been made concerning the
status of the other possible coincidences listed in the table on page 17 of [DW09]: we
have no information regarding the possible existence of exotic isomorphisms that are
not induced by twists and shifts of the product of tori. We are grateful to Patrick
Vaudrevange for drawing our attention to the work [FRTV13] and explaining it to us.
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Label GT GS (h1,1, h2,1) π1

(0-1) (0+, 0−, 0−), (0−, 0+, 0−) (51, 3) 0
(0-2) (0+, 0−, 0−), (0−, 0+, 1−) (19, 19) 0
(0-3) (0+, 0−, 0−), (0−, 1+, 1−) (11, 11) A
(0-4) (1+, 0−, 0−), (0−, 1+, 1−) (3, 3) B
(1-1) (0+, 0−, 0−), (0−, 0+, 0−) (τ, τ, τ) (27, 3) C
(1-2) (0+, 0−, 0−), (0−, 0+, τ−) (τ, τ, τ) (15, 15) 0
(1-3) (0+, 0−, 0−), (0−, 0+, 1−) (τ, τ, τ) (11, 11) C
(1-4) (0+, 0−, 0−), (0−, 1+, 1−) (τ, τ, τ) (7, 7) A
(1-5) (1+, 0−, 0−), (0−, 1+, 1−) (τ, τ, τ) (3, 3) B
(1-6) (0+, 0−, 0−), (0−, 0+, 0−) (τ, τ, 0) (31, 7) 0
(1-7) (0+, 0−, 0−), (0−, 0+, 1−) (τ, τ, 0) (11, 11) C
(1-8) (0+, 0−, 0−), (0−, 1+, 0−) (τ, τ, 0) (15, 15) 0
(1-9) (0+, 0−, 0−), (0−, 1+, 1−) (τ, τ, 0) (7, 7) A
(1-10) (1+, 0−, 0−), (0−, 1+, 0−) (τ, τ, 0) (11, 11) A
(1-11) (1+, 0−, 0−), (0−, 1+, 1−) (τ, τ, 0) (3, 3) B
(2-1) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 1), (τ, τ, τ) (15, 3) D
(2-2) (0+, 0−, 0−), (0−, 0+, 1−) (1, 1, 1), (τ, τ, τ) (9, 9) C
(2-3) (0+, 0−, 0−), (0−, 0+, 0−) (1, 1, 1), (τ, τ, 0) (17, 5) C
(2-4) (0+, 0−, 0−), (0−, 0+, 1−) (1, 1, 1), (τ, τ, 0) (11, 11) 0
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