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CONVERGENCE OF NARASIMHAN–SIMHA MEASURES ON
DEGENERATING FAMILIES OF RIEMANN SURFACES∗

SANAL SHIVAPRASAD†

Abstract. Given a compact Riemann surface Y and a positive integer m, Narasimhan and
Simha defined a measure on Y associated to the m-th tensor power of the canonical line bundle.
We study the limit of this measure on holomorphic families of Riemann surfaces with semistable
reduction. The convergence takes place on a hybrid space whose central fiber is the associated
metrized curve complex in the sense of Amini and Baker. We also study the limit of the measure
induced by the Hermitian pairing defined by the Narasimhan–Simha measure. For m = 1, both these
measures coincide with the Bergman measure on Y . We also extend the definition of both of these
measures to the singular curves on the boundary of Mg in such a way that they form a continuous
family of measures on the universal curve over Mg .
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1. Introduction. Let Y be a compact Riemann surface of genus g ≥ 1 and
m a fixed positive integer. Let Ω⊗m

Y denote the m-th tensor power of the canonical
line bundle on Y . Using the global sections of Ω⊗m

Y , Narasimhan and Simha defined
a volume form τ (m) on Y as follows [NS68]. Given θ ∈ H0(Y,Ω⊗m

Y ), let |θ|2/m
denote the associated volume form i.e. if locally θ(z) = f(z)dz⊗m, then |θ|2/m(z) =
|f(z)|2/m( i

2dz ∧ dz). Then,

τ (m)(z) := max
{θ|∫

Y
|θ|2/m=1}

|θ|2/m(z)

is a continuous positive volume form on Y that we call the Narasimhan–Simha volume
form associated to the line bundle Ω⊗m

Y . The induced Radon measure on Y is called
the Narasimhan–Simha measure and is also denoted by τ (m).

More generally, given points P1, . . . , Pr ∈ Y and integers 0 < b1, . . . , br < m, a
similar construction yields the Narasimhan–Simha measure τ (m,b1P1+···+brPr) on Y
associated to the line bundle L = Ω⊗m

Y (b1P1 + · · · + brPr). For details, see Section
2.3.

When m = 1, the Narasimhan–Simha measure associated to ΩY , τ (1), coincides
with the Bergman measure [Ber10, Section 4] on Y (See Section 2.1 for details). Thus,
τ (m) is a possible generalization of the Bergman measure using pluricanonical forms.
The volume form τ (m) was introduced by Narasimhan and Simha to construct the
moduli space of projective complex structures on a given compact connected real
analytic manifold [NS68]. Tsuji, and Berndtsson–Păun studied the semipositivity of
the curvature current of the Narasimhan–Simha metric in families [Tsu07], [BP08].

The asymptotics of the Bergman measure in degenerating families is studied in
[HJ96], [Don15], [dJon19], [Shi20A], [AN20]. We are interested in computing the
asymptotics of the Narasimhan–Simha measure in degenerating families.

For the remainder of the introduction, let m ≥ 2 be a fixed integer. Let X → D∗

be a holomorphic family of curves of genus g. Let B = b1B1+· · ·+brBr be a horizontal
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divisor on X for integers 0 < b1, . . . , br < m. Denote L = Ω⊗m
X/D∗(B). The range of

parameters we permit are:
• g ≥ 2 and r ≥ 0,
• g ≥ 1 and r ≥ 1, or
• g = 0, r ≥ 3, and deg(B|Xt

) ≥ 2m.
Note that the above conditions imply that H0(Xt,LXt

) �= 0 – the only case we are
excluding is g = 1 and r = 0. But in this case, Theorem C, stated below, is already
known [Shi20A, Theorem B] (see also [CLT10, Corollary 4.8], [BJ17, Theorem C] and
[dJon19, Remark 16.4] for related results).

We will also assume that (X,Bred) has semistable reduction i.e. there exists a
regular model X of X such that X0 is reduced and X0 + Bred is an snc divisor on
X , where B denotes the component-wise closure of B in X . A theorem of Deligne
and Mumford guarantees that such a model always exists after a base change D∗ → D∗

given by t �→ tN for some positive integer N [DM69].
Let τ

(m,B)
t := τ (m,B|t) be the Narasimhan–Simha measure on Xt associated to

L|Xt
.

Theorem A. Let X be an snc model of X and let X0 denote its central fiber.
Then, the Narasimhan–Simha measures τ

(m,B)
t have a weak limit when viewed as

Radon measures on X . This weak limit is a sum of Narasimhan–Simha measures on
the irreducible components of X0 and Dirac masses on the nodal points of X0.

The reason for working with the more general Narasimhan-Simha measure τ (m,B)

instead of just τ (m) is that even if we start with τ
(m)
t , the restriction of the limiting

measure to an irreducible component of X0 could still be of the form τ (m,a1P1+···+asPs).
For example, when B = 0, the limit measure of τ (m)

t on the stable reduction,
Xstab, of X can be described as follows. The restriction of the limit measure, to
an irreducible component E of Xstab,0 is just the pushforward of the Narasimhan-
Simha measure τ (m,(m−1)P1+···+(m−1)Pr) on Ẽ, where Ẽ is the normalization of E and
P1, . . . , Pr are all the points on Ẽ that map to nodal points of X0,stab. The limiting
measure also places unit Dirac mass on each of the nodal points of X0,stab.

Thus we see that in the case when B = 0, the limit measure depends only on
Xstab,0 and is independent of the one parameter family X. More precisely, if X → D

and Y → D are two families of genus g curves degenerating to the same stable
curve C = Xstab,0 = Ystab,0, then the limit of the Narasimhan–Simha measure with
respect to Ω⊗m

Xt
and with respect to Ω⊗m

Yt
coincides on C. Since the data of the one-

parameter family keeps track of the ‘direction of approach’ towards a stable curve
in Mg, we could ask whether the Narasimhan–Simha measures with respect to Ω⊗m

form a continuous family of measures on Mg. Works by several authors have shown
the connection between degeneration of sections of Ω⊗m and the geometry of Mg

[BCG+18] [BCG+19] [CMSZ20] [DGZZ21].
To make the question precise, we first extend the notion of Narasimhan-Simha

measure to all stable curves by considering the limiting measure described in Theorem
A. If C is a stable curve of genus g, we define the Narasimhan–Simha measure on
C to be a sum of Narasimhan–Simha measures on each irreducible component and
unit Dirac masses at all nodal points of C. The restriction of the Narasimhan–Simha
measure on C to an irreducible component E ⊂ C is the Narasimhan–Simha measure
on Ẽ associated to the line bundle Ω⊗m

Ẽ
((m−1)P1+ · · ·+(m−1)Pr), where P1, . . . , Pr

are the points on Ẽ that map to the nodal points of C.
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(a) A degenerating family of genus 4
curves

(b) The associated metrized curve
complex hybrid space

Figure 1. A family of genus 4 curves and the associated curve complex hybrid space

Now consider the universal curve Cg → Mg. Recall that, topologically, the fiber
of this map over the isomorphism class of a stable curve C is C/Aut(C). Let τ ′(m)

C

denote the pushforward of τ (m) from C to C/Aut(C). Let (C0(Cg))∨ denote the space
of Radon measures on Cg equipped with the weak∗ topology.

Theorem B. The map Mg → (C0(Cg))∨ given by [C] �→ τ ′(m)
C is continuous.

Note that the above result is in a stark contrast with the case for the Bergman
measures (i.e. when m = 1), where the mass of limiting measure on an edge depends
on the lengths of all the edges in the dual graph. Thus, an analog of Theorem B would
be false in the case of Bergman measures. In fact, to extend the Bergman measures
continuously, Amini and Nicolussi construct a large hybrid space which keeps track
of the relative orders of the logarithmic rates of approach to each node on a stable
curve [AN20].

To prove Theorem A, instead of directly computing the limit of τ (m,B)
t on X ,

we instead compute the limit of τ (m,B)
t on the metrized curve complex hybrid space,

X hyb
CC , defined in [Shi20A]. This has the advantage of simultaneously computing the

limit of τ (m,B)
t in X as well as in the non-Archimedean hybrid space in the sense of

Boucksom and Jonsson [Ber09] [BJ17].
The space X hyb

CC is a partial compactification of X with central fiber being the
metrized curve complex ΔCC(X ) (in the sense of Amini and Baker [AB15]) associated
to X0. The latter is obtained by replacing all nodal points in X0 with line segments
i.e. by taking the normalization X̃0, of X0 and adding a line segment connecting
P ′, P ′′ ∈ X̃0 if P ′, P ′′ lie over the same nodal point in X0. See Figure 1 for an
example. We refer to the irreducible components of X̃0 as curves in ΔCC(X ) and
the line segments as edges in ΔCC(X ). Each edge has a length, which is determined
by the multiplicities of the curves that it connects.

We have the following theorem regarding the convergence of τ (m,B)
t .

Theorem C. There exists a measure τ
(m,B)
0 on ΔCC(X ) such that τ

(m,B)
t →

τ
(m,B)
0 weakly as measures on X hyb

CC . The limiting measure τ
(m,B)
0 is a sum of

Narasimhan–Simha measures on the curves and Lebesgue measures on the edges.

For more details, see Theorem 5.1.1. Note that Theorem A follows immediately
from Theorem C by considering that continuous map X hyb

CC → X which contracts
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the edges in ΔCC(X ). The Lebesgue measure on the edges give rise to the Dirac
masses on the nodal points of X0.

The Berkovich hybrid space Xhyb = X ∪Xan
C((t)) is a partial compactification of X

with central fiber being the Berkovich analytification of X viewed as a variety over
C((t)). This partial compactification has the advantage that it does not depend on the
choice of a model X and is, therefore, canonical. A number of degeneration problems
[BJ17], [Oda17], [Sus18], [LS19], [Sch19], [Shi19], [Shi20A] [Li20] and dynamical prob-
lems [Fav18], [DF19], [DKY19] have been studied in this setting. Here, we compute
the limit of τ (m,B)

t on Xhyb as a corollary of Theorem C.

Corollary D. The measures τ
(m,B)
t admit a weak limit as t → 0 on Xhyb.

The support of this limiting measure coincides with the essential skeleton of the pair
(XC((t)),

1
mBC((t))) and is given by a sum of Lebesgue measures on edges and Dirac

masses on vertices.

The essential skeleton of the pair (XC((t)),
1
mBC((t))) (see Section 4.4 for details)

is a piecewise linear subset of Xhyb which encodes information about the pair
(XC((t)),

1
mBC((t))) [KS06] [MN15] [BM19]. The Dirac masses that appear in Corol-

lary D are due to the Narasimhan-Simha measure on the curves on ΔCC(X ) as the
curves in ΔCC(X ) get collapsed to points in Xan

C((t)).
We also compute the asymptotics of a measure closely related to the Narasimhan-

Simha measure. Let Y be a compact Riemann surface of genus g, P1, . . . , Pr points on
Y and 0 < b1, . . . , br < m integers. We get a Hermitian pairing on H0(Y,Ω⊗m

Y (b1P1+
· · ·+ brPr)) given by

〈θ, ϑ〉 =
(
i

2

)m ∫
Y

θ ∧ ϑ

(τ (m,b1P1+···+brPr))m−1
.

Let e1, . . . , eM be an orthonormal basis of H0(Y,Ω⊗m
Y (b1P1+ · · ·+brPr)) with respect

to the above pairing. Then, the positive volume form

μ(m,b1P1+···+brPr) =

(
i

2

)m M∑
i=1

ei ∧ ei
(τ (m,b1P1+···+brPr))m−1

does not depend on the choice of the orthonormal basis and we call it as the pluri-
Bergman measure on Y associated to Ω⊗m

Y (b1P1+ · · ·+ brPr). Note that when m = 1
and r = 0, μ(1) is just the Bergman measure. Thus, this measure is yet another
generalization of the Bergman measure.

Consider the family X → D∗ along with the horizontal divisor B. Using the same
notation as before, let μ(m,B)

t denote the measure μ(m,Bt) on Xt associated to Lt. We
are also able to compute the limit of μ(m,B)

t on X hyb
CC .

Theorem E. There exists a measure μ
(m,B)
0 on ΔCC(X ) such that μ

(m,B)
t →

μ
(m,B)
0 weakly as measures on X hyb

CC . The measure μ
(m,B)
0 is also a sum of pluri-

Bergman measures on the curves in ΔCC(X ) and Lebesgue measures on the edges.

The mass of each edge with respect to μ
(m,B)
0 is the same as the mass of the edge

with respect to τ
(m,B)
0 . For details, see Section 6 and Theorem 6.0.7.

As before, we also get the limit of measures μ(m,B)
t on the hybrid space Xhyb.
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Corollary F. The measures μ
(m,B)
t converge to a measure on the hybrid space

Xhyb whose support is the essential skeleton of the pair (XC((t)),
1
mBC((t))). The limiting

measure is a sum of Dirac masses on the vertices and Lebesgue measure on the edges.

As in the case of the Narasimhan-Simha measures, the pluri-Bergman measure
also continuously extends to Mg. The definition of the pluri-Bergman on a stable
curve is similar to that of the Narasimhan-Simha measure – it is a sum of pluri-
Bergman measures on the normalization of the irreducible components and Dirac
masses on the nodal points.

Theorem G. The map Mg → (C0(Cg))∨ given by [C] �→ μ′(m)
C is continuous.

Finally, we would also like to understand what happens to the limiting pluri-
Bergman measure as m → ∞. We compute this limit on Xhyb instead of X hyb

CC . The
reason for doing so is that it is not clear to us what the limit of μ(m) as m → ∞ is
for a fixed Riemann surface. However, the total mass of μ(m) is easy to figure out.

There are two ways to think of the limit. In the first case, we fix B and sup-
pose that g ≥ 2. Let μ

(m,B)
t denote the pluri-Bergman measure on Xt induced by

Ω⊗m
Xt

(B|Xt
). By abuse of notation, let μ(m,B)

0 also denote the weak limit of μ(m,B)
t on

Xhyb as t → 0. Then, the measures μ
(m,B)
0 , normalized to volume 2g − 2, converges

to an analogue of the hyperbolic measure on Xan
C((t)) and this limit does not depend

on the choice of the divisor B (see Section 6.2). This limit measure lives on the dual
graph of the stable reduction of X (which coincides with the essential skeleton in
this case). It places no mass on the edges and places a mass of 2g(v) − 2 + val(v)
on each vertex, where g(v) is the genus of the irreducible component associated to v
and val(v) is the valency of the vertex v in the dual graph. It follows from [Sch19]
that this measure is the limit of hyperbolic measures on Xt. It seems to be unknown
whether the measures μ(m)

t , normalized to volume 2g−2, themselves converge weakly
to the hyperbolic measure on Xt.

Another way to think of the limit is to fix the Q-divisor 1
mB instead of fixing B

i.e. we consider μ
(km,kB)
0 associated to ω⊗km

Xt
(kB|Xt) and take the limit as k → ∞.

Assume that 2g − 2 +
deg(B|Xt )

m > 0. In this case, there exists a model X such that
μ
(km,kB)
0 , normalized to volume 2g−2+

deg(B|Xt )

m , converges to a measure that places

no mass on the edges and places a Dirac mass of 2g(vE)− 2 + val(vE) +
deg(B|E)

m on
each vertex vE of the dual graph of X0.

As for the limit of τ
(m,B)
0 , it is not even clear to us what the asymptotics of∫

Xt
τm,B
t is as m → ∞. In the case of B = 0, Tsuji has shown that the supremum of

τ (m)∫
τ (m) as m → ∞ exists as a bounded volume form [Tsu07, Theorem 4.1]. However,

it is not clear whether this supremum is a limit or not.

Method of proof. A general observation (Lemma 3.4.1) tells that us that in
order to compute the limit on all snc models of X, it is enough to compute it on
X hyb

CC for any one snc model X . We work with the model X of X obtained from
the minimal snc model of (X,B) by repeatedly blowing down the (−1)-curves E
in the central fiber for which deg(B|E) < m. The advantage of working with this
model is that h0(ωX0(B|X0)) = h0(ωXt(B|Xt)); now we can apply Grauert’s lemma
[Har77, Corollary III.12.9] to find sections of ωX /D(B) that restrict to a basis of
H0(ωX0(B|X0)) and H0(ωXt(B|Xt)). We make a clever choice of such a basis that
renders the computations simple. By analyzing these sections, we find expressions for
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τ
(m)
t and μ

(m)
t . Now, understanding the asymptotics of these sections allows us to

understand the asymptotics of τ (m)
t and μ

(m)
t .

Theorems B, E, and G also follow from similar calculations.
We prove Corollary 3.4.2, a general result on how to transfer convergence from

X hyb
CC to Xhyb. As a consequence, Corollaries D and F follow from Theorems C and

E, respectively, using Corollary 3.4.2.

Further questions. On a fixed Riemann surface, we can consider a sequence of
measures constructed iteratively using the recipe for constructing the pluri-Bergman
measure, starting with the Bergman measure. Tsuji has shown that this sequence
of measures converges to the hyperbolic measure [Tsu10]. It would be interesting to
know what the limit of these measures on ΔCC(X ) is and whether the sequence of
limiting measures could be given a dynamical interpretation.

We could also ask whether the measures μ(m) converge to the hyperbolic measure
as m → ∞, which is the case for their limits on Xhyb.

It would be interesting to know if there is a higher dimensional analog of The-
orem C. Such higher dimensional analogs might provide further insight and further
quantitative information related to Siu’s theorem on invariance of plurigenera.

Organization of the paper. We discuss some preliminaries in Section 2. In
Section 3, we discuss the metrized curve complex hybrid space. In Section 4, we
discuss the global sections of ω⊗m

X0
(B|X0

). We prove Theorem C in Section 5 and in
Section 6, we prove Theorem E. In Section 7, we prove Theorems B and G.

Acknowledgments. I would like to thank my advisor, Mattias Jonsson, for his
suggestions and comments. I would also like to thank the anonymous referees for the
helpful comments and suggestions, and for suggesting a proof of Theorem G. This
work was supported by the NSF grants DMS-1600011 and DMS-1900025.

2. Preliminaries.

2.1. Families of curves and models. Let D denote the complex unit disk
and let D∗ denote the complex unit disk punctured at the origin. A family of curves
X → D∗ of genus g is a complex manifold X along with a projective holomorphic
submersion X → D∗ such that the fibers are smooth compact connected complex
curves of genus g. We also assume that our family of curves is meromorphic at the
origin i.e. X ⊂ PN ×D∗ is cut out by polynomials whose coefficients are holomorphic
functions on D∗ and meromorphic at the origin.

A model of X is a normal complex analytic space X along with a projective flat
holomorphic map X → D such that X |D∗= X as complex analytic spaces over D∗.
Let X0 denote the central fiber of X . Note that X0 will always be connected [Liu02,
Corollary 8.3.6]. A model X is said to be an snc model of X if X is regular and
X0,red is an snc divisor on X .

Given two snc models X ′ and X of X, we say that X ′ dominates X if there
is a proper map q:X ′ → X such that q|X is the identity map. Note that q is a
bimeromorphic map between X ′ and X .

Let B = b1B1+ · · ·+ brBr be a horizontal divisor on X. After shrinking the base
disk, we may assume that Bi ∩ Bj = ∅ for i �= j. Let B denote the component-wise
closure of B in X . We say that X is an snc model of (X,B) if X is regular and
(X0 +B)red is an snc divisor on X .

Let m ≥ 2 be a positive integer. Suppose that bi < m for all i. Further assume
that deg(B|Xt) ≥ 1 if g = 1 and deg(B|Xt) ≥ 2m if g = 0. Throughout this paper,



CONVERGENCE OF NARASIMHAN–SIMHA MEASURES 641
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B1

B2

B3
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B1

E3

X ′
0 X0

Figure 2. The above figure shows the minimal snc model, X , for (X, 1
4
B), where B = B1 +

B2 + B3 and X ′
0 = E1 + E2 + E3. The model X is obtained by first contracting E1 and then E2

from the minimal semistable model, X ′ , of (X,B).

we will only be working with such pairs. Note that in this case (X,Bred) is stable in
the sense of [DM69] i.e. 2g − 2 + deg(Bred) > 0.

A theorem of Deligne and Mumford guarantees that if (X,Bred) is a stable pair,
then after a base change D∗ → D∗ given by u �→ uN , there exists an snc model
X ′ of (X,B) such that X ′

0 is reduced. Such an X ′ is called a semistable model
and we will assume that all our families have a semistable model. If (X,B) has a
semistable model, there exists a unique minimal one. Here, minimality means that
any other semistable model is obtained by applying a sequence of blowups to the
minimal semistable model. We can get the minimal semistable model by considering
the stable reduction of (X,Bred) and then resolving the singularities by blowing up
(see [ACG11, Chapter X.4]).

Let X ′ denote the minimal semistable model of (X,B). We will mostly work with
the model X that is obtained from X ′ by repeatedly contracting the (−1)-curves E
in the central fiber for which deg(B|E) < m. We will call X as the minimal snc model
of (X, 1

mB). The choice of notation is due to the fact that the model only depends on
the Q-divisor 1

mB, in the sense that the minimal snc model of (X, 1
mB) is the same

as that of (X, 1
kmkB) for any positive integer k. Note that X0 + Bred is no longer

an snc divisor; however this is not a major problem as X0 is still a (reduced) snc
divisor. Moreover, B does not pass through any nodal points of X0 – this is due to
the fact that the image of a (−1)-curve E in X ′ under the map X ′ → X ′′, obtained
by contracting E, is a smooth point in X ′′

0 . For an example, see Figure 2.
Let X be the minimal snc model of (X, 1

mB). For any irreducible component
E ⊂ X0, let val(E) denote the number of intersection points of E with the rest of X0

i.e. val(E) = #(E ∩ (X0 \ E)). Any irreducible component E ⊂ X0 is of one of the
following forms:

• g(E) ≥ 2;
• g(E) = 1 and either val(E) ≥ 1 or deg(B|E) ≥ 1;
• g(E) = 0 and val(E) ≥ 2;
• g(E) = 0, val(E) = 1 and deg(B|E) ≥ m; or
• g(E) = 0, val(E) = 0 and deg(B|E) ≥ 2m.

Note that all irreducible components E ⊂ X0 satisfy 2g(E) − 2 + val(E) +
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E0

E1

E2

E4

E3

E5

X0 =
∑5

i=0 Ei

vE0
vE1

vE2
vE3

vE4
vE5

vE0 vE5

1 1 1 1 1

ΓX

Γ̃

5

Figure 3. The above figure shows the stable dual graph in the case when central fiber of the
minimal snc model X of (X, 0) is given by X0 = E0 + · · · + E5 such that g(E0) = g(E5) = 2 and
g(E1) = g(E2) = g(E3) = g(E4) = 0.

deg(B|E)
m ≥ 0. If g(E) = 0, val(E) = 2 and deg(B|E) = 0, we call E as inessen-

tial, otherwise we call it as essential. If B = 0, the essential irreducible components
of X0 are exactly those that show up in the central fiber of the stable reduction of
X in the sense of [DM69] i.e. when B = 0, the inessential components correspond to
(−2)-curves which can be contracted to obtain the stable reduction of X.

2.2. Dual graph and the stable dual graph of a model. Let (X,B) be
a pair as from the previous section. Given an snc model X ′ of X, the dual graph
ΓX ′ is a graph whose vertices correspond to irreducible components on X ′

0 and edges
correspond to the nodes in X ′

0 . Note that ΓX ′ is allowed to have multiple edges
between a pair of vertices, but no loops are allowed. Note that ΓX ′ is connected
because X ′

0 is connected. Associated to each vertex vE ∈ V (ΓX ′), we keep track of
two numbers: the genus g(vE) = g(E) and the valency val(vE) = val(E).

We define the length of an edge e between vE1
and vE2

by

le =
1

multX ′
0
(E1) ·multX ′

0
(E2)

.

In particular, when X ′
0 is reduced, all edges in ΓX ′ have length 1.

Now let X be the minimal snc model of (X, 1
mB). We call a vertex vE ∈ V (ΓX )

inessential (respectively essential) if E is inessential (respectively essential).
Let v0, vN ∈ V (ΓX ) for some N ≥ 1. We define an inessential chain between

v0, vN to be a sequence of vertices v0, . . . , vN ∈ V (ΓX ) such that there is an edge
between vi−1 and vi for 1 ≤ i ≤ n and v1, . . . , vN−1 are inessential. Such a chain is
said to be maximal if v0 and vN are essential. Note that we do allow v0 = vN .

The stable dual graph of (X, 1
mB), denoted Γ̃, is the graph obtained from ΓX by

forgetting the inessential vertices. The lengths of the edges of Γ̃ are such that Γ̃ and
ΓX are isometric as metric graphs. For an example, see Figure 3.

Thus, V (Γ̃) is exactly the set of essential vertices of ΓX and an edge in Γ̃ corre-
sponds to a maximal inessential chains in ΓX .
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Even though, it is suppressed in the notation, Γ̃ depends on the choice of the
integer m and the divisor B. Note that if B = 0, then Γ̃ is just the dual graph of the
stable reduction of X in the sense of [DM69].

2.3. The Narasimhan–Simha measure. Let Y be a compact Riemann sur-
face of genus g, and let P1, . . . , Pr be distinct points on Y for some r ≥ 0. We allow
g = 0, provided that r ≥ 3. In this subsection and in the following subsection, we
permit m = 1, unless specified.

Pick an integer m ≥ 1 and let 0 < a1, . . . , ar < m be integers. If g = 0, we also
require that a1+· · ·+ar ≥ 2m. This ensures that h0(Y,mKY +a1P1+· · ·+arPr) > 0.

Given θ, ϑ ∈ H0(Y,mKY +a1P1+ · · ·+arPr), we define a volume form |θ∧ϑ|1/m
on Y as follows. Locally if θ(z) = f(z)dz⊗m and ϑ(z) = g(z)dz⊗m, where f and g
are local meromorphic functions on Y with poles of order at worst ai at Pi, then,
|θ ∧ ϑ|1/m= |f(z)g(z)|1/m( i

2dz ∧ dz). Also denote |θ|2/m:= |θ ∧ θ|1/m.
Now, we define a continuous function ‖·‖′Y : H0(Y,mKY +a1P1+· · ·+arPr) → R≥0

as follows:

‖θ‖′Y :=
(∫

Y

|θ|2/m
)m/2

.

The assumption ai < m ensures that the integral converges. Note that ‖·‖′Y
satisfies the following properties (see [NS68] for details):

• ‖θ‖′Y = 0 ⇐⇒ θ = 0;
• ‖λθ‖′Y = |λ|‖θ‖′Y for λ ∈ C; and
• {θ | ‖θ‖′Y = 1} is a compact subset of H0(mKY + a1P1 + · · ·+ arPr).
• ‖·‖′Y is not a norm if m > 1.

The Narasimhan–Simha volume form associated to the line bundle mKY +a1P1+
· · ·+ arPr is the continuous positive volume form on Y defined by

τ (m,a1P1+···+arPr)(z) = sup
‖θ‖′

Y =1

|θ|2/m(z),

where the supremum is over {θ ∈ H0(mKY + a1P1 + · · · + arPr) | ‖θ‖′Y = 1}. Since
|θ|2/m(z) is a real cotangent vector at z, it lies in ordered set R≥0 ∪ {∞} and the
supremum makes sense. Since the supremum is over the compact set {θ | ‖θ‖′Y = 1},
the supremum is indeed a maximum. If no confusion arises, we skip the superscript
and just use denote τ to denote τ (m,a1P1+···+arPr). We could think of τ as a continuous
section of the real line bundle |KY |2⊗|OY (P1)|2a1/m⊗ . . .⊗ |OY (Pr)|2ar/m on Y .

If m ≥ 2, then note that mKY + a1P1 + · · · + arPr is base point free and thus,
τ does not vanish anywhere on Y . Also note that τ(z) < ∞ if z ∈ Y \ {P1, . . . , Pr}.
The total mass of τ is finite, but does not seem to be easy to calculate. Since the line
bundle mKY + a1P1 + · · ·+ arPr is base point free, given a Pi, there exists a global
section of mKY + a1P1 + · · ·+ arPr that looks locally like z−aidz⊗m near Pi. Thus,
locally near Pi, τ is given by φ · |z|−2ai/m( i

2dz ∧ dz), where φ is a continuous function
in a neighborhood of Pi.

Note that if f : Y → Y is a biholomorphism fixing P1, . . . , Pr, then the pushfor-
ward measure f∗τ is equal to τ i.e. τ is invariant under the action of an automorphism
of the marked curve (Y ;P1, . . . , Pr).

2.4. The pluri-Bergman measure. Let the notation be as in the previous
subsection. We define a Hermitian pairing on H0(mKY + a1P1 + · · · + arPr) as
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follows [NS68]:

〈θ, ϑ〉 =
(
i

2

)m ∫
Y

θ ∧ ϑ

τm−1
. (2.1)

In the above ( i
2 )

m θ∧ϑ
τm−1 is the (1,1)-form given as follows. If θ = f(z)dz⊗m,

ϑ = g(z)dz⊗m and τ = h(z)( i
2dz ∧ dz) locally for some holomorphic functions f, g

and positive real-valued function h, then ( i
2 )

m θ∧ϑ
τm−1 = f(z)g(z)

h(z)m−1 (
i
2dz ∧ dz) locally. We

also use the notation |θ∧ϑ|
τm−1 to denote |f(z)g(z)|

h(z)m−1 ( i
2dz ∧ dz) locally.

The continuous (1, 1)-form τ does not vanish anywhere on Y and thus the integral
is well defined and finite. Note that if m = 1, then τ does not play any role and we
recover the Hermitian pairing induced by the Bergman metric.

Let e1, . . . , eM be an orthonormal basis of H0(mKY + a1P1 + · · · + arPr) with
respect to the above pairing. Using elementary linear algebra, we see that the (1, 1)-
form

μ(m,a1P1+···+arPr) =

M∑
i=1

|ei ∧ ei|
τm−1

does not depend on the choice of the orthonormal basis. We call the corresponding
Radon measure on Y as the pluri-Bergman measure on Y induced by line bundle
mKY + a1P1 + · · ·+ arPr. Whenever there is no confusion regarding the line bundle,
we skip the superscript and denote μ = μ(m,a1P1+···+arPr). It is also given by the
formula

μ = sup

{ |θ ∧ θ|
τm−1

∣∣∣ θ ∈ H0(mKY + a1P1 + · · ·+ arPr),

∫
Y

|θ ∧ θ|
τm−1

= 1

}
,

which is proved using the same arguments as in the proof of Propositions 1.1 and 1.2
of [Ber10]. It also follows from this description that in the case when m = 1 and
B = 0, μ(1) is the same as τ (1) and is the Bergman measure on Y .

Since τ does not vanish on Y , μ(z) is finite for all points z ∈ Y \ {P1, . . . , Pr}.
From the second description of μ, it follows that μ is nowhere vanishing. By using
the fact that there is a global section of mKY + a1P1 + · · · + arPr that looks like
z−aidz⊗m near Pi and that τ ∼ C1|z|−2ai/m( i

2dz ∧ dz) near Pi, we conclude that
μ ∼ C2|z|−2ai/m( i

2dz ∧ dz) near Pi. Note that the total mass of μ is just h0(mKY +
a1P1 + · · ·+ arPr).

2.5. The dualizing sheaf and its tensor powers. Let X ′ denote an snc
model of X such that X ′

0 is reduced. Then, there exists a dualizing sheaf ωX ′
0
=

ωX ′(X ′
0 )|X ′

0
on X ′

0 .
Let E1 and E2 be irreducible components of X ′

0 . A local section of ωX ′
0
near

a node P = E1 ∩ E2 is the data of meromorphic one-forms f1, f2 on E1 and E2,
respectively, with at worst simple-pole along P , such that the residues of f1 and f2
at P sum to 0 [DM69, Section I].

Using this local description of sections of ωX ′
0
, we also get the following descrip-

tion of local sections of ω⊗k
X ′

0
, where k is an integer (possibly negative). If k ≥ 1, let

us denote dz⊗k = dz ⊗ . . . ⊗ dz; if k is negative, we can think of dz⊗k as a formal
symbol satisfying the appropriate change of coordinates. Then, a local section θ of
ω⊗k

X ′
0
near P = E1∩E2 is just given by the data of two meromorphic k-canonical forms

f(z)dz⊗k and g(w)dw⊗k locally on E2 and E1 near P , respectively, such that
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• f and g can have at worst poles of order k at the origin. (When k is negative,
this means that f and g vanish to order at least −k at the origin)

• If we write f(z) =
∑

n≥−k anz
n and g(w) =

∑
n≥−k bnw

n locally around P ,
then

a−k + (−1)k+1b−k = 0.

We call a−k and b−k the residues of θ at P along E2 and E1 respectively.
Let E1, . . . , Es denote the irreducible components of X ′

0 . Let P
(i)
1 , . . . , P

(i)
ri denote

the nodal points of X ′
0 that lie in Ei.

Now pick an orientation on ΓX ′ i.e. for every edge e ∈ E(ΓX ′), we pick a direc-
tion. Let e− and e+ denote the initial and final vertex of e with respect to the chosen
orientation. Summarizing the above discussion, we have a short exact sequence of
sheaves on X ′

0 .

0 → ω⊗k
X0

→
⊕
i

OEi(kKEi + kP
(i)
1 + · · · + kP (i)

ri ) →
⊕

P∈X0 node

C(P ) → 0, (2.2)

where the first map is given by the restrictions and the second map is given by taking
the sum (respectively difference) of residues if k is odd (respectively even) i.e. this
map is given by (ψi)i �→ (resP (ψe+P

) + (−1)k+1resP (ψe−P
))P .

The following short exact sequence will also be useful.

0 →
⊕
i

OEi
(kKEi

+ (k − 1)P
(i)
1 + · · ·+ (k − 1)P (i)

ri )

→ ω⊗k
X0

→
⊕

P∈X0 node

C(P ) → 0, (2.3)

where the first map exists because all the residues of sections of the left term are zero,
so there is no compatibility of residues to be checked. The second map is taking the
residue at each node P along the irreducible component associated to e−P .

3. Metrized curve complex hybrid space. We describe the metrized curve
complex and the associated hybrid space in this section. See [AB15] and [Shi20A,
Section 7] for more details. In this section X will denote an arbitrary snc model of
X. We do not assume that X is semistable and we will not keep track of the divisor
B.

3.1. Metrized curve complex. Let X̃0 denote the normalization of X0 i.e. the
disjoint union of all irreducible components of X0. The metrized curve complex
ΔCC(X ) associated to X is a topological space defined as follows.

ΔCC(X ) =

⎛⎝X̃0 �
⊔

e∈E(ΓX )

[0, le]

⎞⎠/
∼,

where ∼ is the identification of the end points [0, le] with the corresponding points
that lie over the nodal point associated to e. Recall that le is the length of the edge
e ∈ E(ΓX ). See Figure 1 for an example.
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3.2. Metrized curve complex hybrid space. As a set, the metrized curve
complex hybrid space, X hyb

CC , is given by

X hyb
CC = X �ΔCC(X ).

We also have a map X hyb
CC → D given by extending the map X → D∗ and sending

ΔCC(X ) to the origin. This map will turn out to be continuous in the topology on
X hyb

CC . Before we describe the topology on X hyb
CC , we make a few definitions.

First, consider a point Q ∈ E, where E ⊂ X0 is an irreducible component of
multiplicity a such that Q is not a nodal point. We can find an open set U1 ⊂ X
containing Q with coordinates z, w on U1 such that U1∩X0 = U1∩E, |z|, |w|< 1 and
the map to D is given by (z, w) �→ za. We say that (U1, z, w) is a coordinate chart
adapted to the irreducible component E and centered at Q.

Now, consider a nodal point P = E1∩E2 in X0, where E1, E2 ⊂ X0 are irreducible
components of multiplicity a, b respectively. Then, we can find an open chart U2 and
coordinates z, w on U2 such that U2 ∩ X0 = U2 ∩ (E1 ∪ E2), |z|, |w|< 1 and the
map to D is given by (z, w) �→ zawb. We say that (U2, z, w) is adapted to the node
P = E1 ∩ E2.

To describe the topology on X hyb
CC , it is enough to describe the neighborhood

basis of each point.
• Firstly, we require that X → X hyb

CC is an open immersion. This describes the
neighborhood basis of points in X.

• Pick a point Q ∈ E, where E ⊂ X0 is an irreducible component and Q is not
a nodal point on X0. Let (U1, z, w) be a coordinate chart adapted to E and
centered at Q. Viewing U1 as a subset of X hyb

CC , we get a neighborhood of Q.
By shrinking such adapted coordinate charts, we get a neighborhood basis of
Q.

• Pick a point Q ∈ eP , where P = E1 ∩ E2 is a nodal point in X0, where
E1, E2 have multiplicities a, b respectively such that Q does not lie in X̃0.
Identify eP with [0, 1

ab ], where 0 gets identified with vE1
and 1

ab with vE2
. Let

(U2, z, w) be a coordinate chart adapted to the node P = E1 ∩E2. Pick α, β
so that 0 < α < Q < β < 1

ab . Then,{
(z, w) ∈ U2 | α <

log|w|
a log|zawb| < β

}
∪ (α, β)

is a neighborhood of Q. Shrinking U2 and letting α, β → Q, we get a neigh-
borhood basis of Q.

• Pick a point Q = eP ∩E1, where P = E1 ∩E2 is a nodal point in X0, where
E1, E2 have multiplicities a, b respectively. Identify eP with [0, 1

ab ], where 0
gets identified with vE1

and 1
ab with vE2

. Let (U2, z, w) be a coordinate chart
adapted to the node P = E1 ∩ E2. Pick 0 < ε � 1

ab . Then,{
(z, w) ∈ U2 | log|w|

a log|zawb| < ε

}
∪ (U2 ∩ E1) ∪ [0, ε)

is a neighborhood of Q. Shrinking U2 and letting ε → 0, we get a neighbor-
hood basis of Q.

Alternatively, we can define the topology on X hyb
CC to be the coarsest topology

for which the maps X hyb
CC → X and X hyb

CC → X hyb are continuous, where X hyb =
X ∪ ΓX denotes the Boucksom-Jonsson hybrid space [Shi20A, Section 7].
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Lemma 3.2.1. If X ,X ′ are models of X such that X ′ dominates X i.e. a
proper map X ′ → X which restricts to identity on X, then there exists a unique
continuous surjective map (X ′)hybCC → X hyb

CC that restricts to identity on X.

Proof. Such a map X ′ → X is given by a composition of blowups along closed
points in the central fiber [Lic68, Theorem 1.15], we may reduce to the case when
X ′ → X is obtained by a single blowup. If X ′ → X is obtained by blowing up a
smooth point in X0, then we get a map ΔCC(X ′) → ΔCC(X ) obtained by collapsing
the extra edge and curve in ΔCC(X ′) to the center of the blowup.

If X ′ → X is obtained by blowing up a nodal point in X0, then ΔCC(X ′) →
ΔCC(X ) is obtained by collapsing the extra curve in ΔCC(X ′) to the corresponding
point in ΓX . More precisely, suppose X ′ is obtained by blowing up P = E1 ∩ E2,
where E1 and E2 are irreducible components of multiplicity a and b respectively and
let E be the exceptional divisor of the blowup. We can identify eP � [0, 1

ab ], where
vE1

is identified with 0 and vE2
is identified with 1

ab . The exceptional curve E is
collapsed to the point 1

a(a+b) ∈ eP and the edges eE1∩E and eE2∩E are identified with
[0, 1

a(a+b) ] and [ 1
a(a+b) ,

1
ab ].

In both cases, we get a continuous surjective map ΔCC(X ′) → ΔCC(X ), which
gives rise to a surjective map (X ′)hybCC → X hyb

CC

To show that this map is continuous, it is enough to note that the compositions
(X ′)hybCC → X ′ → X and (X ′)hybCC → (X ′)hyb → X hyb are continuous and that
these compositions are the same as the compositions (X ′)hybCC → X hyb

CC → X and
(X ′)hybCC → X hyb

CC → X hyb.

3.3. Convergence of measures on the metrized curve complex hybrid
space. We outline some general techniques that will be used to prove Theorem C
and E.

Lemma 3.3.1. Let X be an snc model of X. Let (νt)t∈D∗ be a family
of Radon measures on X with the support of νt contained in Xt and such that
lim supt→0 νt(Xt) < ∞. Let ν0 be a Radon measure on ΔCC(X ). To show that
νt → ν0 weakly as measures on X hyb

CC , it is enough to prove the following.
(1) Let (U1, z, w) be a coordinate chart adapted to an irreducible component E ⊂

X0 and let f be a continuous function on U1 with compact support. Then,∫
U1∩Xt

fνt →
∫
U1∩E

fν0

as t → 0.
(2) Let (U2, z, w) be a coordinate chart adapted to a node P = E1 ∩ E2, where

E1, E2 have multiplicities a, b in X0 respectively. Let 0 < α < β ≤ 1
2ab and

let f be a continuous function on [0, 1
ab ] � eP . Then,∫

{w∈U2|α≤ log|w|
a log|t|≤β}

f

(
log|w|
a log|t|

)
νt →

∫
[α,β]

fν0

as t → 0.
(3) Let (U2, z, w) be a coordinate chart adapted to a node P = E1 ∩ E2, where

E1, E2 have multiplicities a, b in X0 respectively. Let 0 < ε < 1
2ab and identify

eP � [0, 1
ab ]. Let

Dε = {(w, u) ∈ D× [0, ε) | Either w = 0 or u = 0}
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and let r : D× [0, ε) → Dε be a deformation retract. We can identify Dε with
(U2 ∩E1)∪ [0, ε). Let f be a compactly supported continuous function on Dε.
Then, ∫

{w∈U2| log|w|
a log|t|<ε}

f

(
r

(
w,

log|w|
a log|t|

))
νt →

∫
Dε

fν0

as t → 0.

Proof. Let h be a continuous function in a neighborhood of Δ(X ). We need to
show that

∫
Xt

hνt →
∫
ΔCC(X )

hν0.
The sets listed in the lemma form the neighborhood basis of points in ΔCC(X )

in X hyb
CC . So, we can cover a neighborhood of ΔCC(X ) using finitely many open

sets of these forms. Now consider a partition of unity {χi}i adapted to such a cover.
Writing h =

∑
i χih, it is enough to show that

∫
χihνt →

∫
χihν0 as t → 0. So, we

are reduced to the case where h is supported in a set of one of the forms listed above.
If h is supported in the set listed in (1), then take f = h and there is nothing to

show.
If h is supported in the set listed in (2), let f = h|eP . Then, h − f( log|w|

a log|t| ) is
a compactly supported continuous function which vanishes along ΔCC(X0). Thus,
given ε′ > 0, we can find t0 > 0 such that |h − f( log|w|

a log|t| )|< ε′ on Xt for all |t|< t0.

Thus, we get that
∫ |h − f( log|w|

a log|t| )|νt < ε′νt(Xt). Letting ε′ → 0 and using the fact
that lim supt→0 νt(Xt) < ∞, we get that∫

{w∈U2|α≤ log|w|
a log|t|≤β}

∣∣∣∣h− f

(
log|w|
a log|t|

)∣∣∣∣ νt → 0,

and thus

lim
t→0

∫
hνt = lim

t→0

∫
{w∈U2|α≤ log|w|

a log|t|≤β}
f

(
log|w|
a log|t|

)
νt =

∫
[α,β]

fν0 =

∫
hν0.

A similar argument also shows that if h is supported in the set listed in (3), then∫
hνt →

∫
hν0.

3.4. Extending convergence to higher models. Let X and X ′ be models
of X such that X ′ dominates X . Recall that this gives rise to a unique continuous
surjective map X ′hyb

CC → X hyb
CC .

Lemma 3.4.1. Let X ,X ′ be snc models of X such that X ′ dominates X . Let
(νt)t∈D∗ be a family of Radon measures on Xt and ν0 a Radon measure on ΔCC(X )

such that νt converges weakly to ν0 on X hyb
CC . Suppose that ν0({Q}) = 0 for all points

Q ∈ ΔCC(X ). Then there exists a unique measure ν′0 on ΔCC(X ′) such that νt → ν′0
weakly on (X ′)hybCC and the pushforward of ν′0 under ΔCC(X ′) → ΔCC(X ) is ν0.

Proof. Since the map q:X ′ → X is a composition of blowups [Lic68, Theorem
1.15], we see that the map X ′

0 → X0 is obtained by contracting some irreducible
components of X ′

0 and that the map ΔCC(X ′) → ΔCC(X ) is obtained by collapsing
some curves and edges to points. Let qCC: ΔCC(X ′) → ΔCC(X ), qhybCC : (X ′)hybCC →
X hyb

CC denote the induced maps.
We claim that there is a unique measure ν′0 on ΔCC(X ′) such that the push-

forward measure (qCC)∗(ν′0) is ν0. This is easy to see as there exist finitely many
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points Q1, . . . Qs ∈ ΔCC(X ) such that qCC is an homeomorphism over ΔCC(X ) \
{Q1, . . . , Qs}. This determines ν′0|q−1

CC(ΔCC(X )\{Q1,...,Qs}) and since ν0({Qi}) = 0, we
also get that ν′0|q−1

CC(Qi)
= 0 for all i = 1, . . . , s.

Pick 0 < r < 1. Let (X ′)hybCC,r denote the preimage of rD under the map
π: (X ′)hybCC,r → D. Then, (X ′)hybCC,r is a compact topological space and νt for |t|≤ r is
a collection of Radon measures on (X ′)hybCC,r. Since νt(Xt) → ν0(ΔCC(X )), we may
decrease r to further assume that νt(Xt) ≤ ν0(ΔCC(X )) + 1 for all t ∈ rD∗.

Let t1, t2, . . . be a sequence in rD that converges to 0. Applying the Banach-
Alaoglu theorem to the dual space of continuous functions on (X ′)hybCC,r, we get that,
after passing to a subsequence, the measures νtik has a weak limit ν̃0. Then, we
get that νtik → ν̃0 on (X ′)hybCC,r. But since pushforward of Radon measures under a
continuous map commutes with taking weak limits, we get that νtik → (qCC)∗(ν̃0).
But this means that (qCC)∗(ν̃0) = ν0. By the uniqueness of such a measure we get
that ν̃0 = ν′0 i.e. all convergent subsequences have the same weak limit. Thus, we get
that νt → ν′0 on (X ′)hybCC,r and hence on (X ′)hybCC .

Corollary 3.4.2. Let X, X , (νt)t∈D∗ , ν0 be as in Lemma 3.4.1. Then, there
exists a Radon measure ν′0 on Xan

C((t)) such that νt → ν′0 weakly as measures on Xhyb.
Moreover, the support of ν′0 is contained in the skeletal subset ΓX ⊂ Xan

C((t)).

Proof. Recall that ΓX is the dual graph of the snc divisor X0 (see Section 2.2)
and that the Berkovich hybrid space Xhyb = X ∪ Xan

C((t)) can also be obtained as an
inverse limit of the Boucksom-Jonsson hybrid spaces (X ′)hyb = X ∪ ΓX ′ , where X ′

runs through all snc models of X; these form a directed system. Therefore, to prove
convergence on Xhyb, it is enough to prove a compatible convergence of νt on (X ′)hyb

for all snc models X ′ of X.
Since the collection of models that dominate X form a cofinal system, it is enough

to prove this for models X ′ that dominate X . Consider such a model X ′. From
Lemma 3.4.1, we get that the limit of νt on (X ′)hybCC exists. From the continuous map
(X ′)hybCC → (X ′)hyb obtained by collapsing the curves in the central fiber, we see that
the limit of νt on (X ′)hyb is just the pushforward of the limit of νt on (X ′)hybCC . Using
the techniques from the proof of Lemma 3.4.1, it is also easy to check that the limits
are compatible i.e. if X ′ and X ′′ are snc models of X such that X ′′ dominates X ′,
then limit on ΓX ′ is just the pushforward under the retraction map ΓX ′′ → ΓX ′ .
This proves that the limit of νt on Xhyb exists.

The statement about the support follows from the fact that the limit of νt
on (X ′)hybCC does contain any of the edges collapsed under the map ΔCC(X ′) →
ΔCC(X hyb).

4. The sheaf ω⊗m
X0

(B|X0
). Throughout this section, let m ≥ 2 denote a positive

integer. We sometimes look at the case ofm = 1 in some remarks, in which case, it will
be explicitly mentioned when m = 1 is allowed. Let (X,B) satisfy the assumptions
listed in Section 2.1. Let X denote the minimal snc model of (X, 1

mB). Recall that
X0 is reduced and that X0 and B do not intersect at nodal points in X0. In this
section, we give a description of the global sections of ω⊗m

X0
(B|X0).

4.1. Local description. To get a local description of sections of ω⊗m
X0

(B|X0),
we just need to tensor the short exact sequence (2.2) for X ′

0 = X0 and k = m with
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OX0
(B|X0

) to get

0 → ω⊗m
X0

(B|X0) →
⊕
i

OEi(mKEi +mP
(i)
1 + · · ·+mP (i)

ri +B|Ei)

→
⊕

P∈X0 node

C(P ) → 0, (4.1)

where the first map is given by the restrictions and the second map is given by taking
the sum/difference of residues (See Section 2.5 for details).

4.2. Dimension of global sections. To understand the convergence of the
Narasimhan–Simha measure, we would like to use Grauert’s Lemma [Har77, Corollary
III.12.9] to be able to conclude that there exists an open neighborhood U ⊂ X of
X0 such that we can find θ1, . . . , θM ∈ H0(U, ω⊗m

X (B)) such that θi|Xt is a basis of
H0(Xt, ω

⊗m
Xt

(B|Xt)) for |t|� 1 and θi|X0 is a basis for H0(X0, ω
⊗m
X0

(B|X0)). To do
this, it is enough to show that h0(X0, ω

⊗m
X0

(B|X0
)) = h0(Xt, ω

⊗m
Xt

(B|Xt
)) = (2m −

1)(g − 1) + deg(B|Xt).

Remark 4.2.1. The reason for working with the minimal snc model of (X, 1
mB)

is precisely because h0(X0, ω
⊗m
X0

(B|X0)) = h0(Xt, ω
⊗m
Xt

(B|Xt)) is satisfied for the min-
imal snc model X , while it is not necessarily satisfied by a general snc model. The
minimality assumption plays a role in the proof of Lemma 4.2.3, where it helps us
control the H0(Ei, (1−m)(KEi

+ P
(i)
1 + · · ·+ P

(i)
ri )−B|Ei

) term that shows up.

Lemma 4.2.2.

h0(X0, ω
⊗m
X0

(B|X0)) = (2m− 1)(g − 1) + deg(B|X0).

Proof. Using the short exact sequence (4.1), we get

χ(ω⊗m
X0

(B|X0
)) =

(∑
i

χ(OEi
(mKEi

+mP
(i)
1 + · · ·+mP (i)

ri +B|Ei
)

)
−#E(ΓX ),

where χ(F) = h0(F)− h1(F) is the Euler characteristic of a sheaf F . By Riemann–
Roch, the right hand side is(∑

i

χ(OEi(mKEi +mP
(i)
1 + · · ·+mP (i)

ri +B|Ei)

)
−#E(ΓX )

=

(∑
i

((2g(Ei)− 2 + ri)m+ deg(B|Ei
)− g(Ei) + 1)

)
−#E(Γ)

= (2m− 1)

(∑
i

g(Ei)

)
+ (−2m+ 1)#V (Γ) + (2m− 1)#E(Γ) + deg(B|X0

)

= (2m− 1)

(∑
i

g(Ei) + g(ΓX )− 1

)
+ deg(B|X0)

= (2m− 1)(g − 1) + deg(B|X0).

Therefore the result follows if we can show that h1(ω⊗m
X0

(B|X0)) = 0. This is proved
in the following lemma.
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Lemma 4.2.3. Let X be the minimal snc model of (X, 1
mB). Then,

h1(X0, ω
⊗m
X0

(B|X0
)) = 0.

Proof. Using Serre duality, we have h1(ω⊗m
X0

(B|X0)) = h0(ω⊗1−m
X0

(−B|X0)) and
it is enough to show that h0(X0, ω

⊗1−m
X0

(−B|X0
)) = 0.

Consider the short exact sequence obtained by tensoring (2.2) for X ′
0 = X0 and

k = 1−m with OX0(−B|X0).

0 → ω
⊗(1−m)
X0

(−B|X0
) →

⊕
i

OEi
((1−m)(KEi

+ P
(i)
1 + · · ·+ P (i)

ri )−B|Ei
)

→
⊕

P∈X0 node

C(P ) → 0,

By considering the long exact sequence induced in cohomology, we get

0 → H0(ω⊗1−m
X0

(−B|X0)) →
⊕
i

H0(Ei, (1−m)(KEi +P
(i)
1 + · · ·+P (i)

ri )−B|Ei) →⊕
P⊂X0 node

C(P ).

Since m ≥ 2, H0(Ei, (1 −m)(KEi
+ P

(i)
1 + · · · + P

(i)
ri ) − B|Ei

) = 0 in any one of the
following cases.

• g(Ei) ≥ 2,
• g(Ei) = 1 and val(Ei) ≥ 1
• g(Ei) = 1 and deg(B|Ei) ≥ 1
• g(Ei) = 0 and val(Ei) ≥ 3
• g(Ei) = 0, val(Ei) = 2 and deg(B|Ei

) ≥ 1,
• g(Ei) = 0, val(Ei) = 1 and deg(B|Ei

) ≥ m, or
• g(Ei) = 0, val(Ei) = 0 and deg(B|Ei

) ≥ 2m− 1.
Comparing this with all the constraints on the irreducible components of X0

mentioned in Section 2.1, we see that the only contribution in the middle term comes
from the inessential components i.e. the components for which g(Ei) = deg(B|Ei) = 0
and val(Ei) = 2. Note that here we crucially use that X is the minimal snc model of
(X, 1

mB). In this case,

h0(Ei, (1−m)(KEi
+ P

(i)
1 + P

(i)
2 )) = h0(P1,OP1) = 1,

and any section of H0(Ei, (1−m)(KEi
+ P

(i)
1 + P

(i)
2 ) is determined by its residue at

P
(i)
1 .

Note that not all irreducible components Ei ⊂ X0 are inessential. Indeed, this
would mean that X0 is a cycle of rational curves with no marked points, which means
that g = 1 and deg(B|Xt

) = 0, contradicting our assumption that (X,B) is not a
family of genus 1 curves with no marked points.

So, without loss of generality, let E1 ⊂ X0 be an essential component. Suppose
E2 is an inessential component of X0 such that P = E1 ∩ E2 is a nodal point in
X0. Let ψ ∈ H0(ω⊗1−m

X0
(−B|X0

)). Then, ψ|E1
must be zero. So by compatibility

of residues, the residue of ψ|E2 at P must be 0. Thus, ψ|E2= 0. More generally, for
any inessential component Ei of X0, we pick a path joining vE1 and vEi in ΓX and
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apply induction along this path to conclude that ψ|Ei
= 0. This can be done as ΓX

is connected. Thus, H0(ω⊗1−m
X0

(−B|X0)) = 0.

Applying Grauert’s Lemma [Har77, Corollary III.12.9] to L = ω⊗m
X (B), we con-

clude

Lemma 4.2.4. There exists an open neighborhood U ⊂ X of X0 such that we
can find θ1, . . . , θM ∈ H0(U, ω⊗m

X (B)) such that θi|Xt
is a basis of H0(Xt, ω

⊗m
Xt

(B))

for |t|� 1 and θi|X0 is a basis for H0(X0, ω
⊗m
X0

(B)).

4.3. A description of global sections. The following lemma tells us that we
can recover the residues of any section ψ ∈ H0(X0, ω

⊗m
X0

(B|X0
)) along an inessential

chain by just knowing it on one of the edges in the inessential chain.

Lemma 4.3.1. Let v0, . . . , vN be an inessential chain in ΓX . Let Qi for 0 ≤ i ≤
N − 1 be the nodal point in X0 corresponding to the edge vivi+1 in the inessential
chain.

Let θ ∈ H0(X0, ω
⊗m
X0

(B)). Let C denote the residue of θ at Q0 along Ev0 . Then
the residue of θ at Qi along Evi is C and the residue at Qi along Evi+1

is (−1)mC
for all 0 ≤ i ≤ N − 1.

Proof. If the residue of θ at Q0 along Ev0 is C, then its residue at Q0 along Ev1

must be (−1)mC by the compatibility of the residues. Note that

θ|Ev1
∈ H0(Ev1 ,mKEv1

+mQ0 +mQ1).

We also have that H0(Ev1 ,mKEv1
+ mQ0 + mQ1) � H0(P1,OP1) is a one-

dimensional complex vector space and the map

H0(Ev1 ,mKEv1
+mQ0 +mQ1) → C

given by taking the residue at Q1 is an isomorphism. The residue of θ at Q0 and Q1

differ by a factor of (−1)m. Thus, the residue of θ at Q1 is C. Now the proof follows
by induction.

Lemma 4.3.2. Let X be the minimal snc model of (X, 1
mB). We have the

following short exact sequence of vector spaces.

0 →
⊕
i

H0(mKEi
+ (m− 1)P

(i)
1 + · · ·+ (m− 1)P (i)

ri +B|Ei
)

φ−→

H0(ω⊗m
X0

(B|X0))
φ′
−→ CE(Γ̃) → 0.

Proof. We first describe the maps. The map φ exists because all the residues of
sections in H0(mKEi

+ (m− 1)P
(i)
1 + · · ·+ (m− 1)P

(i)
ri +B|Ei

) are zero and there is
no compatibility of residues that needs to be checked. It is clearly injective since any
element of H0(ω⊗m

X0
(B|X0

)) can be recovered from the restrictions to all irreducible
components of X0.

The second map φ′ is defined as follows. Assign an arbitrary orientation to edges
in Γ̃. Pick an edge e ∈ E(Γ̃), let v0, . . . , vN be the maximal inessential chain associated
to the edge e, where v0 is the initial vertex. Then φ′ sends an element ψ ∈ H0(ω⊗n

X0,red
)

to the residue of ψ|Ev0
at the point corresponding to the edge v0v1.
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It is clear that the composition φ′ ◦ φ is 0 and the exactness at the middle place
follows from Lemma 4.3.1. It remains to show that φ′ is surjective, which will follow
if we show that all the vector spaces in the above short exact sequence have the right
dimensions.

Consider the following long exact sequence induced by the short exact sequence
(2.3) tensored with OX0

(B), where we get the last map is surjective by Lemma 4.2.3.

0 →
⊕
i

H0(mKEi
+ (m− 1)P

(i)
1 + · · ·+ (m− 1)P (i)

ri +B|Ei
)

φ−→

H0(ω⊗m
X0

(B|X0)) → CE(ΓX ) →⊕
i

H1(mKEi
+ (m− 1)P

(i)
1 + · · ·+ (m− 1)P (i)

ri +B|Ei
) → 0. (4.2)

By Serre duality,

h1(mKEi + (m− 1)P
(i)
1 + · · ·+ (m− 1)P (i)

ri +B|Ei)

= h0((1−m)KEi
+ (1−m)P

(i)
1 + · · ·+ (1−m)P (i)

ri −B|Ei
).

Following the discussion in the proof of Lemma 4.2.3, the above is 0 unless Ei is
inessential, in which case it is 1. Thus, the dimension of the last term in the above
long exact sequence is equal to the number of inessential vertices in ΓX . Using

#E(Γ̃) = #E(ΓX )−#{v ∈ V (ΓX ) | v is inessential},
it follows that all the vectors spaces in the short exact sequence in the lemma have
the required dimensions.

Remark 4.3.3. In the case when B = 0, the analog of the above lemma for the
case m = 1 is [Shi20A, Equation (4.2)], which states that we have the following short
exact sequence

0 →
⊕
i

H0(Ei,KEi
) → H0(X0, ωX0

) → Ω(ΓX ) → 0.

Here Ω(ΓX ) is the collection complex-valued functions on E(ΓX ) which satisfies
a balancing condition at all vertices. The reason for the difference in the two cases
is that the global sections of ωX0

must satisfy the residue theorem at all irreducible
components while global sections of ω⊗m

X0
, for some m ≥ 2, only need to satisfy the

residue theorem at irreducible components with genus zero and valency 2.

4.4. The essential skeleton. We show that the dual graph ΓX of X , the
minimal snc model of (X, 1

mB) is precisely the essential skeleton of the pair (X, 1
mB).

We first recall what the essential skeleton is.
Given a pair (Y,D) where Y is a smooth variety over a C((t)) and D is a Q-

divisor on Y , we can obtain a subset of the Y an defined by the minimality locus
of certain weight functions [MN15] [BM19]. If all the coefficients of the irreducible
components appearing in D are all strictly less than 1, then the essential skeleton of
(Y,D) is contained in the dual complex of any snc model of (Y,Dred). Therefore, to
compute the essential skeleton of (Y,D), it is enough to work with any one snc model
of (Y,Dred). We describe the weight function in our context in the proof of Lemma
4.4.1. In the case of B = 0, the lemma follows from [BN16, Theorem 3.3.13].
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Lemma 4.4.1. Let X be the minimal snc model of (X, 1
mB). Then, ΓX is

precisely the essential skeleton of the pair (XC((t)),
1
mBC((t))).

Proof. Note that X is not an snc model of (X,Bred). Therefore, we work with
the minimal semistable model of (X,Bred), which we denote as X ′. Recall that X
is obtained from X ′ is obtained by repeatedly blowing down those (−1) curves E in
the central fiber such that deg(B|E) < m. Let p : X ′ → X denote this map.

Let θ ∈ H0(ω⊗km
X/D∗(kB)). Then, we can think of θ as also being a rational section

of ω⊗km
X ′/D(kX ′

0 +kB1+ · · ·+kBr). Let div(θ) denote the associated divisor associated
to θ on X ′, when viewed as a rational section of ω⊗km

X ′/D(kX ′
0 +kB1+ · · ·+kBr). We

define a function wtθ : ΓX ′ → R as

wtθ(x) = νx(div(θ)),

where νx is the valuation associated to the point x ∈ ΓX ′ ⊂ Xan
C((t)). Here νx(div(θ))

denotes the valuation νx applied to the equation defining div(θ) at the center of the
valuation νx.

For example, If x ∈ ΓX ′ is a vertex associated to an irreducible component
E ⊂ X ′

0 , then wtθ(x) is the multiplicity of E in div(θ) i.e. the order of vanishing of
θ along E.

Recall that Sk(XC((t)),
1
mBC((t)), θ) ⊂ ΓX ′ is the minimalily locus of wtθ i.e.

Sk(XC((t)),
1

m
BC((t)), θ) = {x ∈ ΓX ′ |wtθ(x) = min

y∈ΓX ′
wtθ(y)}.

The essential skeleton is given by Sk(X, 1
mB) = ∪θSk(X, 1

mB, θ), where θ runs over
all non-zero elements H0(X,ω⊗km

X/D∗(kB)) for all k ≥ 1.
Let θ1, . . . , θM be the elements of H0(X , ω⊗km

X /D(kB)) obtained from Lemma 4.2.4.
It is enough to consider those θ that lie in the linear span of θ1|X , . . . , θM |X as any
section of H0(X,ω⊗km

X/D∗(kB)) would differ from an element in the linear span by a
factor of a non-zero element in C((t)) (in which case, the weight function would differ
by a constant). In this case, the minimum value of wtθ is 0. Let S denote the set of
non-zero elements in the linear span of θ1, . . . , θM for all choices of k.

If e is an edge in ΓX ′ , then wtθ|e= 0 iff p∗(θ) has a pole of order km along the
node associated to P . If v is a vertex in ΓX ′ , then wtθ(v) = 0 iff p∗(θ) does not
vanish along the irreducible component associated to v.

Thus, it follows from Lemma 4.3.2 given an edge eP ∈ E(ΓX ), there exists a θ
such that θ has a pole of order m along P . Similarly, given a vertex vE ∈ V (ΓX )
there exists a θ such that θ does not vanish along E. Thus, ΓX is contained in the
essential skeleton.

To show that ΓX contains the essential skeleton, recall that X is obtained from
X ′ is obtained by repeatedly blowing down those (−1) curves E in the central fiber
such that deg(B|E) < m.

Consider a (−1)-curve E ⊂ X ′
0 . Then, there is only one nodal point of X ′

0 that
is contained in E. Let P denote this nodal point of X ′

0 contained in E.
Since X ′

0 is a principal divisor, we have that ωX ′
0
� ωX ′

0
(X ′

0 ). By the adjunction
formula, we also have that have that

ωX ′
0
|E� ωX ′

0
(X ′

0 )|E� ωX0(E)|E⊗OE((X ′
0 \ E) ∩ E) � ωE ⊗OE(P )
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Therefore,

ω⊗km
X ′

0
(kB)|E � ω⊗km

E (kmP + kB|E)
� OP1(−km+ k deg(B|E)).

Since deg(B|E) < m, OP1(−km + k deg(B|E)) has no global sections. Thus,
θ|E= 0 and θ|X ′

0
does not have a pole of order m at P for all θ ∈ S. Thus, eP and

vE do not lie in the essential skeleton.
More generally, given an edge eP not lying the essential skeleton, we can factor

X ′ q′−→ X ′′ q′′−→ X such that p = q′′ ◦ q′ and q′, q′′ are a series of blow downs such
that P = E ∩E1 in X ′′, where E is a (−1)-curve in X ′′ with deg(B|E) < m in X ′′.
Repeating the previous argument, we get that (q′′)∗θ, and thus p∗θ, vanish on E and
do not have a pole of order m along P . Thus, eP and vE do not lie in the essential
skeleton.

5. Convergence of the Narasimhan Simha measure. We study the con-
vergence of the Narasimhan–Simha measure in this section.

5.1. Setup and notation. Let X → D∗ be a holomorphic family of genus g
curves. Let B = b1B1 + · · · + brBr be a horizontal divisor in X. Let m ≥ 2 be an
integer such that bi < m for all i = 1, . . . , r.

Let X be the minimal snc model of (X, 1
mB). LetM = (2m−1)(g−1)+deg(B|Xt

)

and let s = #E(Γ̃). Let τt denote the Narasimhan–Simha volume form on Xt with
respect to the line bundle Ω⊗m

Xt
(B|Xt

) and let μt denote the pluri-Bergman measure
on Xt with respect to the line bundle Ω⊗m

Xt
(B|Xt

).
Enumerate the edges of E(Γ̃) as e1, . . . , es. Since all edges of ΓX have length 1,

if ei ∈ E(Γ̃) corresponds to the maximal inessential chain v0, v1, . . . , vN in ΓX , then
lei = N . (See Section 2.2 for details.)

Using Lemma 4.3.2, we can pick a basis ψ1, . . . , ψM of H0(X0, ω
⊗m
X0

(B|X0
)) such

that ψ1, . . . , ψs map to the standard basis of CE(Γ̃) = Cs and ψs+1, . . . , ψM give rise to
an orthonormal basis of

⊕m
i=1 H

0(Ei,mKEi
+(m− 1)P

(i)
1 + · · ·+(m− 1)P

(i)
ri +B|Ei)

with respect to the Hermitian pairing (2.1) on each summand. In particular, for
1 ≤ i ≤ s, ψi has residues of ±1 at those nodal points of X0 that lie on the maximal
inessential chain associated to ei and has zero residues at all other points. For s+1 ≤
i ≤ M , ψi has zero residues at all the nodal points of X0.

We say that E1 is a Type I component if h0(Ei,mKEi
+(m− 1)P

(i)
1 + · · ·+(m−

1)P
(i)
ri + B|Ei) > 0, otherwise it is called a Type II component. It is easy to check

that there are only the following possible choices for a Type II component E.
• m = 2, g(E) = 0, val(E) = 3 and deg(B|E) = 0
• g(E) = 0, val(E) = 2 and deg(B|E) = 1.
• E is inessential i.e. g(E) = 0, val(E) = 2 and deg(B|E) = 0.
• g(E) = 0, val(E) = 1 and deg(B|E) = m

The Type II components will precisely be the curves in ΔCC(X ) on which the
limiting measure τ0 and μ0 place no mass.

Let τ̃0 denote the Narasimhan–Simha volume form on X̃0 with respect to⊕m
i=1 H

0(Ei,mKEi
+ (m − 1)P

(i)
1 + · · · + (m − 1)P

(i)
ri + B|Ei

) i.e. if Ei is a Type I
component, then τ̃0|Ei

is the Narasimhan–Simha volume form on Ei with respect to
mKEi

+ (m− 1)P
(i)
1 + · · ·+ (m− 1)P

(i)
ri +B|Ei

. If Ei is a Type II component, then
h0(Ei,mKEi + (m− 1)P

(i)
1 + · · ·+ (m− 1)P

(i)
ri +B|Ei) = 0 and we just set τ̃0|Ei= 0.
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Note that if E is of Type II, then ψs+1|E , . . . , ψM |E= 0 as ψs+1, . . . , ψM form a
basis of

⊕m
i=1 H

0(Ei,mKEi+(m−1)P
(i)
1 +· · ·+(m−1)P

(i)
ri +B|Ei) and h0(E,mKE+

(m− 1)P1 + · · ·+ (m− 1)Pri + B|E) = 0. Similarly, if E is of Type I, ψs+1, . . . , ψM

do not simultaneously vanish at any point of E.
The following Theorem is a more precise version of Theorem C for the minimal

snc model, X , of (X, 1
mB).

Theorem 5.1.1. Let τ0 denote the measure on ΔCC(X ) given by τ̃0 on curves
and by taking the Lebesgue measure on an edge e ∈ E(ΓX ) of length 1

le
, where le is

the length of the maximal inessential chain in ΓX containing the edge e.
The measures τt converge to the measure τ0 when viewed as measures on X hyb

CC .

Proof. Theorem 5.1.1 follows directly from Lemma 3.3.1 and Corollaries 5.3.3 –
5.3.6.

Using Lemma 4.2.4, we pick θ1, . . . , θM ∈ H0(U, ω⊗m
X (B)) for a neighborhood

U ⊂ X of X0 such that θ1|Xt , . . . , θM |Xt form a basis of H0(Xt, ω
⊗m
Xt

(B|Xt)) and
θ1|X0

, . . . , θM |X0
form a basis of H0(X0, ω

⊗m
X0

(B|X0
)).

After applying a C-linear transformation to θ1, . . . , θM , we may assume that
θj |X0= ψi for 1 ≤ i ≤ M . Denote θj,t = θj |Xt .

Let (U1, t, w) be a coordinate chart in X adapted to an irreducible component
E ⊂ X0. Recall that the coordinates in U1 are t, w with |t|, |w|< 1 and the projection
U1 → D is given by (t, w) �→ t. We may shrink U1 to suppose that either U1∩E∩B = ∅
or U1 ∩ E ∩B = {(0, 0)} and that θj ’s admit a power series expansion:

θj(t, w) =
∑

α,β≥0

c
(j)
α,βt

αwβ

φj(t, w)
(dw ∧ dt)⊗m,

where φj(t, w) = 0 is a local equation of B in U . Then,

θj,t(w) =
∑

α,β≥0

c
(j)
α,βt

αwβ

φj(t, w)
dw⊗m

and

ψj(w) =
∑
β≥0

c
(j)
0,βw

β

φj(0, w)
dw⊗m.

Note that since U ∩ E ∩ B = ∅ or U ∩ E ∩ B = {(0, 0)}, we may pick φj so that
φj(0, w) = wk for some integer 0 ≤ k < m. Thus, we get that

θj,t(w) = ψj(w) +O(|w|1−m|t|) (5.1)

as t → 0 for fixed w ∈ D and for all 1 ≤ j ≤ M . Moreover, |θj,t(w)|2/m are
bounded by an integrable function (for example, C

|w|2k/m ) for t small enough and we
are in the setting to apply the dominated convergence theorem. Throughout this
paper, most pointwise convergences that show up will be in the setting to apply
the dominated convergence theorem and in most cases, we do not mention explicitly
mention a dominating integrable function as it would be easy to find one.

Now let (U2, z, w) be a coordinate chart in X adapted to a node P = E1∩E2 ∈ X0

such that U2∩B = ∅. Recall that the coordinates in U2 are z, w such that |z|, |w|< 1,
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E1 = {z = 0}, E2 = {w = 0}, and the projection U2 → D is given by (z, w) �→ zw.
We may shrink U2 to suppose that θj ’s admit a power series expansion.

θj(t, w) =
∑

α,β≥0

c
(j)
α,βz

αwβ(dw ∧ dz)⊗m.

Then, for |t|< |w|< 1,

θj,t(w) =
∑

α,β≥0

c
(j)
α,βt

αwβ−α−mdw⊗m. (5.2)

We also have that

ψj(w) =
∑
α≥0

c
(i)
0,βw

β−mdw⊗m.

on U2 ∩ E1, where we think of w as a coordinate on E1 ∩ U2. Thus, we see that c(j)0,0

is the residue of ψj at P . Thus, c(j)0,0 is ±1 if ψj has a pole of order m at P , otherwise
it is 0.

Consider the regions

R1 =

{
(z, w) ∈ U2

∣∣∣ |t|1/2< |w|< 1

(log|t|−1)m

}
R2 =

{
(z, w) ∈ U2

∣∣∣ 1

(log|t|−1)m
< |w|< 1

}
.

Let us figure out the dominating terms of θj,t in each of these regions. Without
loss of generality, suppose that ψ1 develops a pole of order m at P with residue 1.
Then, ψ2, . . . , ψM can have poles of order at worst m− 1 at P . From equation, (5.2),
we get that

θ1,t(w) = w−m

⎛⎝1 +
∑

(α,β) �=(0,0)

c
(j)
α,βw

β−αtα

⎞⎠ dw⊗m.

After shrinking U2 and rescaling z, w, t, we may assume that
∑

α,β |cα,β |< ∞. In the
region R1, we have that |t|1/2< |w|< 1

(log|t|−1)m . Thus,

|wβ−αtα| ≤ |t| β−α
2 |t|α= |t| β+α

2 if α ≥ β

|wβ−αtα| ≤
(

1

log|t|−1

)m(β−α)

|t|α if β ≥ α,

and we get that ∣∣∣∣∣∣
∑

α,β �=(0,0)

cα,βw
β−αtα

∣∣∣∣∣∣ = O

(
1

(log|t|−1)m

)

and

θ1,t ≈ w−mdw⊗m in R1. (5.3)
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Similarly, for 2 ≤ j ≤ M , we get that

θj,t ≈ c
(j)
0,m−mj

w−mjdw⊗m in R1, (5.4)

where mj < m is order of the pole of ψj at P .
In the region R2, we can write θj,t = ψj +

∑
α≥1,β c

(j)
α,βw

β−α−mtα and we see that

θj,t(w) → ψj(w) (5.5)

as t → 0 for a fixed w ∈ D∗ for all 1 ≤ j ≤ M .

5.2. Asymptotics of ‖θj,t‖′Xt
. Recall from Section 2.3 that for a Riemann sur-

face Y and a meromorphic m-canonical form ϑ on Y , we denote

‖ϑ‖′Y :=
(∫

Y

|ϑ|2/m
)m/2

.

Note that the above also makes sense if Y is a disconnected Riemann surface. One
of the key things in the definition of τt is the condition that ‖·‖′Xt

= 1. Therefore to
understand the asymptotics of τt, we first need to understand ‖·‖′Xt

. We begin by
looking at ‖θj,t‖′Xt

.

Lemma 5.2.1. For 1 ≤ j ≤ s,

‖θj,t‖′Xt
≈ (2πlej log|t|−1)m/2

and for s+ 1 ≤ j ≤ M ,

‖θj,t‖′Xt
→ ‖ψj‖′X̃0

as t → 0.

Proof. By using a partition of unity argument, we may reduce the problem to
finding the asymptotics on adapted coordinate chats.

If (U1, t, w) is a coordinate chart adapted to an irreducible component E ⊂ X0,
then using Equation (5.5), we get that θj,t → ψj as t → 0. Using the dominated
convergence theorem, we get that∫

Xt∩U1

|θj,t|2/m→
∫
E∩U1

|ψj |2/m

for all 1 ≤ j ≤ M .
If U2 is a coordinate chart adapted to a node P = E1∩E2. First consider the case

when 1 ≤ j ≤ s, then it follows from Equation (5.2) that on the set {|t|1/2< |w|< 1},

θj,t =

(
Cj

wm
+O(|w|1−m)

)
dw⊗m,

where the O(|w|1−m) is with respect to w as w → 0 and is uniform in t, and Cj = ±1
if ψj has a pole of order m at P , otherwise Cj = 0.

Thus in the region {|t|1/2< |w|< 1},

|θj,t|2/m=

(
|Cj |
|w|2 +O

(
1

|w| 2(m−1)
m

))
|dw ∧ dw|.
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Thus, we get that
∫
|t|1/2<|w|<1

|θj,t|2/m= |Cj |π log |t|−1+O(1) as t → 0.
Similarly, we get that

∫
|t|1/2<|z|<1

|θj,t|2/m= |Cj |π log |t|−1+O(1) and thus∫
U2∩Xt

|θj,t|2/m= 2|Cj |π log|t|−1+O(1).

Since, ψj has a pole of order m at lej many points, we get that∫
Xt

|θj,t|2/m= 2πlej log|t|−1+O(1),

and thus we get the required estimate for 1 ≤ j ≤ s.
In the case when s+ 1 ≤ j ≤ M , then on the set {|t|1/2< |w|< 1}, we have that

|θj,t|2/m→ |ψj |2/m as t → 0. Furthermore, we have using Equation (5.2) that

θj,t(w)− ψj(w) =
∑

α≥1,β≥0

c
(j)
α,βt

αwβ−α−mdw⊗m.

On the region {|t|1/2< |w|< 1}, we get |tαwβ−α−m|< |w|β+α−m and we get that
the right hand side in above equation is uniformly bounded by C|w|1−mdw⊗m. Since
|ψj(w)|2/m and |w|2(1−m)/m are integrable on D for s+1 ≤ j ≤ M , by the dominated
convergence theorem, we get that∫

|t|1/2<|w|<1

|θj,t|2/m→
∫
U2∩E1

|ψj |2/m,

and we get ∫
Xt

|θj,t|2/m→
∫

X̃0

|ψj |2/m.

To understand the asymptotics of ‖·‖′Xt
, let us denote

θ̃i,t :=
θi,t

(2πlei log|t|−1)m/2
for 1 ≤ i ≤ s,

θ̃i,t :=
θi,t

‖ψi‖′
X̃0

and ψ̃i :=
ψi

‖ψi‖′
X̃0

for s+ 1 ≤ i ≤ M.

The previous lemma tells us that ‖θ̃i,t‖′Xt
→ 1 as t → 0. Moreover, the following

lemma tells us that θ̃i,t are a ‘nice’ basis of CM with respect to ‖·‖′Xt
as t → 0.

Lemma 5.2.2. Let c1, . . . , cM ∈ C. Then,

‖c1θ̃1,t + . . . cM θ̃M,t‖′Xt
≈

(
s∑

i=1

|ci|2/m+(‖cs+1ψ̃s+1 + . . . cM ψ̃M‖′
X̃0

)2/m

)m/2

as t → 0.



660 S. SHIVAPRASAD

Proof. We use a partition of unity argument to reduce the problem to adapted
coordinate charts. If (U1, w) is an coordinate chart adapted to an irreducible compo-
nent of X0, then for 1 ≤ j ≤ s,

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m(w) → |cs+1ψ̃s+1 + · · ·+ cM ψ̃M |2/m(w) (5.6)

pointwise for a fixed w. Moreover, there exists an integrable function on D which
dominates |c1θ̃1,t+ · · ·+ cM θ̃M,t|2/m for all t small enough. To see this, just note that
there exists a constant C such that

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m≤ Cmax
j,k

|θ̃j,t ∧ θ̃k,t|1/m

and each of the |θ̃j,t ∧ θ̃k,t|1/m are themselves bounded by an integrable function on
D. Thus, by the dominated convergence theorem, we get that∫

U1∩Xt

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m(w) →
∫
U1∩E

|cs+1ψ̃s+1 + · · ·+ cM ψ̃M |2/m(w). (5.7)

Now consider a coordinate chart (U2, z, w) adapted to a node P = E1 ∩ E2.
Without loss of generality, suppose that ψ1 develops a pole of orderm at P . To analyze
the integral

∫
|t|1/2<|w|<1

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m, we break up {|t|1/2< |w|< 1} into
two regions:

R1 =

{
|t|1/2< |w|< 1

(log|t|−1)m

}
and

R2 =

{
1

(log|t|−1)m
< |w|< 1

}
.

On the region R1, using Equations (5.3) and (5.4),∣∣∣∣∣ θ̃j,tθ̃1,t

∣∣∣∣∣ ≤ C(log|t|−1)m/2|w|= O

(
1

(log|t|−1)m/2

)
,

for 2 ≤ j ≤ M , where the second equality follows from the fact that |w|< 1
log(|t|−1)m

in this region.
Thus, in this region,

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m≈ |c1|2/m|θ̃1,t|2/m≈ |c1|2/mdw ∧ dw

2πle1 |w|2log|t|−1
, (5.8)

where the second equality follows from Equation (5.3).
It is easy to verify that∫

|t|1/2<|w|<1

dw ∧ dw

2πle1 |w|2log|t|−1
→ 1

2le1
.

Thus, we get that ∫
R1∩Xt

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m→ |c1|2/m
2le1

(5.9)
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as t → 0.
To analyze

∫
R2∩Xt

|c1θ̃1,t + · · · + cM θ̃M,t|2/m, note that |c1θ̃1,t + · · · +

cM θ̃M,t|2/m(w) → |cs+1ψ̃s+1 + · · · + cM ψ̃M |2/m(w) as t → 0 for a fixed w ∈ D∗

and thus,∫
R2∩U

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m→
∫
E1∩U

|cs+1ψ̃s+1 + · · ·+ cM ψ̃M |2/m (5.10)

as t → 0.
Combining Equations (5.7), (5.9), and (5.10), we get that

∫
Xt

|c1θ̃1,t + · · · + cM θ̃M,t|2/m→
s∑

i=1

|ci|2/m+

∫
X̃0

|cs+1ψ̃s+1 + · · · + cM ψ̃M |2/m

as t → 0 and the result follows.

5.3. Asymptotics of τt.

Corollary 5.3.1. Let (U1, t, w) be a coordinate chart adapted to a an irreducible
component E ⊂ X0. Then

τt → τ̃0

as t → 0. Let (U2, z, w) be a coordinate chart adapted to a node P = E1 ∩E2. Then,
in the region {|t|1/2< |w|< 1

(log|t|−1)m },

τt ≈ |dw ∧ dw|
2πleP |w|2log|t|−1

,

where l is the length of the edge in Γ̃ containing eP and in the region { 1
(log|t|−1)m <

|w|< 1},
τt → τ̃0.

Proof. It follows from Lemma 5.2.2 that

τt ≈ max
|c1|2/m+···+|cs|2/m+‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|c1θ̃1,t + · · · + cM θ̃M,t|2/m. (5.11)

Consider the coordinate chart (U1, t, w) adapted to E ⊂ X0. It follows from Equation
(5.6) that for a fixed w ∈ D∗,

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m(w) → |cs+1ψ̃s+1 + · · ·+ cM ψ̃M |2/m(w).

Therefore to maximize, |c1θ̃1,t+· · ·+cM θ̃M,t|2/m(w), we need to pick c1 = · · · = cs = 0
and we get

τt(w) ≈ max
‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|cs+1ψ̃s+1 + · · ·+ cM ψ̃M |2/m(w) = τ̃0(w).

Thus, τt(w) → τ̃0(w) pointwise for w ∈ D∗.
Similarly, the other assertion follows from Equations (5.8).
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Corollary 5.3.2. There exists a constant C such that for |t| small enough such
that

C−1 max
j,k

{ |θj,t ∧ θk,t|1/m
(log|t|−1)ηj+ηk

}
≤ τt ≤ Cmax

j,k

{ |θj,t ∧ θk,t|1/m
(log|t|−1)ηj+ηk

}
where ηj =

1
2 if 1 ≤ j ≤ s and ηj = 0 if s+ 1 ≤ j ≤ M .

Proof. It is enough to show that there a constant C such that for |t| small enough

C−1 max
j,k

{
|θ̃j,t ∧ θ̃k,t|1/m

}
≤ τt ≤ Cmax

j,k

{
|θ̃j,t ∧ θ̃k,t|1/m

}
It follows from Lemma 5.2.2 that

τt ≈ max
|c1|2/m+···+|cs|2/m+‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|c1θ̃1,t + · · · + cM θ̃M,t|2/m. (5.12)

Thus,

τt < 2 max
|c1|2/m+···+|cs|2/m+‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m

for t small enough. The constraint

|c1|2/m+ · · ·+ |cs|2/m+‖cs+1ψ̃s+1 + . . . cM ψ̃M‖2/m
X̃0

= 1

ensures that there exist a constant C1 such that |c1|, . . . , |cM |≤ C1. Thus, we get a
constant C2 such that

max
|c1|2/m+···+|cs|2/m+‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|c1˜θ1,t+ · · ·+cM ˜θM,t|2/m≤ C2 max
j,k

|˜θj,t∧˜θk,t|1/m,

which gives us one of the inequalities.
For the other inequality, note that we also have

τt >
1

2
max

|c1|2/m+···+|cs|2/m+‖cs+1ψ̃s+1+...cM ψ̃M‖2/m

X̃0
=1

|c1θ̃1,t + · · ·+ cM θ̃M,t|2/m

for t small enough. Setting cj = 1 and the rest 0, we get that τt ≥ 1
2 |θ̃j,t|2/m for all

1 ≤ j, k ≤ M . Since |θ̃j,t ∧ θ̃k,t|1/m is the geometric mean of |θ̃j,t|2/m and |θ̃k,t|2/m,
we also get that

τt ≥ 1

2
|θ̃j,t ∧ θ̃k,t|1/m

for all 1 ≤ j, k ≤ M which gives us the second inequality.

The following three corollaries along with Lemma 3.3.1 prove Theorem 5.1.1.

Corollary 5.3.3. Let (U1, t, w) be a coordinate chart adapted to an irreducible
component E of X0. Let f be a compactly supported continuous function on U1.
Then,

∫
Xt∩U1

χτt →
∫
E∩U1

χτ̃0.
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Proof. Using Corollary 5.3.1, we have that τt → τ̃0 in U1. Thus, we get that∫
Xt∩U1

fτt →
∫
E∩U1

f τ̃0.

Corollary 5.3.4. Let (U2, z, w) be a coordinate chart adapted to a node P =

E1∩E2 of X0. Suppose that e1 is the edge in Γ̃ that contains eP . Let f be a continuous
function on [0, 1] and let 0 < α < β < 1

2 . Then,∫
|t|β<|w|<|t|α

f

(
log|w|
log|t|

)
τt → 1

le1

∫ β

α

f(u)du

as t → 0.

Proof. Since e1 is the edge in Γ̃ containing eP , ψ1 develops a pole of order m

along P . Then, using Corollary 5.3.1, we have that τt ≈ |dw∧dw|
2π|w|2le1 log|t|−1 . Thus, we

are interested in computing the limit∫
|t|β<|w|<|t|α

f

(
log|w|
log|t|

) |dw ∧ dw|
2π|w|2le1 log|t|−1

.

Using a change of variables u = log|w|
log|t| and ϑ = arg(w), we get that the above limit of

the above expression as t → 0 is 1
le1

∫ β

α
f(u)du.

Remark 5.3.5. It essentially follows from corollary 5.3.4 that any measure ν that
locally looks like ν = dw∧dw̄

|w|2log(t)−1 near a node will converge to the Lebesgue measure on
the associated edge.

Corollary 5.3.6. Let (U2, z, w) be a coordinate chart adapted to a node P =

E1 ∩ E2 of X0. Suppose that e1 is the edge in E(Γ̃) that contains eP . Let f be a
continuous function on [0, 1], let 0 < ε � 1

2 , let f be a compactly supported function
on the half-dumbbell D = {(w, u) ∈ D × [0, ε) | either w = 0 or u = 0} and let
r : D× [0, ε) → D be a deformation retract. Then,∫

|t|ε<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
τt → 1

le1

∫ ε

0

f(u)du+

∫
E1∩U

f(w)τ̃0

as t → 0.

Proof. To analyze the limit of the integral, we break up the region {|t|ε< |w|< 1}
into two parts: {|t|ε< |w|< 1

(log|t|−1)m }, and { 1
(log|t|−1)m < |w|< 1}.

In the region, {|t|ε< |w|< 1
(log|t|−1)m }, note that τt ≈ |dw∧dw|

2π|w|2log|t|−1 and thus the
contribution of the region {|t|ε< |w|< 1

(log|t|−1)m } to the integral is∫
|t|ε<|w|< 1

(log|t|−1)m

f

(
r

(
w,

log|w|
log|t|

)) |dw ∧ dw|
2πle1 |w|2log|t|−1

.

Using the change of variables u = log|w|
log|t|−1 and ϑ = arg(w), we get

1

2le1π

∫ ε

m log(log|t|−1)

log|t|−1

∫ 2π

0

f(r(|t|ueiϑ, u))dϑdu.
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As t → 0, f(r(|t|ueiϑ, u)) → f(r(0, u)) = f(u) pointwise almost everywhere and
thus we get ∫

|t|ε<|w|< 1

(log|t|−1)m

f

(
r

(
w,

log|w|
log|t|

))
τt → 1

le1

∫ ε

0

f(u)du.

In the region { 1
(log|t|−1)m < |w|< 1}, note that τt → τ̃0. Thus, it is enough to

evaluate the limit ∫
1

(log|t|−1)m
<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
τ̃0.

As t → 0, f
(
r
(
w, log|w|

log|t|−1

))
→ f(r(w, 0)) = f(w). Thus, we get∫

1

(log|t|−1)m
<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
τt →

∫
E1∩U

f τ̃0

as t → 0.

6. Convergence of μt. Let the notation be as in the previous section. We prove
the following precise version of Theorem E.

Theorem 6.0.7. Let X be the minimal snc model of (X, 1
mB). Let μ0 denote

the measure on ΔCC(X ) which is given by
• On a Type I component Ei, the pluri-Bergman measure on Ei with respect to

mKEi
+ (m− 1)P

(i)
1 + · · ·+ (m− 1)P

(i)
ri +B|Ei

.
• If Ei is a Type II component, we pick the zero measure
• On each edge e ∈ E(ΓX ), we pick the Lebesgue measure of length 1

le
, where

le is the length of the edge in Γ̃ containing e.
On X hyb

CC , the measures μt → μ0 weakly.

Proof. Theorem 6.0.7 follows from Lemma 3.3.1 and Corollaries 6.1.4 – 6.1.6.

6.1. Asymptotics of 〈θj,t, θk,t〉. Recall from Section 2.1 the Hermitian pairing
used to define the pluri-Bergman measure.

〈θ, ϑ〉 =
(
i

2

)m ∫
θ ∧ ϑ

τm−1
.

We first understand the asymptotics of this pairing.
Let A(t) denote the M ×M matrix with the (j, k)-th coefficient

(A(t))j,k = 〈θj,t, θk,t〉 =
(
i

2

)m ∫
Xt

θj,t ∧ θk,t

τm−1
t

,

Then using elementary linear algebra, we see that

μt =

(
i

2

)m M∑
j,k=1

(A(t))−1
j,k

θj,t ∧ θk,t

τm−1
t

.

We first state a lemma that we will use to estimate the integral
∫
Xt

θj,t∧θk,t

τm−1
t

.
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Lemma 6.1.1. There exists a constant C such that∣∣∣∣θj,t ∧ θk,t

τm−1
t

∣∣∣∣ ≤ C(log|t|−1)(ηj+ηk)(m−1)|θj,t ∧ θk,t|1/m

for all 1 ≤ j ≤ M , where ηj =
1
2 if 1 ≤ j, k ≤ s and ηj = 0 if s+ 1 ≤ j ≤ M .

Proof. From Corollary 5.3.2, we have that there exists a constant C1 > 0 such
that τt ≥ C1

|θj,t∧θk,t|1/m
log|t|ηj+ηk

. The result now follows immediately.

Lemma 6.1.2. The matrix A(t) has the following form.

A =

(
B D∗

D F

)
where B is an s × s matrix with entries Bj,j ≈ (2πlej log|t|−1)m and Bj,k =

O((log|t|−1)m−1) for j �= k, D = O((log|t|−1)
m−1

2 ) and F is a (M − s) × (M − s)
matrix such that F → IM−s as t → 0.

Proof. We use a partition of unity argument to reduce the problem of computing
the integral

∫
Xt

θj,t∧θk,t

τm−1
t

to computing it on adapted coordinate charts. The result
follows by computing the integrals using Equations (5.3)–(5.5), Corollary 5.3.1 and
Lemma 6.1.1. Since the leading term of τ is differs in different region of coordinate
charts adapted to a node, we will have break up such a chart into different regions
while analyzing the integral. We only show how to get the entries of B and F . The
estimates for entries of C are obtained using similar techniques.

To get the asymptotics for F , note that on a coordinate chart (U1, t, w) adapted
to a Type I irreducible component E, we have that τt → τ̃0 and that τ̃0|E is nowhere
vanishing.

Furthermore, there exists an integrable function on D that dominates
∣∣∣ θj,t∧θk,t

τm−1
t

∣∣∣
for all t small enough. One way to see this is by using Lemma 6.1.1; we get∣∣∣ θj,t(w)∧θk,t(w)

τm−1
t (w)

∣∣∣ ≤ C|θj,t(w) ∧ θk,t(w)|1/m≤ C ′|w|−2+1/m. Thus by the dominated
convergence theorem, we have that∫

U1∩Xt

θj,t ∧ θk,t

τm−1
t

→
∫
U1∩E

ψj ∧ ψk

τ̃m−1
0

as t → 0 for all s+ 1 ≤ j, k ≤ M .
If E is of Type II, then using Lemma 6.1.1, we have that

∣∣∣ θj,t∧θk,t

τm−1
t

∣∣∣ ≤ C|θj,t ∧
θk,t|1/m. But since θj,t → ψj = 0 on U1 for all s+ 1 ≤ j ≤ M , we get that∣∣∣∣θj,t ∧ θk,t

τm−1
t

∣∣∣∣ → 0

and ∫
U1∩Xt

θj,t ∧ θk,t

τm−1
t

→ 0

for all s+ 1 ≤ j ≤ M if E is of Type II.
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For a coordinate chart (U2, z, w) adapted to a node P = E1 ∩E2, to estimate the
integral

∫
|t|1/2<|w|<1

θj,t∧θk,t

τn−1
t

, observe that its pointwise limit is ψj∧ψk

τ̃m−1
0

if E1 is of Type
I and is 0 if E1 is of Type II. Since ψs+1, . . . , ψM was chosen to be an orthonormal
basis for the Hermitian pairing (2.1), we get the asymptotics for F .

To analyze the diagonal entries of B, without loss of generality consider B11. The
estimate using Lemma 6.1.1 and Equations (5.4) and (5.5) shows that

∫
U∩Xt

θ1,t∧θ1,t

τm−1
t

=

O((log|t|−1)m−1) if U is either a coordinate chart adapted to an irreducible compo-
nent, or a coordinate chart adapted to a node at which ψ does not develop a pole of
order m.

To get the leading term for B11, consider a coordinate chart (U2, z, w) adapted
to a node P such that ψ1 has a pole of order m at P . Consider the region {|t|1/2<
|w|< 1

(log|t|−1)m }. Using Equation (5.3) and Corollary 5.3.1, we get that

|θ1,t ∧ θ1,t|
τm−1
t

≈ (2πle1 log|t|−1)m−1|dw ∧ dw|
|w|2

in this region. Then,∫
|t|1/2<|w|< 1

(log|t|−1)m

|θ1,t ∧ θ1,t|
τm−1
t

≈
∫
|t|1/2<|w|< 1

(log|t|−1)m

(2πle1 log|t|−1)m−1|dw ∧ dw|
|w|2

= 2π

(
(2πle1 log|t|−1)(m−1)

∫ (log|t|−1)−m

|t|1/2
dr

r

)
≈ π(2πle1)

m−1(log|t|−1)m.

Using Lemma 6.1.1, we get that∫
1

(log|t|−1)m
<|w|<1

|θ1,t ∧ θ1,t|
τm−1
t

≤ C(log|t|−1)m−1

∫
1

(log|t|−1)m
<|w|<1

|θ1,t|2/m.

An easy computation shows that the integral on the right-hand side is of the order of
(log|t|−1)m−1 log(log|t|−1), which is a subdominant term. Thus, we see that∫

|t|1/2<|w|<1

|θ1,t ∧ θ1,t|
τm−1
t

≈ π(2πle1)
m−1(log|t|−1)m

and ∫
U2∩Xt

|θ1,t ∧ θ1,t|
τm−1
t

≈ 2π(2πle1)
m−1(log|t|−1)m.

Since ψ1 has a pole of order m along le1 many nodes, we get that

B11 =

∫
Xt

|θ1,t ∧ θ1,t|
τm−1
t

≈ (2πle1 log|t|−1)m.

To estimate Bj,k for j �= k, using Lemma 6.1.1, we only need to estimate
(log|t|−1)m−1|θj,t ∧ θk,t|1/m. It is easy to verify using Equations (5.3)–(5.5) that
|θj,t ∧ θk,t|1/m= O(1) if 1 ≤ j, k ≤ s and j �= k, which gives us the estimate for B.
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The asymptotics of A(t)−1 now follows by using Gauss-Jordan elimination.

Corollary 6.1.3. The matrix A(t)−1 has the following form.

A−1 =

(
B′ (D′)∗

D′ F ′

)
where B′ is an s× s diagonal matrix with diagonal entries

B′
j,j ≈

1

(2πlej log|t|−1)m
,

Bj,k = O
(

1
(log|t|−1)m+1

)
for j �= k, D′ = O

(
1

(log|t|−1)
m+1

2

)
and F ′ is a (M − s) ×

(M − s) matrix such that F ′ → IM−s as t → 0.

The following corollaries prove Theorem 6.0.7. These are an easy consequence of
Equations (5.3)–(5.5) and Corollaries 5.3.1 and 6.1.3.

Corollary 6.1.4. Let (U1, t, w) be a coordinated chart adapted to an irreducible
component E ⊂ X0. Let f be a compactly supported function on U1. If E is of Type
I, then

M∑
j,k=1

(A(t))−1
j,k

∫
U1∩Xt

f
θj,t ∧ θk,t

τm−1
t

→
M∑

j=s+1

∫
U1∩E

f
ψj ∧ ψj

τ̃m−1
0

and if E is Type II, then

M∑
j,k=1

(A(t))−1
j,k

∫
U1∩Xt

f
θj,t ∧ θk,t

τm−1
t

→ 0

as t → 0.

Corollary 6.1.5. Let (U2, z, w) be a coordinate chart adapted to a node P =
E1 ∩ E2. Let f be a continuous function on [0, 1] and let 0 < α < β < 1

2 . Without
loss of generality, suppose that ψ1 develops a pole of order m at P . Then,

∑
j,k

(A(t))−1
j,k

∫
|t|β<|w|<|t|α

f

(
log|w|
log|t|

)
( i
2 )

mθj,t(w) ∧ θk,t(w)

τm−1
t (w)

→ 1

le1

∫ β

α

f(u)du.

Corollary 6.1.6. Let (U2, z, w) be a coordinate chart adapted to a node P =
E1 ∩ E2. Let 0 < ε � 1

2 . Let f be a continuous compactly-supported function on the
half-dumbbell Dε ⊂ D × [0, ε) and let r : D × [0, ε) → Dε be a deformation retract.
Without loss of generality, suppose that ψ1 develops a pole of order m at P . If E is
of Type I, then,

∑
j,k

(A(t))−1
j,k

∫
|t|ε<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
( i
2 )

mθj,t(w) ∧ θk,t(w)

τm−1
t (w)

→

1

le1

∫ ε

0

f(u)du+

M∑
j=s+1

∫
U2∩E1

f
|ψj ∧ ψj |
τ̃m−1
0

.
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If E is of Type II, then,

∑
j,k

(A(t))−1
j,k

∫
|t|ε<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
( i
2 )

mθj,t(w) ∧ θk,t(w)

τm−1
t (w)

→ 1

le1

∫ ε

0

f(u)du

Proof. We break up the region {|t|ε< |w|< 1} into two regions: {|t|ε< |w|<
1

(log|t|−1)m } and { 1
(log|t|−1)m < |w|< 1}. We analyze the integral separately on each

region.
Let us first analyze the integral on the region { 1

(log|t|−1)m < |w|< 1}. It follows
from the asymptotics of A−1

j,k, θj,t and τt that the pointwise limit of

∑
j,k

(A(t))−1
j,kf

(
r

(
w,

log|w|
log|t|

))
θj,t(w) ∧ θk,t(w)

τm−1
t (w)

is

M∑
j=s+1

f(w)
ψj ∧ ψj

τ̃m−1
0

as t → 0 if E is of Type I, otherwise the limit is 0. Using the dominated convergence
theorem, we get that

∑
j,k

(A(t))−1
j,k

∫
1

(log|t|−1)1/4
<|w|<1

f

(
r

(
w,

log|w|
log|t|

))
θj,t(w) ∧ θk,t(w)

τm−1
t (w)

→

M∑
j=s+1

∫
U2∩E1

f(w)
ψj ∧ ψj

τ̃m−1
0

if E is of Type I, otherwise the limit is 0.
To estimate the integral in the region {|t|ε< |w|< 1

(log|t|−1)m }, note that τt ≈
|w|−2

2πle1 log|t|−1 , θ1,t ≈ w−m and θj,t = O(|w|1−m) for 2 ≤ j ≤ M uniformly in t. Thus,

(A(t))−1
j,k

∫
|t|ε<|w|< 1

(log|t|−1)m

θj,t(w) ∧ θk,t(w)

τm−1
t (w)

→ 0

unless j = k = 1 and

(A(t))−1
1,1

∫
|t|ε<|w|< 1

(log|t|−1)m

f

(
r

(
w,

log|w|
log|t|

)) |θ1,t(w) ∧ θ1,t(w)|
τm−1
t (w)

≈ 1

2πle1 log|t|−1

∫
|t|ε<|w|< 1

(log|t|−1)m

f

(
r

(
w,

log|w|
log|t|

)) |dw ∧ dw|
|w|2 .

Now we use a change of variables u = log|w|
log|t| and ϑ = arg(w) to get

1

2πle1

∫ ε

m log(log|t|−1)

log|t|−1

∫ 2π

0

f(r(|t|ueiϑ, u))dϑdu.
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As t → 0, we have f(r(|t|ueiϑ, u)) → f(r(0, u)) = f(u). Thus, we get

(A(t))−1
1,1

∫
|t|1/2<|w|< 1

(log|t|−1)m

f

(
r

(
w,

log|w|
log|t|

)) |θ1,t(w) ∧ θ1,t(w)|
τn−1
t (w)

→

1

le1

∫ ε

0

f(u)du.

6.2. Limit of μ0 as m → ∞ for a fixed B. We would like to understand the
limit of μ0 as m → ∞. Firstly, note that if m is large enough then the minimal snc
model of (X, 1

mB) is just the minimal semistable model of X. So, let X denote the
minimal semistable model of X in this section.

We only compute the limit on ΓX and not on ΔCC(X ) as it is not clear to us
what the limit behavior would look like near a smooth point in X0.

Let μ(m,B)
t denote the pluri-Bergman measure induced by ω⊗m

Xt
(B|Xt). Let μ

(m,B)
0

be the weak limit μ(m,B)
t on Xhyb as t → 0. Then μ

(m,B)
0 is a sum of Dirac mass on

the vertices of ΓX and Lebesgue measure on the edges of ΓX for m large enough.
Note that the total mass of μ(m,B)

0 is:

μ
(m,B)
0 (ΓX ) = μ

(m,B)
t (Xt) = h0(Xt, ωXt

(B|Xt
)) = (2m− 1)(g − 1) + deg(B|Xt

).

Let

μ
(∞)
0 := lim

m→∞
2(g − 1)μ

(m,B)
0

(2m− 1)(g − 1) + deg(B|Xt)

be the weak limit of μ(m,B)
0 normalized to have volume 2g−2. Here the limit is taken

in the sense of Radon measures on ΓX . Let us compute μ
(∞)
0 .

Note that μ
(m,B)
0 restricted to an edge e is the Lebesgue measure of total mass

1
N , where N is the length of the maximal inessential chain containing e. Note that N
is independent of m for m � 0. Then,

μ
(∞)
0 |e= lim

m→∞
(2g − 2)dx

N((2m− 1)(g − 1) + deg(B|Xt
))

= 0.

Thus, μ(∞)
0 places no mass on the edges of ΓX .

Let v be a vertex in ΓX and let E ⊂ X0 be the associated irreducible component.
It follows from Theorem 6.0.7 that the mass of μ(m)

0 on vE is

μ
(m,B)
0 ({vE}) = h0(mKE + (m− 1)

∑
E′ �=E

(E ∩ E′) +B|E)

if E is a Type I component, otherwise it is 0. Note that for a fixed B and m large
enough, being Type I is equivalent to being essential.

Thus,

μ
(m,B)
0 ({vE}) = (2g(E)− 2)m+ (m− 1)val(E) + deg(B|E)

if E is essential, otherwise μ
(m,B)
0 (v) = 0.
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We get that

μ
(∞)
0 ({vE}) = lim

m→∞
(2g − 2)((2g(E)− 2)m+ (m− 1)val(E) + deg(B|E))

(2m− 1)(g − 1) + deg(B|Xt)

= 2g(E)− 2 + val(E)

if E is essential, otherwise μ∞
0 (v) = 0. Thus, we get that

μ
(∞)
0 =

∑
v∈V (ΓX )

(2g(v)− 2 + val(v))δv,

which is also the limit of the hyperbolic measures on Xt [Sch19, Theorem A].

6.3. Limit of μ0 as m → ∞ for fixed 1
mB. Another way to think of the limit

of μ0 is to vary B, while fixing the Q-divisor 1
mB. Let μ

(km,kB)
t denote the pluri-

Bergman measure on Xt associated to Ω⊗km
Xt

(kB|Xt
). Let X denote the minimal snc

model of (X, 1
mB). Note that X is also the minimal snc model of (X, 1

kmkB) for all
k ≥ 1. Let μ(km,kB)

0 be the weak limit μ(km,kB)
t as t → 0 on Xhyb. Then, μ(km,kB)

0 is
supported on ΓX .

Let

μ
[∞]
0 := lim

k→∞
(2g − 2 +

deg(B|Xt )

m )μ
(km,kB)
0

(2km− 1)(g − 1) + k deg(B|Xt)

be the limit of μ(km,kB)
0 normalized to volume 2g − 2 +

deg(B|Xt )

m .
A similar computation shows that the μ

[∞]
0 places no mass on the edges in ΓX .

The mass of μ[∞]
0 on a vertex vE associated to an irreducible component E is

μ
[∞]
0 ({vE})

= lim
k→∞

(2g − 2 +
deg(B|Xt )

m )((2g(E)− 2)km+ (km− 1)val(E) + k deg(B|E))
(2km− 1)(g − 1) + k deg(B|Xt

)

= 2g(E)− 2 + val(E) +
deg(B|E)

m

if E is a component of Type I, otherwise the limit is 0. Note that for k � 0,
the only Type I components that can show up are the inessential components and
those components E for which g(E) = 0, val(E) = 1 and deg(B|E) = m. Since
2g(E)− 2 + val(E) + deg(B|E)

m is 0 in both these cases, we get that

μ
[∞]
0 =

∑
vE∈V (ΓX )

(
2g(vE)− 2 + val(vE) +

deg(B|E)
m

)
δvE .

7. Convergence on Mg. In this section, we show that in the case of g ≥ 2 and
B = 0, τt and μt extends to a continuous family of measures on the Deligne-Mumford
compactification, Mg, of the moduli space of genus g curves. Let g ≥ 2 and m ≥ 2
be fixed integers.

Let Cg denote the universal curve over Mg.
Let S0 be a stable curve of genus g. Recall that this means that S0 is a reduced

curve of arithmetic genus g with only nodal singularities and every rational irreducible



CONVERGENCE OF NARASIMHAN–SIMHA MEASURES 671

component of S0 intersects the rest of the curve in at least three points. We define the
Narasimhan-Simha measure τ (respectively pluri-Bergman measure μ) on S0 associ-
ated to ω⊗m

S0
to be a Radon measure on S0 which is a sum of Narasimhan-Simha (re-

spectively pluri-Bergman) measures on the irreducible components and Dirac masses
at the nodal points. More precisely,

• Let Ei ⊂ S0 is an irreducible component and let P
(i)
1 , . . . , P

(i)
ri be the nodal

points that lie on Ei. Then, τ |Ei\{P (i)
1 ,...,P

(i)
ri

} (respectively μ|
Ei\{P (i)

1 ,...,P
(i)
ri

})
is the Narasimhan-Simha (respectively pluri-Bergman) measure on Ei asso-
ciated to the line bundle OEi

(mKEi
+ (m− 1)P

(i)
1 + · · ·+ (m− 1)P

(i)
ri ).

• If P is a nodal point in S0, then τ (respectively μ) has a unit Dirac mass at
P i.e. τ({P}) = 1 (respectively μ({P}) = 1).

7.1. The local picture. The first step in proving Theorem B is to reduce it to
a local computation. To do this, we need to understand the local charts on Mg and
Cg. The key tool used here is a Kuranishi family [ACG11, Chapter XI].

Let S0 be a stable curve. Roughly speaking, a Kuranishi family parametrizes
the local deformations of S0. More precisely, a family of stable curves π : S → D is
said to be a Kuranishi family for π−1(0) = S0 if for any other family of stable curves
π′:S′ → D′ with φ0 : (π′)−1(x0) � S0, there exists a neighborhood of U ′ ⊂ D′ of x0

and unique maps φ, ψ which make the diagram commute.

(π′)−1(x0) S0

(π′)−1(U ′) S

(U ′, x0) (D,0)

φ0

φ

π′ π

ψ

From this universal property, it follows that, up to shrinking the base, a Kuranishi
family is unique up to an isomorphism. A Kuranishi family always exists for a stable
curve. The total space S is regular and the baseD is smooth over C and has dimension
3g − 3. We can choose coordinates t = (t1, . . . , t3g−3) on D so that D � D3g−3 and
the point 0 can be identified with the origin. Moreover, the coordinates t can be
chosen in such a way a that a fiber over a point t has a node corresponding to i iff
ti = 0, where i = 1, . . . , s is an enumeration of nodes in S0. See [ACG11, Chapter XI]
for details.

Thus, we can think of the coordinates ti as a coordinate that smoothens out the
node i for i = 1, . . . , s and the coordinates ti as varying the complex structure on the
irreducible components of S0 for i = s+ 1, . . . , 3g − 3.

For t ∈ D, let St denote the fiber over the point t. By the adjunction formula,
for a point t0 ∈ D, we have

ωS

(
3g−3∑
i=1

div(ti − t0,i)

)∣∣∣∣∣
St0

� ωSt0
.

Since div(ti − t0,i) are principal divisors, we get that

ωS |St� ωSt
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for all t ∈ D, where the isomorphism is given by ‘unwedging’ dt1 ∧ . . . ∧ dt3g−3.
We also get that ω⊗m

S |St� ω⊗m
St

for all t ∈ D. Since h0(St, ωSt) = (2m−1)(g−1)
is independent of t, using Grauert’s lemma [Har77, Corollary III.12.9], we get that
π∗(ω⊗m

S ) is a locally free sheaf on B of rank M = (2m− 1)(g − 1).
Thus, we get an analog of Lemma 4.2.4 i.e. possibly after shrinking D, there

exists θ1, . . . , θM ∈ H0(S, ωS) such that θi,t = θi|St for i = 1, . . . ,M form a basis
of H0(St, ωSt) for all t ∈ D. Recall that by θi|St , we mean that we ‘unwedge’
(dt1 ∧ . . . ∧ dt3g−3)

⊗m from θi and then restrict it to St.
After performing a change of basis, we can assume that θi|S0 only has a pole of

order m with residue 1 along the i-th node in S0 for all i = 1, . . . , s and θi does not
have a pole of order m for all i = s + 1, . . . ,M . Now all we need to do is to repeat
the analysis in Section 5.

The i-th nodal point Pi ∈ S0 has a neighborhood U in S with coordinates

(t1, . . . , ti−1, zi, wi, ti+1, . . . , t3g−3)

such that the projection to D is given by ti = ziwi. Similar to the computation in 5,
we get that

θj,t =
∑

α,β≥0,γ∈N
3g−4
≥0

c
(j)
α,β,γt

α
i w

β−α−m
i (t′i)γdw⊗m

i ,

where t′i = (t1, . . . , t̂i, . . . , t3g−3) and |ti|1/2< |wi|< 1. Here, the residue of θj,0 along
Pi, up to a sign, is c(j)0,0,0. Thus, |c(j)0,0,0|= δij for j = 1, . . . ,M . Similarly, we can also
get such an expression in terms of the zi coordinate and we can also find an expression
of θj in a neighborhood of smooth points of S0.

We get an analog of Lemma 5.2.1 by following the same techniques.

Lemma 7.1.1. For i = 1, . . . , s, we have

‖θi,t‖′St
= (2π log|ti|−1)m/2 +O(1)

and for i = s+ 1, . . . ,M , we have

‖θi,t‖′St
→ ‖θi,0‖′S̃0

as t → 0.

Let τt denote the Narasimhan-Simha measure on St. We also get an analog of
Corollary 5.3.1

Lemma 7.1.2. In the chart U around Pi described above, in the region {|ti|1/2<
|wi|< 1

(log|ti|−1)m } we have that

τt ≈ |dwi ∧ dwi|
2π|wi|2log|ti|−1

.

Away from such a region and near smooth points of S0, we have that τt → τ̃0,
where τ̃0 is the part of τ0 without the Dirac masses.

We immediately get the following result, which is a local version of the first part
of Theorem B.
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Corollary 7.1.3. Let f be a continuous compactly supported function on S.
Then,

∫
St

fτt →
∫
S0

fτ0 as t → 0.

Proof. By using partitions of unity, we can assume that support of f is small
enough. If f is supported in the chart U described above, then using the fact that∫

|ti|1/2<|wi|< 1

(log|ti|−1)m

|dwi ∧ dwi|
2π|wi|2log|ti|−1

→ 1

2
,

we get ∫
|ti|1/2<|wi|<1

fτt =

∫
|ti|1/2<|wi|< 1

(log|ti|−1)m

fτt +

∫
1

(log|ti|−1)m
<|wi|<1

fτt

→ f(Pi)

2
+

∫
0<|wi|<1

f τ̃0

and ∫
U∩St

fτt → f(Pi) +

∫
U∩S0

f τ̃0 =

∫
U∩S0

fτt

as t → 0.
We also get a similar convergence near the smooth points of S0, which proves the

result.

We give a sketch of proof of the following local version of Theorem G. We thank
the anonymous referee for suggesting this proof.

Lemma 7.1.4. Let f be a continuous compactly supported function on S. Then,∫
St

fμt →
∫
S0

fμ0 as t → 0.

Proof. The proof is similar to the computations in Section 6.1. However, instead
of just working with θi,t’s, we normalize them as per the normalization preceding
Lemma 5.2.2 i.e. we denote

θ̃i,t :=
θi,t

(2π log|ti|−1)m/2
for 1 ≤ i ≤ s,

and

θ̃i,t :=
θi,t

‖θi,0‖′
S̃0

for s+ 1 ≤ i ≤ M.

Following that same computations as in Section 6.1, we observe that the matrix

Ã(t) = (〈θ̃j,t, θ̃k,t〉)1≤j,k≤M

has asymptotics

Ã(t) = IM + o(1)

as t → 0. The inverse matrix Ã(t)−1 is also of the form

Ã(t)−1 = IM + o(1)

as t → 0. Using

μt =

(
i

2

)m M∑
j,k=1

(Ã(t))−1
j,k

θ̃j,t ∧ θ̃k,t

τm−1
t

,

the remainder of the proof follows by computations similar to that in Section 6.1.
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7.2. The global picture. Let π : S → D denote a Kuranishi family for a stable
curve S0. Let G = Aut(S0) denote the (finite) group of self biholomorphisms of S0.
From the universal property of the Kuranishi family, we see that G acts on S as well
as D, after possibly shrinking D.

Since G is finite, the quotients S/G and D/G exist as normal complex analytic
spaces. For our purposes, the underlying topological space is sufficient. The spaces
D/G and S/G forms a neighborhood of the isomorphism class of S0 in Mg and its
preimage in Cg. Locally, the map Cg → Mg is given by S/G → D/G.

S/G ⊂ Cg

D/G ⊂ Mg

Note that S → D is also a Kuranishi family for St for all t ∈ D [ACG11, Corollary
XI.4.9]. Thus, it follows that the stabilizer of a point t ∈ D under the action G is
Aut(St). Let t, t′ ∈ D be two points in the orbit of the G-action on D. Then, the
action of some element in G provides a biholomorphism St

∼−→ St′ which induces a
canonical biholomorphic map St/Aut(St)

∼−→ St′/Aut(St′) and is independent of the
choice of the aforementioned element of G.

Thus, topologically, the fiber of the map Cg → Mg over the isomorphism class of
a stable curve C is C/Aut(C).

Recall from the construction of τ and μ on a smooth genus g curve Y (see Section
2.3) that τ and μ are both invariant under the action of Aut(Y ). It is not hard to check
that they are also invariant on a stable curve under the action of its automorphism
group.

Let τ ′t and μ′
t denote the pushforward of the Narasimhan-Simha measure and the

pluri-Bergman measure respectively under the map St → St/Aut(St).
The following corollary is equivalent to Theorems B and G.

Corollary 7.2.1. The maps D/G → (Cc(S/G))∨ given by sending [t] �→ τ ′t and
[t] �→ μ′

t are well defined and continuous, where (Cc(S/G))∨ is the space of Radon
measures on S/G equipped with the weak∗ topology.

Proof. We outline the proof in the case of [t] �→ τ ′t. From Lemma 7.1.3, it follows
that the map D → (Cc(S))∨ given by t �→ τt is continuous. It is enough to show that
the composition D → (Cc(S))∨ → (Cc(S/G))∨ is invariant under the action of G on D
i.e. we need to show that if g · t = t′ for g ∈ G and t, t′ ∈ D, then the pushforward of
τ ′t is the same as τ ′t′ under the canonical identification St/Aut(St)

∼−→ St′/Aut(St′).
Consider the diagram

St St′

St/Aut(St) St′/Aut(St′)

g

∼

Since g induces a biholomorphism between St and St′ , it follows that the push-
forward of τt under g is the same as τt′ and thus we get that the pushforward of τ ′t
to St′/Aut(St′) is the same the same as τ ′t′
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