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DIFFERENTIAL COMPLEXES AND HODGE THEORY ON
LOG-SYMPLECTIC MANIFOLDS∗

ZIV RAN†

Abstract. We study certain complexes of differential forms, including ’reverse de Rham’ com-
plexes, on (real or complex) Poisson manifolds, especially holomorphic log-symplectic ones. We relate
these to the degeneracy divisor and rank loci of the Poisson bivector. In some good holomorphic cases
we compute the local cohomology of these complexes. In the Kählerian case, we deduce a relation
between the multiplicity loci of the degeneracy divisor and the Hodge numbers of the manifold. We
also show that vanishing of one of these Hodge numbers is related to unobstructed deformations of
the normalized degeneracy divisor with its induced Poisson structure.
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Introduction. One of the interesting features of geometry on (real or complex)
Poisson manifolds (X,Π) is the richness of the calculus, which in a sense is twice as
rich as on a plain manifold: the usual plus a dual. Interesting differential operators
can be constructed using the Poisson bivector Π. One of these is the Koszul-Brylinski
operator on differential forms:

∂ = dιΠ − ιΠd

where d is exterior derivative and ιΠ denotes interior multiplication by Π. This is an
operator of degree (-1) on differential forms, and Brylinski [1] has shown that it has
square zero, hence gives rise to a ’reverse de Rham’ complex:

...
∂→ Ωi

X
∂→ Ωi−1

X
∂→ ...

He has also shown, using the Hodge ∗ operator in the real C∞ category, that when Π
is a symplectic Poisson structure, i.e. everywhere nondegenerate, the reverse de Rham
complex is equivalent to the usual de Rham complex, hence computes the cohomology
H•(X,R).

Here we start with the observation that a different set of operators of degree (-1),
namely

δi = idιΠ − (i− 1)ιΠd : Ωn+i
X → Ωn+i−1

X

(n ∈ N fixed, usually as half the dimension of X), can be used to construct a reverse

De Rham complex Θ• = Ω
dim(X)−•
X of differential forms called the ’Mahr de Poisson’

or MdP complex, in either the C∞ or holomorphic category (or for that matter, in
any setting where d and ιΠ make sense). More generally, for any λ ∈ C, there is a
complex Θ•λ with differential

δλ,j = (j + λ)dιΠ − (j + λ− 1)ιΠd : Ωj → Ωj−1.
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Note that unlike the De Rham complex, the MdP complex need not be acyclic lo-
cally where Π degenerates, indeed its local cohomology seems difficult to compute in
general. Some special cases will be computed below.

A special feature of the MdP complex Θ•X , on a 2n-dimensional (C∞ or holomor-
phic) Poisson manifold (X,Π), not shared by Brylinski’s complex and which makes
Θ•X amenable to study, is the existence of ’bonding’ maps relating it to the de Rham
complex:

π : Θ•X,≤n → Ω•X,≤n,

π′ : Ω•X,≥n → Θ•X,≥n.

It is also possible to construct a pair of hybrid complexes on the top or bottom
half of the de Rham groups:

ED• : Ω2n
X

δn→ Ω2n−1
X ...Ωn+i

X
δi→ Ωn+i−1

X ...→ Ωn+1
X

δ1→ Ωn
X

d→ Ωn+1
X ...

d→ Ω2n
X ,

DE• : OX
d→ Ω1

X ...
d→ Ωn

X
δ0→ Ωn−1

X ...Ωn−i
X

δ−i→ Ωn−i−1
X ...→ Ω1

X

δ−n+1→ OX ,

together with a map of complexes

π : ED• → DE•.
The mapping cone of π may be thought of as a ’double helix’ with strands ED• and
DE• or Θ• and Ω• 1.

In the case where Π is pseudo-symplectic, i.e. nondegenerate almost everywhere,
hence degenerates along a Pfaffian divisor P , these complexes are closely related to
a (singular) codimension-1 ’kernel foliation’ on P (also called ’symplectic foliation”
in the literature). In general, this kernel foliation is not ’tame’ in the sense that the
leaves are Zariski-locally closed (see Example 5.2 below). In fact, leaves can be dense
in P .

When X is a compact Kähler manifold, the cohomology of the MdP complex ad-
mits a Hodge decomposition like its De Rham analogue. Indeed the ’Hodge diamond’
for Θ• is just a 90◦ turn of the usual.

We will concentrate mainly on the case where Π is log-symplectic, i.e. the de-
generacy divisor D = D(Π) has normal crossings. In that case Π corresponds to a
log-symplectic form Φ, i.e. a closed log 2-form whose polar locus coincides with D.
For certain purposes it is easier to work directly with Φ rather than Π. In the case
where the log-symplectic structure Π satisfies a certain ’residual generality’ condition
(see §3.5), we will study the image of π via the corresponding log-symplectic form Φ
and consequently we will be able to determine the image of π via a simplicial resolu-
tion, and hence determine the local cohomology of Θn], i.e. the ’upper half’ of Θ•.
Curiously, the method does not seem to adapt easily to the case of the lower half Θn].

For other work on De Rham-like complexes and degeneracy of log-symplectic Pois-
son structures, see [11], [8], [7], and [10]. In particular, Polishchuk [11] constructs and
analyzes a different differential complex on a Poisson manifold with normal crossings
Pfaffian divisor.

I am grateful to the referee for numerous helpful comments.

1The bonds between the two strands of the DNA molecule are called π bonds



LOG–SYMPLECTIC MANIFOLDS 679

Notations and conventions. We work over C. For a natural number k, k
denotes {1, ..., k}. For a multi-index I = (i1 < ... < ir), |I| denotes the degree, i.e. r.
Note the difference between ”i”, used for indices, and ”ι”, used for inclusion maps.

1. Preliminaries: twisted log complexes. In this section we study some
differential complexes attached to a general log pair (X,D), i.e. a complex manifold
endowed with a reduced, locally normal-crossing divisor. No Poisson, symplectic or
log-symplectic structure is assumed.

1.1. Minor log complex and compactly supported cohomology. Here we
study certain twists of the log complex on a log pair (X,D). Let X be a complex
manifold of dimension d endowed with a divisor D with local normal crossings. We
remark that in our subsequent application, X will be X1, normalization of the degen-
eracy divisor D(Π) of of a log symplectic manifold (X,Π), and D will be the double
point locus of the map X1 → D(Π) ⊂ X. �This will result in a shift of indices!!

Via the inclusion Ω•X〈logD〉 ⊂ Ω•X(D), we get a graded subgroup

Ω•X〈log−D〉 := Ω•X〈logD〉(−D) ⊂ Ω•X . (1)

Locally, letting F = x1...xk be an equation for D, Ω•X〈log−D〉 is generated by differ-
entials of the following form, in which k denotes {1, ..., k} and J = (j1 < ... < jr) is
a multi-index:

ωJ,k =
∏

j∈k\J
xj

∏
j∈J

dxj , ∀J ⊂ k, k ≤ d.

It is clear from this, or otherwise, that (Ω•X〈log−D〉, d,∧) is a dg algebra over
Ω•X〈logD〉, called the log-minus or minor log complex associated to D. Given
the equation F as above, Ω•X〈log−D〉 can be identified with Ω•X〈logD〉◦ which is
Ω•X〈logD〉 with twisted differential

d◦ = d+ dlog(F ).

Lemma 1.1. The log-minus complex Ω•X〈log−D〉 is a resolution of the compact-
support direct image CU ! := iU !(CU ) where iU : U → X is the inclusion of U = X \D.

Proof. There is a natural map CU ! → O(−D) which lifts to a map CU ! →
Ω•X〈log−D〉 and the latter is clearly a quasi- isomorphism over U , so it suffices to
prove that Ω•X〈logD〉◦ is exact locally at every point of D. To simplify notations we
assume D is of maximal multiplicity k = d at the given point; the general case is
a product of a maximal-multiplicity case and a zero-multiplicity case, and one can
use a Künneth decomposition. Then all the sheaves in the log complex decompose
into homogeneous components Si

(m.) indexed by exterior degree i and multi-indices

(m.) where mi ≥ 0. That is, each local section is an infinite convergent sum of
homogeneous components. Note that xi and dxi both have degree 1. For any multi-
index (m1, ...,mk), we set

χ(m.) =
∑

midxi/xi.

Now note that d◦ maps Si
(m.) to Si+1

(m.) and there, in fact, is given by multiplication

by χ(m.) + χ(1.) where (1.) = (1, ..., 1). Because the latter form is part of a basis of
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S1
(0.) ⊂ Ω•X〈logD〉, multiplication by it clearly defines an exact complex and in fact

admits a ’homotopy’ operator ιv given by interior multiplication by the log vector
field

v =
∑

xi ∂xi
.

This has the property that that the commutator [ιv, d
◦] is a nonzero multiple of the

identity on each Si
(m.) term. Therefore Ω•X〈logD〉◦ is null-homotopic and exact.

Remark 1.2. When D is the exceptional divisor of a resolution of singularities,
the minor log complex seems related to the Du Bois complex of the singularity, see [15].

1.2. Augmented minor log complex. We shall need an enlargement of the
log-minus complex along the double locus of D, called the augmented minor or log-
minus-plus complex. Let

νi : Xi → D ⊂ X

be the normalization of the i-fold locus of D, and let Di ⊂ Xi be the natural normal-
crossing divisor on Xi, which maps to the (i+1)-fold locus of D. Also set Ui = Xi\Di.
This maps to the set of points of multiplicity exactly i on D. Note the natural
surjective pullback map for all i ≥ 0, where X0 = X etc.

ν∗i : Ω•Xi
→ νi+1∗Ω•Xi+1

whose kernel is just Ω•Xi
〈log−Di〉. We denote by Z [m the truncation of a complex Z•

below degree m (thus Zi = 0, i < m). Set

K0 = Ω•X〈log−D〉,
K1 = (ν∗1 )

−1(Ω
[1
X1
〈logD1〉(−D1)).

Thus, K1 is a subcomplex of Ω•X which coincides with K0 off X1 and which, locally
at a point of X1 with branch equation xk, where D has equation F = x1...xk, is
generated by Ω•X〈log−D〉 and by differentials of degree 1 or more, of the form

ωI,�,k =
∏

i∈k\I,i
=�

xi

∏
i∈I

dxi = dlog (x)IF/x�, I ⊂ k \ {
}.

In the general case, assuming Ki is constructed, we construct Ki+1 by modifying Ki

along Xi+1 for forms of degree i+ 1 or more, i.e.

Ki+1 = (ν∗i+1)
−1(Ω

[i+1
Xi+1

〈logDi+1〉(−Di+1)).

Finally set

Ω•X〈log∓D〉 = Kd−2. (2)

(note that Kd−2 = Kd−1 because Ω•Xd−1
〈logDd−1〉(−Dd1

) = Ω•Xd−1
). By construc-

tion, Ω•X〈log∓D〉 is a Ω•X〈logD〉- module endowed with an increasing filtration F•
with graded pieces

GrF•i (Ω•X〈log∓D〉) = Ω
[i
Xi
〈log−Di〉.
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Locally at a point of Xr with branch equations xj , j ∈ J, |J | = r, where D has
equation xk, Ω

•
X〈log∓D〉 is generated over Ω•X〈logD〉 by differentials of the form

ωI,J,k = dlog(x)IF/xJ , I ⊂ k \ J (3)

as well as differentials on Xr−1 whose pullback on Xr is of such form.
As in Lemma 1.1, we can compute the cohomology of the augmented minor log

complex:

Lemma 1.3. We have

Hi(Ω•X〈log∓D〉) = Ω̂i
Ui! := iUi!(Ω̂

i
Xi

), i ≥ 0. (4)

where Ω̂ denoted closed forms.

Proof. Use the spectral sequence of the filtered complex with Ep,q
1 = Hp+q(Gr−p),

together with Lemma 1.1. The fact that each ith graded piece has cohomology only
in degree i ensures that the spectral sequence degenerates at E1.

As a slight generalization of the log-minusplus complex, we have for any s ≥ 0 a
complex Ω•X〈log∓sD〉 defined as above but with

Ki+1 = (ν∗i+1)
−1(Ω

[i+1−s
Xi+1

〈logDi+1〉(−Di+1)), i+ 1 ≥ s.

We will need this only for s = 1 which yields a complex with zeroth termOX(−ν1(D1))
(recall that D1 is a divisor on X1 which maps to a codimension-2 locus on X). Note
Ω•X〈log∓sD〉 admits an increasing filtration with graded pieces Ω•Xi

〈log∓Di〉, i =
0, ..., s.

1.3. Foliated De Rham complex, log version. With (X,D) a log pair as
above, let ψ be a closed log 1-form, nowhere vanishing as such. Then ψ generates an
Ω•X〈logD〉-submodule

Ω•ψ = ψΩ•X〈log−D〉 ⊂ Ω•X〈log−D〉[1]. (5)

This is locally the Ω•X〈logD〉-submodule of Ω•X generated by ψF . Thus, sections of
Ω•ψ are of the form ψFγ where γ is a log form. Then

Ω•X/ψ := Ω•X/Ω•ψ[−1] (6)

is called the foliated De Rham complex associated to ψ. The differential on Ω•ψ is
given by

d(ψFα) = ψF (dα+ dlog(F )α).

Consequently, Ω•ψ is a quotient of Ω•X〈log−D〉d−1] where d = dim(X) and •d−1] means
truncation in degrees > d−1. Locally, choosing an equation F for D, we may identify
Ω•X〈log−D〉 as above with the complex denoted Ω•X〈logD〉◦ which is Ω•X〈logD〉 with
differential

d◦ = d+ dlog(F ).

This is defined locally, depending on the choice of local equation F . The kernel of the
natural surjection Ω•X〈log−D〉d−1] → Ω•ψ consists of the forms divisible by ψ, hence

can be identified with Ω•ψ[−1]d−1].
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Continuing in this manner, Ω•ψ admits a left resolution of the form

Ω•
X〈log−D〉[−d+ 1]d−1] → ......→ Ω•

X〈log−D〉[−1]d−1] → Ω•
X〈log−D〉d−1] → Ω•

ψ. (7)

Note that ∗[−i]d] = (∗d−i])[−i]. Set

Ki = ker(d◦,Ωi
X〈logD〉), i ≥ 0.

By Lemma 1.1,

Ki � Ωi−1
X 〈logD〉/Ki−1, i ≥ 1.

Locally at a point of D, the latter is true for i = 0 as well, in the sense that K0 = 0
while locally at a point of U , K0 = C. Moreover Ki is the unique nonvanishing coho-
mology sheaf of Ω•X〈logD〉[−i]d], and occurs as Hd. We now introduce the following
generality hypothesis on our form ψ:

(*) For each nonnegative integral multi-index (m.), the log differentials ψ and
χ(m.) + χ(1.) are linearly independent, i.e. generate a free and cofree subsheaf of
Ω1

X〈logD〉, locally at every point of multiplicity 2 or more on D.
When ψ is one of the forms ψi deduced from a log-symplectic structure, hypothesis

(*) is equivalent to the ’1-very general’ hypothesis introduced in [14], Erratum, hence
weaker than the Residual Generality condition in §3.5.

It is essentially clear that a general log 1-form cannot be holomorphically inte-
grated and in 2 or more variables, is not even proportional to an integrable form. Our
aim next is to generalize this observation.

Let letOψ
X denote the sheaf of ψ-constant holomorphic functions, i.e. holomorphic

functions g such that dg ∧ ψ = 0. Locally at p ∈ U we can write ψ = dx,Oψ
p = C{x}

for a coordinate x. Similarly, locally over U1, the smooth part of D, we can write
ψ = dx/x,Oψ

p = C{x}. Also let Uj ⊂ X denote the set of points where D has
multiplicity ≤ j. More generally, we let Ui,j ⊂ Xi denote the set of points where Di

has multiplicity ≤ j − i , i.e. the inverse image of the set of point in X where the
multiplicity of D is in [i, j]. Thus, Uj = U0,j .

Lemma 1.4. Under hypothesis (*) above, we have

Hi(Ω•ψ) =

{
iU1!(Oψ(−D)ψ), i = 0;

0, i > 0.
(8)

Proof. To begin with, the RHS of (8) clearly maps naturally to the LHS, so it
suffices to prove that this map is an isomorphism locally at each point.

Consider first the elementary case of a point p ∈ U . There the quotient complex
Ω•X/ψ is the usual relative De Rham for the foliation determined by ψ, which is a

resolution of Oψ
X . Then the cohomology sequence of (11) reduces to

0→ CX → Oψ → OX .ψ → 0,

the second map being exterior derivative, so we get the result. The case p ∈ U1 is
similar, because there we may assume ψ = dx/x, F = x so Fψ = dx like before.

Now we may assume p ∈ D1, double locus of D, and show Ω•ψ is exact.We will
use hypothesis (*), which says that ψ and χ := χ(m.) + χ(1.) are linearly independent
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at p, ∀(m.). For simplicity we assume p is a point of maximum multiplicity, i.e. d, on
D. The closed log 1-form ψ can be written in the form

ψ =
∑

ai dlog (xi) + dg

with ai constant and g holomorphic. Then replacing x1 by exp(g/a1)x1, we may
assume g = 0 In particular, ψ is homogeneous of degree 0.

Consider the E1 ’termwise-to-total’ spectral sequence associated to the resolution
(7). Each resolving term only has Hd−1 and that is given by the appropriate Ki.
Therefore the entire E1 page reduces to the following complex (occurring at height
d− 1 in the second quadrant)

K1 → K2 → ...→ Kd → 0 (9)

where the maps are multiplication by ψ. We claim that the larger complex

0→ K0 → K1 → ...→ Kd → 0

is exact. Now working on a given homogeneous component S•(m.), d
◦ itself is mul-

tiplication by χ(m.) + χ(0.) By Assumption (*), the latter section together with ψ
forms part of a basis of S1

(0.). Therefore clearly multiplication by ψ, which preserves

multidegree, is exact on the kernel (= image) of multiplication by χ(m.) + χ(0.), i.e.
K .. Therefore the larger complex extending (9) is exact.

Thus, the E2 = E∞ page for the complex (9) just reduces to the K0, sitting in
bidegree (−d, d), which yields our claim.

As an immediate consequence of Lemma 1.4, we conclude

Corollary 1.5. Under hypothesis (*), we have

Hi(Ω•X/ψ) = Hi(Ω•ψ), i > 0,

and there is an exact sequence

0→ CX → H0(Ω•X/ψ)→ iU1!(Oψ(−D)ψ)→ 0. (10)

Proof. Using the long cohomology sequence of

0→ Ω•ψ[−1]→ Ω•X → Ω•X/ψ → 0, (11)

the assertion follows from Lemma 1.4.

We will require a generalization of Lemma 1.4 to a k-tuple of forms. Thus, with
notations as above, let ψ1, ..., ψk be sufficiently general closed log 1-forms on X and
set

ψk = ψ1...ψk,Ω
•
ψk

= ψkΩ
•
X〈log∓D〉.

Let Oψk be the sheaf of holomorphic functions f such that df ≡ 0 mod ψk (i.e. such
that df is in the OX -module generated by ψ1, ..., ψk).

Lemma 1.6. Notations as above, we have

Hi(Ω•ψk
) =

{
iUk!(Oψk(−D)ψk), i = 0

0, i > 0.
(12)
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Proof. The proof is by induction on k. The induction step is analogous to the
proof of Lemma 1.4, with Ω•ψk−1

replacing Ω•X〈log−D〉.
We shall also need an analogue of Lemma 1.4 for the minusplus complex. Thus

set (cf. §1.2)
Ω•ψ+ = ψΩ•X〈log∓D〉.

This is a complex that starts with ψOX(−D) in degree 0. Set

Ωi,ψ = {α ∈ Ωi
Xi
〈logDi〉 : dα ≡ 0 mod ψ}/ψΩi−1

X 〈logD〉.
Thus by definition, ψΩi,ψ consists of the closed forms in ψΩi

Xi
〈logDi〉. Similarly

with ψ replaced by ψk. These complexes admit a natural increasing filtration with

quotients Ω
[k
Xk,ψk

.

Lemma 1.7. Hypotheses as above, we have

Hi(Ω•ψ+) = iUi,i+1!(ψΩ
i,ψ
Xi

(−Di)) (13)

and more generally

Hi(Ω•ψk+
) = iUi,i+k!(ψΩ

i,ψk

Xi
(−Di)) (14)

Proof. Follows from Lemma 1.4 and Lemma 1.6, using the spectral sequence for
a filtered complex, which degenerates at E2 for support reasons.

1.4. Simplicial De Rham complex on normal crossing varieties. Let D
be a variety with local normal crossings. Thus, D is locally embeddable as a divisor in
a manifold X with defining equation F = x1...xm, where x1, ..., xm are part of a local
coordinate system (we call these ’adapted’ coordinates). Let Xk be the normalization
of the k-fold locus of D, with (unramified) natural map

pk : Xk → D.

Thus, a point in Xk is specified by a k-tuple I ⊂m plus a point where xi = 0, ∀i ∈ I,
and Xk is a transverse union of smooth branches XI corresponding to choices of I. So
X1 is just the normalization of D and Xk generally is the normalization of the k-fold
locus of D. Note that there is a natural map

ρk : pk∗Ω•Xk
→ pk+1∗Ω•Xk+1

defined by, for any (k + 1)-tuple I = (i1 < ... < ik+1),

ρ(ω)I =

k+1∑
j=1

(−1)jωI\ij

where ωJ is the restriction of ω on the branch-intersection XJ := (xj : j ∈ J). It
is easy to check that this is a morphism of complexes and that ρk+1 ◦ ρk = 0 so we
get a double complex (Ω•X• , d, ρ), which we will call the simplicial De Rham complex
associated to D or simplicial De Rham resolution of Ω•D (see below).

On the other hand, recall that we have a complex- actually dg algebra, namely
Ω•D, which is the quotient of Ω•X by the exterior ideal generated by O(−D) and its
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image by d in Ω1
X , i.e. locally by F = x1...xm and dF = F

∑
dxi/xi. The following

result is probably well known.

Lemma 1.8. (i) Ω•X• is a resolution of Ω•D .
(ii) There is an exact sequence

0→ Ω•X〈log−D〉 → Ω•X → Ω•D → 0. (15)

Proof. (i) To begin with, there is clearly a map Ω•D → Ω•X• and it is easy to check
locally that this map induces an isomorphism Ω•D → ker(ρ0). It remains to prove that
ker(ρk+1) = im(ρk) which can also be done locally, so we can choose a local basis. We
may assume each constituent ωI is extended over Di for all i ∈ I via some compatible
collection of deformation retractions Xi → XI . Then the required exactness follows
by using the following homotopy operator

hk : pk∗Ω•Xk
→ pk−1∗Ω•Xk−1

(hk(ω))J :=
∑
i 
∈J

sgn(J |i)ωJ∪i,

where

sgn(J |i) = (−1)|{r:jr>i}|.

(ii) It is easy to check locally that the image of the pullback map

Ωi
X → p1∗Ωi

X1

coincides with the kernel of ρ1, and then that the kernel of the same pullback map
coincides with Ωi

X〈log−D〉.
2. A double helix. In what follows we will fix a manifold X of even dimension

2n endowed with a Poisson structure Π. Our main interest is in the case where (X,Π)
is holomorphic, i.e. X is a complex manifold (of complex dimension 2n), and Π is
holomorphic, and especially where Π is pseudo-symplectic in the sense that on some
dense open subset of X, Π is nondegenerate, i.e. dual to a symplectic structure. How-
ever, some of the basic constructions apply without the pseudo- symplectic condition
and in the real C∞ case as well.

Brylinski [1] constructed on the sheaves of differential forms on X the structure
of a ’reverse de Rham’ complex

...Ωi
X

∂→ Ωi−1
X → ..., ∂ = dιΠ − ιΠd,

where ιΠ denotes interior multiplication by Π (which lowers degree by 2) and d is
the usual exterior derivative. In fact, his construction is quite formal and is valid
generally in the context of a Poisson structure on a ringed space X/B where B is a
ringed space over Q, interpreted as a linear map Ω2

X/B → OX , and where ιΠ is the

natural extension of the latter to a degree- (-2) map on Ω•X .
Our observation here is first that there exists a different reverse de Rham com-

plex, which we call the ’Mahr de Poisson’ (MdP) complex Θ•X with differentials not
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proportional to Brylinski’s, valid in similar generality. An essential feature of the MdP
complex not shared by the Brylinski complex is the existence of a ’bonding map’

π : Θ
n]
X → Ω

n]
X

as well as a dual bonding map

π′ : Ω[n
X → Θ

[n
X .

Based in this, we will define a pair of hybrid complexes ED•,DE•, each of type ’half
de Rham, half twisted reverse de Rham’. We will then construct a map between these
complexes and study its mapping cone, identifying it with an analogous complex built
on the foliated de Rham/ twisted reverse de Rham complex associated to a ’degeneracy
foliation’ defined on the degeneracy or Pfaffian divisor of Π. ’Morally speaking’, it
is the existence of this foliation and its associated foliated de Rham complex, which
is a quotient of the de Rham complex of X, that force our twisted reverse de Rham
complex to exist, essentially as the kernel of the quotient map. See [2] or [4] for basic
information on Poisson structures.

To begin with, define an operator

δ : Ωn+i
X → Ωn+i−1

X , i ∈ [−n, n],
δ = idιΠ − (i− 1)ιΠd.

(16)

[To simplify the notation we will sometimes suppress the interior multiplication symbol
and simply write this operator as idΠ−(i−1)Πd. We will also denote ιΠ(ω) by 〈Π, ω〉].
Here n is of course half the dimension of X if X is a Poisson manifold of dimension
2n, or just an arbitrary natural number if X/B is an arbitrary Poisson ringed space
(in which case the construction will of course depend on n). Note that this differential
is not proportional to Brylinski’s. Then define sheaves EDi,DE i,Θi by

Θi = Ω2n−i
X , i ∈ [0, 2n],

EDi =

{
Ωn−i

X , i ∈ [−n, 0]
Ωn+i

X , i ∈ [1, n],

DE i =
{
Ωn+i

X , i ∈ [−n, 0]
Ωn−i, i ∈ [1, n].

(17)

Note that the maps defined by interior multiplication

ιΠk : Ωn+k → Ωn−k (18)

yield for each i ∈ [0, n] a map

π : Θi → Ωi (19)

and for each i ∈ [n, 2n] a map

π′ : Ωi → Θi (20)

and also for each i ∈ [−n, n] a map

π = ιΠ|i| : EDi → DE i. (21)
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Theorem 2.1. Let Π be a Poisson structure on a ringed space X/B.
(i) Endowed with differential δ, Θ• is a complex.
(ii) Endowed with differential δ in negative degrees and d in nonnegative degrees,

DE• is a complex.
(iii) Endowed with differential d in negative degrees and δ in nonnegative degrees,

ED• is a complex.
(iv) The map π defined above yields morphisms of complexes

π : Θ•n] → Ω•n],

π′ : Ω•[n → Θ•[n,

π : ED• → DE•
(22)

where n], [n denote truncation above (resp. below) degree n, which are isomorphisms
locally wherever Π is nondegenerate.

The top and bottom squares of π are, respectively:

Ω2n
X

ιΠn→ OX
δn = ndιΠ − (n− 1)ιΠd = ndιΠ ↓ ↓ d

Ω2n−1
X

ι
Πn−1→ Ω1

X

Ω2n−1
X

ι
Πn−1→ Ω1

X
d ↓ ↓ δ−n+1 = −(n− 1)dιΠ + nιΠd = nιΠd

Ω2n
X

ιΠn→ OX
(23)

where δn = ndιΠ on Ω2n
X and δ−n+1 = nιΠd on Ω1

X . The middle two squares are:

Ωn+1
X

ιΠ→ Ωn−1
X

dιΠ ↓ ↓ d
Ωn

X = Ωn
X

↓ d ↓ −ιΠd
Ωn+1

X
ιΠ→ Ωn−1

X .

(24)

We will call the mapping cone of π the dihelical (double helix) complex associated to
Π.

Corollary 2.2. Locally where Π is nondegenerate, ED• and DE• are exact in
degrees �= −n.

Proof. Follows from exactness in positive degrees of the de Rham complex.

Corollary 2.3. Assume (X,Π) is holomorphic and Π is generically nonde-
generate with Pfaffian divisor D = [Πn]. Then Θ•n] is isomorphic to the ’augmented
twisted truncated Poisson complex’

O(−D)→ TX(−D)→ T 2
X(−D)...

where the first map sends a function f to the corresponding Hamiltonian vector field
〈df,Π〉 and other maps are [.,Π].
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Proof. There is a map

〈.,Πn−i〉 : Ωn−i → Tn−i

coming from a morphism of complexes, such that the composition Ωn+i → Tn−i is in-
terior multiplication by Πn, which is F times a volume form where F is an equation of
D. This composite yields the desired isomorphism of Θn] with the augmented twisted
truncated Poisson complex (we use ’augmented’ because the usual Poisson complex
start with TX and ’twisted’ because the terms are (even though the differential is
not).

Remark. The referee points out that the contraction map above is well known
and appears, e.g. in Twisted Poincaré duality between Poisson homology and coho-
mology, Luo-Wang-Wu, J. Algebra 442 (2015), 484-505.

Thus, the complex Θ• is not really ’new’ but its realization in terms of differential
forms makes possible a useful connection with Hodge theory (see §7 below).

The proof of the Theorem uses the following Calculus lemma (for which which
the integrability condition [Π,Π] = 0 is essential):

Lemma 2.4. We have

dιΠm = ιΠm−1(mdιΠ − (m− 1)ιΠd) (25)

ιΠmd = (mιΠ − (m− 1)dιΠ)ιΠm−1 . (26)

Proof of Lemma. To prove (25) for m = 2 we can use a direct local computation.
In a slightly more canonical vein, we may compute, for any differential form φ, by
definition of Lie derivative

LΠ〈Π, φ〉 = d〈Π2, φ〉 − 〈Π, d〈Π, φ〉〉.

On the other hand by the derivation property of Lie derivative and the fact that
LΠΠ = [Π,Π] = 0, we have

LΠ〈Π, φ〉 = 〈Π, LΠφ〉 = 〈Π, 〈d〈Π, φ〉〉〉 − 〈Π2, dφ〉.

Comparing the last two displayed equations yields (25) for m = 2, and the general
case follows inductively. (26) is proved similarly.

Remark. Alternatively in the pseudo-symplectic case, the only case we need
here, it suffices to prove the identities (25), (26) on the dense open set where Π is
symplectic, which can be done by a simple local calculation.

Proof of Theorem. To prove that ED• and DE• are complexes, we start with
the well-known relation (equivalent to vanishing of the square of the differential in
Brylinski’s complex):

(dιΠ − ιΠd)
2 = 0.

Expanding, and using d2 = 0 and (25) for m = 2 yields

dιΠdιΠ = ιΠdιΠd.
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Then a direct computation yields

((i− 1)dιΠ − (i− 2)ιΠd)(idιΠ − (i− 1)ιΠd) =

i(i− 1)(dιΠdιΠ − ιΠdιΠd) = 0

Thus, δ2 = 0. Together with d2 = 0 and some trivial verifications around the midpoint
i = 0, this suffices to show that Θ•, ED• and DE• are complexes.

Finally, the proof the π is a morphism of complexes amounts to commutativity
of suitable squares and translates exactly to (25) and (26).

3. Log-symplectic manifolds.

3.1. log-symplectic form. A Poisson manifold (X,Π) of even dimension 2n
such that the degeneracy divisor D = D(Π) = [Πn] has local normal crossings is said
to be log-symplectic. The Poisson structure Π can equivalently be described via a
’log-symplectic form’ Φ. This is the meromorphic (in fact, logarithmic) form defined
by

〈Πn,Φ〉 = Πn−1.

Note that

〈Πn,Φi〉 = Πn−i.

Also, the maps on meromorphic forms

Ω2n−i
X,mero

〈.,Πn−i〉→ Ωi
X,mero,Ω

i
X,mero

.∧Φn−i

→ Ω2n−i
X,mero

are inverse to each other. We can write

Πn = FV,Φn = F−1V ∗

where V, V ∗ are dual generators of T 2n
X ,Ω2n

X and F is an equation for D. Thus
〈V ∗,Πn−1〉 = FΦ and for any v ∈ ∧iTX we have

〈〈V ∗, v〉,Πn−i〉 = 〈〈V ∗,Πn−i〉, v〉 = F 〈Φi, v〉, (27)

thus the two maps

〈.,Πn−i〉 : Ω2n−i
X → Ωi

X , F 〈.,Φi〉 : ∧iTX → Ωi
X (28)

are essentially the same under the exterior duality identification

Ω2n−i
X (D) = Ω2n−i

X ⊗ ∧2nTX � ∧iTX

and in particular they have the same image.

3.2. Log duality. When Π is log symplectic with degeneracy divisor D, we have
a ‘log-duality’ map

〈Π, .〉 : Ω1
X〈logD〉 → TX〈− logD〉.

This map is easily seen to be an isomorphism, with inverse 〈Φ, .〉, Φ being the corre-
sponding log-symplectic form (compare the proof of Proposition 3.1 below). Another
useful map, also called log-duality, is defined as follows.
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Consider the map

π = 〈.,Πi〉 : Ωn+i
X → Ωn−i

X .

This clearly extends to a map, called the log duality map,

π〈logD〉 = 〈.,Πi〉 : Ωn+i
X 〈logD〉 → Ωn−i

X 〈logD〉.
The following result was known before, see e.g. [14].

Proposition 3.1. If Π is log-symplectic, then π〈logD〉 is an isomorphism.
Moreover, Π defines a nondegenerate alternating form on Ω1

X〈logD〉.
Proof. π〈logD〉 is clearly an isomorphism locally off D and at smooth points of

D. Thus, π〈logD〉 is a morphism of locally free sheaves of the same rank on X, which
is an isomorphism off a codimension-2 subset, viz.the singular locus of D. Therefore
π〈logD〉 is an isomorphism. The proof of the last assertion is similar, based on the
fact that the (Pfaffian) degeneracy locus on Π as alternating form on Ω1

X〈logD〉 is of
pure codimension 1, hence empty.

The remainder of this subsection extends duality to the case of the MdP complex
(Θ•, δ) defined in the last section and uses the notations of that section.

Corollary 3.2. Define a ’coduality’ map of complexes of degree 2n as follows

π/π : (Θ〈logD〉•, δ)→ (Ω•〈logP 〉, d),
(π/π)i = ιΠi : Ωn+i → Ωn−i, i = n, ...,−n (29)

where δ is the MdP differential and for i < 0 , ιΠi means the inverse of the isomor-
phism ιΠ|i| , i.e. ιΦ|i| . Then π/π is an isomorphism of complexes.

Remark 3.3. When Π is P -normal, the Proposition can also be proved by a
straightforward local computation, using the normal form. Namely, setting

d log(xI) =
∧
i∈I

d log(xi), dyJ =
∧
j∈J

dyj ,

and (d log(xI) ∧ dyJ )̂ denoting the corresponding complementary multi-vectors, we
have

ιΠi((d log(xI) ∧ dyJ )̂) = ±dyI ∧ d log(xJ), |I|+ |J | = i.

Thus,

ιΠi : Ω2n−i
X 〈logD〉 → Ωi

X〈logD〉
sends a basis to a basis, hence is an isomorphism.

As a consequence, we can write down local generators for the cohomology sheaves
of Θ•〈logD〉 for Π P-normal in terms of normal coordinates, cf. (45). Fix a point p of
multiplicity k on P and a normal coordinate system (xi, yi) so that precisely x1, ..., xk

vanish at p. Set

di = dlog(xi)dyi, i = 1, ..., k,

di = dxidyi where xi �= 0,

dI =
∧
i∈I

di, dlog(x)I =
∧
i∈I

dlog(xi), I ⊂ [1, k].
(30)
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We recall (cf. e.g. [3] or [6]) that the local cohomology of the usual log complex is
well known by Deligne, Griffiths and others. It is generated over C by the dlog(x)I
for various multi-indices I ⊂ [1, k]. Note that the xi, i ∈ I are defining equations for
a branch of D|I|, denoted XI , and we have

Hi(ΩX〈logD〉) =
{
νi∗CXi

, i = 0, ..., n,

0, i > n.
(31)

Applying the π/π isomorphism above, we conclude:

Corollary 3.4. Notations as above, Π P-normal, we have

Hi(Θ•X〈logD〉) =
{
νi∗CXi

, i = 0, ..., n,

0, i > n.
(32)

If Π is P-normal and (x.) are normal coordinates, then the cohomology admits local
generators of the form

dI dlog(x)J , ∀I
∐

J = {1, ..., k}, (33)

where the latter generator is supported on the local branch XJ with equations xj , j ∈ J .

3.3. Standard form. We return to the case Π arbitrary log-symplectic. The
π〈logD〉 isomorphism is useful in yielding a standard form for Π and the corresponding
log-symplectic form Φ, as follows. Let F = x1...xm be a local equation for D where
x1, ..., x2n are local coordinates. Set

vi =

{
xi ∂xi , 1 ≤ i ≤ m;

∂xi
,m+ 1 ≤ i ≤ 2n.

.

These form a local basis for the sheaf of log vector fields TX〈− logD〉. Let v∗i be the
dual basis for Ω1

X〈logD〉 (= dxi/xi or dxi). Then

Π =
∑

aijvivj , (34)

Φ =
∑

bijv
∗
i v
∗
j (35)

where A = (aij), B = (bij) = A−1 are skew-symmetric and holomorphic. In fact,
B = 1

F ∧n−1 A. These are the matrices of the isomorphism π〈logD〉 and its inverse.

3.4. log (co)normal bundle. Here Π is arbitrary log-symplectic.

3.4.1. First order. Notations as above, the natural map induced by inclusion

ν∗1 (TX〈− logD〉)→ ν∗1 (TX)

has an OX1
-invertible kernel, denoted Nlog (D), called the log normal bundle associated

to the normal-crossing divisor D. Nlog (D) is dual to the cokernel of the inclusion

ν∗1 (Ω
1
X)→ ν∗1 (Ω

1
X〈logD〉),
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hence via residue Nlog (D) is globally free with local generator x1 ∂x1 where x1 is a
branch equation for D. We have exact sequences

0→ Nlog(D) → ν∗1 (TX〈− logD〉)→TX1〈− logD1〉 → 0,

0→TX1〈− logD1〉 → ν∗1 (TX)→ NX1/X → 0.
(36)

When D is the polar divisor of a log-symplectic form Φ we denote by Ňlog(D) the
image of Nlog(D) by the log duality map π〈logD〉. This is a priori a a line subbundle
of ν∗1 (Ω

1
X〈log (〉D)), but in the exact residue sequence

0→ Ω1
X1
〈logD1〉 → ν∗1 (Ω

1
X〈logD〉)→ OX1

→ 0,

clearly the residue map, which is given by interior multiplication by v1 = x1 ∂x1
, is

zero on ŇlogD, so it is actually a line subbundle of Ω1
X1
〈logD1〉.

Note that unlike the usual conormal, the log conormal is a subbundle of the log
differentials on X1, and it is naturally isomorphic rather than dual to the log normal.
We get a canonical generator of Ň〈logD〉, denoted ψ1. In terms of a standard form
Φ =

∑
bij dlog(xi) dlog(xj) as in §3.3, ψ1 has the form, locally on X1 where x1 is a

branch equation

ψ1 =

2n∑
i=2

b1i dlog(xi) = 〈Φ, v1〉. (37)

Note that ψ1 is a closed log form on X1. It suffices to check this at a general
point of X1, where we may assume (with a different coordinate system) that Φ =

dx1dx2/x1 +
2n∑
i=2

dx2i−1dx2i, v1 = x1 ∂x1
so ψ1 = dx2 is closed.

3.4.2. Higher order. Essentially the same construction applies to the higher-
order loci Xk. Thus, a point in Xk comes equipped with k transverse normal hyper-
planes corresponding to k branches of D, which are well-defined up to order. Hence
the kernel of

ν∗k(TX〈− logD〉)→ ν∗k(TX)

is a flat, integrable rank-k bundle, denoted Nk
log(D), called the log normal bundle of

order k. It is locally generated by the log vector fields x1 ∂1, ..., xk ∂k. Since these are
canonical up to order, the log normal bundle becomes trivial after a suitable Sk-cover,
and is already trivial if D has simple normal crossings. We have exact sequences of
locally free OXk

- modules

0→ Nk
log(D) → ν∗k(TX〈− logD〉)→TXk

〈− logDk〉 → 0,

0→TXk
〈− logDk〉 → ν∗k(TX)→ NXk/X → 0.

(38)

In the log-symplectic case, Nk
log(D) is isomorphic via log duality to a trivial rank-k

subbundle of ν∗k(Ω
1
X〈logD〉), denoted Ňk

log(D), with local generators ψi = 〈Φ, vi〉, i =
1, ..., k. Locally at a point, Xk admits k divisorial embeddings into transverse branches
of Xk−1, with associated log conormals Ňi ⊂ Ω1

Xk
〈logDk〉, respectively generated by

the ψi, and we have Ňk
log(D) =

⊕
Ňi. As in the first-order case, we have Ňi ⊂

Ω1
Xk
〈logDk〉, hence Ňk

log(D) ⊂ Ω1
Xk
〈logDk〉.
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Because the ψi are closed forms , Ňk
log(D) is an integrable subbundle, i.e. corre-

sponds to a codimension-k foliation. This foliation is known as the kernel or symplectic
foliation, due to the following

Lemma 3.5. Outside the divisor Dk ⊂ Xk, the conormal bundle Ňk
log(D) coincides

with the kernel of the Poisson structure induced on Xk by Π.

Proof. On ν∗1 (Ω
1
X〈logD〉), Π induces a nondegenerate form, and it pairs the

ψi with the conormal forms dxi/xi. Therefore Π yields a nondegenerate form
on the kernel of the natural map ν∗1 (Ω

1
X〈logD〉)/Ňk

log(D) →
⊕Odxi/xi, that is

Ω1
Xk
〈logDk〉/Ňk

log(D).

3.4.3. Conormal filtration. The subbundle Ňk
log(D) defines, in the usual way,

an increasing, length-k filtration F⊥• on Ω•Xk
〈logDk〉, called the conormal filtration

defined by

F⊥j Ω•Xk
〈logD〉 = ∧k−j+1Ňk

log(D)Ω
•
Xk
〈logD〉.

Thus,

F⊥j Ω•Xk
〈logDk〉 =

∑
|I|=k−j+1

ψIΩ
•
Xk
〈logDk〉.

3.5. The Residual Generality condition. The log-symplectic Poisson struc-
ture Π is said to be residually general, or to satisfy the RG condition, if at every
point p of multiplicity m on the degeneracy divisor, and a standard form

∑
aijvivj as

above, the matrix (aij(p) : i, j ≤ m) is a general skew-symmetric m×m matrix. This
condition can be obviously rephrased in terms of the corresponding log-symplectic
form Φ to say that its polar part is general. The RG condition is stronger, for any
t ≤ m, than the ’t-very-general condition introduced in [14], Erratum, hence also than
the original ’general position’ condition employed in [14].

One consequence of the RG condition is that for any i ≤ m, the (closed) 1-form
ψi = 〈Φ, vi〉 pulls back to a general log 1-form on the branch (xi) ofD and in particular
its polar divisor coincides exactly with the divisor on (xi) induced by D, defined by∏
j 
=i

xi. Furthermore, any collection of m or fewer elements among the ψi. and the

standard forms dlog(x1), ..., dlog(xm) are linearly independent, i.e. are a basis for a
locally free and cofree submodule. Consequently, the pullback of any collection of ψi

to any multiplicity locus Xk are linearly independent..
Note that the RG condition excludes P-normality (unless D is smooth): indeed

if Π is P-normal then ψi above has no poles at all.

4. Degeneracy, kernel foliation. From now on we restrict attention to the case
of a complex pseudo-symplectic Poisson manifold (X,Π) of dimension 2n. Then the
degeneracy locus of Π is a (Pfaffian) divisor P = [Πn] ∈ | −KX | (for this section, not
necessarily with normal crossings). It is well known that Π descends to a (degenerate)
Poisson structure on the smooth part of P : this follows from the fact that the kernel
of Π on ΩX at a smooth point of P contains the conormal line (cf. §3.4 above or [13],
proof of Prop. 10). Here we will expand on this. More precise results will be given in
§6, under the hypothesis that Π is log-symplectic and residually general.

Define sheaves Ci via the exact sequence

0→ Ω2n−i
X

ιΠn−i→ Ωi
X → Ci → 0. (39)
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Thus, C0 = OP , C
n = 0. Note that each Ci is an OP -module. Also, the degeneracy

ideal I2k defined by Lima-Pereira [10] is none other than the (2n − 2k)-th Fitting
ideal of C1. Moreover, by Theorem 2.1, there are exact diagrams

0→ Ω2n−i
X

ιΠn−i→ Ωi
X → Ci → 0

↓ δ ↓ d ↓ d
0→ Ω2n−i−1

X

ιΠn−i−1→ Ωi+1
X → Ci+1 → 0.

(40)

0→ Ω2n−i
X

ιΠn−i→ Ωi
X → Ci → 0

↓ d ↓ δ ↓ δ
0→ Ω2n−i+1

X

ιΠn−i+1→ Ωi−1
X → Ci−1 → 0.

(41)

Thus, we effectively get two mutually reverse complexes:

(C•n], d) : C
0 = OP

d→ C1 d→ C2 d→ ...
d→ Cn−1 → Cn = 0, (42)

(C•[n, δ) : C
n = 0→ Cn−1 δ→ Cn−2 δ→ ...

δ→ C1 δ→ OP . (43)

As to the interpretation of these, we have Proposition 4.3 below. First, an auxiliary
multilinear algebra result.

Lemma 4.1. For i ≤ j ≤ k, there exist bilinear forms

Pi,j(., .,Π
i) : Ωi

X × Ωk
X → Ωk

X

(linear in Πj as well), such that

α ∧ 〈Πj , β〉 = 〈Πj−i, Pi,j(α, β,Π
i)〉, α ∈ Ωi

X , β ∈ Ωk
X .

Proof. It suffices to prove this for α completely decomposable, hence by induction
we are reduced to the case i = 1. There, Note the following:

〈Πj−1, 〈Π, α ∧ β〉〉 = 〈Πj , α ∧ β〉 = α ∧ 〈Πj , β〉 ± j〈〈Πj−1, β〉, 〈Π, α〉〉
= α ∧ 〈Πi, β〉 ± j〈Πj−1, 〈β, 〈Π, α〉〉〉.

Thus, an explicit formula for P1,j is

P1,j(α, β,Π) = 〈Π, α ∧ β〉 ± j〈〈Π, α〉, β〉.

Corollary 4.2. The image of the morphism π : Θ•n] → Ω•n] is an exterior ideal

closed under d. Hence (C•n], d,∧) is a sheaf of differential graded algebras.

Next, we compare the algebra C•n] to the exterior algebra on C1:

Proposition 4.3. (i) There is a canonical map

i∧
OP

C1 → Ci.
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(ii) At a smooth point of P , each Ci is locally free over OP and we have an exact
sequence

0→
2n−i∧

OP

C1 →
i∧
OP

C1 → Ci → 0 (44)

where the first map is induced by ιΠn−i .

Proof. (i) results inductively from the commutative diagram

Ω2n−1
X ⊗ Ωi

X ⊕ Ω1
X ⊗ Ω2n−i

X

ιΠn−1⊗id⊕id⊗ιΠn−i→ Ω1
X ⊗ Ωi

X → C1 ⊗ Ci → 0
↓ ↓ ↓

Ω2n−i−1
X

ιΠn−i−1→ Ωi+1
X → Ci+1 → 0

.

Here the left vertical map is tPi,n−1(., .,Π
n−i−1) ⊕ P1,n−i(., .,Π

n−i−1) where
tP (α, β, .) = P (β, α, .), and the other vertical maps are just wedge product.

(ii) At a smooth point of P , Π admits a normal form

Π = x1 ∂x1 ∂y1 +

n∑
i=2

∂xi ∂yi .

From this, the assertion follows by an easy computation.

Corollary 4.4. C1 is integrable and induces on the smooth part of P a
codimension-1 foliation by Poisson submanifolds, called the kernel foliation.

Proof. Perhaps the easiest way to check the integrability condition is to use the
normal form above, which shows that at a smooth point of P , where P has local
equation x1, C

1 is the quotient of ΩP by the subsheaf generated by dy1, and thus
corresponds to the foliation by level sets of y1.

The fact that Π descends to the leaves of the foliation follows from the fact that
ιΠ : Ω1

X → TX vanishes over P = [Πn] on the image of ιΠn−1 : Ω2n−1
X → Ω1

X .
Alternatively, this can also be proved easily using the normal form above.

Corollary 4.5. Over the smooth part of P , C1 coincides with the quotient of
Ω1

P by the log-conormal bundle (cf. §3.4).
Proof. Follows from Lemma 3.5.

The existence of the kernel foliation is not a new result: this foliation coincides
with the so-called symplectic foliation associated to the degenerate Poisson structure
induced by Π on P . See for instance [10].

We will henceforth denote C•n] simply by C•.

Remark 4.6. There is a Π-trace map
2∧
C1 → OP . The composition

2n−2∧
C1 →

2∧
C1 → OP is nowhere vanishing on the smooth part of P . Therefore on the smooth

part of P we can also identify C2 with the subsheaf of traceless elements of
2∧
C1.



696 Z. RAN

5. P-normal case, examples. We recall [13], Proposition 7, that P-normal
Poisson structures Π can be characterized by the existence of a local coordinate system
(called normal coordinates) in which Π has the form

Π =
k∑

i=1

xi ∂xi
∂yi

+

n∑
i=k+1

∂xi
∂yi

. (45)

In particular, Π is log-symplectic.

Example 5.1 (Modified Hilbert schemes). Let S be a smooth surface endowed
with a Poisson structure corresponding to a smooth anticanonical curve D. Then Π
induces a Poisson structure Π[n] on the Hilbert scheme S[n]. The Pfaffian divisor P
corresponds to the subschemes having a nonempty intersection with D and the kernel
foliation has leaves corresponding to subschemes having a fixed intersection point with
D so D is the parameter curve and indeed, D is elliptic. Although Π is not P -normal
and P does not have normal crossings, Π[n] induces a P-normal Poisson structure
ΠX on the stratified blow-up X of the incidence stratification on S[n] (see [12]). The
components of the Pfaffian divisor of ΠX are birational to D(i) × S(n−i) × Pi−1, i =
1, ..., n and the kernel foliation on the latter corresponds to the map to D defined by
projection to D(i) followed by the sum map D(i) → D coming from an addition law
on the elliptic curve D (the addition law and the sum map depend on the choice of
origin; the fibres do not). This is the map whose derivative is given by

(..., ∂y1 , ..., ∂yi) �→ ∂y1 +...+ ∂yi ,

yi being induced by a coordinate y on D. Indeed a straightforward derivative calcu-
lation shows that at a general point of the latter component, which corresponds to
a reduced point-scheme with exactly i points on D, there are local coordinates such
that ΠX takes the form

u1 ∂u1 ∂v1 +

n∑
i=2

∂ui ∂vi ,

where v1 is the coordinate on D(i) corresponding to y1 + ...+ yi.

Example 5.2 (Toric Poisson structures). Let X = X(Δ) be a smooth projective
toric variety, with torus T ⊂ X acting on X (cf. [5]). Thus Δ is a fan in N ⊗R where
N = Hom(C∗, T ) is the lattice of 1-parameter subgroups. Since NC = N ⊗ C is the
(abelian) Lie algebra of T and embeds into H0(TX), any element of ∧2NC yields a
Poisson structure on X. These structures generically are log-symplectic, with Pfaffian
divisor X \ T , but they are not P-normal. For X = Pn these structures are studied
in [10], where they are called diagonal. A general such structure in even dimension
satisfies the Residual Generality condition (see §3.5).

Now suppose that dim(X) = 2n is even and that the fan Δ satisfies the following
condition

(*) There is a basis u1, v1, ..., un, vn of N such that for any cone σ ∈ Δ and any
i = 1, ..., n, either ui �∈ σ or vi �∈ σ.

For any u ∈ N and σ ∈ Δ, the limit at 0 of the 1-parameter subgroup C∗ → T
corresponding to u lies in the affine patchXσ � Cm×(C∗)n−m iff u ∈ σ. Consequently,
the assumption u �∈ σ implies that as vector field, u is nowhere vanishing on Xσ, while
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u ∈ σ implies that u on Xσ is a log vector field, of the form x ∂x. Thus, condition (*)
implies that the Poisson structure

Π = u1v1 + ...+ unvn (46)

is P-normal.
Regarding condition (*), note that, as pointed out by Jose Gonzalez, it can always

be achieved by subdividing a given fan, which corresponds to replacing a given toric
variety by a toric blowup of itself. In particular, there exist many toric blowups of
projective space with this property.

Example 5.3 (Toric-by-torus structures). Let Z be an n-dimensional smooth
projective toric variety with lattice N , and let u1, ..., un be a basis for N , viewed as
vector fields. Let A be an n-dimensional complex torus and t1, ..., tn a basis for the
constant vector fields on A. Then

Π = u1 ∧ t1 + ...+ un ∧ tn ∈ H0(Z ×A,∧2TZ×A) (47)

is clearly a P-normal Poisson structure on X := Z × A. The kernel foliation on
Xi is generated by t1, ..., ti, so it is generally not algebraically (or mermorphically)
integrable.

It is worth noting that the smallest degeneracy locus, i.e. the zero-locus Pn, of a
P-normal Poisson structure, has itself a special structure:

Proposition 5.4. Let Π be a P-normal Poisson structure on a projective 2n-
manifold X and Y = Pn(Π) its zero locus. If Y �= ∅, then Y admits a surjective map
to a nontrivial abelian variety.

Proof. To begin with, it is well known that Y is endowed with a tangent vector
field called Weinstein’s modular field [16]. To construct this field directly in our case,

and see that it is never zero, note that Π yields a canonical section of ŇY ⊗
2∧
TX .

By the normal form (45), Π lifts to ŇY ⊗ TX ⊗ TY , because the defining equations of
Y are x1, ..., xn, while y1, ..., yn are coordinates on Y . There is a canonical map

ŇY ⊗ TX ⊗ TY → ŇY ⊗NY ⊗ TY → TY ,

and again by the normal form (45), the image of Π by the latter map is never zero
(with the notation of loc. cit. it has the form ∂y1

+...+ ∂yn
). Now use the following,

probably well-known, result.

Lemma 5.5. Let Y be a smooth projective variety endowed with a nowhere-
vanishing vector field v. Then there is an Abelian variety A and a surjective map
Y → A, such that v descends to a nonzero constant vector field on A.

Proof. Consider the Albanese map alb : Y → B = Alb(Y ). By a result of
Matsushima-Lichnerowicz-Lieberman (cf. [9], Thm. 1.5), v induces a nonzero con-
stant vector field on B, which of course preserves the image alb(Y ). Consequently,
alb(Y ) is invariant under a nontrivial abelian subvariety A1 ⊂ B. Let A2 ⊂ B be a
complementary abelian subvariety. Thus, A1 → B/A2 =: A is an isogeny. Because
alb(Y ) contains A1-orbits, the map Y → A is clearly surjective, and v descends to a
nonzero constant vector field on A.
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Remark 5.6. In the above situation, it is not necessarily the case that Y admits
an action by an abelian variety. Let E be an elliptic curve, L a nontorsion line bundle
of degree 0, and Y = PE(L⊕O). For each a ∈ E, the translate of L by a is isomorphic
to L, e.g. because L can be defined by constant transition functions. Therefore the
automorphism group G of Y fits in an exact sequence

1→ Gm → G→ E → 1

which induces an analogous exact sequence on tangent spaces. Then, a nonzero tan-
gent vector to E lifts to a tangent vector to G, which corresponds to a nowhere-
vanishing vector field on Y ; however, E does not act on Y due to the nontriviality of
L.

Example 5.1 cont’d. In the Hilbert scheme example above, Y = D(n), which
maps to the elliptic curve D by the sum map.

Example 5.3 cont’d. In the toric-by-torus example above, Y is a disjoint union
of copies of the torus A.

6. Local cohomology of upper MdP complex. We now assume till further
notice that our log-symplectic Poisson structure satisfies the Residual Generality con-
dition, see §3.5. Our aim is to study the MdP complex Θn] and its cohomology, first
locally, then in the next section, globally. We study Θn] locally via its image by the
bonding map π, and we study the latter image in turn via the simplicial resolution as
in §1.4. Thus, we denote by I•k or Ik the pullback of the image of π to Xk. Otherwise,
notations are as in §3.1.

6.1. Image of bonding map via simplicial resolution. To begin with, note
that by the discussion in §3.1, the image of π on Ω2n−r

X coincides with F 〈Φr,∧rTX〉.
In particular it follows that I11 is generated locally by the form F1ψ1 = F 〈Φ, ∂1〉 where
∂i = ∂xi

. Next we will generalize this to higher-degree differentials and the higher
strata Xk. Let Ik denote the image of im(π) under the pullback map on differentials
attached to the map Xk → X. Working locally at a point of Xk, we decompose the
log-symplectic form Φ into its normal and tangential components:

Φ = Φ⊥,k +Φ=,k =

k∑
j=1

ψjdxj/xj +Φ=,k

where x1, ..., xk are equations of the branches of D at the point in question and Φ=,k

is a log-symplectic form on Xk itself. Now the contraction of a log form of degree a
with a log polyvector field of degree b ≤ a is a log form of degree a − b (and thus if
a = b, a holomorphic function). Hence note that for any (resp. any log) polyvector
field u, 〈Φ=,k, u〉 is of the form α/xe (resp. α), where α is a log form on Xk and xe

is a factor of Fk. Note that an expression F 〈Φr, u1...ur〉 can be nonzero on Xk only
if the normal fields ∂i = ∂xi

, i = 1, ..., k all occur among the ui, so we may assume
ui = xi ∂i, i = 1, ..., k. In that case, the only term in the binomial expansion of Φr

that can contribute is Φr−k
k,= Φk

⊥,k, which yields

〈Φr, u1...ur〉 =
(
r

k

)
〈Φr−k

k,= ψ1...ψk, uk+1...ur〉.

The latter is a sum of terms where some number, say a of the u-s are contracted with
ψ-s and the remaining r − k − a are contracted with Φr−k

k,= . Note that such a term is
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divisible by Φa
k,=. Thus we can write

F 〈Φr, u1...ur〉 =
∑

Fk,IαI,s〈ψ1...ψk, wJ〉Φs
=,k (48)

where the wJ are suitable polyvector fields on Xk the αI are suitable log forms,
products of some 〈Φ=,k, u�〉xe, and Fk,I = Fk/

∏
e∈I

xe is the appropriate factor of Fk;

in all the terms appearing, we have s ≥ |J |. This can be rewritten as

F 〈Φr, u1...ur〉 =
∑

Fk,IβI,sψIΦ
s
=,k (49)

where ψI =
∏
i∈I

ψi and s ≥ k−|I|. Due to the residual generality hypothesis on Φ, the

coefficients βI are general log forms of their degree when the polyvector field u1...ur

is chosen generally. Recalling the log-conormal filtration from §3.4, we conclude:

Proposition 6.1. We have, where F⊥• denotes conormal filtration,

I•k =
∑
I⊂k,s

ψIΦ
s
=,kΩ

•
Xk
〈log∓Dk〉[−|I| − 2s]

=
∑

s≥j−1

Φs
k,=F⊥j Ω•Xk

〈log∓Dk〉[−2s].
(50)

6.2. Cohomology. Our goal is to compute the cohomology sheaves of I•k for
fixed k, and then that of I•, via the simplicial resolution I•• . To this end, we note first
that an expression as in (49) can be normalized. In fact, we may assume that each
βI,s with I �= ∅, when written out in terms on a basis for 1-forms, does not contain
any term divisible by any ψi, i ∈ I nor Φ=,k. In the first case the term is zero, while
in the second case it can be added to a term attached to Φs+1

=,k . With this proviso, the
expression (49) is unique.

Next, as in the proof of Lemma 1.4, we may assume that the ψi and Φ have
constant coefficients, hence Ik can be decomposed into homogeneous components
Si
(m.). Now consider a differential γ ∈ Si

(m.) decomposed as in the proof of Lemma 1.4
and normalized as above. Suppose first that the multiplicity μk of Dk on Xk at the
point in question is greater than |I|. Consider a nonzero term Fk,IβI,sψIΦ

s
=,k with

smallest s. Then

d(Fk,IβI,sψIΦ
s
=,k) = Fk,IβI,sψIΦ

s
=,k ∧ χ(m.)+1I

where 1I is the characteristic function of I. Due to the residual general position of
the ψi, this cannot vanish unless βI,s ∧χ(m.)+1I = 0, i.e. βI,s is divisible by χ(m.)+1I .
Proceeding inductively over s, the same holds for all the β coefficients, hence for γ.
This proves exactness of the complex Ik locally over Xk \ Uk,μk

.
Now suppose μk ≤ |I|. Then it is easy to see that

Fk,IψI = dxI =
∏
i∈I

dxi

which is a closed form. Consider again a term Fk,IβI,sψIΦ
s
=,k with smallest s. Then

d(Fk,IβI,sψIΦ
s
=,k) = d(βI,s

∏
i∈I

dxiΦ
s
=,k) = βI,s

∏
i∈I

dxiΦ
s
=,kχ(m.+1I).
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If dγ = 0, this vanishes. But clearly this expression can vanish only if βI,s is a
closed form modulo the coordinates in I, i.e. dβI,s is in the complex generated by the

dxi, i ∈ I. Thus, βI,s is a section of Ω̂r,ψI

Xk
for some r. Similarly, or inductively, for

terms with higher s. We have proven

Proposition 6.2. The local cohomology sheaf of the pullback I•k of the complex

im(π) on Xk is as follows, where •̂ indicates closed forms:

Hi(I•k) =
⊕

|I|+r+2s=i

I⊂k

iUk,k+|I|!(Ω̂
r,ψI
Xk

ψIΦ
s
=,k)

=
⊕

t+2s=i,s≥j−1

I⊂k

iUk,k+|I|!(F̂⊥j Ωt
Xk

Φs
=,k)

(51)

Now via the inclusion I•k = im(π)Xk
⊂ Ω•Xk

, the complexes Ik for varying k form
a double complex resolving im(π) � Θ• (see the proof of Lemma 1.8), so we study
next the maps Ik → Ik+1 and their induced maps on cohomology. Thus consider the
middle cohomology of the short complex

Hi(Ik−1)→ Hi(Ik)→ Hi(Ik+1)

with terms given by (51), hence compactly supported respectively over

Uk−1,k−1+|I|, Uk,k+|I|, Uk+1,k+1+|I|.

Over the common intersection Uk+1,k+|I|, the complex is exact by the argument of
§1.4, the simplicial De Rham resolution. Over Uk,k, the left map is clearly surjective
(and the right term is zero). Over Uk+|I|,k|I|, the left term vanishes and the middle
and right terms consist of differentials on k-fold, resp. k+1-fold branch intersections
at a point of multiplicity exactly k + |I|.Thus the kernel of the right map consist of
the differentials that descend from Xk to Dk. This also applies mutatis mutandis to
the case k = 1. It follows that the spectral sequence for the local cohomology of the
double complex I•• we have

Ei,k
2 =

⊕
|I|+r+2s=i

I⊂k

iUk+|I|,k+|I|!(Ω̂
r,ψI

Xk
ψIΦ

s
=,k).

We claim that this spectral sequence degenerates at E2 Indeed consider an element of
Ei,k

2 represented by the form a = β
∏

dxiΦ
s
=,k on Uk+|I|,k+|I|. The image of a in Ik+1

can be written as db for some i − 1-form b with the same I and s. Then the image
c of b in Ik+2 is exact for support reasons. But the class of c is just the image of a
under the second-page differential di,k2 so that differential is zero. Likewise for further
pages. Therefore the spectral sequence degenerates at E2. Consequently we conclude

Proposition 6.3. The local cohomology Hj(I•• ) admits a filtration with graded
pieces ⊕

|I|+r+2s=i

I⊂k

iUk+|I|,k+|I|!(Ω̂
r,ψI

Xk
ψIΦ

s
=,k) =

⊕
t+2s=i,s≥j−1

I⊂k

iUk+|I|,k+|I|!(F̂⊥j Ωt
Xk

Φs
=,k)
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for all i, k with i+ k = j.

This essentially computes the cohomology of the upper MdP complex:

Theorem 6.4. Let (X,Π) be a log-symplectic manifold of dimension 2n satisfying

the Residual Generality condition. The local cohomology of Θ
n]
X is as follows :

H0(Θ•) = iU0!(CU0);
for 0 < j < n, Hj(Θ•) has a filtration with graded pieces⊕
|I|+r+2s=i

I⊂k

iUk+|I|,k+|I|!(Ω̂
r,ψI

Xk
ψIΦ

s
=,k) =

⊕
t+2s=i,s≥j−1

I⊂k

iUk+|I|,k+|I|!(F̂⊥j Ωt
Xk

Φs
=,k)

for i+ k = j − 1.

Proof. Let K• be the kernel of the natural surjection Ω•X → Ω•D. Because Ω•X and
Ω•D are resolutions of the respective constant sheaves, we have a quasi-isomorphism

K• ∼ iU0!(CU0).

Consequently we have

H0(Θn]) = iU0!(CU0
),Hi(Θ•) � Hi(I•), 0 < i < n.

Because C• is a quotient of Ω•D as we have seen, the map K• → Ω•X factors through
Θ• and we have an exact diagram

0 0
↓ ↓

0→ K• → Θn] → I• → 0
‖ ↓ ↓

0→ K• → Ω•X → Ω•D → 0
↓ ↓
C• = C•

↓ ↓
0 0

(52)

Note that K0 = OX(−D) maps isomorphically to Θ0 = Ω2n
X , so that I0 = 0. Also, as

we have seen in §1.4, Ω•D is quasi-isomorphic to its simplicial resolution Ω•X• , which
induces a simplicial resolution I•• , also quasi-isomorphic to I•. Thus

Hi(Θ• = Hi(I•• ) = Hi−1(C̃•), 1 < i < n,

and there is an exact sequence

0→ CD → H0(C̃•)→ H1(Θ•)→ 0

Now the Theorem follows from the preceding Proposition.

Now recall that for a smooth affine d-dimensional variety Y and a locally free
coherent sheaf F , the compact-support cohomology vanishes:

Hi
c(Y,F) = 0, ∀i < d

(this is because the compact-support cohomology is the limit of local cohomology
supported at points, and the latter vanishes by depth considerations). Now the sheaves
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occurring as summands in the Theorem are not themselves coherent but via the De
Rham complex they admit a resolution by locally free OXk

modules. Therefore each
such summand on Xk has vanishing Ht for t < dim(Xk) = 2n − 2k provided Uk+|I|
is affine, hence in particular if Xk+|I| is Fano. Thus we conclude:

Corollary 6.5. Suppose (X,Π) satisfies the RG condition and moreover that
Xk is Fano for k ≤ a. The Hi(Θ•X) = 0 for i ≤ a.

As we shall see, when X is Kählerian the cohomology of Θ•X can be computed in
terms of the usual Hodge cohomology of X.

7. Kählerian case, Hodge cohomology. Here we assume that our holomor-
phic pseudo-symplectic Poisson manifold (X,Π) is compact and Kählerian (or more
generally satisfies the ∂ ∂̄ lemma), Π otherwise arbitrary. This has the usual impli-
cations vis-a-vis degeneration of spectral sequences involving sheaves of holomorphic
differentials (see for instance [6]). Then similar results can be derived for the MdP
and dihelical complexes:

Theorem 7.1. The global hypercohomology spectral sequences

Ep,q
1 = Hq(X,Θp)⇒ Hi(Θ•), (53)

Ep,q
1 = Hq(X, EDp)⇒ Hi(ED•), (54)

Ep,q
1 = Hq(X,DEp)⇒ Hi(DE•), (55)

all degenerate at E1.

Proof. It suffices to prove this for Θ•. Consider a class

[α] ∈ Hi(Ωj
X) = Hi(Θ2n−j

X )

represented by a harmonic (j, i) form α. Then since ∂(α) = 0, d1(α) ∈ Hi(Ωj−1
X ) is

represented by a multiple of ∂〈Π, α〉, which is ∂-exact and ∂̄-closed, hence, by the ∂ ∂̄
lemma, also ∂̄-exact, i.e. null-cohomologous. Hence d1([α]) = 0.

Next, write

δ(α) = (j − n) ∂〈Π, α〉 = ∂̄(β)

for a (j − 1, i− 1) form β. Then d2([α]) is represented by

δ(β) = (j − 1− n) ∂〈Π, β〉 − (j − 2− n)〈Π, ∂(β)〉.

Now

∂̄ ∂(β) = ∂ ∂̄(β) = (j − n) ∂2〈Π, α〉 = 0.

Hence ∂(β) is ∂̄-closed and ∂-exact, hence ∂̄- exact. Since Π is holomorphic, 〈Π, ∂(β)〉
is also ∂̄-exact, hence null-cohomologous.

Next, note

∂̄ ∂〈Π, β〉 = ∂ ∂̄〈Π, β〉 = ∂〈Π, ∂̄β〉 = (n− j) ∂〈∂〈Π, α〉〉
= (n− j) ∂〈Π, δ(α)〉 = (n− j)δ2(α) = 0
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(the next to last equality due to ∂2 = 0). Therefore ∂〈Π, β〉 is again ∂̄-closed and
∂-exact, hence ∂̄ exact, hence null-cohomologous. Thus, d2([α]) = 0. The vanishing
of the higher dr is proved similarly.

Corollary 7.2. (i) Hi(Θ•) admits a filtration with quotients

Hq(X,Ω2n−i+q
X ), q = 0, ..., i, i = 0, ..., 2n.

(ii) Hi(ED•) admits a filtration with quotients

Hn+i−a(X,Ω
n+|n−a|
X ), a = 0, ..., 2n.

(iii) Hi(DE•) admits a filtration with quotients

Hn+i−a(X,Ω
n−|n−a|
X ), a = 0, ..., 2n.

Thus, the cohomology of Θ•X gives rise to a ’Poisson Hodge diamond’ with rows

Hi,2n
X , ...H0,2n−i

X , i = 0, ..., 2n. This diamond is just the usual Hodge diamond of X
rotated clockwise by 90◦.

Using Corollary 6.5, we can now conclude

Corollary 7.3. Assume (X,Π) is a compact holomorphic Kählerian log-
symplectic manifold such that Π satisfies the RG condition, and that the normalized
strata Xk are Fano for k ≤ a. Then the Hodge numbers of X satisfy

h2n−i,i
X = 0, i = 0, ..., a. (56)

This might be compared with the following result which not strictly speaking a
consequence of the foregoing but related to in in that Θ•X = T •X(−D) (see Corollary
2.3). It gives a source of unobstructed odd-dimensional Poisson manifolds.

Proposition 7.4. Let (X,Π) be a compact holomorphic Kählerian log-symplectic
2n- dimensional manifold such that the Hodge number h1,2n−2

X = 0. Then the normal-
ized degeneracy locus X1 together with the induced Poisson structure Π1 have unob-
structed deformations and those deformations lift to deformations of (X,Π) inducing
locally trivial deformations of the degeneracy divisor.

Proof. We have an exact sequence

0→ T •X(−D)→ T •X〈− logD〉 → j∗T •X1
→ 0

where D is the degeneracy divisor of Π and j : X1 → D ⊂ X is the normalization
map.

Claim. the induced map

H1(T •X〈− logD〉)→ H1(j∗T •X1
)

is surjective.
Assuming this, a first-order deformation of (X1,Π1) given by v ∈ H1(j∗T •X1

) lifts
to a deformation ṽ ∈ H1(T •X〈− logD〉), i.e. a deformation of (X,Π) inducing a locally
trivial deformation of D; as is well known (e.g. [13], p. 1170 and [14], Lemma 1), the
latter deformations are unobstructed thanks to Poisson duality and Hodge theory,
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hence the given first-order deformation ṽ extends to a formal or analytic arc, hence
the same is true of v. Consequently (X1,Π1) has unobstructed deformations.

Proof of claim. This follows from the vanishing H2(T •X(−D)) = 0. To see the
latter note the exact sequence

... H1(T 2
X(−D))→ H2(T •X(−D))→ H2(TX(−D)) ...

Because D is anticanonical, the last group is Serre dual to H1,2n−2
X which vanishes by

hypothesis. Similarly the first group is dual to H2,2n−2
X which also vanishes thanks to

Hodge symmetry h1,2n−2 = h2n−2,1 = h2,2n−1.

The condition h1,2n−2
X = 0 seems weak and certainly holds for flag manifolds and

toric manifolds. Thus we conclude by Example 5.2 that the normalized boundary of
an even-dimensional toric variety X carries unobstructed Poisson structures induced
from X.
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