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TOPOLOGICAL CONVEXITY IN COMPLEX SURFACES∗

ROBERT E. GOMPF†

Abstract. We study a notion of strict pseudoconvexity in the context of topologically (often
unsmoothably) embedded 3-manifolds in complex surfaces. Topologically pseudoconvex (TPC) 3-
manifolds behave similarly to their smooth analogues, cutting out open domains of holomorphy (Stein
surfaces), but they are much more common. We provide tools for constructing TPC embeddings,
and show that every closed, oriented 3-manifold M has a TPC embedding in a compact, complex
surface (without boundary) realizing any homotopy class of almost-complex structures (the analogue
of the homotopy class of the contact plane field in the smooth case). We prove our tool theorems
with invariants that classify almost-complex structures on any 4-manifold homotopy equivalent to M .
These invariants are amenable to computation and respected by homeomorphisms (not necessarily
smooth). We study the two equivalence classes of smoothings on the product of a 3-manifold with
a line, and on collared ends. Both classes of smoothings are realized by holomorphic embeddings
exhibiting any preassigned homotopy class of almost-complex structures. One class arises from TPC
embedded 3-manifolds, while the other likely does not.
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1. Introduction. Pseudoconvexity is a fundamental notion in complex analy-
sis. A real hypersurface in a complex manifold is strictly pseudoconvex (SPC) if it
is locally biholomorphic to a strictly geometrically convex hypersurface. As an ap-
plication, Stein manifolds, that is, complex manifolds that properly, holomorphically
embed in CN , are characterized as open complex manifolds admitting proper maps to
[0,∞) whose regular level sets are SPC. A basic method for finding Stein manifolds
is to locate an SPC hypersurface M in Cn (or in another Stein manifold). Such an
M always cuts out a Stein manifold as the interior of the compact region bounded by
M . We focus on real dimension 4 (complex surfaces), where both complex analysis
and differential topology are permeated with unique subtleties. In this dimension,
topologically embedded 3-manifolds frequently cannot be smoothed by a topologi-
cal isotopy, and such isotopies typically generate families that cut out open subsets
realizing infinitely many diffeomorphism types (which cannot happen in other dimen-
sions). While SPC 3-manifolds are highly constrained, a much more flexible notion
of topologically pseudoconvex (TPC) 3-manifolds was introduced in [G4]. These are
frequently unsmoothable, but still share some basic properties of SPC manifolds. No-
tably, they cut out open Stein surfaces, although these typically do not have finite
differential topology. The present paper investigates TPC 3-manifolds in more depth,
exhibiting their full flexibility: The most subtle topological structure of an SPC man-
ifold, namely its contact hyperplane field, has an analogue (at least up to homotopy)
for TPC manifolds, and every closed, oriented 3-manifold has a TPC embedding in
a closed complex surface, realizing any preassigned choice of this additional struc-
ture. We prove this by presenting some basic tool theorems for constructing TPC
embeddings and tracking their almost-complex structures. The proofs of these the-
orems lead us into a deeper discussion of smooth and almost-complex structures on
manifolds homeomorphic to R×M3.
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Our main focus is on 3-manifolds M , which we always take to be closed (i.e.,
compact and without boundary), connected and oriented, and on their topological
(i.e., homeomorphic) embeddings in complex surfaces or in more general 4-manifolds
X. To avoid wild phenomena, we assume the embeddings are bicollared, that is,
they extend in the obvious way to topological embeddings of R × M . (A collar
is an extension on one side to [0,∞) × M .) Such an embedding of M frequently
cannot be smoothed by a topological isotopy (homotopy through embeddings), and
the smooth structure on R×M pulled back by such an embedding is typically exotic
(not diffeomorphic to the standard smoothing). A topological isotopy of an embedding
of R × M (or other open 4-manifold) may induce a 1-parameter family of pairwise
nondiffeomorphic smoothings on the domain. (Such nonuniqueness can only occur in
dimension 4 since the smoothings are sliced concordant, as we discuss below.) We
will frequently deal with a 3-manifold M exhibited as the bicollared boundary of a
topologically embedded 4-manifold Y in a complex surface. Following [G4], we will
call such a Y topologically pseudoconvex (TPC) if it is also a Stein compact. The latter
is a standard term for a compact subset with a Stein neighborhood system, so every
neighborhood of it contains a neighborhood that is Stein (in the inherited complex
structure). By a classical result, the interior of a Stein compact is always Stein. As
in [G4], an embedding of a 3-manifold M will be called TPC if it has a neighborhood
biholomorphic to that of a boundary of a TPC 4-manifold (embedded in a possibly
different complex surface). A TPC immersion is defined similarly using a holomorphic
immersion of the boundary neighborhood. TPC embeddings and immersions behave
analogously to their SPC counterparts: A TPC immersion determines an orientation
onM , which we assume agrees with its preassigned orientation, and a TPC embedding
in a Stein surface cuts out a TPC 4-manifold, whose interior is then Stein. However,
TPC embeddings are much more flexible than SPC embeddings. It is shown in [G4]
that every topological embedding of a 2-handlebody (a 4-dimensional handlebody
with all handles of index at most 2) is topologically isotopic to a TPC embedding.
From this, it is deduced that every closed 3-manifold M has a TPC immersion in C2

and embedding in every closed, simply connected complex surface with b± sufficiently
large. The present paper explores the range of additional structure realized by such
immersions and embeddings.

The most subtle topological structure associated to an SPC 3-manifold M ⊂ X is
its induced contact plane field. This is given by ξ = TM ∩ JTM , where J represents
fiberwise multiplication by i in the tangent complex 2-plane bundle TX. While it is
not clear how much of the classification theory of contact structures usefully extends
to TPC embeddings, we can at least capture the homotopy class of the plane field ξ.
For an SPC embedding, M has a neighborhood diffeomorphic to R×M . The above
formula for ξ induces a bijection from homotopy classes of almost-complex structures
J on R×M to those of oriented plane fields on M . (The inverse interprets ξ and its
complementary trivial R2-bundle as complex line fields determining J up to homotopy
on R×M .) A TPC 3-manifold M has a neighborhood V homeomorphic to R×M , but
typically with an exotic smooth structure, inheriting a complex structure J from the
ambient complex surface. We will find a way to keep track of the homotopy class of
such an almost-complex structure on the underlying topological manifold R×M , and
show that such structures are much more flexible than their analogs for SPC surfaces.
Theorem 2.6 gives conditions guaranteeing TPC embeddings and immersions that
preserve such structure. Some sample consequences are given below in Theorem 1.1.
For γ in a finitely generated abelian group G, let div γ ∈ Z≥0 denote the divisibility of
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γ in G modulo torsion, with div γ = 0 when γ has finite order. For G = H2(M) and
J on V as above, we say that k ∈ Z is a factor of the Chern class c1(J) if c1(J) = kβ
for some β ∈ H2(M). (Note that if c1(J) has order n then all integers congruent to
1 mod n are factors.) Since a TPC immersion f : M → X satisfies f∗c1(X) = c1(J),
div c1(X) must be a factor of c1(J) whenever f exists and H2(X) is finitely generated
and torsion free.

Theorem 1.1. Let (M,J) be a closed, oriented 3-manifold with an almost-
complex structure (up to homotopy) on R×M . Then:

a) (M,J) has a TPC embedding in every closed, simply connected complex sur-
face X with div c1(X) a factor of c1(J) and b±(X) sufficiently large (relative
to a preassigned upper bound on div c1(X) if c1(J) has finite order).

b) (M,J) has a TPC immersion in a preassigned closed, simply connected com-
plex surface X if and only if div c1(X) is a factor of c1(J).

c) (M,J) has a TPC immersion in every nonminimal or ruled surface.
d) (M,J) has a TPC immersion in a preassigned complex surface X with

c1(X) = 0 (such as C2) if and only if c1(J) = 0.

In particular, every homotopy class of structures J on M is realized by TPC embed-
dings as in (a), since every nonminimal X with b±(X) sufficiently large satisfies its
hypotheses with div c1(X) = 1. (The integers b±(X) are the dimensions, respectively,
of the maximal positive and negative definite subspaces of the rational intersection
form.) The topology of the embeddings is flexible. As constructed in the proof of
Theorem 2.6, the embeddings of a given (M,J) cut manifolds X into two pieces, each
with b± arbitrarily large, and the pieces with oriented boundary M are minimal (in
fact, spin). In constrast, while every closed 3-manifold has infinitely many homotopy
classes of oriented plane fields, each of which is realized by at least one contact struc-
ture, most such homotopy classes cannot arise for any SPC embedding cutting out
a compact region. For example, the manifolds S3, S1 × S2 and connected sums of
these each admit a unique contact plane field realizable in this way, and the diffeomor-
phism type of the enclosed region is uniquely determined up to blowups (B4, S1×B3

and boundary sums of these, respectively). (See [CE].) A more drastic example is
the connected sum P#P , where P is the Poincaré homology sphere and the bar de-
notes orientation reversal throughout the text. This admits no tight contact structure
[EH], so no SPC embedding (or immersion), but it has a TPC embedding in C2 (as
the boundary of the 2-handlebody I × (P − intB3)). The resulting almost-complex
structure is unique, but all structures on P#P are realized by TPC immersions in C2

and embeddings as in (a).
The almost-complex structures are surprisingly delicate to track. We work out the

details in Section 3 (which is independent of Section 2). For a 4-manifold V homotopy
equivalent to M , there is a bijection from the set J (V ) of homotopy classes of almost-
complex structures on V to homotopy classes of continuous maps [V, S2] ∼= [M,S2]
(cf. [McS, Remarks 4.1.10, 4.1.12] for closed 4-manifolds). Maps from a 3-complex to
S2 were classified up to homotopy by Pontryagin [P] in 1941 using obstruction theory.
However, the first bijection is not canonical. Furthermore, proving the above theorem
requires us to compare classes in J (R × M) induced by different maps to complex
surfaces, which is awkward from the obstruction theory viewpoint. For example, we
must keep track of these classes during topological isotopies of R × M in X, which
will typically change the smooth structure on R×M . While the isotopy will provide a
bijection of homotopy classes, it is not a priori clear that the bijection is independent
of the choice of isotopy. To remedy these difficulties, we need invariants that classify
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homotopy classes of almost-complex structures and are isotopy-invariant and directly
computable. Fortunately, analogous invariants for plane fields ξ on 3-manifolds were
constructed in [G2], and these can be adapted. Pontryagin’s primary uniqueness
obstruction is detected by a surjection Γ to H2(M), depending on a choice of spin
structure s (with Γ(ξ, s) the difference class between the spinC-structures determined
by ξ and s). This satisfies the condition 2Γ(ξ, s) = c1(ξ) but is delicate in the presence
of 2-torsion. Pontryagin’s secondary obstruction gives differences in Z/ div c1(ξ) for
classes with the same value of Γ. We measure this by an invariant Θ̃ coming from
the equality c21(X) = 2χ(X) + 3σ(X) for closed complex surfaces and its failure
when ∂X = M �= ∅. (Throughout the text, χ and σ denote the topological Euler
characteristic and signature.) The invariants Γ and Θ̃ have become standard tools
in contact topology for contact structures for which c1(ξ) has finite order (allowing
a simplified version θ of Θ̃). However, we also need them when c1(ξ) has infinite
order. In this case, Θ̃ depends on both s and delicate framing data. The present
paper probably represents its first essential use in full generality. The invariants Θ̃
and θ also contain unexplored information beyond Pontryagin’s secondary obstruction
(Remark 3.9(b)).

To understand the effect of topological isotopy on almost-complex structures, it is
convenient to pass to a weaker, intrinsic equivalence relation from classical smoothing
theory. A sliced concordance between two smoothings of an open topological mani-
fold V is a smoothing of I × V restricting to the given smoothings on the boundary
components, such that projection to I = [0, 1] is a smooth submersion. The levels
Vt, t ∈ I, then comprise a 1-parameter family of smoothings of V , i.e., smooth mani-
folds homeomorphically identified with V . An isotopy of a codimension-0 topological
embedding V → X can be interpreted as a level-preserving topological embedding
I × V → I × X, and so pulls back the product smoothing to a sliced concordance.
When dimV �= 4, sliced concordant smoothings are related by a diffeomorphism (that
is C0-small isotopic to the identity through homeomorphisms [KS]); in particular,
topologically isotopic, codimension-0 embeddings pull back diffeomorphic smooth-
ings. However, in dimension 4, such isotopies frequently realize uncountably many
diffeomorphism types. For general open 4-manifolds, sliced concordance classes are
classified by H3(V ;Z2), which is Z2 in our case of interest [KS]. (These are also the
same as stable isotopy classes, where we allow isotopy through homeomorphisms after
product with R.) A sliced concordance identifies the sets J (V0) and J (V1). (Use the
bundle of tangents to the slices Vt rather than stabilizing to a 6-dimensional bundle,
which would lose information.) For V homotopy equivalent to M , we show that the
invariants Γ and Θ̃ are preserved by sliced concordance (Theorem 3.7), so that the
identification is independent of the choice of sliced concordance (Corollary 3.8), and
hence, of topological isotopy. While J is clearly functorial for diffeomorphisms, we
ultimately conclude that it is functorial for homeomorphisms, at least for manifolds
homeomorphic to R×M (Theorem 4.7). The proofs exploit a canonical Z-action on
J (V ) that respects all of the above structure.

We examine sliced concordance classes of smoothings of R × M in more detail
in Section 4. The Kirby–Siebenmann uniqueness obstruction distinguishes the two
sliced concordance classes, but is not in general a canonical map to Z/2, merely a
torsor. However, for many 3-manifolds, the two classes are canonically distinguished
by the existence of a product smoothing, and no diffeomorphism relates smoothings
in different classes:

Theorem 1.2. If M is hyperbolic, Haken or a Z/2-homology sphere, then dif-
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feomorphic smoothings of R × M must be sliced concordant. In the first two cases,
any smoothing diffeomorphic to some R × M ′ is sliced concordant to the standard
smoothing of R×M .

We prove this after Proposition 4.9. The simplest 3-manifolds violating these hy-
potheses are the even lens spaces; we show (Proposition 4.10) that most of these also
satisfy the first conclusion. Then we prove an application to more general 4-manifold
smoothing theory.

Corollary 1.3. Suppose an end of a 4-manifold is homeomorphic to R×M with
M hyperbolic, Haken or S3. Then there is a canonical Z/2-invariant distinguishing the
two sliced concordance classes of smoothings of the end, with value 0 on each product
smoothing. If M is a Z/2-homology sphere, such a Z/2-invariant is established by
fixing the choice of M (among 3-manifolds M ′ for which the end is homeomorphic to
R×M ′).

The author knows no examples of 3-manifolds for which these conclusions fail. How-
ever, the first conclusion of the theorem fails for more general 4-manifolds. For ex-
ample, while it holds for a twice-punctured 4-sphere R × S3, it fails after a third
puncture: If V is taken from the nonstandard sliced concordance class on R × S3,
then V − {p} has a unique end admitting a smooth product structure (distinguished
by the above invariant). But homeomorphisms act transitively on the three ends,
pulling back the given smoothing into different sliced concordance classes. Combin-
ing these results with previous sections, we show (Theorem 4.11, cf. Corollary 2.9)
that every sliced concordance class and almost-complex structure on R×M are real-
ized holomorphically together, by an embedding into a closed, complex surface. For
the class of the standard smoothing, the embedding arises as a boundary collar of
a TPC 2-handlebody. For the other class, the embedded M cannot even cut out a
smoothable 4-manifold. It is an interesting question whether it can ever be TPC.
Other related questions and a conjecture also appear in Section 4.

Except where otherwise specified, we use the following conventions: Manifolds
are smooth and oriented, and local homeomorphisms and diffeomorphisms preserve
orientation. Handlebodies are compact. Homology and cohomology have integer
coefficients. For any 4-manifold V , J (V ) denotes the set of homotopy classes of
almost-complex structures on V (implicitly respecting the given orientation on V ).
We canonically identify J (R×M) with J (M), the set of homotopy classes of oriented
plane fields on M .

2. Constructing TPC maps. In this section, we construct TPC embeddings
and immersions of any (closed, oriented) 3-manifold M , realizing each J ∈ J (M).
We use a simply stated TPC embedding theorem from [G4], along with several tool
theorems for tracking almost-complex structures that we prove in Section 3.

2.1. TPC embeddings. We begin with the embedding theorem from [G4].

Definition 2.1. A compact topological 4-manifold topologically embedded with
bicollared boundary in a complex surface is topologically pseudoconvex (TPC) if it has
a Stein neighborhood system. A topological embedding (resp. immersion) f : M → X
of a 3-manifold into a complex surface will be called TPC if there is a TPC 4-manifold
Y in some complex surface X ′ and a homeomorphic identification of M with ∂Y so
that f extends to a holomorphic embedding (resp. immersion) of some neighborhood
of ∂Y in X ′.
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The TPC 4-manifolds that we construct will always come endowed with the fol-
lowing additional structure. Let Σ denote the intersection of the standard Cantor set
with the open interval (0, 1).

Definition 2.2. A Stein onion consists of a closed 3-manifold M , a Stein surface
U and a continuous surjection ψ : [0, 1) × M → U restricting to a homeomorphic
embedding on (0, 1)×M such that for each σ ∈ Σ, the open subset ψ([0, σ)×M) is
Stein.

Thus, ψ presents U as an open mapping cylinder exhibiting the core ψ(0) as a defor-
mation retract of U , so the core has the homotopy type of a 2-complex. Consider the
uncountable subset Σ′ ⊂ Σ obtained by deleting the countably many boundaries of
open intervals comprising (0, 1)− Σ. For each σ ∈ Σ′, the subset Yσ = ψ([0, σ]×M)
is a TPC 4-manifold that is a nested intersection of uncountably many topologically
isotopic Stein surfaces of the form intYτ with τ ∈ Σ. (A similar notion of convexity
applies to the core. In particular, the core and each such Yσ are Stein compacts.)
Furthermore, intYσ is an uncountable nested union of topologically isotopic TPC 4-
manifolds. The levels ∂Yσ with σ ∈ Σ′ comprise an uncountable, topologically parallel
collection of TPC embeddings of M . This definition of a Stein onion is weaker than
the one in [G4] (compact case), which presented the closure of U in a complex surface
as a topologically embedded 2-handlebody, with its core 2-complex given by ψ(0) and
smoothly embedded except for one point on each 2-cell (where it is topologically tame
but not smoothly conelike). The main theorem of [G4] gives a simple and powerful
method for locating Stein onions in complex surfaces:

Theorem 2.3 ([G4, Theorem 1.4]). Every topological embedding of a 2-
handlebody Y into a complex surface is topologically isotopic to an embedding with
image Yσ in some holomorphically embedded Stein onion.

The proof combines fundamental work of Eliashberg [CE] and Freedman [F], [FQ]
to isotope Y to the closure of a Stein onion with ψ respecting the handle structure,
so that the 2-handles of each Yσ with σ ∈ Σ have well-controlled (infinite) differen-
tial topology (as generalized Casson handles). Such a Stein onion can typically be
arranged to realize infinitely many (often uncountably many) diffeomorphism types
of Stein surfaces intYσ, σ ∈ Σ [G4, Section 5]. All of our TPC 4-manifolds arise
from this theorem, so automatically inherit all of the above structure, and so our
TPC 3-manifolds occur in uncountable, topologically parallel families exhibited by
bicollars.

2.2. TPC maps realizing a fixed almost-complex structure. We next wish
to state the main theorem of Section 2 and derive Theorem 1.1. This requires some
definitions and a theorem from Section 3. For every bicollared topological embedding
of M into a smooth 4-manifold X, the bicollar R×M ↪→ X is unique up to topological
isotopy [FQ], so the induced smoothing on R×M is unique up to sliced concordance.
The same applies to topological immersions if we assume an immersed bicollar and
isotope in its domain. Every topological 4-manifold Y with boundary M has uniquely
collared boundary, determining a unique isotopy class of bicollared embeddings M ↪→
intY . Any smoothing on intY then determines a unique sliced concordance class of
smoothings on R × M , which we call boundary collar smoothings. For example, if
Y is created by Theorem 2.3, ∂Y may not be smoothable by any isotopy, but intY
inherits a smoothing. This induces boundary collar smoothings, defined by pulling
the smoothing of intY back by ψ (Definition 2.2) to some (a, b)×M (identified with
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R×M by some orientation-preserving homeomorphism R ≈ (a, b)). If X is a complex
surface, every smoothing V on R ×M induced by a bicollared immersion inherits a
complex structure. We will show (Theorem 4.7) that J is functorial with respect to
homeomorphisms, so J (V ) ∼= J (R×M) is well-defined on the underlying topological
manifold. For now, the following special case of Corollary 3.8 suffices:

Theorem 2.4. The set J (V ) is well-defined on sliced concordance classes of
smoothings V of R×M .

Definition 2.5. For J ∈ J (M) = J (R × M), a topological embedding (resp.
immersion) of the pair (M,J) in a complex surface is a bicollared topological embed-
ding (resp. immersion) of M for which the induced smoothing V of R ×M is sliced
concordant to the standard smoothing, with J ∈ J (R × M) ∼= J (V ) the inherited
complex structure on V . It will be called TPC if the map on M is TPC.

The main theorem of Section 2 generalizes Theorem 1.1, giving broad conditions
under which a given pair (M,J) has a TPC embedding or immersion.

Theorem 2.6. Given a closed, oriented 3-manifold M and J ∈ J (M),
a) (M,J) has a TPC immersion in a given complex surface X whenever there

is an α ∈ π2(X) for which 〈c1(X), α〉 is a factor of c1(J).
b) There is an integer nM depending only on M such that (M,J) has a TPC

embedding in every closed, simply connected complex surface X with b±(X) ≥
nM+2(div c1(X))2 and div c1(X) a factor of c1(J). If X is spin, the inequality
can be weakened to b±(X) ≥ nM + 1

2 (div c1(X))2.
Let m denote 〈c1(X), α〉 in (a) or div c1(X) in (b). If X is spin, then the resulting
immersion or embedding can be chosen to realize any given spin structure on M ,
unless H1(M) has 2-torsion and m is divisible by 4.

In particular, for fixed M , every homotopy class J has a TPC embedding in every
nonminimal, closed, simply connectedX with b±(X) ≥ nM+2. For minimal examples
satisfying the inequalities in (b), consider the hypersurface Xd of degree d in CP 3.
This has div c1(Xd) = |d−4|, but the numbers b±(Xd) increase cubically with d. It is
spin whenever d is even. Complete intersections in CPn provide other such families.
For a given M , the proof gives a computable nM . The divisibility hypothesis in (b)
is clearly necessary. The dependence of the bounds in (b) on div c1(X) and the final
caveat on 2-torsion andm for both (a) and (b) are also necesssary; see Remark 2.10(a).
Note that it makes sense to pull a spin structure back to M , since spin structures
can be interpreted on their underlying topological manifolds (in this case R × M),
cf. Theorem 4.1.

Proof of Theorem 1.1. Part (a) follows immediately from (b) above since c1(J)
has only finitely many factors when it has infinite order. The “only if” direction of
(b) is easy. For the converse, note that H2(X) is torsion-free, so we can factor c1(X)
as (div c1(X))β for a primitive class β. By Poincaré duality, there is a dual class
α ∈ H2(X) with 〈β, α〉 = 1. Since X is simply connected, π2(X) can be identified
with H2(X), so we can apply (a) above. To prove (c), note that a nonminimal or
ruled surface X contains a holomorphically embedded sphere α of square −1 or 0, so
〈c1(X), α〉 = 1 or 2 by the adjunction formula. (It would also suffice for X to have a
holomorphic sphere of square −3 or −4.) Since c1(J) reduces mod 2 to w2(M) = 0,
it has 2 as a factor. Part (d) follows immediately from (a) above by letting α = 0 (or
any other class).
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2.3. Proof of Theorem 2.6. The proof requires two additional theorems that,
along with Theorem 2.4, are proved after Corollary 3.8 from stronger results in Sec-
tion 3. First, we need to understand the set J (M). This was studied in [G2] in the
context of plane fields, and classified by two invariants:

Theorem 2.7 ([G2]). There is a canonical Z-action on J (M), with structure
determined by two invariants:

(a) The set of orbits is identified with H2(M ;Z) by an invariant Γ that depends
on a choice of spin structure s on M . For fixed J , Γ(J, s) ranges over all
classes with 2Γ(J, s) = c1(J).

(b) The orbit containing a given J is isomorphic as a Z-space to Z/ div c1(J).
There is an invariant Θ̃ that, for a fixed s and (normally) framed 1-manifold
Poincaré dual to Γ(J, s), equivariantly identifies this orbit with an index-4
coset of Z/4 div c1(J).

We will prove this theorem in more generality in Section 3, by defining the invariants
for J (V ) whenever the 4-manifold V is homotopy equivalent to M . Dependence of
the invariants on the auxiliary data is given in [G2] and Proposition 4.2. Notably,
the chosen framing in (b) is well defined mod div c1(J) on the homology class dual to
Γ(J, s) (cf. Proposition 3.5).

Our main tool for applying these invariants to TPC embeddings is the following
theorem, which we will apply to the output of Theorem 2.3. That is, we will exhibit
the required M in X as the boundary of a topologically embedded (or immersed)
Y that, by construction, will be a spin 2-handlebody without 1-handles. Then intY
will inherit a smoothing and almost-complex structure. We wish to represent Γ by
a framed 1-manifold in M , then compute Θ̃ via the obstruction to extending this
framing over a suitable surface in Y .

Theorem 2.8. Let (Y, s) be a smooth, compact, spin 4-manifold with boundary
M , H3(Y ;Z/2) = 0 and no 2-torsion in H2(Y ;Z). On intY , fix another smoothing
and an almost-complex structure JY . Then any induced boundary collar smoothing V
is sliced concordant to the standard smoothing on R×M , identifying J (V ) with J (M).
Let (F, ∂F ) ⊂ (Y,M) be a compact surface with a (normal) framing φ on ∂F ⊂ M ,
such that 2[F ] ∈ H2(Y,M) is Poincaré dual to c1(JY ). Then the restriction JV =
JY |V has Γ(JV , s) Poincaré dual to [∂F ] and Θ̃(JV , s, φ) ≡ 4e(νF, φ)−2χ(Y )−3σ(Y )
mod 4 div c1(J), where e(νF, φ) is the normal Euler number of F relative to φ.

Since Y is spin, 2 is a factor of c1(JY ), so a suitable F always exists. Note that
when ∂F is empty, 4e(νF, φ) = c21(JY ) (which is well-defined in this case). Thus,
Θ̃(JV , s, φ) is a relative version of c21(JX)−2χ(X)−3σ(X), which vanishes for closed,
almost-complex 4-manifolds X.

Proof of Theorem 2.6. First we show that, for m as given, there is a spin structure
s on M such that either m (when it is odd) or m

2 is a factor of Γ(J, s), and that every
spin structure s has this property unless H1(M) has 2-torsion and m is divisible by
4. In both cases (a, b) of the theorem, m is a factor of c1(J) = 2Γ(J, s) for every
s. If m is divisible by 4, we can choose s so that m

2 is a factor of Γ(J, s). (Write
c1(J) = 2(m2 β) and apply the last sentence of Theorem 2.7(a)). This covers all spin
structures when H1(M) ∼= H2(M) has no 2-torsion, since Γ(J, s) is then independent
of s. If m is not divisible by 4, either m or m

2 is an odd integer 2r+1. In the quotient
H2(M)/(2r+1)H2(M), we have 2Γ(J, s) = 0 for each s so Γ(J, s) = (2r+1)Γ(J, s) = 0.
Thus Γ(J, s) has the required factor.
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We can now describe M as a suitable boundary. It is well known (e.g. [GS]) that
every spin 3-manifold bounds a spin 2-handlebody without 1-handles. Choose such a
pair (Y, sY ) bounded by (M, s). Since H3(Y,M) ∼= H1(Y ) = 0, the restriction map
H2(Y ) → H2(M) is surjective. Thus, Γ(J, s) pulls back to a class γ ∈ H2(Y ). By
factoring Γ(J, s) as in the previous paragraph before pulling back, we can arrange m
to be a factor of 2γ. Choose a compact surface F in Y Poincaré dual to γ, and a
framing φ on ∂F ⊂ M , and let θ = 4e(νF, φ)− 2χ(Y )− 3σ(Y ) ∈ Z/4 div c1(J).

To prove (a), note that we can modify Y to change θ by any multiple of 4, for
example by taking the connected sum (away from F ) with copies of S2 × S2 or the
K3-surface. The modified Y is still a 4-ball with 2-handles attached, so it is homotopy
equivalent to a wedge of 2-spheres. For the given class α ∈ π2(X), we have arranged
that 〈c1(X), α〉 = m is a factor of 2γ. Thus, we can construct a map f : Y → X such
that f∗c1(X) agrees with 2γ when evaluated on H2(Y ), by sending each sphere of the
wedge to a suitable multiple of α. Since H1(Y ) = 0, H2(Y ) equals Hom(H2(Y ),Z),
so f∗c1(X) = 2γ. In particular, f∗w2(X) = 0 = w2(Y ). We can assume f is an
embedding on the 4-ball and an immersion on the cores of the 2-handles. After
adding double points to the images of these cores, we can assume their normal Euler
numbers relative to fixed framings in ∂B4 are the same as in Y . (They are initially the
same mod 2 by the w2 condition, and each double point changes the difference by ±2.)
We can then assume f is an immersion. Let JY = f∗JX be the pulled back complex
structure on Y . Apply Theorem 2.3 to Y inside itself, isotoping Y to Yσ inside a
Stein onion in Y , and let V be a boundary collar smoothing in Yσ that exhibits TPC
embeddings ofM inside Y . Applying f to these gives TPC immersions ofM inX since
f : Y → X is holomorphic by the definition of JY . Since c1(JY ) = f∗c1(X) = 2γ is
Poincaré dual to 2[F ], Theorem 2.8 implies that Γ(JV , s) = γ|M = Γ(J, s) (where we
canonically identify spin structures on V with those on M). Thus, by Theorem 2.7(a),
JV lies in the same Z-orbit as J . By Theorem 2.8, Θ̃(JV , s, φ) = θ, which we have
already seen can take any preassigned value in the appropriate coset. Thus, we can
assume Θ̃(JV , s, φ) = Θ̃(J, s, φ), so JV = J in J (V ) = J (M) by Theorem 2.7(b),
proving (a). Since H1(Y ;Z/2) = 0, sY is the unique spin structure on Y , so any
spin structure on X pulls back to sY |V on V , which we have identified with s on
M . This proves the last sentence of the theorem in the case of immersions. Since the
proof applies to any (M,J) (e.g. by taking X nonminimal so m = 1), we have also
shown that any θ as constructed in the second paragraph is congruent mod 4 to every
Θ̃(J ′, s, φ) for which Γ(J ′, s) = Γ(J, s) (cf. Proposition 4.5). Furthermore:

Corollary 2.9. Every (M,J, s) bounds a spin complex surface Y made by
adding 2-handles to B4.

To prove (b), start with the data (Y, sY , F, φ) of the second paragraph of the proof.
After adding a pair of 2-handles if necessary, we can assume Y contains an S2 × S2

connected summand disjoint from F . Take the double Z = DY = ∂(I×Y ) = Y ∪M Y
and set nM = b2(Y ) + 7 = b+(DY ) + 7 = b−(DY ) + 7. We wish to modify the pair
(DY,DF ) in the complement of M , to control e(νF, φ) while the homology class
2[DF ] changes to attain the same square and divisibility as c1(X). Since X is simply
connected, H2(X) has no torsion. Since c1(X) is characteristic, i.e., it reduces mod 2
to w2(X), it follows thatX is spin if and only ifm = div c1(X) is even. In this case, we
can change e(νF, φ) by any multiple of 1

2m
2 by adding a component to F representing

the class m
2 (1, k) ∈ H2(S

2 × S2) (using the obvious basis). Note that m �= 0 since
the given bound on b+(X) rules out the K3 surface. The divisibility of the new [F ]
will be exactly m

2 since this is its intersection number with (0, 1) ∈ H2(S
2 × S2). By
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suitably choosing k and summing Y with fewer than 1
2m

2 copies of S2×S2 disjointly

from F , we can arrange θ to equal Θ̃(J, s, φ). (Recall that these agree mod 4 by
the previous paragraph.) Continue to denote the 4-manifold pair as (Z, Y ) (without
changing nM , and noting that Z is no longer DY ), and let F̂ be the modified version
of DF in Z. We have b+(Z) = b−(Z) ≤ nM − 8 + 1

2m
2 and div[F̂ ] = m

2 . (We can
replace nM by nM − 8 in the theorem for spin X excluding the K3 surface.) Since
the intersection forms of X and Z are even and c1(X) has the form mβ, the squares
c21(X) and (2[F̂ ])2 have a common factor of 2m2. Thus, we can set them equal by
adding to F̂ a component with divisibility m

2 lying in the S2 × S2-summand disjoint
from Y .

WhenX is not spin, we apply a similar procedure, althoughm is odd. In this case,
we can change e(νF, φ) by any multiple of 2m2, using the class m(1, k) ∈ H2(S

2×S2).
The resulting F has divisibility m, and we need fewer than 2m2 S2 × S2-summands
to set θ = Θ̃(J, s, φ), so b+(Z) = b−(Z) ≤ nM − 8 + 2m2. This time, we know that
c21(X) and (2[F̂ ])2 have a common factor of m2, but we can only change (2[F̂ ])2 by a
multiple of 8m2 using the S2 × S2-summand outside Y . Thus, we can only arrange
(2[F̂ ])2 to equal c21(X) + lm2 for some l ∈ Z that can be changed by any multiple of
8. We wish to modify the class c = 2[F̂ ] outside Y so that it has the same square and
divisibility as c1(X). Let μ = m or 3m, whichever has square 1 mod 16. (These both
have square 1 mod 8 since they have the form 2r+1.) We set c2 = c21(X) by summing
Z outside Y with up to 8 copies of ±CP 2 and adding μ times each generator to c,
then choosing l suitably. Now b±(Z) ≤ nM +2m2. Note that there are two ways to do
this, depending on whether we choose the relevant l to be an even or odd multiple of
8, and the resulting manifolds Z have signatures differing by 8. We can arrange to use
at least one ±CP 2-summand in this process, by using a canceling pair if necessary.
Thus, neither Z nor X is spin in this case, but by construction, c is characteristic. In
both the spin and nonspin cases, we have now constructed a characteristic element
c ∈ H2(Z) (which is [2F̂ ] in the spin case) with the same square and divisibility as
c1(X). This is represented by a cycle whose intersection with Y is twice our suitably
modified F .

To complete the proof of (b), we use Freedman’s classification of closed, simply
connected, topological 4-manifolds [F] to construct a homeomorphism between X
and a manifold of the form Z#Z ′, where Z ′ is a topological manifold with even
intersection form. Since the square of any characteristic element is congruent mod
8 to the signature (e.g. [GS, Lemma 1.2.20]), and c2 = c21(X), the signatures of X
and Z are congruent mod 8. In the spin case, they are congruent mod 16 by Rohlin’s
theorem, and in the nonspin case we arrange this by choice of Z. By hypothesis and
construction, we have b+(Z) ≤ b+(X) and b−(Z) ≤ b−(X). Since the intersection
forms Q(X) and Q(Z) are indefinite, and both even when X is spin and both odd
otherwise, the classification of unimodular forms over Z gives an isomorphism Q(X) ∼=
Q(Z)⊕Q⊥, where Q⊥ is some even form with signature divisible by 16. (First add a
hyperbolic summand to Q(Z) to set the smaller of b+(X)− b+(Z) or b−(X)− b−(Z)
to 0, then add ±E8 summands.) By Freedman’s classification, Q⊥ is realized by some
simply connected topological manifold Z ′ with Kirby–Siebenmann invariant 1

8σ(Z
′) ≡

0 mod 2. SinceX and Z are smooth, their Kirby–Siebenmann invariants vanish. Thus,
Freedman gives a homeomorphism from Z#Z ′ toX. By Wall [W], the automorphisms
of Q(X) act transitively on characteristic elements of a given divisibility and square
(since b±(X) ≥ 2). Thus, we can choose Freedman’s homeomorphism to identify
c (which is still characteristic since Q⊥ is even) with the Poincaré dual of c1(X).
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The homeomorphism restricts to a topological embedding Y ↪→ X that generates
a Stein onion by Theorem 2.3. (In contrast to (a), we apply the theorem to an
embedding that is typically unsmoothable.) Then c1(JY ) = c1(X)|Y is dual to twice
our modified F , so by Theorem 2.8, the resulting boundary collar smoothing has the
required invariants to exhibit TPC embeddings of (M,J). If there is a spin structure
on X, it restricts to the unique sY on Y and to s on M .

Remarks 2.10. (a) The hypotheses of Theorem 2.6(b) are necessary in some
form. A bicollared topological embedding M ↪→ X into a closed, simply connected
complex surface cuts out a compact 4-manifold Y . To see that the lower bounds on
b±(X) in the theorem must depend on div c1(X), suppose that for fixed M , X ranges
over elliptic surfaces in a fixed homotopy type. Then the Mayer-Vietoris sequence
shows that the Betti numbers of Y are bounded, so |2χ(Y ) + 3σ(Y )| is bounded by
some k. For div c1(X) sufficiently large and Γ(J, s) = 0 (for example) not all values of
Θ̃(J, s, φ) ∈ Z can be realized (for fixed s and φ) since any change in its first term is
divisible by (div c1(X))2 � k. (This follows from Theorem 2.8 for suitable hypotheses
on Y , and from Definition 3.6 and Theorem 4.7 in general.) Similarly, the bound on
div c1(X) in Theorem 1.1(a) is necessary when c1(J) has finite order.

To see the difficulty with divisibility by 4 in the final statement of Theorem 2.6,
suppose that H2(M) ∼= Z⊕Z/2, and we wish to realize a pair (J, s) for which Γ(J, s) =
(2n, 1), by a bicollared topological immersion into a simply connected, spin complex
surface X with 4 a factor of div c1(X), which is itself a factor of 4n. Since c1(J) =
(4n, 0), this setup satisfies the other hypotheses of the theorem in both cases (a)
(via Theorem 1.1(b)) and (b) (when b±(X) is sufficiently large). However, such an
immersion is impossible: Since J and s would pull back from structures JX and sX on
X, Definition 3.1 would provide a class Γ(JX , sX) ∈ H2(X) pulling back to Γ(J, s) (via
the immersed bicollar and Theorem 4.7), with 2Γ(JX , sX) = c1(X) (Proposition 3.2
on X − {p}). Since c1(X) has a factor of 4 and H2(X) has no 2-torsion, this would
imply that Γ(JX , sX) has a factor of 2, as does its pullback Γ(J, s) to M . However,
all elements in H2(M) with a factor of 2 have the form (2k, 0). Of course, the other
spin structure s′ on M giving the same Chern class works since Γ(J, s′) = (2n, 0).

(b) The TPC embeddings constructed in this section all explicitly arise from
embedded Stein onions. The author does not know any other general constructions.
However, there is a simple trick for producing TPC embeddings that do not lie in
Stein onions: Suppose M bounds a 2-handlebody Y that topologically embeds in
C2. For example, we could take M = P#P as in the introduction that has no SPC
embedding in any complex surface. Apply Theorem 2.3 to embed Y in a Stein onion
in C2. After translating and rescaling, we can assume the unit ball at 0 lies in intY .
By compactness, Y lies in a ball at 0 with some radius R. Removing 0 from C2 and
modding out by multiplication by R, we obtain a TPC embedding of M in a Hopf
surface X diffeomorphic to S1×S3. This embedded M does not bound anything in X
(even immersed) since it represents a generator of H3(X). By Theorem 1.1(d), there
is a similar TPC immersion of any 3-manifold with any J such that c1(J) = 0.

3. The structure of J (V ). We now prove the remaining theorems of Section 2.
For this, we need to understand the set J (V ) of homotopy classes of almost-complex
structures on a 4-manifold V homotopy equivalent to a 3-manifold. We define a
canonical Z-action on J (V ) and a complete set of invariants describing J (V ) as a Z-
space. These are invariant under sliced concordance, hence, under topological isotopy
when V is smoothly embedded in another 4-manifold. They are concrete enough to
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use in completing the required proofs for Section 2. They also further elucidate the Z-
spaces J (V ), ultimately showing that these comprise a functor on suitable manifolds
V and homeomorphisms (not just diffeomorphisms) between them (Theorem 4.7).

3.1. The invariant Γ. We begin by defining and analyzing the invariant Γ on
J (V ) that we will use in the next section to classify the orbits of the Z-action. The first
step is to understand the space of linear (orientation-preserving) complex structures on
R4 with standard basis e0, e1, e2, e3. Up to homotopy, it suffices to consider orthogonal
complex structures. The space of these is given by SO(4)/U(2) = S2. In fact, any
such J is obtained from the standard complex structure ie0 = e1, ie2 = e3 by some
rotation R ∈ SO(4). Precomposing with a unitary transformation preserves J , so
we may assume Re0 = e0. Then Re1 must be Je0. As J varies, this can be any
point on the unit sphere S2 ⊂ R3 = span{e1, e2, e3}. The vector Je0 then completely
determines J , since the latter must act on the orthogonal complement of Je0 in R3 by a
+π

2 -rotation. Now that S2 is identified with the set of orthogonal complex structures,
we obtain a tautological complex bundle Etaut = S2×R4, where the complex structure
J on the fiber over a given vector v ∈ S2 is given by Je0 = v. There is a canonical
complex identification Etaut = C⊕ TS2, with first summand spanned over C by e0.

Now let E → X be a trivial R4-bundle over a manifold (of any dimension). For
any fixed trivialization τ , the previous paragraph applies to each fiber, so the space
of complex bundle structures on E is homotopy equivalent to that of orthogonal com-
plex structures (relative to τ), and the latter structures correspond bijectively to maps
X → S2. We obtain a bijection from the set J (E) of homotopy classes of complex
bundle structures to the set [X,S2] of homotopy classes of maps, depending on τ
only through its homotopy class. (It does depend crucially on the homotopy class
of τ ; see Remark 3.9(a).) The Thom–Pontryagin construction (e.g. [M]) canonically
identifies [X,S2] with the set Ω(X) of framed cobordism classes of (properly embed-
ded) codimension-2 framed submanifolds of intX: Each ϕ : X → S2 corresponds to
the submanifold ϕ−1(p), where p is any regular value, with normal framing chosen to
map onto a fixed positive frame for TpS

2. The inverse puts any framed submanifold
into this form, where ϕ is constant on the complement of a tubular neighborhood.
It is routine to check that Ω is a contravariant functor: For each homotopy class
of maps f : X → Y , define f∗ : Ω(Y ) → Ω(X) by choosing f transverse to a given
framed submanifold and taking the preimage with pulled back framing. In fact, Ω
is canonically isomorphic to the functor obtained from homotopy classes of maps to
S2 by composing functions in the obvious way. (The same discussion applies using
codimension-k submanifolds and [X,Sk].)

To define Γ and prove the subsequent proposition, we need a few basic facts
about spinC-structures. On an R4-bundle, we can define complex, spin and spinC-
structures to be respective lifts of the associated principal SO(4)-bundle to the struc-
ture groups U(2), Spin(4) and SpinC(4) = (S1 × Spin(4))/Δ, where Δ is the diagonal
Z/2. Since the first two of these groups are canonically subgroups of the third, ev-
ery complex or spin structure induces a spinC-structure. Since SpinC(4) canonically
projects to S1 ⊂ C, every spinC-structure determines a complex line bundle L and
hence a first Chern class. When the spinC-structure comes from a complex struc-
ture J , its Chern class c1(L) equals c1(J). When it comes from a spin structure
s, its resulting Chern class satisfies c1(s) = −c1(s), because Spin(4) ⊂ SpinC(4) is
the fixed set of the involution conjugating S1 and L. When spinC-structures exist,
they are classified by their primary difference obstruction in H2(X;Z). Equivalently,
this group acts freely and transitively on the set of spinC-structures (when the lat-
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ter is nonempty). Similarly, H1(X;Z/2) classifies spin structures, and the map from
spin- to spinC-structures is equivariant under the action induced through the Bock-
stein homomorphism H1(X;Z/2) → H2(X;Z). Twice the difference class of a pair
of spinC-structures is the difference of their Chern classes, so spinC-structures are
determined by their Chern classes when H2(X) has no 2-torsion.

Definition 3.1. Given a complex structure J and a spin structure s on an
R4-bundle over X, let Γ(J, s) ∈ H2(X,Z) denote the difference class of their induced
spinC-structures.

Proposition 3.2. For a fixed trivialization τ of E → X as above, let s be
its induced spin structure. Then for any complex structure J ∈ J (E), the class
Γ(J, s) is Poincaré dual to the properly embedded submanifold F = ϕ−1(p) ⊂ X that
(when suitably framed) represents J in Ω(X). In particular, the class dual to F only
depends on τ through s. There is a J-complex trivialization τJ on E|(X−F ) agreeing
with s and representing twice the generator of π1(U(2)) on each meridian of F . For
fixed J , the invariants Γ(J, s) for varying spin structures range over all classes with
2Γ(J, s) = c1(J).

Proof. After a homotopy making J τ -orthogonal, τ and J together determine a
map ϕ : X → S2. By construction, this is covered by a complex bundle map E →
Etaut, such that τ is the pullback of the constant real trivialization of Etaut = S2×R4.
In particular, J = ϕ∗Jtaut and s = ϕ∗staut, where staut is the constant (and in fact
unique) spin structure on Etaut. Since Etaut

∼= C ⊕ TS2, we have c1(Jtaut) = 2[S2].
Since H2(S2) has no 2-torsion, c1(staut) = −c1(staut) = 0, and division by 2 is unique.
Thus, Γ(Jtaut, staut) =

1
2 (c1(Jtaut)− c1(staut)) = [S2]. The latter is Poincaré dual to

the point p ∈ S2, so Γ(J, s) = ϕ∗Γ(Jtaut, staut) is dual to ϕ−1(p). Similarly, 2Γ(J, s) =
2ϕ∗[S2] = c1(J). The trivialization τJ comes from pulling back the trivialization on
Etaut|(S2−{p}) obtained by identifying the base with C. By the long exact coefficient
sequence for Z → Z → Z/2, the image of the above Bockstein consists of the elements
of H2(X;Z) with order at most 2. Thus, we can change Γ(J, s) by any order-2 element
by varying s, realizing all classes with 2Γ(J, s) = c1(J).

The invariant Γ classifies J (E) whenever X has the homotopy type of a 2-
complex, so it classifies J (X) when X is a spin 4-manifold with such a homotopy
type. In this context, J (E) is essentially the set of spinC-structures and Γ(·, s) is a
bijection. However, a 3-cell causes further complications that we address in the next
two sections.

3.2. Canonical Z-actions. We construct the desired Z-action on J (V ), along
with some useful Z-actions on related sets. We restrict the previous discussion to the
case where X = V is an open 4-manifold with a homotopy equivalence f : V → M
to a closed (connected, oriented) 3-manifold, and E = TV . In the case of primary
interest, V is a possibly exotic smoothing of R × M , with f the obvious projection
(up to homotopy), but the general case has the same required properties:

Proposition 3.3. The ends of V comprise a canonically ordered set of two
elements. The intersection pairing on H∗(V ;F) vanishes for any field F. There is a
spin structure on V , and any such extends to a trivialization of TV (nonuniquely).
There is an induced bijection f∗ : Ω(M) → Ω(V ).

Proof. Recall that a manifold with n ends has an exhaustion by compact,
codimension-0 submanifolds whose complements each have n components. These
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components have noncompact closures with connected boundaries. Each end then
corresponds to a nested sequence of such components, whose boundaries we will call
cuts of the end. If V had more than two ends, we would have the contradiction
b3(V ) > 1 = b3(M): Cuts of two ends would be linearly independent in H3(V ),
distinguished by pairing with elements of H3(V ) dual to properly embedded lines em-
anating from a third end. To locate two distinct ends, let α ∈ H3(V ) be the generator
mapping to [M ] ∈ H3(M). Then α is dual to a compactly supported cohomology
class. Since H1 is classified by K(Z, 1) = S1, there is a map ψ : V → S1 that is con-
stant outside some compact set, such that α is represented by N = ψ−1(θ) for some
regular value θ ∈ S1. Then f |N has degree 1, so (f |N)∗ : H∗(N ;F) → H∗(M ;F) is
surjective. A pair of classes in H∗(V ;F) can be isomorphically pushed forward to M
and then pulled back to N , so they are represented by cycles in N . After pushing one
of these in the positive normal direction, they will be disjoint. Thus, the intersection
pairing on H∗(V ;F) vanishes as required. In particular, each class in H1(V ;Z/2) has
vanishing intersection number with N . The latter then separates V into two regions
(not necessarily connected unless N is), with the region containing a given point x
determined by the mod 2 intersection number of N with an arc from x to a preas-
signed base point. For any regular value p ∈ M , f−1(p) ·N = p ·M = +1. Thus, V
must have two distinct ends, one in each of the two regions of V − N . (Otherwise,
f−1(p) could be modified to create a closed 1-cycle intersecting N nontrivially.) Each
cut of an end has intersection number ±1 with f−1(p) (since the latter has vanishing
intersection number with the boundary of the cobordism between the cut and N). If
we orient the cuts so that the intersection number is +1 (equivalently, so that they
represent α), there is a unique positive end for which the cuts are positively oriented
boundary components of the compact regions defining the ends.

To complete the proof, note that the Wu formula 〈w2(V ), β〉 = β · β for all
β ∈ H2(V ;Z/2) (e.g. [GS]) implies w2(V ) = 0, so V admits a spin structure. Since
π2(SO(4)) = 0, every spin structure extends to a trivialization over the 3-skeleton of
V (nonuniquely since π3(SO(4)) �= 0). Since V has no cohomology above dimension
3, we obtain an extension to all of V . The bijection f∗ : Ω(M) → Ω(V ) follows
immediately from functoriality of Ω.

We will say a connected, oriented 3-manifold N ⊂ V with f∗[N ] = [M ] cuts V .
A cut separates V into two components, each containing an end of V .

Proposition 3.4. There is a canonical Z-action on J (V ). Its orbit space is sent
bijectively to H2(V ) by Γ for any fixed spin structure s. A sliced concordance between
two such manifolds V0 and V1 determines an isomorphism of the corresponding Z-
spaces J (Vi) that preserves Γ.

Proof. We first construct several canonical Z-actions, which will be of continued
use. On Ω(M), such an action is generated by adding to any framed link a +1-framed
unknot in a disjoint 3-ball. It is easy to see that this is well-defined on Ω(M), with
inverse obtained from a −1-framed unknot, and it is equivalent to adding a right twist
to the framing of one component of the link. The Thom–Pontryagin isomorphism now
pulls this action back to [M,S2]. When M = S3, the resulting generator sends the
constant map to the Hopf fibration. Thus, for general M , the generator modifies a
given map ϕ : M → S2 by first pinching the domain to M∨S3, then applying ϕ to the
first factor and the Hopf map to the second. The homotopy equivalence f : V → M
pulls back these actions to Ω(V ) and [V, S2]. The generator of the former changes a
framed surface F , along an arbitrarily chosen line L disjoint from F and connecting
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the ends of V , by adding a properly embedded R×S1 along L with +1-framed normal
bundle. This pulls back by the homotopy inverse of f to the generator on Ω(M), so
defines a Z-action on Ω(V ) (whose definition is independent of (M,f)). The generator
on [V, S2] is similarly defined near L, first homotoping a given ϕ : V → S2 to be
constant near L, then splicing in a map that projects to the normal 3-disk of L and
applies the Hopf map to it. More generally, any homotopy equivalence g : Wn → M
induces a Z-action on [W,S2] ∼= [M,S2], respecting homotopy equivalences of pairs
(W, g). (Every map W → S2 factors through g after homotopy. Then replace L in
the construction by g−1(q) for a regular value q ∈ M .) The set J (V ) is identified
with [V, S2] by choosing a homotopy class of trivializations τ of TV . Given an almost-
complex structure J , homotope τ to be a J-complex trivialization near L. Then the
associated map to S2 is constant near L, and splicing in the Hopf map as before
corresponds to redefining J by the generator on J (V ). Since this only changes J
near L, the resulting Z-action on J (V ) does not depend on the homotopy class of τ
(although the Z-space isomorphism to [V, S2] does).

By Proposition 3.3, V admits a spin structure, and any such s comes from a
trivialization τ . By Proposition 3.2, Γ(·, s) : J (V ) → H2(V ) corresponds, under the
Z-space isomorphism J (V ) ∼= Ω(V ) induced by τ , to the canonical map η sending
each framed surface to its dual cohomology class. Since H2(V ;Z) is classified by
K(Z, 2) = CP∞, we can identify it with the set of cobordism classes of codimension-
2 submanifolds of V . Then η : Ω(V ) → H2(V ) simply forgets framings. It follows
that η is surjective since every class in H2(V ) is represented by a surface with no
compact components, whose normal bundle must then be trivial. Similarly, η is
constant on each Z-orbit, since the generator adds a nullcobordant cylinder to each
surface. Finally, η is injective on the set of orbits. This is most easily seen by passing
isomorphically to Ω(M). Any connected cobordism between two nonempty framed
links in M can be made into a framed cobordism after adding twists to one framing.
Thus, classes sent to the same element of H2(V ) lie in the same orbit in Ω(V ). The
second sentence of the proposition follows immediately.

A sliced concordanceW between V0 and V1 determines a homeomorphism between
them, so identifies the groups H2(Vi) with each other and with H2(W ). The bundles
TVi extend to the trivial bundle E → W of tangent spaces to the slices (i.e., the
kernel of the derivative of the given submersion to I). A complex structure Ji on
either TVi extends uniquely (up to homotopy) to a structure J on E, determining a
bijection between the sets J (Vi). This preserves the Z-action, which a trivialization
of E identifies with that of [W,S2]. Similarly, a spin structure si extends uniquely to
s on E, identifying spin structures on V0 with those on V1. Then Γ(J, s) ∈ H2(W )
restricts to Γ(Ji, si) on each Vi, so these correspond under the isomorphism between
the spaces H2(Vi).

3.3. The invariant Θ̃. Recall that J (M) = J (R ×M) can be identified with
the set of homotopy classes of plane fields on M , which was computed and applied in
[G2]. In this special case, our present Γ(J, s) equals the previous Γ(ξ, s) [G2, Remark
2 following Corollary 4.9], although the present version is more general and perhaps
more natural. We now complete the computation of Ω(M) ∼= J (M) as in [G2], then
define the remaining invariant Θ̃ in our additional generality and use it to prove the
remaining theorems of Section 2.

Proposition 3.5. Each φ ∈ Ω(M) lies in an orbit isomorphic to the Z-space
Z/2 div[φ], where [φ] denotes the homology class of any 1-manifold in M that when
suitably framed represents φ.
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Proof. We can represent the framed cobordism class φ by a framed knot K ⊂ M .
By our previous proof, any other class in the same orbit as φ can then be represented
by the same knot, but with some number n ∈ Z of twists added to its framing.
Suppose there is a framed cobordism in I ×M between these framed knots. Glue the
boundary components together by the identity to obtain a closed surface in S1 ×M
whose homology class α ∈ H2(S

1×M) has self-intersection α2 = −n. For κ = [S1×K],
the class α−κ is represented by a cycle disjoint from M , so (α−κ)2 = 0 = κ2. Thus,
−n = ((α−κ)+κ)2 = 2(α−κ) ·κ. Since [φ] = [K] in H1(M), we have div[φ] = div κ,
so 2 div[φ] must be a factor of n. Conversely, we can write [K] = div[φ]β and find
ζ ∈ H2(M) with β · ζ = −1. We can then modify the cobordism I ×K so that the
resulting α is κ+ζ, implying n = −2κ·ζ = 2div[φ]. Thus, 2 div[φ] times the generator
of the Z-action is trivial on the orbit of φ.

To summarize our understanding of J (V ) at this point, a trivialization τ of TV
and the given homotopy equivalence f : V → M , respectively, determine Z-space
isomorphisms J (V ) ∼= Ω(V ) ∼= Ω(M) (proof of Proposition 3.4). Fix J ∈ J (V ), and
let s be the spin structure determined by τ . By Proposition 3.2, the corresponding
class Γ(J, s) ∈ H2(V ) is dual to a surface F in V which, when suitably framed,
represents the class in Ω(V ) corresponding to J . This, in turn, corresponds to a class
φ ∈ Ω(M) as in Proposition 3.5. The orbit of J ∈ J (V ) then has order 2 div[φ] =
2 div Γ(J, s) = div c1(J). This orbit corresponds to the set of classes in Ω(V ) whose
underlying surfaces are dual to Γ(J, s), so it can be understood in Ω(M) as framings
on a knot in M . The main difficulty with this setup is that, while the orbit in J (V ) is
identified with an orbit in Ω(V ) that is picked out by s, the bijection between the two
orbits depends on the entire trivialization τ (Remark 3.9(a)). Since it is difficult to
keep track of such a trivialization, we define an invariant that equivariantly compares
elements of the two orbits without reference to τ beyond its induced spin structure
s. We wish to compare a given J with a class φ ∈ Ω(V ) in the corresponding orbit.
Represent φ by a framed surface F ⊂ V . Let τJ be a J-complex tangent trivialization
of the complement V − nbdF of a tubular neighborhood of F , respecting s and
representing twice the generator of π1(U(2)) on each meridian of F . Such a τJ exists
by Proposition 3.2, since F is dual to Γ(J, s) and the Thom–Pontryagin construction
exhibits it in the required form ϕ−1(p). Cut V along a 3-manifold N separating its
ends and transverse to F . Glue the positive side VN of V to a compact manifold whose
boundary is N = ∂VN , obtaining a 4-manifold Y whose unique end is the positive end
of V . We show below that this can be done so that J extends to an almost-complex
structure JY on Y . Then the relative Chern class c1(JY , τJ) ∈ H2(Y, VN − nbdF ) is
dual to an embedded surface F̃ in Y that intersects VN in two copies of F ∩VN inside
nbdF , parallel in the framing inherited from φ. Any choice of this F̃ gives a normal
Euler number e(νF̃ , φ) relative to the given framing on F .

Definition 3.6. For J ∈ J (V ), a spin structure s on V , and any φ ∈ Ω(V ) dual
to Γ(J, s), choose τJ , Y and F̃ as above and let Θ̃(J, s, φ) = e(νF̃ , φ)−2χ(Y )−3σ(Y )
in Z/4 div c1(J).

Theorem 3.7. The invariant Θ̃ is well-defined and invariant under sliced con-
cordance (where J , s and φ transform in the obvious way). It is also invariant under
Z acting simultaneously on J (V ) and Ω(V ), with the positive generator on J (V )
alone decreasing Θ̃ by 4 and on Ω(V ) alone increasing it by 4. The invariants Γ and
Θ̃ together classify J (V ), with the bijection Γ(·, s) onto H2(V ) classifying the orbits
and Θ̃(·, s, φ) identifying the orbit of each J with an index-4 coset of Z/4 div c1(J).
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We identify the cosets precisely in Proposition 4.5 when V is homeomorphic to R×M .
The dependence of the invariants on s is given in Proposition 4.2.

Proof. We show the almost-complex extension Y exists as in [G2, Lemma 4.4].
Let Y ∗ be a compact, spin 2-handlebody with boundary N and no 1-handles. Then
TY ∗ has a trivialization, identifying orthogonal complex structures over subsets of Y
with maps to S2. Thus, J |N can be extended over the cocores of the 2-handles and
then over Y ∗−{y} for some y ∈ intY . The final obstruction then lies in [S3, S2] ∼= Z.
For a closed 4-manifold X, this obstruction is given by the integer 1

4 (c
2
1(JX)−2χ(X)−

3σ(X)) for c1(JX) ∈ H2(X−{x}) ∼= H2(X). This can be killed by suitably summing
with copies of S2×S2 (cf. proof of Theorem 2.6(b)). Thus, we can modify Y ∗ so that
J extends as required.

Now for fixed J , s, φ, F and τJ on V , suppose we have two extensions Yi as
above. Since H∗(V ) ∼= H∗(M) is finitely generated, so is each H∗(Yi). Choose a new
cut N+ in V close enough to the positive end that each compact region Y c

i ⊂ Yi

cut out by N+ contains surfaces representing a basis for H2(Yi;Q). Then inclusion
induces an epimorphism H2(Y

c
i ;Q) → H2(Yi;Q) whose kernel is represented by sur-

faces pairing trivially with every element of H2(Y
c
i ;Q) (since the image surfaces are

nullhomologous). Thus, σ(Y c
i ) = σ(Yi). As in the previous paragraph, cap each Y c

i by
the same compact manifold Z with boundary N+, obtaining closed, almost-complex
manifolds Xi. By Novikov additivity, σ(Xi) = σ(Y c

i ) + σ(Z) = σ(Yi) + σ(Z). Sim-
ilarly, c21(Xi) = e(νF̃i, φ) + e(νF̃Z , φ), where the surfaces are defined analogously to
F̃ . Finally, χ(Xi) = χ(Y c

i )+χ(Z) = χ(Yi)−χ(VN+)+χ(Z). (Additivity of χ follows
from the rational Mayer-Vietoris sequence since the homologies are finitely generated
and the intersection has χ(N+) = 0). Thus, if θi denotes Θ̃(J, s, φ) computed using
Yi, we have 0 = c21(Xi) − 2χ(Xi) − 3σ(Xi) = θi + Δ, where Δ is independent of i.
Hence, Θ̃(J, s, φ) is independent of choice of extension (Y, JY , F̃ ).

To compare τJ with another trivialization τ+J on V − nbdF as above, put τ+J
on VN − nbdF and τJ elsewhere on V − nbdF except on a collar I × N . The
obstruction to fitting these together is the relative Chern class c = c1(J, τJ , τ

+
J ) ∈

H2(I ×N − nbdF, ∂I ×N − nbdF ). Since both trivializations are compatible with
s, c reduces mod 2 to w2(I ×N − nbdF, τJ , τ

+
J ) = 0. Thus, c has a factor of 2. Since

the two trivializations agree on meridians to F , c evaluates trivially on the meridians.
Hence, it is dual to a compact surface in I ×N − nbdF whose boundary consists of
meridians. This then extends to a closed surface FN in I × N with [FN ] even. If
we have computed Θ̃(J, s, φ) as in the definition using τJ , the same data computes
it relative to τ+J , provided that we first splice FN into F̃ . Since [FN ] is even, the

method of Proposition 3.5 shows that e(νF̃ , φ) changes by a multiple of 4 div c1(J),
so Θ̃ does not depend on the choice of τJ . (Ignoring τJ gives a weaker invariant
Θφ(J) ∈ Z/2 div c1(J); see Remark 3.9(b).)

Given a sliced concordance π : W → I between two manifolds V0 and V1 as
above, we saw in proving Proposition 3.4 that structures J0 and s0 on V0 uniquely
determine J1 and s1 on V1 (with J1 determined up to homotopy and arbitrary within
its class) through structures J and s on the bundle E of tangents to the slices in
W . Similarly, the homotopy equivalences Vi → W , i = 0, 1, determine isomorphisms
Ω(W ) ∼= Ω(Vi) sending a given φ0 on V0 to a class φ1 on V1. Any framed surfaces
Fi ⊂ Vi representing φi will then comprise the boundary of a framed cobordism (P, φ)
inW (by the definition of the Ω functor whenW is not a smooth product). For φ0 dual
to Γ(J0, s0), P is dual to Γ(J, s), and Proposition 3.2 gives a complex trivialization
τJ on E|(W − nbdP ). To prove invariance of Θ̃, first suppose there is a compact 4-
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manifold N cutting W , with π|N a submersion to I. Then π gives N the form I×N0.
Our construction cutting and capping V0 to make Y0 can now be extended by gluing
a product with I along N to give a cobordism Y from Y0 to Y1 with a submersion
to I, and a complex structure JY on the bundle of tangents to the levels that agrees
with J on the common part WN of their domains. Its Chern class c1(JY , τJ) is dual
to a 3-manifold P̃ intersecting WN in two φ-parallel copies of P , and intersecting
each Yi in a suitable F̃i. The normal Euler class e(νP̃ , φ) is dual to a compact 1-
manifold L ⊂ P̃ whose intersection number with each F̃i ⊂ Yi is e(νF̃i, φi). Since the
orientation numbers of ∂L add to 0, it follows that e(νF̃0, φ0) = e(νF̃1, φ1). When
(W,N) = I× (V0, N0), all three terms of Θ̃(Ji, si, φi) agree for i = 0, 1. This proves in
general that Θ̃(J, s, φ) does not depend on the choices of J and F within their classes,
so it is well-defined. For a general sliced concordance, N may not exist globally, but we
can still construct it locally, in π−1(U) for some interval neighborhood U of any given
t0 in I. (Flow some Nt0 transversely to Vt0 in W , and obtain U by compactness of
Nt0 .) We can also arrange a proper homotopy equivalence (VNt0

, Nt0) → (VNt
, Nt) for

each t ∈ U . (For each a, b ∈ U , define f b
a : VNa → VNb

using the flow on a sufficiently
large compact subset of VNa and the topological product structure farther away. Then
continuity in the parameters a, b implies f t

t0 and f t0
t are homotopy inverses.) Now

all three terms of Θ̃(J |Vt, s|Vt, φ|Vt) are constant for t ∈ U , so it is constant on the
connected set I. Hence, Θ̃ is invariant under sliced concordance.

To complete the proof, let J ′ and φ′ be obtained from J and φ by the positive
generator of the Z-action. Proposition 3.4 shows that Γ(J ′, s) = Γ(J, s), and its proof
gives explicit descriptions of J ′ and φ′. Both are obtained by modification near a
line L that we can assume intersects N in a single point x. A framed surface F ′

representing φ′ is obtained from F for φ by adding a framed tube intersecting N in
a +1-framed unknot. To compute Θ̃(J, s, φ′), we cap this tube in Y to create a sur-
face R diffeomorphic to R2, with relative normal Euler number +1. We obtain τ ′J by
modifying τJ in a neighborhood of L∩VN containing R, adding two twists around the
meridian of R. Then Θ̃(J, s, φ′)− Θ̃(J, s, φ) is the normal Euler number relative to φ′

of the surface R̃ obtained from two copies of R, φ′-parallel near infinity, by smooth-
ing their intersection point. This Euler number is +4 since the intersection form is
quadratic. (To check this, cap R to a closed surface by adding a φ′-framed 2-handle
to Y .) To compute Θ̃(J ′, s, φ), fix F and note that J ′ = J outside a neighborhood
of L disjoint from F . Since π2(U(2)) = 0, we can obtain τJ ′ by modifying τJ near L.
Construct Y ′ for J ′ from Y for J by a suitable connected sum at x, as in the first
paragraph of the proof. Since this construction is localized near L, the change in Θ̃
is determined by a single example. We take J ′ to be the standard complex structure
on C2 − {0} ≈ R × S3. This gives Θ̃(J ′, s, φ) = −2, using Y = C2 with its unique
spin structure s and φ the framed cobordism class of the empty set (so F̃ is empty).
The plane field ξ′ = TS3 ∩ J ′TS3 on S3 corresponding to J ′ is orthogonal to the
right-handed Hopf fibration. In the proof of [G2, Theorem 4.16], it is shown that the
plane field ξ corresponding to J is obtained from ξ′ by a reflection of S3. (For S3

identified with the unit quaternions so that J ′ acts on the left, right multiplication
induces a trivialization τ of TS3 in which ξ′ is constant. A calculation shows that τ
identifies the mirror image ξ of ξ′ ∈ J (S3) with a left-handed Hopf map in [S3, S2], so
the negative generator sends ξ′ to ξ as required.) For any closed complex surface X, a
convex ball B ⊂ X has ξ′ induced on its boundary. This appears as ξ in the boundary
orientation of X − intB. Thus, we can use the latter to compute Θ̃(J, s, φ) = +2,
since the invariant vanishes for X but removing intB decreases its Euler character-
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istic by 1. Hence, Θ̃(J ′, s, φ) − Θ̃(J, s, φ) = −4 as required. Since the orbit of J has
exactly div c1(J) elements, Θ̃(·, s, φ) now injects the orbit onto an index-4 coset of
Z/4 div c1(J).

Corollary 3.8. If V0 and V1 are sliced concordant smoothings of a 4-manifold
homotopy equivalent to a closed, oriented 3-manifold, then the Z-spaces J (V0) and
J (V1) are canonically isomorphic.

Proof. A sliced concordance induces an isomorphism by Proposition 3.4. Different
sliced concordances give the same isomorphism since the invariants agree. (Note
that by definition, there is a fixed homeomorphism V0 → V1, so a distinguished
homotopy equivalence in [V0, V1]. Thus, a given s and φ on V0 canonically determine
corresponding structures on V1, independently of choice of sliced concordance.)

Proof of Theorems 2.4, 2.7 and 2.8. The first of these is immediate. The second
follows from Propositions 3.4 and 3.2 and Theorem 3.7 (with V = R × M). For
the third, we are given a compact, spin 4-manifold (Y, s) with ∂Y = M and an
almost-complex structure JY on another smoothing of intY . Since H3(Y ;Z/2) = 0,
the latter smoothing is sliced concordant to the original. Thus, the given boundary
collar smoothing V is sliced concordant to the standard smoothing on R × M , and
JY corresponds to a structure J on Y , restricting canonically to R×M . We can now
compute the invariants for JY |V directly in Y . We are given a surface (F, ∂F ) ⊂
(Y,M), twice whose Poincaré dual is c1(J). Since 2Γ(J, s) = c1(J) on Y and H2(Y )
has no 2-torsion, the dual of F equals Γ(J, s). Thus, the restriction to M of Γ(J, s)
is dual to ∂F as required. To compute Θ̃(J, s, φ) for any framing φ on ∂F , apply its
definition with Y as given, τJ defined on Y − nbdF , and F̃ made from two copies
of F that are φ-parallel near M . Then e(νF̃ , φ) = 4e(νF, φ) since the intersection
pairing is quadratic. The result follows.

Remarks 3.9. (a) It is now easy to see that for a trivial R4-bundle E → X, our
bijection J (E) → [X,S2] depends crucially on a choice of trivialization τ . If we ignore
τ , we are effectively allowing automorphisms of E. A nowhere zero section of E splits
any complex bundle structure J as C⊕L for a line bundle L determined by its Chern
class c1(L) = c1(J). Thus, the resulting equivalence classes are classified by the Chern
class c1(J). When E = TV as above, we lose information from Γ whenever H2(V ) has
2-torsion. We can recover this by fixing a spin structure, but still cannot distinguish
almost-complex structures lying in a given orbit of the Z-action. For example, we lose
all information if M is a homology sphere, although there is a Z-space isomorphism
J (V ) ∼= Z in that case.

(b) Several variations of Θ̃ from [G2] generalize to sliced concordance invariants
in the current setting. The 2-fold quotient Θφ(J) ∈ Z/2 div c1(J) of Θ̃(J, s, φ) does

not depend on a spin structure and is obtained more simply, by letting F̃ be any
surface dual to c1(JY ), framed near the end of Y by φ ∈ Ω(V ) dual to c1(J)|VN

(without reference to τJ or Γ(J, s)). When c1(J) vanishes in rational homology, all of
the information of Θ̃(J, s, φ) is captured by an invariant θ(J) ∈ Q that is independent
of s and φ. This is obtained by representing c1(JY ) as a rational multiple of a closed
surface. The orbit of J then realizes a coset of 4Z in Q. When V is homeomorphic
to R × M , the cosets of these invariants are determined by simple data on M ; see
Proposition 4.5 and Remark 4.6. The invariants including Γ can be algorithmically
computed for contact structures exhibited as Stein boundaries. For plane fields on a
3-manifold M , other relations and properties appear in [G2] and [GS, Section 11.3].
These properties generalize at least to the case of V homeomorphic to R×M (cf. proof
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of Proposition 4.5). The invariant θ is now well-known for plane fields and sometimes
assumed to be equivalent to Pontryagin’s secondary obstruction. However, there is
additional information encoded in θ that may not be fully understood. For example,
Giroux [Gi] and Honda [H] independently classified tight contact structures on lens
spaces, distinguishing them, respectively, by θ and Γ. Thus, θ has been used to
compare plane fields with different values of the primary obstruction Γ (but some with
the same c1), which is beyond the capability of a secondary obstruction. Similarly,
Θφ relates structures with the same infinite order c1 but different Γ.

4. Sliced concordance classes and the functor J . Having completed the
proof of our main theorem exhibiting TPC embeddings, we further study the Z-space
J (V ) when V is a smoothing of R × M . We determine the coset of Z/4 div c1(J)
comprising the image of an orbit under Θ̃, using a generalization to V of the Rohlin
invariant for spin 3-manifolds. This allows us to exhibit J as a functor on such
spaces V and homeomorphisms between them. While J is obviously functorial for
diffeomorphisms via the corresponding tangent bundle isomorphisms, unsmoothable
homeomorphisms are more subtle. The Rohlin invariant also allows us to study the
relation between diffeomorphism and sliced concordance of smoothings of R×M , as
well as topologically collared ends. We can then show that up to sliced concordance,
every smoothing V of R × M and J ∈ J (V ) are realized holomorphically, by an
embedding in a closed complex surface, although for the nonstandard concordance
class, the embedding is quite different from our previous TPC examples. We leave
some open questions and a conjecture.

4.1. Dependence of the invariants on auxiliary data. To exhibit J as
homeomorphism-invariant by functoriality, we must understand how our invariants
depend on s and φ. We first need some simpler functors.

Theorem 4.1 ([G1]). There are functors S and SC that assign to each manifold
its set of spin (resp. spinC) structures, and assign to each (orientation-preserving)
proper homotopy equivalence a bijection preserving the action of H1( · ,Z/2)
(resp. H2( · ,Z)) and the map from spin to spinC-structures. These extend the obvious
functors on diffeomorphisms and sliced concordances.

For homeomorphisms, our main case of interest, the basic idea is that the map
SO(n) → STop(n) is a π1-isomorphism, so we can replace the former by the latter
in constructing the structure groups. For proper homotopy equivalences in general,
one needs to pass to classifying spaces and replace BSTop with the classifying space
BSG of Spivak normal fibrations. The functor J is more difficult to deal with since
it involves higher homotopy. However, the functor Ω from the previous section is
immediately applicable in this section since each homeomorphism is homotopic to a
smooth homotopy equivalence, uniquely up to smooth homotopy.

We can now describe how our invariants vary with the auxiliary data. Given
a proper homotopy equivalence V → R × M , J ∈ J (V ) and s+, s− ∈ S(V ) ∼=
S(R×M) ∼= S(M), let d(s+, s−) ∈ H1(V ;Z/2) ∼= H1(M ;Z/2) denote the difference
class. Given φ± ∈ Ω(V ) dual to Γ(J, s±), respectively, choose corresponding surfaces
F± ⊂ V .

Proposition 4.2. The difference Γ(J, s+) − Γ(J, s−) is given by the Bockstein
of d(s+, s−). The difference Θ̃(J, s+, φ+)− Θ̃(J, s−, φ−) is given by e(νF̂ , φ±), where
F̂ ⊂ V is any surface that agrees near the ± end of V with two φ±-parallel copies of
F± and whose class [F̂ ] ∈ H2(M ;Z/2) is dual to d(s+, s−).



TOPOLOGICAL CONVEXITY IN COMPLEX SURFACES 729

Proof. The first sentence follows immediately from Definition 3.1 and preceding
text. For the rest, note that for τ±J associated to F± and s± as in Definition 3.6

near the ±-end of V , c1(J, τ
+
J , τ−J ) is represented by a surface F̂ with the required

properties. (Note that F̂ is dual to w2(V, s+, s−) in the compactly supported Z2-
cohomology of V . After the homotopy equivalence to R ×M , this can be identified
with [R]×d(s+, s−), so [F̂ ] is dual to d(s+, s−) in H1(M ;Z/2).) It suffices to use this
F̂ , since any other F̂ ′ as in the proposition differs from this F̂ by an even (compact)
homology class, so has the same Euler number as F̂ mod 4div c1(J) as in the proof
of Proposition 3.5. Compute Θ̃(J, s−, φ−) as usual, by capping V at a cut near its
negative end and constructing F̃ using F− and τ−J . Use this same manifold Y to

compute Θ̃(J, s+, φ+), by thinking of the cut as near its positive end. For this, we
change F̃ between the cuts by splicing in F̂ , and extend to the positive end using F+

and τ+J . The normal Euler number increases by e(νF̂ , φ±), and the other terms of Θ̃
are unaffected.

4.2. Rohlin invariants, Θ̃ mod 4, and functoriality of J . Next, we gener-
alize the Rohlin invariant of spin 3-manifolds to 4-manifolds V homotopy equivalent
to 3-manifolds.

Definition 4.3. Let N be a 3-manifold cutting V (so separating its ends). The
Rohlin invariant of a spin structure s on V is that of N with the restricted spin
structure, μ(V, s) = μ(N, s) ∈ Z/16, where the latter is the signature mod 16 of any
compact, spin manifold with spin boundary (N, s).

Proposition 4.4. The invariant μ(V, s) is well-defined and invariant under
both sliced concordance and diffeomorphism. Its residue mod 8 is homeomorphism
invariant (where s transforms as in Theorem 4.1). It equals the mod 16 signature of
any open spin manifold Y made by cutting and capping the negative end of V as for
Definition 3.6.

We always assume homeomorphisms and diffeomorphisms among such manifolds V
preserve both the orientation and the order of the ends.

Proof. Cut V by a pair of disjoint 3-manifolds N±, with N+ on the positive side
of N−. The region between these cuts has signature 0 since all intersection numbers
in V vanish. Thus, if we cap the ends by compact manifolds Y± to make a closed
spin manifold X, we have σ(X) = σ(Y+) + σ(Y−) ≡ 0 mod 16 by Novikov additivity
and Rohlin’s Theorem. For a different choice of N−, we can assume N+ is on the
positive side of both choices, and use the same Y+ for both. Then any choices of Y−
will have the same signature mod 16, showing μ(V, s) is well-defined. Given a sliced
concordance, we can cut any level Vt by a 3-manifold that also cuts nearby levels, so
μ(Vt, s) is locally, hence globally, constant on I. A given diffeomorphism ϕ : V → V ′

will send a given s and N− to corresponding structures in V ′, and we can use the
same Y− to compute the invariant for both. If ϕ is only a homeomorphism, ϕ(N−) is
only topologically embedded, so the resulting X is only a topological spin manifold.
Rohlin’s Theorem no longer applies, but the intersection pairing of X is still even and
unimodular, so σ(X) is still divisible by 8. For Y as given, the proof of Theorem 3.7
shows that σ(Y ) = σ(Y c), where the latter manifold is a cap for V , and the latter
signature mod 16 is μ(V, s) by definition.

Now for V homeomorphic to R×M , we can sharpen the classification of J (V ) by
computing the image of Θ̃. This is entirely determined by the spin 3-manifold (M, s).
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Proposition 4.5. For V homeomorphic to R × M and J , s and φ on V , we
have the mod 4 congruence Θ̃(J, s, φ) ≡ 2(1 + b1(M))− μ(M, s).

Proof. Cap V with an almost-complex spin 2-handlebody without 1-handles (as
in the proof of Theorem 3.7). The resulting open manifold Y can be compactified to a
topological manifold Y ∗ with boundary M , so σ(Y ) = σ(Y ∗) ≡ μ(M, s) mod 8. Also
Y ∗ is simply connected and H3(Y ∗) is dual to H1(Y

∗,M), so b1(Y ) = 0 = b3(Y ).
Represent Γ(JY , sY ) by a surface F in Y and choose τJ on Y − nbdF (cf. proof of
Theorem 2.8 after Corollary 3.8). Then mod 4,

Θ̃(J, s, φ) = 4e(νF, φ)− 2χ(Y )− 3σ(Y ) ≡ −2(χ(Y )+σ(Y ))−σ(Y ) ≡ 2(1+n(Y ))−μ(M, s)

where n(Y ) is the nullity of its intersection form. (Recall that b2(Y ) = b+(Y ) +
b−(Y )+n(Y ) and the first two terms cancel mod 2 with σ(Y ).) But n(Y ) = n(Y ∗) =
b1(M) via Poincaré duality in Y ∗ since b1(Y

∗) = 0.

Remark 4.6. For V as above, we can also determine the images of the invariants
Θφ and θ described in Remark 3.9(b). The first satisfies the above formula provided
that the framing φ on a dual of c1(J)|V comes from a framing on Γ(J, s) (which occurs
on an orbit of 4Z depending on s in general). The second is defined when Γ(J, s) has
finite order, and differs from the above by 4 times the Q/Z-valued linking square of
the dual of Γ(J, s) in H1(M); see the end of [GS, Section 11.3].

Theorem 4.7. There is a unique functor J assigning J (V ) to each V home-
omorphic to a manifold of the form R × M (allowing M to vary) and assigning to
each homeomorphism a Z-space isomorphism preserving Γ and Θ̃. These agree with
the isomorphisms induced by sliced concordances (Corollary 3.8).

Proof. First fix a homeomorphism h : V ′ → V and a spin structure s on V . By
Theorem 4.1, s pulls back to a spin structure s′ on V ′ so that the induced spinC-
structures correspond. Then for any J ∈ J (V ), h∗Γ(J, s) = Γ(J ′, s′) whenever J ′ is
in the unique orbit in J (V ′) whose spinC-structures correspond to that of J . Any φ ∈
Ω(V ) dual to Γ(J, s) pulls back to φ′ = h∗φ ∈ Ω(V ′) dual to Γ(J ′, s′). By hypothesis,
the underlying 3-manifoldsM andM ′ become homeomorphic after product with R, so
μ(M ′, s′) ≡ μ(M, s) mod 8 by Proposition 4.4. Then by Proposition 4.5, Θ̃(J ′, s′, φ′)
lies in the same coset as Θ̃(J, s, φ). Thus, there is a unique bijection of these cosets
for which Θ̃ is preserved, and this is Z-equivariant by Theorem 3.7. The resulting
Z-space isomorphism J (V ) ∼= J (V ′) is independent of (s, φ) by Proposition 4.2:
Properly homotope h to a smooth map f transverse to the given surfaces F± and F̂
in V . Then F± with their given framings pull back to representatives F ′

± of φ′
± in

V ′, and we can assume F̂ pulls back to a suitable F̂ ′ for applying the proposition
to V ′. A generic normal vector field to F̂ extending φ± pulls back to F̂ ′. Since
f has degree 1, the signed sum of the zeroes is the same for both vector fields, so
e(νF̂ ′, φ′

±) = e(νF̂ , φ±) as required. Ranging over all h gives a functor. The last
sentence of the theorem follows from the observation that a sliced concordance W
induces the same correspondence of s and φ as its underlying homeomorphism. This
is automatic for s and follows for φ by reinterpreting Ω as [ · , S2].

4.3. Sliced concordance and diffeomorphism. Any V with the homotopy
type of a 3-manifold has exactly two sliced concordance classes of smoothings since
H3(V ;Z/2) ∼= Z/2. If V comes endowed with a preferred smoothing, such as the obvi-
ous smoothing when V = R×M , the class containing this smoothing is distinguished.
It is natural to ask how distinguished this class is, for example:
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Question 4.8. Is there a pair of 3-manifolds M and M ′ (possibly the same) with
a homeomorphism R×M ≈ R×M ′ such that the induced map of sliced concordance
classes does not preserve the distinguished classes?

Equivalently, must the smoothings induced by two different topological product struc-
tures on V be sliced concordant? Theorem 1.2, following from the next proposition,
gives a partial answer. (See also Remark 4.12 for further discussion.)

Proposition 4.9. If V is homotopy equivalent to a 3-manifold M , and V ′ is
another smoothing of V that is not sliced concordant to it, then for all spin structures
s on V we have μ(V ′, s) = μ(V, s) + 8. In particular, for any smoothing V ′ of a fixed
R×M , μ(V ′, s) equals μ(M, s) (resp. μ(M, s)+8) whenever V ′ is (resp. is not) sliced
concordant to the given product smoothing.

That is, the Kirby-Siebenmann uniqueness obstruction is given by 1
8 (μ(V

′, s) −
μ(V, s)) ∈ Z/2.

Proof. Freedman [F] constructed a smooth manifold VP homeomorphic to R ×
S3 but cut by a smoothly embedded Poincaré homology sphere P . Since P is the
boundary of the E8-plumbing, μ(VP , sP ) = 8, where sP is the unique spin structure
on VP (and restricts to the unique structure on P ). In each of VP and the given V , find
a properly embedded line connecting the two ends. Remove a tubular neighborhood
of each line, and glue the two resulting manifolds along their R × S2 boundaries.
The resulting manifold V ∗ is still homeomorphic to V . However, a cut N for V
determines a cut N#P for V ∗, so μ(V ∗, s) = μ(N#P, s) = μ(N, s) + 8 = μ(V, s) + 8.
(Any spin structure on V extends uniquely to V ∗ and agrees with the one induced
by the homeomorphism to V .) By invariance of μ, V ∗ cannot be sliced concordant to
V , so it is sliced concordant to the given V ′. Since μ(R×M, s) = μ(M, s), the result
follows.

Proof of Theorem 1.2. To prove the second sentence of the theorem, suppose
R×M has another product smoothing V , so there is a diffeomorphism f : V → R×M ′.
Then f determines a homotopy equivalence M → M ′. If M is hyperbolic or Haken,
then every homotopy equivalence M → M ′ is homotopic to a diffeomorphism [Mo],
[Wa]. Thus, f is homotopic to a diffeomorphism R×M → R×M ′. After postcompos-
ing f with the inverse of this diffeomorphism, we may assume that M ′ = M and f is
homotopic to the identity. The latter implies f preserves each spin structure s. Since it
is a diffeomorphism from V to the standard product structure, μ(V, s) = μ(R×M, s).
Thus, Proposition 4.9 shows V is sliced concordant to the standard product smoothing
as required. Since any self-homeomorphism of R ×M induces a product smoothing,
it must now fix the two sliced concordance classes. Any diffeomorphism between
smoothings of R×M is a self-homeomorphism, so diffeomorphic smoothings must be
sliced concordant, completing the proof for M hyperbolic or Haken. If M is instead
given to be a Z/2-homology sphere, we may not have the above diffeomorphism of
3-manifolds. However, in this case there is a unique spin structure, and every diffeo-
morphism between smoothings preserves the Rohlin invariant for this structure, so
we reach the same conclusion.

This reasoning shows more generally that when there is no homotopy equiva-
lence h : M → M ′ with μ(M ′, h∗s) = μ(M, s) + 8 for each spin structure s, M and
M ′ cannot satisfy Question 4.8, so if M = M ′, diffeomorphic smoothings of R ×M
must be sliced concordant. Of course, such an h cannot be homotopic to a diffeo-
morphism. While our homeomorphisms always preserve the orientations and ends of
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our 4-manifolds, one could also use these tools to study homeomorphisms reversing
the orientation on V or switching the ends (preserving orientation on V , so revers-
ing it on M). In either case, The Rohlin invariant reverses sign by definition. As
a further example, we consider lens spaces, the simplest 3-manifolds not covered by
Theorem 1.2, and where nontrivial homotopy equivalences can arise. The lens space
L(p, q) is covered by the theorem, as a Z/2-homology sphere, whenever p is odd. The
p = 0 case S2×S1 is easy since both spin structures extend to D3×S1 so have μ = 0.
For even p > 0, expand −p

q as a continued fraction with coefficients (a1, . . . , an) by
repeatedly rounding to the nearest even integer and taking the negative reciprocal of
the remainder. Since p is even, it turns out [GS, Solution of Exercise 5.7.21(b)] that n
is odd and each ai is even (notably the last one), and the Rohlin invariants of the two
spin structures differ by the sum of the odd-indexed coefficients, which [GS, Solution
of Exercise 5.7.17(a)] is p for the circle bundle L(p, 1). We conclude:

Proposition 4.10. Diffeomorphic smoothings of R × L(p, q) are sliced concor-
dant, except possibly when p is even and

∑
a2j+1 ≡ 8 mod 16. In particular, the

statement holds for all circle bundles over S2 with Euler class not 8 mod 16.

Proof of Corollary 1.3. We are given a 4-manifold X with an end homeomorphic
to R × M , and wish to canonically map the set of smoothings of the end to Z/2.
By a smoothing of the end, we mean a smoothing of a neighborhood of it, which
we consider up to sliced concordance after passing to a smaller neighborhood. We
assign 0 ∈ Z/2 to such a smoothing if it is diffeomorphic to a product. The only
subtlety is that there may not be a single neighborhood of the end in which two such
smoothings both appear as products. However, we can find an R×M neighborhood
for one smoothing. For another smoothing as R × M ′, the hypotheses allow us to
arrange M ′ = M as before. The second product structure then gives a topological
embedding of M in R ×M . If M has more than one spin structure, the hypotheses
allow us to assume this embedding is homotopic to the inclusion determined by the
first product structure. Since the two copies of M determine the Rohlin invariants of
their respective smooth structures, the latter are sliced concordant as required.

4.4. Realizing sliced concordance classes by holomorphic embeddings.
Since a smoothing V of R ×M is homeomorphically identified with it by definition,
Theorem 4.7 identifies J (V ) with J (M) even when V is not sliced concordant to
R×M . Thus, it makes sense to ask about realizing J ∈ J (M) holomorphically on a
preassigned exotic smoothing of R×M .

Theorem 4.11. For every triple (M,J, s), every smoothing on R ×M is sliced
concordant to one for which J is realized holomorphically by a smooth embedding into
a closed, simply connected, complex surface, as a boundary collar of an embedded,
compact, topological manifold Y homotopy equivalent to a wedge of 2-spheres, with a
spin structure on Y extending s.

(a) For the sliced concordance class of the standard smoothing, Y can be arranged
to be a topologically embedded 2-handlebody without 1-handles, with the form Yσ in
an embedded Stein onion exhibiting levels of M as TPC embeddings.

(b) For the other class, no smoothing even arises as a boundary collar smoothing
of a topologically embedded handlebody. If M is hyperbolic, Haken or S3, such a
smoothing is not diffeomorphic to a neighborhood of the end of any smoothing of the
interior of a handlebody (with connected boundary).

See the text before Theorem 2.4 for boundary collar smoothings and Definitions 2.1
and 2.2 for TPC embeddings and Stein onions. A compact topological 4-manifold



TOPOLOGICAL CONVEXITY IN COMPLEX SURFACES 733

admits a handle structure if and only if it is smoothable, so Y must be unsmooth-
able for the sliced concordance class discussed in (b) (although its interior inherits a
smoothing from the embedding).

Proof. By Theorem 2.6(b), (M,J) has a TPC embedding in any simply connected,
nonminimal complex surfaceX with b±(X) sufficiently large. Its proof gives a suitable
2-handlebody Y ⊂ X, with the given s extending over Y since m = 1, and a boundary
collar smoothing sliced concordant to the standard smoothing on R×M . For the other
sliced concordance class, return to the last paragraph of that proof. At that point, we
had manifolds that we now denote F ∗ ⊂ Y ∗ ⊂ Z∗. Before constructing Q⊥, create a
pair (Z, Y ) from (Z∗, Y ∗) by summing with two copies of Freedman’s closed, simply
connected, topological 4-manifold whose intersection form is E8, with one summand in
Y ∗−F ∗ and the other in Z∗−Y ∗. The spin structure s on Y ∗ uniquely extends over Y .
The new Y is unsmoothable, but Z still has vanishing Kirby–Siebenmann invariant in
Z/2. Continuing the proof as before yields a topological embedding Y ⊂ X, although
Theorem 2.3 no longer provides a Stein onion since Y is not a 2-handlebody. But Y
still has the homotopy type of a wedge of 2-spheres by Whitehead’s Theorem. The
induced boundary collar smoothing V now lies in the other sliced concordance class,
since μ(V, s) = μ(M, s) + 8 due to the extra E8 added to the intersection form of Y .
To identify the induced complex structure JV on V , choose tubular neighborhoods
F ∗ ⊂ U ′ ⊂ clU ′ ⊂ U ⊂ Y ∗ avoiding the connected sum region. Then the smoothing
on U induced from its embedding in X is sliced concordant to the original. Since F ∗

is dual to the generator of H2(U,U − U ′) (classified by CP∞), it is now related by a
cobordism in the sliced concordance over U ′ to a surface F in U ′ that is smooth in
X. Then F is dual to Γ(JX , s) in Y , and its end inherits a framing from the original
on ∂F ∗ ⊂ Y ∗. The normal Euler numbers of F and F ∗ are equal (as in the proof
of Theorem 3.7). Thus, JV has the same invariants as J , as at the end of the proof
of Theorem 2.8 (following Corollary 3.8). (Adding the E8 summand to Y ∗ changes
two terms of Θ̃ by a fixed multiple of 4, but we can still realize any value in the
appropriate coset; cf. proof of Theorem 2.6.) This proves everything except (b).

To complete the proof, first note that for any compact, topological 4-manifold
Y with boundary M , any two smoothings of intY have sliced concordant ends: The
smoothings may differ by some element of H3(intY ;Z/2), but the restriction map
to a neighborhood of the end vanishes. Thus, if Y is smoothable, every boundary
collar smoothing is sliced concordant to the standard smoothing on R ×M . For the
remaining sentence of (b), suppose Y is smooth with boundary M ′, but we are only
given a smoothing V of R ×M diffeomorphic to a neighborhood of the end of some
smoothing of intY . Then one end of V is diffeomorphic to the end of the latter
smoothing, so it is sliced concordant to some product structure as before. For M as
hypothesized, applying Corollary 1.3 to V shows that end is sliced concordant to the
standard product structure. Since R×M is isotopic to a neighborhood of its end, V
is sliced concordant to the standard structure.

Remark 4.12. Without the hypotheses in the last sentence of the theorem,
any pair M , M ′ as in Question 4.8 would immediately yield a counterexample in
any smooth Y with boundary M ′. To better understand this hypothetical example,
smoothly identify the end of intY with R × M ′. The given homeomorphism then
embeds M in Y , cutting it into two compact pieces Y ∗ and K with Y ∗ a deforma-
tion retract of intY . Each piece has nontrivial Kirby–Siebenmann invariant. (For
example, we can take Y to be spin and apply Proposition 4.9, then notice that the
invariant must be the same for both pieces, and K is independent of choice of Y .)
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The nonstandard sliced concordance class on R×M is then exhibited by a boundary
collar smoothing, but for the unsmoothable manifold Y ∗. The piece K must be a
4-dimensional topological h-cobordism with nontrivial Kirby–Siebenmann invariant.
The author does not know whether such a cobordism can actually exist.

The above theorem raises the question of whether a smoothing of R×M induced
by a TPC embedding ofM must be sliced concordant to the standard smoothing. This
is always true for embeddings arising from Theorem 2.3, since these arise as boundaries
of smoothable manifolds (topologically embedded 2-handlebodies) by construction.
However, the definitions of Stein onion (in the present paper) and TPC embedding
do not require smoothability of the embedded compact 4-manifolds. A basic example
is Freedman’s topological embedding of the Poincaré homology sphere P in C2, as the
boundary of a contractible manifold Δ. This contractible manifold is unsmoothable,
carrying the Kirby–Siebenmann obstruction in H4(Δ, ∂Δ;Z/2) ∼= Z/2, so the induced
smoothing V on R×P is not sliced concordant to the product. (From our perspective,
this is because μ(V, s) ≡ σ(Δ) = 0 ≡ μ(P, s) + 8 mod 16, where s is the unique spin
structure on each manifold.)

Question 4.13. Can Δ be assumed TPC? Can its interior be assumed Stein?
Does P have a TPC embedding bounding a homology ball in any complex surface?

It is not clear to the author whether Δ admits a mapping cylinder structure (as
required for the stronger Stein onion condition). We can at least write Δ as a nested
intersection of smooth, compact 2-handlebodies in C2: Surround Δ by an arbitrarily
small compact neighborhood with a smooth 3-manifold boundary. This neighborhood
admits a handle structure without 4-handles. Since Δ is contractible, the cocores
of the 3-handles can be homotoped, hence smoothly isotoped, off of it (since they
are 1-dimensional). After deleting these cocores, we are left with a 2-handlebody
containing a smaller neighborhood of Δ. By applying Theorem 2.3 to consecutive
pairs, we can topologically isotope any finite collection of these 2-handlebodies to be
Stein open subsets. However, we cannot expect the sequence of isotopies to converge
to an isotopy on Δ, since each such isotopy squeezes away most of the volume of
the 2-handlebody. If intΔ is Stein, it is diffeomorphic to the interior of an infinite
2-handlebody. (Conversely, if it is homeomorphic to such a handlebody interior, it is
topologically isotopic to a Stein surface [G4, Corollary 1.2].)

Conjecture 4.14. Every handlebody with interior homeomorphic to intΔ must
have infinitely many 3-handles.

Equivalently, this says that no smoothing of intΔ is diffeomorphic to the interior of
a handlebody with at most finitely many 3-handles. The most complicated exotic
smoothings of R4 (those with nonzero Taylor invariant) do not admit such diffeomor-
phisms [T], and one might expect smoothings of intΔ to be “worse”. However, some
exotic smoothings of R4 that embed in C2 (as does intΔ) admit such diffeomorphisms,
and in fact, are Stein in the inherited complex structure [G3].
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