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AN ε-REGULARITY THEOREM FOR LINE BUNDLE MEAN
CURVATURE FLOW∗

XIAOLI HAN† AND HIKARU YAMAMOTO‡

Abstract. In this paper, we study the line bundle mean curvature flow defined by Jacob and Yau
[7]. The line bundle mean curvature flow is a kind of parabolic flows to obtain deformed Hermitian
Yang–Mills metrics on a given Kähler manifold. The goal of this paper is to give an ε-regularity
theorem for the line bundle mean curvature flow. To establish the theorem, we provide a scale
invariant monotone quantity. As a critical point of this quantity, we define self-shrinker solution of
the line bundle mean curvature flow. The Liouville type theorem for self-shrinkers is also given. It
plays an important role in the proof of the ε-regularity theorem.
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1. Introduction. An ε-regularity theorem ensures the boundedness of deriva-
tives of a solution of some PDE under the assumption that a quantity, usually defined
by the integral of the solution, is ε-close to the regular value. In this paper, we give an
ε-regularity theorem for line bundle mean curvature flows. This is motivated by the
ε-regularity theorem for mean curvature flows due to White [15]. Recently, the line
bundle mean curvature flows were defined by Jacob and Yau [7] to acquire deformed
Hermitian Yang–Mills metrics. We will describe the background of these objects later.
First, we focus on the introduction of the main result.

1.1. Basic notions. Let (X, g) be a Kähler manifold with dimC X = n and as-
sociated Kähler form ω. We fix a holomorphic line bundle L→ X. When a Hermitian
metric h of L is given, we define a function ζ : X → C by ζ := (ω−F (h))n/ωn, where
F (h) := (−1/2)∂∂̄ log h, the curvature 2-form of the Chern connection associated with
h. Note that F (h) is pure imaginary valued. Then, we define the Hermitian angle of
h by θ := arg ζ and one can see that θ is lifted as an R-valued function rather than
R/2πZ-valued in Section 3.

Assume that a smooth 1-parameter family of Hermitian metrics ht of L is given for
t ∈ [0, T ). Define u( · , t) : X → R by ht = e−u(t)h0. Then, it holds that u( · , 0) ≡ 0.

Definition 1.1 ([7]). h = {ht }t∈[0,T ) is called a line bundle mean curvature

flow of L→ X with respect to ω if there exists a constant θ̂ ∈ R such that

d

dt
u = θ − θ̂, (1)

where θ is the Hermitian angle of ht at each time t. We call h0 the initial metric.

The constant θ̂ in (1) should be chosen appropriately to see (1) as a potential way
to get a deformed Hermitian metric on L as a limit of the flow. Actually, in the paper
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of Jacob and Yau [7], the constant θ̂ is specified to satisfy Im(e−
√−1θ̂ZL) = 0, where

ZL ∈ C is defined in Section 3. However, we use (1) just as a PDE in this paper.

Hence, any constant θ̂ ∈ R is allowed.

1.2. Key assumptions. To prove the main theorem (the ε-regularity theorem)
we need to assume two things: one is for the ambient (X, g) and the other is for the
flow {ht}t∈[0,T ). These assumptions seem unnatural and strong at first glance. To
explain why such condition is supposed, we should back to the work of Leung, Yau
and Zaslow [9] and we postpone it until Section 2. Thus, in this subsection, we restrict
ourselves to the introduction of those assumptions.

Definition 1.2. Fix an open set U ⊂ X. We say that (X, g) is semi-flat on U
if the following properties are satisfied:

(i) There exists a diffeomorphism ϕ : B(r)×B(r′)→ U , where B(r) is an open
ball in R

n centered at the origin with radius r. We will use real coordinates
(x1, . . . , xn) on B(r) and (y1, . . . , yn) on B(r′).

(ii) Complex coordinates on B(r)×B(r′) defined by zi := xi+
√−1yi match the

original holomorphic structure on U . This implies that ϕ is biholomorphic.
(iii) Under these coordinates (U, (z1, . . . , zn)), the coefficients of the Kähler form

ω = (
√−1/2)gk̄jdzj ∧ dz̄k satisfy, for all i, j, k ∈ { 1, . . . , n },

gīj = gj̄i and
∂

∂yk
gīj = 0. (2)

Definition 1.3. Assume that (X, g) is semi-flat on U and coordinates
(z1, . . . , zn) on U is induced by ϕ : B(r) × B(r′) → U . We further assume that
there exists a nonvanishing holomorphic section e ∈ Γ(U,L). Then, we say that a pair
of a holomorphic line bundle L→ X and a Hermitian metric h of L is graphical on U
with respect to e ∈ Γ(U,L) if for all k ∈ { 1, . . . , n }

∂

∂yk
log h(ē, e) = 0. (3)

1.3. The main theorem. Let U ⊂ X be an open set and U c denotes its com-
plement. Put V := U × [a, b) for some a, b ∈ R. Then, for a space-time point
Q := (p, t) ∈ V , we define the parabolic distance from Q to the boundary of V by

distg(Q, V ) := min

{
inf

q∈Uc
dg(p, q),

√
b− t,

√
t− a

}
. (4)

Now, we can state our main theorem (ε-regularity theorem) except for precise defini-
tions of two important quantities: Θ̄ and K3,α.

Theorem 1.4. Fix a Kähler manifold (X, g), a bounded open set U ′ ⊂ X,
α ∈ (0, 1) and A > 0. Assume that (X, g) is semi-flat on U ′ with respect to ϕ :
B(4r)×B(r′)→ U ′. Then, there exist ε, C > 0 with the following property. Suppose
L→ X is a holomorphic line bundle, h = {ht }t∈[0,T ) is a line bundle mean curvature
flow of L with T < ∞ and e ∈ Γ(U ′, L) is a nonvanishing holomorphic section so
that ht is graphical on U ′ for all t ∈ [0, T ) with respect to e ∈ Γ(U ′, L). Put U :=
ϕ(B(r)×B(r′)) and V := U × [0, T ). Assume that supV |F (h(t))| ≤ A and

Θ̄(h,Q, t) ≤ 1 + ε
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for all Q = (p, T ′) ∈ U × (0, T ) and t ∈ (T ′ − (distg(Q, V ))2, T ′) ∩ (0, T ). Then,

K3,α;V (g, φ) ≤ C,

where φ := − log h(ē, e).

The precise definitions of Θ̄(h,Q, t) and K3,α;V (g, φ) are complicated. So, we
refrain from describing these in this subsection. Here, we just put some remarks on
these quantities. First, Θ̄(h,Q, t) is called the Gaussian density of h = {ht }t∈[0,T ) at
Q = (p, T ′) with scale t and defined in Definition 5.5. This is an analogue of the Gaus-
sian density for mean curvature flows introduced by Stone [13]. Next, K3,α;V (g, φ)
are basically defined by |∂tφ|C0 , |∂t∇φ|C0,α and |∇3φ|C0,α . Roughly speaking, we first
define K3,α((g, φ), Q) by these three seminorms, following White [15], and next define
K3,α;V (g, φ) by the supremum of the product of K3,α((g, φ), Q) and distg(Q, V ) for
Q ∈ V . Those are explained in Section 7.

1.4. The strategy of the proof. Without precise definitions and proofs of
facts, we explain how Theorem 1.4 will be proved. This instant proof sheds light
on three keys we will give in the following sections. Let us denote by A the set of
all triplets a = ((X,ω), L, h), where (X,ω) is a Kähler manifold, L is a holomorphic
line bundle over X and h = {ht }t∈[0,Tmax) is a line bundle mean curvature flow of
L. In this subsection, we write Θ̄(a,Q, t) and K3,α;V (a) instead of Θ̄(h,Q, t) and
K3,α;V (g, φ), respectively.

(i) The first key is the scaling invariance of line bundle mean curvature flows.
We define a parabolic scaling operator DT

k : A → A for T ∈ R and k ∈ N in
Section 3. Roughly, it is given by DT

k (a) := ((X, kω), L⊗k, h⊗k) and we have
to change the scale of time t precisely.

(ii) The second key is the Gaussian density Θ̄ ≥ 0 and its properties: scaling in-
variance and monotonicity. The former means Θ̄(DT

k (a), Q, t) = Θ̄(a,Q′, t′),
where Q′ := (p, 0) and t′ := T + t/k. The latter means ∂tΘ̄(a,Q, t) ≤
−B(h) + C for a = ((X,ω), L, h) ∈ A, where B(h) ≥ 0 is defined by h and
C ≥ 0 is a constant. If (X,ω) is R

n × B(r′) with the standard metric, then
C = 0. This implies that Θ̄(a,Q, t)+C(T ′− t) ≥ 0 is monotonically decreas-
ing for t and has the limit as t → T ′. It is also important that the limit of
limt→T ′ Θ̄(a,Q, t) ≥ 1 when T ′ of the chosen Q = (p, T ′) is strictly less than
Tmax. These are discussed in Section 5.

(iii) The third key is the Liouville type theorem for self-shrinkers. Roughly speak-
ing, an ancient solution h = {ht }t∈(−∞,Tmax) of the line bundle mean curva-
ture flow satisfying B(h) = 0 is called a self-shrinker. Then, we can prove
that if Tmax = ∞ for a graphical self-shrinker then φ := − log ht should be
of the form aijx

ixj + b for some constants aij , b ∈ R. Then, one may agree
that when φ = aijx

ixj + b then K3,α(a,Q) = 0 since we mentioned that it
is defined by |∂tφ|C0 , |∂t∇φ|C0,α and |∇3φ|C0,α though we have not given its
precise definition.

Then, the proof of Theorem 1.4 will be done with these keys as follows.

Sketch of the proof of Theorem 1.4. We do proof by contradiction. So, assume
that there exist sequences Ci → ∞, εi → 0 and line bundle mean curvature flows hi

of Li over (X,ω) (we put ai := ((X,ω), Li, hi)) such that

Θ̄(ai, Q, t) ≤ 1 + εi and K3,α;Vi
(ai) ≥ Ci, (5)
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where we omitted the ranges of Q and t. We also assume that each ai satisfies all
additional assumptions in Theorem 1.4. Then, one can prove that K3,α(ai, · ) → ∞
uniformly. Then, by choosing ki precisely, we can normalize these so that

K3,α(D
Ti

ki
(ai), Qi) = 1 (6)

at some point Qi since K3,α performs in inverse proportion for the scaling.
On the other hand, since the density is scaling invariant, we have

Θ̄(DTi

ki
(ai), Q, t) = Θ̄(ai, Q

′, t′)

and the right hand side tends to 1 by (5). Moreover, we can prove that DTi

ki
(ai)

converges to a∞ ∈ A in some sense, where a∞ = ((X∞, ωst),C, h∞) with X∞ :=
R

n × B(r′) and h∞ = {h∞,t }t∈R. Then, by the second key with C = 0, we see that
Θ̄(a∞, Q∞, t) ≥ 1. Letting i→∞ in (5), we know that Θ̄(a∞, Q∞, t) ≤ 1. Thus, we
see that Θ̄(a∞, Q∞, t) ≡ 1, so ∂tΘ̄(a∞, Q∞, t) ≡ 0. This together with the second key
and C = 0 implies that B(h∞) = 0, that is, h∞ is a self-shrinker.

Now, h∞ is a self-shrinker defined for all time. Thus, by the third key (the
Liouville type theorem for self-shrinkers) we can say that

K3,α(a∞, Q∞) = 0.

But, this contradicts to the normalization (6) with DTi

ki
(ai)→ a∞.

1.5. Organization of this paper. Section 1 is the shortest path to the main
theorem of this paper and gives the sketch of the proof of the main theorem. Section 2
gives the background of the present work which is related to mirror symmetry. Section
3 gives the basic notations and the scaling invariance of the line bundle mean curvature
flow PDE. Section 4 is devoted to build the divergence theorem for a Hermitian metric
as an analog of it for a submanifold. In Section 5, we provide the monotonicity
formula for line bundle mean curvature flows, define the Gaussian density and prove
important properties of it. In Section 6, we define a self-shrinker for the line bundle
mean curvature flow PDE and prove the Liouville type theorem for it. In Section 7,
we give the proof of the main theorem after the definition of K3,α-quantity.

Acknowledgments. The first author would like to thank Professor S.-T. Yau
for inviting her to visit Harvard University where the research studied. The second
author would like to thank Professor A. Futaki for introducing him some previous
results relating to this paper and for private communication.

2. Background. In this section, we provide the background of the present work.
We review the importance of deformed Hermitian Yang–Mills metrics and line bundle
mean curvature flows along the history of mirror symmetry. By going back to the
origin of deformed Hermitian Yang–Mills metrics, one can see that the semi-flat con-
dition (Definition 1.2) and graphical condition (Definition 1.3) are naturally satisfied
in important cases.

2.1. Short history of mirror symmetry. There is no room for doubt that
mirror symmetry is not only important for physicists but also mathematicians. From
the proposal by Kontsevich [8], the so-called homological mirror symmetry, it is widely
recognized as an equivalence of a triangulated category between the bounded derived
category of coherent sheaves on X, denoted by DbCoh(X), and the one of Fukaya
category, denoted by DbFuk(Y ) for mirror Calabi–Yau manifolds X and Y . Roughly
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speaking DbCoh(X) is determined by the complex structure of X and DbFuk(Y ) is
by the symplectic structure of Y . In superstring theories, this is regarded as T-duality
between type IIA string theory (related to complex geometry) and type IIB (related
to symplectic geometry).

Although the homological mirror symmetry tells us what should happen when
a mirror Calabi–Yau pair is given, it does not provide a way to construct such a
mirror pair. Amid such circumstances, Strominger, Yau and Zaslow [14] proposed
a way to create mirror Calabi–Yau partners, now it is called the SYZ conjecture.
Simply speaking, they proposed that a mirror partner should be obtained by the real
Fourier–Mukai transform when one side is the total space of a special Lagrangian torus
fibration over some base manifold B. Since the SYZ conjecture, special Lagrangian
submanifolds have acquired much attention. We remark that special Lagrangian
submanifolds had been originally defined by Harvey and Lawson [5] before the SYZ
conjecture.

The real Fourier–Mukai transform is not only a tool to construct a mirror partner
but also a map which sends D-branes in one side to the other side. This is explained
by Mariño, Minasian, Moore and Strominger [10] from the physical side and by Le-
ung, Yau and Zaslow [9] from the mathematical side. Their consequence is that the
corresponding objects to special Lagrangian submanifolds in the type IIB side are
deformed Hermitian Yang–Mills connections in the type IIA side.

To be precise, let θ ∈ R be a constant, (X, g) a Kähler manifold with dimC X = n
and associated Kähler form ω and L → X a complex line bundle with a Hermitian
metric h.

Definition 2.1. A deformed Hermitian Yang–Mills connection with phase e
√−1θ

is a Hermitian connection ∇ of (L, h) so that its curvature 2-from F satisfies

F 0,2 = 0 and Im
(
e−
√−1θ

(
ω + F

)n)
= 0.

It is well-known that the first condition, F 0,2 = 0, is equivalent to that the
existence of a holomorphic structure so that the Chern connection associated to h is
∇, that is, the integrability condition. The second condition is nonlinear in general,
however it is rewritten as ω ∧ F = 0 when dimC X = 2 and θ = 0, and this is just
the Hermitian Yang–Mills equation. After a blank period of about fifteen years from
[9], the study of dHYM has been developed recently, see [1, 2, 3, 12] and references
therein.

2.2. Introduction to the work of Leung-Yau-Zaslow. In our main theorem
(Theorem 1.4), we assume locally semi-flat and graphical condition for X and h. It
seems unnatural at first glance. To explain why such conditions are supposed, we go
back to the origin of deformed Hermitian Yang–Mills connections, that is, the work
of Leung, Yau and Zaslow [9].

Let B be an open set in R
n with standard coordinates xi and φ be a strictly convex

smooth function on B. Then, other coordinates on B are introduced by x̃i := ∂φ/∂xi

as the Legendre transform of φ. Put M := B × Tn and W := B × (Tn)∗, where Tn

(∼= R
n/Zn) is an n-torus with coordinates yi and (Tn)∗ (∼= (Rn)∗/(Zn)∗) is its dual

with coordinates ỹi. A complex structure and Kähler form on M are defined by

zi := xi +
√−1yi and ω :=

√−1
2

φij(x)dz
i ∧ dz̄j
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with φij(x) = ∂2φ(x)/∂xi∂xj ; those on W are defined by

z̃i := x̃i +
√−1ỹi and ω̃ :=

√−1
2

φij(x)dz̃i ∧ d¯̃zj (7)

with (φij) = (φij)
−1. We equip M with a holomorphic volume form Ω := dz1 ∧ · · · ∧

dzn.
Fix a section Y = (Y 1, . . . , Y n) of M , regarding M as a torus fibration over B,

and put its graph by SY := { (x, Y (x)) | x ∈ B }. On the other hand, Y assigns each
point x ∈ B to a connection ∇Y (x) on the torus fiber Tn(x) over x. This is defined
by the canonical identification Tn(x) ∼= Hom(π1((T

n(x))∗), U(1)), where we used the
fact that the right hand side is just the moduli space of flat connections on (Tn(x))∗.
The family of connections ∇Y (x) along x ∈ B constitutes a connection of the trivial C
bundle L := C (with the standard metric h := 〈 , 〉) on the whole W , written explicitly
by

∇Y = d+
√−1Y jdỹj .

Then, the result of Leung, Yau and Zaslow is stated as follows.

Theorem 2.2 (Leung, Yau and Zaslow, [9]). SY in M is a special Lagrangian

submanifold with phase e
√−1θ if and only if ∇Y of (L, h) on W is a deformed Her-

mitian Yang–Mills connection with phase e
√−1θ.

Here, we observe the holomorphic structure on L induced by ∇Y under the as-
sumption that ∇Y is integrable. In Section 3.1 of [9], one can see that the integrability
condition is equivalent to the existence of a locally defined smooth function f , which
does not depends on ỹ, so that Y j = ∂f/∂x̃j . Put e := ef ·1 and regard this as a local
frame of L = C. Then, one can see that (∇Y e)0,1 = 0. This means that e defines a
holomorphic structure on L with the associated Chern connection ∇Y .

In the above explanation of the work of Leung, Yau and Zaslow, we pay attention
to the following two properties.

(a) The ambient space W is (at least locally) diffeomorphic to the total space of
a torus bundle. Moreover, the coefficients of the Kähler form do not depend
on ỹ-coordinates and are real values, see (7).

(b) There exists a holomorphic local frame e of L so that h(e, e) does not depend
on ỹ-coordinates. In the above case, we have h(e, e) = 〈e, e〉 = e2f .

Then, the first property (a) corresponds to locally semi-flat condition (Definition
1.2); the second one (b) corresponds to graphical condition (Definition 1.3).

These properties are also satisfied in the case where W is the complement of the
anti canonical divisor of a toric Kähler manifold, L is a Tn-equivariant holomorphic
line bundle and h is a Tn-invariant Hermitian metric, see Section 9 of [2].

2.3. Review of the work of Jacob and Yau. In the work of Leung, Yau and
Zaslow, main objects are connections. More precisely, those are Hermitian connections
of a fixed complex line bundle L—rather than holomorphic apriori—with a given
Hermitian metric h. As a consequence of dHYM condition, L is given a holomorphic
structure defined by the connection. Recently, Jacob and Yau [7] switched main
objects from connections to metrics. Namely, they fixed a holomorphic line bundle L,
rather than complex, over a Kähler manifold (X,ω), and they tried to fined special
Hermitian metrics of L in the following sense.
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Definition 2.3. A deformed Hermitian Yang–Mills metric with phase e
√−1θ is

a Hermitian metric h of L so that its Chern connection satisfies

Im
(
e−
√−1θ

(
ω − F (h)

)n)
= 0,

where F (h) is the curvature 2-form of the Chern connection explicitly given by F (h) :=
(−1/2)∂∂̄ log h.

Readers may find that signs on the front of F in Definition 2.1 and 2.3 are different.
But, this is just a matter of convention. Actually, if h is a dHYM metric of L in the
sense of Definition 2.3, then the Chern connection of h−1 of L−1 is a dHYM connection
in the sense of Definition 2.1 and vice versa.

To find dHYM metrics, Jacob and Yau [7] introduced a volume functional V
on the space of Hermitian metrics (see (9)) so that its minimizers are just dHYM
metrics, and they studied its negative gradient flow. They named it the line bundle
mean curvature flow and that is nothing but what we defined in Definition 1.1.

If the line bundle mean curvature flow has long time solution {ht }t∈[0,∞) and
converges to some Hermitian metric h∞, we can say that h∞ is a dHYM metric since
the flow is the negative gradient flow of V and its minimizers are dHYM metrics.
However, due to its nonlinearity, we do not know whether the flow exists for all time
or blows up in finite time. Hence, it is very important to give a sufficient condition to
ensure that a flow ht defined for t ∈ [0, T ) can be extended beyond T . Theorem 1.3
and Theorem 1.4 of [7] are examples giving such sufficient conditions, and Proposition
5.2 of [7] also can be considered as a sufficient condition. For comparison with our
main theorem, we introduce Proposition 5.2 of [7].

Proposition 2.4 (Jacob and Yau, [7]). Suppose that X is compact and ht is a
line bundle mean curvature flow defined for t ∈ [0, T ). If there exist A > 0 satisfying

1

A
ω ≤ √−1F (ht) ≤ Aω

for all t ∈ [0, T ), then ht can be extended beyond T .

We note that replacing the assumption of Proposition 2.4 to

−Aω ≤ √−1F (ht) ≤ Aω (8)

for some A > 0 causes serious problems because the positivity of all eigenvalues of√−1F (ht) plays the important role in their proof relying on the Evans–Krylov theory.
In that theory, the concavity of the operator h �→ θ(h) is essential and it is ensured by
the positivity of all eigenvalues of

√−1F (h). In contrast, our main theorem (Theorem
1.4) treats the case so that (8) holds. It is written as supV |F (h(t))| ≤ A in the
theorem.

3. Scaling invariance. In this section, we fix some basic notations following [7]
and introduce a scaling which acts on line bundle mean curvature flows. Let (X, g)
be a Kähler manifold with dimC X = n. Then, its Kähler form is locally given by

ω =

√−1
2

gk̄jdz
j ∧ dz̄k.

Let π : L → X be a holomorphic line bundle. For a Hermitian metric h on L, its
curvature 2-from F = F (h) is locally given by

F =
1

2
Fk̄jdz

j ∧ dz̄k := −1

2
∂j∂k̄ log(h)dz

j ∧ dz̄k.
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Then, one can easily prove that a complex number ZL :=
∫
X
(ω − F (h))n does not

depend on the choice of metric h, see [7] for detail. Hence, ZL ∈ C is an invariant of
L. Define ζ = ζ(ω, h) : X → C by

ζ =
(ω − F (h))n

ωn
.

It is shown that |ζ| ≥ 1 in [7]. We define θ = θ(ω, h) : X → (−πn/2, πn/2) by

θ := arctanλ1 + · · ·+ arctanλn,

where λi are eigenvalues of the endomorphism K on T 1,0X defined by

K := gjk̄Fk̄�

∂

∂zj
⊗ dz�.

This definition of θ is based on the equation (2.5) in [7] and it is called the angle

function since it satisfies ζ/|ζ| = e
√−1θ, see the equation (2.4) in [7].

Then, in terms of the angle function, h is a deformed Hermitian Yang–Mills

metric with phase e
√−1θ̂ if and only if θ(ω, h) = θ̂. We also define a 1-form on X

by H := H(ω, h) = dθ and call it the mean curvature 1-form of h with respect to ω.
Then, it is clear that h is a deformed Hermitian Yang–Mills metric with some phase
if and only if H = 0. This is an analog of that a Lagrangian submanifold is special if
and only if it is minimal.

Remark 3.1. Acting the exterior derivative to the both hand side of (1) and
using the definition of line bundle mean curvature flows and H = dθ, we get

du̇ = H,

where u̇ is the time derivative of u. In this paper, we use this equation frequently.

The volume, mentioned in Subsection 2.3, of a Hermitian metric h of L→ X with
respect to ω is defied by

V (ω, h) :=

∫
X

|ζ|ω
n

n!
(9)

whenever it is finite. The induced metric of h is also defined by

ηk̄j := gk̄j + Fk̄�g
�m̄Fm̄j . (10)

Since η is a positive (1, 1)-form on X, we can define the following elliptic operator on
C∞(X):

Δηf := ηjk̄∂j∂k̄f.

The following is the first variation formula of the volume given in [7].

Proposition 3.2. For any smooth family of Hermitian metric ht = e−u(t)h0 on
(X,ω) so that suppu(t) is compact, we have

d

dt
V (ht) = −

∫
X

〈∂̄u̇, H(1,0)〉η|ζ|ω
n

n!
=

∫
X

(Lηθ)u̇|ζ|ω
n

n!
,
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where Lηθ := Δηθ − 〈K∗(∂̄θ), ∂θ〉η, (K∗(∂̄θ))( · ) := (∂̄θ)(K̄( · )) and H(1,0) = ∂θ.

Proof. The first equality is given by Proposition 3.4 in [7]. To see the second
equality, we first compute as follows:

η�q̄H�∇q̄u̇|ζ| =∇q̄(η
�q̄H�u̇|ζ|)−∇q̄(η

�q̄|ζ|)H�u̇− η�q̄∇q̄H�u̇|ζ|.

By computation in the proof of Proposition 3.4 in [7], one sees that

∇q̄(η
�q̄|ζ|) = −Hūg

iūFr̄iη
�r̄|ζ|.

By ∇�θ = H�, we have η�q̄∇q̄H� = Δηθ and Hūg
iūFr̄i = (K∗(∂̄θ))r̄. Putting every-

thing together and using the divergence theorem give the second equality.

From Proposition 3.2, it follows that h is a critical point of the volume functional
if and only if its angle θ : X → (−πn/2, πn/2) satisfies Lηθ = 0 and also that the
volume is nonincreasing along a line bundle mean curvature flow ht since ∂̄u̇ = H(0,1)

by Remark 3.1.

Proposition 3.3. If X is compact, then for any initial metric h of L and
constant θ̂ ∈ R, there exists T > 0 and a solution ht of (1) defined for t ∈ [0, T ) with
h0 = h. Moreover, the solution is unique.

Proof. By the equation (5.1) in [7], we have

ü = Δηu̇

for a line bundle mean curvature flow ht = e−u(t)h0. Since this is a strongly parabolic
PDE for f := u̇, there exists T > 0 and a unique solution f of ḟ = Δηf defined for

t ∈ [0, T ) with initial condition f(0) = θ(ω, h)− θ̂. For t ∈ [0, T ), define

u( · , t) :=
∫ t

0

f( · , s)ds.

Then, u( · , 0) ≡ 0 and ü = Δηu̇ = θ̇ where we used the equation (3.4) in [7]. Thus,
there exists a time-independent function w on X such that u̇ = θ − w. Then, by the
initial condition u̇( · , 0) = f( · , 0) = θ(ω, h)−θ̂, we see that w ≡ θ̂. Thus, ht := e−u(t)h
is a solution of (1) with h0 = h. The above construction indicates the uniqueness of
solution.

The following reveals a scaling invariance of ζ.

Proposition 3.4. For a > 0 and k ∈ N>0, the function ζ = ζ(ω, h) : X → C

satisfies

ζ(ω, ah) = ζ(ω, h) and ζ(kω, h⊗k) = ζ(ω, h),

where h⊗k is regarded as a Hermitian metric of L⊗k.

Proof. The first one is clear since F (ah) = F (h). The second one follows from

ζ(kω, h⊗k) =
(kω − kF (h))n

(kω)n
= ζ(ω, h)

since F (h⊗k) = kF (h).
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Proposition 3.5. Let h = {ht }t∈[0,T ) (T <∞) be a line bundle mean curvature
flow of L → X with respect to ω. For a > 0, k ∈ N>0, T

′ ∈ R and s ∈ [−kT ′, k(T −
T ′)), define a Hermitian metric of L⊗k by

h̃s = ah⊗k
t

with relation t = T ′+s/k. Then, h̃s is a line bundle mean curvature flow on L⊗k → X
with respect to kω and initial metric ah⊗k

0 .

Proof. Put ht = e−u(t)h0 and h̃s = e−ũ(s)ah⊗k
0 . Then, we have ũ(s) = ku(t) with

relation t = T ′ + s/k. Thus, we have

d

ds
ũ(s) = k

d

dt
u(t)× 1

k
=

d

dt
u(t).

On the other hand, by Proposition 3.4, we have θ(kω, ah⊗k
t ) = θ(ω, ht). Thus, the

proof is complete.

Proposition 3.6. For k ∈ N>0, it holds that |∇̃F (h⊗k)|2 = |∇F (h)|2/k, where
∇̃ is the Levi-Civita connection of kω and | · | on the left hand side is the norm with
respect to kω.

Proof. It is clear that F (h⊗k) = kF (h) and ∇̃ = ∇. Thus, ∇̃F (h⊗k) = k∇F (h).
Let ẽj be a local orthonormal frame with respect to kω. Then, ej :=

√
kẽj becomes

a local orthonormal frame with respect to ω and

(∇̃F (h⊗k))(ẽi, ẽj , ẽk) = k(∇F (h))(ei, ej , ek)× 1√
k
3 =

1√
k
(∇F (h))(ei, ej , ek).

Then, the proof is complete.

Definition 3.7. Let ((X,ω), L, h) be a triplet of a Kähler manifold (X, g), a
holomorphic line bundle π : L → X and a line bundle mean curvature flow h =
{ht }t∈[0,T ) of L. For given T ′ ∈ R and k ∈ N>0, we define the scaling operator DT ′

k

by DT
k ((X,ω), L, h) := ((X, kω), L⊗k, DT ′

k h), where (DT ′
k h)s is defined by

(DT ′
k h)s := h⊗k

t

for s ∈ [−kT ′, k(T − T ′)) with relation t = T ′ + s/k.

By Proposition 3.5, we see that DT ′
k h is a line bundle mean curvature flow of L⊗k

on (X, kω).

4. Divergence theorem. In this section, we build a parallel framework of Her-
mitian metrics with geometry of submanifolds and give an analog of the divergence
theorem for submanifolds. We also give an application of it in the latter subsection.

4.1. A divergence theorem. We fix a Kähler manifold (X, g) with dimC X = n
and a holomorphic line bundle π : L→ X. For a Hermitian metric h, a new measure
dμ(h) on X is defied by

dμ(h) = |ζ|ω
n

n!
.

Put v := |ζ| : X → R
+. For a smooth section Y = Y i(∂/∂zi) of T 1,0X, the v-weighted

divergence of Y is defined by

divv Y := v−1∇i

(
vY i

)
.
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Then, by the usual divergence theorem and the definition of dμ(h), we have∫
U

divv Y dμ(h) =

∫
∂U

g (vY, ν) dμ|∂U (11)

on a relatively compact open set U ⊂ X with piecewise smooth boundary ∂U , where
dμ|∂U is the induced measure on ∂U with respect to the induced metric g|∂U and ν
is the outer unit normal vector field along ∂U .

On a chart U with holomorphic coordinates (z1, . . . , zn), put

Ei := ∂

∂zi
⊕ Fj̄idz̄

j =
∂

∂zi
⊕ ∂̄

(
∂(− log h)

∂zi

)
for i = 1, . . . , n. It is clear that {Ei}ni=1 are C-linearly independent sections of T 1,0X⊕
Λ0,1X over U . Here, V ⊕W := { v ⊕ w := (v, w) ∈ V ×W } is the formal sum of
vector spaces V , W with sum (v1 ⊕ w1) + (v2 ⊕ w2) := (v1 + v2) ⊕ (w1 + w2) and
scalar product λ · (v ⊕w) := (λv)⊕ (λw). Let U ′ be another chart with holomorphic
coordinates (w1, . . . , wn) satisfying U ∩ U ′ �= ∅, and put

E ′j :=
∂

∂wj
⊕ ∂̄

(
∂(− log h)

∂wj

)
.

Then, on U ∩ U ′, one can see that

Ei =
n∑

j=1

∂wj

∂zi
E ′j . (12)

Thus, transition functions from {Ei}ni=1 to {E ′i}ni=1 are holomorphic, and the following
definition makes sense.

Definition 4.1. For a Hermitian metric h on L, a holomorphic subbundle of
T 1,0X ⊕ Λ0,1X of rank n, denoted by Th, is defined by

Th|U := SpanC{ E1, . . . , En }
on each U . We call this subbundle Th ⊂ T 1,0X ⊕ Λ0,1X the tangent bundle of h.

Remark 4.2. The notion of Th is an analog of the tangent bundle TL of
a Lagrangian submanifold L ⊂ C

n which is written as the graph of the gra-
dient of a function. Precisely, the tangent bundle of a Lagrangian submanifold
L = { (x,∇ψ(x)) | x ∈ R

n }, where ψ = ψ(x) is a smooth function on R
n, is spanned

by

Ei :=
∂

∂xi
+

∂2ψ

∂xi∂xj

∂

∂yj
, i = 1, . . . , n. (13)

Note that Th is holomorphically isomorphic to T 1,0X since the transition func-
tions are ∂wj/∂zi by (12). Actually, the isomorphism is given by Ei �→ ∂/∂zi. We
denote this isomorphism by •̃ : Th→ T 1,0X.

Definition 4.3. Let Y and Z be smooth sections of T 1,0X ⊕ Λ0,1X with local
expressions

Y = Y j ∂

∂zj
⊕ Yj̄dz̄

j and Z = Zk ∂

∂zk
⊕ Zk̄dz̄

k. (14)
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Then, a Hermitian metric 〈 · , · 〉 on T 1,0X ⊕ Λ0,1X is defined by

〈Y,Z〉 := gj̄kY
jZk + gjk̄Yj̄Zk̄.

The orthogonal compliment of Th ⊂ T 1,0X ⊕ Λ0,1X with respect to this Hermitian
metric is denoted by T⊥h and called the normal bundle of h.

Definition 4.4. Let Y be a smooth section of T 1,0X ⊕ Λ0,1X. We denote the
Th-part (resp., T⊥h-part) of Y by Y� (resp., Y⊥), and call it the tangential part
(resp., the normal part) of Y with respect to h. Moreover, we call type (1, 0) vector

field Ỹ� the associated vector field with Y.
Since the Hermitian metric 〈 · , · 〉 of T 1,0X ⊕Λ0,1X and the induced metric η on

T 1,0X perform nicely as

〈Ei, E�〉 = gī� + gjk̄FījFk̄� = ηī�,

the tangential part of Y with respect to h and its associated vector field are easily
written by

Y� := ηij̄〈Ej ,Y〉Ei and Ỹ� := ηij̄〈Ej ,Y〉 ∂

∂zi
. (15)

Moreover, smooth sections Fi of T
1,0X ⊕ Λ0,1X defined by

Fi :=

(
−Fk̄ig

jk̄ ∂

∂zj

)
⊕ (

g�̄idz̄
�
)

satisfy 〈Fi,Fj〉 = ηīj and 〈Ei,Fj〉 = 0. Thus, {Fi }ni=1 is a basis of T⊥h, and the
normal part of Y with respect to h is given by

Y⊥ = 〈Fi,Y〉ηjīFj . (16)

Definition 4.5. Let Y be a smooth sections of T 1,0X ⊕ Λ0,1X with a local
expression as in (14). Then, we define its divergence along h, which is a smooth
function on X, by

divh Y := ∇iY
kηij̄gj̄k +∇iYk̄η

ij̄Fj̄�g
�k̄. (17)

Remark 4.6. The reason why we define the divergence along h as above is
the following. As in Remark 4.2, consider the graphical Lagrangian submanifold
L = { (x,∇ψ(x)) | x ∈ R

n }. Then, its tangent bundle is spanned by Ei defined in
Remark 4.2. Assume that a vector field Z = Xi(∂/∂x

i) + Yi(∂/∂y
i) along L is given.

Then, the usual divergence of Z along L is given by divL Z :=
∑n

i=1∇Ei
〈Ei, Z〉.

Expanding the right hand side of this with (13), one can find similarities between it
and (17).

Definition 4.7. For a Hermitian metric h of L, we define the mean curvature
section, which is a smooth section of T 1,0X ⊕ Λ0,1X, by

H = H(ω, h) :=

(
−gqk̄Hp̄η

�p̄Fk̄�

∂

∂zq

)
⊕
(
gq̄kH�̄η

k�̄dz̄q
)
.
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The mean curvature section has some nice properties. First, it holds that

|H|2 = |H(1,0)|2η. (18)

Second, the mean curvature section of h is normal to the tangent bundle Th, that is,
H� = 0. These two properties are proved by direct computation and done in [4] in
detail.

In the geometry of submanifolds, it is well-known that the mean curvature vector
field of a submanifold in a Riemannian manifold is normal, and the above property
can be considered as an analog of that. The following is an analog of the divergence
theorem for vector fields along submanifolds.

Theorem 4.8. For any smooth section Y of T 1,0X ⊕ Λ0,1X, it holds that

divv Ỹ� = divh Y + 〈H,Y〉. (19)

Moreover, on a relatively compact open set U ⊂ X with piecewise smooth boundary
∂U , we have∫

U

divh Ydμ(h) = −
∫
U

〈H,Y〉dμ(h) +
∫
∂U

g
(
vỸ�, ν

)
dμ|∂U . (20)

Proof. We will expand divv Ỹ� explicitly. Since 〈Ej ,Y〉 = gj̄kY
k + g�k̄Fj̄�Yk̄, we

have

vηij̄〈Ej ,Y〉 = Y k
(
vηij̄

)
gj̄k + Yk̄

(
vηij̄Fj̄�

)
g�k̄.

This is the coefficient of ∂/∂zi of vỸ� by (15). Thus, we get

divv Ỹ� =divh Y + Y kv−1∇i

(
vηij̄

)
gj̄k + Yk̄v

−1∇i

(
vηij̄Fj̄�

)
g�k̄

= : divh Y + Y kAk + Yk̄B
k̄.

(21)

More step by step computation is expanded in [4]. We further compute Ak and Bk̄.
Then, by a straightforward but tedious computation (see [4] for detail), we see that

Ak = −Hpη
p�̄F�̄k and Bk̄ = H�η

�k̄. (22)

Then, substituting (22) into (21) yields

divv Ỹ� =divh Y − Y kHpη
p�̄F�̄k + Yk̄H�η

�k̄

=divh Y − gq̄iY
igqk̄Hp̄η�p̄Fk̄� + gqīYīgq̄kH�̄η

k�̄

=divh Y + 〈H,Y〉,
and this is the first desired formula (19). Integrating both hand side of (19) with the
divergence theorem (11) deduces the second desired formula (20).

Remark 4.9. Theorem (4.8) can be considered as an analog of the divergence
formula for a submanifold, which is also called the first variation formula. Actually,
for a submanifold L in a Riemannian manifold (M, g) and a section V of TM along
L with compact support, it holds that∫

L

divL V dμL = −
∫
L

g(H,V )dμL,

where divL is the divergence of V along L, H is the mean curvature vector field of L
and dμL is the induced measure on L.
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4.2. An application of the divergence theorem. In this subsection, we give
an application of the divergence formula (20). Recall that (X, g) is a given Kähler
manifold with dimCX = n and π : L → X is a holomorphic line bundle. Recall that
we introduced special conditions for (X, g), called the semi-flat condition in Definition
1.2, and for (L, h), called the graphical condition in Definition 1.3. We also remark
that from the former condition in (2) it follows that

g

(
∂

∂xi
,

∂

∂yj

)
= 0 (23)

for all 1 ≤ i, j ≤ n.

Definition 4.10. Assume that (X, g) is locally semi-flat on U ⊂ X with the
coordinates (z1, . . . , zn) induced from ϕ : B(r) × B(r′) → U and (L, h) is graphical
with respect to a section e ∈ Γ(U,L). Then, we define a smooth function φ : U → R

by

φ := − log h(ē, e).

Put Uδ := ϕ(B(δ) × B(r′)) for δ ∈ (0, r], where the radius of the first component is
changed and the second one is fixed. Then, for p ∈ Ur/4, we define a smooth section
of T 1,0X ⊕ Λ0,1X over U3r/4 by

Pp :=

(
2(xk − xk

0)
∂

∂zk

)
⊕
(
1

2

∂φ

∂xk
dz̄k

)
,

where xk
0 are the coordinates of the B(r/4)-component of ϕ−1(p) ∈ B(r/4) × B(r′).

We call Pp the position section of h centered at p and usually omit the subscript p.

Definition 4.11. For a smooth function f : X → C, we define a differential
operator D by

Df :=

(
∇īfη

jī ∂

∂zj

)
⊕
(
∇īfη

ījF�̄jdz̄
�
)
.

It is clear that Df is a smooth section of T 1,0X ⊕ Λ0,1X and satisfies

D(f1f2) = f1Df2 + f2Df1.

By a straightforward computation, the following is proved in Lemma 4.11 and
Lemma 4.12 in [4]:

divh(fP) = 〈Df,P〉+ nf and 〈D|P|2,P〉 = 2|P�|2. (24)

The following is the application of the divergence formula (20).

Theorem 4.12. Assume that (X, g) is semi-flat on U ⊂ X with the coordinates
(z1, . . . , zn) induced from ϕ : B(r) × B(r′) → U and (L, h) is graphical with respect
to a section e ∈ Γ(U,L). Fix p ∈ Ur/4 and let P := Pp be the position section of h
centered at p. Then, for any smooth function f : U → R with

(a)
∂f

∂yk
= 0 and (b) supp f( · , 0) � B(r) (25)
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and a constant α ∈ R, it holds that∫
U

(
n+ 〈H,P〉+ 2α

∣∣P�∣∣2) fϕdμ(h) = −
∫
U

〈Df,P〉ϕdμ(h),

where ϕ := exp(α|P|2) : U3r/4 → R.

Proof. It follows from (24) that

divh(fϕP) =〈D(fϕ),P〉+ nfϕ

=α〈D|P|2,P〉fϕ+ 〈Df,P〉ϕ+ nfϕ

=2α
∣∣P�∣∣2 fϕ+ 〈Df,P〉ϕ+ nfϕ.

Then, by the divergence formula (20), we have

−
∫
U

〈H, fϕP〉dμ(h) =
∫
U

divh(fϕP)dμ(h)−
∫
∂U

g
(
vfϕP̃�, ν

)
dμ|∂U

=

∫
U

(
2α

∣∣P�∣∣2 fϕ+ 〈Df,P〉ϕ+ nfϕ
)
dμ(h)

−
∫
∂U

g
(
vfϕP̃�, ν

)
dμ|∂U .

(26)

We can prove that the last term is actually 0 as follows. First, ∂U is the union of
(∂B(r)) × B(r′) and B(r) × (∂B(r′)), and the integral over (∂B(r)) × B(r′) is 0 by
f |(∂B(r))×B(r′) ≡ 0. Next, it is easy to see that the integral over B(r) × (∂B(r′)) is
pure imaginary since ν is written as ν = νi(∂/∂yi) (for some νi ∈ R) and (23). On
the other hand, one can easily prove that 〈H, fϕP〉 and divh(fϕP) in (26) are real
valued functions by assumptions. Then, by the first equality of (26), the last term of
it should be 0. This gives the desired equality.

5. Monotonicity formula. In this section, we give a monotonicity formula and
density for line bundle mean curvature flows. This is an analog given by Huisken [6]
for mean curvature flows. The proof of our monotonicity formula based on Theorem
4.12.

As in the previous sections, let (X, g) be a Kähler manifold with dimC X = n
and let π : L → X be a holomorphic line bundle. Assume that h = {ht }t∈[0,T ) is
a line bundle mean curvature flow of L. We further assume that (X, g) is semi-flat
on U ⊂ X with the coordinates (z1, . . . , zn) induced from ϕ : B(r)×B(r′)→ U and
(L, h) is graphical with respect to a section e ∈ Γ(U,L). Fix T ′ ∈ (0, T ) and a smooth
function f : U × [0, T ′) → R so that f( • , t) satisfies (a) and (b) of (25) for each t.
Let ψ : U × [0, T ′)→ R be a smooth function so that ψ( • , t) satisfies (a) of (25) for
each t. For each k ∈ R, define

ϕ :=
1

(4π(T ′ − t))k
exp

(
− ψ(t)

4(T ′ − t)

)
and

Θψ,f,k(h, T
′, t) :=

∫
U

ϕfdμ(h).
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Proposition 5.1. It holds that

d

dt
Θψ,f,k(h, T

′, t) =
∫
U

(Lηψ)fϕdμ(h) +

∫
U

(
∂

∂τ
f −Δηf

)
ϕdμ(h)

+
1

2(T ′ − t)

∫
U

Re
(〈∂ψ, ∂f〉η)ϕdμ(h), (27)

where

Lηψ :=
1

4(T ′ − t)

(
−∂tψ +Δηψ − ψ

4(T ′ − t)
+ 4k

)
− |H(1,0)|2η −

|∂ψ|2η
(4(T ′ − t))2

.

(28)

Proof. A straightforward calculation gives

d

dt
Θψ,f,k(h, T

′, t) =
∫
U

(
d

dt

1

(4π(T ′ − t))k

)
exp

(
− ψ

4(T ′ − t)

)
fdμ(h)

+

∫
U

1

(4π(T ′ − t))k

(
∂

∂t
exp

(
− ψ(t)

4(T ′ − t)

))
fdμ(h)

+

∫
U

1

(4π(T ′ − t))k
exp

(
− ψ

4(T ′ − t)

)
f
∂

∂t
(dμ(h(t)))

+

∫
U

1

(4π(T ′ − t))k
exp

(
− ψ

4(T ′ − t)

)
∂

∂t
f(t)dμ(h)

=:I1 + I2 + I3 + I4.

It is easy to see that

I1 =

∫
U

k

T ′ − t
fϕdμ(h) and I2 =

∫
U

(
− ψ

4(T ′ − t)2
− ∂tψ

4(T ′ − t)

)
fϕdμ(h).

To calculate I3, we need to use

∂

∂t
(dμ(h(t))) =

(
∂

∂t
|ζ(h(t))|

)
ωn

n!
=

(
−η�q̄H�Hq̄|ζ|+∇j

(
ηjk̄Fk̄�g

�q̄Hq̄|ζ|
)) ωn

n!
,

where the second equality follows from the equation (3.7) in [7] and∇q̄φ̇ = Hq̄. Taking

the complex conjugate of both hand side of Ak(= v−1∇i(vη
ij̄)gj̄k) = −Hpη

p�̄F�̄k in
(22) gives

v−1∇ī

(
vηjī

)
= −ηjk̄g�q̄Hq̄Fk̄�.

Combining these two equations gives

∂

∂t
(dμ(h(t))) = −|H(1,0)|2ηdμ(h(t))−∇j∇ī

(
vηjī

) ωn

n!
.

Thus,

I3 = −
∫
X

|H(1,0)|2ηfϕdμ(h)− I5,
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where

I5 :=

∫
U

1

(4π(T ′ − t))k
exp

(
− ψ

4(T ′ − t)

)
f∇j∇ī

(
vηjī

) ωn

n!
.

By using the divergence theorem twice, with the similar argument as in the last part
of the proof of Theorem 4.12 which ensures the boundary contribution is 0, one can
verify that

I5 =

∫
X

ηjī∇īψ∇jψ

(4(T ′ − t))2
fϕdμ(h)−

∫
X

Δηψ

4(T ′ − t)
fϕdμ(h) +

∫
X

Δηfϕdμ(h)

−
∫
X

∇jψ

4(T ′ − t)
∇īfη

jīϕdμ(h)−
∫
X

∇īψ

4(T ′ − t)
∇jfη

jīϕdμ(h).

Combining all above calculations together gives the desired formula.

Fix Q := (p, T ′) ∈ Ur/4 × (0, T ). Let Pp(t) be the position section of ht centered
at p. We denote Θ|Pp|2,f,n/2(h, T

′, t) by Θf (h,Q, t) simply, that is,

Θf (h,Q, t) :=

∫
U

1

(4π(T ′ − t))n/2
exp

(
− |Pp(t)|2
4(T ′ − t)

)
f(t)dμ(h(t)).

We basically omit the subscript p of Pp(t).

Theorem 5.2. It holds that

d

dt
Θf (h,Q, t)

=−
∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fϕdμ(h) + ∫
U

(
∂

∂t
f −Δηf

)
ϕdμ(h)

where

ϕ :=
1

(4π(T ′ − t))n/2
exp

(
− |P(t)|2
4(T ′ − t)

)
.

Proof. We need to calculate Lη|P|2 first, see (28) for the definition of Lη. Then,
by a straightforward but tedious computation with using the condition (2) and (3),
we have

∂t|P|2 = 2gpq̄∇pφHq̄,
∣∣∂|P|2∣∣2

η
= 4|P�|2 and Δη|P|2 = 2n+ 2∇qφHp̄g

qp̄. (29)

Combining the above formulas and (18) implies

Lη|P|2 =
n

2(T ′ − t)
− |P|2

4(T ′ − t)2
− 2gpq̄∇pφHq̄

4(T ′ − t)

− |H|2 − |P�|2
4(T ′ − t)2

+
2n+ 2∇qφHp̄g

qp̄

4(T ′ − t)

=−
∣∣∣∣H+

P⊥
2(T ′ − t)

∣∣∣∣2 + n

T ′ − t
+
〈H,P〉
T ′ − t

− 2|P�|2
4(T ′ − t)2

,
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where we used the fact that H is normal. Thus,∫
U

Lη|P|2fϕdμ(h) =−
∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fϕdμ(h)
+

1

T ′ − t

∫
U

(
n+ 〈H,P〉 − 2|P�|2

4(T ′ − t)

)
fϕdμ(h).

Applying Theorem 4.12 with α = −1/(4(T ′ − t)) yields

1

T ′ − t

∫
U

(
n+ 〈H,P〉 − 2|P�|2

4(T ′ − t)

)
fϕdμ(h) = − 1

T ′ − t

∫
U

〈Df,P〉ϕdμ(h).

Moreover, one can see that

〈∂|P|2, ∂f〉η = 2
(
2gīp(x

p − xp
0) +∇q̄φFīpg

pq̄
)∇jfη

jī = 2〈Df,P〉.

Thus, 〈∂|P|2, ∂f〉η = 2〈Df,P〉. Then, substituting the above formulas into (27) gives
the desired formula.

As an application of Theorem 5.2, we get a monotonicity formula. Assume that
Q = (p, T ′) ∈ Ur/4 × (0, T ) is given. Let f̃ : R → [0, 1] be a smooth cut-off function
which is strictly decreasing on the interval [1, 2] satisfying

f̃(x) =

{
1 if x ∈ (−∞, 1]

0 if x ∈ [2,∞)
and |f̃ ′|+ |f̃ ′′| ≤ C ′

for some constant C ′ > 0. Let λ = λ(g) > 0 be the square root of the minimum of
the lowest eigenvalue of (gīj) on the closure of U . Define f : U3r/4 × [0, T ′)→ R by

f(z, t) := f̃

(
4|Pp(z, t)|

λr

)
.

Note that f((x, y), t) is y-invariant and the support of f(( · , 0), t) is contained in
B(r/2) for each t ∈ [0, T ′). Actually, since

|P|2 = 4gp̄q(x
p − xp

0)(x
q − xq

0) + gpq̄∇pφ∇q̄φ, (30)

we have

|P(z, t)| ≥ 2λ|x− x0| ≥ 2λ(|x| − |x0|). (31)

This yields that if |x| ≥ r/2 then f = 0. Thus, f( • , t) satisfies (a) and (b) of (25) for
each t.

We denote Θf (h,Q, t) by Θ(h,Q, t) simply, that is,

Θ(h,Q, t) :=

∫
U

1

(4π(T ′ − t))n/2
exp

(
− |Pp(t)|2
4(T ′ − t)

)
f̃

(
4|Pp(t)|

λr

)
dμ(h(t)).

Theorem 5.3. If X is closed, then there exists a constant C > 0 such that

d

dt
Θ(h,Q, t) ≤ −

∫
X

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fϕdμ(h) + C, (32)
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where

ϕ :=
1

(4π(T ′ − t))n/2
exp

(
− |P(t)|2
4(T ′ − t)

)
.

The constant C is given by C = C ′C ′′(n)V (h(0))λ−(n+2)r−(n+2), where V (h(0)) is
the volume of h(0) and C ′′(n) > 0 is a constant which depends only on n.

Proof. Put Y := 4|P(t)|/λr for short. Then, we have

∂

∂t
f = f̃ ′(Y )

2

λr|P|
∂

∂t
|P|2, ∇j̄f = f̃ ′(Y )

2∇j̄ |P|2
λr|P|

and

∇i∇j̄f = f̃ ′′(Y )
4∇i|P|2∇j̄ |P|2

(λr|P|)2 − f̃ ′(Y )
∇i|P|2∇j̄ |P|2

λr|P|3 + f̃ ′(Y )
2∇i∇j̄ |P|2

λr|P| .

By using f̃ ′(Y ) ≤ 0, |f̃ ′′(Y )| ≤ C ′ and ∂t|P|2 −Δη|P|2 = −2n ≤ 0, we estimate

∂

∂t
f −Δηf ≤ C ′

4
∣∣∂|P|2∣∣2

η

(λr|P|)2 χA(t),

where χA(t) is the characteristic function of a set A(t) := { z ∈ U | λr/4 ≤ |P(z, t)| ≤
λr/2 }. By (29), we have

∣∣∂|P|2∣∣2
η
= 4

∣∣P�∣∣2 ≤ 4|P|2. This yields that

∂

∂t
f −Δηf ≤ 43C ′

λ2r2
χA(t).

Thus, we have(
∂

∂t
f −Δηf

)
ϕ =

1

(4π(T ′ − t))n/2
exp

(
− |P(t)|2
4(T ′ − t)

)(
∂

∂t
f −Δηf

)
≤43C ′

λ2r2
1

πn/2

(
(λr/4)2

4(T ′ − t)

)n/2 {
1

(λr/4)n
exp

(
− (λr/4)2

4(T ′ − t)

)}
≤C ′C ′′(n) 1

λn+2rn+2
=: C ′′′,

where we put C ′′(n) := (4n+3/πn/2)max{xn/2 exp(−x) | x ≥ 0 }. Thus, we have∫
U

(
∂

∂t
f −Δηf

)
ϕdμ(h) ≤ C ′′′

∫
X

dμ(h(t)) = C ′′′V (h(t)) ≤ C ′′′V (h(0)) =: C,

where we used the fact that the volume is finite on the closed X and decreasing along
a line bundle mean curvature flow. Then, by Theorem 5.2, we have

d

dt
Θ(h,Q, t) ≤ −

∫
X

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fϕdμ(h) + C,

and the proof is complete.

Remark 5.4. The first term on the right hand side of (32) multiplied by −1 is
just B(h) mentioned in (iii) of Subsection 1.4.
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We give an application of Theorem 5.3. Hence, assume that X is closed. Fix a
point Q = (p, T ′) ∈ Ur/4 × (0, T ′). We define a kind of “translation” of ht as follows.
First, let φ2(x, T

′) be the Taylor expansion of φ( · , T ′) at x = x0 up to the first
order, where x0 is the B(r/4)-component of p on Ur/4 via ϕ : B(r/4)×B(r′)→ Ur/4.
Precisely, we have

φ2(x, T
′) := φ(x0, T

′) +
∂φ(x0, T

′)
∂xi

(xi − xi
0).

This is a function on U3r/4 which does not depend on y. Next, subtract φ2(x, T
′)

from φ(x, t) and denote it by

(AQφ)(x, t) := φ(x, t)−
(
φ(x0, T

′) +
n∑

i=1

∂φ(x0, T
′)

∂xi
(xi − xi

0)

)
(33)

and put

(AQh)t := e−(AQφ)(t)(ē∗ ⊗ e).

Then, each (AQh)t is a Hermitian metric of L defined only on U3r/4 and is also
graphical for all t ∈ [0, T ). Moreover, AQh := { (AQh)t }t∈[0,T ) is also a line bundle
mean curvature flow on U3r/4. This can be easily seen as follows. The function

φ(x0, T
′)+ ∂φ(x0,T

′)
∂xi (xi−xi

0) does not depend on t and the angle function θ is invariant
under the first order perturbation since it is defined by the second derivative of log h.

Thus, we can apply Theorem 5.3 to the line bundle mean curvature flow AQh.
Then, we can see that Θ(AQh,Q, t) + C(T ′ − t) is monotonically decreasing and its
limit exists as t → T ′. This implies the existence of the limit of Θ(AQh,Q, t) as
t→ T ′.

Definition 5.5. For Q = (p, T ′) ∈ Ur/4 × (0, T ), we define

Θ̄(h,Q, t) :=
(2
√
2)n

Volg(B(r′)p)
Θ(AQh,Q, t),

Θ̄(h,Q) := lim
t→T ′

Θ̄(h,Q, t),

and call Θ̄(h,Q, t) the Gaussian density of h at Q = (p, T ′) with scale t and Θ̄(h,Q)
the Gaussian density of h at Q = (p, T ′), where B(r′)p := ϕ−1({x0 } × B(r′)) ⊂ U
and the volume of B(r′)p is measured by g.

In what follows, we prove that Θ̄(h,Q) ≥ 1. Put φ̃ := (AQφ)(t) and h̃t := (AQh)t
for short. Recall that in Definition 3.7 for T ′′ ∈ R and k ∈ N>0 a scaling of h is
defined by (DT ′′

k h̃)s := h̃⊗k
t with t = T ′′ + s/k. Put f := e⊗k. Then, we have

− log
(
(DT ′′

k h̃)s(f̄ , f)
)
= k(AQφ)(T

′′ + s/k).

Since the 0-th and first derivative at (p, k(T ′−T ′′)) =: Q′ of the right hand side with
respect to x are zero, we see that

AQ′
(
− log

(
(DT ′′

k h̃)s(f̄ , f)
))

= k(AQφ)(T
′′ + s/k).

Thus, for given k ∈ N, it is clear that

Θ(DT ′′
k h̃, Q′, k(t− T ′′)) =

√
k
n
Θ(h̃, Q, t),
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where the left (resp. right) hand side is calculated with respect to kg (resp. g). On
the other hand, we have

Volkg(B(r′)p) =
√
k
n
Volg(B(r′)p). (34)

Thus, we have proved the following.

Lemma 5.6. We have

(2
√
2)n

Volkg(B(r′)p)
Θ(DT ′′

k h̃, Q′, k(t− T ′′)) =
(2
√
2)n

Volg(B(r′)p)
Θ(h̃, Q, t). (35)

Putting T ′′ := T ′ and t := T ′ − 1/k in this formula gives

(2
√
2)n

Volkg(B(r′)p)
Θ(DT ′

k h̃, Q′,−1) = (2
√
2)n

Volg(B(r′)p)
Θ(h̃, Q, T ′ − 1/k). (36)

Lemma 5.7. We have

1 ≤ lim
k→∞

(2
√
2)n

Volkg(B(r′)p)
Θ(DT ′

k h̃, Q′,−1), (37)

where h̃ := AQh.

Proof. Note that we also rescale the Kähler metric on X as kg implicitly when
we use the rescaled flow DT ′

k h̃. We will see how each quantity in the definition of Θ

changes by this rescaling procedure. It’s easy to see that λ(kg) =
√
kλ(g). By (30),

we can see that |P((DT ′
k h̃)(−1))|2 = k|P(h̃(T ′ − 1/k))|2. By Proposition 3.4,

dμ((DT ′
k h̃)(−1)) =|ζ(kω, (DT ′

k h̃)(−1))|(kω)n/n!
=kn|ζ(ω, h̃(T ′ − 1/k))|ωn/n! = kndμ(h̃(T ′ − 1/k)).

Substituting these into the definition of Θ(DT ′
k h̃, Q′,−1), we have

Θ(DT ′
k h̃, Q′,−1) =

∫
U

kn

(4π)n/2
exp

(
−k|Px0

(h̃(tk))|2
4

)

× f̃

(
|Px0(h̃(tk))|

λ(g)r

)
dμ(h̃(tk))

where tk := T ′ − 1/k. Dividing the both hand side by (2
√
2)−nVolkg(B(r′)p) noting

(34) implies that

(2
√
2)n

Volkg(B(r′)p)
Θ(DT ′

k h̃, Q′,−1)

=
(2
√
2)n

Volg(B(r′)p)

∫
X

√
k
n

(4π)n/2
exp

(
−k|Px0(h̃(tk))|2

4

)

× f̃

(
|Px0

(h̃(tk))|
λ(g)r

)
|ζ(ω, h̃(tk))|ω

n

n!

(38)
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with

ωn

n!
= (−1)n(n−1)/2 det(gīj)dx

1 ∧ · · · ∧ dxn ∧ dy1 ∧ · · · ∧ dyn.

Thus, by (30), we have

|Px0(h̃(tk))|2(x) = 4gp̄q(x)(x
p − xp

0)(x
q − xq

0) + gpq̄(x)(∇pφ̃(tk))(x)(∇q̄φ̃(tk))(x).

Let x̃i :=
√
k(xi − xi

0). Then, we have

|P(h̃(tk))|2(x) =4gp̄q

(
x̃√
k
+ x0

)
x̃p

√
k

x̃q

√
k

+ gpq̄
(

x̃√
k
+ x0

)
× (∇pφ̃(tk))

(
x̃√
k
+ x0

)
× (∇q̄φ̃(tk))

(
x̃√
k
+ x0

)
.

(39)

Since tk → T ′ as k → ∞ and T ′ is strictly smaller than T , it follows that the right
hand side of (39) uniformly converges to

gpq̄(x0)(∇pφ̃(T
′))(x0)(∇q̄φ̃(T

′))(x0)

as functions with variables x̃ on each compact set in R
n, and this value is actually

zero by the definition of φ̃ = AQφ, see (33). By (39), we have

k|P(h̃(tk))|2(x) =4gp̄q

(
x̃√
k
+ x0

)
x̃px̃q

+ gpq̄
(

x̃√
k
+ x0

)
×
√
k(∇pφ̃(tk))

(
x̃√
k
+ x0

)
×
√
k(∇q̄φ̃(tk))

(
x̃√
k
+ x0

)
.

(40)

Then, it follows that the right hand side of (40) uniformly converges to

4gp̄q(x0)x̃
px̃q + gpq̄(x0)

(
∂∇pφ̃(T

′)
∂xi

(x0)x̃
i

)(
∂∇q̄φ̃(T

′)
∂xj

(x0)x̃
j

)
(41)

as functions with variables x̃ on each compact set in R
n. Since ∂φ̃/∂yk = 0 by

assumption, we have ∂(∇pφ̃(T
′))/∂xi = 2∇ī∇pφ̃(T

′) = 2Fīp(h̃T ′) and similarly

∂(∇q̄φ̃(T
′))/∂xj = 2Fq̄j(h̃T ′). Thus, (41) is equal to

4
(
gīj + gpq̄Fīp(h̃T ′)Fq̄j(h̃T ′)

)
(x0)x̃

ix̃j = 4η(h̃T ′)īj(x0)x̃
ix̃j ,

where η(h̃T ′) is the induced metric of h̃T ′ , see (10). Put Aij := η(h̃T ′)īj(x0) for
notational simplicity.

In [7], it is proved that |ζ| = √
det(I +K2). From this fact and the definition of

K, it follows that |ζ| = (
√

det gīj)
−1

√
det ηīj . Thus, combining everything together,

we see that the limit of the right hand side of (38) as k →∞ is greater than or equal
to ∫

B(r′)p

√
det gīj(x0)dy

Volg(B(r′)p)
(2
√
2)n

(4π)n/2

∫
B(N)

exp(−Aij x̃
ix̃j)

√
detAijdx̃
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for all sufficiently large open ball B(N) (N ∈ N). Letting N →∞ with the standard
Gaussian integral formula implies this converges to∫

B(r′)p

√
det gīj(x0)dy

Volg(B(r′)p)
(2
√
2)n

(4π)n/2
πn/2. (42)

Finally, we see that g( ∂
∂yi ,

∂
∂yj ) = gij̄ + gīj = 2gīj by the semi-flat assumption. Thus,

the volume form of B(r′)p is
√

2n det gīj(x0)dy. Then, (42) is actually 1, and the
proof is complete.

Combining (36) and (37), we see the following theorem.

Theorem 5.8. For Q = (p, T ′) ∈ Ur/4 × (0, T ), we have

1 ≤ Θ̄(h,Q). (43)

In the proof of the main theorem given in Section 7, we need an analog of Theorem
5.3 in the case where X is noncompact. Thus, in what follows, we assume that r =∞
in the setting mentioned just before Theorem 5.3, that is, U ∼= R

n×B(r′), and further
assume that λ = λ(g) ∈ (0,∞). Assume that Q = (p, T ′) ∈ U × (0, T ) is given. For
j ∈ N, let f̃j : R→ [0, 1] be a smooth cut-off function which is strictly decreasing on
the interval [j, j + 1] satisfying

f̃j(x) =

{
1 if x ∈ (−∞, j]

0 if x ∈ [j + 1,∞)
and |f̃ ′j |+ |f̃ ′′j | ≤ C ′

for some constant C ′ > 0 which does not depend on j. Define fj : X × [0, T ′)→ R by

fj(z, t) := f̃j(|Pp(z, t)|/2λ). Then, by (31), fj( • , t) satisfies (a) and (b) of (25) (with
r =∞) for each t. We denote Θfj (h,Q, t) by Θj(h,Q, t) simply, that is,

Θj(h,Q, t) :=

∫
U

1

(4π(T ′ − t))n/2
exp

(
− |Pp(t)|2
4(T ′ − t)

)
f̃j

( |Pp(z, t)|
2λ

)
dμ(h(t)).

Theorem 5.9. It follows that

d

dt
Θj(h,Q, t) ≤ −

∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fjϕdμ(h) + C ′

λ2

∫
U

ϕχAj(t)dμ(h), (44)

where

ϕ :=
1

(4π(T ′ − t))n/2
exp

(
− |P(t)|2
4(T ′ − t)

)
and χAj(t) is the characteristic function of Aj(t) := { z ∈ U | 2λj ≤ |P(z, t)| ≤
2λ(j + 1) }.

Proof. By a similar computation as in the proof of Theorem 5.3, we can see that

∂

∂t
fj −Δηfj ≤ C ′

λ2
χAj(t).
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Then, by Theorem 5.2, we have

d

dt
Θj(h,Q, t) ≤ −

∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fjϕdμ(h) + C ′

λ2

∫
U

ϕχAj(t)dμ(h),

and the proof is complete.

Then, if there exists C ′′ > 0 so that
∫
U
ϕdμ(h) < C ′′ for all t ∈ [0, T ′), the second

term on the right hand side of (44) is bounded from above by C ′C ′′/λ2 =: C ′′′. Hence,
Θj(h,Q, t) + C ′′′(T ′ − t) is monotonically decreasing and its limit exists as t → T ′.
Moreover, putting

Θ̄j(h,Q, t) :=
(2
√
2)n

Volg(B(r′)p)
Θj(AQh,Q, t),

we can also prove that

1 ≤ lim
t→T ′

Θ̄j(h,Q, t), (45)

whenever T ′ ∈ (0, T ), by the similar way as the proof of (43).
The following corollary is used directly in the proof of main theorem given in

Section 7. Put

Θ∞(h,Q, t) :=

∫
U

1

(4π(T ′ − t))n/2
exp

(
− |P(t)|2
4(T ′ − t)

)
dμ(h(t)),

Θ̄∞(h,Q, t) :=
(2
√
2)n

Volg(B(r′)p)
Θ∞(AQh,Q, t).

(46)

We do not know whether Θ∞(h,Q, t) is finite or not since the support of the integrand
is noncompact for each t.

Corollary 5.10. Assume Θ̄∞(h,Q, t) ≤ 1 for all t ∈ [a, T ′) for some a < T ′.
Further assume that AQh = h for simplicity. Then, ht satisfies

H(ht) = − 1

2(T ′ − t)
P⊥(ht)

for all t ∈ [a, T ′)

Proof. Integrate the both hand side of (44) on [a, T ′ − ε] and multiply it by
(2
√
2)n/Volg(B(r′)p). Then, letting ε→ 0 implies that

(2
√
2)n

Volg(B(r′)p)

∫ T ′

a

∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 fjϕdμ(h)dt
≤Θ̄j(h,Q, a)− lim

t→T ′
Θ̄j(h,Q, t) +

C ′

λ2

∫ T ′

a

(
(2
√
2)n

Volg(B(r′)p)

∫
U

ϕχAj(t)dμ(h)

)
dt.

(47)
Moreover, we can omit the first two terms since Θ̄j(h,Q, a)− limt→T ′ Θ̄j(h,Q, t) ≤ 0.
This follows from Θ̄j(h,Q, t) ≤ Θ̄∞(h,Q, t) ≤ 1 and (45). For j ≥ 1, put

aj(t) :=
(2
√
2)n

Volg(B(r′)p)

∫
U

ϕχAj(t)dμ(h),
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and if j = 0 we define a0 by putting A0 := { z ∈ X | |P(z, t)| ≤ 2λ }. Then, it is easy
to see that

∞∑
j=0

aj(t) = Θ̄∞(h,Q, t) ≤ 1.

Thus, by Lebesgue’s dominated convergence theorem, the right hand side of (47)
converges to 0. Moreover, also by Lebesgue’s dominated convergence theorem, the
left hand side of (47) converges to

(2
√
2)n

Volg(B(r′)p)

∫ T ′

a

∫
U

∣∣∣∣H+
P⊥

2(T ′ − t)

∣∣∣∣2 ϕdμ(h)dt.
Thus, we know that this value is zero and the proof is complete.

6. On self-shrinker. In this section, we give the definition of self-shrinker for
line bundle mean curvature flows and prove that self-shrinkers have Liouville type
properties.

We assume that X := R
n × B(r′). Then, by the inclusion X � (x, y) �→ z =

x +
√−1y, we admit the standard complex structure on X. Assume that a Kähler

metric g on X is given and its coefficients are constants satisfying gīj = gj̄i. Then,
(X, g) satisfies semi-flat condition globally on R

n.

Definition 6.1. Assume a Hermitian metric h of the trivial line bundle over
X = R

n × B(r′) satisfies graphical condition globally on R
n. Let P := P0(h) be the

position section of h centered at the origin. In addition, if h satisfies

H = λP⊥, (48)

we call h a self-similar solution with coefficient λ. Moreover if λ < 0 (resp. λ > 0) we
call h a self-shrinker (resp. self-expander).

Proposition 6.2. Assume that h of the trivial line bundle over X = R
n×B(r′)

satisfies graphical condition globally on R
n. Then, h is a self-similar solution with

coefficient λ if and only if

θ = 2λ

(
φ− φ(0)− 1

2
xk ∂φ

∂xk

)
+ θ(0). (49)

Proof. By (16), we have

P⊥ = 〈Fi,P〉ηjīFj .

By definition, we have

〈Fi,P〉 = −2xkFīk +
1

2

∂φ

∂xi
.

Thus, we have

P⊥ =

{(
−2xkFīk +

1

2

∂φ

∂xi

)
ηīj

(
−F�̄jg

q�̄ ∂

∂zq

)}
⊕
{(
−2xkFīk +

1

2

∂φ

∂xi

)
ηījgq̄jdz̄

q

}
.
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By the definition of H, the equation (48) is equivalent to

− gqk̄Hp̄η
�p̄Fk̄� = −λ

(
−2xkFīk +

1

2

∂φ

∂xi

)
ηjīF�̄jg

q�̄

gq̄kH�̄η
k�̄ = λ

(
−2xkFīk +

1

2

∂φ

∂xi

)
ηjīgq̄j

One can easily show that the second equality implies the first equality, and the second
equality is equivalent to

Hī = λ
(−2xkFīk +∇īφ

)
. (50)

Moreover, one can easily see that

−2xkFīk +∇īφ = 2∇ī

(
φ− xk∇kφ

)
.

Then, by Hī = ∇īθ, we have

θ = 2λ

(
φ− φ(0)− 1

2
xk ∂φ

∂xk

)
+ θ(0),

and the proof is complete.

The following theorem can be considered as a kind of Liouville type theorem. In
general, it claims that solutions of some PDE are special.

Theorem 6.3. Assume that h = {ht }t∈R satisfies graphical condition for all
time t ∈ R and the line bundle mean curvature flow equation on X = R

n×B(r′), that
is, ∂tφ = θ − θ̂ for some θ̂ ∈ R. Let P be the position section of ht centered at the
origin. Furthermore, assume that each ht with t ∈ (−∞, 0) is a self-shimilar solution
with coefficient t/2, that is, it satisfies

H =
1

2t
P⊥ (51)

for all t ∈ (−∞, 0). Then, − log ht = b + aijx
ixj for some b ∈ R and a symmetric

matrix A = (aij) ∈M(n,R).

Proof. Fix i, j ∈ { 1, . . . , n }. Put φ( · , t) := − log ht. We remark that y-variable
in the first component of φ can be omitted since h is graphical. By (50), we have

Hī =
1

2t

(−2xkFīk +∇īφ
)
=

1

4t

(
−xk ∂2φ

∂xk∂xi
+

∂φ

∂xi

)
. (52)

Since φ satisfies the line bundle mean curvature equation, we have ∂
∂t

∂φ
∂xi = 2Hī.

Then, combining (52) yields that

∂

∂t

∂φ

∂xi
=

1

2t

(
−xk ∂2φ

∂xk∂xi
+

∂φ

∂xi

)
.

Taking one more derivative of the both hand side implies

∂

∂t

∂2φ

∂xi∂xj
= − 1

2t
xk ∂3φ

∂xk∂xi∂xj
. (53)
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Put ψ(x, t) := ∂2φ
∂xi∂xj (x, t). Then, (53) is rewritten as

∂

∂t
ψ = − 1

2t
xk ∂ψ

∂xk
. (54)

Fix x ∈ R
n and put fx(t) := ψ(

√−tx, t) for all t ∈ (−∞, 0). Then, for t ∈ (−∞, 0),
we have

d

dt
fx(t) =

∂ψ

∂xk
(
√−tx, t) −x

k

2
√−t +

∂ψ

∂t
(
√−tx, t)

=
1

2t
(
√−txk)

∂ψ

∂xk
(
√−tx, t) + ∂ψ

∂t
(
√−tx, t) = 0,

where we used (54) at the last equality. This means that fx is constant on (−∞, 0).
By the assumption, fx(t) is continuous up to t = 0. Thus, for any t ∈ (−∞, 0), we
have

∂2φ

∂xi∂xj
(x, t) = ψ(

√−ty, t) = fy(t) = fy(0) = ψ(0, 0) =
∂2φ

∂xi∂xj
(0, 0) =: aij ,

where y := x/
√−t, and the right hand side does not depend on x and t. Thus, we

have proved that φ(x, t) is a quadratic function with respect to x-variables for every
t ∈ (−∞, 0] since φ(x, t) is smooth up to t = 0. This implies that the angle function θ
of ht is constant on R

n × B(r′) since the angle function is determined by the second

derivatives of φ. Then, by ∂tφ = θ − θ̂, we see that φ is a constant with respect to t.
By (49), we get for each t ∈ (−∞, 0)

φ(x, t)− φ(0, t)− 1

2
xk ∂φ

∂xk
(x, t) = 0

on X = R
n × B(r′). Substituting φ(x, t) = φ(0, t) + ci(t)x

i + bijx
ixj and φ(0, t) =

φ(0, 0) into the above PDE implies ci(t) = 0. Then, the proof is complete.

Remark 6.4. If ht satisfies (51), then the first term of the right hand side of
(32) vanishes. This is similar to relations between self-shrinkers of mean curvature
flows and Huisken’s monotonicity formula [6], or between shrinking Ricci solitons of
Ricci flows and Perelman’s W-entropy formula [11].

7. ε-regularity theorem. In this section we give the precise definition of K3,α-
quantity and prove Theorem 1.4, the ε-regularity theorem.

As in the previous sections, let (X, g) be a Kähler manifold with dimC X = n
and let π : L → X be a holomorphic line bundle. Let U ⊂ X be an open set and
[a, b) be an semi-open interval. Put V := U × [a, b). In Subsection 1.3, we defined the
parabolic distance from Q = (p, t) ∈ V to the boundary of V , denoted by distg(Q, V ),
see (4). Moreover, to define the K3,α-quantity, we need to use the parabolic distance
between Q and Q′ = (p′, t′) ∈ X × R defined by

distg(Q,Q′) := max
{
dg(p, p

′),
√
|t− t′|

}
.

We fix a background Riemannian metric ḡ on X and write B(Q) := {Q′ ∈ X × R |
distḡ(Q

′, Q) < 1 }. Fix 0 < α < 1. Then, for a pair of a smooth function f : V → R
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and a Kähler metric g on X, we define its parabolic partial C3,α-norm at Q ∈ V by

|(g, f)|3,α(Q) := sup
Q′∈B(Q)∩V

(|∂tf |+ |∂t∇f |+ |∇3f |) (Q′)
+ sup

Q1,Q2∈B(Q)∩V
Q1 =Q2

|∂t∇f(Q1)− ∂t∇f(Q2)|
distg(Q1, Q2)α

+ sup
Q1,Q2∈B(Q)∩V

Q1 =Q2

|∇3f(Q1)−∇3f(Q2)|
distg(Q1, Q2)α

.

Remark 7.1. Actually, |(g, f)|3,α is not a norm in the strict sense. Since it
clearly depends on the metric g, the symbol g is included in |(g, f)|3,α. We remark
that ∇ is the Levi-Civita connection with respect to g and we measure norms of
tensors and distg(Q1, Q2) by g, but B(Q) is always defined by the fixed background
metric ḡ. We also remark that |(g, f)|3,α is almost the usual parabolic C3,α-norm,
however, |f |, |∇f | and |∇2f | are not included in |(g, f)|3,α.

Following Definition 3.7, we define the λ-parabolic scaling of (g, f) at t = t0 for
λ ∈ N by

Dt0
λ (g, f) := (λg, fλ) with fλ( · , t) := λf( · , t0 + t/λ),

where fλ(t) is defined for t ∈ [λ(a− t0), λ(b− t0)). We also define

Dt0
λ (V ) := U × [λ(a− t0), λ(b− t0)).

It is easy to see that

Ds0
λ ◦Dt0

κ (g, f) = Dt0+s0κ
−1

λκ (g, f). (55)

One can also prove that if 0 < λ ≤ 1 then

|(g, f)|3,α(p, 0) ≤ |D0
λ(g, f)|3,α(p, 0) ≤ λ−(1+α)/2|(g, f)|3,α(p, 0), (56)

and if λ ≥ 1 then

λ−(1+α)/2|(g, f)|3,α(p, 0) ≤ |D0
λ(g, f)|3,α(p, 0) ≤ |(g, f)|3,α(p, 0). (57)

For Q = (p0, t0), we define

K3,α((g, f), Q) := inf
{√

λ > 0 | |Dt0
λ (g, f)|3,α(p0, 0) ≤ 1

}
.

Then, by (55), we have

K3,α(D
t0
κ (g, f), (p0, s0))

= inf
{√

λ > 0 | |Dt0+s0λ
−1

λκ (g, f)|3,α(p0, 0) ≤ 1
}

=
√
κ
−1

K3,α((g, f), (p0, t0 + s0λ
−1)).

(58)
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On the other hand, we have

distκg((p0, s0), D
t0
κ (V ))

=min

{
inf

q∈Uc
dκgi(p0, q),

√
κ(b− t0)− s0,

√
s0 − κ(a− t0)

}
=
√
κmin

{
inf

q∈Uc
dg(p0, q),

√
b− (t0 + s0κ−1),

√
(t0 + s0κ−1)− a

}
=
√
κdistg((p0, t0 + s0κ

−1), V ).

(59)

Hence, by putting Dt0
κ (p, t) := (p, κ(t− t0)), we have

distg(Q, V ) ·K3,α((g, f), Q)

=distκg(D
t0
κ (Q), Dt0

κ (V )) ·K3,α(D
t0
κ (g, f), Dt0

κ (Q)),
(60)

for all Q ∈ V . Then, define

K3,α;V (g, f) := sup
Q∈V

(
distg(Q, V ) ·K3,α((g, f), Q)

)
.

Now, we can start the proof of Theorem 1.4, the ε-regularity theorem.

Proof of Theorem 1.4. If the statement is false, then for any sequences Ci → ∞
and εi → 0 there exists a sequences of holomorphic line bundle Li → X, line bundle
mean curvature flows hi = {hi(t) }t∈[0,Ti) onX so that each hi(t) is a Hermitian metric
of Li and a nonvanishing holomorphic section ei ∈ Γ(U ′, Li) so that ht is graphical
on U ′ for all t ∈ [0, T ) with respect to e ∈ Γ(U ′, L). Put φi := − log hi(ēi, ei) :
U ′ × [0, Ti)→ R. We can further assume that, by putting U := ϕ(B(r)×B(r′)) and
V := U × [0, Ti), supVi

|F (hi(t))| ≤ A and

Θ̄(hi, Q, t) ≤ 1 + εi (61)

for all Q = (p, T ′) ∈ U × (0, Ti) and t ∈ (T ′ − (distg(Q, Vi))
2, T ′) ∩ (0, Ti), and

K3,α;Vi
(g, φi) = sup

Q∈Vi

(
distg(Q, Vi) ·K3,α((g, φi), Q)

)
> Ci.

Put
√
ki := K3,α;Vi(g, φi) > Ci. Fix a point Q̃i = (p̃i, T̃i) ∈ Vi so that

distg(Q̃i, Vi) ·K3,α((g, φi), Q̃i) >

√
ki
2

. (62)

We do the blow-up argument to get a contradiction. Put

k̃i :=
⌊
(K3,α((g, φi), Q̃i))

2
⌋

and νi := (K3,α((g, φi), Q̃i))
2 − k̃i

where �x� is the biggest integer which does not exceed x. Thus, νi is just the fractional
part of (K3,α((g, φi), Q̃i))

2, and it’s clear that 0 ≤ νi < 1.

By the definition of distg(Q̃i, Vi) and the assumption which ensures that U ′ is
bounded, we see that distg(Q̃i, Vi) ≤ diamg(U) ≤ diamg(U

′) < ∞. Then, it is easy
to see that √

k̃i + 1 ≥ K3,α((g, φi), Q̃i) ≥
√
ki
2
× 1

diamg(U)
.
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Since ki →∞ as i→∞, we have proved that

k̃i →∞ as i→∞. (63)

Define the rescaled triplets by ((X, gi), L̃i, ĩ) := DT̃i

k̃i
((X, g), Li, hi), explicitly

gi := k̃ig and h̃i(s) := h⊗k̃i
i (T̃i + s/k̃i).

Put Si := k̃i(Ti − T̃i) > 0, S′i := k̃iT̃i > 0, I ′i := [−S′i, Si) and V ′i := U × I ′i for

notational simplicity. Then, h̃i(s) is a Hermitian metric of L⊗k̃i
i defined for s ∈ I ′i

and by putting φ̃i(s) := − log h̃i(s)(ē
⊗k̃i
i , e⊗k̃i

i ), we have

φ̃i(s) = k̃iφi

(
T̃i + s/k̃i

)
. (64)

This means that

(gi, φ̃i) = DT̃i

k̃i
(g, φi) and DT̃i

k̃i
(Vi) = V ′i .

Then, by (58), we have

K3,α((gi, φ̃i), (p̃i, 0)) = k̃
−1/2
i K3,α((g, φi), Q̃i) =

√
1 +

νi

k̃i
. (65)

Claim 7.2. For any point Q′ = (p′, s′) in U × I ′i = V ′i , we have

distgi((p̃i, 0), V
′
i ) ≤ distgi(Q

′, V ′i ) +
(
dgi(p̃i, p

′) +
√
|s′|

)
. (66)

Proof. It is easy to see that

inf
q∈V ′c

i

dgi(p̃i, q) ≤ inf
q∈V ′c

i

dgi(p
′, q) + dgi(p̃i, p

′).

Hence, it is enough to prove

min
{√

Si,
√
S′i
}
≤ min

{√
Si − s′,

√
S′i + s′

}
+
√
|s′|.

But, this follows from an elementary inequality
√
a+ b ≤ √a+

√
b for a, b ≥ 0. Then,

the proof of this claim is complete.

By (60), the definition of ki and (62), with a relation DT̃i

k̃i
(Q) = Q′, we have

distgi(Q
′, V ′i ) ·K3,α((gi, φ̃i), Q

′)
=distg(Q, Vi) ·K3,α((g, φi), Q)

≤
√
ki

<2distg(Q̃i, Vi) ·K3,α((g, φi), Q̃i),

(67)

for all Q′ = (p′, s′) in U × I ′i = V ′i . By the first equality of (67) with Q′ := (p̃i, 0), we
have

distgi((p̃i, 0), V
′
i ) ·K3,α((gi, φ̃i), (p̃i, 0))

=distg(Q̃i, Vi) ·K3,α((g, φi), Q̃i).
(68)
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Combining (67), (68) and (65) implies that

distgi(Q
′, V ′i ) ·K3,α((gi, φ̃i), Q

′) ≤ 2

√
1 +

νi

k̃i
distgi((p̃i, 0), V

′
i )

for all Q′ = (p′, s′) in U × I ′i = V ′i . Dividing both hand side by distgi(Q
′, V ′i ) and

using (66) yield that

K3,α((gi, φ̃i), Q
′) ≤ 2

√
1 +

νi

k̃i

⎛⎝1−
(
dgi(p̃i, p

′) +
√|s′|)

distgi((p̃i, 0), V
′
i )

⎞⎠−1

(69)

for all Q′ = (p′, s′) in U×I ′i = V ′i whenever the right hand side is positive. Combining
(67), (68) and (65) also implies

1

2

√
ki <

√
1 +

νi

k̃i
distgi((p̃i, 0), V

′
i ).

Since 1 ≤ 1 + νi

k̃i
< 2 and ki →∞ as i→∞, we see that

distgi((p̃i, 0), V
′
i )→∞ as i→∞. (70)

Especially, we have

inf
q∈Uc

i

dgi(p̃i, q)→∞, −S′i → −∞ and Si →∞ as i→∞. (71)

Now we have biholomorphic maps ϕ : B(4r)×B(r′)→ U ′. Define xi ∈ B(r) and
yi ∈ B(r′) so that ϕ(xi, yi) = p̃i. Fix R > 0 and consider a map ϕ̃i : B(R)×B(r′)→ U
defined by

ϕ̃i(x, y) := ϕ
(
xi + k̃

−1/2
i x, yi + k̃

−1/2
i y

)
. (72)

We remark that ϕ̃i is locally biholomorphic and ϕ̃i(0, 0) = p̃i.

Claim 7.3. For any R > 0, there exists N > 0 such that xi+ k̃
−1/2
i x ∈ B(r) and

yi + k̃
−1/2
i y ∈ B(r′) for all i > N and (x, y) ∈ B(R)×B(r′).

Proof. Since k̃
−1/2
i → 0 and the condition so that yi + k̃

−1/2
i y ∈ B(r′) for all

i > N and y ∈ B(r′) does not depends on R, we can assume that yi + k̃
−1/2
i y ∈ B(r′)

already. Assume that there exists β > 0 such that the following inequality holds for
for all i:

β−1 inf
q∈Uc

dgi(p̃i, q) ≤ k̃
1/2
i inf

x′∈B(r)c
dRn(xi, x

′). (73)

Then, the left hand side tends to ∞ when i → ∞ by (71) and the right hand side is

just k̃
1/2
i (r− |xi|). Thus, for any R there exits N > 0 such that R < k̃

1/2
i (r− |xi|) for

all i > N . Then, for any x ∈ B(R), we have |xi + k̃
−1/2
i x| ≤ |xi| + k̃

−1/2
i R < r and

this is the desired conclusion. Thus, it is enough to prove (73).
To prove (73), fix a point x′ ∈ ∂B(r) such that

dRn(xi, x
′) = inf

x′∈B(r)c
dRn(xi, x

′).
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Put p′ := ϕ(x′, yi) ∈ U and let β > 0 be a constant so that ϕ∗i g ≤ β2gst on

ϕ(B(r)×B(r′)), where gst := dx2 + dy2 Then, since p̃i = ϕ(xi, yi) and gi = k̃ig,
we have

dgi(p̃i, p
′) =k̃

1/2
i dg(p̃i, p

′) ≤ k̃
1/2
i dϕ∗

i g
((xi, yi), (x

′, yi))

≤βk̃1/2i dgst((xi, yi), (x
′, yi)) = βk̃

1/2
i dRn(xi, x

′),
(74)

and the proof of this claim is complete.

Fix a radius 0 < R <∞. Then, we know that, by Claim 7.3, there exists N ∈ N

such that ϕ̃i : B(R)× B(r′)→ Ui is defined for all i ≥ N . Furthermore, by (71), we
can also assume that (−R,R) ⊂ [−S′i, Si). Put a Kähler metric on B(R)×B(r′) by

Gi := ϕ̃∗i gi.

Moreover, for each s ∈ (−R,R), put

ĥi(s) := exp
(
−ϕ̃∗i φ̃i(s)

)
,

where φ̃i(s) is defined by (64). Then, ĥi(s) is a positive function on B(R)×B(r′) and
it can be regarded as a Hermitian metric on the trivial C-bundle over B(R)×B(r′).

Since h̃i is a line bundle mean curvature flow on (Ui, gi), φ̃i(= − log h̃i) satisfies
the line bundle mean curvature flow equation. Here note that actually the line bundle
mean curvature flow equation is a PDE for φ̃i. Then, since we just defined − log ĥi(=
ϕ̃∗i φ̃i) and Gi as the pull back of φ̃i and gi, it is clear that ϕ̃

∗
i φ̃i satisfies the line bundle

mean curvature flow equation with respect to the Kähler metric Gi. This means that
ĥi := { ĥi(s) }s∈(−R,R) is a line bundle mean curvature flow on B(R) × B(r′) with
respect to the Kähler metric Gi.

Claim 7.4. There exists a subsequence, we still denote it by i, such that the
Kähler metrics Gi converge to a smooth Kähler metric G∞ on R

n × B(r′) in C∞-
sense on each compact subset. Moreover, when we write the associated Kähler form
of G∞ by (

√−1/2)Gk̄jdz
j ∧ dz̄k, then Gk̄j are constants satisfying Gk̄j = Gj̄k.

Proof. Since p̃i is in U and ϕ(B(r)×B(r′)) is compact and contained in U ′ =
ϕ(B(4r)×B(r′)), there exists a point p̃∞ ∈ U ′ and a subsequence, we still denote it by
i, such that p̃i → p̃∞ as i → ∞. Then, by the definition of Gi, semi-flat assumption
and the fact that k̃i → ∞ by (63), the claim is proved. In addition, we see that
Gk̄j = gk̄j(p̃∞).

Claim 7.5. Put fi := ϕ̃∗i φ̃i. Then, there exist M(R) ∈ N and C = C(R,A) > 0
such that

sup
Q∈WR

(|∂sf |+ |∇2fi|+ |∂s∇fi|+ |∇3fi|
)
(Q)

+ sup
Q1,Q2∈WR

Q1 =Q2

|∂s∇fi(Q1)− ∂s∇fi(Q2)|
distGi(Q1, Q2)α

+ sup
Q1,Q2∈WR

Q1 =Q2

|∇3fi(Q1)−∇3fi(Q2)|
distGi(Q1, Q2)α

≤ C

(75)

for all i ≥M(R), where WR := (B(R)×B(r′))× (−R,R).
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Proof. Fix a space-time point Q = ((x, y), s) ∈ WR. Put p := ϕ̃i(x, y) and
Q′ := (p, s). Then, by (69), we see that

K3,α((gi, φ̃i), Q
′) ≤ 2

√
1 +

νi

k̃i

⎛⎝1−
(
dgi(p̃i, p) +

√|s|)
distgi((p̃i, 0), V

′
i )

⎞⎠−1

. (76)

First, we have
√|s| ≤ R since s ∈ (−R,R). Next, it follows that

dgi(p̃i, p) ≤ β
√

R2 + (r′)2.

This is seen as follows. By the definition of ϕ̃i, that is, (72), we have p = ϕ̃i(x, y) =

ϕ(xi + k̃
−1/2
i x, yi + k̃

−1/2
i y) and we also have p̃i = ϕ(xi, yi). Then, by the same

argument as (74), we get

dgi(p̃i, p) ≤ βk̃
1/2
i dgst((xi + k̃

−1/2
i x, yi + k̃

−1/2
i y), (xi, yi)).

Then, the proof is complete since x ∈ B(R) and y ∈ B(r′).
Then, by (70) and (63), we see that the right hand side of (76) converges to

2 uniformly when i → ∞. Especially, there exists M(R) ∈ N such that the right
hand side of (76) is less than 2.5 for all i ≥ M(R). Then, by the definition of
K3,α((gi, φ̃i), Q

′), we have

3 ∈ {
√
λ > 0 | |Ds

λ(gi, φ̃i)|3,α(p, 0) ≤ 1 }.

This implies that |Ds
9(gi, φ̃i)|3,α(p, 0) ≤ 1 for each i ≥M(R). Put (g, f) := Ds

9(gi, φ̃i)

for simplicity. Then, we have g = 9gi and f(t) = 9k̃iφi(T̃i + s/k̃i + t/(9k̃i)), where t
is the variable of f(t) and s is fixed. Then, for example, we have

∂

∂t

∣∣∣∣
t=0

∇f(t) =
∂

∂s̄

∣∣∣∣
s̄=s

∇
(
9k̃iφi(T̃i + s̄/k̃i)

)
× 1

9
=

∂

∂t

∣∣∣∣
s̄=s

∇φ̃i(s̄).

Next, we consider the set Ds
9(V

′
i ). Then, we have

Ds
9(V

′
i ) = Ds

9(U × [−S′i, Si)) = U × [9(−S′i − s), 9(Si − s)).

In particular, this set contains (p, 0) since s ∈ (−R,R) ⊂ [−S′i, Si). Thus, we see that
(p, 0) ∈ B((p, 0)) ∩Ds

9(V
′
i ). By the definition of | · |3,α(p, 0), we have

|(g, f)|3,α(p, 0) = sup
Q′′∈B((p,0))∩Ds

9(V
′
i )

(|∂tf |+ |∂t∇f |+ |∇3f |) (Q′′)
+ sup

Q1,Q2∈B((p,0))∩Ds
9(V

′
i )

Q1 =Q2

|∂t∇f(Q1)− ∂t∇f(Q2)|
distg(Q1, Q2)α

+ sup
Q1,Q2∈B((p,0))∩Ds

9(V
′
i )

Q1 =Q2

|∇3f(Q1)−∇3f(Q2)|
distg(Q1, Q2)α

,

with respect to the Riemannian metric g = 9gi. Then, since 9gi and gi is uniformly
equivalent and the value of f on a neighborhood of (p, 0) corresponds to the one of
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φ̃i on a neighborhood of (p, s), we can say that for each compact set B ⊂ V ′i there
exists C(B) > 0 such that

sup
Q′′∈B

(
|∂sφ̃i|+ |∂s∇φ̃i|+ |∇3φ̃i|

)
(Q′′)

+ sup
Q1,Q2∈B
Q1 =Q2

|∂s∇φ̃i(Q1)− ∂s∇φ̃i(Q2)|
distgi(Q1, Q2)α

+ sup
Q1,Q2∈B
Q1 =Q2

|∇3φ̃i(Q1)−∇3φ̃i(Q2)|
distgi(Q1, Q2)α

≤ C(B)

(77)

for all i ≥ M(R). On the other hand, by the scaling invariance of the quantity |F |
and the assumption |F (hi)| ≤ A, we have |F (h̃i)| ≤ A. Since |F (h̃i)| = | 14 ( ∂2φ̃i

∂xk∂x� )k�|,
adding this term to the left hand side of (77) implies that

sup
Q′′∈B

(
|∂sφ̃i|+ |∇2φ̃i|+ |∂s∇φ̃i|+ |∇3φ̃i|

)
(Q′′)

+ sup
Q1,Q2∈B
Q1 =Q2

|∂s∇φ̃i(Q1)− ∂s∇φ̃i(Q2)|
distgi(Q1, Q2)α

+ sup
Q1,Q2∈B
Q1 =Q2

|∇3φ̃i(Q1)−∇3φ̃i(Q2)|
distgi(Q1, Q2)α

≤ C(B,A)

for all i ≥ M(R). Finally, since what we want to estimate is fi = ϕ̃∗i φ̃i with respect
to Gi = ϕ̃∗i gi, the same estimates hold by replacing φ̃i with fi and gi with Gi. Then,
the proof is complete.

Put wi := A(O,0)fi, see (33). Explicitly,

wi((x, y), t) := fi((x, y), t)−
(
fi((0, 0), 0) +

n∑
i=1

∂fi
∂xj

((0, 0), 0)xj

)
.

Then, we have wi((0, 0), 0) = 0 and ∂wi

∂xk ((0, 0), 0) = 0. Since the difference between
fi and wi is affine linear with respect to x-coordinates, wi also satisfies the same
uniform estimate as in (75). With this fact and the normalization wi((0, 0), 0) =
∂wi

∂xk ((0, 0), 0) = 0, we can say that there exist M(R) ∈ N and C(R) > 0 such that

|wi|C3,α(WR) ≤ C(R) (78)

for all i ≥M(R), where | · |C3,α(WR) is the standard parabolic C3,α-norm on WR.

Claim 7.6. There exists a subsequence, we still denote it by i, such that functions
wi converge to a smooth function w∞ defined on (Rn×B(r′))×(−∞,∞) in C∞-sense
on each compact subset. Moreover, w∞(s) is independent of the second component of
R

n ×B(r′) for all s ∈ (−∞,∞).

Proof. Let Ri be a sequence such that Ri → ∞ as i → ∞. First, we work on
WRk

= (B(Rk)×B(r′))× (−Rk, Rk) for fixed k. By the definition of the line bundle
mean curvature flow, we have

∂

∂s
(∂j φ̃i) = Hj(h̃i) = η̃(i)pq̄∇pF̃q̄j(i) = η̃(i)pq̄∇p∂q̄(∂j φ̃i) = Δη̃(i)(∂j φ̃i), (79)
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where F̃ (i) and η̃(i) are defined by h̃i and ∇ is the Levi-Civita connection of gi. Since
fi and Gi are the pull back of φ̃i and gi by ϕ̃i, ∂jwi also satisfies the same equation
as (79).

Then, by the following argument, we can get the higher derivatives of wi. Since
η̃pq̄(i) is the combination of the second derivatives of wi, the first derivatives of the
coefficients of Δη̃(i) and its α-Hölder norm are uniformly bounded on each compact
set by (78). Taking the derivatives of (79), then ∂2wi satisfies the following equation:

∂

∂s
(∂2wi) = Δη(∂

2wi) + ∂η̃(i) ∗ ∂3wi,

where A ∗B is a term which can be written as linear combinations of some products
of components of A and B. Since the last term of the above equation is uniformly
bounded in Cα by (78), by the Schauder estimate we see that |∂2wi|C2,α(WRk

) ≤
C ′(Rk) for some C ′(Rk) > 0. We can continue to do the bootstrap argument in this
fashion and get all higher order bounds for wi. Thus, from the standard Arzela-Ascoli
theorem, we can get a subsequence which converges to a smooth function on WRk

. Of
course, this limit function inherits the graphical condition, that is, it does not depend
on y. Finally, by using the usual diagonal argument with Ri → ∞, we prove this
claim.

Claim 7.7. For any compact set K × [a, b] in (Rn ×B(r′))× R including (O, 0)
there exists M(K) ∈ N such that for all i ≥M(K)

sup
Q′∈K×[a,b]

(|∂swi|+ |∂s∇wi|+ |∇3wi|
)
(Q′)

+ sup
Q1,Q2∈K×[a,b]

Q1 =Q2

|∂s∇wi(Q1)− ∂s∇wi(Q2)|
distGi

(Q1, Q2)α

+ sup
Q1,Q2∈K×[a,b]

Q1 =Q2

|∇3wi(Q1)−∇3wi(Q2)|
distGi(Q1, Q2)α

≥ 1.

(80)

Proof. First, by (65), we have

inf{
√
λ > 0 | |D0

λ(gi, φ̃i)|3,α(p̃i, 0) ≤ 1 } ≥ 1. (81)

Then, we can prove that

|(gi, φ̃i)|3,α(p̃i, 0) ≥ 1 (82)

as follow. Assume that |(gi, φ̃i)|3,α(p̃i, 0) =: ν < 1. Then, by (57), we have

|D0
λ(gi, φ̃i)|3,α(p̃i, 0) ≤ |(gi, φ̃i)|3,α(p̃i, 0) < 1

for λ ≥ 1. Similarly, by (56), we have

|D0
λ(gi, φ̃i)|3,α(p̃i, 0) ≤ λ−(1+α)/2|(gi, φ̃i)|3,α(p̃i, 0) ≤ 1

for ν2/(1+α) ≤ λ ≤ 1. This implies that

inf{
√
λ > 0 | |D0

λ(gi, φ̃i)|3,α(p̃i, 0) ≤ 1 } ≤ ν1/(α+1) < 1.
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However, this contradicts to (81). Thus, (82) holds. Then, by the definition of
|(gi, φ̃i)|3,α(p̃i, 0), we have

sup
Q′∈B((p̃i,0))∩V ′

i

(
|∂sφ̃i|+ |∂s∇φ̃i|+ |∇3φ̃i|

)
(Q′)

+ sup
Q1,Q2∈B((p̃i,0))∩V ′

i
Q1 =Q2

|∂s∇φ̃i(Q1)− ∂s∇φ̃i(Q2)|
distg(Q1, Q2)α

+ sup
Q1,Q2∈B((p̃i,0))∩V ′

i
Q1 =Q2

|∇3φ̃i(Q1)−∇3φ̃i(Q2)|
distg(Q1, Q2)α

≥ 1.

One can easily see that for any compact setK×[a, b] in (Rn×B(r′))×R including (O, 0)
there exists M(K) ∈ N such that ϕ̃i(K) × [a, b] ⊂ B((p̃i, 0)) ∩ V ′i for all i ≥ M(K).
Then, since fi and Gi are the pull back of φ̃i and gi by ϕ̃i and the difference between
fi and wi is affine linear with respect to x-coordinates, we get (80). This completes
the proof of this claim.

Claim 7.8. w∞ is a quadratic function for all s ∈ R. More precisely, there exist
A = (aij) ∈ Sym(n) such that w∞(x, s) = aijx

ixj.

Proof. Put X∞ := R
n × B(r′) and H∞ := e−w∞ . Then, H∞ is a line bundle

mean curvature flow of the trivial bundle C over X∞ defined for all s ∈ R. By Claim
7.6, H∞ is globally graphical on R

n.
Fix s ∈ (−∞, 0) and R > 0. We only consider all i bigger than N = N(R)

appeared in Claim 7.3. Put ti := T̃i + s/k̃i < T̃i. Then, by (70), we see that
(distgi((p̃i, 0), V

′
i ))

2 > −s for all sufficiently large i with i > N . Using (59) implies
that

distgi((p̃i, 0), V
′
i ) = k̃

1/2
i distg(Q̃i, Vi).

Thus, combining the definition of ti, we get ti > T̃i − (distg(Q̃i, Vi))
2. This means

that we can use the assumption (61) for t = ti. Then, we have Θ̄(hi, Q̃i, ti) ≤ 1 + εi.
By definition, we have

Θ̄(hi, Q̃i, ti) =
(2
√
2)n

Volg(B(r′)p̃i
)
Θ(AQ̃i

hi, Q̃i, ti). (83)

By the scaling invariance of the density (35), for Q̃i = (p̃i, T̃i), we have

(2
√
2)n

Volg(B(r′)p̃i)
Θ(AQ̃i

hi, Q̃i, ti) =
(2
√
2)n

Volk̃ig
(B(r′)p̃i)

Θ(DT̃i

k̃i
AQ̃i

hi, Q
′
i, s), (84)

where Q′i = (p̃i, 0). Since AQ̃i
hi is defined by

(AQ̃i
hi)t := e−(AQ̃i

φi)(t)(ē∗i ⊗ ei),

we have

(DT̃i

k̃i
AQ̃i

hi)s := e−k̃i(AQ̃i
φi)(T̃i+s/k̃i)(ξ̄∗i ⊗ ξi),
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where ξi := e⊗k̃i
i . On the other hand, we have

(DT̃i

k̃i
hi)s = e−k̃iφi(T̃i+s/k̃i)(ξ̄∗i ⊗ ξi) = e−φ̃i(s)(ξ̄∗i ⊗ ξi),

where the last equality follows from the definition of φ̃i. From these equality, one can
easily see that

(DT̃i

k̃i
AQ̃i

hi)s = (AQ′
i
DT̃i

k̃i
hi)s = (AQ′

i
h̃i)s = e

−(AQ′
i
φ̃i)(s)(ξ̄∗i ⊗ ξi), (85)

where the last equality follows from the definition of h̃i. Then, combining (83), (84),

(85) and Volk̃ig
(B(r′)p̃i

) = k̃
n/2
i Volg(B(r′)p̃i

) implies that

Θ̄(hi, Q̃i, ti) =
(2
√
2)n

k̃
n/2
i Volg(B(r′)p̃i

)
Θ(AQ′

i
h̃i, Q

′
i, s). (86)

Put w̃i := (AQ′
i
φ̃i)(s). Then, by the definition of Θ, we have

Θ(AQ′
i
h̃i, Q

′
i, s) =

∫
X

1

(−4πs)n/2 exp

( |Pxi
(s)|2
4s

)
f̃

(
4|Pxi

(s)|
λ(gi)4r

)
dμ((AQ′

i
h̃i)s),

where λ(gi) = k̃
1/2
i λ(g), dμ((AQ′

i
h̃i)s) = |ζ((AQ′

i
h̃i)s)|ωn

i /n! and

|Pxi(s)|2 = 4(gi)p̄q(x
p − xp

i )(x
q − xq

i ) +
1

4
(gi)

pq̄ ∂w̃i

∂xp

∂w̃i

∂xq
.

Put Xi(R) := B(R) × B(k̃
1/2
i ) and X(R) := B(R) × B(r′). Then, by the definition

of ϕ̃i, we see that ϕ̃i restricted on Xi(R) is bijective onto its image and the image is
included in U . Then, we have∫

X

1

(−4πs)n/2 exp

( |Pxi
(s)|2
4s

)
f̃

( |Pxi
(s)|

λ(gi)r

)
dμ((AQ′

i
h̃i)s)

≥
∫
ϕ̃i(Xi(R))

1

(−4πs)n/2 exp

( |Pxi
(s)|2
4s

)
f̃

(
|Pxi

(s)|
k̃
1/2
i λ(g)r

)
dμ((AQ′

i
h̃i)s)

=

∫
Xi(R)

1

(−4πs)n/2 exp

(
ϕ̃∗i |Pxi(s)|2

4s

)
f̃

(
ϕ̃∗i |Pxi(s)|
k̃
1/2
i λ(g)r

)
ϕ̃∗i dμ((AQ′

i
h̃i)s)

=k̃
n/2
i

∫
X(R)

1

(−4πs)n/2 exp

(
ϕ̃∗i |Pxi(s)|2

4s

)
f̃

(
ϕ̃∗i |Pxi

(s)|
k̃
1/2
i λ(g)r

)
ϕ̃∗i dμ((AQ′

i
h̃i)s),

(87)

where the first inequality simply follows form ϕ̃i(Xi(R)) ⊂ X and λ(gi) = k̃
1/2
i λ(g),

the second equality is just the change of variables and the last equality follows from
that the integrand does not depend on y-variable. Thus, combining (86) and (87)
implies that

Θ̄(hi, Q̃i, ti) ≥ (2
√
2)n

Volg(B(r′)p̃i
)

∫
X(R)

1

(−4πs)n/2 exp

(
ϕ̃∗i |Pxi(s)|2

4s

)

× f̃

(
ϕ̃∗i |Pxi

(s)|
k̃
1/2
i λ(g)r

)
ϕ̃∗i dμ((AQ′

i
h̃i)s),

(88)
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where k̃
n/2
i canceled out. On the other hand, by the straightforward computation, we

can prove that ϕ̃∗i w̃i = wi, where we recall that wi = A(O,0)fi and fi = ϕ̃∗i φ̃i. Then,
since wi uniformly converges to w∞ onX(R) ⊂ X∞ and we supposed that p̃i converges
to p̃∞ in the proof of Claim 7.4, letting i → ∞ in (88) with Θ̄(hi, Q̃i, ti) ≤ 1 + εi
implies that

1 ≥ (2
√
2)n

VolG∞(B(r′)O)

∫
X(R)

1

(−4πs)n/2 exp

( |PO(H∞(s))|2
4s

)
dμ(H∞(s)), (89)

where dμ(H∞(s)) is the induced measure defined by H∞(s) and the limit metric G∞
appeared in Claim 7.4. To deduce (89), we also used some facts. The first couple
of facts is that ϕ̃∗i |Pxi

(s)| is uniformly bounded (because it uniformly converges to
|PO(H∞(s))|), the cut-off function f̃(x) is identically 1 for x ≤ 1 and k̃i → ∞ when
i → ∞. These imply that the term f̃(∗) in (88) uniformly converges to 1. The
second couple of facts is that p̃i converges to p̃∞ and G∞ is actually the constant
metric g(p̃∞) as mentioned in the proof of Claim 7.4. These imply that Volg(B(r′)p̃i)
converges to VolG∞(B(r′)O). Since s ∈ (−∞, 0) and R > 0 are arbitrary, we proved
that

1 ≥ (2
√
2)n

VolG∞(B(r′)O)

∫
X∞

1

(−4πs)n/2 exp

( |PO(H∞(s))|2
4s

)
dμ(H∞(s)) (90)

for all s ∈ (−∞, 0). Since AOH∞ = H∞ by the construction of H∞, (90) means that

Θ̄∞(H∞, O, s) ≤ 1

for all s ∈ (−∞, 0), where Θ̄∞ is defined in (46). Then, by Corollary 5.10, we see that
H∞ satisfies

H =
1

2s
P⊥

for all s ∈ (−∞, 0). Then, by Theorem 6.3, there exist b ∈ R and a symmetric matrix
A = (aij) ∈ M(n,R) such that w∞ = − logH∞ = b + aijx

ixj . Since w∞(O, 0) = 0
by the normalization, b = 0. Then, the proof is complete.

By Claim 7.8, we see that

sup
Q′∈K×[a,b]

(|∂sw∞|+ |∂s∇w∞|+ |∇3w∞|
)
(Q′)

+ sup
Q1,Q2∈K×[a,b]

Q1 =Q2

|∂s∇w∞(Q1)− ∂s∇w∞(Q2)|
distG∞(Q1, Q2)α

+ sup
Q1,Q2∈K×[a,b]

Q1 =Q2

|∇3w∞(Q1)−∇3w∞(Q2)|
distG∞(Q1, Q2)α

= 0

for any compact set K × [a, b] in X∞ × R. However, this contradict to the uniform
lower bound (80). Then, the proof is complete.

As a corollary of Theorem 1.4, we give a sufficient condition so that a line bundle
mean curvature flow defined on a finite time interval [0, T ) can be extended beyond
the time T . We denote the open right lower triangle of (0, T )× (0, T ) by

D := { (T ′, t) ∈ R
2 | 0 < T ′ < T, 0 < t < T ′ }.
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Fix a Kähler manifold (X, g), a bounded open set U ′ ⊂ X, α ∈ (0, 1) and A > 0.
Assume that (X, g) is semi-flat on U ′ with respect to ϕ : B(4r) × B(r′) → U ′. Let
ε, C > 0 be constants appeared in Theorem 1.4.

Corollary 7.9. Suppose L→ X is a holomorphic line bundle, h = {ht }t∈[0,T )

is a line bundle mean curvature flow of L with T < ∞ and e ∈ Γ(U ′, L) is a non-
vanishing holomorphic section so that ht is graphical on U ′ for all t ∈ [0, T ) with
respect to e ∈ Γ(U ′, L). Put V := ϕ(B(r) × B(r′)) × [0, T ). Further assume that
supV |F (h(t))| ≤ A and

lim sup
(q,T ′,t)→(p,T,T )

Θ̄(h, (q, T ′), t) < 1 + ε,

where (q, T ′, t) ∈ X ×D, then h can be extended beyond T around p.

Proof. By the assumption, we know that there is an open neighborhood U ′′ of p
and a ∈ (0, T ) such that

Θ̄(h, (q, T ′), t) ≤ 1 + ε

for all q ∈ U ′′, T ′ ∈ (a, T ) and t ∈ (a, T ′). Making U ′′ smaller if necessary so that
a < T ′ − (distg(Q, V )) for all Q = (q, T ′) ∈ U ′′ × (b, T ) for some b ∈ (a, T ), we can
apply Theorem 1.4 (with truncating the time interval to [b, T )). Then, we know that

K3,α;V (g, φ) ≤ C,

where φ := − log h(ē, e). Then, by the similar argument as in the proofs of Claim 7.5
and Claim 7.6, one can see that all derivatives of φ is bounded around p. Thus, the
flow can be extended beyond T around p.
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