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BRANCHED CAUCHY-RIEMANN STRUCTURES ON
ONCE-PUNCTURED TORUS BUNDLES∗

ALEX CASELLA†

Abstract. Unlike in hyperbolic geometry, the monodromy ideal triangulation of a hyperbolic
once-punctured torus bundle Mf has no natural geometric realization in Cauchy-Riemann (CR)
space. By introducing a new type of 3–cell, we construct a different cell decomposition Df of Mf

that is always realisable in CR space. As a consequence, we show that every hyperbolic once-
punctured torus bundle admits a branched CR structure, whose branch locus is contained in the
union of all edges of Df . Furthermore, we explicitly compute the ramification order around each
component of the branch locus and analyse the corresponding holonomy representations.
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1. Introduction. A geometry or geometric structure (G,X) is a homogeneous
space X together with a transitive action on X by a Lie group G, which acts as the
symmetry group of the geometry. This concept was originally introduced by Klein
in his celebrated Erlangen program [18], and rapidly developed by Ehresmann [7]
and many others afterwards. When X and G are chosen appropriately, one recovers
many classical geometries like hyperbolic (SO(1, n),Hn), Euclidean (Rn�O(n),En) or
spherical (O(n+1), Sn) geometry. A (G,X)–manifold M is a manifold endowed with
a (G,X)–structure, namely an atlas of charts in the model space X, whose transition
functions are restrictions of elements of G.

As more and more connections between topology and geometry were discovered,
(G,X)–structures have become a central topic in the study of manifolds. Among
many contributors, William Thurston is one of the most celebrated pioneers. In [27],
he develops a way to construct hyperbolic structures on cusped 3–manifolds using
ideal triangulations, namely decompositions into tetrahedra whose vertices are re-
moved. The strategy consists in realising these simple pieces as hyperbolic objects,
that glue up coherently in the manifold M . Consistency of the gluings can be encoded
in a system of complex valued equations, whose solutions correspond to hyperbolic
structures on M . Since Thurston, many authors have studied and further developed
his technique ([5], [6], [12], [22], [26], [30], et al.).

In two recent papers ([8], [9]), a similar strategy was employed to construct
branched Cauchy-Riemann structures (CR in short) on the complement of the figure
eight knot. CR geometry is modelled on the three-sphere S3 ⊂ C2, with the contact
structure obtained by the intersection Y = TS3 ∩JTS3, where J is the multiplication
by i in C2 (see for example [2]). The operator J restricted to Y defines the standard
CR structure on S3. Its group of CR automorphisms is PU(2, 1), thus a manifold M
has a (spherical) CR structure when it is endowed with a geometric (PU(2, 1), S3)–
structure. The fact that every 3–manifold admits a contact structure [21] suggests
that CR geometry has the potential to play an important role in three dimensional
topology. Nevertheless, only few examples of CR manifolds are known. Most of them
are closed Seifert fibred manifolds [17] or obtained by Dehn surgery from the White-
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head link [24, 25]. On the other hand, some examples of 3–manifolds which have no
CR structures are known [13].

Every CR structure on a manifold M comes with a developing map M̃ → S3 and
a holonomy representation π1(M) → PU(2, 1) (cf. §5). This leads to the following
classical problem:

Question 1. Given a representation ρ : π1(M) → PU(2, 1), is there a CR
structure on M whose holonomy is ρ?

In general, this can be a challenging task. Inspired by the work of Falbel in [8],
one may tackle this problem with a more general notion of CR structures, by allowing
branching. Charts are not diffeomorphisms anymore, but locally branched coverings.
By relaxing this condition, one obtains a geometric structure whose developing map
is locally injective everywhere except for a nowhere-dense set, the branch locus. Nev-
ertheless the associated holonomy representation is into PU(2, 1), thus one can ask a
similar question:

Question 2. Given a representation ρ : π1(M) → PU(2, 1), is there a branched
CR structure on M whose holonomy is ρ?

On the other hand, branched CR structures are yet to be explored. The goal of
this paper is to provide an interesting technique to concretely construct branched CR
structures for a large class of 3–manifolds.

The spaces we investigate here are once-punctured torus bundles, orientable man-
ifolds which are the interior of compact 3–manifolds with boundary a torus. They are
fiber bundles over the circle, with fiber space a once-punctured torus. The figure eight
knot complement is one such example. Most of these manifolds are hyperbolic [23],
and exhibit important combinatorial properties. In particular, Floyd and Hatcher
showed that each hyperbolic once-punctured torus bundle admits a canonical realiza-
tion as an ideal triangulation, called themonodromy ideal triangulation [11]. This type
of triangulation is part of a larger class of fundamental triangulations called veering
triangulations, developed by Agol in [1]. The importance of this decomposition relies
on its rich combinatorial structure, but also on its geometric properties. For example,
Lackenby showed it to be geometrically canonical in the sense of Epstein-Penner [19],
while Guéritaud used it to recover Thurston’s hyperbolicity of once-punctured torus
bundles [15].

In this paper we modify the monodromy ideal triangulation of each once-
punctured torus bundle to a new ideal cell decomposition, that is geometrically real-
isable in CR space, and whose set of edges contains the branch locus. This decompo-
sition is made up of tetrahedra and 3–cells that we call slabs, CW complexes obtained
by deformation retracting the base of a square pyramid onto one of its sides. In the
case of the figure eight knot complement, Falbel [8] uses one of these slabs implicitly,
as part of a generalised tetrahedron, but the CR structure thus constructed consists
of charts that are not embeddings of the tetrahedra. In particular, there is a small
neighbourhood of one edge in a tetrahedron that develops to a flat bigon. This is not
an obstruction in Falbel’s proof: he focuses on the union of the images of two specific
charts and shows that its quotient by the face pairings is homeomorphic to the figure
eight knot complement. This strategy is hard to generalise to other punctured torus
bundles and it is somehow unnatural. For example, it is true only for the figure eight
knot complement that the branch locus occurs precisely at the edges of the trian-
gulation. This suggests the use of a more suitable cell decomposition, such that we
can geometrically realise each ideal cell by embedding it in CR space. For this to
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work, six geometrically different types of slabs will be defined. Each construction is
very explicit and calculations are done directly in coordinates in the CR sphere. A
collection of the main results is summarised in the following theorem.

Theorem 1. Let Mf be a hyperbolic once-punctured torus bundle. Then Mf

admits an ideal cell decomposition Df that is geometrically realisable in CR space. It
corresponds to a branched CR structure, whose branch locus is contained in the union
of all edges of Df .

Moreover, the ramification order around each edge e only depends on the valence
of e in Df , and it is explicitly computable.

The construction presented in this paper has the potential to further extend to
more general punctured surface bundles, as they also admit layered triangulations.
Although the realisability of the cell decomposition Df seems to rely on the fact that
the base surface is a once-punctured torus, we intend to address this problem in future
work using the veering triangulations of Agol [1].

The content of this paper is organised as follows. In sections 2 and 3 we re-
view background material on once-punctured torus bundles and monodromy ideal
triangulations. They mostly serve to set notations and underline the most relevant
properties. CR geometry is covered in §4. There we define CR tetrahedra and slabs,
the two fundamental 3–cells which will be the building blocks of the CR structures
in §5. Section 5 is the core of the paper, where we introduce the notion of branched
CR structures and prove Theorem 1, first in the explicit case of the figure eight knot,
then in the general case for all once-punctured torus bundles. We conclude by com-
puting ramification orders of the branch locus and a brief analysis of the holonomy
representations in §6. In particular, the very last section 6.2 is a summary of some
facts about the holonomy representations and the connection to the work of Fock and
Goncharov on positive representations [12], mostly for experts.

2. Once-punctured torus bundles. Let T0 :=
(
R2 \ Z2

)
/Z2 be the once-

punctured torus endowed with its standard differential structure and standard ori-
entation. The mapping class group of T0 is the group MCG = MCG(T0) of isotopy
classes of orientation preserving diffeomorphisms f : T0 → T0. For [f ] ∈ MCG, the
once-punctured torus bundle Mf is the differentiable oriented 3–manifold

Mf := T0 × [0, 1]/ ∼,

where (x, 0) ∼ (f(x), 1) for x ∈ T0. The manifold Mf is a surface bundle over the
circle, with fiber space T0, well-defined up to diffeomorphism.

The natural identification of T0 with the square spanned by the standard basis
of R2 induces an isomorphism MCG ∼= SL(2,Z), hence each map [f ] ∈ MCG has
well-defined eigenvalues in C (cf. [10]). The following characterization is fundamental
to study the geometry of Mf , as for example it helps discerning hyperbolic bundles.

Theorem 2 (Thurston, 1996 [23]). Mf admits a finite volume, complete hyper-
bolic metric if and only if [f ] has two distinct real eigenvalues.

The element [f ] has distinct real eigenvalues if and only if (tr[f ])2 > 4. If the
trace is in {−1, 0, 1}, then [f ] has finite order and Mf is Seifert fibred. While if
tr[f ] = ±2, then f preserves a non-trivial simple closed curve in the punctured torus,
which defines an incompressible torus or Klein bottle in Mf . In both cases we get an
obstruction to the existence of the hyperbolic metric. An elementary and constructive
proof of the other cases can be found in [15].
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3. The monodromy ideal triangulation. In this section we recall the canon-
ical realization of a hyperbolic once-punctured torus bundle Mf as an ideal trian-
gulation, as described by Floyd and Hatcher in [11], called the monodromy ideal
triangulation of Mf . For Mf hyperbolic, Theorem 2 implies that the eigenvalues of
[f ] are distinct with the same sign. To simplify the construction, we are going to make
the further assumption that the eigenvalues are positive. This will not cause any loss
of generality: if [f ] has two negative eigenvalues, then [−f ] has positive eigenvalues,
and the monodromy triangulation of Mf can be easily deduced from the monodromy
triangulation of M−f . See Remark 4 for more details.

3.1. Flip sequence. An ideal triangulation T of T0 is a maximal collection of
pairwise disjoint and non-homotopic (relative the puncture) essential arcs. Every ideal
triangulation of T0 comprises three essential arcs, called ideal edges, and divides the
surface into two ideal triangles. All of these ideal triangulations are combinatorially
equivalent, but they can be distinguished by the fact that they are not isotopic via
an isotopy fixing the puncture.

Without loss of generality, one can assume that ideal triangulations of T0 are
straight, in the sense that each ideal edge is the intersection with T0 of the quotient of
a straight line through the origin in R2. In a straight triangulation T , the slope of an
edge is the slope of the corresponding straight line. Since edges start and terminate
at the puncture, their slopes must be rational, hence there is a bijection between ideal
edges and Q ∪ {∞}, by associating each edge to its slope.

The set of isotopy classes of ideal triangulations can be encoded as the vertices
of the Farey tree F ∗. This tree is dual to the Farey tessellation F (cf. Figure 1),
a tessellation of the hyperbolic plane by ideal triangles. The ideal vertices of this
tessellation are the set of slopes of ideal edges Q ∪ {∞} in the circle at infinity. In
particular, the ideal vertices of a triangle in F correspond to the slopes of three disjoint
non-homotopic properly embedded arcs in T0, and hence to an ideal triangulation.
Thus, there is one vertex of the dual tree F ∗ for each isotopy class of ideal triangulation
of the once-punctured torus, and every such ideal triangulation is uniquely determined
by a triplet of slopes satisfying the Farey sum. A beautiful treatment of this topic
can be found in [3].

By adopting the convention that 0 and ∞ are neither negative nor positive, we
say that an ideal triangulation is positive (resp. negative) if at least one if its slopes
is positive (resp. negative). The standard positive (resp. negative) ideal triangulation
of T0 is the triangulation T+ (resp. T−) with slopes {0, 1,∞} (resp. {0,−1,∞}).

Two vertices of the dual tree F ∗ are joined by an edge if and only if the corre-
sponding ideal triangulations differ by a single slope. Passing from one triangulation
to the other is usually called edge flipping, as it involves removing one edge, result-
ing in a square with side identifications, and then inserting the other diagonal of the
square. As F ∗ is a tree, every two ideal triangulations of T0 differ by a unique minimal
sequence of edge flips.

Edge flips are of three types, depending on the slope we are flipping over. A right
flip R (resp. left flip L) is an edge flip of the largest (resp. smallest) slope. The
remaining flip will be referred to as a middle flip M. For example, starting from the
standard positive triangulation {0, 1,∞} of T0, a right flip produces the triangulation
{0, 1

2 , 1}, a left flip gives {1, 2,∞}, and a middle flip gives {0,−1,∞}.
One can visualise the dynamics of edge flips on the dual tree F ∗ as follows.

Let Tm be a positive ideal triangulation (different from the standard one) and let
T+, T1, . . . , Tm−1 be the sequence of triangulations along the unique shortest path be-
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tween the standard positive triangulation and Tm. By definition, a middle flip kills the
middle slope, hence it corresponds to a back-track towards T+ and transforms Tm into
Tm−1, contradicting the minimality of the path. If you exclude back-tracking, one can
move along F ∗ in only two other ways, corresponding to a right or left flip. By ori-
enting the hyperbolic plane with its standard positive orientation, a right (resp. left)
flip corresponds exactly to turning right (resp. left) at Tm (cf. Figure 1). A perfectly
analogous arguments works if we replace Tm with a negative ideal triangulation.

Figure 1. The Farey tree is dual to the Farey tessellation of the hyperbolic plane. Every vertex
corresponds to an ideal triangulation of the once-punctured torus, and every edge corresponds to an
edge flip.

The following lemma is a direct consequence of the above discussion.

Lemma 3. Let T be a positive (resp. negative) ideal triangulation different from
the positive (resp. negative) standard one T0. The unique sequence of edge flips from
T0 to Tm does not contain any middle flips. Conversely, the sequence of flips from Tm
to T0 only contains middle flips.

Let f : T0 → T0 be a diffeomorphism of the once-punctured torus. The map f
acts transitively on the set of ideal triangulations of T0, inducing an isomorphism of
the Farey tree F ∗. Every isomorphism of a simplicial tree has either a fixed point,
or leaves invariant a unique copy of R, called axis. The former case happens when
tr([f ]) ∈ {−1, 0, 1} and the action is periodic. In the latter case, let V0 be a vertex on
the axis. The unique shortest path in F ∗ from V0 to f(V0) runs along the axis, and
naturally corresponds to a sequence of edge flips. When tr([f ])2 = 4, the axis has a
unique endpoint on the boundary of the hyperbolic plane, and the action is parabolic.
Finally we observe that −f acts on F ∗ the same way as f , hence we will only consider
automorphisms with distinct positive real eigenvalues.

After conjugating f , one can assume that V0 corresponds to the standard positive
ideal triangulation T0 and the axis does not run through any negative triangulation.
It follows from Lemma 3 that f(T0) differs from T0 by a unique sequence wf of R
(right) and L (left) flips. Furthermore, when the eigenvalues of f are distinct, wf
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always contains at least one right flip and one left flip. In other words, there exist
aj , bj , k ∈ N and c ∈ N ∪ {0} such that

wf = Ra0Lb0 . . .RakLbkRc or wf = La0Rb0 . . .LakRbkLc.

We say that wf is the flip sequence of f or of Mf . Its length is the total number of

edge flips, namely its word length c+
∑k

j=0(aj+bj). Under the canonical isomorphism
MCG(T0) ∼= SL2(Z), a right flip and a left flip correspond to the matrices

[fR] =

(
1 1
0 1

)
and [fL] =

(
1 0
1 1

)
.

3.2. The triangulation. The following description of the monodromy ideal tri-
angulation is adapted from [15].

The standard ideal tetrahedron σ is, topologically, a compact tetrahedron with
its vertices removed. One can picture σ as a square with its two diagonals, as in
Figure 2. Oriented simplices of σ are determined by an ordering of the vertices, hence
we refer to them by the notation σ(i), σ(ij), σ(ijk), σ(ijkl). Sometimes we use the
same notation for the unoriented counterparts, but only when it is clear from the
context that we ignore the orientation. By identifying the pair of opposite edges
σ(13), σ(24) and σ(12), σ(34), the exterior of σ becomes the union of two pleated
surfaces, homeomorphic to the once-punctured torus T0. The top pleated surface
σ(T0)+ is made up of the two ideal triangles σ(143), σ(124), while the bottom pleated
surface σ(T0)− is made up of the two ideal triangles σ(123), σ(324). Thus the ideal
triangulation of σ(T0)+ is obtained from σ(T0)− by an edge flip along σ(23).

Suppose T0 is endowed with some ideal triangulation T . We say that the tetra-
hedron σ layers on T0 if the bottom pleated surface of σ is glued to T0 via an
orientation-preserving combinatorial isomorphism, called the layering. Let e be an
oriented edge of T . We say that σ layers on T0 along e if the chosen layering identi-
fies e with the edge σ(23). In general, there are six possible ways to layer σ on T0, one
for each oriented edge of T . To simplify the notation we make a further distinction.
We recall that we are identifying T0 with the square spanned by the standard basis
of R2. We say that a layering of σ is a (right) R layering (resp. (left) L layering)
if σ layers along the edge with largest (resp. smallest) slope, oriented towards (resp.
away from) the origin in T0. The motivation behind this notation is clear: if σ right
layers (resp. left layers) on T0, the ideal triangulations of σ(T0)+ is obtained from
σ(T0)− by a right flip (resp. left flip).

Figure 2. The standard ideal tetrahedron σ and the two
pleated surfaces σ(T0)+ and σ(T0)−.

Figure 3. A layering of the stan-
dard ideal tetrahedron along the
edge e−1.

Let f be an element of SL2(Z) with two distinct positive real eigenvalues and
let wf be the flip sequence of f . Suppose wf has length m. Now we describe how



CR STRUCTURES ON ONCE-PUNCTURED TORUS BUNDLES 783

to construct the monodromy triangulation of the hyperbolic once-punctured torus
bundle Mf . Suppose T0 is endowed with its negative standard ideal triangulation
{0,−1,∞}. Let σ0 be a copy of the standard ideal tetrahedron layered on T0 along
the edge of slope −1, oriented as in Figure 3. Then the top pleated surface σ0(T0)+
is triangulated as the positive standard ideal triangulation T0. For each letter Xj in
wf , j = 1, . . . ,m, reading from left to right, we perform an Xj layering of a copy
of the standard ideal tetrahedron σj on σj−1(T0)+. The space obtained by stacking
these tetrahedra is naturally homeomorphic to T0 × I [15, Section 3.2]. The last top
pleated surface is σm(T0)+. Its triangulation Tm is obtained from T0 by performing the
sequence of edge flips wf . It follows that Tm = f(T0), and f induces an identification
between σ0 and σm which makes T0 × I into Mf . The monodromy triangulation of
Mf is the ideal triangulation consisting of the tetrahedra σ0, . . . , σm−1 and the face
pairings inherited from the layering construction. As an example, see the monodromy
ideal triangulation of the figure eight knot complement in §5.2.

Remark 4. We remark that f and −f act in the same way on the Farey tree,
hence they share the same flip sequence. It follows that the monodromy triangulation
of M−f differs from the one of Mf only in the way σ0 and σm are identified. More
precisely, one can construct M−f by composing the identification f between σ0 and
σm with the orientation preserving simplicial symmetry ι of σm swapping σm(1) with
σm(4), and σm(2), σm(3). Roughly speaking, the map ι is a rotation of σm by π
preserving the two pleated surfaces.

The layering construction induces a natural cyclic ordering of the tetrahedra, thus
they will often be indexed modulo m. Similarly, one should think of the flip sequence
wf as a cyclic word, with a chosen starting point. For future reference, we introduce
the following notation. A tetrahedron σj of the monodromy triangulation is said to
be of type R (resp. type L) if the next tetrahedron σj+1 is layered on top of it by a
right (resp. left) layering. We will sometimes record the type of σj by writing σR

j or

σL
j .

3.3. Combinatorics around the edges. Let T be the monodromy ideal tri-
angulation of the once-punctured torus bundle Mf , and let m be the length of its flip
sequence wf . Then T is made up of m tetrahedra σ0, . . . , σm−1, glued together by the
layering construction. We denote by π the natural quotient map π : 	jσj → T ∼= Mf ,
defined by the face pairings. The space Mf is the interior of a compact 3–manifold
with torus boundary, so its Euler characteristic is zero. It follows that T has as many
edges as tetrahedra, namely m. Nevertheless, each edge may be represented by mul-
tiple edges in each tetrahedron. The valence of an edge is the size of its inverse image
under π. Roughly speaking, the valence of an edge e is the number of tetrahedra
around e, counted with multiplicity.

We are now going to describe the local structure of the edges in T . This will
be useful in the analysis of the geometry around the edges in §5. We recall that
each tetrahedron σj is a copy of the standard ideal tetrahedron σ via a canonical
identification, hence it inherits labels at the vertices from σ.

Consider the edge σ0(14) of σ0, and let e0 := π(σ0(14)) in T . Suppose that
σ0 = σL

0 is of type L. Let σR
1 , . . . , σR

n0
, n0 ≥ 0, be the (possibly empty) sequence of

tetrahedra of type R layered on top of σL
0 , such that σL

n0+1 is of type L. This sequence
corresponds to a subsequence LRn0L in the wordwf (thought of as a cyclic word). By
definition, σ1 left layers on σ0, thus σ1(12), σ1(34) ∈ π−1(e0). For every 2 ≤ j ≤ n0+1,
the simplex σj right layers on σj−1, thus also σj(12), σj(34) ∈ π−1(e0). Finally, σn0+2
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left layers on σn0+1, closing up the sequence of tetrahedra around e0 with the edge
σn0+2(23). Locally around e0, the tetrahedra σ0, . . . , σn0+2 glue to form a ribbon,
where σ0 and σn0+2 appear once, while every other tetrahedron appears twice. See
Figure 4 for a cross section of a neighbourhood of e0. The simplex σ0 (resp. σn0+2)
is the bottom (resp. top) of the ribbon, and every other simplex σj constitutes a loop
on each side. We deduce that the valence of e0 is 2n0 + 4.

An analogous picture arises when we assume that σ0 is of type R, with the
difference that every tetrahedron of type R is now of type L, and vice versa (cf.
Figure 5). Furthermore, one may replace σ0 with any other tetrahedron in T and
make the same definitions. For future reference, we summarise all of the above in the
following Lemma.

Lemma 5. Every edge ej in T corresponds to a unique subsequence LRnjL or
RLnjR in wf , nj ≥ 0, and a unique ribbon of tetrahedra σj , . . . , σj+nj+2. The simplex
σj is the bottom of the ribbon, while σj+nj+2 is the top of the ribbon, and every other
tetrahedron in between constitutes a loop on each side of the ribbon. Hence the valence
of ej is 2nj + 4.

We remark that uniqueness of the ribbon follows from the fact that the bottom
of the ribbon is the only tetrahedron in T whose edge (14) is a representative of ej .
Similarly, the top of the ribbon is the only tetrahedron whose edge (23) belongs to
π−1(ej). A simple counting argument shows that there is a bijection between the set
of tetrahedra and the set of edges, thus associating every edge to its unique ribbon.

Figure 4. A cross section of the ribbon
around e0 for σ0 = σL

0 .
Figure 5. A cross section of the ribbon
around e0 for σ0 = σR

0 .

4. CR Geometry. The spherical Cauchy-Riemann geometry is a (G,X)–
geometry modelled on the CR sphere, namely the three-sphere S3 equipped with a
natural PU(2, 1) action. Unlike what we mentioned in the introduction, here we work
with a definition of CR space that does not explicitly make use of contact geometry,
but it underlines more clearly the action of PU(2, 1). This point of view is going to
be more suitable and relevant to our context. More details on the connection between
CR geometry and contact geometry can be found in [2]. For more background ma-
terial and proofs of the following Lemmas we refer the reader to [14, Section 4.3] or
[16, Section 8].

The matrix group U(2, 1) preserves the following Hermitian form of signature
(2, 1) defined on the complex space C3:

〈z, w〉 := wtJz, where J :=

⎛⎝0 0 1
0 1 0
1 0 0

⎞⎠ .
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Let π : C3 \ {0} → CP2 be the canonical projection, and consider the following sets
in C3:

V0 :=
{
z ∈ C3 \ {0} | 〈z, z〉 = 0

}
, V− :=

{
z ∈ C3 | 〈z, z〉 < 0

}
.

Then H2
C
:= π(V−) is the Siegel domain model of the complex hyperbolic plane. In

the affine patch C2 = {[x, y, z] ∈ CP2 | z = 1}, the Siegel domain is the set defined
by 2�(x) + |y|2 < 0. Its boundary is

∂H2
C := π(V0) = {[x, y, z] ∈ CP2 | xz̄ + |y|2 + zx̄ = 0 }.

As a topological space, ∂H2
C
is homeomorphic to the three-sphere S3. The space H2

C

has a natural complex structure and the projective group PU(2, 1) := U(2, 1)/λI is
the group of its biholomorphic transformations. This is the spherical model of the CR
sphere and the action of PU(2, 1) on it is by CR transformations.

We are now going to describe a model for ∂H2
C
which is particularly suitable for

our framework. The Heisenberg group H is the space C×R, equipped with the group
law

(z1, t1) · (z2, t2) := (z1 + z2, t1 + t2 + 2�(z1z2)), z1, z2 ∈ C, t1, t2 ∈ R.

In the formula above, �(z) is the imaginary part of the complex number z. Using
stereographic projection Λ, one can identify ∂H2

C
with the one-point compactification

H of H, thus obtaining the Heisenberg model of the CR sphere. In coordinates,

Λ :

⎡⎣xy
1

⎤⎦ �→
(
y,

2x+ |y|2
i

)
, Λ−1 : (z, t) �→

⎡⎣ it−|z|2
2
z
1

⎤⎦ and Λ :

⎡⎣10
0

⎤⎦ �→ ∞,

where Λ : ∂H2
C
→ H, x, y, z ∈ C, and t ∈ R. The action of PU(2, 1) on H is by defined

by conjugating with Λ.
There are two kinds of totally geodesic submanifolds of real dimension two in H2

C
:

complex geodesics and totally real geodesic planes. In this article we focus on complex
geodesics. The boundary of a complex geodesic in ∂H2

C
is a topological circle, called

C–circle. A C–circle in H is the image under Λ of a C–circle in ∂H2
C
.

Lemma 6. In the Heisenberg model H, a C–circle is either a vertical line (vertical
C–circle) or an ellipse whose projection onto the z–plane is a circle (finite C–circle).

Vertical C–circles always contain ∞, while finite C–circles are fully contained in
H. We remark that a complex geodesic in H2

C
is naturally endowed with a posi-

tive orientation given by its complex structure, hence every C–circle also inherits an
orientation.

Lemma 7. CR transformations map C–circles to C–circles, preserving their ori-
entations.

Given two distinct points in Heisenberg space H, there is a unique C–circle be-
tween them. We say thatm points ofH are in general position if no three are contained
in the same C–circle. The group of CR transformations acts transitively on pairs of
distinct points, while generic configurations of triples of points are parametrised by a
real number. Given a cyclically ordered triple of points ((P1, P2, P3)) in H, its Cartan
angle Å is

Å(P1, P2, P3) := arg(−〈P ′
1, P

′
2〉〈P ′

2, P
′
3〉〈P ′

3, P
′
1〉) ∈ R, where P ′

j = Λ−1(Pj).
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Lemma 8. Three points in H are not in general position if and only if their
Cartan angle is ±π

2 . Moreover, the group PU(2, 1) acts simply transitively on ordered
triples of points in general position with the same Cartan angle.

4.1. CR Edges. Given two distinct points P1, P2 ∈ H, the oriented edge [P1, P2]
is the segment of the C–circle between P1 and P2, oriented towards P2. For example,
the oriented edge [(0, 0),∞] is the segment {(0, t) ∈ H | t > 0}, oriented towards ∞.
Then [P1, P2] ∪ [P2, P1] is the whole C–circle through P1 and P2. A topological disk
in H bounded by the loop [P1, P2] ∪ [P2, P1] will be referred to as a bigon.

4.2. CR Triangles. Suppose P1, P2, P3 ∈ H are three points in general position.
For each pair, there are two possible oriented edges, for a total of eight choices of 1–
skeletons defining a triangle. As H is simply connected, we can always extend the
1–skeleton of a triangle to an embedded 2–cell, with boundary defined by that 1–
skeleton. This can be done in many different ways, all equivalent up to isotopy.
Inspired by the work of Falbel [8], we define the marked triangles [P1

+, P2, P3] and
[P1

−, P2, P3] as foliations of oriented edges (cf. Figure 6):

[P1
+, P2, P3] := {P ∈ H | P ∈ [P1, Pt] for Pt ∈ [P2, P3]},

[P1
−, P2, P3] := {P ∈ H | P ∈ [Pt, P1] for Pt ∈ [P2, P3]}.

Figure 6. Marked triangles are foliated by oriented edge.

By fixing P1 to be at infinity, a marked triangle is half a cylinder with base part
of a finite C–circle. One of the advantages of using marked triangles is that they are
uniquely determined by their vertices. The following result is a direct consequence of
Lemma 7.

Lemma 9. Let P1, P2, P3 and Q1, Q2, Q3 be two triples of points of H in general
position. Suppose there exists G ∈ PU(2, 1) such that G(Pj) = Qj, for all j ∈ {1, 2, 3}.
Then

G([P1
�, P2, P3]) = [Q1

�, Q2, Q3], � ∈ {+,−}.

4.3. CR Tetrahedra and Slabs. Given four points of H in general position,
a choice of a marked triangle for each triple will not always patch up to form the
boundary of a 3–simplex. On one hand, adjacent faces need to agree on the choice of
C–circle between the common vertices to have well defined edges. On the other hand,
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they could intersect away from the edges. One quickly finds that there is no canonical
choice of marked triangles which always works, thus three dimensional simplices need
to be checked on a case by case basis.

Here we are going to describe two fundamental 3–cells, which will be the building
blocks of the CR structures in §5. They are subsets of the Heisenberg space, both
homeomorphic to the closed 3–ball, but equipped with different simplicial structures
and thus combinatorially different. These spaces are defined to be especially sym-
metric, in the sense that several of their faces can be glued pairwise with monotone
maps (cf. Lemma 11). That is not always the case for generic triangles, as previously
underlined in Lemma 8.

The standard symmetric tetrahedron. Let ω be the cube root of unity ω =
− 1

2

(
1 + i

√
3
)
. We consider the following 4–tuple of points in general position in

Heisenberg space:

P1 := (1,
√
3), P2 := (−ω,

√
3), P3 := (0, 0), P4 := ∞.

For each triple of points, we consider the following marked triangles:
(1) [P4

−, P1, P2]: the oriented segment [P1, P2] is the shortest arc of the circle
(eiθ,

√
3), oriented from P1 to P2. The triangle [P4

−, P1, P2] is part of a
cylinder, foliated by vertical segments above [P1, P2].

(2) [P4
−, P3, P1]: the edge [P3, P1] is an arc of ellipse which projects onto the

z–coordinate of the Heisenberg space as an arc of the unit circle with centre
−ω. It is given by the parametrisation

[P3, P1] :=
(
−ω + eis,

√
3 cos(s)− sin(s)

)
, s : −2π

3
�→ −π

3
.

Hence [P4
−, P3, P1] is foliated by the vertical rays from [P3, P1] to P4.

(3) [P4
−, P3, P2]: this marked triangle is obtained by a π

3 clockwise rotation of

the previous triangle [P4
−, P3, P1].

(4) [P2
−, P3, P1] and [P3

+, P1, P2]: the first marked triangle is foliated by oriented
edges from [P3, P1] to P2. For ϕ(t, s) := t+ s+ π

3 , we have

[P2
−, P3, P1] :=

(
eiϕ(t,s) + ei(s−

π
3 ) − ω,− sin(ϕ(t, s))− sin(ϕ(t, 0))

+ sin(s) +
√
3 (cos(ϕ(t, s))− cos(t, 0) + cos(s) + 1)

)
,

where s : − 2π
3 �→ −π

3 and t : 0 �→ π
3 . The latter one instead, is foliated by

oriented edges from P3 to [P1, P2]. It can be parametrised as

[P3
+, P1, P2] :=

(
eit

(
−ω + eis

)
,
√
3 cos(s)− sin(s)

)
,

s : −2π

3
�→ −π

3
, t : 0 �→ π

3
.

Lemma 10. ([8]) The spaces

[P4
−, P1, P2] ∪ [P4

−, P3, P1] ∪ [P4
−, P3, P2] ∪ [P2

−, P3, P1], (1)

[P4
−, P1, P2] ∪ [P4

−, P3, P1] ∪ [P4
−, P3, P2] ∪ [P3

+, P1, P2], (2)

are combinatorially isomorphic to the boundary of a 3–simplex. In particular, they
bound a 3–ball on each side in H.
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The standard (symmetric) tetrahedron TA of type A (resp. type B) is (the closure
of) the 3–ball bounded by (1) (resp. by (2) which is contained in the upper half of
H. Figure 7 shows TA and TB in the Heisenberg model.

Figure 7. The standard symmetric tetrahedra TA and TB only differ along the face with vertices
{P1, P2, P3}. Their standard embeddings in Heisenberg space and their C–projections are displayed
here.

These tetrahedra exhibit various symmetries, for example an anti-holomorphic
involution swapping the vertices P1 with P2, and P3 with P4 (cf. [29]). Furthermore,
the vertices of each face (taken with the correct cyclic order) have the same Cartan
angle,

Å(P2, P3, P1) = Å(P4, P1, P2) = Å(P4, P3, P2) = Å(P4, P3, P1) =
π

3
.

As a consequence of Lemma 8 and Lemma 9, we can glue faces of TA and TB pairwise
by (unique) CR transformations. Consider the following matrices of PU(2, 1),

G1 :=

⎡⎣−ω 0 0
1 1 0
−ω ω −ω

⎤⎦ , G2 :=

⎡⎣1 1 ω
0 −ω ω
0 0 1

⎤⎦ , G3 :=

⎡⎣1 0 0
0 −ω 0
0 0 1

⎤⎦ .

These are the unique CR transformations mapping:

G1 : P4 �→ P2 P3 �→ P3 P1 �→ P1 hence [P4
−, P3, P1] �→ [P2

−, P3, P1],

G2 : P4 �→ P4 P1 �→ P3 P2 �→ P2 hence [P4
−, P1, P2] �→ [P4

−, P3, P2],

G3 : P4 �→ P4 P3 �→ P3 P1 �→ P2 hence [P4
−, P3, P1] �→ [P4

−, P3, P2].

We remark that G2 and G3 are face pairings between two standard tetrahedra of any
types, while G1 necessarily glues onto a face of the standard tetrahedron of type A.
Furthermore, G2 and G3 can be described quite nicely in Heisenberg coordinates:

G2([z, t]) =
[
−ω(z − 1) ,

√
3ω(z + ω − 1)(z + ω) + t

]
,

G3([z, t]) = [−ωz , t] .

The transformation G2 preserves vertical C–circles and it restricts on the z–plane to a
π
3 clockwise rotation around the point −ω. The transformation G3 is a

π
3 anticlockwise

rotation of H around the vertical C–circle through [0, 0].
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The slabs. The next fundamental piece that we are going to define is of the
combinatorial type of the CW complex obtained by deformation retracting the base
of a square pyramid onto one of its sides (Figure 8). In particular, it is a 3–cell
bounded by two triangular faces and two bigons. It contains a total of five 1–cells
and three 0–cells.

Figure 8. A slab is obtained by deformation retracting the base of a square pyramid onto one of its
sides.

We define the following bigons of H:

B′ :=
(
1 + te−iπ

6 , s
)
, t ∈ R>0 ∪ {∞}, s ∈ R ∪ {∞},

Bk :=
(
−ω + tei

π
6 (1−2k), s

)
, t ∈ R>0 ∪ {∞}, s ∈ R ∪ {∞}, k ∈ Z.

We remark that both B′ and Bk are foliated by vertical C–circles. In particular,
B′ ∩Bk = ∞ for all k. Moreover,

Bk1
= Bk2

⇐⇒ k1 = k2 mod 6.

The CW complex obtained by attaching

[P4
+, P1, P2] ∪ [P4

−, P1, P2] ∪ B′ ∪ Bk,

is topologically a 2–sphere. For all k, it bounds a 3–ball containing the point (2,
√
3) ∈

H. We define the slab Sk to be (the closure of) such 3–ball. The slabs Sk1
and Sk2

are geometrically equivalent if and only if k1 = k2 mod 6, in the sense that there is
G ∈ PU(2, 1) such that G(Sk1) = Sk2 . This is due to the fact that the 2–skeletons
of Sk1 and Sk2 only differ along one face. Whence we defined a total of six different
slabs. Two examples S1 and S4 are depicted in Figure 9.

As we mentioned earlier, Å(P4, P1, P2) = Å(P3, P1, P2), hence let G4 be the
(unique) element of PU(2, 1):

G4 :=

⎡⎣ 0 0 −ω
0 −ω 0
−ω 0 1− ω

⎤⎦ ,
G4 : P4 �→ P3 P1 �→ P1 P2 �→ P2,

[P4
+, P1, P2] �→ [P3

+, P1, P2].

For all k, the CR transformation G4 is a face pairing between the slab Sk and
the standard tetrahedron of type B.

The use of six different slabs turns out to be necessary in the general construction
of §5.3. The reason for the number six is due to the fact that the CR transformations
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Figure 9. Standard embeddings in Heisenberg space and C–projections of the slabs S1 and S4.

G1, G2, G3 and G4 are all of order six. The connection between these transformations
and the slabs is revealed in Theorem 18.

We conclude this section with a definition and an observation. Let W1 and W2 be
two CW complexes embedded in H, and let G ∈ PU(2, 1) be a face pairing between
the faces F1 ⊂ W1 and F2 ⊂ W2. Then G(W1) and W2 might intersect away from
G(F1) = F2. We say that the face pairing G is monotone if there are neighbourhoods
N1,N2 of F1, F2 in W1,W2 respectively such that N2 ∩G(W1) = G(N1) ∩W2 = F2.
Monotonicity will play an important role in §5 to ensure that the developing maps are
locally injective at the faces. The issue we want to avoid here is for W2 to be glued
to W1 on the “wrong” side of the common face. The following result generalises an
observation by Falbel [8].

Lemma 11. The transformations G1, G2, G3 are monotone face pairings of the
standard symmetric tetrahedra TA and TB, while G4 is a monotone face pairing be-
tween the slab and the standard tetrahedron of type B.

Proof. The transformations G2 and G3 are simple to check. They preserve vertical
C–circles, therefore one only needs to check the intersection of the projections of the
tetrahedra on the z–plane.

On the other hand, G1 and G4 are more tedious. We give a summary of
the argument for G4, and refer to [8, Section 6.4] for G1. Consider the slab Sk

and the tetrahedron TB . The transformation G−1
4 glues TB to Sk along the face

[P4
+, P1, P2] = G−1

4 ([P3
+, P1, P2]). The remaining vertex of TB is mapped to the

point G−1
4 (P4) = [0, 2

√
3] in Heisenberg space. The projection of the 1–skeleton of

G−1
4 (TB) is displayed next to the projection of S1 in Figure 10.

Let R be the region of C–plane bounded by the straight segment from 0 to 1, and
the projections of the edges [P1, P2] and G−1

4 ([P4, P2]). Then G−1
4 (TB) is completely

contained in the vertical cylinder of Heisenberg space with base R. In particular,
there is a neighbourhood of the common face where G−1

4 (TB) and Sk only intersect
along the face, and therefore G−1

4 is a monotone face pairing between Sk and TB . By
symmetry of the definition, we conclude that G4 is also monotone.

5. Branched CR structures on once-punctured torus bundles. Let Mf

be a hyperbolic once-punctured torus bundle. In this section we prove the main
result of this paper, that Mf admits a branched CR structure (cf. Theorem 18). We
start by formalising the notion of a branched CR structure on Mf . Definitions and
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Figure 10. The projection of the 1–skeleton of G−1
4 (TB) next to the projection of S1.

terminology are inspired by the work on branched analytic structures on Riemann
surfaces in [20]. Then we describe CR structures as tame geometric realizations of
ideal decompositions. Finally, we give the construction for the figure eight knot §5.2
and in the general case §5.3.

A branched covering between two manifolds is a covering map everywhere except
for a nowhere-dense set, called the branch locus. For example, the standard CR
branching map ξ : H → H defined by ξ(z, t) := (zN , t) is a branched cyclic covering of
ramification order N ∈ N \ {0}. In particular, ξ is locally injective everywhere except
at the branch locus, namely the Heisenberg t–axis, where the total angle is 2Nπ.
Roughly speaking, branched structures are generalizations of geometric structures
where instead of insisting that the charts are local diffeomorphisms, we only require
that they are branched covering maps. This construction is quite general, but here
we use a very specific instance where Mf has a cell D decomposition with branched
locus a subset of its set of 1–cells D(1), and charts around the branched locus are all
modelled on the standard CR branching map ξ.

More precisely, let D be a cell decomposition of Mf . A branched projective chart
{U, φ} of Mf (with respect to D) is an open subset U ⊂ Mf such that:

• if U is disjoint from D(1), then φ : U → V is a local diffeomorphism into an
open subset V of the CR space H;

• if U ∩D(1) �= ∅ then φ maps the components of U ∩D(1) diffeomorphically to
disjoint segments of C–circles and each p ∈ U ∩ D(1) has a neighborhood N
on which the restriction of φ is a branched cyclic covering of finite order with
branch locus N ∩D(1).

A CR branched coordinate covering of Mf (w.r.t. D) consists of a collection of
branched projective charts {Uj , φj} where the set {Uj} form an open covering of
Mf . A branched CR cover is a coordinate covering {Uj , φj} such that, on each non-
empty intersection Ui ∩ Uj , there are homeomorphisms called coordinate transition
functions

Gij : φi(Ui ∩ Uj) → φj(Ui ∩ Uj),

that are restrictions of elements in PU(2, 1). In particular they satisfy Gij ◦ φi = φj .
A branched CR structure on Mf (w.r.t. D) is an equivalence class of branched CR
covers, where two branched CR covers are equivalent if their union is a branched CR
cover. To avoid unnecessary repetitions, we are not going to specify that the structure
is with respect to a cell decomposition when it is clear from the context.

Let {Uj , φj} be a branched CR structure on Mf . When the ramification order of
each chart φj is one, they are homeomorphisms and one recovers the usual definitions
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of coordinate covering, CR cover and CR structure [27]. We recall that every CR
structure admits a developing map and a holonomy representation,

dev : M̃f → H and hol : π1(Mf ) → PU(2, 1),

such that

hol(γ) · dev(x) = dev(γ · x), γ ∈ π1(Mf ), x ∈ M̃f . (3)

The developing map is considered up to deck transformation invariant isotopy, and
the pair (dev, hol) is uniquely determined up to the following action of PU(2, 1):

G · (dev, hol) := (G · dev, G · hol ·G−1), G ∈ PU(2, 1).

Developing maps thus obtained are locally injective, as the charts φj are homeomor-
phisms. Vice versa, a locally injective developing map together with a holonomy
representation satisfying the equivariance condition (3), always defines a CR struc-
ture. We refer the reader to [28] for a full treatment in the wider context of geometric
(G,X)–structures.

In a similar fashion, branched projective structures can be described globally as a
pair (dev, hol) where hol : π1(Mf ) → PU(2, 1) is a representation and dev : M̃f → H
is a hol–equivariant local diffeomorphism away from the branched locus, and locally
a cyclic branched cover of finite order at the branched locus. From the motivational
point of view, given only a representation into PU(2, 1), it is not clear that it occurs
as the holonomy representation of a spherical CR structure. In that sense, it is useful
to consider the more general definition of a branched structure, in the hope that any
given representation might be understood in a geometric way. The only difference
being that developing maps are not locally injective but locally branched coverings.
In particular, the holonomy around each connected component of the branch locus is
a rotation by an integer multiple of 2π, and therefore trivial, ensuring a well defined
representation of π1(Mf ).

5.1. Tame geometric realizations. In §5.3 we construct special branched CR
structures on Mf , whose branch locus is a disjoint union of curves. The strategy
is to use an ideal cell decomposition Df of Mf , built using the monodromy ideal
triangulation Tf , whose edge set contains the branch locus. We are going to realise
each ideal cell as a geometric object in Heisenberg space and each face pairing as an
element of PU(2, 1), in a compatible fashion. More precisely, suppose Df is made
up of the ideal 3–cells σi, with face pairings gj . We recall that a face pairing is
called monotone when the paired cells only intersect along the common face in a
neighbourhood of such face (cf. end of §4.3). A geometric realization {φi, Gj} of Df

in H consists of embeddings φi : σi → H and CR transformations Gj ∈ PU(2, 1),
satisfying the following condition: if gj is the gluing map between the faces Fi and Fk

of the ideal 3–cells σi and σk respectively, then Gj is a monotone CR transformation
pairing φi(Fi) and φk(Fk) respecting the combinatorics of Df . Then we say that φi

and Gj are geometric realizations of σi and gj respectively.
A geometric realization differs from a branched CR structure only at the edges.

For each edge e, consider a small oriented loop γe around e, with arbitrary starting
point x ∈ γe contained in the interior of some cell. Let F e

0 . . . F e
Ne

be the sequence
of faces in Df containing e, ordered as they are crossed by γe, starting from x. As
γe travels through a face F e

j , it leaves an ideal cell σ to enter another ideal cell σ′

(possibly equal to σ). Let gej be the face pairing gluing σ to σ′ along F e
j , and let Ge

j
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be its corresponding geometric realization. Then the geometric holonomy of {φi, Gj}
along γe is the product

∏Ne

j=0 G
e
Ne−j . We remark that a different choice of γe only

changes the geometric holonomy by conjugation or by inverse, hence whether the
geometric holonomy around an edge e is trivial (namely equal to the identity) or not,
does not depend on the choice of γe.

In general, it is not guaranteed that the geometric holonomy of a geometric re-
alization is trivial around an edge. However, when that is the case for every edge of
the cell decomposition, then a geometric realization can be extended to a branched
CR structure. More precisely, there is a branched CR structure on Mf whose set of
charts include the embeddings φi, and the coordinate transition functions along the
faces are the CR transformations Gj . In particular, it is important that the maps
Gj are monotone to ensure local injectivity at the faces. Furthermore, the fact that
the geometric holonomy around an edge e is trivial allows the construction of a chart
containing e which is a branched covering (with branch locus e) and which agrees with
φi around e. An example of this construction in the context of ideal triangulations
and real hyperbolic structures can be found in [30].

For future reference, we summarise the above discussion in the following result.

Lemma 12. Let {φi, Gj} be a geometric realization of Df in H. If the geometric
holonomy around each edge is trivial, then {φi, Gj} defines a branched CR structure
on Mf .

In a similar fashion to ideal triangulations, the ideal cell decomposition Df we
are going to construct is the complement of the 0–skeleton of a CW complex, which
is also called Df . This CW complex is topologically homeomorphic to the end-
compactification of Mf . It has a single vertex, which is the only non-manifold point.
When talking about (ideal) cells in Df , it will be convenient to consider the 0–skeleton
as a point of reference, but we will not always underline that it is not actually part
of the decomposition of Mf . Moreover, we are often going to drop the word “ideal”
when it is clear from the context.

Since an ideal 3–cell is not compact, embeddings can be complicated in a neigh-
bourhood of an ideal vertex. A tame geometric realization of Df in H is a geometric
realization {φi, Gj} whose embeddings φi : σi → H extend to the 0–skeleton. Tame
geometric realizations are slightly easier to deal with, as we can use the image of the
0–skeleton as reference points for the cells. Let D̃f be the ideal cell decomposition

of the universal cover M̃f induced by Df . If {φi, Gj} is a tame geometric realization
with trivial geometric holonomy around each edge, then it defines a branched CR
structure, represented by some pair (dev, hol) of developing map and holonomy rep-

resentation. By tameness, the developing map dev : D̃f → H extends equivariantly

to the 0–skeleton D̃f

(0)
. More precisely, if dev(0) is the restriction of dev to D̃f

(0)
,

then

hol(γ) · dev(0)(x) = dev(0)(γ · x), γ ∈ π1(Mf ), x ∈ D̃f

(0)
.

5.2. The figure eight knot complement. The figure eight knot complement
K8 is the 3–manifolds obtained by removing a closed tubular neighbourhood of the
figure eight knot from the three-sphere. Topologically, it is homeomorphic to the
once-punctured torus bundle associated to the flip sequence w8 = RL. The corre-
sponding monodromy ideal triangulation T8 has two tetrahedra: σR

0 of type R and
σL
1 of type L (see Figure 11). As a cyclic word, w8 has a subsequence LRL and
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a subsequence RLR, corresponding to the two edges eR and eL of T8 respectively
(cf. Lemma 5). Both edges have valence six. The ribbon of tetrahedra around eR is
σR
0 , σL

1 , σ
R
0 , σL

1 , σ
R
0 , σL

1 , as depicted in Figure 12.

Figure 11. The monodromy ideal triangulation of the
figure eight knot complement K8.

Figure 12. The ribbon of tetrahe-
dra around the red edge eR, viewed
from the vertex σR

0 (4).

Now we construct a branched CR structure on K8, as a preliminary example
for the general case in §5.3. The structure we are going to describe here was first
discovered by Falbel [8].

Let D8 be the cell decomposition obtained from the following manipulations on
the triangulation T8.

(1) (Figure 13) We subdivide the face σR
0 (134) of the tetrahedron σR

0 into two 2–
cells, by introducing a 1–cell with endpoints

{
σR
0 (1), σR

0 (4)
}
. The two 2–cells

thus obtained are combinatorially a triangle and a bigon. Similarly, we sub-
divide σR

0 (234) by placing a 1–cell with endpoints
{
σR
0 (2), σR

0 (4)
}
. Finally,

we split the tetrahedron σR
0 into two 3–cells, by introducing a triangular 2–

cell with endpoints
{
σR
0 (1), σR

0 (2), σR
0 (4)

}
. Whence σR

0 is subdivided into

two 3–cells: σ̂R
0 with vertices

{
σ̂R
0 (1), σ̂R

0 (2), σ̂R
0 (3), σ̂R

0 (4)
}
is combinatori-

ally isomorphic to a simplex, and σ̂S
0 with vertices

{
σ̂S
0 (1), σ̂

S
0 (2), σ̂

S
0 (4)

}
is

of the combinatorial type of a slab (cf. §4.3).
(2) (Figure 14) Similar to above, we subdivide σL

1 into two 3–cells by introduc-
ing a 2–cell inside the tetrahedron bounded by two 1–cells with endpoints{
σL
1 (2), σ

L
1 (4)

}
. Such 1–cells are embedded in the faces σL

1 (124) and σL
1 (234)

respectively. Thus σL
1 is decomposed into two 3–cells σ̂L

1 ∪ σ̂W
1 . The former,

σ̂L
1 has four triangular faces and a bigon. The latter σ̂W

1 is of the combina-
torial type of a wedge, the CW complex obtained by quotienting a face of a
3–simplex to a point. Its set of vertices is

{
σ̂W
0 (2), σ̂W

0 (4)
}
.

(3) (Figure 14) We deformation retract the wedge σ̂W
1 onto the bigonal face

bounded by the red and the black edge. Simultaneously, we collapse the big-
onal face of σ̂L

1 into the black edge, transforming σ̂L
1 back into a 3–simplex.

Finally, we remove the retracted wedge from the decomposition. As a conse-
quence, the green edge and the black edge of σ̂S

0 are now identified (cf. Fig-
ure 13 and Figure 15).

A few remarks are in order. Up to step (2), the subdivisions of σR
0 and σL

1

agree along the faces, hence they form a well defined cell decomposition of T8. The
importance of this step relies on the fact that the new cell decomposition has more
edges than T8, hence a larger set where we can possibly branch on. On step (3), we
flatten the 3–cell σ̂W

1 and remove it. This does not change the topology of the complex
because a neighbourhood of the red edge eR contains other 3–cells other than σ̂W

1 .
In the end we have three 3–cells σ̂R

0 , σ̂S
0 , σ̂

L
1 , two of which are of the combinatorial
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Figure 13. The tetrahedron σR
0 is subdivided into two 3–dimensional cells, of the combinatorial

type of a tetrahedron σ̂R
0 and a slab σ̂S

0 .

Figure 14. The tetrahedron σL
1 is decomposed into two 3–cells, one of wich is a wedge σ̂W

1 . The
wedge is collapse and removed, while the other 3–cell is deformed back into a tetrahedron σ̂L

1 .

Figure 15. The cell decomposition D8 of the figure eight knot complement K8.

type of a tetrahedron and one of which is a slab (see Figure 15). They glue to form
a CW complex D8, which is a cell decomposition of K8. Step (3) is crucial because,
by removing the wedge σ̂W

1 from the decomposition, we avoid the problem of having
to geometrically realise it in CR space by an embedding. We remark that in [8],
Falbel develops this wedge into a flat bigon. Finally, introducing a slab will allow
us to construct a branched CR structure on K8, and generalize to other manifolds
later, however we do not know yet if they are necessary, namely if every CR structure
requires at least one.

The slab σ̂S
0 has two bigonal faces, with endpoints

{
σ̂S
0 (1), σ̂

S
0 (2)

}
and{

σ̂S
0 (2), σ̂

S
0 (4)

}
. Since it would be ambiguous to refer to the edges of σ̂S

0 by their
vertices, we fix the convention that σ̂S

0 (14) and σ̂S
0 (24) are the edges belonging to the

face shared with σ̂R
0 , while σ̂S

0 (41) and σ̂S
0 (42) are the others. These choices were

suggested by the embeddings defined in the following paragraph.

We consider the following tame geometric realization of D8 in H. Let TA,TB

and Sk be the two standard symmetric tetrahedra and the slab defined in §4.3. The
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geometric realizations of the ideal cells are the combinatorial isomorphisms defined
by

φR
0 : σ̂R

0 → TA, φS
0 : σ̂S

0 → S1 and φL
1 : σ̂L

1 → TB

φR
0

(
σ̂R
0 (1)

)
:= P1, φS

0

(
σ̂S
0 (1)

)
:= P1, φL

1

(
σ̂L
1 (1)

)
:= P1,

φR
0

(
σ̂R
0 (2)

)
:= P2, φS

0

(
σ̂S
0 (2)

)
:= P2, φL

1

(
σ̂L
1 (2)

)
:= P2,

φR
0

(
σ̂R
0 (3)

)
:= P3, φS

0

(
σ̂S
0 (4)

)
:= P4, φL

1

(
σ̂L
1 (3)

)
:= P3,

φR
0

(
σ̂R
0 (4)

)
:= P4, φL

1

(
σ̂L
1 (4)

)
:= P4.

We remark that φS
0 maps the edges σ̂S

0 (14) and σ̂S
0 (24) to the segments of C–circles

going from P1 and P2, respectively, to P4. Similarly, σ̂S
0 (41) and σ̂S

0 (42) are mapped
to the segments of C–circles going from P4 to P1 and P2, respectively.

The geometric realizations of the face pairings depicted in Figure 15 are the
matrices Gj defined in §4.3, the identity matrix I and a combination thereof. More
precisely,

A : σ̂L
1 (124) → σ̂R

0 (324) is realised by G2 gluing TB to TA,

B : σ̂S
0 (124) → σ̂L

1 (123) is realised by G4 gluing S1 to TB ,

C : σ̂L
1 (134) → σ̂R

0 (132) is realised by G1 gluing TB to TA,

D : σ̂R
0 (134) → σ̂L

1 (234) is realised by G3 gluing TA to TB ,

E : σ̂R
0 (124) → σ̂S

0 (124) is realised by I gluing TA to S1,

F :
σ̂S
0 (14) → σ̂S

0 (24)
σ̂S
0 (41) → σ̂S

0 (42)
is realised by G2G3 gluing S1 to S1.

The product G2G3, namely the geometric realization of F , maps the bigonal face B′

of S1 to its other bigonal face B1. The combinatorics of D8 around the red eR, black
e′R and blue eL edges are displayed in Figure 16. One computes that the geometric
holonomies are trivial:

eR : (G2G3)
−1

G−1
4 G3G1G4 = I, e′R : G3I

−1 (G2G3)
−1

IG2 = I,

eL : G−1
1 IG−1

4 G−1
2 G1G3G2 = I.

Figure 16. The combinatorics around the red eR, black e′R and blue eL edges. The view is from

the vertices σ̂S
0 (4), σ̂

R
0 (4) and σ̂L

0 (4) respectively.
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As per Lemma 12, this tame geometric realization of D8 in H corresponds to a
branched CR structure on K8 (with respect to D8). By developing the cells in H, one
finds that the order of the branching around the edges eR and e′R is one, while it is
two around eL. These ramification orders were stated incorrectly in [8], and corrected
later in [9, Remark 6.1].

5.3. General case. Now we focus on the general case, to show that every hyper-
bolic once-punctured torus bundle Mf admits a branched CR structure. In particular,
we construct an ideal cell decomposition Df of Mf , and a tame geometric realization
of it in H, with trivial geometric holonomy around each edge.

The ideal cell decomposition. Let f be an automorphism of the once punc-
tured torus with two distinct positive real eigenvalues, and let Mf be the correspond-
ing hyperbolic once-punctured torus bundle. Suppose the flip sequence wf of Mf has
length m. Then the monodromy ideal triangulation Tf of Mf is made up of m ideal
tetrahedra σ0, . . . , σm−1. The ideal cell decomposition Df of Mf is obtained from
Tf by performing the three manipulations described in §5.2 to each tetrahedron. We
recall from §3.2 that a tetrahedron is said to be of type R (resp. type L) if the next
tetrahedron is layered by a right (resp. left) layering. Thus we modify every tetrahe-
dron of type R as in step (1), and every tetrahedron of type L as in (2) and (3). We
provide a synthesis of those operations to refresh the notation.

(1) Every tetrahedron σR
j of type R is subdivided into two 3–cells, along a newly

introduced triangular 2–cell with vertices
{
σR
j (1), σR

j (2), σR
j (4)

}
. They are

a tetrahedron σ̂R
j and a slab σ̂S

j .

(2) Every tetrahedron σL
j of type L is decomposed into two 3–cells σ̂L

j ∪ σ̂W
j . The

former σ̂L
j has four triangular faces, and a bigon where the wedge σ̂W

j glues
to.

(3) We deformation retract the wedge σ̂W
j onto a bigonal face, then remove it.

Simultaneously, we collapse the bigonal face of σ̂L
j into one edge, transforming

σ̂L
j back into a 3–simplex.

Up to step (2), it is easy to check that the performed subdivisions agree along
the faces of Tf , hence they form a well defined cell decomposition of Mf .

Now consider the wedge σ̂W
j . We claim that:

Claim 13. Around each of its edges there is always at least one 3–cell that is not
a wedge.

Proof. This is clear for two of its edges, as σ̂W
j glues to the tetrahedron σ̂L

j . Call

e the remaining edge of σ̂W
j . Let σL

j be the simplex of Tf from which σ̂W
j is obtained,

and let σ�
j+1 be the next tetrahedron that left layers on top of σL

j . If σ
�
j+1 = σL

j+1 is of

type L, then σ̂W
j glues to the wedge σW

j+1 around e. On the other hand, if σ�
j+1 = σR

j+1

is of type R, then σ̂W
j glues to the slab σS

j+1 around e. Because f has two distinct
real eigenvalues, its flip sequence always contains at least one R and one L (cf. §3.1).
It follows that around e there is always at least one slab.

In step (3), we flatten the wedges and remove them. It is a consequence of
Claim 13 that this does not change the topology of the complex. Thus in the end
we have a CW complex Df , consisting of three types of 3–cells, two of which are of
the combinatorial type of a tetrahedron and one of which is a slab. The complement
of the 0–skeleton is an ideal cell decomposition of Mf . We remark that the set of
edges of Df is larger than the set of edges of Tf , and it contains the branch locus.



798 A. CASELLA

Equality holds if and only if the flip sequence wf does not contain a subsequence
RLR (cf. Lemma 19,20 and 21).

To avoid introducing new terminology, we are going to make the following abuse
of notation. Cells of Df coming from tetrahedra of Tf of type R (resp. type L) will
also be referred to as cells of type R (resp. type L). Moreover, if a tetrahedron σj

right layers (resp. left layers) on a tetrahedron σj−1 in Tf , then also the 3–cells of Df

obtained from σj right layer (resp. left layer) on the cells obtained from σj−1.

Combinatorics around the edges. As mentioned in the example of the figure
eight knot complement, a slab σ̂S

j has two bigonal faces, therefore it is ambiguous
to refer to its edges by the 0–skeleton. We avoid that by fixing the convention that
σ̂S
j (14) and σ̂S

j (24) are the edges belonging to the face shared with the tetrahedron

σ̂R
j , while σ̂S

j (41) and σ̂S
j (42) are the others. The notation is motivated by the natural

orientations of the edges of a geometric slab Sk ⊂ H.
Recall that π is the natural quotient map from the disjoint union of the m sim-

plices of Tf into Tf , defined by the face pairings. Let π̂ be the corresponding map for
Df . Then the valence of an edge in Df is the size of its inverse image under π̂.

Theorem 14. Let D(1)
f be the set of 1–cells in Df . Let A ⊂ {0, . . . ,m − 1} be

the subset of indices such that σ̂S
j is a slab of Df , for all j ∈ A. Then the quotient

map π̂ restricts to a bijection

π̂r :
{
σ̂�
j (14)

}
j∈{0...m−1} ∪

{
σ̂S
j (41)

}
j∈A

−→ D(1)
f , � ∈ {L,R}.

Theorem 14 allows us to canonically pick a representative for each edge in Df .
For example, in the case of the figure eight knot complement in §5.2, the chosen
representatives are σ̂L

1 (14), σ̂
R
0 (14) and σ̂S

0 (41) (respectively the blue, black and red
edge in Figure 15). Its proof is a consequence of the following two Lemmas, where we
deduce the valence of edges in Df from their counterparts in Tf .

Lemma 15. Let σ̂L
j be a 3–cell of type L in Df , corresponding to a tetrahedron

σL
j in Tf . Let 2nj + 4 be the valence of π

(
σL
j (14)

)
. Then the equivalence class of

σ̂L
j (14) in Df is{

σ̂L
j (14),

{
σ̂R
j+k(12), σS

j+k(12), σ̂R
j+k(34)

}
k=1,...,nj

,

σL
j+nj+1(12), σL

j+nj+1(34), σ�
j+nj+2(23)

}
,

where � ∈ {L,R}. In particular π̂
(
σ̂L
j (14)

)
has valence 3nj + 4.

Proof. By Lemma 5, the edge σL
j (14) corresponds to a unique subsequence LRnjL

of wf , for nj ≥ 0. In particular, σL
j is the bottom of a unique ribbon of tetrahedra

σL
j σR

j+1 · · · σR
j+nj

σL
j+nj+1 σ�

j+nj+2 ,

where � ∈ {L,R}. Whether � = L or � = R does not depend on the edge σL
j (14) and

does not matter towards the proof of the Lemma. Whence σL
j (14) is identified with

the edges

σL
j (14),

{
σR
j+k(12), σR

j+k(34)
}
k=1,...,nj

, σL
j+nj+1(12), σL

j+nj+1(34), σ�
j+nj+2(23).
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Figure 17. The cross section of a neighbour-
hood of π̂

(
σ̂L
0 (14)

)
in Df , viewed from the

vertex σ̂L
0 (4).

Figure 18. The edge splits into two edges,
π̂
(
σ̂S
0 (41)

)
on the left and π̂

(
σ̂S
0 (14)

)
on the

right. The view is from the vertex σ̂S
0 (4)

The valence of its equivalence class in Tf is 2nj + 4. In Df , we introduce a slab
around each edge σR

j+k(12), while neighbourhoods of the other edges glued to ej are
unchanged (cf. Figure 17 for j = 0). The statement of the Lemma follows.

Lemma 16. Let σ̂R
j and σ̂S

j be 3–cells of type R in Df , corresponding to a

tetrahedron σR
j in Tf . Let 2nj +4 be the valence of π

(
σR
j (14)

)
. Then the equivalence

class of σ̂R
j (14) in Df is{
σ̂S
j (14), σ̂R

j (14),
{
σ̂L
j+k(24)

}
k=1,...,nj

, σ̂R
j+nj+1(24), σ̂S

j+nj+1(24)
}
.

Similarly, the equivalence class of σ̂S
j (41) in Df is{

σ̂S
j (41),

{
σ̂L
j+k(13)

}
k=1,...,nj

, σ̂R
j+nj+1(42), σ̂�

j+nj+2(23), σ̂S
j+nj+1(42)

}
,

where � ∈ {L,R}. In particular, both π̂
(
σ̂R
j (14)

)
and π̂

(
σ̂S
j (14)

)
have valence nj +4.

Proof. As in the proof of Lemma 15, the edge σR
j (14) corresponds to a unique

subsequence RLnjR in wf , for nj ≥ 0. The ribbon of tetrahedra around its edge
class in Tf is

σR
j σL

j+1 · · · σL
j+nj

σR
j+nj+1 σ�

j+nj+2,

where � ∈ {L,R}. In particular σR
j (14) is glued to the 2nj + 4 edges

σR
j (14),

{
σL
j+k(13), σL

j+k(24)
}
k=1,...,nj

, σR
j+nj+1(13), σR

j+nj+1(24), σ�
j+nj+2(23).

In Df , the cell σR
j (14) splits into the bigon with boundary σ̂S

j (14) and σ̂S
j (41). The

two loops of the ribbon of tetrahedra around σR
j (14) in Tf are split and equidistributed

between those two edges in Df (cf. Figure 18 for j = 0). The statement of the Lemma
follows.

Proof of Theorem 14. First we notice that π̂r is well defined, as it is the restriction
of the natural quotient map π̂. Injectivity follows from Lemma 15 and Lemma 16,
because the equivalence classes of σ̂L

j (14), σ̂
R
j (14) and σ̂S

j (41) are distinct.
By a topological argument, we deduce that the Euler characteristic of Df is zero.

Therefore Df has as many 3–cells as 1–cells. It follows that π̂r is an injective map
between finite sets with the same sizes, thus it is a bijection.
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The tame geometric realization in H. A tame geometric realization of Df

consists of embeddings φL
i , φ

R
i , φS

i of the 3–cells into H, and geometric realizations
Gj ∈ PU(2, 1) of the face pairings.

Let σ̂�
j be a tetrahedron of Df , � ∈ {L,R}. The development of σ̂�

j depends on
the tetrahedron it layers on. More precisely, let σ̂j−1 be the tetrahedron in Df on
top of which σ̂�

j layers. Then the geometric realization φ�
j of σ̂�

j is the combinatorial
isomorphism

φ�
j :

{
σ̂�
j → TB if σ̂j−1 = σ̂R

j−1 is of type R,

σ̂�
j → TA if σ̂j−1 = σ̂L

j−1 is of type L,
where

φ�
j

(
σ̂�
j (1)

)
:= P1,

φ�
j

(
σ̂�
j (2)

)
:= P2,

φ�
j

(
σ̂�
j (3)

)
:= P3,

φ�
j

(
σ̂�
j (4)

)
:= P4.

Now let σ̂S
j be a slab of Df . Let kj + 4 be the valence of the edge π̂

(
σ̂S
j (24)

)
.

Then the geometric realization φS
j of σ̂S

j is the combinatorial isomorphism

φS
j : σ̂S

j → Skj
where

φS
j

(
σ̂S
j (1)

)
:= P1,

φS
j

(
σ̂S
j (2)

)
:= P2,

φS
j

(
σ̂S
j (4)

)
:= P4.

More precisely, we require that φS
j

(
σ̂S
j (14)

)
= [P1, P4] and φS

j

(
σ̂S
j (24)

)
= [P2, P4].

Thus the bigon with endpoints
{
σ̂S
j (1), σ̂

S
j (4)

}
is developed into

B′ :=
(
1 + te−iπ

6 , s
)
, t ∈ R>0 ∪ {∞}, s ∈ R ∪ {∞},

while the bigon with endpoints
{
σ̂S
j (2), σ̂

S
j (4)

}
is realised by

Bkj
:=

(
−ω + te−iπ

6 (1−2kj), s
)
, t ∈ R>0 ∪ {∞}, s ∈ R ∪ {∞}.

Both B′ and Bk are foliated by vertical C–circles.

All geometric realizations of the face pairings between triangular faces are
uniquely determined by Lemma 8. They are the CR transformations Gi described
in §4.3. The remaining ones are either the identity matrix I, or products of the Gi’s.
We describe them in more detail below.

Let σ̂�
j be a tetrahedron of Df , of type � ∈ {L,R}. If φ�

j

(
σ̂�
j

)
= TA is the

standard symmetric tetrahedron of type A, then σ̂�
j layers on a tetrahedron σ̂L

j−1 of

type L. In particular they share two pairs of faces. Let TX = φL
j−1

(
σ̂L
j−1

)
for some

X ∈ {A,B}. Then the geometric realizations of the face pairings between σ̂L
j−1 and

σ̂�
j are:

σ̂L
j−1(134) → σ̂�

j (132) is realised by G1 gluing TX to TA,

σ̂L
j−1(124) → σ̂�

j (324) is realised by G2 gluing TX to TA.

Now suppose φ�
j

(
σ̂�
j

)
= TB is the standard symmetric tetrahedron of type B.

In this case σ̂�
j layers on a tetrahedron σ̂R

j−1 of type R and on a slab σ̂S
j−1. Let
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TX = φR
j−1

(
σ̂R
j−1

)
, for some X ∈ {A,B}, and let Skj−1

= φS
j−1

(
σ̂S
j−1

)
. Then the

geometric realizations of the face pairings between σ̂R
j−1, σ̂

S
j−1 and σ̂�

j are

σ̂R
j−1(134) → σ̂�

j (234) is realised by G3 gluing TX to TB ,

σ̂S
j−1(124) → σ̂�

j (123) is realised by G4 gluing Skj−1 to TB ,

σ̂R
j−1(134) → σ̂S

j−1(124) is realised by I gluing TX to Skj−1 .

These cover all cases, except for the gluing maps between the bigonal faces of the
slabs. Contrary to marked triangles, bigons in Heisenberg space can be identified via
many CR transformations. Earlier in this section we showed that around each edge in
Df there is at most one face pairing gluing two slabs along their bigons (cf. Lemma 15
and Lemma 16). Whence we are going to geometrically realise those face pairings so
that the geometric holonomy around each edge is trivial. Under this condition, the
choices turn out to be unique.

Consider the slab σ̂S
j . By Lemma 16, the equivalence class of the edge σ̂S

j (14) is{
σ̂S
j (14), σ̂R

j (14),
{
σ̂L
j+k(24)

}
k=1,...,nj

, σ̂R
j+nj+1(24), σ̂S

j+nj+1(24)
}
.

Let Aj . . . , Aj+nj+2 be the sequence of geometric realizations of the face pairings
around π̂

(
σ̂S
j (14)

)
, starting from σ̂S

j to σ̂S
j+nj+1, travelling anticlockwise from the

point of view of the vertex σ̂S
j (4). So for example Aj realises the face pairing between

σ̂S
j and σ̂R

j , while Aj+nj+2 corresponds to σ̂R
j+nj+1 and σ̂S

j+nj+1 (cf. Figure 18 on the

right). We remark that σ̂S
j+nj+1 is geometrically realised by the slab Snj , because

the edge π̂
(
σ̂S
j+nj+1(24)

)
has valence nj + 4.

Lemma 17. The matrix product
∏nj+2

k=0 Aj+nj+2−k is a geometric realization of
the face pairing between σ̂S

j and σ̂S
j+nj+1. In particular, it identifies the bigon B′ of

φS
j

(
σ̂S
j

)
with the bigon Bnj

of φS
j+nj+1

(
σ̂S
j+nj+1

)
.

Proof. By construction, Aj and Aj+nj+2 are the identity matrix. On the other
hand, Aj+1 = G3 and Aj+k = G2, for all k ∈ {2, . . . , nj + 1}. Therefore

nj+2∏
k=0

Aj+nj+2−k = G
nj

2 G3.

We recall from §4.3 that the CR transformations G3 and G2 preserve vertical C–
circles, and restrict to rotations on the z–plane. In particular, G3 maps B′ to the
bigon B0 and G2 maps Bk to Bk+1. The Lemma follows.

We remark that the face pairing
∏nj+2

k=0 Aj+nj+2−k is monotone, thus this com-
pletes the construction of the tame geometric realization of Df . We conclude the
section by showing that these geometric realizations are indeed branched CR struc-
tures.

Theorem 18. The geometric holonomy around each edge in Df is trivial and
therefore the geometric realization defines a branched CR structure on Mf .

Proof. We recall that by Theorem 14 there is a canonical representative for each
edge in Df .
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Let A ⊂ {0, . . . ,m− 1} be the subset of indexes such that σ̂S
j is a slab of Df , and

let A = {0, . . . ,m− 1} \A be its complement. It is a consequence of Lemma 17 that
the geometric holonomy around the edges π̂

(
σ̂R
j (14)

)
, for j ∈ A, is trivial.

Consider an edge π̂
(
σ̂S
j (41)

)
, for j ∈ A. Let Aj . . . , Aj+nj+3 be the sequence of

geometric realizations of all the face pairings around π̂
(
σ̂S
j (41)

)
, starting from σ̂S

j and

travelling clockwise from the point of view of the vertex σ̂S
j (4) (cf. Figure 18 on the

left). Then we have

Aj = G4, Aj+k = G1 for k ∈ {1, . . . , nj},
Aj+nj+1 = G3, Aj+nj+2 = G−1

4 Aj+nj+3 = G3G
−nj

2 .

Thus the geometric holonomy around π̂
(
σ̂S
j (41)

)
is the product

G3G
−nj

2 G−1
4 G3G

nj

1 G4. Because the matrices G1 and G2 are of order six, one
only needs to check that the product is the identity matrix for nj ∈ {0, . . . , 5}.
Straight forward computation of the six products gives the result.

An analogous argument works for the edges π̂
(
σ̂L
j (14)

)
, j ∈ A. The geometric

holonomy around them is of the form G−1
1 G

−nj

4 G−1
2 G1G

nj

3 G2. The matrices G3 and
G4 are also of order six, hence one only needs to check that the cases nj ∈ {0, . . . , 5}.
The calculation is straightforward.

We apply Lemma 12 to complete the proof.

6. Properties of the Structures. Consider the branched CR structure on the
hyperbolic once-punctured torus bundle Mf described in the previous section 5.3. We
conclude by analysing two important features of the structure: the ramification order
around each connected component of the branch locus (namely the ideal edges), and
the holonomy representation. In §6.1 we show that the ramification order of an edge
e has a simple description in terms of the valence of e in the cell decomposition, and
therefore its explicitly computable (cf. Theorem 14). In §6.2 we find the holonomy of
the generators of π1(Mf ) and underline some properties.

6.1. Branch locus. The branch locus of the CR structure of Mf is contained
in the union of all ideal edges of the associated cell decompositions Df . Equality
holds if and only if the flip sequence wf does not contain a subsequence RLR
(cf. Lemma 19,20 and 21). Here we show that the ramification order around each
curve is related to their valence in the simplicial complex. The strategy will be to
develop each curve as a vertical line in Heisenberg space, and analyse the projection
onto the C–plane of a neighbourhood. This way we can talk about angles of the
projections where otherwise it would not be possible. We remind the reader that
CR transformations do not preserve angles, therefore the angles we are going to talk
about depend on the chosen realizations.

We recall that by Theorem 14 there is a canonical representative for each edge in
the cell decomposition Df , namely σ̂R

j (14), σ̂S
j (41) and σ̂L

j (14). Let ceiling(x) = �x�
be the ceiling function, which associates x to the smallest integer greater than or equal
to x.

Lemma 19. Let nj + 4 be the valence of ej = π̂
(
σ̂R
j (14)

)
in Df , nj ≥ 0. Then

the ramification order around ej is
⌈
nj+5

6

⌉
.

Proof. First, we observe that the geometric realization φR
j develops the edge

σ̂R
j (14) into the vertical ray of Heisenberg space going from P1 = (1,

√
3) to P4 = ∞.
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Figure 19. The developments around the branch locus for nj = 1 (on the left) and nj = 3 (on the
right). Their respective ramification orders are one and two.

Therefore we can understand the ramification order of ej by looking at the projections
of the tetrahedra around ej on the C–plane of H.

Let R ⊂ C be the projection of the standard symmetric tetrahedron. It is a
triangular region bounded by three arcs of circles (cf. Figure 7). We recall from §5.3
(cf. Figure 18) that the sequence of 3–cells around ej in Df is

σ̂S
j , σ̂

R
j , σ̂L

j+1, . . . , σ̂
L
j+nj

, σ̂R
j+nj+1, σ̂

S
j+nj+1.

Then φR
j

(
σ̂R
j

)
projects onto Rj := R. The next simplex glues to φR

j

(
σ̂R
j

)
via G−1

3 ,
therefore its projection Rj+1 is a π

3 clockwise rotation of Rj around the origin. After

that, we have nj simplices each of which is glued to the previous one by G−1
2 . Whence

each of their projections Rj+k, for k ∈ {1, . . . , nj + 1}, is a π
3 anticlockwise rotation

of Rk−1 about the point 1. Finally, the projections of the geometric realizations of
the two slabs σ̂S

j , σ̂
S
j+nj+1 rigidly glue to Rj and Rj+nj+1 to fill in the gap. Examples

for nj = 1 and nj = 3 are depicted in Figure 19.
Around ej , the first region Rj contributes with an angle of 2

3π, while every other
region Rj+k, for k ∈ {1, . . . , nj + 1}, contributes with an angle of π

3 . The first slab

also adds 2
3π. This sums up to

(
5+nj

6

)
2π. The angle of the projection of the last

slab around ej is a non-negative number strictly lower than 2π, therefore the total

angle is the next integer multiple of 2π. That is
⌈
nj+5

6

⌉
2π.

Lemma 20. Let nj + 4 be the valence of ej = π̂
(
σ̂S
j (41)

)
in Df , nj ≥ 0. Then

the ramification order around ej is
⌈
nj+5

6

⌉
.

Proof. This proof is similar to the one of Lemma 19, as the geometric realization
φS
j develops the edge σ̂S

j (41) into the vertical ray from P4 = ∞ to P1 = (1,
√
3). The

only difference is that we are not going to consider the projections of the entire cells,
since they are not as clear as in the previous case, but only the projections of the
vertices. Every 3–cell around ej has two vertices at P4 and P1, and its angle about ej
is strictly between zero and 2π. Therefore knowing the positions of the other vertices
gives us an estimate of the total angle around ej .

The sequence of 3–cells around ej in Df is

σ̂S
j , σ̂

L
j+1, . . . , σ̂

L
j+nj

, σ̂R
j+nj+1, σ̂

�
j+nj+2, σ̂

S
j+nj+1,
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CR face pairing 3–cells Vertices disjoint from ej C–coordinates

G4
σ̂S
j σ̂S

j (2) −ω

σ̂L
j+1

σ̂L
j+1(2) −ω

G1
σ̂L
j+1(4) 0

σ̂L
j+1+k, σ̂L

j+1+k(2) (−1)kωk−1 + 1

G1
k = 1, . . . , nj − 1 σ̂L

j+1+k(4) (−1)k+1ωk + 1

σ̂R
j+nj+1

σ̂R
j+nj+1(2) (−1)nj ω

nj−1 + 1

G3
σ̂R
j+nj+1(4) (−1)nj+1ωnj + 1

σ̂�
j+nj+2

σ̂�
j+nj+2(4) (−1)nj+1ωnj + 1

G−1
4

σ̂�
j+nj+2(1) (−1)nj+2ωnj+1 + 1

σ̂S
j+nj+1 σ̂S

j+nj+1(1) (−1)nj+2ωnj+1 + 1

Table 1. The list of vertices of the 3–cells around ej that are not identified with the endpoints of

ej . We recall that ω = − 1
2

(
1 + i

√
3
)
.

Figure 20. The developments around the branch locus for nj = 1 (on the left) and nj = 3 (on the
right). Only vertices and edges are projected. The shaded areas are just guidelines to distinguish
the different cells, but they are not the actual projections of the 3–cells. The respective ramification
orders are one and two.

for some � ∈ {L,R}. We begin by developing φS
j

(
σ̂S
j

)
, then glue every other 3–cell

around ej . The vertices that are not identified with the endpoints of ej are listed in
Table 1. They are all positioned at the vertices of a regular hexagon of edge length√

3
2 .

We draw examples of the projections for nj = 1 and nj = 3 in Figure 20. We
remark that these are projections of the vertices and edges, but not of the 2–skeletons
as faces are generally not foliated by vertical rays anymore.

Up to σ̂�
j+nj+2, the total sum of the angles is strictly between

⌈
nj−1

6

⌉
and

⌈
nj+5

6

⌉
.

Because the angle of the projection of the last slab around ej is a non-negative number

strictly lower than 2π, the ramification order must be
⌈
nj+5

6

⌉
.

Lemma 21. Let 3nj + 4 be the valence of ej = π̂
(
σ̂L
j (14)

)
in Df , nj ≥ 0. Then

the ramification order around ej is nj + 1.

Proof. We follow almost verbatim the proof of Lemma 20.
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CR face pairing 3–cells Vertices disjoint from ej C–coordinates

G1
σ̂L
j

σ̂L
j (2) −ω

σ̂L
j (3) 0

σ̂R
j+k σ̂R

j+k(3) (−1)kωk−1 + 1

I
k = 1, . . . , nj σ̂R

j+k(4) (−1)k+1ωk + 1

σ̂S
j+k, σ̂S

j+k(4) (−1)k+1ωk + 1

G4
k = 1, . . . , nj

σ̂L
j+nj+1

σ̂L
j+nj+1(3) (−1)nj+1ωnj + 1

G2

σ̂L
j+nj+1(4) (−1)nj+2ωnj+1 + 1

σ̂�
j+nj+2

σ̂�
j+nj+2(4) (−1)nj+2ωnj+1 + 1

σ̂�
j+nj+2(1) (−1)nj+3ωnj+2 + 1

Table 2. The list of vertices of some of the 3–cells around ej that are not identified with the

endpoints of ej . We recall that ω = − 1
2

(
1 + i

√
3
)
.

CR face pairing 3–cells Vertices disjoint from ej C–coordinates

G2
σ̂L
j

σ̂L
j (3) 0

σ̂L
j (2) −ω

σ̂R
j+k σ̂R

j+k(2) (−1)k+1ωk + 1

G3
k = 1, . . . , nj σ̂R

j+k(1) (−1)k+2ωk+1 + 1

σ̂L
j+nj+1

σ̂L
j+nj+1(2) (−1)nj+2ωnj+3 + 1

G1

σ̂L
j+nj+1(1) (−1)nj+3ωnj+2 + 1

σ̂�
j+nj+2

σ̂�
j+nj+2(1) (−1)nj+3ωnj+2 + 1

σ̂�
j+nj+2(4) (−1)nj+2ωnj+1 + 1

Table 3. The list of vertices of the remaining 3–cells around ej that are not identified with the
endpoints of ej .

First we consider the development φL
j

(
σ̂L
j

)
. This geometric realization maps the

edge σ̂L
j (14) into the vertical ray from P1 = (1,

√
3) to P4 = ∞. From the point of

view of the vertex σ̂L
j (4) (cf. Figure 17), starting from σ̂L

j and travelling anticlockwise
around ej until σ�

j+nj+2, we encounter the 3–cells

σL
j σR

j+1 σS
j+1 · · · σR

j+nj
σS
j+nj

σL
j+nj+1 σ�

j+nj+2.

The vertices of these cells that are not identified with the endpoints of ej are listed
in Table 2.

Similarly, if we travel clockwise around ej , we have

σL
j σR

j+1 · · · σR
j+nj

σL
j+nj+1 σ�

j+nj+2.

The vertices of these cells that are not identified with the endpoints of ej are sum-
marised in Table 3.

We remark that for all k = 1, . . . , nj , the 3-cells σ̂
R
j+k and σ̂S

j+k cover a total angle
of 2π around ej . When nj = 0, the total angle around ej is exactly of 2π, hence in
the general case the ramification order around ej is nj + 1.
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6.2. The holonomy representation. It was mentioned in §5 that every
branched CR structure admits a pair of a developing map and holonomy represen-
tation, defined up to the action of PU(2, 1). Let (devf , holf ) be a representative
pair associated to the branched CR structure on Mf . Here we summarise few facts
about holf , referring the reader to the author’s PhD thesis for more details and the
connection to the work of Fock and Goncharov on positive representations [12].

The fundamental group of Mf is an HNN extension of the fundamental group of
the base once–punctured torus T0, namely the free group in two generators 〈α, β〉. It
has a standard presentation

π1(Mf ) = 〈α, β, τ | τατ−1 = f∗(α), τβτ−1 = f∗(β)〉,

where f∗ : 〈α, β〉 → 〈α, β〉 is the automorphism induced by f , and τ is represented by
the base circle of the fiber bundle. If Mf has flip sequence wf = Ra0Lb0 . . .RakLbkRc

(the other case being similar), there is a choice of the class representative (devf , holf )
such that

holf (α) = G−1
4 G3, holf (β) = G−1

1 G2, and holf (τ) = G−a0−c
4 G−b0

1 . . . G
−ak
4 G

−bk
1 .

Let ρ : π1(T0) → PU(2, 1) be the representation obtained by restricting holf to 〈α, β〉.
Then ρ does not depend on f , namely it is a representation of π1(T0) that always
extends to a representation of π1(Mf ). This is reflected in the fact that the two first
building blocks of Mf are always developed in the same way, hence the fiber once-
punctured torus also always develops in the same way. We remark that ρ is irreducible,
but not strongly irreducible. Moreover, it is not faithful but it has infinite discrete
image. In fact, its image ρ(π1(T0)) is a subgroup of the Eisenstein-Picard modular
group PU(2, 1,Z[ω]), the subgroup of PU(2, 1) with entries in the set of Eisenstein
integers Z[ω].

The representation ρ was proved to have the above special properties while study-
ing Fock and Goncharov’s parametrisation of X×(T0), the decorated PGL(3,C)–
character variety of T0. Using the inclusion map H ↪→ CP2 together with its first
complex jet, one induces a decoration on ρ, making its PGL(3,C) conjugacy class [ρ]
an element of X×(T0). Under this construction, the Fock-Goncharov coordinate of [ρ]
is

P = (ω, ω, ω, ω, ω, ω, ω, ω) , where ω = −1

2

(
1 + i

√
3
)
.

The point P and its complex conjugate are the only points in Fock-Goncharov moduli
space that are fixed by every Fock-Goncharov edge flip. Under milder conditions, it
should be possible to find other points in Fock-Goncharov moduli space with similar
behaviors, perhaps leading to other representations such as ρ, that extend to repre-
sentations of π1(Mf ), and interesting CR structures. More details con be found in
the author’s PhD thesis [4].
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