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A HALL OF STATISTICAL MIRRORS∗

GABRIEL KHAN† AND JUN ZHANG‡

Abstract. The primary objects of study in information geometry are statistical manifolds, which
are parametrized families of probability measures, induced with the Fisher-Rao metric and a pair
of torsion-free conjugate connections. In recent work [ZK20], the authors considered parametrized
probability distributions as partially-flat statistical manifolds admitting torsion and showed that
there is a complex-to-symplectic duality on the tangent bundles of such manifolds, based on the
dualistic geometry of the underlying manifold.

In this paper, we explore this correspondence further in the context of Hessian manifolds, in
which case the conjugate connections are both curvature- and torsion-free, and the associated dual
pair of spaces are Kähler manifolds. We focus on several key examples and their geometric features.
In particular, we show that the moduli space of univariate normal distributions gives rise to a
correspondence between a Siegel domain and the Siegel-Jacobi space, which are spaces that appear
in the context of automorphic forms.
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1. Introduction. In complex and symplectic geometry, mirror symmetry is a
duality between Calabi-Yau manifolds, in which two distinct manifolds have closely
related geometry. This correspondence has played an important role in string theory
as well enumerative algebraic geometry (see [CK99, Mor97] for more details). Mirror
symmetry provides a correspondence between the geometry of two different Calabi-
Yau manifoldsM andW. Such manifolds are generally topologically and geometrically
distinct, so this correspondence is not induced by a mapping between the manifolds.
Instead, it is more appropriate to think that the spaces appear in pairs where it is
possible to understand some aspects of the complex geometry of the primal space in
terms of the symplectic geometry of the dual manifold.

At present, mirror symmetry is a somewhat mysterious phenomena; given a
Calabi-Yau manifold it is not clear how to construct its mirror. However, it seems to be
deeply linked with T-duality,1 which is a duality between semi-flat Kähler manifolds
induced by inverting the length-scale of the fibers. In particular, the SYZ conjecture
states that away from a singular locus, the mirror manifold can be constructed using
T-duality [SSTZ96].

In this paper, we study a related duality in the context of the tangent bundles
of statistical manifolds.2 Due to the similarities to the semi-flat case of Calabi-Yau
manifolds, we call this correspondence statistical mirror symmetry [ZK20]. From
a topological and symplectic perspective, this correspondence is often very simple.
However, from the perspective of complex geometry, rich phenomena arise.
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1The notion of T-duality appears both in mathematics as well as physics, where two seemingly

different physical systems turn out to be equivalent. In this paper, we adopt the mathematical
definition of T-duality given in [Leu00, FP19b].

2Strictly speaking, non-Kähler statistical mirror symmetry is defined for partially-flat statistical
manifolds admitting torsion, rather than traditional statistical manifolds, which are torsion-free (see
Section 3.2 for details).
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The goal of this paper is to explore the geometric properties of statistical mirror
symmetry in more detail. We will focus primarily on examples whose underlying
Riemannian manifold is hyperbolic and where the mirror pair on the tangent bundles
are Kähler manifolds, and use these examples to motivate the more general results.

1.1. Overview of the paper. In Section 2, we discuss the moduli space of
normal distributions (i.e., Gaussian distributions) and use this example to introduce
statistical mirror symmetry. This induces a duality between a Siegel domain with its
metric of constant holomorphic sectional curvature and the Siegel-Jacobi space with
a Sp(2,R)-invariant metric. We study the geometry of these two spaces in depth, and
use them to highlight several important geometric features that differ from Calabi-Yau
manifolds. Furthermore, we show that both of these spaces are Kähler-Ricci solitons
which remain coupled for all time under Kähler-Ricci flow. Using this example as a
guide, we find two curvature properties which are preserved by conjugate flow (i.e.,
the dual to Kähler-Ricci flow). Finally, we make some speculative remarks about the
relationship between this duality and the automorphic forms on these two spaces.
In particular, we propose that this perspective may be used to explain the so-called
Saito-Kurokawa lift, which takes elliptic modular forms to Siegel modular forms of
degree 2.

In Section 3, we provide a more general definition for statistical mirror symmetry.
In this section, we describe how this construction is related to the duality of semi-flat
Calabi-Yau manifolds. We also discuss a non-Kähler generalization of this concept,
which is defined on the tangent bundle of an affine Riemannian manifold.

In Section 4, we study other examples of statistical mirror pairs whose underlying
statistical manifold has constant negative sectional curvature. These examples show
several important principles about statistical mirror symmetry. For instance, by ex-
plicitly constructing a second example of a mirror pair (induced from the moduli of
negative trinomial distributions) where one of the metrics has constant holomorphic
sectional curvature, we show that two tube domains can be locally holomorphically
isometric, but have non-isometric dual metrics. These examples also show that the
dual of a space of constant holomorphic sectional curvature need not even have con-
stant scalar curvature. We will also use this geometric perspective to provide new
statistical results. In particular, by studying the moduli of Inverse Gaussian distribu-
tions, we compute the isometry group of the parameter space.

In Section 5, we discuss statistical mirror pairs whose underlying Hessian man-
ifolds are Riemannian flat, which are better known as Frobenius manifolds. These
spaces can be used to construct pairs of solutions to the Witten-Dijkgraaf-Verlinde-
Verlinde (WDVV) equations [Kit99], so have applications in theoretic physics. We
use our geometric approach to establish several basic properties. For instance, by
considering the scalar curvature, we show that it is possible to simplify the WDVV
equations to a single equation in dimension two. Using the Ricci curvature, we show
that the full system of equations simplifies to six equations in dimension three. We
also provide several examples of such metrics.

Finally, in Section 6, we discuss the question of whether a given Riemannian
metric admits a Hessian structure, from both a global and a local perspective. We
also discuss the fact that such structures fail to be unique; metrics which admit one
Hessian structure generally admit many others as well.

2. The univariate normal and its corresponding mirrors. To introduce
statistical mirror symmetry, it is helpful to consider a specific example of the phe-
nomena. In this section, we show that by considering the family of univariate normal
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distributions, we obtain a correspondence between the Siegel-Jacobi space C×H with
an Sp(2,R)-invariant metric and a Siegel domain (i.e., the complex ball) with the
Bergman metric. We will use this as an archetypal case which motivates the more
general definition in Section 3. In the interest of clarity, we will not include long
derivations of curvature tensors in this paper. Instead, we have written a Mathemat-
ica notebook which can be used to calculate all of the relevant quantities [Kha20].

2.1. The geometry of the normal family. A univariate Gaussian distribution
is a probability distribution ρ of the form

ρ(ζ|μ, σ) = 1√
2πσ

exp

(
− (ζ − μ)2

2σ2

)
.

In this expression, ζ represents the random variable, which takes values in the sample
space S = R. There are two parameters, μ and σ which correspond to the mean and
variance of the distribution, respectively. We can consider the space of all univariate
normal distributions over the reals as a parametrized family, which is a family of
probability distributions specified by some number of parameters (in this case, μ and
σ). Furthermore, we can consider the space of all univariate normal distributions as
a statistical manifold, where the parameters serve as a global coordinate chart. This
gives this space the structure of a smooth manifold.3

For any parametrized family of probability distributions, it is possible to define
an associated Riemannian metric, which is known as the Fisher metric (or Fisher-Rao
metric). Denoting the parameters of the family of probability density functions as
x =

(
x1, · · · , xn

)
, the Fisher metric is given by the expression4

gjk(x) =

∫
S

∂ log p(ζ|x)
∂xj

∂ log p(ζ|x)
∂xk

p(ζ|x) dζ.

This expression originates in statistics, where it is also called the Fisher infor-
mation. It can be interpreted as the infinitesimal form of the relative entropy, which
provides a non-symmetric notion of the distance (also known as a divergence) be-
tween two mutually absolutely continuous probability measures. The Fisher metric
has found many uses in physics and other areas of science, but a full discussion of
its properties would take us too far from our main focus, so we refer the interested
reader to [AN00] [CSS15].

For the space of normal distributions (which we denoteMNormal), it is possible to
compute the Fisher metric explicitly in the (μ, σ)-coordinates. Doing so, we find that

g =
1

σ2
(dμ2 + 2dσ2).

This computation shows that the moduli of normal distributions is a hyperbolic space.

Proposition 1 (Amari [Ama80]). The statistical manifold of normal distribu-
tions MNormal is a half-plane with constant negative curvature.

3In fact, it is a domain in Euclidean space, but it is beneficial to consider it as a manifold.
4Here, the reference measure dζ is the usual Lebesgue measure.
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2.2. Normal distributions as an exponential family. In order to construct
a pair of mirror Kähler manifolds from the space of normal distributions, we first must
reparametrize MNormal as an exponential family.

Definition 1 (Exponential family). Given a sample space S with random vari-
able ζ, an exponential family is a parametrized family of probability distributions whose
probability density/mass functions are of the form

ρ(ζ |x) = h(ζ) exp

(
n∑

i=1

xiFi(ζ)− Φ(x)

)
. (1)

Here h : S → R is a known function which serves to fix a base measure on S. The
parameters are denoted by the x = (x1, · · · , xn) and take values in some domain
Ω ⊂ R

n. When an exponential family is parametrized in this way, the xi’s are known
as the natural parameters. The functions F = (F1, · · · , Fn) : S → R

n are known as
the sufficient statistics. Finally, the function Φ : Ω→ R is known as the log-partition
function, which serves to renormalize the distribution so that the total mass is one.

In the context of normal distributions, we want to find functions x1 and x2 which
are functions of μ and σ so that the probability density function takes the form (1).
To this end, we set F = (F1, F2) to be

F1(ζ) = ζ, F2(ζ) = ζ2 (2)

and

x1 =
μ

σ2
and x2 = − 1

2σ2
. (3)

These functions are defined on the domain Ω = {(x1, x2) ∈ R
2 | x2 < 0}.

Finally, the function Φ(x) is the following:

Φ = −x1 · x1

4x2
− 1

2
log

(
−x2

π

)
.

Exponential families play an essential role throughout this paper, so we mention
some general properties about them now.

Observation (Important facts about exponential families, part I). For any ex-
ponential family, the natural parameters have the following properties.

(1) The domain Ω of the natural parameters is a convex subset of Rn.
(2) When parametrized in terms of the natural parameters x, the Fisher metric

of an exponential family is given by the Hessian of the log-partition function
Φ. That is to say, we have

gij =
∂2

∂xi∂xj
Φ.

Specializing toMNormal, this means that when we use the x-coordinates, the Fisher
metric is given by

g =
∂2

∂xi∂xj

(−x1 · x1

4x2
− 1

2
log

(
−x2

π

))

=
1

2x2

[
−1 x1

x2

x1

x2
−x1·x1+x2

x2·x2

]
.
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In some sense, the natural parameters are “preferred coordinates” for an expo-
nential family,5 and give the manifold MNormal the structure of a Hessian manifold.6

Definition 2. A Riemannian manifold (M, g) is a Hessian manifold if
(1) Ω admits an atlas of coordinate charts, such that
(2) the transition maps between charts in this atlas are affine functions, and
(3) in each coordinate chart, there is a potential function Φ : Ω→ R, such that

g

(
∂

∂xi
,

∂

∂xj

)
=

∂2

∂xi∂xj
Φ.

For reasons that will later become apparent, we will denote Hessian manifolds
using the notation (M, g,D), where D indicates the affine structure.7

2.2.1. The dual parametrization. For an exponential family, the natural pa-
rameters provide an important coordinate system. There is also a dual set of coordi-
nates, called the expectation parameters, which are induced by the sufficient statistics.

Observation (Important facts about exponential families, part II).
(1) Given an exponential family ρ(ζ|x), the expected value of the sufficient statis-

tics

ui =

∫
S
Fi(ζ)ρ(ζ|x) dζ

also form a coordinate chart for the exponential family.
(2) The domain Ω∗ of the expectation parameters u is a convex subset of Rn.
(3) If we use these expected values as coordinates, the Fisher metric is given by

the Hessian of the Legendre dual Φ∗ of the log-partition function Φ. In other
words, we have

g

(
∂

∂ui
,

∂

∂uj

)
=

∂2

∂ui∂uj
Φ∗,

where

Φ∗ = sup
x∈Ω

〈x, u〉 − Φ(x).

(4) The coordinate systems x and u are bi-orthogonal, which means they satisfy
the identity

g

(
∂

∂xi
,

∂

∂uj

)
= δij .

To construct the expectation parameters for normal distributions, we start by
considering the sufficient statistics F (ζ) = (ζ, ζ2). To translate these quantities into

5For geometers, the notion of preferred coordinates might be somewhat anathema. Conceptually,
one can rephrase this definition in terms of a flat affine connection, in which case these coordinates
are those for which the Christoffel symbols vanish.

6We will later give another definition for Hessian manifolds that does not use coordinates (Defi-
nition 3.1.1).

7More precisely, D is a flat affine connection which satisfies a compatibility condition with g
known as Codazzi coupling.
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coordinates u = (u1, u2) for the statistical manifoldMNormal, we compute the expected
value of F for a given normal distribution ρ(ζ |x):

ui =

∫
ρ(ζ |x)Fi(ζ)dζ.

Computing these explicitly in terms of the mean and variance, we find that

u1 = μ u2 = μ2 + σ2.

As such, each normal distribution corresponds to a unique point in u-space, which
means that we can use the expectation parameters as coordinates for the statistical
manifold. The u coordinates are defined on the set Ω∗ = {(u1, u2) ∈ R

2 | u1 ·u1−u2 <
0}. The Legendre dual of the log-partition function Φ is

Φ∗ = −1

2
− 1

2
log(u2 − u1 · u1).

As such, in the u-coordinates, the Fisher metric is given by

g =
1

(u1 · u1 − u2)2

[
u1 · u1 + u2 −u1

−u1 1
2

]
.

2.2.2. The symmetries of the normal manifold. Before constructing a sta-
tistical mirror pair from the moduli space of normal distributions, let us discuss the
isometry group of the MNormal and its statistical meaning. It is a classic fact in hy-
perbolic geometry that the symmetry group of the half-plane is the projective special
linear group PSL(2,R), which acts by Möbius transformations

z �→ az + b

cz + d
, (4)

where a, b, c, d ∈ R with ad− bc = 1.
In the context of normal distributions, there is a distinguished subgroup induced

by affine transformations of the underlying sample space R. More precisely, if we
consider an affine map of the random variable ζ defined on R (i.e. ζ �→ aζ + b), then
under push-forward of measures, this induces a self-map of MNormal. In fact, we can
write out the embedding of the affine group into PSL(2,R) explicitly as

Aff+ → PSL(2,R)

ax+ b �→
[ √

a b√
a

0 1√
a

]

The phenomena that diffeomorphisms of the sample space induce isometries of
the moduli space is more general, and holds for any parametrized family of probability
distributions.

Theorem 2 (Chentsov [Cen00]). The Fisher metric is invariant under the dif-
feomorphism group of the sample space S.

This result was originally proven by Chentsov8 when the sample space is finite,
but it holds in much greater generality as well (see, e.g., Corollary 3.6 of [AJVLS15]).

8It is worth noting this theorem is actually a corollary of Chentsov’s main result, which states
that the Fisher metric is invariant under sufficient statistics, which are statistics T (Z) (for data Z)
where the data processing inequality becomes an equality:

I
(
x;T (Z)

)
= I(x;Z).
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In view of this result, we say that an isometry of the Fisher metric is a Fisher-Chentsov
isometry if it is induced by map of the underlying random variable. It is worth noting
that MNormal also has non-Fisher-Chentsov isometries, which correspond to Mobius
transformations where c in Equation (4) is non-zero.

2.3. Constructing the statistical mirror pair. With these preliminary cal-
culations finished, we can now construct the statistical mirror pair. We have seen that
the moduli space of univariate normal distributions is a hyperbolic manifold with dual
Hessian structures, one induced by the natural parameters and the other induced by
the expected value of the sufficient statistics. Using these dual Hessian manifolds,
we can construct two Kähler manifolds MNormal and WNormal, which are said to be a
statistical mirror pair.

The primal manifold (denoted MNormal), is constructed on the tube domain9 TΩ ⊂
C

2, which is defined as

TΩ = {xj +
√−1yj | yj ∈ R

n, (x1, x2) ∈ Ω} ⊂ C
2.

Recall that Ω is a half space in R
2, so TΩ is a half space in C

2. We use the log-
partition function Φ to define a Kähler metric on MNormal. To do so, we define the lift
of Φ, denoted Φh, as

Φh(x+
√−1y) = Φ(x)

and consider the Kähler metric

ωMNormal
=

√−1
2

∂2Φh

∂xi∂xj
dzi ∧ dzj .

In other words, the Kähler potential is simply Φ, extended so that it is constant
with respect to the imaginary directions y. Since Φ is strongly convex, Φh is strongly
pluri-subharmonic, so induces a Kähler metric on MNormal.

To build the mirror manifold WNormal, we consider the tube domain over the
parabola Ω∗, i.e. TΩ∗ ⊂ C

2 with holomorphic coordinates {wj = uj +
√−1vj}nj=1 for

(u1, u2) ∈ Ω∗, the domain of the dual variable. Its Kähler metric is induced by lifting
the conjugate potential Φ∗ to TΩ∗ and defining

ωWNormal
=

√−1
2

∂2(Φ∗)h

∂ui∂uj
dwi ∧ dwj .

We will provide a general definition for statistical mirror symmetry in Section 3
(Definition 3). For now, we simply define the Kähler manifolds MNormal and WNormal

to be a statistical mirror pair.

2.4. The geometry of MNormal and WNormal. The spaces MNormal and WNormal

have been studied extensively in the literature, and a summary of their geometric
properties is provided in Table 1. The space WNormal is more commonly known as a
Siegel domain of the second type and has been studied in the context of automorphic
forms and Abelian varieties. MNormal is known as the Siegel-Jacobi space, and has also
been studied in the context of automorphic forms.10 The first observation that we
make is thatMNormal andWNormal are distinct from the viewpoint of complex geometry.

9Observant readers will notice that this notation is reminiscent of tangent bundles. As we will
see in Section 3, this is not coincidental.

10The associated Kähler metric is occasionally referred to as the Kähler-Brandt metric (see, e.g.,
[Mol14]), although we will not use this terminology.
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MNormal WNormal

also known as the Siegel-Jacobi space a Siegel domain (m=n=1)

base coordinates (x1, x2) =
(

μ

σ2 , − 1
2σ2

)
(u1, u2) = (μ, μ2 + σ2)

base domain Ω = {(x1, x2) ∈ R
2 : x2 ≥ 0} Ω∗ = {(u1, u2) ∈ R

2 : u1 · u1 < u2}
holomorphic coordinates {zj = xj +

√−1 yj}j=1,2 ∈ TΩ {wj = uj +
√−1 vj}j=1,2 ∈ TΩ∗

biholomorphic to the half-space in C
2 the unit ball in C

2

convex potential Φ(x) = x1·x1

4(−x2)
− 1

2 log
(
−x2

π

)
Φ∗(u) = − 1

2 log(u2 − u1 · u1)

Kähler potential Φh(x +
√−1 y) = Φ(x) (Φ∗)h(u +

√−1 v) = Φ∗(u)

Kähler metric
√−1

2
∂2Φh

∂xi∂xj dz
i ∧ dzj

√−1
2

∂2(Φ∗)h
∂ui∂uj

dwi ∧ dwj

metric known as the Kähler-Brandt metric Bergman metric

symmetry group SL(2,R) � R
2 PU(2, 1)

geometric properties cscK expanding Kähler-Ricci soliton complex hyperbolic space form

encountered in automorphic forms automorphic forms/Abelian varieties

Table 1

Summary of the mirror pair Mnormal and Wnormal

Observation. MNormal and WNormal are not biholomorphic.

Proof. It is a classic fact in complex analysis that this Siegel domain (i.e., WNormal)
is biholomorphic to the unit ball B2 ⊂ C

2, by the map:

F (w1, w2) =

(
2w1√−1 + w2

,
1 +

√−1w2√−1 + w2

)
.

For the sake of contradiction, suppose there were a biholomorphism φ : MNormal → B
2.

Then the function z2 → φ(
√−1, z2) would be entire on C and bounded in each of its

coordinates, which is impossible.

Furthermore, MNormal and WNormal have different automorphism groups, which
shows that the duality between them does not preserve the automorphism group.
Among complex domains, the ball has the largest possible automorphism group
[Isa04], so the automorphism group of MNormal is smaller. These observations should
not be particularly surprising; the Legendre transformation can have a complicated
effect on the domain of a convex function, which corresponds to deforming the com-
plex structure of its tube domain11 (see [Shi00] for a details on the automorphism
group of tube domains).

With Calabi-Yau manifolds, mirror symmetry can change the topology (it acts to
rotate the Hodge diamond [Kon95]), so mirror pairs are generally not diffeomorphic.
However, MNormal and WNormal are both tube domains over a convex subset of R2, and
thus are diffeomorphic.12

Finally, we remark that MNormal and WNormal are both domains of holomorphy,
as they are tube domains whose base is convex [Yan82]. This fact holds for any
statistical mirror pair induced by an exponential family, since the domain of the
natural parameters and expectation parameters are always convex.

11In coordinate-invariant language, Legendre duality does not preserve the affine structure of an
affine manifold.

12More conceptually, statistical mirror pairs are defined on the tangent bundle TM of an affine
manifold M, so they are always diffeomorphic (see Definition 3).
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Observation. For any exponential family S, the Kähler mirror pair MS and WS

are domains of holomorphy.

2.4.1. Symmetries of MNormal. We now study the geometry of MNormal in more
detail. For a more complete reference on this space, we refer the reader to the following
papers [Yan07, YY16, YYH+13]. The first two of these study the geometry of this
space from the perspective of automorphic forms and spectral analysis. The third
computes the curvature tensor explicitly. We also recommend the work of Molitor
[Mol14], which studied this space from the perspective of mathematical physics.

We start by considering the symmetries of MNormal. The group of holomorphic
isometries is the affine symplectic group SL(2,R)�R

2 [Mol14]. As a result, the group
of holomorphic symmetries is (real) 5-dimensional, and acts transitively.

Intuitively, it is reasonable that the symmetry group of this space is real five-
dimensional. In particular, any two-dimensional tube domain has a natural R2-action
induced by translation in the fibers and the symmetry group of the half-plane is three-
dimensional. As we shall see shortly, it is not always the case that the holomorphic
symmetry groups of tube domains are the semi-direct product of the affine symmetries
group on the base and the Rn-symmetry induced by translation in the fibers. However,
this is indeed the case for MNormal.

It is worth noting that MNormal is often studied in the context of the Jacobi group
GJ , which is defined as

GJ := SL(2,R)�Heis(R),

where Heis(R) is the Heisenberg group (see [Yan07] for details). There is a natural
action of this group on MNormal, under which the metric is invariant. However, this
action is not faithful, which is why the isometry group is smaller.13 Nonetheless, the
Jacobi group plays an important role in the study of modular forms on this space,
which is why we introduce it now.

From the fact that MNormal is homogeneous, it immediately follows that MNormal

is complete. However, there is a more general result, which was proven by Molitor.

Proposition (Proposition 2.15 [Mol14]). A Kähler manifold M defined on the
tangent bundle TM of a Hessian manifoldM is complete if and only if the underlying
Hessian manifold (M, g,D) is complete.

The horizontal submanifolds

Ma,b = {(z1, z2) | y1 = a, y2 = b}

induce a totally geodesic foliation of MNormal. Since each of these submanifolds is
hyperbolic (and the transition maps to the standard half-plane model are given by
Equation (3)), we can calculate horizontal geodesics and distances explicitly. The
vertical submanifolds (where the x-coordinates are fixed) are Lagrange submanifolds,
but are not totally geodesic and so we are not aware of a similar characterization for
geodesics whose vertical displacement is non-zero.

2.4.2. The Ricci and scalar curvature of MNormal. We now study some curva-
ture properties ofMNormal. On a Kähler manifold, the Ricci curvature can be expressed

13The affine symplectic group is not a subgroup of the Jacobi group. The latter is a central
extension of the former.
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as a (1, 1)-form, which can be computed as

Ricij̄ = −
√−1 ∂

∂zi
∂

∂z̄j
log(det[h]),

where h is the Kähler metric.

For MNormal, the Kähler form is given by ω = ∂∂̄Φh. Computing the Ricci curva-
ture in the

(
x1, y1, x2, y2

)
coordinates, we find that it is given by

Ric =

⎡
⎢⎢⎣

0 0 0 0
0 − 3

2(x2)2 0 0

0 0 0 0
0 0 0 − 3

2(x2)2

⎤
⎥⎥⎦ .

For MNormal, the Kähler potential Φh is a function of the base (i.e. the x-
coordinates) alone. As such, we can calculate the Ricci tensor by computing

∂2

∂xi∂xj
log

(
det

[
∂2

∂xa∂xb
Φ

])
.

This reduces the original 4× 4 matrix of Ricci components to a 2× 2 matrix, which
greatly simplifies the analysis.

From this computation, we can see that the Ricci curvature is non-positive. How-
ever, this metric is not Kähler-Einstein. It is worth emphasizing that the Ricci tensor
of MNormal is not the Ricci tensor ofMNormal (which is a hyperbolic Riemann surface).
Taking the trace of the Ricci curvature with the inverse metric, we also find that
MNormal has constant scalar curvature R = −6.

2.4.3. The bisectional and anti-bisectional curvatures. In Riemannian ge-
ometry, it is often of interest to consider metrics whose sectional curvature is either
positive or negative. Oftentimes, this sort of assumption is necessary to obtain ana-
lytic results.

In Kähler geometry, it is often too restrictive to assume that the sectional curva-
ture has a sign. However, due to the additional structure and symmetries introduced
by the complex structure (see Chapter 4 of [Bal06] for an introduction), it is possible
to define other curvature conditions which play an important role in the analysis of
Kähler manifolds. Below, we note some of the curvature properties of MNormal. This
list is not intended to be exhaustive, and it is likely that there are other interesting
curvature properties of this metric, which may play an important role in its analysis.

(1) The holomorphic sectional curvature does not have a sign [Mol14]. At ev-
ery point there are directions with both negative and positive holomorphic
sectional curvature. Similarly, the orthogonal bisectional curvature does not
have a sign.

(2) The orthogonal anti-bisectional curvature is non-negative definite. The or-
thogonal anti-bisectional curvature plays an important role in the regularity
theory of optimal transport. In particular, if a convex potential Φ induces
a Kähler metric with non-negative anti-bisectional curvature, the associated
cost function c(x, y) = Φ(x−y) is weakly regular. In other words, there are no
local obstructions to establishing continuity for solutions to the Monge prob-
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lem with respect to this cost.14 For details on the orthogonal anti-bisectional
curvature and its relationship with optimal transport, we refer the reader to
[KZ20a]. We discuss this particular metric in Example 9.

2.4.4. The geometry of WNormal. We now turn our attention to the mirror
Kähler manifold WNormal. As we mentioned previously, this is a Siegel domain, which
has been studied extensively in the context of automorphic forms. Let us note some
important properties of this space.

(1) The Kähler metric is the Bergman metric. As a result, it is invariant under
biholomorphisms and so its isometry group is the same as its automorphism
group.

(2) The space is homogeneous and, as such, complete.
The first property has the following important consequence, which is a classical

fact in several complex variables (see, e.g., [Sha92]).

Observation. The isometry group of WNormal is the projective unitary group
PU(2, 1).

Since PU(2, 1) is real six-dimensional, the symmetry group is larger than the
semi-direct product of translations on R

2 and the symmetries ofMNormal. This occurs
because there are automorphisms of WNormal which do not respect the tube domain
structure.

Observation. Statistical mirror symmetry need not preserve the isometry group
of a Kähler manifold.

It is worth noting that WNormal is the only strictly pseudo-convex tube domain in
complex dimension two which is homogeneous15 (and its higher dimensional analogues
are the only such domains in C

n [EMS18]).
As before, the horizontal submanifolds

Wa,b = {(w1, w2) | v1 = a, v2 = b}
induce a totally geodesic foliation of the WNormal. Furthermore, since WNormal is a
complex space form, it is possible to calculate distances and geodesics explicitly (see
[San96] for details).

2.4.5. Curvature properties of WNormal. Similarly to MNormal, we can under-
stand the geometry of WNormal by investigating its curvature.

(1) The metric has constant negative holomorphic sectional curvature.16

(2) Since WNormal has constant holomorphic sectional curvature, it is necessarily
Kähler-Einstein and has constant negative scalar curvature. This space is
distinguished in that it is the unique strictly pseudo-convex domain for which
the Bergman metric is Kähler-Einstein [FW97, HX16].

(3) The orthogonal anti-bisectional curvature vanishes and the space has negative
cost-curvature (see [KZ20b] for a definition of cost-curvature).

14More precisely, the orthogonal anti-bisectional curvature is proportional to the MTW tensor,
and so non-negative orthogonal anti-bisectional curvature of the Kähler metric is equivalent to the
cost function satisfying the MTW(0) condition.

15MNormal is homogeneous and pseudo-convex, but not strictly so.
16There is a general theorem due to Shima which shows that if the Kähler manifold M constructed

in this fashion has constant holomorphic sectional curvature, the underlying Riemannian manifold
M must have constant sectional curvature [Shi95]. This gives an alternate proof that the space
MNormal is hyperbolic.
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By contrasting the geometry of WNormal with that of MNormal, we find the following
fact.

Observation The dual of a of Kähler metric with constant holomorphic sectional
curvature need not be Kähler-Einstein.

As we will see in Subsection 4.1, the statistical mirror pair of a Kähler manifold
with constant holomorphic sectional curvature need not even have constant scalar
curvature. Recently, Maeta17 showed that the statistical mirror of a Kähler-Einstein
space is a Kähler-Ricci soliton (see Corollary 5.3 of [Mae21]).

This phenomena contrasts with mirror symmetry for compact Calabi-Yau man-
ifolds, where the mirror pairs both have vanishing Ricci curvature. From a more
conceptual perspective, the Legendre transform inverts the Hessian matrix of a po-
tential. For a semi-flat Kähler metric, when the determinant of the Hessian is constant
(which corresponds to Ricci flatness in the compact case), the determinant of its dual
is also constant. However, for Kähler-Einstein metrics with non-zero scalar curvature,
the determinant of the Hessian matrix will not be constant, and will instead satisfy a
different Monge-Ampère equation, which is not preserved by Legendre duality.18

2.5. Kähler-Ricci flow, conjugate flow, and statistical mirror symmetry.
Thus far, the geometric properties of MNormal and WNormal we have discussed were
previously known in the literature (although the duality between these spaces was
not studied in depth). To motivate the study of statistical mirror symmetry, it is
natural to ask for new insights into the geometry of these spaces. In this subsection,
we do so by considering the relationship between this duality and Kähler-Ricci flow.
The main result of this subsection is the following.

Proposition 3. The spaces MNormal and WNormal are Kähler-Ricci solitons19

which are immortally coupled under Kähler-Ricci flow.

Before we discuss this result and some of its consequences, we first provide a brief
background on Kähler-Ricci flow. The Ricci flow was first introduced by Hamilton
[Ham82] and evolves a Riemannian metric by its Ricci curvature:

∂

∂t
gij = −2Ricij .

This flow plays a central role in modern geometric analysis, largely due to its role in
the proof of the the Poincaré and Geometrization conjectures [Per02, Per03]. If one
starts with a Kähler metric, the evolving metrics will remain Kähler (with the same
complex structure), and the resulting flow is called the Kähler-Ricci flow [Cao85].
This flow has also been used to prove many results in complex geometry (see, e.g.,
[Shi97, Mok88]).

Tube domains form a natural class of metrics where the Kähler-Ricci flow is
particularly simple to study. In particular, the Kähler-Ricci flow induces a flow of the

17In his paper, the results are phrased in terms of Hesse-Einstein and Hesse solitons, but this
statement is equivalent to this claim.

18However, there are some simple examples where the dual of a Kähler-Einstein metric is again
Kähler-Einstein. For instance, consider H = {z = x +

√−1y | y > 0} with the Kähler potential
f(z) = − log(y).

19WNormal is a complex space form, so the content of this proposition is that MNormal is a soliton
and that the coupling persists under the flow.
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underlying Hessian metric, whereby the Hessian potential Φ evolves via the parabolic
Monge-Ampère equation20

∂

∂t
Φ = log

(
det
[
D2Φ

])
. (5)

2.5.1. Kähler-Ricci flow on MNormal and WNormal. It is possible to compute
the Kähler-Ricci flow on MNormal explicitly. To do so, we consider the one-parameter
family of potentials (indexed by t):

Φt = −x2
1

x2
− t log(−x2)

defined on the half space H = {(x1, x2) | x2 < 0}. We then define a family of Kähler
metrics21 on the tube domain H×√−1R2 by lifting the potentials Φt:

ωt =
√−1∂∂̄Φh

t .

It is straightforward to verify that the potentials Φt solve Equation (5), and so
induce solutions to the Kähler-Ricci flow. In fact, the space MNormal is an expanding
Kähler-Ricci soliton. Upon rescaling, the flow acts by dilating the z1 coordinate, but
does not alter the geometry.22

2.5.2. The Conjugate flow. Given a solution to the Kähler-Ricci flow on a
tube domain (or more generally the tangent bundle of a Hessian manifold), we can
use statistical mirror symmetry to induce a conjugate flow on W.23

To construct this flow, we consider Kahler-Ricci flow on M and its associated flow
on the Hessian manifold M. By taking the Legendre transformation at each time t,
we obtain a dual Hessian manifold defined on a (time-dependent) domain Ω∗

t . We
can then consider a tube domain TΩ∗

t and construct a Kähler metric by lifting the
potential Φ∗

t .
This flow was previously studied by Fei and Picard [FP19b] as a model to under-

stand the relationship between T-duality and Hermitian curvature flows.24 In general,
the domain Ω∗

t will evolve with t. From the viewpoint of statistical mirror symmetry,
this shows that the complex structure of (TΩ∗

t ,Φ
∗
t ) can change along the conjugate

flow. On the other hand, the symplectic structure remains constant under conjugate
flow (which is one manifestation of the duality exchanging complex with symplec-
tic geometry). As such, conjugate flow changes both the metric and the complex
structure of W, in such a way as to leave the symplectic structure fixed.

20The flow on the underlying Hessian manifold is known as Hesse-Koszul flow, and was studied
by Mirghafouri and Malek [MM17].

21The Kähler metric corresponding to univariate normal distributions (in their natural parame-
ters) corresponds to M1/2. Here, we can ignore the constant term 1

2
log(π) since it does not affect

the metric.
22This result gives a simple explanation to a fact about these spaces which was originally observed

by Yang et. al. [YYH+13]. They studied a two-parameter family of invariant metrics on this space
(which they denote H1,1, ds21,1,A,B) and found that the scalar curvature does not depend on the
B parameter. In our language, changing the B parameter acts to rescale the z1-coordinate, so the
invariance of the scalar curvature follows from the fact that MNormal is a Kähler-Ricci soliton with
constant scalar curvature.

23Here, we drop the subscripts Normal to highlight that the metrics are not constant.
24The main focus of their work is actually the “anomaly flow,” which deforms conformally balanced

Hermitian metrics. However, there are some deep connections between this flow and Kähler-Ricci
flow [FP19a].
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In the case of the statistical manifold of normal distributions, we can write out this
flow explicitly by considering the one-parameter family of potentials Φt and computing
the Legendre transform at each time. Doing so, we find that

Φ∗
t = −t− t log

(
u2 − u2

1

2t

)
(6)

which is defined on the domain

Ω∗
t = {(u1, u2) | u2 − u2

1 ≥ 0},
(which happens to be independent of the time). As such, the conjugate flow on W is
the family of Kähler metrics on TΩ∗

t where the metric is given by ω∗
t =

√−1∂∂̄Φ∗
t .

This flow is defined for positive time, and for all time the associated Kähler man-
ifold is complex hyperbolic, so this flow expands the metric uniformly. Furthermore,
since W is a complex hyperbolic space form, we find the following.

Proposition 4. Kähler-Ricci flow on MNormal is identical to conjugate flow on
WNormal.

To explain why this is noteworthy, let us define conjugate flow more precisely.
We say that a Hessian manifold (or its tube domain) evolves via conjugate flow if its
Hessian metric evolves via the equation

∂

∂t
gjk =

1

2

∂2

∂xj∂xk
log det (g)− 1

2

∑
q

∂

∂xq
log det (g)

∂

∂xj
gqk (7)

Under this flow, the first term is the same as for Kähler-Ricci flow and the second
is a “correction term” which deforms the affine structure of the Hessian manifold (or
equivalently the complex structure of its tube domain). From this, we can see that in
general conjugate flow and Kähler-Ricci flow are not the same.

2.5.3. Preserved curvature inequalities. One of the main motivations in
finding Kähler-Ricci solitons is that they can be used to derive strong inequalities
about the flow (see, e.g. [Ham86, Cao92]) and find preserved curvature conditions.
Since MNormal is a soliton with non-negative orthogonal anti-bisectional curvature and
WNormal is a soliton with negative cost curvature, it is natural to ask whether either of
these properties are preserved by Kähler-Ricci flow. In recent work of the first named
author and F. Zheng, we studied these questions and showed that non-positive anti-
bisectional curvature (as with WNormal) is preserved.

Theorem 5 (K-Zheng ‘20). Let (TΩ, ωt) be a family of complete Kähler metrics
with bounded curvature which solve the Kähler-Ricci flow. Suppose that the initial
metric ω0 has non-positive anti-bisectional curvature. Then for all positive time,
anti-bisectional curvature remains non-positive.

We furthermore show that for complex surfaces, non-negative orthogonal anti-
bisectional curvature (as with MNormal) is preserved.

Theorem 6 (K-Zheng ‘20). Suppose that Ω ⊂ R
2 is a convex domain and

Φ : Ω → R is a strongly convex function so that the associated Kähler manifold
(TΩ, ω0)

(1) is complete,
(2) has bounded curvature, and
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(3) has non-negative orthogonal anti-bisectional curvature.
Then the orthogonal anti-bisectional curvature remains non-negative along Kähler-
Ricci flow.

Using Legendre duality, we can translate these results into the dual setting to find
conditions which are preserved under conjugate flow.

Theorem 7. Let Φ(x, t) be a convex potential on a (time-dependent) tube domain
that evolves via conjugate flow. Suppose that for all covectors u =

∑
i uidx

i and
v =

∑
i vidx

i, the potential Φ(x, 0) satisfies the inequality

∑
i,j,k,�

Wijk�uiujvkv� ≤ 0, (8)

where Wijk� is defined to be the quantity25

Wijk� =

∑
α,β,γ,δ,ε,η,ζ

⎛
⎜⎜⎜⎝
− ΦiαΦjβΦγkΦδ�Φαβγδ

+ΦiαΦjβΦαβγΦ
kεΦ�ζΦγηΦεζη

− ∂

∂xδ

(
ΦiαΦjβΦγk

)
Φδ�Φαβγ .

⎞
⎟⎟⎟⎠ .

Then this inequality persists for all time along the flow.

A calculation shows that W is the anti-bisectional curvature of the dual manifold
M and thus Equation 8 states that the anti-bisectional curvature of M is negative,
so this theorem is a restatement of Theorem 5 in terms of conjugate flow. Ideally,
one would want to use conjugate flow to prove new results about Kähler-Ricci flow,
instead of the other way around. However, we will leave this question for future work
and so leave Theorem 7 as a proof of concept for this approach.

2.6. Conjectural remarks. While both MNormal and WNormal are well known
spaces, their duality has not drawn as much attention. In this section, we make some
conjectural remarks to motivate further exploration on this topic.

One of the important mathematical successes of mirror symmetry has been to re-
late difficult questions in enumerative algebraic geometry to problems on their mirror
side that can calculated more readily [Mor97]. We hope that it might be possible to
use the duality between MNormal and WNormal in a similar way.

2.6.1. Analytic number theory and the Saito-Kurokawa lift. Both the
Siegel-Jacobi space and the Siegel domain have been studied in the context of number
theory, and it is seems likely that their duality might give additional insight.

An automorphic form is a function from a topological group G to the complex
numbers C which is invariant with respect to some discrete subgroup Γ ⊂ G. In this
case, the relevant group on MNormal is the Jacobi group (see [Yan15] for details) and
the associated group for WNormal is Sp(2,R).

Since MNormal and WNormal are not biholomorphic (and these groups are not the
same), the relationship between automorphic forms on these spaces will be somewhat
complicated. However, the existence of the Saito-Kurokawa lift strongly suggests there
is some connection.

25In the formula, we have written W in this way so that the first two terms have corresponding
terms in the anti-bisectional curvature and the final term is a “correction” term.
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{
Jacobi forms on MNormal

of weight k and index 1

} {
Spezialschar of Siegel

modular forms of degree 2

}

⎧⎨
⎩

Kohnen plus-space of modular

forms of level 4 and weight k − 1

2

⎫⎬
⎭

{
Modular forms on H

of weight 2k − 2

}

Maass

Eichler and Zagier

Shimura correspondence
Saito-Kurokawa lift

Fig. 1. The Saito-Kurokawa lift

The SaitoKurokawa lift takes modular forms on the hyperbolic half plane H to a
distinguished class (a Spezialschar) of Siegel modular forms on the Siegel half space.
Its existence was conjectured independently by Saito and Kurokawa and proven by
Andrianov [And79], Maass [Maa79] and Zagier [Zag79]. This lift can be understood
as a composition of three mappings, with the last map being a map from certain
Jacobi forms (i.e., automorphic forms on MNormal) to certain automorphic forms (i.e., a
Spezialschar) on the Siegel upper half-space. This space naturally containsWNormal (as
the space of symmetric complex matrices whose imaginary parts are positive definite
and whose diagonal elements are equal) and may also have a similar interpretation as
a “complexified exponential family.” Keeping in mind that WNormal and MNormal are
both models for the tangent bundle of the hyperbolic half plane, this picture suggests
that there might be a natural way to understand the Saito-Kurokawa lift in terms of
information geometry.

Question 1. Is there a way to understand the Saito-Kurokawa lift using the
duality between these two spaces? Are there any number-theoretic applications for
this?

If this is indeed the case, it raises the following question.

Question 2. Can this type of duality be used more generally in the study of
automorphic forms?

For the latter question, the natural spaces to consider are homogeneous tube
domains with an invariant metric (such as a Kähler-Einstein metric) and to compute
the Legendre transform of the underlying potential on the base to find a dual space.
After considering the Siegel half-space and the Siegel-Jacobi space, the natural next
class of examples are tube domains over homogeneous convex cones [Rot66], in which
case the dual space will be a tube domain over the dual cone.

2.6.2. The moduli of Abelian varieties. It is possible to interpret the Siegel
half-space as the moduli space of principally polarized Abelian varieties (see Chapter
8 of [BL13]). As such, one can consider a point in WNormal as corresponding to the
Abelian variety

TM = C
2/
(
MZ

2 + Z
2
)
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where M is a complex matrix of the form

M =

[
z1 z2
z2 z1

]

whose imaginary part is positive definite.
It is of interest whether there is some moduli space interpretation for the Siegel-

Jacobi space MNormal as well. Naively, one may hope that M is the moduli of a
class of dual Abelian varieties, and that this duality provides the right notion of
correspondence between these spaces.

Question 3. Does MNormal have an interpretation as a moduli space of dual
Abelian varieties?

Furthermore, MNormal and WNormal are not merely complex varieties, but also
Kähler manifolds, which means that they also have a natural notion of distance and
curvature. It is also possible to write down Darboux coordinates for these spaces (see
Section 3.1.1), so it is straightforward to compute volumes in these spaces.26 As a
result, it seems natural to ask whether these metrics are intrinsically meaningful for
the moduli of Abelian varieties.

Question 4. For genus g curves, the Weil-Petersson metric provides a natural
metric on the moduli space, which provides insight into the geometry of such surfaces.

Does the Kähler metric on WNormal provide an analogy of a “Weil-Petersson met-
ric” for a class of principally polarized Abelian varieties? In other words, can we
interpret it as a canonical Kähler metric in order to induce the “distance” between
Abelian varieties? If so, is there a corresponding interpretation for the Kähler metric
on MNormal in terms of dual Abelian varieties?

2.7. Generalization to the multivariate normal distribution. It is also
possible to study the moduli space of multivariate normal distributions (MulNor).
However, if one considers multivariate normal distributions with arbitrary covariance
matrices, the resulting statistical manifold is an exponential family, but the Fisher
metric is not hyperbolic [Sko84]. Instead, a more natural generalization is to consider
the moduli space of isotropic multivariate normal distributions, which are multivariate
normal distributions whose covariance matrix is σ Idn (where σ is a real parameter),
which we denote by IsoMulNor,n. The associated statistical manifold is isometric to
hyperbolic n-space Hn. Furthermore, it is possible to parametrize isotropic multivari-
ate normal distributions as an exponential family to obtain a mirror pair of Kähler
manifolds. Doing so, one establishes a duality between WIsoMulNor,n, which is the Siegel
domain of degree n and MIsoMulNor,n, which is the Siegel-Jacobi space

(
H1,n, ds

2
1,n,1,1

)
(using the notation of Yang [Yan07]). As with the univariate case, the dual space
WIsoMulNor,n is a complex space form. The geometry MIsoMulNor,n is more complicated,
but this perspective allows us to immediately understand some of its properties.

To do so, we first compute the associated log-partition function and its Legendre
dual. Doing so, we find that (ignoring some additive constants)

ΦIsoMulNor,n(x
1, . . . , xn) =

1

2

(
1

x1

n∑
i=2

xi · xi − log
(−x1

))

26Neither of these spaces have finite volume, so this does not give a natural way to discuss random
Abelian varieties.
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and its dual potential is

Φ∗
IsoMulNor,n(u1, . . . , un) = −1

2
− 1

2
log

(
2u1 −

n∑
i=2

ui · ui

)
.

From this calculation, we are able to compute the Ricci and scalar curvatures of these
metrics.

Proposition 8. The Ricci potential ρIsoMulNor,n = − log
(
det
[
D2ΦIsoMulNor,n

])
of

MIsoMulNor,n satisfies

ρ = −(n+ 1) log(−2 · x1).

As a result, the scalar curvature of MIsoMulNor,n is −(n+ 1).

From this, we can see that the Ricci curvature is non-positive and the metrics
have constant scalar curvature. Using Yang’s notation, this answers Question 3 of
[Yan19] for the spaces27

(
H1,n, ds

2
1,n,A,B

)
. It is also possible to compute the orthogonal

anti-bisectional curvature of these spaces. Using computer algebra to simplify the
expression, we find the following.

Proposition 9. For all n, the space MIsoMulNor,n has non-negative orthogonal
anti-bisectional curvature.

As a final note, we pose as an open question the problem of finding exponential
families whose tube domains correspond to the other Siegel-Jacobi spaces. Doing so
would give a way to compute the Kähler potentials of these spaces explicitly and
determine other properties of their geometry in a straightforward way.

3. What is Statistical Mirror Symmetry? While the correspondence be-
tween the Siegel-Jacobi space and the Siegel half-plane is the archetypal example of
statistical mirror symmetry, this duality can be defined for more general Hessian man-
ifolds. In this section, we provide a precise definition for the concept and contrast it
with mirror symmetry of Calabi-Yau manifolds. We will focus on the case when the
mirrors are Kähler. It is possible to extend this idea to the non-Kähler case, and we
will make some comments about this more construction at the end of this section.

3.1. Kähler statistical mirror symmetry. From a high level perspective,
Kähler statistical mirror symmetry can be described quite simply. For any Hessian
manifold (M, g,D), there is a dual Hessian manifold (M, g,D∗), where the affine
structure is induced by dual coordinates and the metric is given by the Legendre dual
of the original potential (in each affine chart). Furthermore, for any Hessian manifold
(M, g,D), it is possible to define a Kähler metric on its tangent bundle, by lifting
the potential as we did in the previous section. This map from a Hessian manifold
to its tangent bundle is known in the mathematical physics literature as the ‘r-map’
[AC09].

Definition 3 (Statistical Mirror Symmetry: Kähler case). Two Kähler mani-
folds M and W are a statistical mirror pair if they are constructed from the r-maps
of dual Hessian structures (M, g,D) and (M, g,D∗).

27Note that we have used n in the second index to match the dimension of the multivariate normal
distribution. However, Yang normally denotes this index by m.
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This definition of statistical mirror symmetry is concise, but requires a fair amount
of background to be meaningful. It also does not provide any motivation for studying
this notion, or give any insight into the geometry of the mirror pairs. As such, in
the rest of this section we will construct such the two spaces more concretely. Before
doing so, however, let us note on the connection between Definition 3 and mirror
symmetry for Calabi-Yau manifolds.

Recall that Calabi-Yau manifolds are Kähler manifolds whose first Chern class
vanishes. By a celebrated result of Yau, such manifolds admit a metric of vanishing
Ricci curvature. In the context of Hessian manifolds and their tangent bundles, the
spaces M and W will be Ricci-flat whenever the Hessian potential satisfies the Monge-
Ampère equation

detD2Φ = C. (9)

In this case, if we quotient the fibers M by a co-compact lattice and quotient the
fibers of W by its dual lattice, we obtain Leung’s construction of mirror Calabi-Yau
manifolds in the semi-flat case [Leu00]. As such, statistical mirror symmetry is related
to, but distinct from, mirror symmetry for semi-flat Calabi-Yau manifolds.

The differences between Leung’s and our constructions are two-fold. First, we
do not assume that our metrics are Ricci flat. In fact, the only compact Calabi-
Yau manifolds (with their Ricci-flat metrics) which arise via pulling back solutions
to Equation 9 over a compact affine base are complex tori [CY77]. As such, the
non-trivial examples of statistical mirror symmetry will not be Calabi-Yau.

Second, we do not compactify the fibers by quotienting by a co-compact lattice
and its dual. There are several reasons why it is preferable to consider the full tangent
bundle in this context. First, for Hessian manifolds whose affine structures are non-
trivial, it is generally not possible to quotient by a co-compact lattice in a consistent
way. Second, even in the cases where the affine structure is trivial, quotienting the
fibers obscures aspects of the correspondence between the primal and dual space. For
instance, for the Siegel half-space and the Siegel-Jacobi space, quotienting the fibers
seems to destroy any potential correspondence of the modular forms.

3.1.1. Constructing Kähler statistical mirror pairs. To construct statisti-
cal mirror pairs more concretely, it is helpful to provide a second definition for Hessian
manifolds which is equivalent to Definition 2 and which makes the duality of Hessian
manifolds much more explicit (at the expense of suppressing the role the “Hessian”
plays).

Definition (Hessian manifold – Information geometric). A Riemannian manifold
(M, g) is said to be Hessian if it admits dually flat connections. That is to say, it
admits two flat (torsion- and curvature-free) connections D and D∗ satisfying

X(g(Y, Z)) = g(DXY, Z) + g(Y,D∗
XZ) (10)

for all vector fields X, Y , and Z. Because of these dual flat connections, a Hessian
manifold is often said to be dually flat.

The duality between the connections D and D∗ is the crux of statistical mirror
symmetry. However, in order to view this as a correspondence between complex and
symplectic manifolds, we consider this duality in terms of the tangent bundle. For
any Riemannian manifold (M, g) together with an affine connection D (not neces-
sarily curvature-free nor torsion-free), it is possible to construct an almost-Hermitian
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structure on the tangent bundle TM known as the Sasaki metric (for details on this
construction, we refer the reader to [Dom62, Sat07]).

For an arbitrary connection and metric, these structures are somewhat compli-
cated to write out explicitly (see Section 3.2 for the exact formulas). However, for
a flat connection D, this construction simplifies greatly if we work in terms of the
associated affine coordinates (in which the Christoffel symbols vanish). Namely, if we
let x = {x1, · · · , xn}, be such a coordinate chart on M, we consider the associated
coordinates φ : TM→ R

2n given by

φ

(
yi

∂

∂xi

∣∣∣∣
p

)
=
(
x1(p), . . . , xn(p), y1, . . . , yn

)
.

We then consider the complex valued coordinates {zi = xi +
√−1yi}ni=1, which form

holomorphic coordinates on TM. As a result, the tangent bundle is in fact a complex
manifold, not simply almost complex.28 We define the Hermitian metric h as

h(∂xi , ∂xj ) = g(∂xi , ∂xi), h(∂yi , ∂yj ) = g(∂xi , ∂xi),

and

h(∂xi , ∂yj ) = 0.

When (M, g,D) is a Hessian manifold, it is possible to simplify this expression
by lifting the Hessian potential Φ to TM. As we did in the context of normal distri-
butions, we define the horizontal lift

Φh(z) = Φ(Re(z))

and define the Kähler form

ωΦ =
∂2

∂zi∂z̄j
Φh.

With this form, TM is a Kähler manifold, denoted M, and it is straightforward
to show that the associated Hermitian metric is h. Furthermore, we can also write
out Darboux coordinates for this space explicitly. To do so, we note that since M
is a Hessian manifold, the dual connection D∗ is flat. As such, we can use it to
induce coordinates u on M which are bi-orthogonal to the x-coordinates (i.e. satisfy
g(xi, uj) = δij). In fact, we can write out these coordinates explicitly using the
potential function as

ui = DxiΦ.

Observation. The paired coordinates {(ui, yi)}ni=1 are Darboux coordinates on
TM.

To construct the dual Kähler manifold W, we repeat this construction, but use
the dual connection D∗ instead of the primal one. Associated with the preferred
coordinate of the dual connection is a convex function Φ∗, which is the convex dual
of Φ. Furthermore, the primal x-coordinates can be obtained by differentiating Φ∗:

xi = D∗
ui
Φ∗.

28The fact that the Sasaki metric is complex is a consequence of the connection D being flat (see
Proposition 10).
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3.1.2. Tube domains. The previous discussion provides an explicit description
of the Kähler geometry of the tangent bundle of a Hessian manifold. In this paper we
will primarily focus on a special case, which is when the associated Hessian manifold
is a domain in Euclidean space. If we consider a domain Ω in Euclidean space, we
can produce a flat connection simply by differentiating in coordinates. In this case,
the tangent bundle is simply the tube domain TΩ,

TΩ = {z = x+
√−1y ∈ C

n | x ∈ Ω, y ∈ R
n}.

From a topological perspective, these spaces are simple (they are trivial when
Ω is convex). Nonetheless, statistical mirror symmetry produces surprisingly rich
structure from the perspective of complex geometry.

WhenM is a Hessian manifold which is defined on a convex domain in Euclidean
space, we can describe the geometry of M explicitly. Since M is a convex domain,
the Riemannian metric is given by

g = D2Φ

for some globally defined strongly-convex function Φ :M→ R. The Kähler potential
on M = TM is then given by the horizontal lift of the convex potential Φ.

Definition 4 (Horizontal Lift). A function Φh : M→ R is the horizontal lift of
a function Φ :M→ R if

Φh(x, y) = Φ(x). (11)

In other words, the horizontal lift ignores the “vertical” part of the holomorphic
coordinates. Since Φ is strongly convex on M, Φh is strongly pluri-subharmonic and
so defines a Kähler metric.

We can also give an explicit characterization of mirror space W. We first compute
the Legendre transform of Φ:

Φ∗(u) = sup
x∈Ω

〈u, x〉 − Φ(x),

which is defined on Ω∗ = {u ∈ R
n : Φ∗(u) <∞}. Then we construct the tube domain

TΩ∗, which will become W. The Kähler potential on W is just the horizontal lift
(Φ∗)h.

3.2. Non-Kähler statistical mirror symmetry. It is possible to construct
a non-Kähler version of statistical mirror symmetry as well. This case was studied
in depth in our previous work [ZK20], and we will discuss it briefly here. Readers
who are primarily interested in the Kähler theory should feel welcome to skip this
subsection.

At a fundamental level, statistical mirror symmetry can be understood in terms of
duality for affine connections. We have already seen dual connections in the context of
Hessian manifolds, but this duality can be defined for arbitrary affine connections.29

Definition 5. Given a Riemannian manifold with an affine connection D, the
dual connection D∗ is the unique connection which satisfies

Z(g(X,Y )) = g(DZX,Y ) + g(X,D∗
ZY ),

29The notion of conjugate connections is a central notion in information geometry and has been
studied in depth (see, e.g., [FZ17, CMZ09, Mat10]).
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for vector fields X,Y, and Z.

Let us recall some basic properties of conjugate connections.
(1) The dual connection D∗ is curvature-free if and only if the primal connection

D is curvature-free.
(2) D and D∗ have the same torsion tensor if and only if the quantity

CD := Dg

is a totally symmetric three-tensor. That is to say, if

CD(X,Y, Z) ≡ (DZg)(X,Y )

remains invariant when exchanging any two of the three vector fields X,Y, Z
on M. In this case, we say that the pair (g,D) is Codazzi-coupled.

(3) A straightforward computations shows that CD∗ = −CD, so (g,D) is
Codazzi-coupled if and only if (g,D∗) is.

3.2.1. General construction. To define non-Kähler version statistical mirror
symmetry, we consider an affine Riemannian manifold (M, g,D) with a flat connection
D, but do not assume that g is a Hessian metric (that is, g cannot be written as D2Φ
for some potential function Φ). In this case, the connection D∗ will be curvature-free,
but will have torsion.30 It is worth noting that such manifolds are not statistical
manifolds, since statistical manifolds are defined to be Riemannian manifolds (M, g)
with an affine connectionD such that bothD andD∗ are torsion-free [Lau87]. Instead,
these are examples of statistical manifold admitting torsion [Kur07].

A manifold (M, g,D,D∗) where (i) D is flat (both curvature- and torsion-free)
and (ii) D∗ is curvature-free but has non-zero torsion is said to be partially flat
[HM19].31

For any partially flat manifold, there are a pair of almost-Hermitian structures on
the tangent space TM, with the first being a Hermitian manifold M constructed from
D and the second an almost Kähler manifold W constructed from D∗. These spaces
are said to be in mirror correspondence, and provide a non-Kähler generalization of
statistical mirror symmetry [ZK20]. To construct these spaces, we again consider
coordinates x = {x1, · · · , xn} and the associated bundle coordinates

φ

(
yi

∂

∂xi

∣∣∣∣
p

)
=
(
x1(p), . . . , xn(p), y1, . . . , yn

)
.

Given an affine connection D on M and a point (x, y) ∈ TM, we construct two
lifts XH and XV of any vector X ∈ TxM, which are vectors in T(x,y)(TM). These are
called the the horizontal and vertical lifts, from TxM to T(x,y)(TM), and are defined
via the formulas

XV = Xi ∂

∂yi
and XH = Xi ∂

∂xi
−XiyjΓk

ij

∂

∂yk
. (12)

30Note that if g is not Hessian, D and g cannot be Codazzi coupled, because this would imply
that the dual connection D∗ is flat.

31In this paper, the authors used the convention that D∗ is the flat connection, not D. However,
to be more consistent with the broader literature on mirror symmetry, we chose to flip this definition
in our previous work.
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In this formula, the Γk
ij ’s are the Christoffel symbols of D with respect to the

x-coordinates. In other words, if we consider the vectors ei = ∂
∂xi , the Γk

ij terms
satisfy the identity

Deiej = Γk
ijek.

These lifts define a splitting of the tangent space T(x,y)(TM) as

T(x,y)(TM) = H(x,y)(TM)⊕ V(x,y)(TM),

where the spaces H and V are the images of the horizontal and vertical lift, respec-
tively. Note that the vertical lift (and thus the vertical space32) is independent of the
choice of connection but the horizontal lift depends on the connection. We can then
use this splitting to define an almost complex structure JD and almost-Hermitian
metric GD.

(1) The almost complex structure JD is defined by

JD(XH) = XV , JD(XV ) = −XH .

(2) The metric on TM is lifted from the metric g on M via the formula

GD

(
XV , Y V

)
= GD

(
XH , Y H

)
= g(X,Y ),

GD

(
XV , Y H

)
= GD

(
XH , Y V

)
= 0,

It follows immediately that the Riemannian metric GD and the almost complex
structure JD are orthogonal, which implies that the space (TM, JD, GD) is an almost
Hermitian manifold.

Definition 6 (Non-Kähler Statistical Mirror Symmetry). Given a partially flat
manifold (M, g,D,D∗), the almost-Hermitian manifolds

(i) M = (TM, JD, GD), and
(ii) W = (TM, JD∗ , GD∗)

are said to be a statistical mirror pair.

To explain why this can be understood as a complex-to-symplectic duality, we
first observe that M is a Hermitian manifold (i.e., JD is integrable).

Proposition 10 (Dombrowski [Dom62]). The almost complex structure JD on
TM is integrable if and only D is flat.

In fact, we can construct holomorphic coordinates in the same way we did previ-
ously; by considering affine coordinates x associated to D and considering the coor-
dinates

z =
{
z1, . . . , zn | zi = xi +

√−1yi} .
On the mirror side, the following proposition shows that W is symplectic.

Proposition 11 (Satoh [Sat07]). The fundamental form ω∗ = GD∗(JD∗ ·, ·) is
closed (i.e., satisfies dω∗ = 0) if and only if D is torsion-free.

Furthermore, the symplectic form on W is the pull-back of the canonical sym-
plectic form on the cotangent bundle T ∗M. However, since D∗ has non-vanishing
torsion, these results show that M is non-Kähler (since dω �= 0) and that the complex
structure on W is not integrable.

32More conceptually, the vertical space is the kernel of the pushforward of the projection map
π : TM → M.
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3.2.2. Non-Kähler statistical mirrors for parametrized families. For any
exponential family, it is possible to use the natural and expectation parameters to
construct a Kähler statistical mirror pair. However, exponential families are a special
class of statistical manifolds; for more general parametrized families, it is generally
not possible to find a Kähler mirror pair (see Section 6 for details). As such, non-
Kähler statistical mirror symmetry is useful to understand statistical manifolds which
are not exponential families.

In most cases of interest, the parameter space of a family of probability distri-
butions is an open domain in Euclidean space, so most statistical manifold can be
induced with a partially-flat structure. For each global set of coordinates on the
domain, there is an associated flat connection which can be used to construct a mir-
ror pair (which will generally be non-Kähler). As such, in order to find a canonical
geometry, it seems necessary to impose additional conditions on the geometry of M
and W. In [ZK20], we proposed one possibility, which is to find a flat connection on
M so that M is balanced (i.e., satisfies dωn−1 = 0). The appeal of this geometric
condition is that associated system of PDEs is determined (i.e., has the same number
of unknowns as equations) and that (conformal) balancing arises in the Strominger
system, which has been studied in theoretical physics [GF16]. However, it is quite
possible that statistical considerations will motivate a different geometric condition
entirely.

Question 5. Given a parametrized family of distributions which is not an expo-
nential family (and thus has no natural parameters), is there a natural condition to
impose on the parametrization so that the associated complex manifold M has some
desirable statistical properties?

4. More examples of hyperbolic statistical mirrors. In Section 2, we saw
that the moduli space of univariate normal distributions induces a mirror correspon-
dence between two Kähler manifolds, one of which was a complex space form and the
other of which was a Kähler-Ricci soliton. It might initially be tempting to think of
this as being the “canonical” hyperbolic statistical manifold. However, it turns out
that this example is not unique, in that there are many other examples of statistical
mirrors whose underlying statistical manifold has constant negative sectional curva-
ture. It is even possible to find other examples where one of the Kähler metrics is a
space of constant negative holomorphic sectional curvature. In this section, we will
provide another such example, which is induced from the moduli space of negative
trinomial distributions. We will also provide one further example of a statistical man-
ifoldM where the underlying Hessian metric is hyperbolic, which is derived from the
family of inverse Gaussian distributions.

4.1. The geometry of the negative trinomial distribution (NegTri). One
of the common distributions one encounters in statistics is the binomial distribution,
which is the distribution of heads when one performs k independent flips of a coin
which is heads with probability p and tails with probability 1 − p. Conversely, one
might flip such a coin repeatedly until encountering the first tail. The number of heads
that appear before the first tail will be distributed according to the negative binomial
distribution. The negative multinomial distribution generalizes this distribution by
having multiple success events rather than a single one. For example, if one roles a die
repeatedly until a one appears, the distribution of the numbers two through five will be
given by a negative multinomial (in this case, a negative sextinomial). More precisely,
we consider repeated independent draws of a fixed multinomial distribution where one



A HALL OF STATISTICAL MIRRORS 833

event is considered a failure event. The negative multinomial is the distribution of
the number of draws of each of the other events (i.e. the successes) before the first

failure occurs.33 This distribution is supported on the discrete space (Z≥0)
n−1

and
the probability mass function is

f(k1, . . . , kn−1 | p1, . . . , pn−1) = Γ

(
n−1∑
i=0

ki

)
n−1∏
i=1

pki
i

ki!
.

Here, Γ is the gamma function and the pi are the probability of each of the success
events. The zero-th event is considered the failure event and has probability p0.

For the sake of concreteness, we will restrict our attention to the negative trinomial
(i.e., where there are two success events and one failure event). However, all of the
calculations in this section can be extended to the negative multinomial. As we
did with normal distributions, we consider the moduli space of negative trinomial
distributions as a statistical manifold, and compute its Fisher-Rao metric.

g =
1

(1− p1 − p2)
2

[
p1(1− p2) p1p2

p1p2 p2(1− p1)

]
.

A straightforward calculation shows that this metric has constant curvature −1/2,
and so we see that MNegTri is hyperbolic. However, unlike the Gaussian family, this
metric is not complete. As such, the space of negative trinomials is a proper subset of
hyperbolic space. To determine the global geometry, it is helpful to reparametrize the
family in terms of the parameters s1 =

√
p1 and s2 =

√
p2. In these new coordinates,

the Fisher metric for the negative trinomial is

gij =
δij

2(1− s21 − s22)
+

sisj

2 (1− s21 − s22)
2 ,

which is precisely the Klein disk model for hyperbolic space restricted to the first
quadrant. This gives a picture of the global geometry of MNegTri, at least from
the the perspective of Riemannian geometry. From this, we see that the metric is
unbounded, and that the boundaries of the manifold occur where the probability of
the failure event approaches one.

The symmetry group of MNegTri is Z2, and is generated by exchanging the prob-
abilities of the first and second success event.34 This is a Fisher-Chentsov isometry,
as it is induced by a map of the underlying random variable. To show that there are
no other isometries of MNegTri, note that these are the only isometries of the Klein
disk (with its hyperbolic metric) which preserve the first quadrant.

4.1.1. Negative trinomials as an exponential family. The family of nega-
tive trinomial distributions is an exponential family. The natural parameters of this
family are

θ1 = log(p1), θ2 = log(p2), (13)

which is defined on the domain

ΩNegTri =
{
(θ1, θ2) ∈ R

2 | exp(θ1) + exp(θ2) < 1
}

(14)

33This can be generalized to allow for a specified number of failures r, but for simplicity, we will
only consider the case where r = 1.

34For the negative multinomial, the symmetry group is Sn−1 and is induced by permuting success
events.
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The potential (log-partition) function is

ΦNegTri(θ) = − log
(
1− eθ

1 − eθ
2
)
. (15)

The corresponding sufficient statistics are

η1 =
p1

1− p1 − p2
, η1 =

p2
1− p1 − p2

, (16)

which is defined on the set

Ω∗
NegTri = {(η1, η2) | η1, η1 > 0}. (17)

In order to transition from the θ to η coordinates, we use the formula η = DθΦ:

η1 =
eθ

1

1− eθ1 − eθ2 , η2 =
eθ

2

1− eθ1 − eθ2 . (18)

4.1.2. The Kähler geometry of MNegTri. As with the normal family, we can
use the natural parameters and sufficient statistics of the negative trinomial distribu-
tion to construct a pair of statistical mirrors. Let us first consider the primal manifold
MNegTri.

This space is constructed on the tube domain TΩNegTri, which was the domain of
the natural parameters (13). To obtain a Kähler metric on TΩNegTri, we compute the
horizontal lift of the log-partition function ΦNegTri(θ) given by (15). We enumerate
some of the important properties of MNegTri below.

(1) It is incomplete (since MNegTri is incomplete).
(2) It has constant negative holomorphic sectional curvature. This implies that it

is Kähler-Einstein, has constant negative scalar curvature, negative orthogo-
nal bisectional curvature and vanishing orthogonal anti-bisectional curvature.

(3) As a space of constant holomorphic sectional curvature, it is locally (but not
globally) holomorphically isometric to WNormal.

(4) It is biholomorphic to a tube domain whose base is {(θ1, θ2) | exp(θ1) +
exp(θ2) < 1}.

Question 6. Is there a global isometric embedding from MNegTri to a Siegel
domain?

In other words, is it possible to consider MNegTri as a subset of the Siegel domain?
We suspect that the answer to this question is negative, but do not have a proof.35

4.1.3. Properties of WNegTri. The dual manifold WNegTri is induced by the
sufficient statistics (16) and is defined on the tube domain TΩ∗

NegTri. Its Kähler
potential is given by the horizontal lift of the Legendre dual of the log-partition
function, which is

Φ∗
NegTri(η) = η1 log(η1) + η2 log(η2)− (1 + η1 + η2) log(1 + η1 + η2). (19)

We note some important properties of WNegTri.
(1) It is incomplete.

35The moduli space of multinomial distributions induces an incomplete space of constant positive
holomorphic sectional curvature (see Subsection 5.3). This space has a natural immersion into CP

n,
but no embedding. It is likely that the same phenomena occurs with negative multinomials as well.
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(2) The Ricci curvature is negative. Showing this requires a bit of computation.
To show this, we first consider the matrix

Ricij = −
∂2 log[det[D2Φ∗

NegTri(η)]

∂ηi∂ηj
.

We then lift one of the indices and consider the matrix

Ricji = Ricik gjk.

The determinant of this matrix is

det[Ricji ] =
1 + 2 (η1 + η1 · η1 + η2 + η2 · η2 + η1 · η2)

η1η2(1 + η1 + η2)
,

which is positive. On the other hand, the trace of Ricji (i.e., half the scalar
curvature), is negative:

Tr[Ricji ] = −3−
1

η1
− 1

η2
+

1

1 + η1 + η2
.

From this it follows that the eigenvalues of the Ricci curvature are negative,
and that the scalar curvature is negative (but not constant).

(3) Neither the orthogonal bisectional curvature nor the holomorphic sectional
curvature have a sign.

(4) It is biholomorphic to a tube domain whose base is the first quadrant, which is
biholomorphic to the bidisk in C

2. Although the domain admits a transitive
group of automorphisms, most of the automorphisms are not isometries and
the metric is not homogeneous.

(5) The spaces MNegTri and WNegTri are not biholomorphic. To see this, note that

Φ(θ)h =
(
eθ

1

+ eθ
2 − 1

)h
is a pluri-subharmonic exhaustion function on TΩNegTri which is strictly
pseudo-convex on the boundary ∂TΩ. However, the bidisc is not biholo-
morphic to any strictly pseudo-convex domain.

4.1.4. Statistical mirror symmetry and biholomorphic isometries. This
example of statistical mirror symmetry, in conjunction with the one in Section 2,
highlights a property of T-duality that is initially surprising. Upon first encountering
the concept, one might imagine that if two semi-flat Kähler manifolds are locally
biholomorphically isometric, that their dual spaces are also locally isometric. This
is the case for compact semi-flat Calabi-Yau manifolds with their Ricci flat metrics,
since such spaces are simply complex tori. Such an isometry need not extend globally,
and the failure for a local isometry to extend can be seen at the length scale of the
co-compact lattice.

However, if we drop the assumption that the metric is Ricci-flat (as done in
[FP19b]), then the situation becomes more complicated. In particular, it is possible
to construct semi-flat metrics which have neighborhoods that are locally biholomor-
phically isometric, but whose dual spaces are not locally isometric. More precisely,
if we quotient the fibers of MNegTri and WNormal by a pair of co-compact lattices,
the resulting spaces will be locally biholomorphically isometric, since they are spaces
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with constant holomorphic sectional curvature.36 37 On the other hand, WNegTri and
MNormal are distinct as Kähler manifolds and remain so when quotiented by dual co-
compact lattices. For instance, MNormal has constant scalar curvature whereas WNegTri

does not. These spaces are non-compact (and cannot be quotiented to obtain compact
examples), but it is possible to locally patch these potentials in a compact Hessian
manifold (at the expense of deforming the potential elsewhere) to obtain semi-flat tori
M1 and M1 which have biholomorphically isometric open subsets but whose T-duals
W1 and W1 have no isometric neighborhoods.

4.2. Inverse Gaussian distributions. We now consider another exponential
family whose underlying statistical manifold is hyperbolic, which is the family of
inverse Gaussian distributions. This is the family of distributions whose probability
density is given by

fInvGau(ζ| λ, μ) =
√

λ

2πζ3
exp

[
−λ(ζ − μ)2

2μ2ζ

]
,

where λ and μ are the shape parameter and mean, respectively. As the name suggests,
there is a relationship between this distribution and the Gaussian distribution. How-
ever, this connection requires some explanation since it involves stochastic processes.

We consider the stochastic process X(t) given by

X(0) = 0, X(t) = νt+W (t),

where W (t) is standard Brownian motion and ν is a fixed positive constant which
denotes the speed of the drift. We then consider the arrival times Tα at a fixed level
α > 0, which are given by

Tα = inf{t > 0 | X(t) = α}
and are distributed as

Tα ∼ InvGau

(
α

ν
,
(α
ν

)2)
.

For any pair of times, W (t) − W (s) will be normally distributed, which gives the
connection between inverse Gaussian distributions and Gaussian distributions.

As before, we consider the moduli of inverse Gaussian distributions as a statistical
manifold, and calculate its Fisher metric. In the μ, λ coordinates, this is given by

g =

[ 1
2λ2 0
0 λ

2μ3

]

When we compute the curvature, we see that MInvGau has constant negative
curvature, so is hyperbolic. Furthermore, the metric is unbounded but incomplete.
To understand the global geometry of this space, it is helpful to change of coordinates
to

x1 = μ−1/2 and x2 = λ−2.

In the (x1, x2) coordinates,MInvGau is the standard half-plane model restricted to the
first quadrant.

36There are other examples of Hessian metrics whose r-map has constant holomorphic sectional
curvature. For instance, if we consider the domain Ω = {(x1, x2) ∈ R2 | x1 − exp(x2) > 0}, the
convex potential Φ(x) = − log(x1 − exp(x2)) gives another.

37As with the case of flat tori, the failure of a global isometry will be apparent at the length-scale
of the co-compact lattices, since the dually-flat structures are very different.
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4.2.1. Symmetries of the moduli of inverse Gaussian distributions. By
studying the geometry of the moduli of inverse Gaussians, it is possible to prove new
statistical results. For instance, the previous calculations allow us to understand the
symmetries of the inverse Gaussian family.

Theorem 12. The isometry group of the inverse Gaussian family is the infinite
dihedral group R� Z2 generated by the mappings

(μ−1/2, λ−2) �→ (αμ−1/2, αλ−2)

for α > 0 and inversions in the (x1, x2)-coordinates around a circle centered at the
origin.

Proof. To see this, it suffices to compute the symmetries of the hyperbolic half-
plane which fix the line x1 = 0. This is an infinite dihedral group, generated by
scaling and inversions around a circle centered at the origin.

The fact that scaling generates a symmetry has a natural interpretation as it
corresponds to scaling the drift ν and the level α for the stochastic process X(t).
This symmetry is not Fisher-Chentsov, but its physical meaning is clear. However,
we are not aware of a physical interpretation for the isometry given by inversions.

Question 7. Is there a natural geometric interpretation for the symmetry of the
moduli of inverse-Gaussians induced by inversions?

4.2.2. Properties of MInvGau. Inverse Gaussian distributions are another ex-
ample of an exponential family. As such, we can use their moduli space to construct
a Kähler statistical mirror pair. To do so, we consider the natural parameters

θ1 =
λ

2μ2
,

θ2 = −λ

2

and use the connection associated with these coordinates. In this case, the log-
partition function is given by

Φ(θ) = −
√
θ1θ2 − 1

2
log(−θ2),

which is supported on Ω = {θ1, θ2 < 0}. The Kähler manifold MInvGau has the
following properties.

(1) It has negative Ricci curvature (and hence negative scalar curvature).
(2) The holomorphic sectional curvature, antibisectional curvature and orthogo-

nal bisectional curvatures do not have a definite sign.
(3) MInvGau a tube domain whose base is the third quadrant. As such, it is

biholomorphic to the bidisk in C
2.

4.2.3. Properties of WInvGau. To construct the dual Kähler manifold, we con-
sider the dual connection whose associated affine coordinates are

η1 =
∂Φ

∂θ1
= −1

2

√
θ2

θ1

η2 =
∂Φ

∂θ2
= −1

2

√
θ1

θ1
− 1

θ2
.
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The Hessian potential in these coordinates is is

Φ∗(η) =
1

2

[
−1 + log

(
2η1

−1 + 4η1η2

)]

which is defined on the hyperbola Ω∗ = {(η1, η2) ∈ R
2 | − 1 + 4η1 · η2 > 0, η1 > 0}.

The Kähler manifold WInvGau is defined on the tube domain TΩ∗ and has the following
properties.

(1) It has negative Ricci curvature (and so negative scalar curvature).
(2) It has negative orthogonal anti-bisectional curvature.
(3) Neither the orthogonal bisectional curvature nor the holomorphic sectional

curvature have a sign.

5. Frobenius manifolds and their statistical mirrors. Thus far, we have
considered examples where the underlying statistical manifold has negative curvature.
In this section, we turn our attention to statistical manifolds which are Riemannian-
flat and consider their sttatistical mirrors. The primary motivation for studying
such spaces is that they induce solutions to the Witten-Dijkgraaf-Verlinde-Verlinde
equations (WDVV equations), which play an important role in mathematical physics.

5.1. WDVV equations. The WDVV equations are the system of equations∑
p,q

ΦpqΦjlpΦikq =
∑
p,q

ΦilpΦjkqΦ
pq, (20)

which are indexed in the variables i, j, k and �. Here, we use the notation ΨJ to denote

∂|J|Ψ
∂uJ

for a multi-index J and use Ψij to denote the i, j-th component of the matrix inverse
of the Hessian Ψαβ .

A solution of these equations give a flat Riemannian manifold (M, g) the structure
of a Frobenius manifold. In other words, a solution to these equations induces a
commutative, associative product on the tangent bundle. For a myriad of applications
in topological field theory and physics, see [Dub96] [Mag15] [Man99]. Furthermore,
the WDVV equations are of interest from the perspective of information geometry
due to the following correspondence.

Observation ([Kit99]). The potential of a Riemannian-flat Hessian metric solves
the WDVV equations.

To see this, we can calculate the curvature of a Hessian metric in the associated
affine coordinates (see [Tot04] for details). Doing so, we find the following:

Rijkl = −1

4

∑
p,q

Φpq (ΦjlpΦikq − ΦilpΦjkq) . (21)

As a word of caution, this quantity is the curvature of the Levi-Civita connection
on the underlying Hessian manifold, and not the curvature of the Kähler metrics on
its tangent bundle (which involve fourth derivatives of the potential as well). From
this, we see that a convex function Φ solves the WDVV equations if and only if its
associated Hessian metric is Riemannian-flat. In this situation, Frobenius structure
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arises [Liu21]: there is a pencil of flat connections (whose Levi-Civita connection is
Riemannian flat). In other words, the information-geometric α-connections are all
flat. This correspondence gives a geometric way to understand the WDVV-equations
and to derive some of its properties.

For instance, it provides a particularly simple proof that the Legendre transfor-
mation of one solution to the WDVV-equations yields a second solution.

Observation. Suppose that a convex potential Φ : Ω → R for Ω ⊂ R
n satisfies

Equations 20. Then the Legendre dual Φ∗ : Ω∗ → R also satisfies Equations 20.

To see this, note that the Hessian manifolds (Ω,Φ) and (Ω∗,Φ∗) are isometric as
Riemannian manifolds (in fact, Ω and Ω∗ can be interpreted as being two sets of coor-
dinates on the same underlying manifold). Furthermore, we can use this perspective
to simplify the WDVV equations in dimensions two and three.

Proposition 13.

(1) A convex potential Φ : Ω → R for Ω ⊂ R
2 satisfies Equations 20 if and only

if it satisfies the (single) equation∑
i,j,k,l,p,q

ΦjlΦikΦpqΦjlpΦikq =
∑

i,j,k,l,p,q

ΦilpΦjkqΦ
pqΦjlΦik. (22)

(2) A convex potential Φ : Ω → R for Ω ⊂ R
3 satisfies Equations 20 if and only

if it satisfies the six equations (indexed symmetrically in i and k)∑
j,l,p,q

ΦjlΦpqΦjlpΦikq =
∑
j,l,p,q

ΦilpΦjkqΦ
pqΦjl. (23)

Proof. Equation (22) is satisfied if and only if the scalar curvature of a Hessian
metric vanishes. For surfaces, the Riemannian curvature is completely determined by
the scalar curvature, so the metric is flat whenever the scalar curvature vanishes.

Similarly, Equations (23) are satisfied whenever the Ricci curvature of the asso-
ciated Hessian metric vanishes. For three-folds, the Ricci curvature completely deter-
mines the Riemannian curvature, so the metric is flat whenever its Ricci curvature
vanishes.

Before moving on, we note that there are other information geometric interpre-
tations of the WDVV equations. In particular, Liu, Xu, and Zhi showed that on a
general statistical manifold it is equivalent to the vanishing of the so-called sectional
K-curvature [Liu21].

5.2. Examples. As we will see in the next section, Frobenius structures exist in
abundance. Here, we have included a partial list of such potentials. For each of these
examples, the Legendre dual will induce a separate Frobenius structure as well.

(1) The simplest example of a Frobenius manifold is R
n with the quadratic po-

tential

Φ =
n∑

i=1

xi · xi

2
.

This is the unique structure which is self-dual.
(2) Another example of a Frobenius structure is R2 with the Hessian potential

Φ(x1, x2) = log(cosh(x1) + cosh(x2)).
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(3) Closely related to the previous example, we can replace the hyperbolic cosines
for normal cosines and consider the potential

Φ(x1, x2) = − log(cos(x1) + cos(x2)),

which is defined on a diamond in R
2. The curvature of the associated Kähler

manifold is opposite that of the previous example.
(4) One well-known example is the domain

Ω = {x ∈ R
2 | x2 < |x1|}

with the potential

Φ(x1, x2) = − log(x1 · x1 − x2 · x2).

This example is of interest because it is possible to quotient this cone by
co-compact automorphisms to construct a compact Hessian manifold. This
example can be generalized to arbitrary dimensions by reparametrizing the
coordinates as θ1 = x1−x2 and θ2 = x1+x2 and considering the more general
potential

Φ = −
n∑

i=1

log(θi),

which is defined in the positive cone

Ω = {θ = (θ1, · · · , θn) ∈ R
n | θi > 0}.

The x-parametrization indicates that there may be a connection between this
metric and Siegel domains. More precisely, if we consider the potentials

Φε = log

((
εx1 + ε−1

)2 − 1

ε2
− x2 · x2

)
,

it might be possible to obtain the complex ball as a suitably renormalized
limit.

Question 8. Is there a precise sense in which the ball can be understood as the
limit of cones? If so, are there any applications for this fact?

5.3. Positive curved statistical mirrors. We have now studied statistical
mirror symmetry in both the flat case and the hyperbolic case, so it is natural to
consider positively curved Hessian manifolds as well. However, when one tries to
do so, one encounters the immediate problem that any complete space of strongly
positive sectional curvature is not affine.38 Therefore, it is only possible to construct
Hessian metrics on an open subset of spaces of strongly positive sectional curvature.
In [KZ20a], the authors studied one such example, which was given by the Hessian
potential

Φ(x) = log

⎛
⎝1 +

n−1∑
j=1

ex
j

⎞
⎠ ,

38To see this, note that Myer’s theorem implies that the fundamental group of a manifold with
strongly positive curvature is finite, whereas the fundamental group of a compact affine manifold
must be infinite [AT02].



A HALL OF STATISTICAL MIRRORS 841

which is defined on all of Rn−1. This is the dually flat geometry of the probability
simplex

Δn =

{
(p1, · · · , pn) ∈ R

n | pi ≥ 0,

n∑
i=1

pi = 1

}
.

This example is motivated by statistical considerations, since it induced by the ex-
ponential family of multinomial distributions. It also has applications in optimal
transport and mathematical finance (see [PW16, PW18] for details). Interestingly,
the Kähler metric associated to this potential has constant positive holomorphic sec-
tional curvature and is defined on C

n. Since it is incomplete, this does not contradict
the fact that complete Kähler manifolds with positive constant holomorphic sectional
curvature are biholomorphically isometric to CP

n.
If one drops the assumption of strongly positive curvature, it may be possible

to find examples of complete metrics which have positive curvature in some weaker
sense. In [KZZ20], the authors and Zheng studied this question and constructed O(n)-
symmetric metrics with non-negative orthogonal anti-bisectional curvature. However,
we showed that there are no non-trivial O(n)-symmetric Kähler Sasaki metrics with
positive bisectional curvature (or orthogonal bisectional curvature for n ≥ 3).

6. The existence theory for Hessian metrics. Thus far, we have not dis-
cussed the existence theory for Hessian metrics in any detail. It is a natural question
of whether, given a Riemannian manifold (M, g) with dim(M) = n, there exists a
flat connection D (either globally or locally) and a potential Φ so that

g = D2Φ. (24)

From a global perspective, we can immediately see that in order for such a struc-
ture to exist, the manifoldM must be affine. That is, it must admit a flat connection.
This is a fairly restrictive condition from a topological perspective. For instance, the
only compact orientiable surface which admits an affine structure is the torus.39 How-
ever, merely admitting an affine structure is not sufficient for a manifold to admit a
Hessian metric. For instance, the Hopf manifolds Sn × S1 (for n > 1) do not admit
such a structure [Yag81].

It is also possible to study this question locally. For this, one considers a Rie-
mannian manifold (M, g) and a point x ∈ M. The local question studies whether
it is possible to find a connection D which is flat in a neighborhood of x and which
satisfies D2Φ = g?

When the dimension is greater than two, generic Riemannian metrics do not admit
a Hessian metric, even locally. Intuitively, this can be seen by counting equations;
a Hessian potential and flat connection can be specified by n + 1 local functions
(n functions for the associated affine coordinates and a single function for the convex
potential) whereas a generic Riemannian metric can be understood as a map from each
point (in a local chart) to the space of n×n symmetric positive definite matrices, which

has dimension (n+1)n
2 . In fact, for n ≥ 4, there are point-wise curvature obstructions

to the existence of a Hessian metric (see [AA14] for details). However, in dimension
two, Amari and Armstrong proved that given a real analytic metric, it is always
possible to find a Hessian structure locally.40

39In fact, the torus admits several affine structures which are inequivalent (see [Yag81] for details).
40Another proof of this fact was given by Bryant in a MathOverflow answer. [Bry]
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The complement to the existence question is uniqueness. In other words, given
a Hessian manifold (M, g,D), is it possible to find another connection D′ so that
(M, g,D′) is a Hessian manifold? By considering the connection D′ = D∗, we can
immediately see that Hessian structures are not unique. In fact, our examples show
that there are potentially many different Hessian structures which induce the same
Riemannian geometry.

The moduli space of Hessian metrics (for some particular Riemannian metrics)
was studied by Kito [Kit99]. In particular, he considered the Euclidean plane and
showed that the space of associated Hessian metrics has the freedom of three local
functions of R. He also showed that space of Hessian metrics for flat Euclidean R

n has
at least the freedom of n functions. In practice, this means that flat Hessian metrics
(and thus solutions to the WDVV equations) exists in abundance. Furthermore, he
considered hyperbolic n-space and showed that the space of Hessian metrics has at
least the freedom of n − 1 functions on R. This observation naturally raises the
following question.

Question 9. Are there other dually flat structures (other than the one from nor-
mal distributions) defined on the entire hyperbolic plane which are highly symmetric?

There are infinitely many dually flat structure on the hyperbolic plane, though
there are no other complete examples whose tube domains have constant holomorphic
sectional curvature. Still, it would be of interest to find other examples with large
automorphism group or which give rise to a Kähler-Einstein metric.
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