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THE DEFORMED HERMITIAN-YANG-MILLS EQUATION ON THE
BLOWUP OF P~

ADAM JACOBT AND NORMAN SHEU*

Abstract. We study the deformed Hermitian-Yang-Mills equation on the blowup of complex
projective space. Using symmetry, we express the equation as an ODE which can be solved using
combinatorial methods if an algebraic stability condition is satisfied. This gives evidence towards a
conjecture of the first author, T.C. Collins, and S.-T. Yau on general compact Kéahler manifolds.
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1. Introduction. This paper explores the relationship between stability and
solutions to the deformed Hermitian-Yang-Mills equation. Let (X,w) be a compact
Kihler manifold, and [a] € H*'(X,R) a real cohomology class. The class [a] solves
the deformed Hermitian-Yang-Mills equation if it admits a representative o € [a
satisfying

Im(e~ (w + ia)™) = 0, (1.1)

where ¢ € S! is a fixed constant. Fixing ag € [a], by the d9-Lemma, any other
representative of this class can be written as o = o + i00¢ for some real function ¢,
and so (1.1) is an elliptic, fully nonlinear equation for ¢.

A complex analogue of the special Lagrangian graph equation, equation (1.1) was
derived by Marino-Minasian-Moore-Strominger by studying equations of motion for
BPS B-branes [11]. Taking a more geometric viewpoint, Leung-Yau-Zaslow derived
this equation by looking at the mirror of special Lagrangian graphs under the semi-
flat setup of SYZ mirror symmetry [10]. Recently, the question of how existence
of solutions to dHYM equation may relate to various algebraic stability conditions
has garnered significant attention, due to exciting relationships with other equations
arising in complex geometry, and furthermore due to how such stability conditions may
shed light on the existence problem for special Lagrangian submanifolds in Calabi-Yau
manifolds.

Initial attempts to solve equation (1.1) were undertaken in [8] and later [3], and
relied on certain analytic assumptions, namely that the class [a] admitted a repre-
sentative that satisfied a positivity condition. This lead to the natural question of
whether solvability can be determined by an algebraic condition on the classes [o] and
[w] alone. Following the work of Lejmi-Székelyhidi on the J-equation [9], the first au-
thor, along with T.C. Collins and S.-T. Yau, integrated the positivity condition along
subvarieties to develop a necessary class condition for existence, and conjectured it
was a sufficient condition as well [3]. We formally state this conjecture. First, for an
irreducible analytic subvariety V' C X, define the complex number
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where by convention we only integrate the term in the expansion of order dim(V'). By
the 99-Lemma Z[,)(, (V) is independent of a choice of representative from [w] or [a].
The main results of [3] rely on an assumption referred to as supercritical phase, which
assumes that the constant 6 can be lifted to R to lie within the interval ((n—2) 5.n%).
Therefore we state the conjecture with this assumption:

CoNJECTURE 1 (Collins-J-Yau [3]). The cohomology class [a] € HYY(X,R) on a
compact Kdhler manifold (X,w) admits a solution to the deformed Hermitian-Yang-
Mills equation (1.1) (with supercritical phase) if and only if Z(X) # 0, and for all

analytic subvarieties V C X,
Zrafw) (V
Im <L}U) ~o (12)

Slightly weaker versions of the above conjecture have recently been solved by
Chen [2], and Chu-Lee-Takahashi [4]. Again both of their results rest on the super-
critical phase assumption. Without this assumption a stability conjecture can still be
formulated, although as opposed to (1.2) the inequality will be of a slightly different
form, as discussed below.

Following the above work, Collins-Yau subsequently constructed a more robust
necessary condition for existence, for which the above conjecture is only a special
case [6]. Their approach follows an infinite dimensional GIT picture, and looks at
the limiting behavior of geodesics in the space of potentials for [«], in conjunction
with the behavior of various functionals. Overall, the viewpoint of this work is that
any stability condition for (1.1) should arise naturally as an obstruction to existence.
Colins-Yau also relate their work to other conjectured stability conditions for similar
problems, including Bridgeland stability. We direct the interested reader to [6] for
more details on their stability condition as it relates to Bridgeland stability, and
instead only focus on Conjecture 1.

In this paper we work on the blowup of complex projective space. We find a
stability condition, which is a generalization of (1.2) in the non supercritical phase
case, and demonstrate that stability is sufficient for existence of a solution.

THEOREM 1. Let X be the blowup of P™ at a point. Let [w] be any Kdhler
class on X, and [a] any real cohomology class. Then if Z(X) # 0, and if for each
ke {1,..,n—1} all analytic subvarieties V¥ C X of dimension k satisfy either

Zio)jw) (V") Zio)jw) (V")
Im | D) S0 or Tm | 2R ) o, (1.3)
( Z1o) ) (X) Zajfe)(X)

then [a] admits a solution to the deformed Hermitian-Yang-Mills equation with respect
to any Kdhler metric w € [w] satisfying Calabi Symmetry.

We reiterate that for different dimensions k, we allow for the inequality in (1.3)
to be either positive or negative. However, for a fixed k, all subvarieties of that
dimension must give the same sign. We note that in the supercritical phase case, only
the strictly positive inequality is possible, and so our condition (1.3) reduces to (1.2),
proving Conjecture 1 in this case.

To prove our theorem, we make use of the fact that on X, both [w] and [a]
admit representatives that satisfy a particular symmetry called Calabi Symmetry.
Originally studied by Calabi to construct examples of extremal Kahler metrics [1],
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this symmetry has since been employed to study many other geometric equations,
including the Kéahler Ricci flow [12, 13, 14, 15], metric flips [16], and the inverse oy,
equations [7]. The advantage of working with Calabi Symmetry is that allows us to
write equation (1.1) as an ODE over a closed interval in R, with a two sided boundary
conditions determined by the classes [w] and [a]. Thus the question of existence is
reduced to solving the boundary valued ODE. Of course, by existence and uniqueness
of solutions to ODEs we can always find a solution matching one boundary value,
so the difficulty is determining when the other boundary value matches up. This is
where stability comes into play, and we use (1.3) to force the boundary values into
certain configurations where a solution will always exist.

While this theorem demonstrates that (1.3) is a sufficient condition for existence,
it is not clear it is necessary. As noted above, outside of the supercritcal phase
case, (1.3) does not match the necessary condition for existence presented in [3]. To
elaborate, let the average angle of a subvariety V* be defined by the argument of
Jir(w + i)k, and denote this argument by Oy+. In [3] it is demonstrated that any
class that solves (1.1) must satisfy

Oy >é—(n—k)g.

In fact, assuming supercritical phase the above inequality is equivalent to (1.2). How-
ever, outside of supercritical phase, one needs to specify a unique lift of 6 to R, before
a necessary condition similar to the above can be generalized. If such a lift exists,
then again a solution to equation (1.1) will imply

é+(n_k)g>éw>é_(n_k)g. (1.4)
When k& = n — 1, we find the above inequality is a stronger condition than (1.3),
whereas for £ < n — 1 the conditions fail to match. Nevertheless, we are able to
demonstrate:

THEOREM 2. Let X be the blowup of P at a point. Let [w] be any Kdihler class
on X, and [a] any real cohomology class. Then [a] admits a solution to the deformed
Hermitian- Yang-Mills equation if and only if

(1) The average angle 6 has a lift to R in the sense of (5.2).

(2) For every divisor V"~ C X, the average angle Oyn-1 satisfies (1.4).

Here we see the importance of finding a lift of é, and in Section 5 we describe a
procedure that works in our setting. In general, finding a purely algebraic method
for lifting 6, which only depends on the classes [w] and [a], would greatly aid our
understanding of the relationship between solvability of (1.1) and stability. In this
light, one could view condition (1.3) as algebraic condition which specifies a lift of é,
which then leads to a solution of the equation. Therefore, it would be interesting to
develop more such methods of lifting 0 in general.

The paper is organized as follows. In Section 2 we reformulate equation (1.1) and
introduce the Calabi Symmetry ansatz, and show how solutions to (1.1) correspond
to solutions of an exact ODE. In Section 3 we explicitly compute the inequalities
arising from the stability condition (1.3) for all subvarieties of X. We then show
how these inequalities define regions in R? where the graph of our ODE is given, and
prove a key proposition relating the slopes of the boundaries of these regions. This
proposition is used in Section 4 to limit the initial configurations of boundary values
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for our ODE, which we use to prove Theorem 1. We conclude the paper in Section 5
with a discussion on how # can be lifted from S' to R without appealing to existence
of a solution, assuming (1.3) is satisfied for all subvarieties. We then prove Theorem
2.

Acknowledgements. We would like to thank Tristan C. Collins for many valu-
able discussions and comments. This work was funded in part by a Simons collabo-
ration grant.

2. Background and Calabi Symmetry. Let (X,w) be a compact Kéhler
manifold, and [a] € H"'(X,R) a real cohomology class. We study the deformed
Hermitian- Yang-Mills equation, which as stated in the introduction seeks a represen-
tative a € [a] satisfying

Im(e " (w + ia)™) = 0

for a fixed constant e € S1. Integrating the above equation we see the angle 6 must
be the argument of the complex number

(x = /X(w + Q)"

By the 99-Lemma (x is independent of a choice of representatives of the classes [w]
and [a]. Thus we see a simple necessary class condition for existence is that {x # 0.
We reformulate the deformed Hermitian-Yang-Mills equation as follows. Given
a representative a € [a], let Ay, ..., A, denote the real eigenvalues of the Hermitian
endomorphism w™'a. Then, at a fixed point where w™ '« is diagonal, we see

Im (e—ié(wziiayl) =Im <e—i9 l];[l(l + m)) .

We denote the angle of the complex number [];'_, (1 + iAx) by O, (c), which can be
computed as follows:

Hk 1(1+2/\k
|Hk 1(1+iAg)|
Hk 1 1+’L/\k)

= —ilog )
Ou(ar) = —il )
(

(T (L + i) TTro (L — ide))?
)
)

= —ilog

Hk 1(1 + i\
Hk 1( — ik

By the complex formulation of arctangent, we arrive at

a) = Z arctan(Ag).
k=1

Thus equation (1.1) is equivalent to

:——1

Ou(a) =6 mod 27. (2.1)

The advantage of this formulation is that the pointwise angle ©,(«) is now a real
valued elliptic operator. An application of the maximum principle shows a solution
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of the deformed Hermitian-Yang-Mills equation specifies a unique lift of 6 to R. We
refer to such a lift as a branch of the equation.

In this paper we construct solutions to the deformed Hermitian-Yang-Mills equa-
tion in a specific geometric setup, where we can take advantage of large symmetry.
Specifically, let X be the Ké&hler manifold defined by blowing up P" at one point
xo. Let E denote the exceptional divisor, and H the pullback of the hyperplane di-
visor from P". These two divisors span H''1(X,R), and any Kihler class will lie in
a1[H] — az[E] with a; > az > 0. Normalizing, assume X admits a Kéhler form w in
the class

with @ > 1. Furthermore, assume our class [« satisfies
[o] = p[H] = q[E],

for a choice of p,q € R.
Calabi introduced the following ansatz in [1]. On X\(H U E) = C™\{0} define
the radial coordinate

p = log(|z|?).

Any function u(p) € C°°(R) that satisfies u/(p) > 0, u”(p) > 0, has the property
that its complex Hessian w = i00u defines a Kihler form on C"\{0}. In order for
w to extend to a Kéhler form on X in the class a[H] — [E], we need u to satisfy the
following boundary asymptotics. Define the functions Uy, Us : [0,00) — R via

Uo(r) := u(logr) — logr and Uso (1) := u(—logr) + alogr.

Then we need both Uy and Uy, to extend by continuity to a smooth function at » = 0,
with both U}(0) > 0 and U/_(0) > 0. In particular this fixes the following asymptotic
behavior of u:
3 !/ . !/
Jm w(p)=1,  lim u'(p) = a.

This ensures that w = i00u extends to a Kihler form on X and lies in the correct
class.

Similarly, for any function v(p) € C°°(R), the Hessian i00v(p) defines a (1, 1) form
a on C™"\{0}. In order for « to extend to X in the class [a], we require asymptotics
of the same form, without any positivity assumptions since [a] need not be a Kéhler
class. As above, we define the functions Vj, V. : [0,00) — R via

Vo(r) := v(logr) — qlogr and Voo (1) := v(—logr) + plogr,

and specify that V) and V, extend by continuity to a smooth function at r = 0. As
a result v(p) satisfies:
: 1N ol () —
Jm V() =g, lim (o) =p. (2:2)
Then i0dv extends to a smooth (1,1) form on X in the class [a].

Given this setup, the deformed Hermitian-Yang-Mills equation reduces to an
ODE. In particular, for a given function u(p) satisfying the Calabi ansatz above
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(which defines our background Kéhler form), we need to find a function v(p) of a
single real variable p. Working on the coordinate patch X\(H U E) = C"\{0}, we
have

. u PP ——
w = i00u = (e_p(Sj]g + (u" — ) = ) dz? A dzF,
and
Py v " / Ejzk J sk
a=1i00v = e—péjk + (0" =) =7 dz? Ndz".

With the above formulas, once can easily check that the eigenvalues of w™!a are Z—:

with multiplicity (n — 1), and Z—:: with multiplicity one (for instance, see [7]).

In fact, before we write down the deformed Hermitian-Yang-Mills equation in this
setting, we can simplify our picture further. Because u” > 0, the first derivative u’
is monotone increasing, allowing us to use Legendre transform coordinates and view
u’ as a real variable, denoted by x, which ranges from 1 to a. We then write v’ as a

graph f over z € (1,a):
f(@) = W (p)) =2 (p).

Taking the derivative of both sides, we see by the chain rule

f(@)u”(p) =" (p).
Working in the coordinate z, the eigenvalues of w™'a are

/ 1
% = § (with multiplicity n — 1) and % =f.
Note that as x — 1, then p — —o0, while x — a implies p — co. Thus the asymptotics
of v(p) given by (2.2) are equivalent to
lim f(z) =g, lim f(a) = p,
rz—1+t T—a—
and we extend f(z) to the boundary [1,a] by continuity.
We now reformulate our problem into this setup. Using the explicit formulas for
the eigenvalues of w™'a, need to find a real function f : [1,a] — R with boundary
values f(1) = ¢, and f(a) = p, satisfying the ODE

f

Tm (e_ié(l +is) T (14 if’)) =0. (2.3)

Since x is always positive, multiplying by #"~! will not change the equation, so we
rewrite the ODE as

Im (e*ié(x Fif)ni z'f’)) —0.
Observe that this ODE is exact

m (e~ +if)" (1 +if)) =Tm (e—w R +nif)”>

= iIrn (e_iéi(x * zf)”) =0.

dx n
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Thus we are looking for a function f(z) so that the graph (x, f(x)) lies on a level
curve of

O(z,y) :=Im (eﬂ'é(x + zy)”) . (2.4)

Figure 1 below shows a level set ®(x,y) = ¢ for some ¢ # 0, in the case that n = 11.
The n dotted lines represent the level set ®(x,y) = 0. Thus we see ®(z,y) = ¢ consists
of n disjoint curves lying in alternating sectors, asymptotic to the lines given by
®(x,y) = 0. Solutions to the deformed Hermitian-Yang-Mills equations are graphical
portions of the level set that lie over [1,a]. Solutions of the equation for different
branches can be found by rotating by 27 /n.

Fic. 1. Graph of a level set ®(x,y) = ¢, in the case n = 11.

3. Stability. We now turn to the stability condition that guarantees existence
of a solution of (1.1). This provides a coherent algebraic framework that is simple to
interpret from initial conditions, without any assumptions on explicit representatives
of [w] or [@]. In this paper, we use “central charge” notation to highlight possible
connections with Bridgeland stability conditions. We refer the reader to [6, 5] for
a more detailed discussion of stability and algebraic obstructions to solutions of the
deformed Hermitian-Yang-Mills equations in general, and only focus in this paper on
our specific geometric setup.

As stated in the introduction, for an an irreducible analytic subvariety V' C X,
we define the following complex number:

1%
where by convention we only integrate the term in the expansion of order dim(V).

DEFINITION 1. The pair [w], [o] is stable if, for each k € {1,...,n—1} all analytic
subvarieties V* C X of dimension k satisfy either for all analytic subvarieties V C X,

Zio))(VF) Z1o))(VF)

[a][w] [a][w]

Im| ———--]>0 or Im| ———= | <O. (3.1)
( ) ( Zafw) (X)

This definition only makes sense if Z[4j1,(X) # 0, which is equivalent to our
assumption that (x # 0. Now, because of our specific geometric setup, the inequality
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(3.1) can be explicitly computed in terms of a,p, and ¢, for each analytic subvariety
of X.

Recall that H is the pullback of the hyperplane divisor, and F is the exceptional
divisor, and that these divisors do not intersect. We begin by computing (x explicitly:

(x = /X(w +ia)" = (a[H] — [E] +i(p[H] — q[E]))"
= (a+ip)"[H]" + (1 +1iq)"(-1)"[E]"
= (a+ip)" — (1+1q)",
where the last line follows since [E]" = (—1)"~!. Again by assumption (x # 0, which
is the same as requiring a, p, and ¢ do not simultaneously satisfy
2mm

la +ip| = |1 + iq| and larg(a + ip) — arg(1l +iq)| = - (3.2)

for some m € Z. We remark that this does not provide a major constraint on which
classes we consider. Given a choice of ¢, there are only a finite number of points a+ip
that satisfy (a 4 ip)™ = (1 4 iq)™.

We now check stability for H" =% and (=1)""*=1E"=% for k € {1,...,n—1}, where
k represents the dimension of each subvariety. Here we multiply E"~* by (—1)"—*~!
so that when this variety is viewed as a divisor of (—1)"~*En=(+1) it is effective. We
compute

L)) (H"™F) = —/ank(_i)k(“’ +ia)*

_ /H i MalH] ~ [E) + i(plH] - q[E])"
= —i *(a +ip)F[HIFH]"
= —i % +ip)k.

Next we see

Ziag(— 1) F By = / (—i)(w + ia)*
(_l)nfkflEnfk

_ / % (a[H] - [E] + i(p[H] — q[E)))*
(71)n7k71Enfk

= M (1)1 4 ig) B (—1) R B
= (1) (1 i)
=—i""(1 +iq)",

since as above [E]" = (—1)"~!. We also can compute the charge of our manifold X,
and note

Zja)w)(X) = — /X(—l)"(w +ia)" = —(1)""(x = —(i)_"rxeié,

for some fixed real number ry. Since rx > 0, we can multiply (3.1) by rx without
changing the sign of the inequality, and so we note

Ziogie (V'*) rx Zjajle) (V) o —i0 k
rxIm| ———2 | =Im | ———————2 | =Im (—i"e " Zjj)(V '
* (Z[a][w](X) iy e ( [l ( ))
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n—k—lEn—k

Thus, plugging in our formulas for H"~* and (—1) gives either

Im (i"_ke_ié(a + zp)k) > 0,
and
Im (z’"_ke_ié(l + zq)k) > 0,
or the above with the inequality flipped. Summing up we have:

LEMMA 1. Given a choice of classes [w] = a[H| — [E] and [o] = p[H] — q[E] on
X, denote complex numbers zy = (1 +iq) and z2 = (a +ip). Then the pair [w], [a] is
stable if and only if, for all k € {1,...,n — 1},

Im (i"*ke*ié(z@k) >0 or Im (i"*ke*ié(z@k) <0 (3.3)

for £ € {1,2}.

We now turn to some preliminary results about the structure of the inequalities
defined in (3.3). Let z be the standard coordinate on C, and choose a branch cut
along the negative z-axis, so that —m < arg(z) < w. For each k € {1,...,n}, consider
the set defined by

Ry :={z € C|Im (i"ikeﬂ'ézk) =0and — g <arg(z) < g},

which consists of k-rays emanating from the origin. Even though the stability condi-
tions above are only defined for k < n — 1, it is useful for our proof to also consider
the rays determined by the k = n case. Now, denote these rays via {Té, r,%, ...,TZ},
numbered so that

E > ar ( 1 2 e k > _E

5 g(ry) > arg(ry) > -+ > arg(ry) > 5"

By definition of the map z — 2z*, we see that these rays are all # rotations of each
other, i.e. arg(ri“) — arg(ri) = 7. Next, we define a sector to be the space between
(but not including) two adjacent rays. Again, by the behavior of z +— 2*, we see that
the space

Sp:={z€C|Im (i"_ke_iézk) >0 and — g <arg(z) < g}

consists of alternating sectors, i.e. each ray bounds one and only one sector in Sy.
See Figure 2 below.
Furthermore, consider the set

S, ={2z€C|Im (i"_ke_iézk) < 0and — g <arg(z) < g}

Now, if we write a ray r as R+ei¢£, we see the sets of rays can be identified with

sets of angles, i.e. Ry = {¢},...,¢¥}. We conclude this section with a combinatorial
argument that plays a key role in the proof of Theorem 1.

PROPOSITION 1. For any k € {2,...,n}, the rays in the sets Ry and Ry_1 alter-
nate, and Ry, contains the rays with the largest and smallest arqgument. In particular:
™

1 1 2 2 k—2 k—1 k—1 k ™
5 > Q> Q1 > Qp > Qg > > O > P >¢k712¢k2_§'
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Fic. 2. The set S, in the case k = 10.

1
Tk

F1a. 3. The alternating condition for rays in sets Ry and Ry_1.

Furthermore, if the last inequality is strict, i.e. ¢f > —T, then ¢y | > ¢f as well.

Proof. Pick two angles <;5£ and (;5{;_1 from Ry and Ry_1, respectively. It will be
cqnvenient to express these angles by their distance to 7, so we set (j)f; =3 ~* and
s

J — T _ 57
k-1 =2 — 0

Now, since (j)f; specifies a ray in the set Ry, by definition we have
Im (ei%(n—k)e—iéein)f;) — Im (eig(n—k)e—iéeik(g—w£)> —0

This equation holds if and only if

% —0=ky' +qn (3.4)

for some g € Z. Next, since (;5{;_1 lies in Ry, we have

Im (eig(n—kJrl)e—iéei(k—l)(%—Uj)) =0,



DHYM ON THE BLOWUP OF P™ 857

which is equivalent to

%—é—(k—l)aj:pw

for some p € Z. Plugging in (3.4) gives that for all £, j, there exists an m € Z so that
kvt — (k= 1)o7 = mr. (3.5)

This is the key equation relating our angles ¢£ and (;5?%71.
First we prove the result in the special case that gbz = —35. In this case v* =,

and plugging this into (3.5) we see that ¢*~! = 7 solves the equation for m = 1. This

implies qSZj = —5 as well. To see the rays satisfy the alternation condition, note

that all rays in Ry are 7 rotations of each other, and furthermore both Ry and Rg—1
contain the negative y—axis. As a result

; T ALr ; T g

- - _ -~ J - _ <
=g o A=y opTy

for ¢ € {1,...,k} and j € {1,...,k — 1}, from which the alternating condition is clear.

We now turn to the general case, and assume that ¢ > —Z. As above write
g k 2
=7 _~land ¢l , =T — o', Since the rays in R}, are T rotations of each other,
) k-1 = 2 k
and ¢1 is the first ray to the right of the positive y—axis, we know 0 < ! < T (since
b= # corresponds to the special case o = —%). Similarly we know 0 < ol < -

Returning to (3.5), and using that ky! < 7, we know that for some m € Z

kvt —mmr w1 —m)
1_
T TE-1 S Tk-1

Since o' > 0 we must have m < 0. Furthermore, using that ky! > 0 gives

kvl —mn  —mnw
1:
T TR k1

Yet because we know o' < 77, ™ can not be strictly negative. Thus m = 0, giving

o= . (3.6)

Now that we have an equation specifying o', we can write down the following
general forms for our angles qﬁf; and ¢]_,. Specifically,

1

;T 1 T i k~y . T
=——v —--1)- d =_—— —(j—1 .
P 5 7 ( )k an k=17 9 T (U >k—1
This is equivalent to
e_ .1 m k! .
= {—1)— d ) = -1 .
Y=y +¢-1)p an ol =7+ -

For all ¢, j this gives an explicit solution to (3.5), with m = ¢ — j.
To complete the proof, we demonstrate the alternating condition, which states
for je{l,...k—1},

j j j+1
O > G > 1
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Using our explicit angle formulas this can be written as

k~y ™ T
D S R N A S A S
L A e R AR it B A
which is equivalent to
1
T LI S L RS S0 1)~ T
G-V -0U-Dg>7 — =7 >0~y — iy
Multiplying through by k& — 1 gives
k—1 k—1

(= V7= (= Ve > =3 > (= D7 — jr——.

Simplifying, and multiplying by —1, we arrive at

(-r 1 k—j
L < <m( ),
which certainly holds for all j € {1,...,k — 1}, assuming that 0 < ' < ¥. This

completes the proof of the proposition. O

4. Proof of Theorem 1. In this section we prove our main result, and construct
a solution to the deformed Hermitian-Yang-Mills equation assuming stability of the
pair [w], [a].

Recall that on X equation (1.1) on be reformulated using Calabi symmetry.
Specifically we are looking for a real function f : [1,a] — R with boundary values

f(1) = q, and f(a) = p, satisfying
f

Im (e_ié(l +is) T (1t if’)) =0.

We saw above that this ODE is exact, and can be integrated to give level curves
defined by (2.4). Thus we need a function f that satisfies the boundary condition
and lies on one of these level curves. For this to be possible, we need the specified
boundary points (1,¢) and (a,p) to lie on the same level set.

LEMMA 2. For any choice of [w] and [«], the fized boundary points (1,q) and
(a,p) lie on the same level set of

O(z,y) :=Im (eﬂ'é(:z: + zy)”)

Proof. Recall the complex number (x = [ (W +ia)", which in our case is
computed to be (a+ip)™ — (1+1iq)". Set (x = rxe’. Taking the complex conjugate
gives rxe % = (a —ip)" — (1 — ig)". Rearranging terms we see
—io_ la—ip)" — (1 —ig)"

rx '

e

‘We then have

B(a,p) = Im ((a - ip)"r;(l —ig)" (a+ Z.p)n>

—Tm ((a2 +pA)" (atip)"(1- @n) |

rx rx
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The first term inside of the imaginary part above is real, so

(a+ip)"(1— iQ)"> .

rx

®(a,p) = —Im (

In exactly the same fashion we see

(1, g) = Im ((a —ip)"(1 + iQ)"> .

rx

Since Im(z) = —Im(Z) it follows that ®(a,p) = ®(1,q), which completes the proof of
the lemma. O

Thus (1,¢) and (a,p) always lie on the same level set, which we denote by
O(z,y) = ®(a,p) = ®(1,q) = ¢. We now need to analyze when these points can
be connected by a portion of the level set which stays graphical. Note that each level
set is made up of several components. If ¢ = 0, then the level set consists of n lines
through the origin, each line 7 rotation of the next. Since a > 1 > 0, in this case the
points a + ip and 1 + iq each lie on a ray in R,, (although we do not know yet if they
lie on the same ray).

If ¢ # 0, then the level set looks like n distinct curves lying in alternating sectors
(see Figure 1). In order for there to exists a function lying on a level curve connecting
(1,q) to (a,p), the boundary points need to be on the same component of the level
set, which we now prove.

PROPOSITION 2. If the classes [w],[a] are stable in the sense of Lemma 1, then
the points (1,q) and (a,p) both lie on the same component of the level set ®(x,y) = c.

Proof. Set z1 = (1+iq) and zo = (a+1ip). We argue by contradiction, and assume
that z; and z2 do not lie on the same component of the level set. As a first step we
show that there exists a ray rfl_l € R,—1 lying between z; and z5. To see this, note
that if ¢ = 0, then by assumption z; and 2> lie on distinct rays in R,. Applying
Proposition 1 for k = n we see exists a ray Tfﬁl € R,_1 between z; and zs.

In the case that ¢ # 0, the level set looks like n distinct curves lying in alternating
sectors with angle 7. If 21 and 22 do not lie on the same component, since the
components are in alternating sectors, there exists at least one empty sector between
the sector containing z; and the sector containing zo. The boundary of this empty
sector consists of two rays rJ*! and 77, and thus these two rays lie between 2z and

2. Applying Proposition 1 for k = n proves existence of a ray r/,_; between /™! and
), and thus r?,_; lies between z; and z».

We now apply an induction argument and show that if there exists a ray Ti € Ry
lying between z; and zo, then there exists a ray rﬁ_l € Ri—1 lying between z; and 25
as well. Note that by the stability assumption, either z; and z9 both lie in S, or they
both lie in S, (depending on whether the inequality is positive or negative). The key
to this proposition is that in either case, the sets containing both z; and 2z consists of
alternating sectors. Specifically, given that there exists a ray 7, lying between z; and
Zo, then z; and zp must lie in different sectors of Sy (or S;). Because these sectors
alternate, there must be an empty sector between z; and zo. The boundary of this
empty sector consists of two rays in Ry, which we denote by 7‘?‘1 and rﬁ. These two
rays lie between z; and zo, and Proposition 1 gives that the ray rﬁ_l lies between z;
and zo as well.
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Thus, given that there exists a ray Ti—l between z; and zs, applying the induction
argument n — 2 times gives that the ray ri lies between 2z and z,. However, the ray
ri divides the space {z € C| - < arg(z) < %} into two regions, S; and §;°. Thus it
is impossible that z; and z2 are both in Sy (or 87 ), while also lying on opposite sides
of r{. This gives a contradiction, proving the proposition.

We remark that the proof may end sooner in the special case that ri is the
negative y—axis. In this case, the ray 73 is also the negative y—axis (see the proof of
Proposition 1), so in fact the ray rj must divide the space {z € C| - § < arg(z) < 5}
into two regions. Thus the contradiction occurs at this step, with £ = 2, rather than
k=1.0

To finish the proof of the Theorem 1, we need to show that there exists a function
f(z) with f(1) = ¢ and f(a) = p, so that the graph of the function lies on the level
curve ®(x,y) = c. We have just demonstrated that the points (1,¢) to (a,p) lie on
the same component of the level set ®(z,y) = ¢, so all that remains to be shown is
that the level curve connecting (1, ¢) to (a,p) does not have vertical slope.

First, if ¢ = 0, then the level curves of ®(z,y) = 0 consist of n rays in R,,. The
above proposition shows that (1,¢) to (a,p) lie on the same ray r . Since the ray never
has vertical slope, in this case we see right away that there exists a linear function
f(z) with f(1) = ¢ and f(a) = p, proving the theorem.

In general, the points where the tangent line to ®(z,y) = ¢ has vertical slope are
given by

0

a—yfb(x, y) = (%Im (e*ié(a: + zy)") =1Im (ine*ié(:zr + iy)"’l) =0.

Dividing by n and writing z = = + iy, these points satisfy
Im (ie_iéz"_l) =0,

and so by definition of R,,_; we see they lie on a ray rfl_l (see Figure 4). Thus in
order to show that the level curve connecting (1,q) to (a,p) does not have vertical
slope, the curve can not pass over a ray r7,_;. By our stability assumption, both
z1 and z can not be on opposite sides of the ray 7/ . As a result the level curve
connecting (1,q) to (a,p) does not have vertical slope, and thus there exists a f(x)
with f(1) = g and f(a) = p that solves the ODE (2.3). Thus we have demonstrated
that if the classes [w], [a] are stable, a solution to the deformed Hermitian-Yang-Mills
equation exists. This concludes the proof of Theorem 1.

5. Lifting the average angle. Recall that the average angle 0 is defined to be
the argument of (x = (a + ip)™ — (1 + iq)", which is a priori only S! valued (note
that changing 0 by 27 does not effect equation (1.1)). This is in contrast to the
pointwise angle ©(a), which as a sum of arctangents lifts to R. Since (1.1) can be
reformulated as (2.1), a solution to (2.1) specifies a unique lift of 6 to R. A slightly
weaker (but nevertheless analytic) assumption to specify a lift would be the existence
of a representative «g for which the point-wise angle O, («g) has oscillation less that
7. This leads to the following question: is it possible to identify how @ lifts to R
from the initial data a,p and ¢ alone, without needing to know existence of a specific
representative of [a]?

In general the answer is not known, but there are special cases in which a lift exists.
Collins-Xie-Yau consider the following situation in [5]. Define a path ~(¢) : [0,1] — C
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r

F1G. 4. The intersection of a level set ®(z,y) = ¢ with the lines defined by Im (ie’iéznfl) =0

occurs where the level set has vertical slope.

"y(t):/X(w—l—itoz)".

At the starting time (0) = Vol(X) = a™ — 1 is a positive real number, which we
define to have zero argument. Also (1) = (x. Then, as long as (t) € C* for all

€ [0,1], letting ¢ run from 0 to 1, we can count the number of times () winds
around the origin to define a lift of 6 to R.

Unfortunately there are examples where the topological constant (x is nonzero,
but 7(t) passes through the origin, so 6 can not be lifted using this method. We
construct such an example in dimension 3. First, fix a real number ¢ > /3. Define
an angle § = 2% — arctan(q), and set a = (\/¢? 4 1)cos(f) and p = — (/¢ + 1)sin(f).
Note that the choice ¢ > /3 ensures a > 1. By construction 1 + iq and a + ip now
satisfy (3.2) for k = 1, and therefore (a + ip)® = (1 +iq)3. To complete our example,
consider the initial data

W =alH]~[E] and o] = 2p[H] - 24[E],

with a and p defined as above. Now, initially v(1) # 0, since the arguments of 1+ i2¢
and a + i2p are greater than %’T apart, while 7(%) = 0. Of course, one could always
choose another path that avoids the origin, however then the lift will depend on the
choice of the path. We also remark that in this case the configuration is unstable in
the sense of (1.3). It would be interesting to see in general if the lifting of § with this
method implies stability.

Furthermore, we remark that similar examples where the lift can not be defined
exist in dimension 3 or higher. In dimension 2, the angle 6 always lifts, since the
arguments of 1+ itq and a + itp can never be distance 7 apart, so the path ~(¢) never
passes through the origin. This is a special case of the fact that on a general Kéhler
surface, the angle 0 always lifts by the Hodge Index Theorem [5].

One difficulty with the above method is that even if a lift of 0 exists, in practice it
can be hard to verify. Due to the specific geometry of our setup, we introduce another
notion of a lifted angle.
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Assume that 6 lies in the branch cut —7 < 6 < 7. Suppose that for a given choice
of [w] and [a], we have

larg(a + ip) — arg(1 + iq)| < g (5.1)

We now lift 4 to R as follows. Construct two smooth strictly increasing functions
p1(t), p2(t) : [0,1] = [0, 1], so that

. . i
larg(a + ip1(t)p) — arg(1l + ip2(t)q)| < o

and p1(0) = p2(0) = 0 while p1(1) = p2(1) = 1. To see this can always be done, start
with two points in a sector of angle 7, then rotate that sector so it contains the positive
r—axis. It is easy to see that during this rotation the points can simultaneously be
deformed to the positive x—axis in such a way that they stay within the sector, and
their z—coordinate remains fixed. The reverse of this deformation determines the two
functions pi(t), p2(t). For all ¢ the complex numbers (a +ip1 (¢)p)™ and (1 +ip2(t)q)"
lie in the same half-plane, and so the path 5(t) = (a +ip1(t)p)™ — (1 +ip2(t)q)™ never
passes through the origin and has a winding number k € Z. We then define the lift
of 6 (denoted O ), by

Oy =0+ 21k € (—ng,ng). (5.2)

Again we emphasize that this lifted angle depends only on a,p and ¢, and not on any
representatives of the classes [w] and [a]. One advantage of using the above lifted
angle is that our stability implies such a lift exists.

PROPOSITION 3. Suppose the pair [w], [@] is stable in the sense of Lemma 1. Then
the angle 0 has a well defined lift ©x given by (5.2).

Proof. By the induction argument given in Proposition 2, we know from our
stability assumption that the two points (a + ip) and (1 + ig) can not have two rays
from R,, between them. Since the rays in R,, are all % rotations of each other, this

verifies (5.1), which allows us to define ©x. [

We expect that in general, being able to determine the lifted angle and specifying
the branch will be a key step to solving the deformed Hermitian Yang Mills equation.
This expectation is motivated by Theorem 2, which shows the importance of the lifted
angle in our specific case.

First, we note that for any subvariety H"~* or (—1)""*=1E"=F the lifted re-
stricted angle is always well defined. Specifically, if we assume z; = 1 4 i¢ and
23 = a+ip always have arguments in (=7, 7), then the lifted angle associated to each
subvariety is given by

O 1yn-n-1gn-r = karg(z1)  and  Opa-r = karg(zs). (5.3)

We now present the proof of Theorem 2.
~ To begin, assume that for a given choice of a,p,q there exists a lifted angle
Ox € R. Furthermore assume that V"' (which can be either H or E) satisfies

éx+g>évn—1>éx—g. (5.4)
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Using (5.3) this implies

L (6 5) o 1 (6 5)

for ¢ € {1,2}. Thus the difference between arg(z;) and arg(zz2) is at most —"~. By

Lemma 2 both z; and 25 lie on the same level set of ®, and since this level setncolnsists
of curves in alternating sectors with angle 7 the angle bound of 5 tells us that
either z; and z lie in the same component of the level set, or they lie on two adjacent
components with an empty sector in between. We must rule out the latter possibility.

Note that (5.4) implies
> g —Ox + (n — 1)arg(z) > 0. (5.5)
This is equivalent to
Im (ieiié(Zg)"%) >0

for ¢ € {1,2}, which is just stability in the sense of Lemma 1 for k = n — 1. So 21
and zo lie in S,,_1. Right away this rules out the possibility that they lie on distinct
adjacent rays in R,,, since any two such rays will never both be contained in S,,_;.
We can also rule out the case where z; and 29 lie in two adjacent components which
are not rays. In this case, there will be exactly two rays in R,, between z; and zs,
and thus by Proposition 1 at least one ray in R,,_1. Yet because the sectors in S,,_1
alternate, there must in fact be two rays in R,_; between z; and z5. But this is
impossible if the difference between arg(z1) and arg(zz) is at most <.

Thus z; and 2z lie in the same component of the level set of ®. Furthermore, just
as in the proof of Theorem 1, stability in the sense of Lemma 1 for £ = n — 1 rules
out the possibility of a vertical slope on the level curve connecting z; and z3, and so
a solution to the deformed Hermitian-Yang-Mills equation exists.

Conversely, suppose for a given a, p, g there exists a solution to equation (2.1). As
explained above, because the pointwise angle is a sum of arctangents, a solution to
(2.1) specifies a uniques lift Ox € R. Additionally, restricting a solution to either H
or E, we lose one arctangent from the sum that makes up the pointwise angle. Since
the image of arctangent lies in (=%, 7), the average angle on each of these divisors
must satisfy (5.4). For details see Lemma 8.2 in [3]. This completes the proof of
Theorem 2.

We conclude the paper by noting the distinction between the stability from Con-
jecture 1 and our stability in the sense of Lemma 1. Although the original conjecture
is only stated for the supercritical phase case, It is not too difficult to see, looking at

the proof of Proposition 8.3 in [3], that it can be generalized to any phase as

éx+(n—k)g > Oy >®X—(n—k)g,
provided that all associated phase angles lift. Thus one difference we see right away
is that Conjecture 1 requires all lifted angles to exist, while this is not true of our
stability. Furthermore, we see the above inequality forces z; and zo between two
rays, whereas Lemma 1 places them in alternating sectors. When k = n — 1, the
above inequality is a stronger condition than what arises from Lemma 1. However,
when k£ < n — 1, the rays fail to match up. It would be interesting to explore this
phenomenon more in the future.
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