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ON π-DIVISIBLE O-MODULES OVER FIELDS OF
CHARACTERISTIC p∗

CHUANGXUN CHENG†

Abstract. In this paper, we construct a Dieudonné theory for π-divisible O-modules over a
perfect field of characteristic p. Applying this theory, we prove the existence of slope filtration of
π-divisible O-modules over an integral normal Noetherian base. We also study minimal π-divisible
O-modules over an algebraically closed field of characteristic p and prove that their isomorphism
classes are determined by their π-torsion parts by introducing Oort’s filtration. Moreover, after
a detailed study of deformations of π-divisible O-modules via displays, we prove the generalized
Traverso’s isogeny conjecture.
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1. Introduction. Let p be a prime number. Let O be the ring of integers of a
finite extension of Qp and π be a uniformizer of O. Let S be an O-scheme such that
π is locally nilpotent in OS . A formal O-module over S is a commutative and smooth
formal group X over S with an action of O given by ι : O → End(X), such that
the induced action of O on Lie(X) coincides with the natural action via O → OS .
A formal O-module X is called π-divisible if the endomorphism π : X → X is an
isogeny. In [8], Drinfeld studied formal O-modules via Cartier modules and defined
a certain moduli problem for formal O-modules with an action of OD that extends
the action of O, where OD is the maximal order of a central division algebra D over
Frac(O). Drinfeld’s result has many applications (cf. [14, 18, 26, 33, 34, 35, 36]), in
particular to the p-adic uniformization of Shimura varieties and to arithmetic, e.g.
Drinfeld himself [8] deduced the p-adic uniformization of Shimura curves over Q.

Displays are important tools in the study of p-divisible groups and one advantage
is that they classify p-divisible groups over a general base. By the work of Zink and
Lau, for any ring R in which p is nilpotent, we know that the category of formal
p-divisible groups over R is equivalent to the category of nilpotent displays over R
(cf. [19, Theorem 1.1]). Combining the ideas of Drinfeld [8], Zink [44, 45], and Lau
[19, 21], Ashendorff [1] obtained an equivalence between the category of π-divisible
formal O-modules over R and the category of nilpotent O-displays over R, where
R is an O-algebra in which π is nilpotent. If moreover one defines π-divisible O-
modules similarly, R is a complete Noetherian local O-algebra with perfect residue
field such that πR = 0 if p = 2, the above equivalence extends to an equivalence
between the category of π-divisible O-modules over R and the category of Dieudonné
O-displays over R. We remark that the assumption for p = 2 is from [44, Lemma 2] (cf.
Remark 3.12). Moreover, we could adapt Lau’s construction of Dieudonné displays
[22] to remove the assumption for p = 2 (cf. Remark 3.13). These equivalences are
summarized in [2] and recalled in Section 3.1. This paper is a continuation and a
complement as well of [2]: we study π-divisible O-modules over certain special base
and study deformations of π-divisible O-modules via displays.

More specifically, in this paper, we obtain the classification of π-divisible O-
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modules over perfect fields of characteristic p via Dieudonné O-modules, prove the ex-
istence of slope filtration of π-divisible O-modules over an integral normal Noetherian
base, explain the determination of minimal π-divisible O-modules over algebraically
closed fields of characteristic p by their π-torsion parts, and prove Traverso’s isogeny
conjecture etc. The reason we put together these results in one paper is that they are
related to each other and the main tools of all their proofs are Dieudonné modules
and displays. As we shall see, these results are generalizations of the corresponding
results on p-divisible groups and their proofs are adapted from those for p-divisible
groups. Some of the results are known to the experts, we include them here to fill the
gap in the literature and provide a reference for future studies in moduli problems
and of PEL-type Shimura varieties.

In the following, we explain the main results more precisely and outline the con-
tents of the paper. First, we fix some notation.

1.1. Notation. In this paper, p is a prime number, O is the ring of integers of a
finite extension of Qp, π is a uniformizer of O, F = Fq = O/πO. Denote by Fr : F → F

the Frobenius morphism given by x �→ xq. Denote by WO(A) the ring of ramified
Witt vectors for A ∈ AlgO (cf. [11, Section 1.2] and [13]). Here for any ring R, AlgR
denotes the category of R-algebras.

In this paper, k ∈ AlgO is a field of characteristic p. Write Ak =⋃
n∈Z≥1

WO(k1/q
n

). Then Ak/πAk
∼= kperf , the perfect closure of k. Denote by

Fk = Ak[π
−1] = Frac(Ak). Note that Ak is a discrete valuation ring and Fk is a field

(cf. [37, Part 1]). The Frobenius and Verschiebung on Ak or Fk are denoted by F

and V respectively.

Let S be a scheme. Denote by SchS the category of schemes over S. Let T be a
scheme over S. Denote by XT the base change of X with respect to T → S, where
X is an appropriate object over S (e.g. a scheme, a functor, a sheaf etc.).

1.2. O-crystals and O-isocrystals. Let f be an integer. The notions of f -
O-isocrystal and f -O-crystal are defined at the beginning of Section 2. An f -O-
isocrystal (resp. f -O-crystal) over k is a pair (N,V ) (resp. (M,V )), where N (resp.
M) is a finitely generated free Fk-module (resp. Ak-module) and V : N → N (resp.

V : M → M) is an injective F f

-linear map.

For an f -O-isocrystal, there is an invariant called the first Newton slope (Defini-
tion 2.8). Using this invariant, we have a decomposition result for f -O-isocrystals over
k. Consequently, we may define the Newton polygon attached to an f -O-isocrystal
for k perfect (Section 2.2).

Theorem 1.1. Assume that k is perfect. Let (N,V ) be an f -O-isocrystal over k
with first Newton slope λ. There exist uniquely determined sub-O-isocrystals (Ni, Vi)
with Newton(Ni, Vi) = λi, such that (N,V ) = ⊕r

i=1(Ni, Vi) and λ = λ1 < λ2 < · · · <
λr.

In the case where k is algebraically closed, we have a complete classification of
f -O-isocrystals over k, which is more explicit than Theorem 1.1. More precisely, let
r, s ∈ Z with s > 0 and (r, s) = 1. Let Nr,s be an Fk-vector space with a basis
e1, · · · , es. We define on Nr,s a structure of f -O-isocrystal by

V ei =

{
ei+1 if i < s,

πre1 if i = s.
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Theorem 1.2. Assume that k is algebraically closed. Let (N,V ) be an f -O-
isocystal over k. Then there exists a direct sum decomposition

(N,V ) = ⊕u
i=1N

ti
ri,si ,

where u, ri, si, ti ∈ Z, u, ti, si > 0, (si, ri) = 1, r1/s1 < · · · < ru/su. Moreover,
the numbers u, ri, si, ti are uniquely determined by (N,V ).

Theorem 1.1 and Theorem 1.2 are proved in Section 2.2 and Section 2.3 respec-
tively. These results are well-known (cf. [24, 47]). We give detailed proofs for two
reasons. First, along the proof, we introduce several notions, for which we could not
find appropriate references. Second, we make some computations and prove certain
lemmas, which are needed in other parts of the paper.

1.3. π-divisible O-modules. By the main result of [2], over a good base, we
could use O-displays (cf. Definitions 3.7, 3.8, and 3.10) to classify π-divisible O-
modules. The classification results of [2] are recalled in Section 3.1.

A Dieudonné O-module over k is a finitely generated free Ak-module M , together
with an F -linear map F : M → M and an F−1

-linear map V : M → M , such that
FV = π. A Dieudonné O-module is reduced if the operator V on M/πM is nilpotent.

By studying the relation between O-crystals, Dieudonné O-modules, and O-
displays, we obtain the following result in Section 3.2.

Theorem 1.3. Let k ∈ AlgO be a field of characteristic p.
(1) The category of potential formal π-divisible O-modules over k (cf. Definition

3.21) is equivalent to the category of reduced Dieudonné O-modules over k.
(2) Assume that k is perfect, then the following categories are equivalent.

• The category of (formal) π-divisible O-modules over k.
• The category of (reduced) Dieudonné O-modules over k.
• The category of (−1)-O-crystals with slopes in [0, 1] (in (0, 1]).

Remark 1.4. In this paper, we choose the equivalences so that they are covariant.
For k perfect, the Newton polygon of a π-divisible O-modules over k is defined to be
the Newton polygon of the associated (−1)-O-crystal and we denote it by N(X).

Let X be a π-divisible O-module over an F-scheme S. A slope filtration of X is
a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

consisting of π-divisible sub-O-modules of X, such that there exist rational numbers
1 ≥ λ1 > · · · > λm ≥ 0 and the subquotient Xi/Xi−1 is isoclinic of slope λi for
1 ≤ i ≤ m (cf. Definition 3.39).

Inside the (−1)-O-isocrystal Nr,s with s ≥ r ≥ 0 and (r, s) = 1, there is a special
(−1)-O-crystal Mr,s (Section 3.2.1). If k is perfect, let Gr,s be the π-divisible O-
module associated with Mr,s via Theorem 1.3. Combining Theorem 1.2 and Theorem
1.3, in the case where k is algebraically closed, every π-divisible O-module over k is
isogenous to a direct sum of some Gr,s. Hence in this case the slope filtration exists
up to isogeny. In general, a decomposition as above does not exist. Nevertheless, we
have the following result, which is proved in Section 3.3.4.

Theorem 1.5. A π-divisible O-module over an integral, normal, Noetherian F-
scheme S with constant Newton polygon is isogenous to a π-divisible O-module over
S that admits a slope filtration.
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Theorem 1.5 is proved by a detailed study of completely slope divisible π-divisible
O-modules, which is the content of Section 3.3.3.

1.4. Minimal π-divisible O-modules. Each Newton polygon β with slopes
in [0, 1] corresponds to a (−1)-O-isocrystal (N,V ) over F, hence corresponds to an
isogeny class of π-divisible O-modules over F. Let ⊕iG

ri
mi,mi+ni

be a representative of
this isogeny class as mentioned above. Define H(β) := ⊕iH

ri
mi,mi+ni

. Here Hm,m+n

is a π-divisible O-module whose associated Dieudonné O-module M(Hm,m+n) is as
follows. It is a free WO(F)-module of rank m + n with basis e0, e1, . . . , em+n−1.
For j ∈ Z≥0, we write ej = πaei if j = i + a(m + n). The actions of F and V on
M(Hm,m+n) are given by F (ei) = ei+n and V (ei) = ei+m. It is obvious that H(β) is
a π-divisible O-module determined by the Newton polygon β.

A π-divisible O-module X is called minimal if there exists a Newton polygon β
and an isomorphism Xk

∼= H(β)k. The minimal π-divisible O-modules are special.
In the case of p-divisible groups, the minimal objects have interesting properties and
have applications in deformation theory (cf. [6, 31]).

In Section 4, we prove the following result, which generalizes the main result of
[31].

Theorem 1.6. Let k ∈ AlgO be an algebraically closed field of characteristic p
and X be a minimal π-divisible O-module over k. If Y is another π-divisible O-module
over k such that X[π] ∼= Y [π], then X ∼= Y .

In order to prove Theorem 1.6, we adapt the argument in [31] and prove the
following two results, which are contents of Section 4.2 and Section 4.3 respectively.

(1) Let H = ⊕t
i=1(Hmi,mi+ni)

ri be a minimal π-divisible O-module over k. Sup-
pose that X is a π-divisible O-module over k such that X[π] ∼= H[π]. Suppose
that λ1 = n1/(n1+m1) ≤ 1/2. Then there exists a π-divisible sub-O-module
X1 ⊂ X such that

X1
∼= (Hm1,m1+n1)

r1 , (X/X1)[π] ∼=
∏

2≤i≤t

(Hmi,mi+ni [π])
ri .

(2) Let (m,n) and (d, e) be pairs of pairwise coprime positive integers. Suppose
that n

m+n < e
d+e . Let

0 → Z := Hm,m+n → T → Y := Hd,d+e → 0

be an exact sequence of π-divisible O-modules. Then this sequence splits and
T ∼= Z ⊕ Y if the induced sequence of π-torsions

0 → Z[π] → T [π] → Y [π] → 0

splits.
Both results are proved by translating the corresponding questions into questions of
Dieudonné O-modules.

1.5. Traverso’s isogeny conjecture. By Theorem 1.6, if k ∈ AlgO is an alge-
braically closed field of characteristic p, the isomorphism class of a minimal π-divisible
O-module over k is determined by its π-torsion. For general π-divisible O-modules,
we have the following result, which is proved in Section 5.1.

Theorem 1.7. Let k ∈ AlgO be an algebraically closed field of characteristic p.
Let X be a π-divisible O-module over k. There exists a minimal number nX ∈ Z>0
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such that X is uniquely determined up to isomorphism by X[πnX ], i.e. if X ′ is a
π-divisible O-module over k such that X ′[πnX ] ∼= X[πnX ], then X ′ ∼= X.

By Theorem 1.7, there exists a minimal natural number bX ∈ Z>0 such that the
isogeny class of X is determined by X[πbX ]. We call bX the isogeny cutoff of X. We
prove the following result, which is a generalization of [41, Conjecture 5]. Denote by

x� the smallest integer greater or equal to x for x ∈ R.

Theorem 1.8 (Traverso’s isogeny conjecture). Let k ∈ AlgO be an algebraically
closed field of characteristic p. Let X be a π-divisible O-module over k. Assume that

X has height h and dimension d, then bX ≤ 
d(h−d)
h �.

Certainly, the theorem holds for minimal π-divisible O-modules. As a first step
towards a proof of the general case, we prove the following result in Section 5.2.

Theorem 1.9. If a(X) ≤ 1, then Traverso’s isogeny conjecture holds for X. Here
a(X) = dimk M/(FM + VM) and (M,F, V ) is the covariant Dieudonné O-module
associated with X.

The general case of Traverso’s isogeny conjecture follows from Theorem 1.9 and
Theorem 1.10. The detailed argument is given in Section 5.3.1 and Theorem 1.10 is
proved in Section 6.2 using deformation theory. In Section 5.3.2, we study the relation
between minimal height and isogeny cutoff. In Section 5.3.3 we show that the bound
is sharp in Traverso’s isogeny conjecture by constructing explicit examples.

1.6. Deformations of π-divisible O-modules. To complete the proof of
Traverso’s isogeny conjecture, we prove the following result in Section 6.2.

Theorem 1.10. Let k ∈ AlgO be an algebraically closed field of characteristic p.
Every π-divisible O-module over k satisfies Oort’s condition (cf. Definition 5.18).

Roughly speaking, Oort’s condition says that a π-divisible O-module over k has
a deformation over k[[t]] with certain special properties. To study the deformations
of π-divisible O-modules, we use the equivalence between π-divisible O-modules and
O-displays and transfer our problem into (semi)-linear problem. The precise cor-
respondence is given in Section 6.1. Put simply, by Theorem 3.11, deforming a π-
divisible O-module is equivalent to deforming the structure equation of the associated
O-display.

Another ingredient of the proof of Theorem 1.10 is the catalogue of a minimal
simple π-divisible O-module. Recall that a catalogue for a moduli problem MP is
a family X → T in MP such that every object of MP over an algebraically closed
field k appears as the fiber of the family X over a point Spec k → T . See [6, Section
5] for more details on this notion. For our purpose we prove the following result (cf.
Section 6.1.6).

Theorem 1.11. The catalogue associated with a simple minimal π-divisible O-
module over F with height d + c and dimension c is geometrically irreducible of di-
mension (c− 1)(d− 1)/2 over F.

An immediate consequence of Theorem 1.11 and the purity result on Newton
polygons of π-divisible O-modules (cf. Theorem 6.11) is Corollary 6.12, which says
that a simple π-divisible O-module over k has a deformation over k[[t]] such that the
Newton polygon is constant and the a-number of the generic fiber is one. Theorem
1.10 then follows from an explicit construction (cf. Propositions 6.14 and 6.15).
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2. O-crystals and O-isocrystals. We use the notation introduced in Section
1.1. Note that if k is perfect, then Ak = WO(k) is the ring of ramified Witt vectors
and Fk = Frac(WO(k)). In fact, this is the case for most parts of this section. We refer
to [17] for more details on isocrystals over varieties over k. The following definition
is slightly different from the classical case.

Definition 2.1. Let f ∈ Z. An f -O-isocrystal over k is a pair (N,V ), where N

is a finitely generated Fk-vector space, V : N → N is an injective F f

-linear map. A
morphism (N,V ) → (N ′, V ′) of f -O-isocrystals is a homomorphism h : N → N ′ of
Fk-modules which satisfies V ′ ◦ h = h ◦ V .

An f -O-crystal over k is a pair (M,V ), where M is a finitely generated free Ak-

module, V : M → M is an injective F f

-linear map. A morphism (M,V ) → (M ′, V ′) of
f -O-crystals is a homomorphism h : M → M ′ of Ak-modules which satisfies V ′ ◦ h =
h ◦ V .

Let N be a finitely generated Fk-vector space. A finitely generated Ak-module
M ⊂ N is called a lattice if M ⊗Ak

Fk = N . Let (N,V ) be an f -O-isocrystal. If there
exists a lattice M of N such that VM ⊂ M , then (M,V |M ) is an f -O-crystal. In this
case, we say that (N,V ) is effective.

On the other hand, if (M,V ) is an f -O-crystal, then (M ⊗Ak
Fk, V ⊗ id) is an

f -O-isocrystal.
In the following, we study f -O-crystals and f -O-isocrystals. Many results are

similar to those in the classical case (cf. [24, 47]). For completeness and later use, we
give detailed proofs.

2.1. Basic properties. Let M and M ′ be two lattices of N . Then πsM ′ ⊂ M
for some s ∈ Z≥1. It is clear that M/πsM ′ is an Ak-module of finite length. Define

[M : M ′] = LengthAk
M/πsM ′ − LengthAk

M ′/πsM ′.

The following lemma is clear.

Lemma 2.2. Let M , M ′, M ′′ be lattices of N .
(1) [M : M ′′] = [M : M ′] + [M ′ : M ′′].
(2) The number [M : VM ] is independent of the choice of M , i.e.,

[M : VM ] = [M ′ : VM ′].

Definition 2.3. Let (N,V ) be an f -O-isocrystal. The number dimFk
N is called

the height of N . The number [M : VM ] is called the dimension of N , where M ⊂ N
is an arbitrary lattice. If h is the height of (N,V ) and d is the dimension of (N,V ),
we call the pair (h, d) the type of (N,V ).

Definition 2.4. Let (N,V ) be an f -O-isocrystal, M ⊂ N be a lattice, m ∈ N .
Define

ordM V = max{t ∈ Z : VM ⊂ πtM};
ordM m = max{t ∈ Z : m ∈ πtM}.

Lemma 2.5. Let M and M ′ be lattices in N . Let c and c′ be integers such that
πcM ⊂ M ′ and πc′M ′ ⊂ M . Then

| ordM V − ordM ′ V | ≤ c+ c′, | ordM m− ordM ′ m| ≤ max{c, c′}.
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Proof. Let x = ordM m, y = ordM V . Then

m ∈ πxM ⊂ πx−cM ′,

V M ′ ⊂ π−c′VM ⊂ πy−c′M ⊂ πy−c−c′M ′.

Hence ordM ′ m ≥ x− c, ordM ′ V ≥ y − c− c′. The lemma follows easily.

Lemma 2.6. Let (N,V ) be an f -O-isocrystal of type (h, d). Then for any lattice
M ⊂ N and n ∈ Z≥1, we have

ordM V ≤ 1

n
ordM V n ≤ d

h
. (2.1.1)

If there exists n such that ordM V �= 1
n ordM V n, then

ordM V +
1

h
≤ 1

h
ordM V h. (2.1.2)

Proof. Let x = ordM V , y = ordM V n. It is easy to see that nx ≤ y. Moreover,

nd = n[M : VM ] = [M : V nM ] ≥ [M : πyM ] = y[M : πM ] = yh.

We obtain inequality (2.1.1).
Assume that V nM ⊂ πnx+1M for some n ≥ 2. Set Mi = {m ∈ M : V im ∈

πix+1M}. Then we obtain a chain

πM = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M.

It is easy to see that if Mi = Mi+1, then Mi = Mi+j for any j ≥ 0. Note that
LengthM/πM = h, we must have Mh = M . The inequality (2.1.2) then follows.

Lemma 2.7. Let (N,V ) be an f -O-isocrystal over k with height h. Then (N,V )
is effective if there exists a lattice M ⊂ N and V h+1M ⊂ π−1M .

Proof. We need to find a lattice that is stable under V . Let M ′ =
∑h

j=0 V
jM.

Then

h+1∑
j=0

V jM ′ =
2h+1∑
j=0

V jM = M ′ +
h∑

j=0

V j(V h+1M) ⊂ π−1M ′.

Consider the chain

M ′ ⊂ M ′ + VM ′ ⊂ · · · ⊂
h+1∑
j=0

V jM ′ ⊂ π−1M ′.

Note that Lengthπ−1M ′/M ′ = h, there exists n (0 ≤ n ≤ h), such that
∑n

j=0 V
jM ′ =∑n+1

j=0 V jM ′. Let M ′′ =
∑n

j=0 V
jM ′, then VM ′′ ⊂ M ′′. The lemma follows.

Definition 2.8. Let (N,V ) be an f -O-isocrystal. We call

Newton(N,V ) = sup{ 1
n
ordM V n : n ∈ Z≥1,M ⊂ N lattice}

the first Newton slope of (N,V ).
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Lemma 2.9. Let (N,V ) be an f -O-isocrystal, M ⊂ N a lattice. Then

Newton(N,V ) = lim
n→∞

1

n
ordM V n,

Newton(N, πsV r) = rNewton(N,V ) + s.

Proof. Let λ = Newton(N,V ). Let M ′ ⊂ N be another lattice and x = ordM ′ V n

(n ∈ Z≥1). Let c and c′ be integers such that πcM ⊂ M ′ and πc′M ′ ⊂ M . Then

sup
m

1

m
ordM V m ≥ sup

l

1

ln
ordM V ln

≥ sup
l

1

ln
(ordM ′ V ln − c− c′) (by Lemma 2.5)

≥ sup
l
(
x

n
− c+ c′

ln
) =

x

n
.

So Newton(N,V ) = supn
1
n ordM V n. Let ε ∈ R>0, y = λ − ε/2. Then there exists

m ∈ Z>0, such that 1
m ordM V m > x. Let r and s be non-negative integers such that

0 ≤ s ≤ m and ordM V mr+s > mry + s ordM V . Choose r0 in such a way that for
r ≥ r0 and 0 ≤ s < m,

s(y − ordM V ) <
ε

2
(mr + s).

Then for n > mr0, n = mr + s with r ≥ r0 and 0 ≤ s < m, we have

λ ≥ 1

n
ordM V n > y +

s

mr + s
(ordM V − y) > y − ε

2
= λ− ε.

The lemma follows.

Lemma 2.10. Let (N,V ) be an f -O-isocrystal. Let s ∈ Z>0 and r ∈ Z≥0 be
integers such that Newton(N,V ) ≥ r

s . Then there exists a lattice M ⊂ N such that
V sM ⊂ πrM .

Proof. Let h be the height of N . Define V ′ = π1−r(h+1)V s(h+1). Then (N,V ′) is
an (fs(h+ 1))-O-isocrystal and Newton(N,V ′) ≥ 1. Therefore, there exists a lattice
M ⊂ N such that V ′nM ⊂ M for some positive integer n. Let M ′ = M + V ′M +
· · ·+ V ′n−1M . Then V ′M ′ ⊂ M ′, i.e., (π−rV s)h+1M ′ ⊂ π−1M ′. The lemma follows
from Lemma 2.7.

Lemma 2.11. Let x be a real number, R ∈ Z≥2. Then there exist integers s and
r such that 1 ≤ s ≤ R− 1 and |x− r

s | ≤ 1
Rs .

Proof. For any s ∈ Z, there exists ts ∈ R such that sx − ts ∈ Z and − 1
R ≤ ts <

1 − 1
R . Suppose for all s ∈ {1, 2, . . . , R − 1}, ts > 1

R , then there exist s1 and s2 in
the set with s1 > s2 and |ts1 − ts2 | ≤ 1

R . Then (s1 − s2)x− (ts1 − ts2) ∈ Z. This is a
contradiction. The lemma follows.

Theorem 2.12. Let (N,V ) be an f -O-isocrystal of type (h, d) and λ =
Newton(N,V ). Then λ ∈ Q and there exist integers r and s with 0 < s ≤ h and
r ≤ d, such that λ = r

s .
Moreover, there exists a lattice M ⊂ N such that ordM V s = r.
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Proof. By Lemma 2.11, there exist integers s and r with 1 ≤ s ≤ h such that
|λ− r

s | ≤ 1
s(h+1) . Let V

′ = π−rV s, λ′ = Newton(N,V ′). Then by Lemma 2.9,

|λ′| = |sλ− r| ≤ 1

h+ 1
.

Thus there exists a lattice M ′ ⊂ N such that (V ′)h+1M ′ ⊂ π−1M ′. By Lemma 2.7,
(N,V ′) is effective, i.e., there exists a lattice M ⊂ N such that V ′M ⊂ M . Hence

ordM V ′ ≥ 0 > λ′ − 1

h
≥ 1

h
ordM V ′h − 1

h
.

By Lemma 2.6, ordM V ′ = 1
n ordM V ′n for any n ≥ 1 and λ′ = ordM V ′ ∈ Z. Hence

λ′ = 0. Therefore, λ = r
s and ordM V s = r. The theorem follows.

2.2. Newton polygon.

Definition 2.13. An f -O-isocrystal (N,V ) of type (h, d) is isoclinic if
Newton(N,V ) = d

h .

Assume that k is perfect in the rest of Section 2.2. The following result is a
consequence of Fitting’s Lemma.

Lemma 2.14. Let (M,V ) be an f -O-crystal. There is a decomposition

(M,V ) = (Met, V )⊕ (Mnil, V )

such that V : Met → Met is bijective and V nMnil ⊂ πMnil for n � 0.

Proof. The map V induces a map V : M/πnM → M/πnM . Define

Mn,nil = ∪l Ker(V l : M/πnM → M/πnM); Mn,et = ∩l Im(V l : M/πnM → M/πnM).

It is easy to see that for large r, we have Mn,nil = KerV r and Mn,et = ImV r.
Moreover, M/πnM = Mn,et ⊕ Mn,nil, V is bijective on Mn,et and is nilpotent on
Mn,nil. Let Met = lim←−Mn,et and Mnil = lim←−Mn,nil. The claim follows.

Lemma 2.15. Let (N,V ) be an f -O-isocrystal of type (h, d). The following
conditions are equivalent.

(1) (N,V ) is isoclinic.
(2) There exists a lattice M ⊂ N such that V hM = πdM .
(3) There exist integers s ∈ Z>0, r ∈ Z and a lattice M ⊂ N such that V sM =

πrM .
(4) Let M ⊂ N be a lattice. Then Newton(N,V ) = limn→∞ 1

n ordM V nm for
any m ∈ N − {0}.

Proof. The equivalences between the first three conditions are easy. We show
that they are equivalent to (4).

(2) ⇒ (4). Since V hM = πdM , we have

ordM V hnm = nd+ ordM m

for any m ∈ N −{0}. Choose integer c such that | ordM V am| ≤ c for any 0 ≤ a < h.
Then

| 1

hn+ a
ordM V hn+am− nd

hn+ a
| ≤ c

hn+ a
.
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Let n → ∞, we obtain (4).
(4) ⇒ (3). Let λ = r

s be the first Newton slope of (N,V ). Then there exists
a lattice M ⊂ N such that V sM ⊂ πrM . Let V ′ = π−rV s. Then (M,V ′) is an
O-crystal. Hence (M,V ′) has a decomposition as in Lemma 2.14,

(M,V ′) = (Met, V
′)⊕ (Mnil, V

′).

Let l be a large integer so that V ′lMnil ⊂ πMnil. Suppose that Mnil �= {0}. Let m be
a nontrivial element of Mnil. Then ordM V ′lnm ≥ n for any n ≥ 1. Hence

1

sln
ordM V slnm ≥ n

sln
+

rln

sln
=

1

sl
+ λ.

Taking n → ∞, we obtain a contradiction. Hence M = Met and (3) holds. The
lemma follows.

The following result is clear.

Lemma 2.16. Let (N,V ) be an f -O-isocrystal.
(1) Let (N1, V1) ⊂ (N,V ) be a sub-object and (N,V ) → (N2, V2) be a quotient

object. Then Newton(Ni, Vi) ≥ Newton(N,V ) for i = 1, 2. The equality holds
if (N,V ) is isoclinic.

(2) Let (N ′, V ′) be an f -O-isocrystal and Newton(N ′, V ′) > Newton(N,V ). If
(N,V ) is isoclinic, then

Hom((N,V ), (N ′, V ′)) = Hom((N ′, V ′), (N,V )) = {0}.

Lemma 2.17. Let (N,V ) be an f -O-isocrystal with first Newton slope λ = r/s.
Then (N,V ) has a unique decomposition

(N,V ) = (N1, V1)⊕ (N2, V2),

where (N1, V1) is isoclinic with first Newton slope λ and Newton(N2, V2) > λ.

Proof. Consider a lattice M ⊂ N with V sM ⊂ πrM . Let V ′ = π−rV s. Then M
has a decomposition as in Lemma 2.14: (M,V ′) = (Met, V

′) ⊕ (Mnil, V
′). Tensoring

with Fk, we obtain a decomposition (N,V ′) = (Net, V
′) ⊕ (Nnil, V

′). Here (Net, V
′)

is isoclinic with first Newton slope 0 and Newton(Nnil, V
′) > 0. This decomposition

is unique by Lemma 2.16. The induced decomposition (N,V ) = (Net, V )⊕ (Nnil, V )
is the desired one. The lemma follows.

By successive applications of Lemma 2.17, the following result is clear.

Theorem 2.18. Assume that k is perfect. Let (N,V ) be an f -O-isocrystal over k
with first Newton slope λ. There exist uniquely determined sub-O-isocrystals (Ni, Vi)
with Newton(Ni, Vi) = λi, such that (N,V ) = ⊕r

i=1(Ni, Vi) and λ = λ1 < λ2 < · · · <
λr.

The decomposition in the theorem is called the Newton decomposition of (N,V ).
We call the numbers λi the Newton slopes of (N,V ). If (Ni, Vi) is of type (hi, di),
then (N,V ) is of type (h, d), where h =

∑
i hi and d =

∑
i di. Note that λi = di/hi.

We obtain the sequence of Newton slopes, in which each λi is repeated hi times:

(μ1, · · · , μh) = (λ1, · · · , λ1, · · · , λr, · · · , λr).

Define Newton(N,V )(i) =
∑i

j=1 μj for 1 ≤ i ≤ h and Newton(N,V )(0) = 0. The graph
of the function Newton(N,V ) is called the Newton polygon of (N,V ). Note that the
starting point is (0, 0) and the ending point is (h, d).
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2.3. Classification of f-O-isocrystals over algebraically closed k. Let k ∈
AlgO be an algebraically closed field of characteristic p. Let r, s ∈ Z with s > 0 and
(r, s) = 1. Let Nr,s be an Fk-vector space with a basis e1, · · · , es. We define on Nr,s

a structure of f -O-isocrystal by

V ei =

{
ei+1 if i < s,

πre1 if i = s.

Lemma 2.19. The f -O-isocrystal Nr,s is isoclinic of slope r/s and it contains no
proper sub-O-isocrystal.

Proof. The first claim is clear. Assume that (N,V ) with type (h, d) is a sub-O-
isocrystal of Nr,s such that h < s. By Theorem 2.18, (N,V ) is isoclinic of slope r/s.
Hence d/h = r/s. The lemma follows since r and s are coprime.

Theorem 2.20. Let k ∈ AlgO be an algebraically closed field of characteristic p.
Let (N,V ) be an f -O-isocystal over k. Then there exists a direct sum decomposition

(N,V ) = ⊕u
i=1N

ti
ri,si ,

where u, ri, si, ti ∈ Z, u, ti, si > 0, (si, ri) = 1, r1/s1 < · · · < ru/su. Moreover,
the numbers u, ri, si, ti are uniquely determined by (N,V ).

The argument is similar to the argument for isocrystals (cf. [47, Chapter 6,
Section 4]). It follows from the following three lemmas.

Lemma 2.21. Let V be a nonzero finite dimensional k-vector space, a be a positive
integer, φ : V → V be a Z-linear isomorphism such that φ(xv) = xqaφ(v) for all x ∈ k
and v ∈ V . Then there exists a basis e1, . . . , en of V such that φ(ei) = ei.

Proof. Let v ∈ V be a nonzero vector. Let r be the greatest integer such that the
vectors v, φ(v), . . . , φr−1(v) are linearly independent. Assume that

φr(v) =

r−1∑
i=0

hiφ
i(v),

where hi ∈ k and at least one of them is not zero. We claim that there exists a vector
w =

∑r−1
i=0 xiφ

i(v) such that φ(w) = w. Indeed, the equation φ(w) = w is equivalent
to

r−2∑
i=0

xqa

i φi+1(v) +
r−1∑
i=0

xqa

r−1hiφ
i(v) =

r−1∑
i=0

xiφ
i(v).

Comparing the coefficients, we deduce that

xr−1 = hqa(r−1)

0 xqar

r−1 + · · ·+ hr−1x
qa

r−1.

The above equation has a nonzero solution since k is algebraically closed. Hence we
obtain a nonzero w ∈ V with φ(w) = w.

Let e1, · · · , er be a system of linearly independent φ-invariant vectors. Let W be
the subspace generated by these elements. If W = V , we are done. If W �= V , then
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applying the argument above to the space V/W , there exists an element er+1 ∈ V
such that

φ(er+1) = er+1 +

r∑
i=1

aiei.

Let yi (1 ≤ i ≤ r) be elements of k, such that ai − yi + yq
a

i = 0 (1 ≤ i ≤ r). Let
e′r+1 = er+1 +

∑r
i=1 yiei. Then φ(e′r+1) = e′r+1. The lemma follows since V is finite

dimensional.

Lemma 2.22. Let (M,V ) be an f -O-crystal over k such that VM = M . Then
there exists a basis e1, . . . , er of M such that V ei = ei for 1 ≤ i ≤ r.

Proof. Without loss of generality, we may assume that V is Fa

-linear and a is

positive. It suffices to construct a basis e
(n)
1 , . . . , e

(n)
r such that

V e
(n)
i ≡ e

(n)
i (mod πn), e

(n)
i ≡ e

(n−1)
i (mod πn−1),

since we may then take limits to obtain a basis with the required properties.
For n = 1, the construction follows from Lemma 2.21. The induction step goes

as follows. Let fi = e
(n)
i . We may write

V fi − fi = πn
r∑

j=1

aijfj , aij ∈ Ak.

Choose xij ∈ Ak such that

aij + xqa

ij − xij = 0.

Here x ∈ k is the image of x under the natural projection Ak → k. Define e
(n+1)
i =

fi + πn
∑r

j=1 xijfj (1 ≤ i ≤ r). It is easy to check that these elements have the
expected properties. The lemma follows.

Lemma 2.23. Let (N,V ) be an isoclinic f -O-isocrystal of slope r/s where s ∈
Z>0, r ∈ Z, r and s are coprime. Then (N,V ) is a direct sum of copies of Nr,s.

Proof. Choose a lattice M ⊂ N such that V sM = πrM . Let m1, . . . ,mh be a
basis of M such that V smi = πrmi (1 ≤ i ≤ h). Let Ni = (

∑s−1
j=0 V

jmi)⊗ Fk. Then
we have a surjection of f -O-isocrystals

Nr,s → Ni

ej �→ V j−1mi.
(2.3.1)

We see that (N,V ) =
∑h

i=1(Ni, V ) and for each i we have (Ni, V ) ∼= Nr,s. The lemma
follows from Lemma 2.19.

3. π-divisible O-modules. In this section, using Dieudonné modules and dis-
plays, we deduce several classification results for π-divisible O-modules over fields
of characteristic p. As an application, we prove the existence of slope filtration for
π-divisible O-modules under some technical conditions, which is analogous to [43,
Theorem 7] and [32, Theorem 2.1].
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3.1. π-divisible O-modules and O-displays.

Definition 3.1. Let S be an O-scheme such that π is locally nilpotent in OS .
Let X be a p-divisible group over S (cf. [25, Chap. 1, Definition (2.1)] and [38, (2.1)
Definitions]). Assume that there exists an O-action on X given by ι : O → End(X).
We call that X is a π-divisible O-module if the action of O on Lie(X) induced from ι
coincides with the action induced from O → OS .

To describe π-divisible O-modules from other perspectives, we introduce O-group
schemes.

Definition 3.2. Let S be an O-scheme such that π is locally nilpotent in OS .
Let G be a finite locally free group scheme over S. We call G an O-group scheme if
it is the kernel of an isogeny between π-divisible O-modules.

Remark 3.3. The above definition is different from the definition of strict O-
group scheme [10, Definition 1]. We take this definition to avoid the complication
coming from embedding group schemes into π-divisible O-modules. On the other
hand, if G is obtained from an O-module, then it is strict in the sense of [10].

Remark 3.4. Let S be an O-scheme such that π is locally nilpotent in OS . A
π-divisible O-module over S is an fppf sheaf X of O-module over S, which satisfies
the following conditions:

(1) X is π-divisible, i.e., the homomorphism π : X → X is an epimorphism.
(2) X is π-torsion, i.e., the canonical morphism lim−→X[πn] → X is an isomorphism.

Here X[πn] denotes the kernel of the multiplication by πn : X → X.
(3) X[π] is representable by a finite locally free O-group scheme over S.
Homomorphisms of π-divisible O-modules over S are homomorphisms of sheaves

that are compatible with the O-actions.
The order of X[π] is of the form qh, where h : S → Z≥0 is a locally constant

function, called the height of X.
The type of X is the pair (h, d), where h is the height of X and d is the dimension

of X. Note that h ≥ d and one may observe this via O-displays. For example, the
Lubin-Tate group associated with (O, π) in local class field theory is of type (1, 1) as
a π-divisible O-module.

Remark 3.5. The description in Remark 3.4 is similar to [25, Chap. 1, Definition
(2.1)]. As explained in [25, Chap. 1, Remark (2.3)], in terms of Tate’s definition (cf.
[38, (2.1) Definitions]), a π-divisible O-module over S is an inductive system

G = (Gv, iv), v ≥ 0,

where
• Gv is a locally free O-group scheme over S of order qvh,
• for each v ≥ 0, the sequence

0 → Gv
iv−→ Gv+1

πv

−−→ Gv+1

is exact.
In this language, a homomorphism f : G = (Gv, iv) → H = (Hv, iv) of π-divisible O-
modules is a system of homomorphisms fv : Gv → Hv which satisfies iv ◦fv = fv+1◦iv
for all v ≥ 1.
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Remark 3.6. Let X be a π-divisible O-module over S. Let X∨ be the usual
Serre dual of X. The O-action on X induces an O-action on X∨. But this action
in general does not satisfy the condition in Definition 3.1 and the Serre dual of a
π-divisible O-module is not necessarily a π-divisible O-module. To fix this, we use
Serre O-dual (cf. Definition 3.15).

We review the classification of π-divisible O-modules by O-displays.

Definition 3.7. Let R be an O-algebra. An O-display over R is a quadruple
P = (P,Q, F, F1), where P is a finitely generated projective WO(R)-module, Q ⊂ P is
a submodule, F : P → P and F1 : Q → P are F -linear maps, such that the following
conditions hold:

(1) There exists a decomposition P = L⊕ T , such that Q = L⊕ IO(R)T , where

IO(R) =
V
WO(R). Such a decomposition is called a normal decomposition

of P.
(2) F1 : Q → P is an F -linear epimorphism.
(3) For any x ∈ P and w ∈ WO(R), we have

F1(
V wx) = wFx.

Denote by dispO /R the category of O-displays over R.

Let R be an O-algebra and P an O-display over R. There exists a unique WO(R)-
linear map

V � : P → WO(R)⊗WO(R),F P,

which satisfies the following equations for all w ∈ WO(R), x ∈ P and y ∈ Q:

V �(wFx) = π · w ⊗ x,

V �(wF1y) = w ⊗ y.

By V n� : P → WO(R)⊗WO(R),Fn P we mean the composite map
F (n−1)

V � ◦ . . . ◦
F
V � ◦ V �, where F i

V � is the WO(R)-linear map

id⊗WO(R),FiV � : WO(R)⊗WO(R),Fi P → WO(R)⊗WO(R),Fi+1 P.

Definition 3.8. Let R ∈ AlgO with π nilpotent in R and P be an O-display
over R. We call P nilpotent, if there exists a number N such that the composite map

pr ◦V N� : P → WO(R)⊗WO(R),FN P → WO(R)/(IO,R + πWO(R))⊗WO(R),FN P

is the zero map.
Denote by ndispO /R the subcategory of dispO /R consisting of nilpotent objects.

To give the definition of Dieudonné O-displays, we recall the construction of ŴO
from [2, Section 1.2.1]. Let R be a local O-algebra. Assume that R is an Artinian
local ring with perfect residue field k. Let m ⊂ R be the maximal ideal of R. Then
we have the following exact sequence

0 → WO(m) → WO(R)
τ−→ WO(k) → 0.
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It admits a canonical section δ : WO(k)
Δ−→ WO(WO(k)) → WO(R), which is a ring

homomorphism commuting with F . Here Δ is the unique natural morphism (Cartier
morphism) of O-algebras

Δ : WO(−) −→ WO(WO(−))

such that W(Δ(x)) = [F
n

x]n≥0, where W = (w0, w1, . . . ) is given by the Witt poly-
nomials. The Cartier morphism is the morphism E in [13, Theorem 6.17].

Since m is nilpotent, we have a subalgebra of WO(m):

ŴO(m) = {(x0, x1, · · · ) ∈ WO(m) | xi = 0 for all but finitely many i}.

Note that ŴO(m) is stable under F and V .

Definition 3.9. In the case R is Artinian, we define the subring ŴO(R) ⊂
WO(R) by

ŴO(R) = {ξ ∈ WO(R) | ξ − δτ(ξ) ∈ ŴO(m)}.

Again we have an exact sequence

0 → ŴO(m) → ŴO(R)
τ−→ WO(k) → 0

with a canonical section δ of τ .
In the case R is a complete Noetherian local O-algebra with perfect residue field

k, we define ŴO(R) := lim←−ŴO(R/mn
R), where mR ⊂ R is the maximal ideal.

We also define ÎO(R) =
V
(ŴO(R)).

By [2, Lemma 1.8], if p ≥ 3, ŴO(R) is stable under F and V . If p = 2, the same
holds for R with πR = 0 (cf. [44, Lemma 2]).

Definition 3.10. Let R be a complete Noetherian local O-algebra with perfect
residue field k of characteristic p. Assume that πR = 0 if p = 2. A Dieudonné
O-display over R is a quadruple P = (P,Q, F, F1), where P is a finitely generated

prjective ŴO(R)-module, Q ⊂ P is a submodule, F : P → P and F1 : Q → P are
F -linear maps, such that the following conditions hold:

(1) There exists a decomposition P = L ⊕ T , such that Q = L ⊕ ÎO(R)T . Such
a decomposition is called a normal decomposition of P.

(2) F1 : Q → P is an F -linear epimorphism.

(3) For any x ∈ P and w ∈ ŴO(R), we have

F1(
V wx) = wFx.

Denote by DdispO /R the category of Dieudonné O-displays over R.

The main result of [2] is the following (cf. [2, Section 1.1]).

Theorem 3.11. Let R ∈ AlgO with π nilpotent in R. There exists a covariant
functor BTO

BTO : ndispO /R → (π-divisible formal O-modules/R),

which is an equivalence of categories.
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Let R be a Noetherian complete local O-algebra with perfect residue field of char-
acteristic p. Assume that πR = 0 if p = 2. Then the equivalence BTO above extends
to an equivalence

BTO : DdispO /R → (π-divisible O-modules/R).

Remark 3.12. In [2, Theorem 1.5], there is the assumption that p �= 2. This is

saved by adding the condition πR = 0 if p = 2. In this case, ŴO(R) is stable under
F and V by [2, Lemma 1.8] and [44, Lemma 2], the notion of Dieudonné O-display
over R is welled-defined and the proof of [2, Theorem 1.5] works for p = 2 if πR = 0.
This condition is vacuous if the base R is an F-algebra.

Remark 3.13. In [22], Lau modified the Verschiebung of W (R) and used it

to define Dieudonné displays. The advantage of Lau’s construction is that Ŵ (R)
(denoted by W(R) in [22]) is stable under Frobenius and the modified Verschiebung
without assumption for p = 2 (cf. [22, Lemma 1.7]). By [22, Theorem A], for R
a Noetherian complete local ring with perfect residue field of characteristic p, the
category of Dieudonné displays over R and the category of p-divisible groups over R
are equivalent. One could adapt Lau’s idea and modify the definition of Dieudonné
O-displays as follows to remove the assumption for p = 2 in Theorem 3.11.

Let [π] ∈ WO(O) be the Teichmüller lift of π. Then π− [π] is in the image of the

Verschiebung V and ε :=
V −1

(π − [π]) ∈ WO(O) is a unit (cf. [2, Lemma 2.24]). This
unit is under the notation u0 in [22]. Let R be a complete Noetherian local O-algebra
with perfect residue field k of characteristic p. Denote the image of ε in WO(R) by

ε as well. Define V : WO(R) → WO(R) by Vx = V εx. Then ŴO(R) is stable under
F and V. If p = 2, replacing V by V in Definition 3.10, we obtain Lau’s definition of
Dieudonné O-displays over R.

Remark 3.14. Let X be a p-divisible formal group over R and let (P,Q, F, F1)
be the associated display over R via the result of Zink-Lau. An O-action on X
corresponds to an O-action on (P,Q, F, F1). In particular, P is a module over W (R)⊗
O. If the O-action is strict in the sense that X is a formal π-divisible O-module (cf.
Definition 3.1, [2, Definition 2.4]), from the W (R) ⊗ O-module P , one could then
construct WO(R) modules and a well-defined O-display over R (cf. [45, Proposition
29], [2, Section 2.5]). This is crucial for the induction step in the proof of Theorem
3.11.

The equivalences in Theorem 3.11 provide us a powerful tool in the study of π-
divisible O-modules, in particular in the study of deformations (cf. Section 6). On
the other hand, deformations of p-divisible groups with general O-action are rather
difficult to describe. See [3, 9] for some special examples.

Definition 3.15. Let μO be the π-divisible O-module attached to the O-display

(WO(R), V WO(R), F , V −1

)

via Theorem 3.11. Let X be a π-divisible O-module over R. Then Hom(X,μO) is a
π-divisible O-module over R and we call it the Serre O-dual of X.

We note that there is a notion of dual O-display and [2] showed that the functor
BTO in Theorem 3.11 is compatible with duality. Theorem 3.11 works for very general



ON π-DIVISIBLE O-MODULES 17

base R. In next section, we take R to be a field k of characteristic p and deduce some
classification results. In Section 6, we apply Theorem 3.11 to study deformations of
π-divisible O-modules.

3.2. π-divisible O-modules over fields of characteristic p.

3.2.1. The perfect case.

Definition 3.16. Let k ∈ AlgO be a perfect field of characteristic p. A
Dieudonné O-module over k is a free WO(k)-module M of finite rank with opera-
tors F, V : M → M , such that

(1) F (ξm) = F ξF (m),
(2) V (F ξm) = ξV (m),
(3) FV = π.

A Dieudonné O-module M is called reduced if V : M → M is nilpotent modulo πM .

If (M,F, V ) is a Dieudonné O-module over k, then the pair (M,V ) is a (−1)-O-
crystal over k. Conversely, if (M,V ) is a (−1)-O-crystal over k such that πM ⊂ VM ,
then (M,πV −1, V ) is a Dieudonné O-module over k. This Dieudonné O-module
is reduced if V is nilpotent on M/πM . Denote by Crysk the category of (−1)-O-
crystals (M,V ) over k with πM ⊂ VM . Denote by RdCrysk the subcategory of
Crysk consisting of reduced objects.

Proposition 3.17. Let k ∈ AlgO be a perfect field of characteristic p.
(1) The category RdCrysk is equivalent to the category of formal π-divisible O-

modules over k.
(2) The category Crysk is equivalent to the category of π-divisible O-modules over

k.

Proof. We only prove the first statement, the other one is entirely similar. By the
above discussion and Theorem 3.11, it suffices to establish an equivalence between the
category of reduced Dieudonné O-modules over k and the category ndispO /k. Let
(M,F, V ) be a Dieudonné O-module over k. Define

P = (M,VM,F : M → M,F1 := V −1 : VM → M).

Then P is an O-display over k. Moreover, the map V � is given by

V � : M → WO(k)⊗WO(k),F M

m �→ 1⊗ V m.

The O-display P is nilpotent if and only if the Dieudonné O-module M is reduced.
Conversely, let P = (P,Q, F, F1) be an O-display over k. Define V : P → P by

V : P
V �

−−→ WO(k)⊗WO(k),F P → P

w ⊗ x �→ F−1

wx.

This makes sense because k is perfect and F is an automorphism of WO(k). Thus we
obtain a Dieudonné O-module over k. The proposition follows.

Remark 3.18. Let (M,V ) be a (−1)-O-crystal. Then it is an O-crystal attached
to a (formal) π-divisible O-module over k via the above equivalence if and only if its
Newton slopes are in the interval [0, 1] ((0, 1]).
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Let r, s ∈ Z≥0 with s ≥ r and (r, s) = 1. Define a (−1)-O-crystal Mr,s as follows.
As a free WO(k)-module, Mr,s has rank s. Let e1, . . . , es be a basis of Mr,s. Define
V : Mr,s → Mr,s by

V ei =

⎧⎪⎨⎪⎩
πei−1 if 2 ≤ i ≤ r + 1,

ei−1 if r + 2 ≤ i ≤ s,

es if i = 1.

It is a lattice of Nr,s (cf. Section 2.3). The corresponding F -linear morphism F :
Mr,s → Mr,s is defined by

Fei =

⎧⎪⎨⎪⎩
ei+1 if 1 ≤ i ≤ r,

πei+1 if r + 1 ≤ i ≤ s− 1,

πe1 if i = s.

Via the above equivalence, attached to Mr,s, there is a unique π-divisible O-module
Gr,s defined by the following exact sequence

0 → Mr,s
F r−V s−r

−−−−−−→ Mr,s → Gr,s → 0.

Here we regard Mr,s as a sheaf by base change (cf. [2, Theorem 2.12]). Now Theorem
2.20 gives us the following result.

Theorem 3.19. Let k ∈ AlgO be an algebraically closed field of characteristic p.
Every π-divisible O-module over k is isogenous to a direct product of O-modules Gr,s.

Remark 3.20. Sometimes, it is useful to write Nr,s = Fk〈F 〉/(F s − πs−r) and
Mr,s = Ak[F, V ]/(FV − π, F r − V s−r). Then we embed Mr,s into Nr,s by sending V
to πr+1−sF s−1.

3.2.2. The imperfect case. Let k ∈ AlgO be a field of characteristic p. Denote
by k1/q

n

the field extension of k by adjoining the qn-th roots of elements of k.

Definition 3.21. A potential formal π-divisible O-module over k is a pair (Z, n),
where n ∈ Z≥0, Z is a formal π-divisible O-module over k1/q

n

.

Lemma 3.22. Let X and Y be formal π-divisible O-modules over k. Then the
natural map

Homk(X,Y ) → Homk1/qn (Xk1/qn , Yk1/qn )

is a bijection.

Proof. We may assume that n = 1. Let R = k1/q ⊗k k
1/q. Then we have an exact

sequence

Homk(X,Y ) ↪→ Homk1/q (Xk1/qn , Yk1/qn ) ⇒ HomR(XR, YR),

where the last two arrows are induced from p1, p2 : R = k1/q ⊗k k1/q → k1/q.
In order to prove the lemma, it suffices to show that p∗1(φ) = p∗2(φ) for any
φ ∈ Homk1/q (Xk1/qn , Yk1/qn ).
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Let I = Ker(μ : R = k1/q⊗k k
1/q → k1/q). Here μ is induced from multiplication.

Then πI = 0 and Iq = 0. The claim follows from the rigidity lemma [16, Lemma
1.1.3]. Note that if a formal Lie group H is associated with an O-module, then it is
O-special in the sense that the O-action O → End(H) is given by

([a]X)i = aXi + terms with higher degree

for all a ∈ O.

Definition 3.23. Let (Z, n), (T,m) be two potential formal π-divisible O-
modules over k. Define

Hom((Z, n), (T,m)) = Hom
k1/ql (Zk1/ql , Tk1/ql ),

where l = max{m,n}.

Definition 3.24. A Dieudonné O-module over k is a finitely generated free
Ak-module M , together with an F -linear map F : M → M and an F−1

-linear map
V : M → M , such that FV = π.

A Dieudonné O-module is reduced if the operator V on M/πM is nilpotent.

Proposition 3.25. With the notation as above. The category of potential formal
π-divisible O-modules over k is equivalent to the category of reduced Dieudonné O-
modules over k.

Proof. Let (X,n) be a potential formal π-divisible O-module. Let (P,Q, F, F1)
be the O-display over kperf associated with X ⊗k1/qn kperf . Then as in the proof of
Proposition 3.17, P ⊗WO(kperf ) Ak is a reduced Dieudonné O-module over k.

Conversely, let (M,F, V ) be a reduced Dieudonné O-module over k. We have a
short exact sequence

0 → VM/πM → M/πM → M/VM → 0.

Let (e1, . . . , eh) be a basis of M over Ak. Assume that (e1, . . . , ed) induces a basis
of M/VM and (ed+1, . . . , eh) ⊂ VM . Define an O-display structure on M via the
structure equation{

Fei =
∑h

j=1 ξijej , for i = 1, . . . , d,

F1ej = V −1ej =
∑h

j=1 ξijej , for i = d+ 1, . . . , h.
(3.2.1)

Since ξij ∈ Ak, there exists a big N , such that ξij ∈ WO(k1/q
N

) for all i, j. Hence we

obtain an O-display over k1/q
N

, which is nilpotent since M is reduced. Therefore we

obtain a π-divisible formal O-module over k1/q
N

.
The above two constructions are clearly inverse of each other. The proposition

follows.

Remark 3.26. The category of potential formal π-divisible O-modules over k
and the category of formal π-divisible O-modules over k are obviously different. Yet
they are the same up to isogeny. More precisely, let Isogk be the category of π-divisible
formal O-modules over k up to isogeny, i.e., the objects are π-divisible O-modules over
k, and the morphisms are given by

HomIsog(X,Y ) := Hom(X,Y )⊗Q.
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Let (Z, n) be a potential π-divisible O-module over k. Note that Frn : k1/q
n → k1/q

n

factors through k, the π-divisible formal O-module Z(n) = Z⊗k1/qn ,Frnk
1/qn is defined

over k. Moreover, we have an isogeny FrnZ : Z → Z(n), which is an isogeny of potential
formal π-divisible O-modules (Z, n) and (Z(n), 1).

3.3. π-divisible O-modules over S. Let S be an F-scheme. In this section,
we study π-divisible O-modules over S. Such a module is also called a family of
π-divisible O-modules.

3.3.1. Decomposition of Frobenius O-modules. We first study Frobenius
O-modules and obtain a similar decomposition as in Lemma 2.14. The following
materials are similar to those in [43, Section 2]. The difference is that we now work
on O-algebras. Denote by FrS : S → S the Frobenius morphism of S.

Definition 3.27. Fix an integer a ∈ Z>0. A Frobenius O-module over S is a
finitely generated locally free OS-module M together with a FraS-linear map Φ : M →
M.

Lemma 3.28. Let R be a local F-algebra with maximal ideal m such that R is
m-adically separated. Let M be a finitely generated R-module. If there exists a FraR-
linear isomorphism Φ : M → M , then M is free. In particular, M is a Frobenius
O-module over S = SpecR.

Proof. Choose a minimal resolution of M

0 → U → P → M → 0,

where P is a finitely generated free R-module and U ⊂ mP . Since R is m-adically
separated, it suffices to show that U ⊂ mnP for all n ∈ Z>0. By the freeness of P ,
the linearization Φ� : M ⊗R,Fra R → M extends to Φ� : P ⊗R,Fra R → P and induces
a commutative diagram

P ⊗R,Fra R −−−−→ M ⊗R,Fra R

Φ�

⏐⏐� ⏐⏐�Φ�

P −−−−→ M.

(3.3.1)

Note that P/mP ∼= M/mM . Therefore modulo m, the arrows in the diagram are
all isomorphism. In particular, the left vertical arrow is an isomorphism modulo
m. By Nakayama’s lemma, it is surjective, hence it is an isomorphism since the
domain and the range are both free R-modules of the same rank. It follows that
Φ�(U ⊗R,Fra R) = U . Hence

U = Φ�(U ⊗R,Fra R) ⊂ Φ�(mP ⊗R,Fra R) ⊂ mqaP. (3.3.2)

The lemma follows by induction.

Definition 3.29. Let M be a Frobenius O-module over S. Define a functor
CM on SchS by

CM(T ) = {x ∈ Γ(T,MT ) | Φx = x}, (3.3.3)

for all T ∈ SchS .
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Proposition 3.30. The functor CM is represented by a scheme which is etale
and affine over S.

Proof. As explained in the proof of [43, Proposition 3], the functor is a sheaf for
the flat topology and the question is local on S, we may assume that S = Spec(R) is
affine and M is the sheaf associated with a free R-module M . Fix an isomorphism
M ∼= Rn and write the operator Φ in matrix form

Φx = Uxqa , x ∈ Rn.

Then the functor CM(A) := CM(SpecA) is the functor of solutions of the equation

x = Uxqa , x ∈ An,

which is a closed subscheme of the affine space An
R.

To prove that CM is etale, it suffices to show that if A → Ā is a surjection of
R-algebras with kernel a, such that a2 = 0, then the induced map

CM(A) → CM(Ā)

is a bijection. Indeed, let x̄ ∈ CM(Ā) and let x ∈ An be a lifting of x. Set ρ = Φx−x.
Then ρ ∈ a ⊗R M . Since Φ(a ⊗R M) = 0, we have Φ(x + ρ) = x + ρ. Therefore
x+ ρ ∈ CM(A) is the unique lifting of x in CM(A). The proposition follows.

Let Fa be the finite extension of F with degree a. Assume that S is an Fa-scheme.
Then CM may be considered as a sheaf of Fa-vector spaces. As explained after [43,
Proposition 3], because CM is unramified and separated over S, we have the following
lemma.

Lemma 3.31. With the notation as above, if S is connected and η ∈ S is a point,
then the map

CM(S) → CM(η)

is injective.

Let (M,Φ) be a Frobenius O-module over S. Assume that S = SpecK with K
a field over F. First, assume that K is algebraically closed. By a similar argument as
in Lemma 2.14, we have a decomposition

M = Met ⊕Mnil,

where Φ is bijective on Met and nilpotent on Mnil. By Lemma 2.21, we have

K ⊗Fa
CM(SpecK) ∼= Met. (3.3.4)

Assume that now K is separably closed, then CM(SpecK) = CM(Spec K̄). We define
Met ⊂ M via equation (3.3.4). For a general field K, let Ks be the separable closure
of K. Define

Met := (CM(SpecKs)⊗Fa Ks)Gal(Ks/K).

Then Φ acts bijectively on Met and acts nilpotently on M/Met. By reducing to the
case where K is algebraically closed, one sees that the functor M → Met is exact
and commutes with base change.
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The following lemma is entirely similar to [43, Lemma 4].

Lemma 3.32. Assume that S = SpecR and S is connected. Then the natural
map

CM(SpecR)⊗Fa
R → M (3.3.5)

is an injection onto a direct summand of M.

Assume that now S = SpecR, where R is a henselian local ring with maximal
ideal m. Then there is a unique Φ-invariant direct summand L ⊂ M, such that Φ is
bijective on L and is nilpotent on M/(L + mM) (cf. explanation after [43, Lemma
4]).

Definition 3.33. Let S be a scheme over F and (M,Φ) a Frobenius O-module
over S. For each point η ∈ S, define function μ(M,Φ) by

μ(M,Φ)(η) = dimFa
(CM)η̄.

Here η̄ is some geometric point over η.

Remark 3.34.

(1) If the function μ(M,Φ) is constant on S, there exists a unique Φ-invariant
submodule L ⊂ M, such that L is locally a direct summand of M, Φ acts
bijectively on L and nilpotently on M/L. Indeed, this follows from the
argument in [43, Pages 6-7].

(2) If the scheme S is perfect, then the exact sequence

0 → L → M → M/L → 0

splits canonically. Indeed, it suffices to prove this for S = SpecR with R
perfect. Assume that Φn is zero on M/L. Define Mnil = KerΦn. Then one
checks that Mnil → M/L is a bijection and M = Met ⊕Mnil.

Now we can state the purity result, whose proof is entirely similar to the proof of
[43, Proposition 5].

Proposition 3.35. Let R ∈ AlgF be a Noetherian local ring of dimension ≥ 2.
Let (M,Φ) be a Frobenius O-module over SpecR. Assume that the function μ(M,Φ)

is constant outside the closed point s of SpecR. Then it is constant on SpecR.

Proof. Without loss of generality, we may assume that R is a complete local ring
with algebraically closed residue field. Let S = SpecR and U = S − {s}. Since CM
is etale over S it admits a unique decomposition

CM = Cf
M

∐
C0

M,

where Cf
M is finite and etale over S and C0

M has empty special fibre and is affine as
a closed subscheme of CM. To prove the proposition, it suffices to prove that C0

M is
empty.

Define a function on U by Δ : η �→ �(C0
M,η). Note that �(C0

M,η) = �(CM,η) −
�(Cf

M,η) and the two terms on the right hand side are both constant on U , hence

Δ is constant on U . Therefore all geometric fibres of the map C0
M → U have the

same number of points. Suppose that C0
M is not empty, then C0

M → U is surjective,
which implies that U is affine. This is a contradiction to [12, Proposition 6.4]. The
proposition follows.
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3.3.2. The Φ-decomposition. Let G be a locally free O-group scheme over S
endowed with a homomorphism

Φ : G → G(s).

Here G(s) = G ×S,FrsS
S. First consider the simple case where S = Spec(K) with K

a field. Assume that G = SpecA with A ∈ AlgK . Then Φ induces a semi-linear
endomorphism

φ : A → A.

Let Aφ = {a ∈ A | φ(a) = a} and K ′ = {x ∈ K | Frs x = x}. Then Aφ is a bi-K ′-
algebra and GΦ = Spec(Aφ) is a finite scheme. We call GΦ the Φ-etale part of G. We
call the short exact sequence

0 → GΦ−nil → G → GΦ → 0

the Φ-connected-etale sequence of G. Note that Φ induces an isomorphism on
GΦ → (GΦ)(s) and acts nilpotently on GΦ−nil. Here nilpotent means that the natural
composition induced from Φ

G → G(s) → G(2s) → · · · → G(ns)

is trivial for n large.
For general scheme S over F, we still obtain a Φ-connected-etale sequence if G

satisfies a technical condition. More precisely, we have the following result, which
follows easily from Proposition 3.30.

Proposition 3.36. Let S be an F-scheme. Let G be a locally free O-group
scheme over S endowed with a homomorphism

Φ : G → G(s).

Assume that the function

S → Z

x �→ Rank((Gx)
Φx)

(3.3.6)

is constant. Then there exists an exact sequence

0 → GΦ−nil → G → GΦ → 0

such that Φ induces an isomorphism GΦ → (GΦ)(s) and acts nilpotently on GΦ−nil.

Let X be a π-divisible O-module over a field K with a homomorphism Φ : X →
X(s). Define XΦ, the Φ-etale part of X by

XΦ := lim−→X[πn]Φ,

where X[πn] is the πn-torsion of X. Certainly, XΦ is a π-divisible O-module. The
following corollary is clear.

Corollary 3.37. Let X be a π-divisible O-module over an F-scheme S. Assume
that for each geometric point η → S the height of the Φ-etale part of Xη is the same.
Then a Φ-connected-etale sequence of X

0 → XΦ−nil → X → XΦ → 0
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exists and XΦ commutes with arbitrary base change.

By Proposition 3.30 and Lemma 3.31, we have the following result (cf. [32,
Corollary 1.10]).

Corollary 3.38. Let S be a connected F-scheme. Let G → S be a finite, locally
free O-group scheme. Let Φ : G → G(s) be an isomorphism. Then there exists a finite
etale morphism T → S, and a morphism T → SpecFs, such that GT is obtained by
base change from an O-group scheme H over Fs, i.e.,

GT
∼= H ×Spec Fs T.

Moreover, Φ is induced from the identity on H.

This result has a generalization to π-divisible O-modules (cf. Corollary 3.52).

3.3.3. Completely slope divisible O-modules. Let S be a scheme over F.
For a scheme G over S, recall that

G(n) = G×S,FrnS
S.

Denote by Fr = FrG : G → G(1) the Frobenius morphism relative to S. If G is a
finite locally free commutative group scheme, denote by Ver = VerG : G(1) → G the
Verschiebung morphism.

Definition 3.39. Let X be a π-divisible O-module over k, where k ∈ AlgO is a
field of characteristic p. Let λ be a rational number. We call X isoclinic of slope λ, if
there exist integers s ≥ r ≥ 0, s > 0 such that λ = r/s, and a π-divisible O-module
Y over k, which is isogenous to X such that

π−r FrsY : Y → Y (s) (3.3.7)

is an isomorphism. Note that the last condition is equivalent to saying that

π−(s−r) VersY : Y (s) → Y (3.3.8)

is an isomorphism.
In general, a π-divisible O-module over an F-scheme S is called isoclinic of slope

λ, if for each point s ∈ S, the fiber Xs is isoclinic of slope λ.

Definition 3.40 (cf. [32, Definition 1.2]). Let S be an F-scheme. Let s > 0 and
r1, . . . , rm be integers such that s ≥ r1 > r2 > · · · > rm ≥ 0. Let X be a π-divisible
O-module over S. We say that X is completely slope divisible (short by CSD) with
respect to these integers if X has a filtration of π-divisible O-modules

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X,

such that the following two properties hold:

• π−ri FrsXi
: Xi → X

(s)
i is an isogeny for 1 ≤ i ≤ m;

• π−ri FrsXi/Xi−1
: Xi/Xi−1 → (Xi/Xi−1)

(s) is an isomorphism for 1 ≤ i ≤ m.

Remark 3.41.

(1) We do not require that ri and s are relatively prime. The key point is to give
the set of rational numbers (ri/s).
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(2) In terms of the Verschiebung morphism, the two conditions in the definition
are equivalent to the following

• πri−s VersXi
: X

(s)
i → Xi is an isogeny for 1 ≤ i ≤ m;

• πri−s VersXi/Xi−1
: (Xi/Xi−1)

(s) → Xi/Xi−1 is an isomorphism for 1 ≤
i ≤ m.

In this paper, we take the definition that is consistent with [32, Definition
1.2].

(3) The subobjects Xi are uniquely determined if they exist. Indeed, consider
the isogeny

Φ = π−rm FrsX : X → X(s).

Then X/Xm−1 is the Φ-etale part of X. Hence Xm−1 is uniquely determined
if it exists (cf. Section 3.3.1 and Corollary 3.37). The claim then follows by
induction.

(4) Let K ∈ AlgF be a field. A π-divisible O-module X over K is CSD if and
only if the base change X ⊗K L is CSD for some field L ⊃ K. This follows
from the remark before [32, Proposition 1.3].

Proposition 3.42. Let k ∈ AlgO be an algebraically closed field of characteristic
p. An isoclinic π-divisible O-module Y over k is CSD if and only if it can be defined
over a finite field, i.e., if and only if there exists a π-divisible O-module Y ′ over a
finite extension F′ of F and Y ∼= Y ′ ⊗F′ k.

Proof. Assume that Y is slope divisible with respect to s ≥ r ≥ 0. Let (M,V ) be
the covariant Dieudonné O-module of Y . Set Φ = π−rV s. By assumption, Φ : M →
M is a semi-linear isomorphism of M . By Lemma 2.14, M has a basis consisting of
Φ-invariant vectors. Let F′ be the extension of F with degree s. Define M0 = MΦ.
Then M0 is a Dieudonné O-module over F′. Let Y ′ be the π-divisible O-module over
F′ attached to M0. Then Y ∼= Y ′ ⊗F′ k since M = M0 ⊗WO(F′) WO(k).

Conversely, assume that Y ∼= Y ′ ⊗F′ k, where Y ′ is a π-divisible O-module over
F′ and is isoclinic over F′ of slope r/s. Let (M,V ′) be the Dieudonné O-module over
F′ of Y ′. Then there exists a finitely generated free WO(F′)-module M ′ ⊂ M ⊗ Q

such that πmM ′ ⊂ M ⊂ M ′ for some m ∈ Z≥0 and π−rV s(M ′) = M ′. Then
Φ = π−rV s is an automorphism of M ′/πmM ′. Note that M ′/πmM ′ is a finite set,
hence Φt acts trivially on this set for some t. Therefore, Φt(M) = M and Φt induces
an automorphism of Y , i.e., Y is slope divisible with respect to st ≥ rt ≥ 0.

Proposition 3.43. Let S be an integral F-scheme with function field K. Let
X be a π-divisible O-module over S with constant Newton polygon. Assume that XK

is CSD with respect to integers s ≥ r1 > r2 > · · · > rm ≥ 0. Then X is CSD with
respect to the same integers.

Proof. Let Φ = π−rm Frs : X → X(s). This quasi-isogeny is an isogeny since it is
an isogeny over the generic point. By Corollary 3.37, X admits a Φ-connected-etale
sequence

0 → XΦ−nil → X → XΦ → 0.

The proposition then follows easily by induction.

In the following, we prove the following result.
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Theorem 3.44. Let k ∈ AlgO be a field of characteristic p. Any π-divisible
O-module X over k is isogenous to a CSD π-divisible O-module over k. Moreover,
the degree of the isogeny is bounded by a constant that depends only on the height of
X.

Lemma 3.45. Let k ∈ AlgO be a field of characteristic p. Let X → Y be a
morphism of π-divisible O-modules over k. Then there is a unique factorization in
the category of π-divisible O-modules

X → X ′ → Y ′ → Y

with the following properties:
(1) X ′ → Y ′ is an isogeny.
(2) Y ′ → Y is a monomorphism of π-divisible O-modules.
(3) For each n, the morphism X[πn] → X ′[πn] is an epimorphism of finite group

schemes.
Moreover, this factorization commutes with base change to another field.

Proof. This is entirely similar to [43, Proposition 8]. Roughly speaking, let A be
the kernel of X → Y in the category of flat sheaves of abelian groups. There exists
a unique A′ ⊂ A such that A′ is a π-divisible O-module and the quotient A/A′ is a
finite group scheme. Then we may define X ′ = X/A′ and Y ′ = X ′/(A/A′).

In the same setting as in the above lemma, the group Y ′ is the image of X → Y
in the category of flat sheaves. We call Y ′ the small image of X → Y .

Lemma 3.46. If k is perfect, then Theorem 3.44 holds.

Proof. Let (M,V ) be the (−1)-O-crystal over Ak associated with X. Assume
that Newton(M ⊗ Fk, V ) = r1/s1. By Lemma 2.10, there exists a π−r1V s1 -stable
lattice in M ⊗ Fk, say M ′. Write Φ = π−r1V s1 . By Lemma 2.14, we have a short
exact sequence

0 → (M ′)nil → M ′ → (M ′)et → 0

with respect to Φ. Note that (M ′)et �= {0} since Newton(M ⊗Fk, V ) = r1/s1. Hence
Rank(M ′)nil < RankM ′. By induction, there exists a lattice Mc ⊂ (M ′)nil, such that
Mc is CSD and is Φ-stable. Indeed, there exists a lattice M ′

c ⊂ (M ′)nil, such that M ′
c

is CSD and is π−r2φs2 -stable. Then we may take Mc = M ′
c +ΦM ′

c +Φ2M ′
c + · · · .

Pull back with Mc → (M ′)nil, we obtain

0 → Mc → M ′′ → (M ′)et → 0.

Then M ′′ is CSD and the proposition follows.
To prove the last claim, note that we may take M ′ = M + ΦM + · · · + Φh−1M

from the proof of Lemma 2.10. Hence F s1(h−1)M ′ ⊂ M since r1 ≤ s1. Because we
can always choose s1 ≤ h. The lemma follows from the fact that the index of M in
M ′ (M ′ : M) ≤ qh

2(h−1).

Proof of Theorem 3.44. Assume now that k is not perfect. Base change X to
kperf and assume that the first Newton slope of the (−1)-O-crystal of Xkperf is r/s.
Let Y be the small image of the following composition

X((h−1)s) × · · · ×X(s) ×X
α−→ X((h−1)s) β−→ X,
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where α |X((h−i)s)= π−(i−1)r Fr(i−1)s, β is induced from Ver : X(1) → X. Base change
to kperf , we see that Y → X is an isogeny and Y is slope divisible with respect to
s ≥ r, i.e.

Φ := π−r FrsY : Y → Y (s)

is an isogeny. Hence we have Φ-connected-etale sequence

0 → Y Φ−nil → Y → Y Φ → 0.

From our construction, Y Φ is CSD and isoclinic with respect to s ≥ r and the slopes
of Y Φ−nil are strictly greater than r/s. Hence the theorem follows by induction on
the height of X.

3.3.4. The slope filtration.

Definition 3.47. Let X be a π-divisible O-module over S. A slope filtration of
X is a filtration

0 = X0 ⊂ X1 ⊂ · · · ⊂ Xm = X

consisting of π-divisible sub-O-modules of X, such that there exist rational numbers
1 ≥ λ1 > · · · > λm ≥ 0 and the subquotient Xi/Xi−1 is isoclinic of slope λi for
1 ≤ i ≤ m.

If X is a CSD π-divisible O-module, then X admits a slope filtration. Hence over
a field of characteristic p, up to isogeny, every π-divisible O-modules admits a slope
filtration by Theorem 3.44. Over a connected base scheme S of positive dimension, it
is easy to see that X admits a slope filtration only if X has constant Newton polygon.
The converse is not true. Nevertheless, we have the following result.

Theorem 3.48. Let h be a natural number. There exists a positive integer N(h)
with the following property. Let S be an integral, normal Noetherian F-scheme. Let
X be a π-divisible O-module over S of height h with constant Newton polygon. Then
there is a CSD π-divisible O-module Y over S and an isogeny φ : X → Y over S with
deg(φ) ≤ N(h).

In particular, a π-divisible O-module over an integral, normal Noetherian F-
scheme S with constant Newton polygon is isogenous to a π-divisible O-module over
S that admits a slope filtration.

The proof is entirely similar to the proof of [32, Theorem 2.1]. The theorem
follows from the following lemmas, whose proofs are also entirely similar to the proofs
of the results in [32, Section 2]. We give the statements and point out the adjustments
in the arguments.

Let X be a π-divisible O-module over a scheme S, let d be a natural number.
Define a functor M on S-schemes by

M(T ) = {(Z, α) | Z ∈ πModT , α : XT → Z is an isogeny of degree d}. (3.3.9)

Here πModT denotes the category of π-divisible O-modules over T .

Lemma 3.49. The functor M is representable by a projective scheme over S.

Proof. For any locally free sub-O-group scheme G ⊂ XT , there is a unique
isogeny α : XT → XT /G with kernel G. Let n be the natural number such that
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qn ≥ d. Then G is a finite, locally free sub-O-group scheme on X[πn]T . Assume that
X[πn] = SpecS A. Then the affine algebra of G is a quotient of the locally free sheaf
AT . Hence we obtain a point of the Grassmannian of A. Therefore M is representable
by a closed subscheme of this Grassmannian.

Lemma 3.50. For every h ∈ Z>0, there exists a number N(h) ∈ Z with the
following property. Let S be an integral Noetherian scheme over F. Let X be a
π-divisible O-module of height h over S with constant Newton polygon. There is a
non-empty open subset U ⊂ S, and a projective morphism p : S̃ → S of integral
schemes which induces an isomorphism p : p−1(U) → U such that there exist a CSD
π-divisible O-module Y over S̃, and an isogeny XS̃ → Y , whose degree is bounded by
N(h).

Proof. This is entirely similar to [32, Lemma 2.4]. We use Theorem 3.44 instead
of [43, Proposition 12].

Lemma 3.51. Let k be an algebraically closed field of characteristic p. Let s ≥
r1 > r2 > · · · > rm ≥ 0 and d > 0 be integers. Let X be a π-divisible O-module over k.
Then there are up to isomorphism only finitely many isogenies X → Z of degree d to
a π-divisible O-module Z, which is CSD with respect to s ≥ r1 > r2 > · · · > rm ≥ 0.

Proof. This is entirely similar to [32, Lemma 2.5]. We use Lemma 2.22 instead of
[47, Theorem 6.26].

Now Theorem 3.48 follows from the same argument of [32, Theorem 2.1]. It has
interesting consequences. One may find more details in [32, Section 3]. As an example,
we prove the following constancy result.

Corollary 3.52. Let S be a Noetherian integral normal scheme over F̄. Let K
be the function field of S and let K̄ be an algebraic closure of K. Denote by L ⊂ K̄
the maximal unramified extension of K with respect to S. Let T be the normalization
of S in L. Let X be an isoclinic π-divisible O-module over S. Then there exist a
π-divisible O-module X0 over F̄ and an isogeny X ×S T → X0 ×Spec(F̄) T , such that
the degree of this isogeny is smaller than an integer which depends only on the height
of X.

Proof. By Theorem 3.48, there exists an isogeny φ : X → Y , where Y is a CSD
π-divisible O-module over S. There are integers s ≥ r ≥ 0 such that

Φ = π−r Frs : Y → Y (s)

is an isomorphism. By Corollary 3.38, for each Y [n], there exists an O-group scheme
Zn over Fs such that

Y [πn]T ∼= Zn ×Spec(Fs) T.

Taking inductive limit of Zn, we obtain a π-divisible O-module Z over Fs. Then we
may take X0 = Z and the corollary follows.

4. Minimal π-divisible O-modules. In this section, following the idea of [31],
we study minimal π-divisible O-modules over an algebraic closed field of characteristic
p. The main goal is to prove that these objects are determined (up to isomorphism)
by their π-torsion parts (cf. Theorem 4.7).
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4.1. Minimal π-divisible O-modules. In this section, we fix an algebraically
closed field k ∈ AlgO of characteristic p. Letm and n be a pair of non-negative integers
such that (m,n) = 1. In Section 2.3, we have constructed a (−1)-O-isocrystal Nm,m+n

over F. Inside Nm,m+n, there exists a (−1)-O-crystal Mm,m+n with corresponding
π-divisibleO-module Gm,m+n. Here following [6, Section 5.3], we construct another π-
divisibleO-moduleHm,m+n that is isogenous toGm,m+n by writing down its covariant
Dieudonné O-module M(Hm,m+n) explicitly.

Specifically, M(Hm,m+n) is a free WO(F)-module of rank m + n with basis
e0, e1, . . . , em+n−1. For j ∈ Z≥0, we write ej = πaei if j = i + a(m + n). The
actions of F and V on M(Hm,m+n) are given by F (ei) = ei+n and V (ei) = ei+m.
Note that there is a special object Π ∈ End(M(Hm,m+n)) given by Π(ei) = ei+1.

Remark 4.1. It is easy to see that M(Hm,m+n) is isoclinic of slope m/(m+ n)
and M(Hm,m+n) ⊗ Q = Nm,m+n. The isogeny between Hm,m+n and Gm,m+n is
induced from an inclusion Mm,m+n ↪→ M(Hm,m+n) by identifying Mm,m+n with
WO(F)[F, V ] · e0.

Each Newton polygon β with slopes in [0, 1] corresponds to a (−1)-O-isocrystal
(N,V ) over F, hence corresponds to an isogeny class of π-divisible O-modules over
F. Let ⊕iG

ri
mi,mi+ni

be a representative of this isogeny class. Define H(β) :=
⊕iH

ri
mi,mi+ni

. It is a π-divisible O-module determined by the Newton polygon β.

Definition 4.2 (Cf. [31, Section 1]). A π-divisibleO-moduleX is calledminimal
if there exist a Newton polygon β and an isomorphism Xk

∼= H(β)k.

Remark 4.3. By duality, one may define a maximal Dieudonné O-modules
M ′(Hm,m+n) as follows. It is a free WO(F)-module with basis f0, f1, . . . , fm+n−1.
The actions of F and V are given by

F · fi =
{
πfi+m if 0 ≤ i ≤ n− 1,

fi−n if n ≤ i ≤ m+ n− 1;
V · fi =

{
πfi+n if 0 ≤ i ≤ m− 1,

fi−m if m ≤ i ≤ m+ n− 1.

(4.1.1)
But it is easy to check that there is an injection of Dieudonné O-modules
M ′(Hm,m+n) ↪→ M(Hm,m+n) by fi �→ πem+n−1−i, which identifies M ′(Hm,m+n)
with πM(Hm,m+n). Hence to understand maximal objects, it suffices to understand
minimal ones.

Let H = Hm,m+n be the minimal π-divisible O-module of type (m+n,m) over F.
Let Fm+n be the extension of F with degree m+n. Let σ be the Frobenius morphism
of WO(Fm+n). Choose a, b ∈ Z such that am + bn = 1. The following lemma is a
generalization of [6, Lemma 5.4].

Lemma 4.4. Let k ∈ AlgO be an algebraically closed field of characteristic p.
With the notation as above,

End(Hk) = WO(Fm+n)[Π],

where λ ·Π = Π · σb−a(λ) for λ ∈ WO(Fm+n).
Moreover, the ring End(Hk) is a discrete valuation ring with uniformizer Π. Con-

sider the filtration N• of M(Hk) = M(H)⊗WO(k) given by

M(Hk) = N (0) ⊃ · · · ⊃ N (j) ⊃ · · ·
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with

N (j) = 〈ej , ej+1, . . . 〉 =
∑
t≥j

WO(k)et = Πj(M(Hk)).

For every τ ∈ End(Hk) and every j we have τ(N (j)) = N (j+v), where v = v(τ) is the
valuation of τ .

Proof. Note that F bV a(ei) = ei+1 = Π(ei). Let f : M(Hk) → M(Hk) be an
endomorphism of Dieudonné O-modules. Then f commutes with F and V , hence
commutes with Π. From this, one deduces that End(M(Hk)) = WO(Fm+n)[Π]. The
relation λ ·Π = Π · σb−a(λ) for λ ∈ WO(Fm+n) follows from Π = F bV a.

Note that Πm+n = π. One sees that WO(Fm+n)[Π]⊗Q is the central simple alge-
bra over WO(F) of rank (m+ n)2 and invariant n/(m+ n). Moreover, WO(Fm+n)[Π]
is a maximal order of this central simple algebra. The other claims follow easily.

Lemma 4.5. Let k ∈ AlgO be an algebraically closed field of characteristic p. Let
ϕ : Hk → X and ψ : Hk → X be isogenies of π-divisible O-modules. Then either
ϕ = ψ ◦ τ or ψ = ϕ ◦ τ for some τ ∈ End(Hk). If deg(ϕ) = deg(ψ), then τ is an
automorphism of Hk. A similar result holds for isogenies X → Hk.

Proof. The proof is entirely similar to that of [6, Lemma 5.5]. Let β : X → Hk be
any isogeny. Then both β ◦ϕ and β ◦ψ are in End(Hk), which is a discrete valuation
ring. Hence either (β ◦ ψ)−1 ◦ (β ◦ ϕ) ∈ End(Hk) or (β ◦ ϕ)−1 ◦ (β ◦ ψ) ∈ End(Hk).
The lemma follows.

Lemma 4.6. Let Q be a nonzero Dieudonné O-module over F. Suppose that there
exists C ∈ Q, such that

(1) there exist coprime integers m and n with Fm+nC = πnC,
(2) Q is generated by {π−[jn/(m+n)]F jC | 0 ≤ j < m+ n} as a WO(F)-module.

Then Q ∼= M(Hm,m+n).

Proof. This is clear. The isomorphism is given by C �→ e0.

Our next goal is to prove a generalization of [31, Theorem (1.2)]. The strategy of
the proof is similar to that in [31], i.e. we translate it into a question on Dieudonné
O-modules.

Theorem 4.7. Let X be a π-divisible O-module over an algebraically closed field
k ∈ AlgF. Let β be a Newton polygon with slopes in [0, 1]. If X[π] ∼= H(β)[π], then
X ∼= H(β).

Remark 4.8. The following proof is adapted from, hence very similar to the
proof in [31]. But Theorem 4.7 is not a consequence of [31, Theorem (1.2)].

Remark 4.9. Note that the Newton slope is defined differently in [31], e.g, the
Newton slope of Hm,m+n in [31] is n/(m+ n) and in this paper is m/(m+ n).

Remark 4.10. As in [31, Section 1, Convention], if the Newton slope of X
is 1 with multiplicity 1, then the corresponding (−1)-O-isocrystal N is given by
(Frac(WO(k)), V = V ). It is easy to check that each (−1)-O-crystal in N is iso-
morphic to (WO(k), V ). Theorem 4.7 holds in this case. By duality, it also holds if
the Newton slopes are 0. Hence to prove the theorem, we may assume that all group
schemes are of local-local type.

In the following, we prove Theorem 4.7 with the strategy explained in Section
1.4.
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4.2. Oort’s slope filtration. Fix positive integers ri, mi, ni (1 ≤ i ≤ t), such
that (mi, ni) = 1 for all i, and mi/ni �= mj/nj if i �= j. Let hi = mi + ni. Assume
that the numbers are ordered in a way such that λ1 := n1/h1 < · · · < λt := nt/ht.
Define

H :=
∏

1≤i≤t

(Hmi,mi+ni)
ri .

Proposition 4.11. Suppose that X is a π-divisible O-module over k such that
X[π] ∼= H[π]. Suppose that λ1 = n1/h1 ≤ 1/2. Then there exists a π-divisible sub-O-
module X1 ⊂ X such that

X1
∼= (Hm1,m1+n1

)r1 , (X/X1)[π] ∼=
∏

2≤i≤t

(Hmi,mi+ni
[π])ri .

Let M be the covariant Dieudonné O-module of X, Qj the covariant Dieudonné
O-module ofHmj ,mj+nj

for all 1 ≤ j ≤ t. SinceX[π] ∼= H[π], we have an isomorphism
of WO(k)[F, V ]-modules

M/πM ∼= ⊕1≤j≤t(Qj/πQj)
rj .

As in [31, Section 2.5], we construct a map

v : M → Q≥0 ∪ {∞}.
Let Πj be the uniformizer of End(Qj) as defined in Section 4.1. For each 1 ≤ j ≤ t,

choose A
(j)
i,s ∈ Qj with i ∈ Z≥0 and 1 ≤ s ≤ rj such that

(1) The elements A
(j)
i,s generate Qj ;

(2) ΠjA
(j)
i,s = A

(j)
i+1,s, F ·A(j)

i,s = A
(j)
i+nj ,s

, V ·A(j)
i,s = A

(j)
i+mj ,s

.

As a vector space over k, Qj/πQj has a basis consisting of A
(j)
i,s (mod πQj) (0 ≤

i < hj). We write

A
(j)
i = (A

(j)
i,s | 1 ≤ s ≤ rj) ∈ (Qj)

rj

for the vector with coordinate A
(j)
i,s in the summand on the s-th place.

Let B ∈ M . Then

B (mod πM) =
∑

j, 0≤i<hj , 1≤s≤rj

b
(j)
i,s (A

(j)
i,s (mod πQj)),

for uniquely determined b
(j)
i,s ∈ k. Then the map v is defined as follows.

• v(0) = ∞;
• v(B) = min

j, i, s, b
(j)
i,s �=0

i
hj

if B �∈ πM ;

• v(B) = β + v(π−βB) if B ∈ πβM − π(β−1)M.
For every ρ ∈ Q, we define

Mρ = {B ∈ M | v(B) ≥ ρ} ⊂ M.

Then πMρ ⊂ Mρ+1. Let T be the least common multiple of h1, · · · , ht. Then
Im(v) ⊂ 1

T Z≥0. Note that v(B) ≥ d ∈ Z if and only if B = πdB′ for some B′ ∈ M .
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Hence ∩ρ→∞Mρ = {0}.

For each j, i, s with 1 ≤ j ≤ t, 0 ≤ i < hj , 1 ≤ s ≤ rj , choose B
(j)
i,s ∈ M such

that

B
(j)
i,s (mod πM) = A

(j)
i,s (mod πQj).

Define B
(j)
i+βhj ,s

= πβB
(j)
i,s . Then

v(B
(j)
i,s ) = i/hj for all i ≥ 0, all j, and all s.

Hence Mρ = WO〈B(j)
i,s | v(B(j)

i,s ) ≥ ρ〉. Similarly, we write

B
(j)
i = (B

(j)
i,s | 1 ≤ s ≤ rj) ∈ Mrj .

Define

P = WO(k)〈B(j)
i,s | j ≥ 2, i < hj〉 ⊂ M,

N = WO(k)〈B(1)
i,s | i < h1〉 ⊂ M.

(4.2.1)

Then M = N ⊕P is a direct sum decomposition of M as a WO(k)-module. Our plan
is to modify N so that we obtain a direct summand of M as a Dieudonné O-module.

Write m1 = m, n1 = n, h = h1 = m+n, r1 = r. By assumption, m ≥ n > 0. For
each i ∈ Z≥0, define integer δi by

ih ≤ δin < im+ (i+ 1)n = ih+ n

and non-negative integer γi by

δ0 = 0, δ1 = γ1 + 1, · · · , δi =

i∑
j=1

(γi + 1), · · · .

For 1 ≤ i ≤ n, define

f(i) = δi−1n− (i− 1)h.

One checks easily that f defines a bijective map

f : {1, 2, · · · , n} → {0, 1, · · · , n− 1}.

The inverse map f ′ : {0, 1, · · · , n − 1} → {1, 2, · · · , n} is given by f ′(x) ≡ 1 − x
h

(mod n).

In (Q1)
r we have the vectors A

(1)
i . For 1 ≤ i ≤ n, write C ′

i = A
(1)
f(i). Hence

C ′
f ′(i) = A

(1)
i . Thus we have

• F γiC ′
i = V C ′

i+1 for 1 ≤ i < n;
• F γnC ′

n = V C ′
1;

• F δiC ′
1 = πiC ′

i+1 for 1 ≤ i < n;
• FhC ′

1 = πnC ′
1. Note that h = δn and m =

∑n
i=1 γi.
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One sees that

{F jC ′
i | 1 ≤ i ≤ n, 0 ≤ j ≤ γi} = {A(1)

i | 0 ≤ i < h}.

Choose Ci,s := B
(1)
f(i),s for 1 ≤ i ≤ n. Then the set

{F jCi,s | 1 ≤ i ≤ n, 0 ≤ j ≤ γi, 1 ≤ s ≤ r}

is a WO(k)-basis for N , and

F γiCi,s − V Ci+1,s ∈ πM for 1 ≤ i < n, F γnCn,s − V C1,s ∈ πM.

Write Ci = (Ci,s | 1 ≤ s ≤ r) ∈ Mr.

Lemma 4.12. With the notation as above, the objects we constructed satisfy the
following properties.

(1) For every ρ ∈ Q≥0, the multiplication by π map π : Mρ → Mρ+1 is surjective.
(2) FM ⊂ Mn

h
.

(3) For every i and s, FB
(1)
i,s ∈ M i+n

h
; for every i, s, and every j > 1, FB

(j)
i,s ∈

M i
hj

+n
h+ 1

T
. Recall that T is the least common multiple of h1, . . . , ht.

(4) For every ρ ∈ Q≥0, FMρ ⊂ Mρ+n
h
.

(5) For every 1 ≤ i ≤ n, F δiC1 − πiB
(1)
f(i+1) ∈ (Mi+ 1

T
)r; moreover, F δnC1 −

πnC1 ∈ (Mn+ 1
T
)r.

(6) If u ∈ Z such that u > Tn, then for each ξN ∈ (N ∩ M u
T
)r, there exists

ηN ∈ (N ∩M u
T −n)

r such that

(Fh − πn)ηN ≡ ξN (mod (Mu+1
T

)r).

Proof.

(1) The set Mρ+1 is generated by elements B
(j)
i,s with i/hj ≥ ρ+ 1. Since ρ ≥ 0,

we have i ≥ hj . The claim follows since B
(j)
i,s = π ·B(j)

i−hj ,s
.

(2) By construction, we have

• FB
(j)
i,s = B

(j)
i+nj ,s

+ πξ for some ξ ∈ M , if 0 ≤ i < mj ;

• FB
(j)
i,s = πB

(j)
i+nj−hj ,s

+ πη for some η ∈ M , if mj ≤ i < hj .
The claim follows.

(3) The argument is similar as above. For all 1 ≤ j ≤ t and all β ∈ Z≥0, we have

• FB
(j)
i,s = B

(j)
i+nj ,s

+ πβ+1ξ for some ξ ∈ M , if βhj ≤ i < mj + βhj ;

• B
(j)
i,s = V B

(j)
i−mj ,s

+ πβ+1η for some η ∈ M , if mj + βhj ≤ i < (β+1)hj .

Note that nj/hj > n/h if j �= 1. In the first case, v(B
(j)
i+nj ,s

) = (i + nj)/hj ,

v(πβ+1ξ) ≥ β + 1 > (i+ nj)/hj . The claim follows. In the second case,

v(FB
(j)
i,s ) ≥ min{v(πB(j)

i−mj ,s
), v(πβ+1Fη)}.

Note that v(πB
(j)
i−mj ,s

) = (i + nj)/hj , v(πβ+1Fη) ≥ (β + 1) + v(Fη) ≥
β + 1 + n/h. The claim follows.

(4) This follows from (3).



34 C. CHENG

(5) Write Cn+1 = C1. From construction, for 1 ≤ i ≤ n, we have

F γiCi = V Ci+1 + πξi for some ξi ∈ Mr.

Hence

F δiC1 = πiCi+1 +
∑

1≤l≤i

πlF δi−δlFξl, 1 ≤ i ≤ n.

By our construction, ih ≤ δin < ih+ n. Then

lh+ (δi − δl)n+ n > ih.

The claim follows.
(6) If (l− 1)/h < u/T < l/h for some l ∈ Z, then u < u+1 ≤ lT/h. In this case,

N ∩M u
T
= N ∩Mu+1

T
and we may take ηN = 0.

Suppose that u/T = l/h for some l ∈ Z. Then N ∩ M u
T

= N l
h
⊃ N l+1

h
=

N ∩Mu+1
T

. In this case (Fh − πn)(N ∩M u
T −n) ⊂ N l

h
+Mu+1

T
and it induces

a morphism

Fh − πn : N ∩M u
T −n → N l

h
+Mu+1

T
/Mu+1

T

∼= N l
h
/N l+1

h
.

The last term N l
h
/N l+1

h
is a vector space over k spanned by the residue classes

B̄
(1)
l,s of B

(1)
l,s . Let ysB̄

(1)
l,s ∈ N l

h
/N l+1

h
with ys ∈ k. Since k is algebraically

closed, we could find xs ∈ k such that xqn

s − xs = ys. Let x̃s ∈ WO(k) be a
lifting of xs. Define

ηN =
∑
s

x̃sB
(1)
l−nh,s.

Then ηN has the required property and the claim follows.

Lemma 4.13. Let u ∈ Z with u ≥ nT + 1. Suppose that D1 ∈ Mr such that
D1 ≡ C1 (mod (M 1

T
)r) and such that ξ := FhD1 − πnD1 ∈ (M u

T
)r. Then there

exists η ∈ (M u
T −n)

r such that for E1 := D1 − η we have E1 ≡ C1 (mod (M 1
T
)r) and

such that FhE1 − πnE1 ∈ (Mu+1
T

)r.

Proof. Since M = N × P , there exists a unique pair (ξN , ξP ) ∈ Nr × P r with
ξ = ξN + ξP . By assumption ξ ∈ (M u

T
)r, we have ξ∗ ∈ (∗ ∩M u

T
)r for ∗ = N, P . By

Lemma 4.12, there exists ηN ∈ (N ∩M 1
T
)r such that

(Fh − πn)ηN ≡ ξN (mod (Mu+1
T

)r).

As M u
T

⊂ Mn, choose ηP such that πnηP = ξP . Then ηP ∈ (M u
T −n)

r ⊂ (M 1
T
)r.

Define η = ηN + ηP . It is easy to check that this η satisfies the required properties
and the lemma follows.

Lemma 4.14. There exists E1 ∈ Mr such that (Fh − πn)E1 = 0 and E1 ≡ C1

(mod (M 1
T
)r).

Proof. For u ∈ Z≥nT+1, by Lemma 4.13, there exists a D1(u) ∈ Mr, such that
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• D1(u) ≡ C1 (mod (M 1
T
)r);

• (Fh − πn)D1(u) ∈ (M u
T
)r;

• D1(u)−D1(u+ 1) ∈ (M u
T −n)

r.
The sequence D1(u) converges since ∩ρ→∞Mρ = 0. Let E1 = limu→∞ D1(u). Then
E1 satisfies the expected properties and the lemma follows.

Choose E1 as in Lemma 4.14. For each j ∈ Z≥0, π
−[ jnh ]F jE1 ∈ Mr. Define

N ′ :=
∏

1≤s≤r

∏
1≤j<h

WO(k)〈π−[ jnh ]F jE1s〉 ⊂ M.

Lemma 4.15. With the notation as above, N ′ ⊂ M is a sub Dieudonné O-module
of M . Moreover, there is an isomorphism

M(Hr
m,m+n)

∼= N ′.

Proof. For the first claim, it suffices to show that N ′ is stable under F and V .
This follows form Lemma 4.12. The last claim follows from Lemma 4.6.

Lemma 4.16. With the notation as above, N ′ is a WO(k)-module direct summand
of M and M = N ′ ⊕ P .

Proof. For a module Z over WO(k), denote by Z̄ the natural tensor product
Z ⊗WO(k) k. If z ∈ Z, denote by z̄ the image of z in Z̄. To prove the lemma, by
Nakayama’s lemma, it suffices to prove that M̄ = N̄ ′ ⊕ P̄ .

Write g(y) = yn− h[ynh ] for y ∈ Z≥0. Then by the construction,

π−[ jnh ]F jC ′
i = A

(1)
g(j).

Hence N̄ ′ + P̄ = M̄ . Let τ :=
∑

0≤j<h βj,sπ
−[ jnh ]F jĒ1,s ∈ N̄ ′ ∩ P̄ . Here βj,s ∈ k.

Suppose that τ �= 0. Let (x, s) be a pair of indices such that βx,s �= 0 and for every y
with g(y) < g(x) we have βy,s = 0. Then projecting the equation to the s-component
of N̄ in M̄ , we have

τ ≡ βx,sB
(1)
g(x),s (mod M g(x)

h + 1
T
+ P ).

On the other hand, we have N ∩ P = {0} and the residue class of B
(1)
g(x),s generates

the s-th component of (M g(x)
h

+ P )/(M g(x)
h + 1

T
+ P ) ∼= N g(x)

h ,s
/N g(x)

h + 1
h ,s

. We obtain

a contradiction. Hence N̄ ′ ∩ P̄ = {0} and the lemma follows.

Proof of Proposition 4.11. The sub Dieudonné O-module N ′ of M gives us a
π-divisible O-module X1 ⊂ X. This X1 satisfies the required properties.

4.3. Proof of Theorem 4.7. In order to prove Theorem 4.7, it suffices to prove
the following proposition.

Proposition 4.17. Let (m,n) and (d, e) be pairs of pairwise coprime positive
integers. Suppose that n

m+n < e
d+e . Let

0 → Z := Hm,m+n → T → Y := Hd,d+e → 0 (4.3.1)
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be an exact sequence of π-divisible O-modules over k such that the induced sequence
of π-torsions

0 → Z[π] → T [π] → Y [π] → 0 (4.3.2)

splits. Then sequence (4.3.1) splits and T ∼= Z ⊕ Y .

Remark 4.18. By duality, we may assume that 1
2 ≤ e

d+e . Let M , N , Q be
the covariant Dieudonné O-modules of T , Z, Y respectively. Sequence (4.3.2) splits
means that we have a splitting ϕ1 : Q/πQ → M/πM . To prove the proposition, for
each a ∈ Z≥1, we construct homomorphisms

ϕa : Q/πaQ → M/πaM

extending ϕ1. Then we show that the limit of the ϕa provides the required splitting
Q → M .

Write h = m + n and g = d + e. For the Dieudonné O-module Q, there exists
a standard WO(k)-basis as introduced before. More precisely, Q = WO(k)〈Ai | 0 ≤
i < g〉, FAi = Ai+e, V Ai = Ai+d. Furthermore, Π : Ai �→ Ai+1 is a uniformizer of
End(Q). We choose generators for Q in a new way. Define δi ∈ Z by inequality

ig ≤ δid < (i+ 1)d+ ie = ig + d

and γi ∈ Z by equaitions

δ1 = γ1 + 1, · · · , δi =

i∑
l=1

(γi + 1).

Note that δd = g = d+c. Choose C = A0 = C1 and {C1, · · · , Cd} = {A0, · · · , Ad−1}
such that

V γiCi = FCi+1 for all 1 ≤ i ≤ d.

Here Cd+1 = C1. Hence V δiC = πiCi+1 for 1 ≤ i ≤ d. In particular, if i = d, then
δi = g and we have V gC = πdC.

From the construction, we have

{π[ jdg ]V jC | 0 ≤ j < g} = {V jC | 1 ≤ i ≤ d, 0 ≤ j ≤ γi} = {Al | 0 ≤ l < g}.

Choose B = B1 ∈ M such that B maps to C under the map M → Q.

Lemma 4.19. With the notation as above, V δiB is divisible by πi for every
1 ≤ i < d and V gB − πdB ∈ N (dh+1). Here N = N (0) ⊃ N (1) ⊃ · · · is the filtration
of N defined in Lemma 4.4.

Proof. Choose B′′
i ∈ M which maps to Ci under the map M → Q for 1 ≤ i < d.

Then V γiB′′
i = FB′′

i+1 (mod πN). Let ξi ∈ N such that V γiB′′
i −FB′′

i+1 = πξi. Then
V γi+1B′′

i − πB′′
i+1 = πV ξi ∈ πV N . Hence for 1 ≤ i < d, we have

V δiB − πiB =
∑

1≤j<i

V δi−δjπjV ξj .
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By our assumption, we have g
d > h

m . If i > j, by definition of δi, we have

δi − δj + 1 >
ig − (jg + d)

d
+ 1 = (i− j)

g

d
> (i− j)

h

m
.

Hence (δi − δj)m + j(m + n) + m > ih and V δi−δjπjV ξ ∈ πiN (1). In particular,
V gB − πdB ∈ πdN (1) = N (dh+1). The lemma follows.

Lemma 4.20. Suppose that for a choice B ∈ M with B (mod N) = C, there
exists an integer s ≥ dh+ 1 such that V gB − πdB ∈ N (s). Then there exists a choice
B′ ∈ M such that B′ −B ∈ N (s−dh) and V gB′ − πdB′ ∈ N (s+1).

Proof. By assumption, we may write πdB − V gB = πdξ, where ξ ∈ N (s−dh). Let
B′ := B − ξ. Then

V gB′ − πdB′ = V gB − πdB − V gξ + πdξ = −V gξ ∈ N (gm−dh+s) ⊂ N (s+1).

Here the last inclusion follows from gm− dh > 0. The lemma follows.

Proof of Proposition 4.17. For any integer r ≥ d+1 and w ≥ rh, by Lemmas 4.19
and 4.20, there exists B = B1 such that B (mod N) = C and V g − πdB ∈ N (w) =
πrN (w−rh). By Lemma 4.19, we define Bi+1 := π−1V δiB for every 1 ≤ i < d, which
are well-defined elements in M . Then{

V γdBd − FB1 = πξd for some ξd ∈ N,

V gB − πdB ∈ N (w) ⊂ πrN.

Hence πξd ∈ πr−dN . Therefore,

ϕr−d : Q/πr−dQ → M/πr−dM

Ci �→ Bi for all 1 ≤ i ≤ d

defines a section of M/πr−dM → Q/πr−dQ. The proposition follows by taking lim-
its.

5. On Traverso’s isogeny conjecture. As remarked in [31, Remark 4.2], by
Theorem 4.7, if G is the π-torsion of a minimal π-divisible O-module X, then we can
recover the Newton polygon β of X with the property H(β)[π] ∼= G from G. Such a
Newton polygon determines an isogeny class of π-divisible O-modules. In particular,
the isogeny class of a minimal π-divisible O-module X is determined by its π-torsion
X[π]. This is a special case of Traverso’s isogeny conjecture. In this section, we discuss
the generalization of Traverso’s isogeny conjecture (on π-divisible O-modules over an
algebraically closed field of characteristic p) and some related questions. Without
further comments, all π-divisible O-modules are local-local in the rest of this section
(cf. Remark 4.10).

5.1. Traverso’s isogeny conjecture for π-divisible O-modules. In this sec-
tion, if X is a π-divisible O-module, we write X[n] = X[πn] for simplicity. To state
Traverso’s isogeny conjecture for π-divisible O-modules, we first state the following
result (cf. [30, Corollary 1.7]).

Theorem 5.1. Let k ∈ AlgF be algebraically closed. Let X be a π-divisible O-
module over k. There exists a minimal number nX ∈ Z>0 such that X is uniquely
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determined up to isomorphism by X[nX ], i.e. if X ′ is a π-divisible O-module over k
such that X ′[nX ] ∼= X[nX ], then X ′ ∼= X.

Conjecture 5.2 (Traverso’s isomorphism conjecture). Let k ∈ AlgF be alge-
braically closed. Let X be a π-divisible O-module over k. Assume that X is of type

(h, d), then nX ≤ �2d(h−d)
h �.

Remark 5.3. In the above conjecture, �x� denotes the biggest integer that is less
or equal to x for x ∈ R. In [41], Traverso made the above conjecture for p-divisible
groups, but with bound min(d, h − d). In [23], Lau, Nicole, and Vasiu disproved

Traverso’s bound and proved that nX ≤ �2d(h−d)
h � for p-divisible groups.

Our focus in this section is not Traverso’s isomorphism conjecture, but a similar
question. We hope to come back to Conjecture 5.2 in the future. By Theorem 5.1,
there exists a minimal natural number bX ∈ Z>0 such that the isogeny class of X is
determined by X[bX ]. We call bX the isogeny cutoff of X (cf. [39, 40, 41]).

Remark 5.4.

(1) It is clear that 1 ≤ bX ≤ nX .
(2) If X is minimal, then nX = bX = 1 by Theorem 4.7. Hence Traverso’s

isomorphism conjecture and the following conjecture hold in this case.

Theorem 5.5 (Traverso’s isogeny conjecture). Let k ∈ AlgF be algebraically
closed. Let X be a π-divisible O-module over k. Assume that X is of type (h, d), then

bX ≤ 
d(h−d)
h �.

In the following, we give a proof of Theorem 5.1 (cf. [30, Section 1]). Let X and
Y be π-divisible O-modules over k. Let N ≥ n ≥ 0 be integers. Denote by

Φn : Hom(X,Y ) → Hom(X[n], Y [n])

and

ΦN
n : Hom(X[N ], Y [N ]) → Hom(X[n], Y [n])

the natural restriction maps.

Lemma 5.6. With the notation as above, for every n ∈ Z≥0, there exists an
integer N(X,Y, n) such that for every N ≥ N(X,Y, n) we have Im(Φn) = Im(ΦN

n ).

Proof. For each m ∈ Z≥0, the functor T �→ Hom(X[m]T , Y [m]T ) on k-schemes
is representable by a group of finite type over k. Denote it by Gm. For m ≥ n, the
restriction map induces a homomorphism of algebraic groups ρmn : Gm → Gn. We
then obtain a descending chain of algebraic groups

G′
n ⊃ ρn+1

n (G′
n+1) ⊃ · · · ⊃ ρn+i

n (G′
n+i) ⊃ · · · ⊃ Φn(Hom(X,Y )).

HereG′
m = (Gm)red. The claim follows as the sequence stabilizes to Φn(Hom(X,Y )).

Lemma 5.7. Given h ∈ Z≥1, there exists an integer dh such that for every π-
divisible O-module X over k of height h and with Newton polygon N(X) = β, there is
an isogeny ρ : H(β) → X of degree dh.

Proof. This follows from the following two facts.
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(1) In the isogeny class of X, there are only finitely many isomorphism classes.
This follows from the first finiteness theorem [24, Page 44, Theorem 3.4] and
the fact that X is a p-divisible group.

(2) End(H(β)) has an element Π with degree q.

Remark 5.8. Let (M,V ) be the (−1)-O-crystal attached to X. The first
finiteness theorem is equivalent to saying that inside the (−1)-O-isocrystal (N =
M ⊗Z Q, V ), there are only finitely many (−1)-O-crystals up to isomorphism. With-
out loss of generality, we may assume that M is isoclinic of type (h, d). By Lemma
2.22, to give an isomorphism class of (−1)-O-crystals is equivalent to giving a con-
jugacy class of matrices V ∈ Mh×h(WO(k)) such that V h = πd idh×h. By a similar
argument as in [24, Section 4], one may show that the latter is finite. Hence the
finiteness follows.

Lemma 5.9. Let H be a π-divisible O-module over k. Assume that there exists a
function b �→ NH(b) such that for every L ≥ NH(b) we have

Im(Φb : End(H) → End(H[b])) = Im(ΦL
b : End(H[L]) → End(H[b])).

Let Z be another π-divisible O-module and ρ : H → Z be an isogeny of degree qs.
Then for every N ≥ NH(n+ s) + s,

Im(Φn : End(Z) → End(Z[n])) = Im(ΦN
n : End(Z[N ]) → End(Z[n])).

Proof. Let Q and M be the covariant Dieudonné O-modules attached to H and
Z respectively. The isogeny ρ : H → Z induces an injection Q ↪→ M . Fix n ≥ 0 and
N > NH(n + s) + s. Suppose that ϕN ∈ End(Z[N ]) and ϕn = ΦN

n (ϕN ). We claim
that ϕn can be lifted to ϕ ∈ End(Z). Indeed, we have inclusions

πNM ⊂ πNH(n+s)Q ⊂ πn+sQ ⊂ πn+sM ⊂ πnQ ⊂ Q ⊂ M ⊂ π−sQ.

Consider ψn+s ∈ End(Z[n+s]) defined by ψn+s = πsϕn. It induces an endomorphism
on Dieudonné O-modules ψn+s : M/πn+sM → M/πn+sM . Consider the composition

ψ′
n+s : Q/πn+sM ↪→ M/πn+sM

πsϕn−−−→ πsM/πn+sM ↪→ Q/πn+sM.

By our assumption on N , ϕN restricts to

ψ′
NH(n+s) ∈ End(H[NH(n+ s)]) = End(Q/πNH(n+s)Q),

hence the restriction to End(H[n + s]) can be lifted to End(H). Therefore ψ′
n+s ∈

End(Q/πn+sM) can be lifted to End(Q), hence ϕn ∈ End(M/πnM) can be lifted to
End(M). The lemma follows.

Lemma 5.10. For every h ∈ Z≥0, there exists N(h) ∈ Z>0 such that for every
π-divisible O-module Z over k of height h and for every N ≥ N(h) we have

Im(Φn : End(Z) → End(Z[n])) = Im(ΦN
n : End(Z[N ]) → End(Z[n])).

Proof. By Lemma 5.6 and the fact that there are only finitely many Newton
polygons with height h, for every h ∈ Z≥0, there exists N(h) ∈ Z>0 such that for
every minimal π-divisible O-module Z of height h and for every N ≥ N(h) we have

Im(Φn : End(Z) → End(Z[n])) = Im(ΦN
n : End(Z[N ]) → End(Z[n])).
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The general case then follows from Lemmas 5.7 and 5.9.

Applying Lemma 5.10 for Z = X ⊕ Y , we have the following result (cf. [30,
Proposition 1.6]).

Lemma 5.11. For every n ∈ Z>0, there exists an integer N(h′, h′′, n) such that
for any π-divisible O-modules X and Y over k of height h′ and h′′ respectively, and
for every N ≥ N(h′, h′′, n) we have

Im(Φn : Hom(X,Y ) → Hom(X[n], Y [n]))

= Im(ΦN
n : Hom(X[N ], Y [N ]) → Hom(X[n], Y [n])).

Applying Lemma 5.11 to the case n = 1, we obtain Theorem 5.1.

5.2. A special case of Theorem 5.5.

Definition 5.12. Let k ∈ AlgO be a field of characteristic p. Let X be a
π-divisible formal O-module over k. Let P = (P,Q, F, F1) be the O-display over k
attached to X. The a-number of X is defined to be a(X) = Rankk(P/(Q+ F (P ))).

Remark 5.13.

(1) In Definition 5.12, if k is perfect and X is a π-divisible O-module over k. Let
P = (P,Q, F, F1) be the Dieudonné O-display over k attached to X. One
may define the a-number of X to be a(X) = Rankk(P/(Q+ F (P ))). If X is
etale, then P is etale, i.e., P = Q (cf. [2, Section 5]). In this case a(X) = 0.
This invariant is determined by the formal part of X.

(2) Assume that k is perfect. Let X be a π-divisible O-module over k and let
(M,F, V ) be the covariant DieudonnéO-module attached toX. Then a(X) =
dimk M/(F (M) + V (M)).

(3) Let s and r be integers with s ≥ r > 0 and (r, s) = 1. Then a(Gr,s) = 1.
(4) Letm and n be positive integers with (m,n) = 1. Then a(Hm,m+n) = |m−n|.
As the first step, we prove Theorem 5.5 under the assumption that a(X) ≤ 1.

Theorem 5.14. Let k ∈ AlgF be algebraically closed. Let X be a π-divisible

O-module over k with type (h, d) and a(X) ≤ 1. Then bX ≤ 
h(h−d)
h �.

Let (M,F, V ) be the Dieudonné O-module attached to X. Let x ∈ M such that
its reduction modulo π generates the k-vector space M/(F (M) + V (M)).

Lemma 5.15. Let c = h − d. With the notation as above, the following claims
hold.

(1) WO(k)[F, V ] · x = M .
(2) {x, Fx, . . . , F dx, V x, · · · , V c−1x} is a basis of M as a WO(k)-module.
(3) {x, Fx, . . . , F d−1x, V x, · · · , V cx} is a basis of M as a WO(k)-module.

Proof. The first claim is obvious. We prove the second claim and the third claim
follows by an entirely similar argument.

By assumption, {x, V x, · · · , V c−1x} is a k-basis of M/FM
and {x, Fx, . . . , F d−1x} is a k-basis of M/VM . The later tells
us that {Fx, F 2x, . . . , F dx} is a k-basis of FM/πM . Hence
{x, Fx, . . . , F dx, V x, · · · , V c−1x} is a k-basis of M/πM . The claim then
follows by Nakayama’s lemma.
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Lemma 5.16. Let r be a positive integer. Let ai ∈ WO(k)[π1/r] (1 ≤ i ≤ n) with
at least one ai in WO(k)×. Then the equation

Fn

x+ a1
Fn−1

x+ · · ·+ anx = 0 (5.2.1)

has a solution in (WO(k)[π1/r])×.

Proof. We solve the equation by successive approximation. Modulo π1/r, equation
(5.2.1) gives

x̄qn + ā1x̄
qn−1

+ · · ·+ ānx̄ = 0.

This has a non-zero solution since at least one of the āi is non-zero and k is alge-
braically closed. Assume that we have found xj ∈ WO(k)× with

Fn

xj + a1
Fn−1

xj + · · ·+ anxj ≡ 0 (mod πj/r).

Writing xj+1 = xj + πj/rx and solving

Fn

xj+1 + a1
Fn−1

xj+1 + · · ·+ anxj+1 ≡ 0 (mod π(j+1)/r),

we obtain

Fn

xj +a1
Fn−1

xj + · · ·+anxj +πj/r(F
n

x+a1
Fn−1

x+ · · ·+anx) ≡ 0 (mod π(j+1)/r).

To solve this, it suffices to solve

x̄qn + ā1x̄
qn−1

+ · · ·+ ānx̄+ κ = 0

for some κ ∈ k, which has a solution in k since k is algebraically closed. The lemma
then follows.

Lemma 5.17. Assume that V h + a1V
h−1 + · · · + ah = 0, where ai ∈ WO(k)

(1 ≤ i ≤ h) and ah �= 0. Then there exist positive integers r and s, such that

V h + a1V
h−1 + · · ·+ ah = (b0V

h−1 + b1V
h−2 + · · ·+ bh−1)(V − πs/r)u,

where u, bi ∈ WO(k)[π1/r] (0 ≤ i ≤ h− 1) and u is invertible.

Proof. Let s/r = inf{ ordπ(ai)
i | 1 ≤ i ≤ h}. Let ai = πis/rαi. Then αi ∈

WO(k)[π1/r] (1 ≤ i ≤ h) and at least one αi is a unit in WO(k). We need to find
v, bi ∈ WO(k)[π1/r] (0 ≤ i ≤ h− 1) with v invertible such that

(V h + a1V
h−1 + · · ·+ ah)v = (b0V

h−1 + b1V
h−2 + · · ·+ bh−1)(V − πs/r). (5.2.2)

Comparing the coefficients, equation (6.1.2) is equivalent to

σh(v) = b0

a1σ
h−1(v) = b1 − b0π

s/r

· · ·
ah−1σ(v) = bh−1 − bh−2π

s/r

ahv = −bh−1π
s/r.

(5.2.3)
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Here σ = F−1

, hence σ(x) ≡ x−q (mod π). Write bi = πis/rβi, we have

σh(v) = β0

α1σ
h−1(v) = β1 − β0

· · ·
αh−1σ(v) = βh−1 − βh−2

αhv = −βh−1.

(5.2.4)

Summing up the equations in (5.2.4), we have

σh(v) + α1σ
h−1(v) + · · ·+ αh−1σ(v) + αhv = 0.

This has a solution in (WO(k)[π1/r])× by Lemma 5.16. Tracing back the above steps,
the lemma follows.

Proof of Theorem 5.14. Let M be the covariant Dieudonné O-module of X. Let
x ∈ M be such that its reduction modulo π generates the one-dimensional k-vector
space M/(FM + VM). Let ai ∈ WO(k) (0 ≤ i ≤ h) be such that

Ψ :=

c∑
i=0

ai+dV
i +

d∑
j=1

ad−jF
j : M → M

maps x to 0. By Lemma 5.15, we may assume that ah = 1 and a0 ∈ WO(k)×. Then
these elements are uniquely determined. Consider the composition V d ◦Ψ : M → M .
It is easy to check that V d ◦Ψ = 0 and we may write it as

V d ◦Ψ =
c∑

i=0

a′i+dV
i+d +

d∑
j=1

a′d−jπ
jV d−j ,

where ordπ ai = ordπ a
′
i (0 ≤ i ≤ h) and a′h = 1. Define a polynomial Q(T ) ∈ WO(k)

by

Q(T ) =

h∑
i=0

αiT
i,

where αi =

{
a′i if d ≤ i ≤ h,

πd−ia′i if 0 ≤ i ≤ d− 1.
By Lemma 5.17, the Newton polygon of X is

the same as the Newton polygon of the polynomial Q(T ).

Let J = 
d(h−d)
h �. Let Mg be another Dieudonné O-module over WO(k) such that

Mg/π
JMg

∼= M/πJM as WO(k)[F, V ]-modules. Let Xg be the associated π-divisible
O-module. We need to show that Xg and X are isogenous.

As J ≥ 1, we have X[π] ∼= Xg[π]. Hence a(Xg) = a(X) ≤ 1. By the same
argument as above, we obtain another polynomial Qg(T ) ∈ WO(k)[T ]

Qg(T ) =

h∑
i=0

βiT
i,

such that the Newton polygon of Xg is the same as the Newton polygon of Qg(T ).
From our assumption and construction, we have βi ≡ αi (mod πJ) for d ≤ i ≤ h,
βi ≡ αi (mod πJ+d−i) for 0 ≤ i ≤ d − 1. Note that the Newton polygons of Q(T )
and Qg(T ) are below the line connecting the points (0, 0) and (h, d), the above two
congruences ensure that the Newton polygons of Q(T ) and Qg(T ) are the same. Hence
X and Xg are isogenous. The theorem follows.
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5.3. Further remarks on Theorem 5.5. In this part, k ∈ AlgO is an alge-
braically closed field of characteristic p.

5.3.1. A complete proof of Theorem 5.5. In the case of p-divisible groups,
Nicole and Vasiu [27] proved that Theorem 5.5 holds. Their idea is to introduce an-
other invariant b̃X , which is called the weak isogeny cutoff of X, and prove inequalities

bX ≤ b̃X ≤ 
d(h−d)
h �.

Definition 5.18. Let X be a π-divisible O-module over k. We say that X
satisfies the Oort condition (OC) if there exists a π-divisible O-module X over k[[x]]
such that

(1) its fibre over k is X;
(2) if k((x)) is an algebraic closure of k((x)), then X

k((x))
has the same Newton

polygon as X and its a-number is at most one.

Remark 5.19. For p-divisible groups over k, everyX satisfies the above condition
by [29, Proposition 2.8]. This is crucial in the argument of [27], as we shall see in the
following.

Theorem 5.20. Every π-divisible O-module over k satisfies the Oort condition.

The proof of this theorem will be given in Section 6.2. We explain a proof of
Theorem 5.5 assuming Theorem 5.20.

Definition 5.21. Let X be a π-divisible O-module over k which satisfies OC.
By the weak isogeny cutoff of X, we mean the smallest number b̃X ∈ Z>0 such that
the following two properties hold:

(1) if X ′ is a π-divisible O-module over k such that X ′[πb̃X ] is isomorphic to

X[πb̃X ], then its Newton polygon N(X ′) is not strictly above N(X);
(2) there exists a π-divisible O-module X over k[[x]] that has the following prop-

erties:
(a) its fibre over k is X;
(b) the fibre Xk((x)) has the same Newton polygon as X;

(c) the isogeny cutoff of X
k((x))

is at most b̃X and the a-number of X
k((x))

is at most one.

We have the following relation between isogeny cutoff and weak isogeny cutoff.

Proposition 5.22. Let X be a π-divisible O-module over k. Then bX ≤ b̃X .

Proof. By Theorem 5.20, there exists a π-divisible O-module X over k[[x]] with
constant Newton polygon such that Xk = X and the isogeny cutoff b of X

k((x))
is at

most b̃X . Let X ′ be a π-divisible O-module over k such that X ′[πb̃X ] = X[πb̃X ]. By
a similar argument as in [21, Proposition 3.15] or [2, Lemma 4.4] (cf. [10, Section 8]),
there exists a π-divisible O-module X ′ over k[[x]] such that X ′

k = X ′ and

X ′[πb̃X ] = X [πb̃X ].

Since the isogeny cutoff of X
k((x))

is less or equal to b̃X , X ′
k((x))

and X
k((x))

are

isogenous and have the same Newton polygon. A similar argument as in [7, Chap.
4, Section 7] shows that the Newton polygons go up under specialization. Hence the
Newton polygon of X ′ is above the Newton polygon of X. By assumption, X and X ′

have the same Newton polygon. Therefore bX ≤ b̃X .
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Proof of Theorem 5.5. Let J = 
d(h−d)
h �. By Proposition 5.22, it suffices to prove

that b̃X ≤ J . Let Nh,d be the set of Newton polygons of π-divisible O-modules over k
of type (h, d). Let NX be the Newton polygon of X. Let DX be the set of π-divisible
O-modules over k which are of type (h, d), and whose Newton polygons are strictly
above NX . We prove the inequality b̃X ≤ J by decreasing induction on NX ∈ Nh,d.

Assume that for every Y ∈ DX we have b̃Y ≤ J . We show that b̃X ≤ J . By
Proposition 5.22, we have bY ≤ b̃Y ≤ J . Let X be a π-divisible O-module over k[[x]]
such that the second condition in Definition 5.21 holds. Let b be the isogeny cutoff of
X

k((x))
. By the definition of weak isogeny cutoff, we have

b̃X ≤ max{b, bY | Y ∈ DX}.

As b ≤ J by Theorem 5.14 and bY ≤ J by induction assumption, we have b̃X ≤ J .
The proposition follows.

5.3.2. Isogeny cutoff and minimal height.

Definition 5.23. By the minimal height hX of a π-divisible O-module X over
k we mean the smallest non-negative number hX such that there exists an isogeny
ι : X0 → X from a minimal π-divisible O-module, whose kernel Ker(ι) is annihilated
by πhX .

We study the relation between isogeny cutoff and minimal height (cf. [42]). First
we have the following lemma, which follows from the equivalence between π-divisible
O-modules over k and Dieudonné O-modules over k.

Lemma 5.24. Let X be a π-divisible O-module over k and (M,F, V ) be the
covariant Dieudonné O-module of X. The isogeny cutoff bX is the smallest positive
integer such that for every element g ∈ GLWO(k)(M) congruent to idM modulo πbX ,
the Dieudonné O-module (M, g ◦ F, V ◦ g−1) is isogenous to (M,F, V ).

Proposition 5.25. Let X be a π-divisible O-modules over k. Then bX ≤ hX+1.

Proof. Let ι : X0 → X be an isogeny whose kernel is annihilated by πhX . Let
(M0, F0, V0) ↪→ (M,F, V ) be the monomorphism of the corresponding Dieudonné O-
modules. We identify M0 with its image under this monomorphism. The existence
of ι shows that πhXM ⊂ M0 ⊂ M . Let g ∈ GLWO(k)(M) be such that g ≡ idM
(mod πhX+1). By Lemma 5.24, it suffices to show that (M,F, V ) is isogenous to
(M, g ◦ F, V ◦ g−1).

Note that we have relation πhXM ⊂ M0 ⊂ M , the endomorphism g induces an
endomorphism g ∈ GLWO(k)(M0). Hence the triple (M0, g◦F, V ◦g−1) is a Dieudonné
O-module. Since X0 is minimal, we have (M0, F, V ) ∼= (M0, g◦F, V ◦g−1) by Theorem
4.7. Moreover, (M,F, V ) and (M0, F, V ) are isogenous, so (M, g ◦ F, V ◦ g−1) and
(M0, g ◦ F, V ◦ g−1) are isogenous. The claim then follows.

5.3.3. The bound is sharp. We construct two Dieudonné O-modules M and
M ′ of type (h, d) over k, hence two π-divisible O-modules X and X ′ of type (h, d)

over k, such that X[J − 1] ∼= X ′[J − 1] with J = 
d(h−d)
h �, but X and X ′ are not

isogenous. Therefore the bound in Theorem 5.5 is sharp (cf. [27, Example 3.2]).

The case J = 1 is obvious. Assume now J ≥ 2. Let M = 〈e1, . . . , eh〉 and
M ′ = 〈f1, . . . , fh〉 be two Diedonné O-modules. The corresponding F and V are
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given by

eh, πe1, . . . , πed−1, πed, ed+1, . . . , eh−1�⏐⏐V

e1, e2, . . . , ed, ed+1, ed+2, . . . , eh⏐⏐�F

e2, e3, . . . , ed+1, πed+2, πed+3, . . . , πe1

(5.3.1)

and

fh, πf1, . . . , πfd−1, πfd − πJ−1fh, fd+1, . . . , fh−1�⏐⏐V

f1, f2, . . . , fd, fd+1, fd+2, . . . , fh⏐⏐�F

f2, f3, . . . , fd+1 + πJ−1f1, πfd+2, πfd+3, . . . , πf1

(5.3.2)

respectively. Note that M/πJ−1M ∼= M ′/πJ−1M ′ as WO(k)[F, V ]-modules. We show
that they have different Newton polygons. It is clear thatM/(FM+VM) is generated
by e1 and M ′/(FM ′+VM ′) is generated by f1. Note that V he1 = πde1, the Newton
polygon of M is the same as the Newton polygon of Q(T ) = Th − πd. On the other
hand,

V h(f1) = πdf1 − V h−d−1(πJ−1fh)

= πdf1 − V h−d−1(πJ−1V f1) = πdf1 − πJ−1V h−df1.
(5.3.3)

The Newton polygon of M ′ is the same as the Newton polygon of

Q′(T ) = Th + πJ−1Th−d − πd.

The claim then follows since Q(T ) and Q′(T ) have different Newton polygons.

6. Deformations of π-divisible O-modules. In this section, we study defor-
mations of π-divisible O-modules. The main goal is to give a proof of Theorem 5.20,
which completes the proof of Traverso’s isogeny conjecture as explained in Section
5.3.1. Because we have set up the basics for π-divisible O-modules in a similar frame-
work as for p-divisible groups, we could adapt the proofs from the references to prove
most of the results in this section (cf. [6, 29, 46]).

6.1. The deformation functor and its representability. In the following,
we study deformations of π-divisible O-modules via displays. We focus on the case
where X is formal. In this case, under the appropriate setting, deforming a formal
π-divisible O-module is equivalent to deforming the associated nilpotent O-display
by Theorem 3.11. Based on the discussion in [45, Section 2] and [2, Section 3.2],
deformations of an O-display are explicit as they could be describe by the structure
equation. We give details in Sections 6.1.1 and 6.1.2. The π-divisible O-module case
follows by similar argument using the relation between π-divisible O-modules and
Dieudonné O-displays in Theorem 3.11. Some ideas in the following are similar to
those in [15].
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6.1.1. Liftings of an O-display. Let R be an O-algebra. Let P be an O-display
over R. Let S → R be a surjection of O-algebras. A lifting of P to S is an O-display
P ′ over S such that the base change of P ′ with respect to S → R is isomorphic to P.
See [45, Section 2] and [2, Section 3.2] for more details on liftings. In particular, if
Ker(S → R) has a divided power structure, it is known that to lift P to S is equivalent
to lifting the Hodge filtration (cf. [45, Proposition 45, Equations (71) and (72)] and
[4, Lemma 2.18])

Fil1P(R)(:= Q/IO(R)P ) ⊂ FilP(R)(:= P/IO(R)P ).

I.e. a lifting of P to S correspond to a direct summand of FilP(S) that lifts Fil1P(R).
Note that this is denoted by D1

P(R) ⊂ DP(R) in [45].
Let us consider the special case, where S → R is a surjection with kernel a, such

that a2 = 0. Define an abelian group G by

G := Hom(Fil1P(R), a⊗R (FilP(R)/Fil1P(R))). (6.1.1)

We define an action of G on the set of liftings of P to S as follows. Two liftings of P to
S correspond to two liftings E1 and E2 of the Hodge filtration, i.e., E1 and E2 are both
direct summand of FilP(S) that lifts Fil1P(R). Consider the natural homomorphism

E1 ⊂ FilP(S) → FilP(S)/E2. (6.1.2)

Since E1 ≡ E2 (mod a), the homomorphism (6.1.2) factors as

E1 → a(FilP(S)/E2) ⊂ FilP(S)/E2. (6.1.3)

Moreover, since a2 = 0, we have an isomorphism a(FilP(S)/E2) ∼= a ⊗R

(FilP(R)/Fil1P(R)). Hence we obtain a homomorphism

u : Fil1P(R) → a⊗R (FilP(R)/Fil1P(R)).

Define E1 − E2 = u. It is easy to check from the construction that

E2 = {e− ũ(e) | e ∈ E1}, (6.1.4)

where ũ(e) ∈ aFilP(S) denotes any lifting of u(e). We have the following result (cf.
[45, Corollary 49]).

Proposition 6.1. Let P be an O-display over R. Let S → R be a surjection with
kernel a such that a2 = 0. The action of G on the set of liftings of P to S constructed
as above is simply transitive. If P0 is a lifting of P and u ∈ G, we denote the action
by P0 + u.

Proof. The transitivity follows from the construction. Moreover, if E1 = E2, then
the object u constructed above is trivial. Hence the action is simple. The proposition
follows.

Remark 6.2. The above action could be described more explicitly. Consider a
as an ideal of WO(a) and we equip a with the trivial divided O-pd-structure (cf. [4,
Section 2.8]). Let P0 = (P0, Q0, F, F1) be a lifting of P to S. Let α : P0 → aP0 ⊂
WO(a)P0 be a homomorphism. For the pair (P0, Q0), we define a new O-display
structure by setting

Fαx = Fx− α(Fx) for x ∈ P0,

F1αy = F1y − α(F1y) for y ∈ Q0.
(6.1.5)
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By Proposition 6.1, there is an element u ∈ G such that Pα = P0+u. This u could be
described as follows. We have a natural isomorphism aP0

∼= a⊗R P/IO(R)P . Hence
the homomorphism α factors uniquely through a homomorphism

α̃ : P/IO(R)P → a⊗R P/IO(R)P.

Conversely, any such R-module homomorphism α̃ determines a unique α. Let u ∈ G
be the composition of

Q/IO(R)P ⊂ P/IO(R)P
α̃−→ a⊗R P/IO(R)P → a⊗R P/Q.

Then it is easy to check that Pα = P0 + u.

6.1.2. Deformations of an O-display. Let Λ be a topological O-algebra of
the following type. The topology on Λ is given by a filtration of O-ideals

Λ = a0 ⊃ a1 ⊃ · · · ⊃ an ⊃ . . . , (6.1.6)

such that aiaj ⊂ ai+j . We assume that π is nilpotent in Λ/a1 and hence in any
quotient Λ/ai. Let R ∈ AlgO with the discrete topology. Suppose we are given a
continuous surjective homomorphism ϕ : Λ → R.

Let AugΛ→R be the category of morphisms of discrete Λ-algebras ψS : S → R,
such that ψS is surjective and has a nilpotent kernel. If Λ = R, we denote this
category simply by AugR.

Let NilR be the category of nilpotent R-algebras. Let N ∈ NilR. We associate
with N an augmented R-algebra R|N | as follows. As an R-module, R|N | = R ⊕N .
The multiplication is given by

(r1 ⊕n1)(r2 ⊕n2) = (r1r2)⊕ (r1n2 + r2n1 +n1n2) for all r1, r2 ∈ R and n1, n2 ∈ N .

Let M be an R-module. We regard M as an object in NilR by setting M2 = 0. Hence
we obtain fully faithful functors ModR ⊂ NilR ⊂ AugΛ→R.

Definition 6.3. Let F be a set-valued functor on AugΛ→R. The restriction of
this functor to the category of R-modules is denoted by tF and is called the tangent
functor of F .

Definition 6.4. Let P be an O-display over R. Let S → R be a surjection
of O-algebras such that the kernel is nilpotent. A deformation of P to S is an
isomorphism class of pairs (P ′, ι), where P ′ is an O-display over S and ι : P → P ′

R

is an isomorphism. Here P ′
R is the base change of P ′ with respect to S → R (cf. [2,

Section 2.2]).
The deformation functor of P is defined by

DP : AugΛ→R → Sets

S �→ {deformations of P to S}. (6.1.7)

We show that the functor DP is pro-representable and construct the universal
object. First we compute the tangent functor of DP . Let M be an R-module. We
study the liftings of P to R|M | with respect to the canonical map R|M | → R. In this
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case, the kernel of R|M | → R is square-zero, we may apply Proposition 6.1 to this
situation. In particular, we have an isomorphism:

HomR(Q/IO(R)P,M ⊗R P/Q) → DP(R|M |).
Note that in this case, we have a canonical choice for P0 = PR|M | (cf. Remark 6.2).
The tangent space of the functor DP is isomorphic to the finitely generated projective
R-module HomR(Q/IO(R)P, P/Q). Define ω = HomR(P/Q,Q/IO(R)P ). Then we
have an isomorphism

HomR(ω,M) → DP(R|M |).
The identical endomorphism of ω defines a morphism of functors

Spf R|ω| → DP . (6.1.8)

Let ω̃ be a finitely generated projective Λ-module with ω̃⊗ΛR ∼= ω. Let SΛ(ω̃) be the
symmetric algebra. Let A be the completion of the augmented algebra SΛ(ω̃) with
respect to the augmentation ideal. The morphism (6.1.8) may be lifted to a morphism

Spf A → DP . (6.1.9)

By our construction, the morphism (6.1.9) induces an isomorphism on the tangent
spaces. Hence it is an isomorphism. Now we could describe the universal O-display
Puniv as follows. Let u : Q/IO(R)P → ω⊗RP/Q be the map induced by the identical
endomorphism of ω. Let α : P → ω ⊗R P/Q be any map that induces u (cf. Remark
6.2). Then we obtain an O-display Pα over R|ω|. Lifting Pα to A, we obtain Puniv.

Remark 6.5. We may write down the universal object explicitly in terms of
structure equation as follows (cf. [28, Section (1.12)] and [45, Equation (87)]). Assume
that P = (P,Q, F, F1) and P = L ⊕ T is a normal decomposition of P. Then P is
determined by its structure equation

Φ := F ⊕ F1 : T ⊕ L → P.

Here F ⊕ F1 is an F -linear isomorphism. Assume further that L and T are finitely
generated free WO(R)-modules, which is automatic if WO(R) is local. Assume that
the rank of L is c and the rank of T is d. Fix a basis of L and T , hence a basis of
P , F ⊕ F1 is given by a matrix MP ∈ GLh(WO(R)). Here h = c + d. We choose
indeterminates {tij | 1 ≤ i ≤ d, 1 ≤ j ≤ c} and set A = Λ[[tij ]]. Define an invertible
matrix in GLh(WO(A)) by (

idd [tij ]
0 idc

)
M̃P .

Here M̃P is a lifting of MP in GLh(WO(A)) and [tij ] is the Teichmüller representative
of tij . This matrix defines an O-display Puniv over the topological ring A. Then the
pair (A,Puniv) pro-represents the functor DP on the category AugΛ→R.

6.1.3. Deformations of π-divisible formal O-modules. Let R ∈ AlgO with
π nilpotent in it. Let Λ be as above. Let X be a formal π-divisible O-module over
R. Let S → R be a surjection with nilpotent kernel. A deformation of X to S is
an isomorphism class of pairs (X ′, ι), where X ′ is a formal π-divisible O-module over
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S and ι : X ′ ×S R ∼= X is an isomorphism of formal π-divisible O-modules. The
deformation functor of X is defined by

DX : AugΛ→R → Sets

S �→ {deformations of X to S}. (6.1.10)

Combining Theorem 3.11 and the discussion in Section 6.1.2, we obtain the fol-
lowing result.

Theorem 6.6. With the notation as above, if X = BTO(P), then the two
functors DX and DP are equivalent. Therefore, if WO(R) is local, there exists a formal
π-divisible O-module X → Spf(Λ[[t1, · · · , tdc]]) which is universal for the functor DX ,
i.e.,

DX(S) = Hom(Λ[[t1, · · · , tdc]], S) (6.1.11)

and every deformation of X over S is a base change induced by a morphism in equation
(6.1.11). Here c = h− d and X is of type (h, d).

6.1.4. Deformations of π-divisible O-modules. Applying the relation be-
tween π-divisible O-modules and Dieudonné O-displays, one could obtain the univer-
sal deformation of a π-divisible O-module over a perfect field of characteristic p. Note
that there is a difference on the base ring R in Theorem 3.11 between the display case
and the Dieudonné display case, we make some necessary adjustments.

Let k ∈ AlgO be a perfect field of characteristic p. Let CO,k be the category
of complete Noetherian local O-algebra with residue field k. Let X be a π-divisible
O-module over k. Let S ∈ CO,k. A deformation of X to S is an isomorphism class of
pairs (X ′, ι), where X ′ is a π-divisible O-module over S and ι : X ′ ×S k ∼= X is an
isomorphism of π-divisible O-modules. The deformation functor of X is defined by

DX : CO,k → Sets

S �→ {deformations of X to S}. (6.1.12)

By Theorem 3.11 and Remark 3.13, deforming X is equivalent to deforming the
Dieudonné O-display P with X = BTO(P), in which case one could work as in Section
6.1.2 and write down the universal object explicitly by giving the structure equation
as in Remark 6.5. Note that if p = 2, we use Dieudonné O-displays over the Zink ring
with modified Verschiebung. See [20, Section 4] and [4, Section 2.8] for the study of
deformations of windows, which unifies some arguments in the display case and in the
Dieudonné display case. We have the following result.

Theorem 6.7. With the notation as above, the functor DX is representable. More
precisely, there exists a π-divisible O-module over Spf(WO(k)[[t1, · · · , tdc]]) which is
universal for the functor DX , i.e.,

DX(S) = Hom(WO(k)[[t1, · · · , tdc]], S) (6.1.13)

and every deformation of X over S is a base change of the universal object induced
by a morphism in equation (6.1.13). Here c = h− d and X is of type (h, d).
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6.1.5. The Newton polygon of the universal object. We use the notation
in Section 6.1.4. We are interested in deformations of X to F-algebras. Denote by
DX,F the restriction of DX on the subcategory of CO,k, whose objects are F-algebras.
By Theorem 6.7, DX,F is representable and there exists a π-divisible O-module X →
Spf(k[[t1, · · · , tdc]]) which is universal for the functor DX,F. According to [5, Section
2.2.4], we may replace Spf by Spec. We have the following result regarding the Newton
polygon of the generic fiber of the universal π-divisible O-module X . This corresponds
to [6, Lemma 5.15] and our proof here is adapted from [6].

Proposition 6.8. With the notation as in Theorem 6.7, the generic fiber of
X has Newton polygon N(Xη) equal to the Newton polygon of Gd

0,1 × Gc
1,1, i.e., the

corresponding Dieudonné O-module has d times slope 1 and c times slope 0.

Proof. First, by Grothendieck’s specialization theorem, the Newton polygon goes
down after specialization. Hence it suffices to find some point of Spec k[[t1, . . . , tdc]]
where X has the desired Newton polygon. Secondly, write X = Xm ⊕ X ′ ⊕ Xet,
where the three direct summands are multiplicative, local-local, etale respectively.
Deforming X while keeping Xm and Xet constant and keeping the direct summand
decomposition, we obtain a closed subscheme of Spec k[[t1, . . . , tdc]]. Hence it suffices
to prove the proposition for X ′. In other words, we may assume that X is local-local.

Let P be the nilpotent O-display with BTO(P) = X. Assume that the structure

equation of P Φ := F ⊕F1 : T ⊕L → P is given by the matrix

(
A B
C D

)
. By Remark

6.5, the structure equation of X is given by(
id T
0 id

)(
A B
C D

)
.

Consider the map A0 + T̄C0 := A + TC (mod π). Suppose it has determinant zero
in k[[tij ]], then the intersection KerA0 ∩KerC0 is nontrivial. This contradicts to the
fact that Φ (mod π) is invertible. Hence A0 + T̄C0 is invertible. Therefore X has at
least d times slope 0. By duality, X has exactly d times slope 0 and c times slope 1.
The proposition follows.

6.1.6. Catalogues of minimal π-divisible O-modules. As explained in [6,
Section 5], catalogues have many advantages in the study of p-divisible groups. In
this section, we study catalogues of simple minimal π-divisible O-modules and explain
some of their important properties.

In the following, we fix the integers m and n with (m,n) = 1 and write H =
Hm,m+n, where Hm,m+n is defined in Section 4.1. Let r = 1

2 (m− 1)(n− 1). Consider
the contravariant functor

SchF → Sets

S �→ {(ϕ,X) | ϕ : HS → X, degϕ = qr}/ ∼ .
(6.1.14)

In other words, this functor associates to S the set of isomorphisms classes of isogenies
ϕ : HS → X of degree qr, where HS = H ×F S is the base change of H and X is a
π-divisible O-module over S. Each ϕ : HS → X corresponds to a finite locally free
closed sub O-group scheme ofHS of rank qr. This functor is representable by a scheme
T = Tm,n → SpecF projective over SpecF (cf. Lemma 3.49). Let (G,Φ : HT → G) be
the universal object.

Lemma 6.9. The family G → T of π-divisible O-modules over T is a catalogue for
π-divisible O-modules isogenous to Gm,m+n: if X is a π-divisible O-module over an
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algebraically closed field k ∈ AlgO of characteristic p and X is isogenous to Gm,m+n,
then there exists a point t : Spec k → T with X ∼= Gt.

Proof. This is similar to [6, Proposition 5.10] and it follows from the theory of
semi-modules (cf. [6, Sections 5.6-5.8, Section 6]). Let X be isogenous to Gm,m+n.
Then there exists an isogeny ψ : X → Hm,m+n, which induces an inclusion M(X) ⊂
M(Hm,m+n). The standard filtration of M(Hm,m+n) (cf. Lemma 4.4) induces a
filtration on M(X). Define Aψ ⊂ Z to be the set of jumps of this induced filtration,
i.e.

Aψ = {a ∈ Z | M(X) ∩Na �= M(X) ∩Na+1}.

Then
• Aψ ⊂ Z is determined up to translation. This follows from the existence of
the special Π ∈ End(M(Hm,m+n)).

• Aψ is a semi-module (cf. [6, Section 6.1]), i.e., a ∈ Aψ ⇒ a+n, a+m ∈ Aψ.
This follows from the action of F and V on M(Hm,m+n).

By [6, Lemma 6.6], there is a unique admissible semi-module A such that A is equiv-
alent to Aψ. This tells us (cf. [6, Section 6.4]) that there exists a relation

Π2rM(Hm,m+n) ⊂ M(X) ⊂ M(Hm,m+n),

where r = 1
2 (m− 1)(n− 1). From the construction of the filtration (cf. Lemma 4.4),

each term ΠjM(Hm,m+n) is isomorphic to M(Hm,m+n) as Dieudonné O-modules.
Note that Π is of degree q, it follows that there exist isogenies Hm,m+n → X and
X → Hm,m+n of degree qr. The lemma then follows.

Theorem 6.10. The scheme T is geometrically irreducible of dimension r over
F.

Proof. In the case of p-divisible groups, this is proved in [6, Section 5]. With the
preparations above, the proof there which uses semi-modules as an important tool
works for π-divisible O-modules as well (cf. [6, Remark 5.27]). We omit the details
here.

Another ingredient in the proof of Theorem 6.10 is a purity result for Newton
polygons. As it also has applications that are needed in Section 6.2, we recall it here.

Theorem 6.11. Let R be a Noetherian local O-algebra of Krull dimension ≥ 2
with π · R = 0. Let m be the maximal ideal of R and U = SpecR\{m}. Let X be a
π-divisible O-module over SpecR. If X has constant Newton polygon over U , then X
has constant Newton polygon over SpecR.

Note that the Newton polygon of a π-divisible O-module is determined by the
Newton polygon of the underlying p-divisible group (i.e. forgetting the O-action),
hence Theorem 6.11 is an immediate consequence of the purity result of p-divisible
groups [6, Theorem 4.1]. The author thank one of the referees for this argument.

Combining Theorem 6.10 and Theorem 6.11, we have the following result, which
will be needed and improved in next section (cf. [6, Corollary 5.11]).

Corollary 6.12. Let k ∈ AlgO be an algebraically closed field of characteristic
p. Let X be a π-divisible O-module over k that is isogenous to Gm,m+n. Then there
exists a deformation X/k[[t]] of X over k[[t]] with constant Newton polygon such that
a(Xη) = 1.



52 C. CHENG

Proof. Let t ∈ T(k) be a point such that Gt
∼= X. The irreducibility of Tk tells us

that the (a = 1)-locus of the family G is an open dense sub-scheme U of Tk. Therefore,
we could construct a morphism φ : Spec k[[t]] → Tk over k, such that φ(η) ∈ U and
φ(Spec k) = t. Then X = φ∗G is a π-divisible O-module over k[[t]] with the desired
property.

6.2. Oort’s condition. In this section, following the idea in [29], we prove
Theorem 5.20. As a consequence, Traverso’s isogeny conjecture for π-divisible O-
modules holds.

Let k ∈ AlgO be a field of characteristic p. Let G0 be a π-divisible O-module
over k. Without loss of generality, we assume that G0 is of local-local type. We give
a slightly different version of deformations. We say that Gη is a deformation of G0,
if there exists a complete local domain B of characteristic p with residue field k and
quotient field Q(B) and a π-divisible O-module G over B, such that

G ⊗B k ∼= G0, G ⊗B Q(B) = Gη.

In the following, we study deformations of a π-divisible O-modules, which preserve a
filtration constructed from the Newton polygon.

Definition 6.13. Let G0 be a π-divisible O-module over an algebraically closed
field k ∈ AlgO. Suppose that the Newton polygon β = N(G0) has m+ 1 points with
integral coordinates. Then there exists simple groups Zi (1 ≤ i ≤ m) corresponding
with the slopes between integral points in β and an isogeny

∑m
i=1 Zi → G0. Define

Gj
0 := Im(

∑
i≤j

Zi → G0) ⊂ G0.

Then we obtain a filtration

0 = G0
0 ⊂ · · · ⊂ Gi

0 ⊂ · · · ⊂ Gm
0 = G0,

which is called a maximal filtration of G0. Note that the successive quotients Gi
0/G

i−1
0

(0 < i ≤ m) are simple π-divisible O-modules.

In the following, we study deformations of G0 with respect to a fixed maximal
filtration. Let {Gi

0 | 0 ≤ i ≤ m} be a filtered π-divisible O-module. We denote by
(di + ci, di) the type of Gi

0 and ai the a-number a(Gi
0/G

i−1
0 ) (1 ≤ i ≤ m). Write

d =
∑m

i=1 di and c =
∑m

i=1 ci.
In terms of Dieudonné O-modules, we introduce the notion bases adapted to a

filtration. Suppose given a maximal filtration of G0 over k. Let M0 = D(G0) be the
covariant Dieudonné O-module. The maximal filtration of G0 induces a filtration

0 = M0
0 ⊂ · · · ⊂ M i

0 ⊂ · · · ⊂ Mm
0 = M0,

where M i
0 = D(Gi

0) (0 ≤ i ≤ m). We say that {x1, . . . , xd; y1, . . . , yc} is a basis
adapted to the filtration if it is a WO(k)-basis for M0 with yj ∈ VM0 and

• xj ∈ M i
0 if and only if j ≤ di,

• yj ∈ M i
0 if and only if j ≤ ci.

If H0 ⊂ G0 is a sub π-divisible O-module, then the sub Dieudonné O-module
D(H0) ⊂ D(G0) is a direct summand, as the quotient is torsion free. Hence a basis
adapted to the filtration always exists by induction.
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In terms of O-displays, a basis adapted to the filtration corresponds to a special
form of the structure equation. Let Pi = (Pi, Qi, F, F1) be the O-display associated
with Gi

0/G
i−1
0 . Let Pi = Li⊕Ti be a normal decomposition of Pi. Hence Qi = Li⊕ITi

where I =
V
WO(k). Let

Φi := F ⊕ F1 : Ti ⊕ Li → Ti ⊕ Li

be the structure equation of Pi. It is given by a matrix

(
Ai Bi

Ci Di

)
with Ai : Ti

F−→ Ti,

Bi : Li
F1−→ Ti, Ci : Ti

F−→ Li, Di : Li
F1−→ Li. Let P = (P,Q, F, F1) be the O-display

associated with M0 with the basis adapted to the filtration {x1, . . . , xd; y1, . . . , yc}.
Let L = 〈y1, . . . , yc〉 and T = 〈x1, . . . , xd〉. Then P = L⊕T is a normal decomposition.
The structure equation of P is given by

Φ := F ⊕ F1 : T ⊕ L → T ⊕ L.

In terms of matrix form, Φ =

(
A B
C D

)
. Here A is a block upper triangle matrix with

diagonal blocks A1, . . . Am and similar for B, C and D. We prove a stronger version
of Corollary 6.12.

Proposition 6.14. There exists a deformation {Gi | 0 ≤ i ≤ m} of filtered
π-divisible O-module {Gi

0 | 0 ≤ i ≤ m} such that every sub-quotient Yi := Gi/Gi−1 is
absolutely simple of constant slope and with a(Yi

η) ≤ 1 (1 ≤ i ≤ m).

Proof. Since deforming the filtered π-divisible O-module is equivalent to deform-
ing the corresponding O-display, we may apply Remark 6.5. By Corollary 6.12, for
each Gi

0/G
i−1
0 , there exists a deformation with constant slope and a-number ≤ 1.

This deformation corresponds to a matrix

(
id τi
O id

)
. Consider the deformation P̃ of

P with structure equation

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1 + τ1C1 ∗ · · · ∗ B1 + τ1D1 ∗ · · · ∗
O A2 + τ2C2 · · · ∗ O B2 + τ2D2 · · · ∗
· · · · · · · · · · · · · · · · · · · · · · · ·
O O O Am + τmCm O O O Bm + τmDm

C1 ∗ · · · ∗ D1 ∗ · · · ∗
O C2 · · · ∗ O D2 · · · ∗
· · · · · · · · · · · · · · · · · · · · · · · ·
O O O Cm O O O Dm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

It is easy to check that BTO(P̃) is a deformation of the filtered π-divisible O-module
with the desired property.

Let G be a π-divisible O-module of type (d+ c, d) and with a(G) = 1. Let x ∈ M
be such that WO(k)[F, V ]·x = M . By Lemma 5.15, {x, Fx, · · · , F dx, V x, · · · , V c−1x}
is a basis of M . In particular, M has a basis {x1, · · · , xd; y1, · · · yc}, such that F (xi) =
xi+1 for i < d and F (xd) = y1. Such a basis is called a basis in normal form (cf. [28,
Section 2]). It is easy to check that M admits a basis in normal form if and only if

a(M) = 1. With respect to this basis, the

(
A
C

)
-part of the structure equation of the
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corresponding O-display has the following simple form⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 1 0
0 0 · · · 0 1
0 0 · · · 0 0
· · · · · · · · · · · · · · ·
0 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We say a basis adapted to the filtration is in normal form if for each i, the basis
{xdi+1, · · · , xdi+1 ; yci+1, · · · yci+1} is a basis in normal form for Gi

0/G
i−1
0 . By induction

on the length of the filtration, it is easy to see that G0 admits a basis in normal form
adapted to the filtration for any filtered π-divisible O-module G0 with ai = 1

Proposition 6.15. Let k ∈ AlgO be a field of characteristic p. Let {Hi
0 | 0 ≤ i ≤

m} be a filtered local-local π-divisible O-module over k with a(Hi
0/H

i−1
0 ) = 1. Then

there exists a deformation {Hi | 0 ≤ i ≤ m} of {Hi
0 | 0 ≤ i ≤ m}, such that Hi/Hi−1

and Hi
0/H

i−1
0 have the same slope, and such that a(Hm

η ) = 1.

Proof. Without loss of generality, we may assume that k is algebraically closed.
The proof is similar to the proof of Proposition 6.14. In order to find the desired
deformation of the filtered π-divisible O-module, we only need to find an appropriate
deformation of the corresponding O-display. The filtered π-divisible O-module H0

admits a basis of normal form adapted to the filtration and the corresponding O-

display has a structure equation Φ =

(
A B
C D

)
. Here A is a block upper triangle

matrix with diagonal blocks A11, . . . , Amm and similar for B, C and D. Moreover,(
Aii

Cii

)
has a special form as above. Now, we deform P by deforming the structure

equation with respect to

T = (Tij) :=

⎛⎜⎜⎜⎜⎝
0 T12 0 · · · 0 0
0 0 T23 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 0 Tm−1,m

0 0 0 · · · 0 0

⎞⎟⎟⎟⎟⎠ .

Each Ti,i+1 is a matrix with all entries equal to 0 except the (1, 1)-entry, which is the
Teichmüller lift [si] of indeterminant si. One then checks easily that Rank(A+TC) =
d − 1 as the determinant of the sub-matrix of (A + TC) without the d1-column and

(cm+1)-row (with all entries 0) is
∏s−1

i=1 (∗+[si]) with ∗ ∈ WO(K), which is non-zero.
Note that Q+F (P ) = Q+F (L) +F (T ) = Q+F (T ) as F (L) ⊂ Q, the deformed O-
display has a-number 1. Furthermore, this deformation does not change the successive
quotients as the diagonal blocks remain the same. Thus the corresponding π-divisible
O-module satisfies the desired property.

Now we prove that every π-divisible O-module over algebraically closed k satisfies
OC. We have the following result.
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Theorem 6.16. Let k ∈ AlgO be an algebraically closed field of characteristic
p and G0 be a π-divisible O-module over k. There is a deformation G of G0 with
a(Gη) ≤ 1 such that Gη and G0 have the same Newton polygon.

Proof. The proof is a combination of Proposition 6.14 and Proposition 6.15.
Starting with G0, by Proposition 6.14, there is a deformation to a filtered group H
with successive quotients each having a-number 1. Without loss of generality, by
taking an irreducible component of the base if necessary, we may assume that H is
over a complete local domain B1 of characteristic p with residue field k. Applying
Proposition 6.15 to the filtered O-module Hη = H ⊗Q(B1), there exists a complete
local domain B2 and a deformation G over B2 of Hη such that G has the same Newton
polygon of Hη and a(Gη) = 1. From the construction in the proof of Proposition 6.15,
the O-display defining G over B2 is defined over B3 = B1 ×Q(B1) B2. Hence G is
defined over B3 and it satisfies the desired properties.
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