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EMBEDDING OBSTRUCTIONS IN Rd FROM THE
GOODWILLIE-WEISS CALCULUS AND WHITNEY DISKS∗

GREGORY ARONE† AND VYACHESLAV KRUSHKAL‡

Abstract. Given a finite CW complex K, we use a version of the Goodwillie-Weiss tower to
formulate an obstruction theory for embedding K into a Euclidean space Rd. For 2-dimensional
complexes in R4, a geometric analogue is also introduced, based on intersections of Whitney disks
and more generally on the intersection theory of Whitney towers developed by Schneiderman and
Teichner. We focus on the first obstruction beyond the classical embedding obstruction of van Kam-
pen. In this case we show the two approaches lead to essentially the same obstruction. We also give
another geometric interpretation of our obstruction, as a triple collinearity condition. Furthermore,
we relate our obstruction to the Arnold class in the cohomology of configuration spaces. The ob-
structions are shown to be realized in a family of examples. Conjectures are formulated, relating
higher versions of these homotopy-theoretic, geometric and cohomological theories.
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1. Introduction. Let K be a finite CW complex of dimension m. In this paper
we introduce a new obstruction to the existence of a topological embedding K ↪→ Rd.
The obstruction is defined for all m and d, but our motivation comes primarily from
questions about embedding 2-dimensional complexes in R4.

Remark 1.1. It is worth noting that by a theorem of Stallings [39] (see also [12]),
a k-connected m-complex is simple homotopy equivalent to a subcomplex of R2m−k.
In particular, the embedding problem up to homotopy for 2-complexes in R4 is trivial,
cf. [11]. The subject of this paper is the much more subtle problem of embeddability
of a given complex K without changing it by a homotopy.

We will give several definitions of the obstruction. One of the constructions is
topological, and is inspired by the Embedding Calculus of Goodwillie and Weiss.
The second construction is geometric, and is based on intersection theory of Whitney
disks. We also give another geometric interpretation of the obstruction, as a triple
collinearity condition. Finally we give an algebraic description, in terms of the Arnold
relation in the cohomology of configuration spaces. We will show that the different
definitions agree, in an appropriate sense.

The most general construction is the topological one. It uses configuration spaces.
Let C (X,n) = {(x1, . . . , xn)|xi 6= xj , for i 6= j} denote the n-point configuration
space of a space X. The space C (X,n) has an action of the symmetric group Σn,
permuting the coordinates.

Let Emb(K,Rd) be the space of topological embeddings of K into Rd. Suppose
f : K ↪→ Rd is an embedding. Let fn : Kn → (Rd)n be the n-th cartesian power of
f . Since f is injective, fn restricts to a map from C (K,n) to C (Rd, n). This map is
sometimes called the deleted n-th power of f . Note that the deleted power of f is a
Σn-equivariant map. Thus for each n ≥ 1 we have defined an evaluation map, where
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the notation on the right indicates Σn-equivariant maps:

Emb(K,Rd)→ map(C (K,n),C (Rd, n))Σn . (1.1)

The map (1.1) implies that for K to be embeddable in Rd, it is necessary that for
every n there exists a Σn-equivariant map from C (K,n) to C (Rd, n). This observation
gives rise to obstructions to existence of embeddings. The study of the obstruction
arising from the case n = 2 of (1.1) goes back to van Kampen. We will review it in
subsection 1.1 below.

The key idea of the paper is to use a refinement of the map (1.1). Rather than
just consider the action of the symmetric groups on configuration spaces, we also take
into account projection maps C (X, i)→ C (X, i− 1) that omit one of the points. For
each n we define Tn Emb(K,Rd) to be, roughly speaking, the space of compatible
n-tuples of functions

(f1, . . . , fn) ∈
n∏

i=1

map(C (K, i),C (Rd, i))Σi ,

where the maps fi respect the action the projection maps, at least up to coherent
homotopies. More precisely, Tn Emb(K,Rd) is the space of derived natural transfor-
mations from the functor C (K,−) to C (Rd,−) over the category of sets of size at
most n and injective functions between them. More details and a formal definition
can be found in Section 7.

The spaces Tn Emb(K,Rd) fit into a tower of spaces under Emb(K,Rd), as follows

Emb(K,Rd)

· · · → Tn Emb(K,Rd) Tn−1 Emb(K,Rd) · · · T2 Emb(K,Rd) ∗.

(1.2)

Since there is a map Emb(K,Rd) → Tn Emb(K,Rd), a necessary condition for
Emb(K,Rd) to be non-empty is that Tn Emb(K,Rd) is non-empty for all n. This
is the basis for our obstructions to embeddability of K into Rd. More specifically,
our strategy is to look for an obstruction for a path component of Tn−1 Emb(K,Rd)
to be in the image of a path component of Tn Emb(K,Rd). There is a cohomologi-
cal obstruction On(K) to this lifting problem, formulated in Theorem 7.11. In this
way we obtain an infinite sequence of obstructions to the existence of a topological
embedding of K into Rd. As we will review shortly, the case n = 2 is classical. The
case n = 3 is the main subject of this paper. We hope that a more detailed study of
higher obstructions, corresponding to n > 3, will be pursued in future work.

Remark 1.2. The tower (1.2) is inspired by the embedding calculus of Goodwillie
and Weiss [46, 17]. Goodwillie and Weiss constructed a tower of approximations - the
so called “Taylor tower” - to the space of smooth embeddings Emb(M,N), where M
and N are smooth manifolds. The tower (1.2) is a simplified version of their Taylor
tower. The crucial difference between their construction and ours is that they impose
compatibility not just with reordering and forgetting points, but also with doubling
points.

Note that we make no claim that the induced map

Emb(K,Rd) −→ holimTn Emb(K,Rd)
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is an equivalence. This is in contrast with the Taylor tower of Goodwillie and Weiss,
which is known to converge when the codimension is at least three. Nevertheless,
our version of the tower is useful for detecting non-embeddability of topological em-
beddings. In particular, it contains information about the problem of embedding
2-complexes in R4.

For 2-complexes in R4 we also consider an alternative, geometric approach based
on the failure of the Whitney trick in this dimension. Some instances of this approach
are well-known, for example in the study of Milnor’s invariants [27]. More gener-
ally, Schneiderman and Teichner [33] developed the intersection theory of Whitney
towers in 4-manifolds. We use these ideas to formulate embedding obstructions for
2-complexes in R4.

Considering the first new obstruction, we show that these a priori unrelated ap-
proaches in fact give the same result (Theorem 4.1). This provides a useful perspective
on both of them: the homotopy-theoretic obstruction is manifestly well-defined but
lacks an immediate geometric interpretation; the Whitney tower approach has a clear
geometric meaning but establishing its well-definedness directly is a challenging prob-
lem.

In the following two subsections we discuss in concrete terms the obstructions
arising at the bottom stages of the tower Tn Emb(K,Rd): the case n = 2 corresponding
to the classical van Kampen obstruction and the new obstruction arising from n = 3.

1.1. The van Kampen obstruction from 2-point configuration spaces.
We will now recall some of the classical results in the subject and relate them to our
setting. Suppose there exists a topological embedding f : K ↪→ Rd. We saw that it
gives rise to a Σ2-equivariant map - the deleted square of f :

f2
∆ : C (K, 2)→ C (Rd, 2). (1.3)

The existence of a Σ2-equivariant map C (K, 2)→ C (Rd, 2) is a necessary condi-
tion for the existence of a topological embedding f : K ↪→ Rd. To relate this discussion
to our tower (1.2), let us note that it is easy to see that T1 Emb(K,Rd) ' {∗}, and

T2 Emb(K,Rd) ' map(C (K, 2),C (Rd, 2))Σ2 . (1.4)

Thus the condition that there exists a Σ2-equivariant map C (K, 2) → C (Rd, 2) is
equivalent to the condition that T2 Emb(K,Rd) is non-empty.

The van Kampen obstruction is a cohomological obstruction to the existence
of such a Σ2-equivariant map. It is an element, which we denote O2(K), of the
equivariant cohomology group Hd

Σ2
(C (K, 2);Z[(−1)d]), where Z[(−1)d] denotes the

integers with the action of Σ2 by (−1)d. There are many ways to construct the
element O2(K). The original formulation of van Kampen [42] predated a formal
definition of cohomology, and it was based on a geometric approach. Moreover, van
Kampen’s formulation concerned the case 2dim(K) = d. We denote the geometric
version of the obstruction by W2(K). It is defined by counting intersections of non-
adjacent cells. We give a homotopy-theoretic definition of the obstruction O2(K) in
Section 2, and review van Kampen’s geometric definition of W2(K) in Section 3. The
following theorem summarizes the relevant facts about the van Kampen obstruction

Theorem 1.3. The homotopy-theoretic obstruction O2(K) agrees with the geo-
metric obstruction W2(K). When 2 dim(K) = d, O2(K) is a complete obstruction for
T2 Emb(K,Rd) to be non-empty. Furthermore, when 2 dim(K) = d 6= 4, W2(K) (and
therefore also O2(K)) is a complete obstruction to K being embeddable in Rd
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This theorem is classical, though we hope that our formulation helps place it in a
wider context. The fact that the homotopy-theoretic and the geometric formulations
of the obstructions agree is explained, for example, in [28, Section 3]. That the van
Kampen obstruction is complete when 2 dim(K) = d > 4 follows from the validity
of the Whitney trick [37, 48]; a modern treatment may be found in [14]. For 1-
complexes in R2 this follows from the Kuratowski graph planarity criterion [23] and
the naturality of van Kampens obstruction under embeddings. That O2(K) is a
complete obstruction to T2 Emb(K,Rd) to be non-empty follows from Lemma 2.2.
See also the discussion following the proof of the lemma.

Remark 1.4. Building on work of Haefliger [18], Weber [44] extended the em-
beddability result to the “metastable range” of dimensions. More precisely, it is
shown in [44] that given an m-dimensional simplicial complex K and a Σ2-equivariant
map f2 : C (K, 2) −→ C (Rd, 2) with 2d ≥ 3(m + 1), there exists a PL embedding
f : K −→ Rd such that the induced map f2

∆ is Σ2-equivariantly homotopic to f2.

By contrast to all the cases when 2 dim(K) = d 6= 4, it was shown in [14]
that when K is a 2-dimensional complex, the existence of a Σ2-equivariant map
C (K, 2) → C (R4, 2) is insufficient for embeddability of K in R4, and thus the van
Kampen obstruction is incomplete. The underlying geometric reason, the failure of
the Whitney trick in 4 dimensions, is well-known. However, as in many other aspects
of 4-manifold topology, it is a non-trivial problem to formulate an invariant that cap-
tures this geometric fact. In this paper, as we discuss below, we formulate such an
invariant in the context of 2-complexes in R4.

To summarize, the obstruction O2(K) to lifting from T1 to T2, which is the same
as the obstruction for the space (1.4) to be non-empty, is precisely the van Kampen
obstruction. The lifting problem to the next stage of the tower, T3 Emb(K,Rd),
discussed in the next subsection, yields an embedding obstruction for m-complexes in
Rd beyond the metastable range: for 2d < 3(m+ 1).

1.2. The obstruction from 3-point configuration spaces. Suppose K is a
finite-dimensional complex for which the van Kampen obstruction vanishes. Then
there exists a Σ2-equivariant map

f2 : C (K, 2) −→ C (Rd, 2)

Our goal is to give an effective necessary condition for the existence of an embedding
f : K ↪→ Rd such that the deleted square f2

∆ : C (K, 2) → C (Rd, 2) is equivariantly
homotopic to f2. There is a cubical diagram of configuration spaces, where the pro-
jection pi omits the i-th coordinate:

C (X, 2) X

C (X, 3) C (X, 2)

X {∗}

C (X, 2) X

p1

p2

p1

p3

p2 p1

p1

p2

p2 (1.5)
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Now suppose we have a topological embedding f : K ↪→ Rd. Such an embedding
induces a map of cubical diagrams (1.5) for K and Rd. In the diagram for Rd the space
C (Rd, 1) = Rd is contractible, and (up to homotopy) the map of cubical diagrams
may be replaced by a smaller diagram (1.6) below. Denote by pX the canonical
Σ3-equivariant map

pX : C (X, 3) −→ C (X, 2) × C (X, 2) × C (X, 2)

(x1, x2, x3) 7→ (x1, x2) , (x2, x3) , (x3, x1)

Then f induces a commutative diagram

C (K, 3) C (Rd, 3)

C (K, 2)× C (K, 2)× C (K, 2) C (Rd, 2)× C (Rd, 2)× C (Rd, 2)

f3
∆

pK PRd

(f2
∆)3

(1.6)

Therefore, given a Σ2-equivariant map f2 : C (K, 2) −→ C (Rd, 2), a necessary condi-
tion for it being induced by an embedding, is that the lifting problem in the following
diagram has a solution

C (Rd, 3)

C (K, 3) C (K, 2)
×3

C (Rd, 2)
×3

pRd

pK (f2)3

(1.7)

There exists a cohomological obstruction to the existence of a Σ3-equivariant dashed
arrow that makes the diagram commute up to homotopy. We denote this obstruction
by O3(K, f2), or simply by O3(K) when the choice of f2 is immaterial. It turns out
to be an element of an equivariant cohomology group of C (K, 3). More specifically,

O3(K) ∈ H2d−2
Σ3

(
C (K, 3);Z[(−1)d−1]

)
.

See Section 2 for a detailed discussion. In terms of the tower (1.2), O3(K, f2) is the
primary obstruction for the path component of f2 in T2 Emb(K,Rd) to be in the
image of the map T3 Emb(K,Rd)→ T2 Emb(K,Rd).

We will give several topological, geometric and algebraic interpretations ofO3(K);
its properties are summarized below, along with references to the sections in the text
where they are established.

• For 2-complexes in R4, O3(K) counts intersections of K with the Whitney
disks that arise from the vanishing of the van Kampen obstruction (Subsec-
tion 1.3 below, and Sections 3, 4).

• O3(K, f2) also admits another geometric interpretation as the fundamental
class of the subspace of points (k1, k2, k3) ∈ C (K, 3) for which the vectors
f2(k1, k2), f2(k2, k3) and f2(k3, k1) are co-directed (Section 5).

• Lemma 6.5 interprets O3(K) as the kernel of the Arnold relation in cohomol-
ogy of configuation spaces.

• This algebraic interpretation is used to verify that O3(K) detects non-
embeddability of a family of examples in Section 6 with vanishing van Kam-
pen’s obstruction.
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1.3. 2-complexes in R4: obstructions from intersections of Whitney
disks. We outline in more detail the geometric approach to embedding obstructions
in terms of intersections of Whitney disks for simplicial 2-complexes in R4. In this
case, as we recall in Section 3, the vanishing of the van Kampen obstruction implies
that a general position map f : K −→ R4 may be found such that for any two non-
adjacent 2-simplices σi, σj of K, the algebraic intersection number f(σi)·f(σj) is zero.
In higher dimensions in this setup the Whitney trick enables one to find an actual
embedding, cf. [14, Theorem 3]. In dimension 4 one may still consider Whitney disks
Wij pairing up the intersections points f(σi)∩f(σj) but the Whitney disks themselves
have self-intersections and intersect other 2-cells, see [15, Section 1.4] and also Figure
2 in Section 3 below.

Our geometric obstruction W3(K) is an element of the equivariant cohomology
group

H6
Σ3

(Cs(K, 3);Z[(−1)]);

this is the same cohomology group as the one discussed above except that now Cs(K, 3)
denotes the simplicial configuration space, that is K3 minus the simplicial diagonal
consisting of products σ1 × σ2 × σ3 of simplices where at least two of them have a
vertex in common. The obstruction is defined on the cochain level by sending a 6-cell
σ1 × σ2 × σ3 (where each σi is a 2-simplex of K) to the sum of intersection numbers
Wij · f(σk) over distinct indices i, j, k; see Section 3.4 for details. Informally, the
obstruction may be thought of as measuring the failure of the Whitney trick in 4
dimensions. In the special case of disks in the 4-ball with a prescribed boundary –
a link in the 3-sphere ∂D4 – the analogous invariant equals the Milnor µ̄-invariant
[27] of a 3-component link, sometimes referred to as the triple linking number. For
knots, a similar expression measuring self-intersections of a disk in D4 equals the Arf
invarint, see Remark 3.6 and references therein.

The obstruction W3(K) depends on the map f : K −→ R4 and also on Whitney
disks Wij . In fact, we show in Lemma 3.3 that a choice of Whitney disks determines
a Σ2-equivariant map Cs(K, 2) −→ C (R4, 2); in this sense the geometric setup is
parallel to the homotopy-theoretic context discussed above.

The following theorem summarizes some of our results about the obstructions
O3(K) and W3(K).

Theorem 1.5. The obstructions O3(K) and W3(K) are in fact equal (Theo-
rem 4.1). These obstructions detect some non-embeddable complexes for which O2(K)
vanishes (Section 6). The obstruction O3(K) is a complete obstruction for lifting from
T2 Emb(K,Rd) to T3 Emb(K,Rd) if 3m = 2(d− 1) (Proposition 2.11).

The proof that O3(K) and W3(K) coincide proceeds by localizing the problem,
using subdivisions of the 2-complex K and splittings of Whitney disks, and identi-
fying the Whitehead product in the homotopy fiber of the map pR4 : C (Rd, 3) −→
C (Rd, 2)

×3
in the notation of (1.7) using the Pontryagin-Thom construction; see Sec-

tion 4 for details.

1.4. Lift of the obstructions from cohomology to framed cobordism.
In addition to constructing the cohomological obstructions, we define, in Sections 2
and 5, a lift of O3(K) which we denote Ofr

3 (K). We hasten to add that an analogue
of Ofr

3 (K) in the context of smooth embeddings was studied by Munson [29]. Just as
O3(K) is an element of the equivariant cohomology of C (K, 3), Ofr

3 (K) is an object
of a suitable equivariant framed cobordism group (a.k.a stable cohomotopy group)
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of C (K, 3). The Hurewicz homomorphism from stable homotopy to homology takes
Ofr

3 (K) to O3(K).

The class Ofr
3 (K) is a complete obstruction to the lifting problem (1.7) when-

ever dim(K) ≤ d − 2. By contrast, O3(K) is a complete obstruction to the same
lifting problem when dim(K) ≤ 2

3d − 2
3 . Thus Ofr

3 (K) is a stronger invariant than
O3(K). But when d = 4 the difference is immaterial. All this is explained in Sec-
tion 2. In Section 5 we give an explicit description of Ofr

3 (K) in terms of a classifying
map. As a consequence, we obtain in Section 5 another geometric interpretation of
O3(K, f2) as the cohomology class represented by triples (k1, k2, k3) ∈ C (K, 3) for
which f2(k1, k2) = f2(k2, k3) = f2(k3, k1).

In Section 7 we describe the general obstruction On(K) as an element in the
equivariant cohomology of C (K,n) with coefficients in the cyclic Lie representation
of Σn. We also give a conjectural description of Ofr

n (K) in terms of equivariant stable
cohomotopy of C (K,n) with coefficients in a space of trees that realizes the Lie
representation.

1.5. Outline of the paper. Section 2 starts with the discussion of van Kam-
pen’s obstruction and its properties, and proceeds to define the new obstruction
O3(K). We also describe a lift of O3(K) to an equivariant framed cobordism class

Ofr
3 (K), which is defined in terms of a classifying map C (Rd, 2)

3 → Ω̂2Ω∞Σ∞Ŝ2d.
An explicit construction of Ofr

3 (K) is deferred to Section 5. Section 3 starts by re-
calling the geometric definition of van Kampen’s obstruction and basic operations on
Whitney disks in dimension 4. Lemma 3.3 establishes a relation between Whitney
disks and maps of configuration spaces, which illustrates a key connection between
geometry and homotopy theory explored in this paper. Section 3.4 defines W3(K)
and analyzes its properties. The construction of higher obstructionsWn(K), in terms
of intersection theory of Whitney towers of Schneiderman-Teichner, is outlined in Sec-
tion 3.5. The main result of Section 4, Theorem 4.1, relates the obstructions O3(K)
and W3(K). In Section 5 we construct the lift Ofr

3 (K) of O3(K) and use it to give
another topological interpretation of O3(K) in terms of the set of points satisfying a
certain collinearity condition. Section 6 recalls the examples of [14] and shows that
the obstruction O3(K) detects their non-embeddability in R4. In the process of do-
ing this, O3(K) is related to the Arnold class in Lemma 6.5. Section 7 gives the
construction of the tower Tn Emb(K,Rn), formulates the higher obstructions On(K),
and discusses their properties including a conjectural framed cobordism lift. We con-
clude by stating a number of questions and conjectures motivated by our results in
Section 8.
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2. The first and second cohomological obstructions to embedding. In
section 2.1 we review the classical van Kampen obstruction O2(K) from a homotopy-
theoretic perspective. Then in section 2.2 we will introduce our main construction:
a higher cohomological obstruction O3(K), defined when O2(K) = 0, and depending
on a choice of a Σ2-equivariant map f2 : C (K, 2) → C (Rd, 2). Finally in section 2.3
we discuss certain refinements Ofr

2 (K) and Ofr
3 (K) of O2(K) and O3(K) respectively

into classes that reside in framed cobordism rather than cohomology.

2.1. The van Kampen obstruction. Let K continue denoting an m-
dimensional CW (or simplicial) complex. We are interested in the question whether
there exists a topological (or PL) embedding of K in Rd. As we saw in the intro-
duction, a necessary condition for the existence of an embedding is the existence of a
Σ2-equivariant map f2 : C (K, 2)→ C (Rd, 2). Or, equivalently, a Σ2-equivariant map

C (K, 2) → S̃d−1, where S̃d−1 denotes the sphere with the antipodal action of Σ2.

Recall that there is a Σ2-equivariant homotopy equivalence C (Rd, 2)
'−→ S̃d−1 that

sends (x1, x2) to x2−x1

|x2−x1| . We will occasionally switch back and forth between these
spaces.

There is a well-known homotopical/cohomological obstruction to the existence of

a Σ2-equivariant map f2 : C (K, 2) → C (Rd, 2), which we will now review. Let R̂d
denote the d-dimensional Euclidean space on which Σ2 acts by multiplication by −1.

Notation 2.1. Suppose G is a group acting on a space X. We let XG and XG

denote the orbit space and the fixed point space of X, respectively. If X and Y are
two spaces with an action of G, then G acts on the mapping space map(X,Y ) by
conjugation. In this case the fixed point space map(X,Y )G is the space of equivariant
maps from X to Y . Also, we sometimes use the notation X ×G Y to denote the orbit
of X × Y by the diagonal action.

Notice that Σ2 acts on the trivial vector bundle

(K ×K \K)× R̂d → K ×K \K.

Passing to orbit spaces, one obtains the vector bundle

(K ×K \K)×Σ2
R̂d → (K ×K \K)Σ2

(2.1)

Let Ŝd be the one-point compactification of R̂d, considered as a space with an
action of Σ2. Equivalently, Ŝd is the unreduced suspension of S̃d−1. Note that Ŝd has
two points fixed by Σ2, corresponding to 0 and ∞ in the compactificaton of R̂d. By
convention, ∞ is the basepoint of Ŝd. The following elementary lemma gives several
conditions for the existence of a Σ2-map K ×K \K → S̃d−1.

Lemma 2.2. Conditions (1) and (2) below are equivalent

(1) There exists a Σ2-equivariant map K ×K \K → S̃d−1.
(2) The vector bundle (2.1) has a nowhere vanishing section.

Furthermore, conditions (1) and (2) above imply conditions (3) and (4) below. Under
the assumption d ≥ dim(K) + 2, the conditions (1)− (4) are equivalent.

(3) The constant map K × K \ K → Ŝd that sends K × K \ K to 0 is Σ2-
equivariantly null-homotopic. By this we mean that it is equivariantly homo-
topic to the constant map that sends K ×K \K to ∞.

(4) The constant map K×K \K → Ω∞Σ∞Ŝd which is the map of part 3 followed

by the suspension map Ŝd → Ω∞Σ∞Ŝd is Σ2-equivariantly null-homotopic.
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Proof. The vector bundle (2.1) has a nowhere vanishing section if and only if the
sphere bundle

(K ×K \K)×Σ2
S̃d−1 → (K ×K \K)Σ2

has a section. It is well-known that sections of this bundle are in bijective correspon-
dence with Σ2-equivariant maps K ×K \K → S̃d−1 [41, Proposition 8.1.3], which is
why (1) and (2) are equivalent.

Suppose there is a Σ2-equivariant map K × K \ K → S̃d−1. It induces Σ2-
equivariant maps

(K ×K \K)× I → S̃d−1 × I → Ŝd

where the latter map is the obvious quotient. This composite map is a null homotopy
of the constant zero map K ×K \K → Ŝd. This is why (1) implies (3). It is obvious
that (3) implies (4).

For the reverse implication in the last statement of the lemma, let Ω̃Ŝd be the
space of paths in Ŝd from the basepoint ∞ to 0. There is a canonical Σ2-equivariant
map S̃d−1 → Ω̃Ŝd. It follows from the Blakers-Massey theorem that this map is
2d− 3-connected. It follows that the induced map of mapping spaces

map(K ×K \K, S̃d−1)Σ2 → map(K ×K \K, Ω̃Ŝd)Σ2

is 2d−2 dim(K)−3-connected. So if d−dim(K) ≥ 2 this map is at least 1-connected,

and therefore induces a bijection on π0. But a Σ2-equivariant map K×K \K → Ω̃Ŝd

is the same thing as a Σ2-equivariant null homotopy of the constant zero map from
K × K \ K to Ŝd. Thus, under the assumption d ≥ dim(K) + 2, condition (3)
implies (1).

Finally, the map Ŝd → Ω∞Σ∞Ŝd is 2d− 1-connected by the Freudenthal suspen-
sion theorem. It follows that (4) implies (3) when d ≥ dim(K) + 1, which is a weaker
condition than stated in the lemma.

Lemma 2.2 points to several (equivalent) ways to define a cohomological obstruc-

tion to the existence of a Σ2-equivariant map K×K \K → S̃d−1. To begin with, the
map given in part (4) of the lemma can be interpreted as an element of an equivariant
stable cohomotopy group, or equivalently an equivariant framed cobordism group of
K × K \ K. We denote this element by Ofr

2 (K). Lemma 2.2 says that Ofr
2 (K) is a

complete obstruction to the existence of a Σ2-equivariant map K ×K → S̃d−1 when
dim(K) + 2 ≤ d.

The natural map of spectra Σ∞S0 → HZ induces a Σ2-equivariant map

Ω∞Σ∞Ŝd → Ω∞HZ ∧ Ŝd ' K(Z[(−1)d], d). (2.2)

Here K(Z[(−1)d], d) denotes the Eilenberg-Mac Lane space with an action of Σ2, that
on the non-trivial homotopy group realizes the representation Z[(−1)d], which is the
trivial representation if d is even and the sign representation if d is odd. Any two
such Eilenberg-Mac Lane spaces are weakly equivariantly equivalent.

Composing the maps in Lemma 2.2(4) and (2.2), we obtain a Σ2-equivariant map

K ×K \K → K(Z[(−1)d], d).

This map defines an element in the equivariant cohomology group O2(K) ∈ Hd
Σ2

(K×
K \ K;Z[(−1)d]). This is the classical van Kampen obstruction. It is the same as
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the Euler class of the vector bundle (2.1). The classical van Kampen obstruction is a

complete obstruction to the existence of a Σ2-equivariant mapK×K\K → S̃d−1 when
d = 2 dim(K). We are especially interested in the case when 4 = d = 2 dim(K) =
dim(K) + 2. In this case, the cohomological obstruction is a complete obstruction
to the existence of an equivariant map (but not to the existence of an embedding
K ↪→ Rd), and using the framed cobordism version does not add information. But in
other situations Ofr

2 (K) contains more information than O2(K).

Remark 2.3. The framed cobordism viewpoint points to a geometric interpreta-
tion of the van Kampen obstruction. It is perhaps even more convincing in the context
of smooth manifolds. In that context, the analogue of the van Kampen obstruction
is the obstruction for lifting from the first to the second stage of the Goodwillie-
Weiss tower. In other words, it is the first obstruction to an immersion of a smooth
manifold M into Rd being regularly homotopic to an embedding. This obstruction

is an element in the relative equivariant cobordism group ΩR̂d

fr (M ×M,M), and it
can be interpreted as the framed cobordism class of the double points manifold of
an immersion. This is explained, for example, in the introduction to [29]. In the
case of topological embeddings of a 2-dimensional complex in R4, the van Kampen
obstruction also can be interepreted as a double points obstruction. Of course this
interpretation is well-known, and indeed it was how van Kampen thought about it.
We review this in Section 3.1.

2.2. The secondary obstruction. Now let us consider the next step. Suppose
we have a finite complex K for which O2(K) (or Ofr

2 (K)) vanishes, and suppose we
choose a Σ2-equivariant map f2 : C (K, 2) → C (Rd, 2). We want to know if f2 is
Σ2-equivariantly homotopic to the deleted square of some embedding f : K ↪→ Rd.

Suppose W is a space with an action of Σ2. Then we endow the space W×W×W
with an action of Σ3 via the homeomorphism W × W × W ∼= mapΣ2

(Σ3,W ). In

particular, the spaces C (X, 2)
3

(for any space X) and (S̃d−1)3 are equipped with a
natural action of Σ3 in this way.

For any space X, a Σ3-equivariant map C (X, 3) → C (X, 2)
3

is the same thing
as a Σ2-equivariant map C (X, 3) → C (X, 2), where Σ2 ⊂ Σ3 is identified, as usual,
with the subgroup permuting 1, 2. There is an obvious Σ2-equivariant projection map
C (X, 3)→ C (X, 2) which sends (x1, x2, x3) to (x1, x2). This map induces a canonical
Σ3-equivariant map

pX : C (X, 3) → C (X, 2) × C (X, 2) × C (X, 2)

(x1, x2, x3) 7→ (x1, x2) , (x2, x3) , (x3, x1)
(2.3)

This map is natural with respect to embeddings of X. Therefore, an embedding
f : K ↪→ Rd induces a commutative square as we saw in the introduction (1.6). Con-
versely, if f2 : C (K, 2)→ C (Rd, 2) is a Σ2-equivariant map, then a necessary condition
for f2 to be equivarintly homotopic to the deleted square of an embedding is that the
homotopy lifting problem in the following diagram has a Σ3-equivariant solution

C (Rd, 3)

C (K, 3) C (Rd, 2)
×3

pRd

(f2)3◦pK

(2.4)
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At this point we want to bring obstruction theory into play. For this, we need to

examine the map pRd : C (Rd, 3)→ C (Rd, 2)
3

a little more closely.
To describe the effect of the map pRd in homology, let us recall some facts about

the homology of configuration spaces. Recall that there is an equivalence C (Rd, 2) '
Sd−1. Let u ∈ Hd−1(C (Rd, 2)) be a fixed generator.

Definition 2.4. The Arnold class is the following cohomological element.

u⊗ u⊗ 1 + (−1)d−1u⊗ 1⊗ u+ 1⊗ u⊗ u ∈ H2d−2(C (Rd, 2)×C (Rd, 2)×C (Rd, 2)).

Remark 2.5. Notice that the group Σ3 acts by (−1)d−1 on the Arnold class.
That is, even permutations take the Arnold class to itself, and odd permutations
multiply it by (−1)d−1. This means that the Arnold class is an element of the invariant
cohomology group

H2d−2
(
C (Rd, 2)× C (Rd, 2)× C (Rd, 2);Z[(−1)d−1]

)Σ3

The following lemma is well-known.

Lemma 2.6.

pRd : C (Rd, 3)→ C (Rd, 2)
3

is surjective in cohomology, and its kernel in cohomology is the ideal generated by the
Arnold class.

We refer to the statement of this lemma as the Arnold relation. The original
reference is [1], where it is proved for configuration spaces in R2. The general result
is proved in [9, Lemma 1.3 and Proposition 1.4]). The following corollary is an an
easy consequence of the lemma, and is also well-known. Let us recall once again
that C (Rd, 2) is Σ2-equivariantly equivalent to Sd−1 with the antipodal action. The
possible sign representation Z[(−1)d] in the statement below arises from the action of
Σ2 on Hd−1(Sd−1).

Corollary 2.7. The map pRd is 2d− 3-connected, and moreover it induces an
isomorphism in homology and cohomology in degrees up to and including 2d − 3. In
degree 2d − 2 there is an isomorphism of abelian groups H2d−2(C (Rd, 3)) ∼= Z2 and
an isomorphism of Σ3-modules

H2d−2(C (Rd, 2)
3
) ∼= Z[Σ3]⊗Z[Σ2] Z[(−1)d−1].

Moreover, the homomorphism in H2d−2 induced by pRd fits in a short exact sequence
of Σ3-modules

0→ H2d−2(C (Rd, 3))→ H2d−2(C (Rd, 2)
3
)→ Z[(−1)d−1]→ 0

where the second homomorphism can be identified with the canonical surjection of
Σ3-modules

Z[Σ3]⊗Z[Σ2] Z[(−1)d−1]→ Z[(−1)d−1].

It is worth noticing that the short exact sequence splits, but not Σ3-equivariantly.
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Let Fd be the homotopy fiber of the map pRd : C (Rd, 3)→ C (Rd, 2)
3
. It follows

from Corollary 2.7 that the first non-trivial homotopy group of Fd is π2d−3(Fd), and
it is isomorphic to Z. A priori, the homotopy groups of Fd form a local coefficients
system over C (Rd, 3). We will generally assume that d ≥ 3. With this assumption,
the spaces C (Rd, 3),C (Rd, 2) and Fd are simply-connected, and the groups πq(Fd)
form a trivial coefficients system over C (Rd, 3). Furthermore, the action of Σ3 on

C (Rd, 3) and C (Rd, 2)
3

induces a well-defined action of Σ3 on πq(Fd). Similarly,

the relative homotopy groups πq(C (Rd, 2)
3
,C (Rd, 3)) are well-defined abelian groups

with an action of Σ3, independently of basepoints.
Taking the first dimension in which the relevant homotopy-group is non-trivial,

we obtain isomorphisms of groups with an action of Σ3:

π2d−3(Fd) ∼= π2d−2(C (Rd, 2)
3
,C (Rd, 3))

∼=−→ H2d−2(C (Rd, 2)
3
,C (Rd, 3)) ∼= Z[(−1)d−1].

Here the first isomorphism is by standard homotopy theory, the second isomorphism
is the relative Hurewicz isomorphism, and the third isomorphism follows from Corol-
lary 2.7.

We will use this to define an obstruction to the lifting problem indicated in Di-
agram (2.4). Suppose we have a map (and throughout this discussion, whenever we

say “map” we mean “Σ3-equivariant map”) C (K, 3) → C (Rd, 2)
3
, and we want to

lift it to a map C (K, 3)→ C (Rd, 3). Since the map C (Rd, 3)→ C (Rd, 2)
3

is 2d− 3-
connected, obstruction theory tells us that the principal obstruction to the existence
of a lift lies in the equivariant cohomology group

H2d−2
Σ3

(C (K, 3);π2d−3(Fd)) = H2d−2
Σ3

(C (K, 3);Z[(−1)d−1]).

One well-known construction of the obstruction goes through induction on skeleta of
C (K, 3). See Steenrod [40, Part III] for an exposition of this approach to obstruction
theory in the non-equivariant setting, and Bredon [6, Chapter II] for the equivariant
version. Strictly speaking, C (K, 3) does not have a canonical cell structure, but in
Section 4 we will apply the skeletal approach to obstruction theory to a subspace
Cs(K, 3) of C (K, 3), which does have a canonical cellular structure.

But now we will show another, more homotopy theoretic construction of the
cohomological obstruction, which uses Eilenberg - Mac Lane spaces instead of cellular
cochains. Standard homotopy theoretic arguments show that the two approaches
lead to the same cohomological class when applied to cell complexes. There are
a couple of advantages to the homotopy-theoretic approach. One is that it does
not depend on choosing a cell structure on C (K, 3), and is more canonical than the
skeletal approach. The second, perhaps more interesting reason is that the homotopy-
theoretic method can be easily modified to produce a stronger obstruction, that resides
in framed cobordism (a.k.a stable cohomotopy) rather than ordinary cohomology.

We will develop by hand the bits of obstruction theory that we need. We refer
the reader to [19, Section 4.3] for a more systematic exposition of the approach to
obstruction theory via Posnikov towers in the non-equivariant setting. We refer to [26,
Chapter II.1] for a brief review of Postnikov towers for spaces with an action of a group.

Now that we are looking at spaces with an action of Σ3, let K(Z[(−1)d], 2d− 2)
denote an Eilenberg-Mac Lane space with an action of Σ3 that acts by Z[(−1)d] on the
non-trivial homotopy group. Lemma 2.9 below is an easy consequence of Corollary 2.7.
Before stating the lemma, let us review the definition of a k-(co)cartesian square
diagram. For a thorough review of the concepts surrounding (co)-cartesian cubical
diagrams we recommend [16] or [30].
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Definition 2.8. Suppose that we have a commutative diagram

X0 X1

X2 X12

One says that the diagram is k-cartesian if the induced map from X0 to the homotopy
pullback of

X2 → X12 ← X1

is k-connected. Dually, the diagram is k-cocartesian if the induced map from the
homotopy pushout

X2 ← X0 → X1

to X12 is k-connected.

Notice that if, say, X2 ' ∗, then to say that the square is (co)cartesian is equiva-
lent to saying that X0 → X1 → X12 is a homotopy (co)fibration sequence.

Lemma 2.9. Assume that d ≥ 3. There exists a model of the Eilenberg-Mac Lane
space K(Z[(−1)d], 2d− 2) for which there is a Σ3-equivariant map

C (Rd, 2)
3 → K(Z[(−1)d−1], 2d− 2),

such that the composite map

C (Rd, 3)
pRd−−→ C (Rd, 2)

3 → K(Z[(−1)d−1], 2d− 2)

is equivariantly null-homotopic, and the following diagram is 2d− 2-cartesian

C (Rd, 3) C (Rd, 2)
3

∗ K(Z[(−1)d−1], 2d− 2)

pRd

. (2.5)

Proof. Let C be the homotopy cofiber of the map pRd . Then C is a pointed space,
and there is a cocartesian square

C (Rd, 3) C (Rd, 2)
3

∗ C

pRd

.

By Corollary 2.7 the map pRd is 2d− 3-connected. Also the space C (Rd, 3) is d− 2-
connected, so the left vertical map in the square diagram is d − 1-connected. By
the Blakers-Massey theorem, it follows that the square is 3d − 5-cartesian. It also
follows from Corollary 2.7 that the bottom non-trivial homology group of C occurs
in dimension 2d− 2, and in this dimension the homology group of C is isomorphic to
Z[(−1)d−1] as a Σ3-module. We assume that d is at least 3, so C (Rd, 2) and C (Rd, 3)
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are simply connected. By Hurewicz theorem, the bottom non-trivial homotopy group
of C also occurs in dimension 2d − 2, and furthermore π2d−2(C) ∼= Z[(−1)d−1] as a
Σ3-module. By the theory of equivariant Postnikov towers [26, Chapter II.1], there
exists a model for the Eilenberg-Mac Lane space K(Z[(−1)d−1], 2d−2) equipped with
a map C → K(Z[(−1)d−1], 2d− 2) that induces an isomorphism on homotopy groups
in dimensions up to 2d−2. This map is an epimorphism in dimension 2d−1, because
π2d−1(K(Z[(−1)d−1], 2d− 2)) = 0. In other words, the map C → K(Z[(−1)d−1], 2d−
2) is 2d − 1-connected. By substituting K(Z[(−1)d−1], 2d − 2) for C in the square
diagram at the beginning of the proof, we obtain the required diagram (2.5). By
our calculations this diagram is min(3d − 5, 2d − 2)-cartesian. Since d ≥ 3, it is
2d− 2-cartesian, as required.

Now let us consider again the lifting problem in figure (2.4). We have a Σ3-
equivariant map

C (K, 3)
(f2)3◦pK−−−−−−→ C (Rd, 2)

3
.

Composing with the Σ3-equivariant map C (Rd, 2)
3 → K(Z[(−1)d−1], 2d − 2) con-

structed in Lemma 2.9 we obtain a composition of maps

C (K, 3)
pK−−→ C (K, 2)

3 f3
2−→ C (Rd, 2)

3 → K(Z[(−1)d−1], 2d− 2). (2.6)

This composition of maps defines an element in the equivariant cohomology group

H2d−2
Σ3

(C (K, 3);Z[(−1)d−1]).

Definition 2.10. Let O3(K) ∈ H2d−2
Σ3

(C (K, 3);Z[(−1)d−1]) be the element
corresponding to the map (2.6).

The following proposition is an easy consequence of Lemma 2.9.

Proposition 2.11. The element O3(K) is an obstruction to the lifting problem
in figure (2.4). That is, if O3(K) 6= 0 then the map (f2)3 ◦ pK does not have a lift.
The element O3(K) is a complete obstruction if 3 dim(K) = 2d− 2.

It follows in particular that O3(K) is a complete obstruction to the lifting problem
in (2.4) if dim(K) = 2 and d = 4.

2.3. A lift to framed cobordism. We saw earlier that the classical, cohomo-
logical van Kampen obstruction has a natural lift to a potentially stronger obstruction
that lives in equivariant stable cohomotopy, a.k.a equivariant framed cobordism. The
obstruction O3(K) has a similar lift, which we denote Ofr

3 (K).

Convention 2.12. Until the end of this section, and in Section 5, we consider
spaces with an action of Σ3 and no other symmetric groups. Likewise, in this section
and in Section 5, let R̂2 be the reduced standard representation of Σ3, let R̂2d =
R̂2 ⊗ Rd, and let Ŝ2d be the one-point compactification of R̂2d.

As a space, Ŝ2d is simply the 2d-dimensional sphere. The ‘hat’ is there to
indicate that it is a space with a specific action of Σ3. In the same vein, let
Ω̂2Ŝ2d = map∗(Ŝ

2, Ŝ2d) be the double loop space Ω2S2d, on which Σ3 acts via both

S2 and S2d. Similarly define the space with Σ3-action Ω̂2Ω∞Σ∞Ŝ2d.

The following proposition is a refinement of Lemma 2.9.
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Proposition 2.13. There is a 3d−5-cartesian diagram of spaces with an action
of Σ3

C (Rd, 3) C (Rd, 2)
3

∗ Ω̂2Ω∞Σ∞Ŝ2d

. (2.7)

We will prove this proposition in Section 5. For the rest of the section, we consider
some consequences. It follows from the proposition that given a Σ2-equivariant map
f2 : C (K, 2) → C (Rd, 2), a necessary condition for the lifting problem (2.4) to have
a solution (and therefore also for f2 to be equivariantly homotopic to the deleted
square of some embedding) is that the following composition is Σ3-equivariantly null-
homotopic (compare with (2.6)):

C (K, 3)
pK−−→ C (K, 2)

3 f3
2−→ C (Rd, 2)

3 → Ω̂2Ω∞Σ∞Ŝ2d.

We interpret this composition as an element in the equivariant stable cohomotopy
of C (K, 3), or equivalently in the equivariant framed cobordism group Ofr

3 (K) ∈
ΩR̂2(d−1)

fr (C (K, 3)). The class Ofr
3 (K) is an obstruction to a solution of the lifting

problem (2.4). Ofr
3 (K) is a refinement of O3(K) in the same way as Ofr

2 (K) is a
refinement of O2(K). Ofr

3 (K) is a complete obstruction to the lifting problem if
3 dim(K) ≤ 3d− 5, while O3(K) is a complete obstruction if 3 dim(K) ≤ 2d− 2. Of
course when dim(K) = 2 and d = 4 both conditions hold, andOfr

3 (K) does not provide
any more information than O3(K). In Section 5 we will use our specific construction
of the classifying map to give another interpretation of O3(K).

Remark 2.14. The obstruction Ofr
3 (M) in the context of smooth embeddings is

the subject of Munson’s paper [29]. In particular, Proposition 2.13 is proved there. We
give a different proof in Section 5. As a consequence, we will give another geometric
interpretation of Ofr

3 (K) in Section 5. This interpretation is hinted at in [op. cit.].

3. Geometric obstructions from Whitney towers. This section starts by
reviewing a geometric formulation of van Kampen’s obstruction (Section 3.1) and
operations on Whitney disks (Section 3.2) which are commonly used in 4-manifold
topology. These techniques are then used to establish new results: a relation between
Whitney disks and equivariant maps of configuration spaces (Section 3.3) and higher
embedding obstructions for 2-complexes in R4 based on intersections of Whitney disks:
W3(K) in Section 3.4 and Wn(K), n > 3 in Section 3.5. The relation of W3(K) to
the obstruction O3(K) defined above is the subject of Section 4.

3.1. The van Kampen obstruction. The discussion in the paper so far con-
cerned the general embedding problem for m-complexes in Rd. Here we restrict to the
original van Kampen’s context where d = 2m. Later in this section we will specialize
further to m = 2. We start by recalling a geometric description of the van Kampen
obstruction

W2(K) ∈ H2m
Σ2

(Cs(K, 2);Z) (3.1)

to embeddability of anm-complexK into R2m. This was the construction outlined
by van Kampen in [42]; the details were clarified in [37, 48], see also [14]. As in
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the introduction the notation Cs(K, 2) denotes the “simplicial” configuration space
K ×K r ∆ where ∆ consisting of all products of simplices σ1 × σ2 having a vertex
in common. The group Σ2 acts on the configuration space K ×K r∆ by exchanging
the factors; it may be seen from the description below that the action of Σ2 on the
coefficients is trivial, cf. [37, 28] (note that the sign was misstated as (−1)m in [14].)

Note thatW2(K) is an element of the cohomology group of Cs(K, 2), while O2(K)
(considered in the introduction and in Section 2) is an element of the cohomology
group of the configuration space C (K, 2) defined using the point-set diagonal. The
invariant O2(K) is the “universal” van Kampen obstruction, independent of the sim-
plicial structure, and W2(K) may be recovered from it: W2(K) = i∗O2(K), where i
is the inclusion map Cs(K, 2) ⊂ C (K, 2), cf. [28, Section 3]. A priori W2(K) could
be a weaker invariant since it does not keep track of intersections of adjacent sim-
plices. Nevertheless, it is a complete embedding obstruction for m-complexes in R2m

for m > 2: intersections of adjacent simplices may be removed using a version of the
Whitney trick, cf. [14, Lemma 5].

Remark 3.1. The obstruction theory in Section 2 was developed for embeddings
of finite CW complexes. The geometric approach presented here is based on intersec-
tion theory and it applies to finite simplicial complexes. We will interchangeably use
the terms cells and simplices in the context of simplicial complexes; this should not
cause confusion.

Consider any general position map f : K −→ R2m. Endow the m-cells of K with
arbitrary orientations, and for any two m-cells σ1, σ2 without vertices in common, con-
sider the algebraic intersection number f(σ1) · f(σ2) ∈ Z. This gives a Σ2-equivariant
cochain

of : C2m(K ×K r ∆) −→ Z. (3.2)

Since this is a top-dimensional cochain, it is a cocycle. Its cohomology class equals
the van Kampen obstruction W2(K).

The fact that this cohomology class is independent of a choice of f may be seen
geometrically as follows (see [14, Lemma 1, Section 2.4] for more details). Any two
general position maps f0, f1 : K −→ R2m are connected by a 1-parameter family
of maps ft where at a non-generic time ti an m-cell σ intersects an (m − 1)-cell ν.
Topologically the maps fti−ε and fti+ε differ by a “finger move”, that is tubing σ into
a small m-sphere linking ν in R2m, Figure 1. The effect of this elementary homotopy
on the van Kampen cochain is precisely the addition of the coboundary δ(uσ,ν), where
uσ,ν is the Σ2-equivaraint “elementary (2m − 1)-cochain” dual to the (2m − 1)-cells
σ × ν, ν × σ.

ν

σ

Fig. 1. Finger move: homotopy of maps f : K −→ R2m

This argument has the following corollary.
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Lemma 3.2. Any cocycle representative of the cohomology class W2(K) ∈
H2m

Z/2(K × K r ∆;Z) may be realized as the cocycle of for some general position

map f : K −→ R2m. In particular, if the van Kampen obstruction W2(K) vanishes
then there exists a general position map f : K −→ R2m such that the cocycle of is
identically zero. In other words, in this case for any two non-adjacent 2-cells σ, τ the
algebraic intersection number f(σ) · f(τ) is zero.

3.2. Operations on Whitney disks. The rest of Section 3 concerns 2-
complexes in R4. Assume the van Kampen class W2(K) vanishes. By Lemma 3.2,
using finger moves on 2-cells as shown in Figure 1, a map f may be chosen so that
f(σi) · f(σj) = 0 for any non-adjacent 2-cells σi, σj . As usual, one groups intersection
points f(σi) ∩ f(σj) into canceling pairs, chooses Whitney arcs connecting them in
σi, σj , and considers Whitney disks Wij for these intersections. Note that all Whitney
arcs in each 2-cell may be assumed to be pairwise disjoint. Unlike the situation in
higher dimensions where by general position a Whitney disk may be assumed to be
embedded and to have interior disjoint from K, in 4-space generically Wij will have
self-intersections and also intersect the 2-cells of K. Moreover, the framing (the rela-
tive Euler number of the normal bundle of the Whitney disk) might be non-zero, but
it may be corrected by boundary twisting [15, Section 1.3]. A detailed discussion of
Whitney disks in this dimension is given in [15, Section 1.4]. This section summarizes
the operations on Whitney disks and their relation with capped surfaces which will
be used in the proofs in Section 4.

EMBEDDING OBSTRUCTIONS IN Rd 17

σj

σi

σk

Wij

σj

σi

σk

C ′

C ′′

Figure 2. A Whitney disk and the associated capped surface

as the product (arc×I) into the past and the future. The Whitney disk Wij ⊂ R3 × {0}
pairs up two generic intersection points σi ∩ σj of opposite signs, and Wij in the figure has
a generic intersection point with another 2-cell σk. The result of the Whitney move in this
setting is shown in Figure 3: the two intersection points σi ∩ σj are eliminated, but two new
intersection points σi ∩ σk are created instead.

σj

σi

σk

Figure 3. The result of the Whitney move

In fact, the picture is symmetric with respect to the three sheets σi, σj, σk: a neighborhood
of the Whitney disk Wij in R4 is a 4-ball D4, and the intersection of these three sheets with
the boundary 3-sphere ∂D4 forms the Borromean rings (cf. [15, Chapter 12]), as shown in
Figure 4. Thus any two of the sheets can be arranged to be disjoint in this 4-ball, but not
all three simultaneously.

σk

σi

σj

Wij

σk

σi

σj

Figure 4. Left: the Borromean rings in ∂D4. Right: The Whitney disk Wij

intersects σk in a single point

It will be convenient to view these intersections in the context of capped surfaces (or more
generally capped gropes for higher-order intersections) [15, Chapter 2]. This is shown on the
right in Figure 2: a tube is added to one of the two sheets, say σi as shown in the figure, to
eliminate the two intersections σi ∩ σj at the cost of adding genus to σi. The new surface,

Fig. 2. A Whitney disk and the associated capped surface

Convention. To avoid cumbersome notation, we will frequently omit the refer-
ence to a map f and keep the notation σ for the image of a cell σ under f .

A typical configuration is shown on the left in Figure 2. It is a usual representation
in 3-space R3×{0} (the ‘present’) of intersecting surfaces in R4 = R3×R where the R
factor is thought of as time. Here σi is pictured as a surface in R3 while σj , σk are arcs
which extend as the product (arc×I) into the past and the future. The Whitney disk
Wij ⊂ R3×{0} pairs up two generic intersection points σi ∩σj of opposite signs, and
Wij in the figure has a generic intersection point with another 2-cell σk. The result
of the Whitney move in this setting is shown in Figure 3: the two intersection points
σi ∩ σj are eliminated, but two new intersection points σi ∩ σk are created instead.

In fact, the picture is symmetric with respect to the three sheets σi, σj , σk: a
neighborhood of the Whitney disk Wij in R4 is a 4-ball D4, and the intersection of
these three sheets with the boundary 3-sphere ∂D4 forms the Borromean rings (cf.
[15, Chapter 12]), as shown in Figure 4. Thus any two of the sheets can be arranged
to be disjoint in this 4-ball, but not all three simultaneously.
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σj

σi

σk

Fig. 3. The result of the Whitney move

σk

σi

σj

Wij

σk

σi

σj

Fig. 4. Left: the Borromean rings in ∂D4. Right: The Whitney disk Wij intersects σk in a
single point

It will be convenient to view these intersections in the context of capped surfaces
(or more generally capped gropes for higher-order intersections) [15, Chapter 2]. This
is shown on the right in Figure 2: a tube is added to one of the two sheets, say σi as
shown in the figure, to eliminate the two intersections σi ∩ σj at the cost of adding
genus to σi. The new surface, still denoted σi, has two caps: disks attached to a
symplectic pair of curves on σi. One of the caps, C ′, is obtained from the Whitney
disk Wij . The other cap is a disk normal to σj and may be thought of as a fiber of
the normal bundle to σj . A general translation between Whitney towers and capped
gropes is discussed in [31]. An advantage of this point of view is the symmetry
between the original map of σi (intersecting σj in two points, as shown on the left in
the figure) and the result of the Whitney move where the two intersections σi ∩ σj
are eliminated but σi acquires two intersections with σk. The first case is obtained
by ambient surgery of the capped surface in the figure on the right along the cap
C ′′, and the second case is the surgery along C ′. There is an intermediate operation,
symmetric surgery (also known as contraction) [15, Section 2.3] that uses both caps
that will be used in the arguments in the next section. The disk obtained by surgery
on C ′ is isotopic to the surgery on C ′′, and the symmetric surgery may be thought of
as the half point of this isotopy.

Consider the following splitting operation on Whitney disks. Suppose a Whitney
disk Wij pairing up intersections between σi, σj intersects two other 2-cells, σk, σl as
shown on the left in Figure 5. Consider an arc in Wij (drawn dashed in the figure)
which separates the intersections Wij∩σk, Wij∩σl and whose two endpoints are in the
interiors of the two Whitney arcs forming the boundary of Wij . Then a finger move
on one of the sheets, say σj , along the arc introduces two new points of intersection
σi ∩ σj and splits Wij into two Whitney disks W ′ij ,W

′′
ij as shown in the figure on the

right. The advantage of the result is that each Whitney disk intersects only one other



EMBEDDING OBSTRUCTIONS IN Rd 153

2-cell. In general, if Wij had m intersection points with other 2-cells, an iterated
application of splitting yields m−1 Whitney disks, each one with a single intersection
point in its interior.
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still denoted σi, has two caps: disks attached to a symplectic pair of curves on σi. One of
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and may be thought of as a fiber of the normal bundle to σj. A general translation between
Whitney towers and capped gropes is discussed in [31]. An advantage of this point of view is
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as contraction) [15, Section 2.3] that uses both caps that will be used in the arguments in
the next section. The disk obtained by surgery on C ′ is isotopic to the surgery on C ′′, and
the symmetric surgery may be thought of as the half point of this isotopy.

Consider the following splitting operation on Whitney disks. Suppose a Whitney disk Wij

pairing up intersections between σi, σj intersects two other 2-cells, σk, σl as shown on the
left in Figure 5. Consider an arc in Wij (drawn dashed in the figure) which separates the
intersections Wij ∩ σk, Wij ∩ σl and whose two endpoints are in the interiors of the two
Whitney arcs forming the boundary of Wij. Then a finger move on one of the sheets, say
σj, along the arc introduces two new points of intersection σi ∩ σj and splits Wij into two
Whitney disks W ′

ij,W
′′
ij as shown in the figure on the right. The advantage of the result is

that each Whitney disk intersects only one other 2-cell. In general, if Wij had m intersection
points with other 2-cells, an iterated application of splitting yields m − 1 Whitney disks,
each one with a single intersection point in its interior.

σj

σi

σk

Wij

σl

σj

σi

σk
σl

W ′′ijW ′ij

Figure 5. Splitting of a Whitney disk

The discussion above referred to the situation where a Whitney disk Wij for σi∩σj intersects
2-cells which are not adjacent to σi, σj. In general, Wij will have self-intersections as well
as intersections with σi, σj and with 2-cells adjacent to them. Intersections of these types
are not considered in the formulation of the obstruction in Section 3.4. (An obstruction
involving these more subtle intersections will be explored in a future work. For example,
the Arf invariant of a knot in S3 may be defined using intersections of this type of the disk
bounded by the knot in the 4-ball, see Remark 3.6.)

An ingredient in the formulation of higher obstructions in Section 3.4 is a local move on
surfaces which replaces an intersection σk ∩Wij in Figure 2 with an intersection σi ∩Wjk or
σj ∩Wik.

To describe this operation in more detail, start with the model situation in Figure 2 where
Wij has a single intersection point with σk. Perform a finger move on σk along an arc from

Fig. 5. Splitting of a Whitney disk

The discussion above referred to the situation where a Whitney disk Wij for
σi ∩ σj intersects 2-cells which are not adjacent to σi, σj . In general, Wij will have
self-intersections as well as intersections with σi, σj and with 2-cells adjacent to them.
Intersections of these types are not considered in the formulation of the obstruction in
Section 3.4. (An obstruction involving these more subtle intersections will be explored
in a future work. For example, the Arf invariant of a knot in S3 may be defined using
intersections of this type of the disk bounded by the knot in the 4-ball, see Remark
3.6.)

An ingredient in the formulation of higher obstructions in Section 3.4 is a lo-
cal move on surfaces which replaces an intersection σk ∩ Wij in Figure 2 with an
intersection σi ∩Wjk or σj ∩Wik.

To describe this operation in more detail, start with the model situation in Figure
2 where Wij has a single intersection point with σk. Perform a finger move on σk
along an arc from σk∩Wij to a point on the Whitney arc in σi. The result is shown on
the left in Figure 6: now σk is disjoint from Wij but there are two new intersections
between σi and σk. The finger move isotopy of σk gives rise to a Whitney disk for
these two points, denoted W ′ik in the figure. Note however that the two Whitney disks
Wij , W

′
ik cannot be both used for Whitney moves since their boundary arcs intersect

in σj . Resolving this intersection by an isotopy of the Whitney arc in the boundary
of W ′ik yields a Whitney disk Wik on the right in Figure 6; this Whitney disk has a
single intersection point with σj . (Note that after this operation the Whitney disk
Wij is embedded and disjoint from other 2-cells; a Whitney move along this disk can
be used to eliminate the original two intersections σi ∩ σj .)

Therefore to have a well-defined triple intersection number one has to (1) sum
over Whitney disks over all pairs of indices, and (2) require that Whitney arcs are
disjoint, see Section 3.4.

3.3. From Whitney disks to equivariant maps of configuration spaces.
Let K be a 2-complex and suppose the van Kampen obstruction W2(K) vanishes.
Then by Lemma 3.2 there is a map f : K −→ R4 so that the algebraic intersection
number of any two non-adjacent 2-cells in R4 is zero. As in Section 3.2, pair up
the intersections with Whitney disks, so that all Whitney arcs are disjoint in each
2-cell. This condition on the Whitney arcs will be assumed throughout the rest of the
paper. The following lemma shows that f together with a choice of Whitney disks W
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σk∩Wij to a point on the Whitney arc in σi. The result is shown on the left in Figure 6: now
σk is disjoint from Wij but there are two new intersections between σi and σk. The finger
move isotopy of σk gives rise to a Whitney disk for these two points, denoted W ′

ik in the
figure. Note however that the two Whitney disks Wij, W

′
ik cannot be both used for Whitney

moves since their boundary arcs intersect in σj. Resolving this intersection by an isotopy of
the Whitney arc in the boundary of W ′

ik yields a Whitney disk Wik on the right in Figure
6; this Whitney disk has a single intersection point with σj. (Note that after this operation
the Whitney disk Wij is embedded and disjoint from other 2-cells; a Whitney move along
this disk can be used to eliminate the original two intersections σi ∩ σj.)
Therefore to have a well-defined triple intersection number one has to (1) sum over Whitney
disks over all pairs of indices, and (2) require that Whitney arcs are disjoint, see Section 3.4.

σj

σi

σk

W ′ik

Wij

σj

σi

σk

Wik

Figure 6. From σk ∩Wij to σj ∩Wik.

3.3. From Whitney disks to equivariant maps of configuration spaces. Let K be
a 2-complex and suppose the van Kampen obstruction W2(K) vanishes. Then by Lemma
3.2 there is a map f : K −→ R4 so that the algebraic intersection number of any two non-
adjacent 2-cells in R4 is zero. As in Section 3.2, pair up the intersections with Whitney disks,
so that all Whitney arcs are disjoint in each 2-cell. This condition on the Whitney arcs will
be assumed throughout the rest of the paper. The following lemma shows that f together
with a choice of Whitney disks W gives rise to a Σ2-equivariant map Cs(K, 2) −→ C (Rd, 2).
The proof of this lemma explains a basic idea underlying the connection between geometric
and homotopy-theoretic approaches to obstruction theory that is established in this paper.
A more involved version of this argument will be given in Section 4 to show that there exists
a Σ3-equivariant map of the 5-skeleton of Cs(K, 3) to C (Rd, 3). Recall from Section 3.2 that
any given collection of Whitney disks may be split, so that any Whitney disk has at most
one intersection with a 2-cell of K.

Lemma 3.3. Let K be a 2-complex and f : K −→ R4 a general position map such that all
intersections of non-adjacent 2-cells are paired up with split Whitney disks W . This data
determines a Σ2-equivariant map Ff,W : Cs(K, 2) −→ C (Rd, 2).

Proof. Given any pair of non-adjacent 2-cells σi, σj, by assumption all intersections f(σi) ∩
f(σj) are paired up with Whitney disks Wij, and the Whitney arcs in each 2-cell are disjoint.
The self-intersections and intersections of the Whitney disks will not be relevant in the
following argument because the simplicial diagonal ∆ is missing in the configuration space
Cs(K, 2). Since the Whitney disks are split, each Wij intersects a single 2-cell σk as in Figure
2. We treat the special case that σk is either σi or σj right away: if Wij intersects σi, perform

Fig. 6. From σk ∩Wij to σj ∩Wik.

gives rise to a Σ2-equivariant map Cs(K, 2) −→ C (Rd, 2). The proof of this lemma
explains a basic idea underlying the connection between geometric and homotopy-
theoretic approaches to obstruction theory that is established in this paper. A more
involved version of this argument will be given in Section 4 to show that there exists
a Σ3-equivariant map of the 5-skeleton of Cs(K, 3) to C (Rd, 3). Recall from Section
3.2 that any given collection of Whitney disks may be split, so that any Whitney disk
has at most one intersection with a 2-cell of K.

Lemma 3.3. Let K be a 2-complex and f : K −→ R4 a general position map such
that all intersections of non-adjacent 2-cells are paired up with split Whitney disks W .
This data determines a Σ2-equivariant map Ff,W : Cs(K, 2) −→ C (Rd, 2).

Proof. Given any pair of non-adjacent 2-cells σi, σj , by assumption all intersec-
tions f(σi) ∩ f(σj) are paired up with Whitney disks Wij , and the Whitney arcs in
each 2-cell are disjoint. The self-intersections and intersections of the Whitney disks
will not be relevant in the following argument because the simplicial diagonal ∆ is
missing in the configuration space Cs(K, 2). Since the Whitney disks are split, each
Wij intersects a single 2-cell σk as in Figure 2. We treat the special case that σk
is either σi or σj right away: if Wij intersects σi, perform the Whitney move along
Wij on σi; if it intersects σj then perform the Whitney move of σj . This results in
self-intersections of either f(σi) or f(σj) which are irrelevant since we are working
with the simplicial configuration space Cs(K, 2), and so the map Ff,W does not need
to be defined on σi × σi, σj × σj . Thus the remaining intersections of Wij are with
2-cells σk, k 6= i, j.

Next we describe the desired map Ff,W : Cs(K, 2) −→ C (R4, 2). By general
position the 1-cells and the 2-cells of K are mapped in disjointly by f , so f×f defines
a Σ2-equivariant map on the 3-skeleton of Cs(K, 2). Thus the goal is to extend it
to the 4-skeleton, that is to define Ff,W on each product of two non-adjacent 2-cells
σi×σj . For each such pair σi, σj we pick an order (i, j); for the other product σj ×σi
the map Ff,W will be defined using Σ2 equivariance.

In each 2-cell σi consider disjoint disk neighborhoods of the Whitney arcs for
the intersections of f(σi) with other 2-cells; the disk neighborhoods corresponding
to Wij are denoted Dij , Figure 7. (In general Wij denotes the entire collection of
Whitney disks for f(σi)∩ f(σj), and Dij denotes the collection of corresponding disk
neighborhoods; we illustrate the case of a single component since the argument in
general is directly analogous.) If f(σi) ∩ f(σj) = ∅, Dij is defined to be empty. Now

consider the map f̃ij : K −→ R4 which coincides with f in the complement of the disk

Dij . In this disk f̃ij is defined to be the result of the Whitney move on f(σi) along
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the Whitney disk Wij , making f̃(σi) disjoint from f̃(σj). If Wij intersected another

2-cell σk as in Figure 2, as a result of this move f̃ij(σi) intersects f̃ij(σk) = f(σk).
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we pick an order (i, j); for the other product σj × σi the map Ff,W will be defined using Σ2
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of f(σi) with other 2-cells; the disk neighborhoods corresponding to Wij are denoted Dij,
Figure 7. (In general Wij denotes the entire collection of Whitney disks for f(σi)∩f(σj), and
Dij denotes the collection of corresponding disk neighborhoods; we illustrate the case of a
single component since the argument in general is directly analogous.) If f(σi) ∩ f(σj) = ∅,
Dij is defined to be empty. Now consider the map f̃ij : K −→ R4 which coincides with

f in the complement of the disk Dij. In this disk f̃ij is defined to be the result of the

Whitney move on f(σi) along the Whitney disk Wij, making f̃(σi) disjoint from f̃(σj). If

Wij intersected another 2-cell σk as in Figure 2, as a result of this move f̃ij(σi) intersects

f̃ij(σk) = f(σk).
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Figure 7. Defining the map σi × σj −→ C (R4, 2). Here f(p1) = f(p2) and
f(q1) = f(q2) are two double points in f(σi) ∩ f(σj).

Consider a collar Cji = ∂Dji × I on ∂Dji in σj r int(Dji), Figure 7. The collars are chosen
small enough so that they are disjoint from each other in σj for various Whitney arcs. Define

(3.3) Ff,W |σi×(σjr(Dji∪Cji)) := (f × f)|σi×(σjr(Dji∪Cji)).

This defines a map into the configuration space C (R4, 2)) since f(σi) is disjoint from f(σj r
(Dji ∪ Cji)). On σi ×Dji the map is defined using the result of the Whitney move:

(3.4) Ff,W |σi×Dji := (f̃ij × f̃ij)|σi×Dji = (f̃ij × f)|σi×Dji

It remains to define Ff,W on σi × Cji interpolating between the maps (3.3), (3.4). If the
Whitney disk Wij was framed and embedded then the original map f and the result of the

Whitney move f̃ij would be isotopic, with the isotopy supported in the interior of Dij. In

Fig. 7. Defining the map σi × σj −→ C (R4, 2). Here f(p1) = f(p2) and f(q1) = f(q2) are two
double points in f(σi) ∩ f(σj).

Consider a collar Cji = ∂Dji × I on ∂Dji in σj r int(Dji), Figure 7. The collars
are chosen small enough so that they are disjoint from each other in σj for various
Whitney arcs. Define

Ff,W |σi×(σjr(Dji∪Cji)) := (f × f)|σi×(σjr(Dji∪Cji)). (3.3)

This defines a map into the configuration space C (R4, 2)) since f(σi) is disjoint
from f(σj r (Dji ∪ Cji)). On σi ×Dji the map is defined using the result of the
Whitney move:

Ff,W |σi×Dji := (f̃ij × f̃ij)|σi×Dji = (f̃ij × f)|σi×Dji (3.4)

It remains to define Ff,W on σi×Cji interpolating between the maps (3.3), (3.4).
If the Whitney disk Wij was framed and embedded then the original map f and the

result of the Whitney move f̃ij would be isotopic, with the isotopy supported in the
interior of Dij . In general, without these assumptions, these maps are homotopic

rather than isotopic. Denote by f tij : K × I −→ R4 this homotopy f ' f̃ij given by
the Whitney move, and supported in Dij .

Identify (x, y, t) ∈ σi × ∂Dji × [0, 1] with (x, yt) ∈ σi × Cji using the product
structure on the collar Cji. Using this identification, the following map sends a point
(x, yt) to (f tij(x), f(yt)):

Ff,W |σi×Cji
:= (f tij × f tij)|σi×Cji

= (f tij × f)|σi×Cji
. (3.5)

This matches f̃ij × f on σi × ∂Dji and f × f on σi × ∂(Dji ∪ Cji). The result is
a continuous map σi × σj −→ C (R4, 2), giving rise to a desired Σ2-equivariant map
Cs(K, 2) −→ C (Rd, 2).

A key point in the above proof is that even though the result of the Whitney
move f̃ij(σi) intersects f̃ij(σk) = f(σk), this does not affect the definition of the map
Ff,W on σi × σk. The assumption of Lemma 3.3 is insufficient for producing a map
of 3-point configuration spaces, as we make precise in the next subsection.

3.4. An obstruction from intersections of Whitney disks. We are now in
a position to formulate our geometric embedding obstruction for 2-complexes in R4

which is defined when the van Kampen obstruction vanishes. Under this assumption,
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following Lemma 3.2 consider a map f : K −→ R4 where the intersection number of
any two non-adjacent 2-cells f(σi) ∩ f(σj) in R4 is zero. As in Section 3.3, consider
a collection W = {Wij} of Whitney disks for f(K), where Wij denotes the Whitney
disks for f(σi)∩f(σj). As above, the Whitney arcs are assumed to be disjoint in each
2-cell σi.

The obstruction W3(K), defined below, depends on the choice of f and of
Whitney disks W . Indeed, in the context of obstruction theory one expects that
higher obstructions generally depend on choices of trivializations of lower order ob-
structions. Recall from Section 2 that the obstruction O3(K) to lifting to a Σ3-
equivariant map C (K, 3) −→ C (R4, 3) depends on the choice of a Σ2-equivariant
map f2 : C (K, 2) −→ C (R4, 2). Moreover, by Lemma 3.3 the geometric data – f and
W – determine such a map f2 on the simplicial configuration space Cs(K, 2). The
relation between the two theories is extended further in Section 4.

Definition 3.4 (The obstruction W3(K)). Let K, f,W be as above, and endow
the 2-cells of K with arbitrary orientations. The orientation of Whitney disks Wij ,
where (i, j) is an ordered pair, is induced from the orientation on its boundary which
is oriented from − intersection to + intersection along f(σi) and from from + to −
along f(σj). Consider the 6-cochain:

w3 : C6(Cs(K, 3)) −→ Z, (3.6)

defined as follows. Let σi, σj , σk be 2-cells of K which pairwise have no vertices in
common, and define

w3(σi × σj × σk) = Wij · f(σk) +Wjk · f(σi) +Wki · f(σj), (3.7)

where the algebraic intersection numbers are defined using the orientation convention
discussed above. Note that changing the order of i, j reverses the orientation of Wij ,
so the cochain w3 in (3.7) is Σ3 equivariant, where Σ3 acts on Z according to the sign
representation. This 6-cochain is a cocycle since it is a top-dimensional cochain on
Cs(K, 3). The resulting cohomology class is denoted

W3(K, f,W ) ∈ H6
Σ3

(Cs(K, 3);Z[(−1)]).

When f,W are clear from the context, the notation will be abbreviated to W3(K).

It is worth noting that the local move in Figure 6 shifts the intersection num-
bers between the terms of (3.7); it is the sum that gives a meaningful invariant (see
also Remark 3.6 below.) Geometrically (3.7) measures intersection numbers that are
an obstruction to finding disjoint embedded Whitney disks needed to construct an
embedding K ↪→ R4. The definition depends on various choices: the pairing of ±
intersections of f(σi) ∩ f(σj), and choices of Whitney arcs and of Whitney disks. By
comparing it to the obstruction O3(K) in the next section, we show that it really
depends only on the homotopy class of the map Ff,W constructed in Lemma 3.3, a
fact that is not apparent from the geometric framework of the above definition.

In addition to these cell-wise intersection considerations, of course properties of
the obstructionW3(K) depend on the cohomology of the configuration space Cs(K, 3).
This aspect of the obstruction is discussed in Lemma 3.9, and the consequence of its
vanishing is the subject of Section 3.5.

Remark 3.5. It is not difficult to see that in the example of [14] there is a map
of the 2-complex into R4 with precisely two 2-cells intersecting in two algebraically
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canceling points, with a Whitney disk intersecting one other 2-cell as in Figure 2.
It follows that the corresponding cochain (3.6) is non-zero on precisely one 6-cell of
Cs(K, 3); this example is discussed in detail in Section 6.

Remark 3.6. Our Definition 3.4 extends to the setting of 2-complexes in R4

the idea of using intersections of Whitney disks with surfaces that has been widely
used in 4-manifold topology. The construction of this type in the simplest relative
case: K2 =

∐3
D2, the disjoint union of three disks whose boundary curves form a

given three-component link L in S3 = ∂D4, is a reformulation of Milnor’s µ̄-invariant
[27] µ̄123(L), sometimes referred to as the triple linking number. Such intersections
were used to define an obstruction to representing three homotopy classes of maps
of 2-spheres into a 4-manifold by maps with disjoint images in [25, 49], and in the
non-simply connected setting in [32]. A version considering self-intersections to define
the Arf invariant and the Kervaire-Milnor invariant was given in [15, 10.8A], and an
extension to non-simply connected 4-manifolds in [32].

The definition of W3(K) shares some of the nice features of the geometric def-
inition (3.2) of the van Kampen obstruction. Specifically, we will now describe the
higher order analogue (“stabilization”) of the finger move homotopy in Figure 1 and
of Lemma 3.2.

Definition 3.7 (Stabilization). This operation applies to any two 2-cells σ1, σ2

and a 1-cell ν of K which are all pairwise non-adjacent, Figure 8a. Perform a finger
move introducing two canceling σ1-σ2 intersections, and let W ′12 denote the resulting
embedded Whitney disk pairing these two intersection, Figure 8b. Also consider S2

ν ,
a small 2-sphere linking f(ν) in R4. The final modification applies to the Whitney
disk: W 12 is formed as a connected sum of W12 and S2

ν , Figure 8c.
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f(σ1)

f(σ2)

f(σ1)

f(σ2)

f(ν)

(a)

W 12

S2
ν

W ′12

(c)(b)

Figure 8. Stabilization (modifying the obstruction cocycle by a coboundary)

Proof. The Whitney disk W 12 is used only in the restriction of the map Ff,W to σ1 × σ2

(and equivariantly to σ2×σ1). When f(ν) and all 2-cells adjacent to it are omitted from the
picture, the Whitney disks W 12,W

′
12 in Figure 8 are isotopic. Thus it is clear from the proof

of Lemma 3.3 that the maps of configurations spaces corresponding to these two Whitney
disks are homotopic. (Note that the interior of W 12 is disjoint from f(σ1) since σ1, ν were
assumed to be non-adjacent. Thus the result of the Whitney move on f(σ2) along W 12

is disjoint from f(σ1).) Moreover, the map f in Figure 8a is isotopic to the result of the
Whitney move applied to f in Figure 8b, so the induced maps on configuration spaces are
again homotopic. �
We are in a position to formulate the analogue of Lemma 3.2 for the new obstruction.

Lemma 3.9. Any cocycle representative of the cohomology class

W3(K, f,W ) ∈ H6
Σ3

(Cs(S, 3);Z[−1])

may be realized as the cocycle w3(K, f ′,W ′) associated to some map f ′ and Whitney disks
W ′. In particular, if the cohomology class W3(K, f,W ) is trivial then there exist f ′,W ′

whose associated cocycle is identically zero.

Proof. Consider a generator Cσ1,σ2,ν of Σ3-equivariant 5-cochains on Cs(S, 3), corresponding

to non-adjacent 2-cells σ1, σ2 and 1-cell ν of K. The stabilization operation (f,W ) 7→ (f,W ),
shown in Figure 8, changes the cocycle w3(K, f,W ) by a coboundary ±δCσ1,σ2,ν , where
the sign depends on the orientation of the sphere S2

ν . Thus changing w3(K, f,W ) by any
coboundary may be realized by a suitable sequence of stabilizations. �
As we explain in the next subsection, the vanishing of the cohomology classW3(K, f,W ) has
a geometric consequence: the existence of another layer of Whitney disks, in turn leading to
a higher order obstruction.

3.5. Higher order obstructions from Whitney towers. The notion of Whitney towers
encodes higher order intersections of surfaces in 4-manifolds, where the vanishing of the
intersections inductively enables one to find the next layer of Whitney disks. In a sense
Whitney towers approximate an embedded disk as the number of layers increases. A closely
related notion of capped gropes [15, Chapter 2] is extensively used in the theory of topological
4-manifolds: they may be found in the context of surgery and of the s-cobordism conjecture
where surfaces have duals, cf. Proof of Theorem 5.1A in [15]. We will use the notion of
Whitney towers and their intersection theory developed in [33, 34]. Only a brief summary

Fig. 8. Stabilization (modifying the obstruction cocycle by a coboundary)

Proposition 3.8. Let (f,W ) be the result of a stabilization applied to (f,W ).
Then the Σ2-equivariant map Ff,W : Cs(K, 2) −→ C (R4, 2) associated to (f,W ) in
Lemma 3.3 is Σ2-equivariantly homotopic to Ff,W .

Proof. The Whitney disk W 12 is used only in the restriction of the map Ff,W
to σ1 × σ2 (and equivariantly to σ2 × σ1). When f(ν) and all 2-cells adjacent to it
are omitted from the picture, the Whitney disks W 12,W

′
12 in Figure 8 are isotopic.

Thus it is clear from the proof of Lemma 3.3 that the maps of configurations spaces
corresponding to these two Whitney disks are homotopic. (Note that the interior of
W 12 is disjoint from f(σ1) since σ1, ν were assumed to be non-adjacent. Thus the
result of the Whitney move on f(σ2) along W 12 is disjoint from f(σ1).) Moreover,
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the map f in Figure 8a is isotopic to the result of the Whitney move applied to f in
Figure 8b, so the induced maps on configuration spaces are again homotopic.

We are in a position to formulate the analogue of Lemma 3.2 for the new obstruc-
tion.

Lemma 3.9. Any cocycle representative of the cohomology class

W3(K, f,W ) ∈ H6
Σ3

(Cs(S, 3);Z[−1])

may be realized as the cocycle w3(K, f ′,W ′) associated to some map f ′ and Whitney
disks W ′. In particular, if the cohomology class W3(K, f,W ) is trivial then there exist
f ′,W ′ whose associated cocycle is identically zero.

Proof. Consider a generator Cσ1,σ2,ν of Σ3-equivariant 5-cochains on Cs(S, 3),
corresponding to non-adjacent 2-cells σ1, σ2 and 1-cell ν of K. The stabilization
operation (f,W ) 7→ (f,W ), shown in Figure 8, changes the cocycle w3(K, f,W ) by
a coboundary ±δCσ1,σ2,ν , where the sign depends on the orientation of the sphere
S2
ν . Thus changing w3(K, f,W ) by any coboundary may be realized by a suitable

sequence of stabilizations.

As we explain in the next subsection, the vanishing of the cohomology class
W3(K, f,W ) has a geometric consequence: the existence of another layer of Whitney
disks, in turn leading to a higher order obstruction.

3.5. Higher order obstructions from Whitney towers. The notion of
Whitney towers encodes higher order intersections of surfaces in 4-manifolds, where
the vanishing of the intersections inductively enables one to find the next layer of
Whitney disks. In a sense Whitney towers approximate an embedded disk as the
number of layers increases. A closely related notion of capped gropes [15, Chapter
2] is extensively used in the theory of topological 4-manifolds: they may be found in
the context of surgery and of the s-cobordism conjecture where surfaces have duals,
cf. Proof of Theorem 5.1A in [15]. We will use the notion of Whitney towers and
their intersection theory developed in [33, 34]. Only a brief summary of the relevant
definitions is given below; the reader is referred to the above references for details.

In the setting of this paper the ambient 4-manifold is R4, and the surfaces are
the images of non-adjacent 2-cells of a 2-complex K under a general position map
f : K −→ R4. Moreover, we will use the non-repeating version of Whitney towers
considered in [34].

Whitney towers have a parameter, order, and are defined inductively. Whitney
towers of order 0 are just surfaces in general position in a 4-manifold. Their inter-
section numbers may be used to define the van Kampen obstruction, as discussed in
Section 3.1. A Whitney tower of order 1 is a collection of surfaces with trivial intersec-
tion numbers, together with a collection of Whitney disks pairing up the intersection
points. (As in the preceding sections, all Whitney disks are assumed to be framed,
and have disjoint boundaries.) This is the setting for the obstruction in Definition 3.4.
Note that the Whitney tower incorporates both the map f and the Whitney disks W ,
so W3(K, f,W ) may be thought of as being defined in terms of a Whitney tower.

All surface stages and intersection points between them in a general Whitney
tower are inductively assigned an order in Z≥0 as follows. The base of the construction
(order 0) is a collection of the original immersed surfaces in R4. All surfaces of higher
order are Whitney disks pairing up intersections of surfaces of lower order. The order
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of an intersection point of surfaces of orders n1, n2 is defined to be n1 +n2. A Whitney
disk pairing up intersection points of order n is said to have order n+ 1.

Finally, a Whitney tower W of order n + 1 is defined inductively as a Whitney
tower of order n together with a collection of Whitney disks pairing up all intersections
of order n. For example, a tower of order 2 is illustrated on the left in Figure 9, with
the surfaces σ of order 0 and Whitney disks V of order 1 and W of order 2.

Definition 3.10. A map f : K −→ R4 admits a Whitney tower of order n if
this condition holds for the images under f of each n-tuple of pairwise non-adjacent
2-cells.

We would like to emphasize that in general Definition 3.10 refers not a single
Whitney tower, but rather there is a Whitney tower of height n for each n-tuple
of pairwise non-adjacent 2-cells. Note that given a 2-complex K, an obstruction to
the existence of a map f admitting a Whitney tower of order n for any n ≥ 1 is in
particular an obstruction to the existence of an embedding K ↪→ R4.
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we will use the non-repeating version of Whitney towers considered in [34].

Whitney towers have a parameter, order, and are defined inductively. Whitney towers of
order 0 are just surfaces in general position in a 4-manifold. Their intersection numbers
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example, a tower of order 2 is illustrated on the left in Figure 9, with the surfaces σ of order
0 and Whitney disks V of order 1 and W of order 2.

Definition 3.10. A map f : K −→ R4 admits a Whitney tower of order n if this condition
holds for the images under f of each n-tuple of pairwise non-adjacent 2-cells.

We would like to emphasize that in general Definition 3.10 refers not a single Whitney tower,
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Figure 9. Left: a Whitney tower of order 2 and the associated tree. Right:
the AS relation and the IHX relation

With this terminology at hand, we are ready to formulate a geometric consequence of Lemma
3.9.

Fig. 9. Left: a Whitney tower of order 2 and the associated tree. Right: the AS relation and
the IHX relation

With this terminology at hand, we are ready to formulate a geometric consequence
of Lemma 3.9.

Corollary 3.11. Let f : K −→ R4 be a map admitting a Whitney tower of order
1. (In other words, f is an immersion with double points paired up with Whitney disks
W , as in Section 3.4.) Suppose the cohomology class

W3(K, f,W ) ∈ H6
Σ3

(Cs(S, 3);Z[−1])

is trivial. Then there exists a map f̃ : K −→ R4, obtained from f by stabilizations,
which admits a Whitney tower of order 2.

Indeed, by Lemma 3.9 there exists a map f ′ and Whitney disks W ′ such that for
each triple of (pairwise non-adjacent) 2-cells, the intersection invariant (3.7) is trivial.

By [33, Theorem 2], the map f̃ is regularly homotopic to f ′ which admits a Whitney
tower of order 2, as claimed.

It follows from Lemma 3.2 that if K has trivial van Kampen’s obstruction, there
exists a map of K into R4 which admits a Whitney tower of height 1. Corollary 3.11
gives the analogue for the next obstruction: if the classW3(K, f,W ) = 0, there exists
a map admitting a Whitney tower of height 2. To define higher obstruction theory,
we will now discuss the intersection invariants of Whitney towers.

The obstruction cochain in equation (3.7) was defined using an explicit formula
with intersection numbers between Whitney disks and 2-cells. An elegant way of
formulating the intersection invariant [33] for a general Whitney tower is in terms of
trees, described next.
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Each unpaired intersection point p of a Whitney tower determines a trivalent
tree tp: the trivalent vertices correspond to Whitney disks and the leaves are labeled
by (distinct) 2-cells of K. The tree embeds in the Whitney tower, as shown on the
left in Figure 9, and it inherits a cyclic orientation of each trivalent vertex from this
embedding. (Recall that Whitney disks are oriented as in Definition 3.4.)

The relevant obstruction group in our context will be denoted Tn. It is defined as
a quotient of the free abelian group generated by trivalent trees with n+2 leaves (and
thus n trivalent vertices). The leaves are labeled by non-repeating labels {1, . . . , n+2},
and the trivalent vertices are cyclically oriented. The quotient is taken with respect
to the AS and IHX relations, shown on the right in Figure 9. These relations are
well-known in the study of finite type invariants; in the context of Whitney towers
the AS (anti-symmetry) relation corresponds to switching orientations of Whitney
disks, and the IHX relation reflects choices of Whitney arcs, see [10].

Following [33, Section 2.1], the intersection tree τn of an order n Whitney tower
W is defined to be

τn(W ) :=
∑

p

ε(p) tp ∈ Tn, (3.8)

where the sum is taken over all unpaired (order n) intersections points p, and ε(p) is
the sign of the intersection. For example, for order 1 Whitney tower the intersection
trees are the Y tree with two possible cyclic orderings of the trivalent vertex; the
obstruction group T1 is isomorphic to Z, and the intersection invariant matches the
formula (3.7).

Let Cs(K,n) denote K×n minus the simplicial diagonal consisting of all products
of simplices σ1 × . . . × σn, where at least two of the simplices σi, σj have a vertex
in common for some i 6= j. The symmetric group Σn acts in a natural way on
the configuration space Cs(K,n) and also on Tn−2. The following definition extends
Definition 3.4 to all n ≥ 3.

Definition 3.12 (The obstruction Wn(K)). Let n ≥ 3 and suppose a map
f : K −→ R4 admits a Whitney tower W of order n− 2. Endow the 2-cells of K with
arbitrary orientations; orientations of all Whitney disks in W are then determined as
in Definition 3.4. Consider the Σn-equivariant 2n-cochain:

wn : C2n(Cs(K,n)) −→ Tn−2, (3.9)

whose value on the 2n-cell σ1 × . . . × σn is given by the intersection invariant (3.8)
of the Whitney tower on the 2-cells f(σ1), . . . , f(σn). It is a cocycle since it is a
top-dimensional cochain on Cs(K, 2n). The resulting cohomology class is denoted

Wn(K,W ) ∈ H2n
Σn

(Cs(K,n); Tn−2).

Thus Wn(K,W ) is an obstruction to increasing the order of a given Whitney
tower W to n− 1; in particular it is an obstruction to using the data of the Whitney
tower W to find an embedding of K.

Remark 3.13. Note that Tn−2 is isomorphic to Z(n−2)!, cf. [34, Lemma 19];
compare this with the coefficients of the cohomology group in Theorem 7.11.

We note that there is an analogue of stabilization in Definition 3.7 for higher trees
generating Tn, and an analogue of Corollary 3.11 for higher obstructions Wn. Thus
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there is an obstruction theory for 2-complexes in R4 formulated entirely within the
context of intersections of Whitney towers. As we mentioned previously, this paper is
centered around the first new obstruction, W3; we plan to study higher obstructions
in more detail in a future work. O3(K) and W3(K) are related in the next section; a
conjectural relation between On(K) and Wn(K) for n > 3 is stated in Section 8.

4. Comparing the cohomological and geometric obstructions. Here we
will relate the obstruction O3(K) defined in Section 2 and W3(K) from Section 3;
the main result of this section is Theorem 4.1. Before we state the result, a brief
digression is needed to compare the settings of the two obstructions.1 As discussed in
Section 3.1, the two versions of the van Kampen obstruction are related by W2(K) =
i∗O2(K), where i is the inclusion map Cs(K, 2) ⊂ C (K, 2). The assumption in the
theorem below is that O2(K) is trivial; it follows that W2(K) vanishes as well, and
therefore there exists a map f : K −→ R4 and a collection of Whitney disks for
intersections of non-adjacent simplices. Then Lemma 3.3 gives a Σ2-equivariant map
Ff,W : Cs(K, 2) −→ C (R4, 2). However the starting point for the obstruction O3(K)
is a Σ2-equivariant map C (K, 2) −→ C (R4, 2). To relate the two contexts, for a
given simplicial 2-complex we will take a subdivision fine enough to ensure that the
inclusion Cs(K, 2) ↪→ C (K, 2) is a homotopy equivalence. Then Ff,W induces a map
(well defined up to equivariant homotopy) C (K, 2) −→ C (R4, 2), which is needed to
define O3(K).2

Without loss of generality we will assume that the Whitney disks are split as
discussed in Section 3.2.

Theorem 4.1. Given a 2-complex K with trivial van Kampen’s obstruction
O2(K), let W be a collection of split Whitney disks for double points of a map
f : K −→ R4. Let Ff,W : Cs(K, 2) −→ C (R4, 2) be the Σ2-equivariant map de-
termined by f,W in Lemma 3.3. Then

W3(K, f,W ) = i∗O3(K) ∈ H6
Σ3

(Cs(K, 3);Z[(−1)]), (4.1)

where i : Cs(K, 3) −→ C (K, 3) is the inclusion map.

Proof. For convenience of the reader, the proof of Theorem 4.1 is divided into
steps.

Step 1: subdivision. The pullback i∗O3(K,Ff,W ) is the obstruction to the
existence of a Σ3-equivariant dashed map making the following diagram commute up
to homotopy.

Cs(K, 3) C (R4, 3)

Cs(K, 2)
3

C (R4, 2)
3

pK pR4

(Ff,W )3

(4.2)

The first step of the proof is to use subdivision to reduce to a model situation where
precisely one of the following holds for the image under f of each 2-cell σ of K:

(1) σ is mapped in disjointly from all other non-adjacent 2-cells,

1The second author would like to thank Pedro Boavida de Brito for motivating questions.
2There are also other ways of relating the two settings; for example one may define a “simplicial”

version of O3(K) as the homotopy-lifting obstruction in (1.7) where Cs(K, 3) −→ Cs(K, 2)×3 is used
instead.
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(2) σ intersects exactly one other non-adjacent 2-cell in two points, or
(3) σ has a single intersection point with one of the Whitney disks.
(Moreover, the Whitney disks are already assumed to be split, so each one in-

tersects at most one 2-cell as in Figure 2.) To begin with, each 2-cell σ of K has a
finite number of disjoint Whitney arcs, as shown in Figure 7, and a finite number of
intersection points with Whitney disks. The conditions (1)-(3) above are achieved by
subdividing so that each 2-cell contains at most one Whitney arc or intersection point
with a Whitney disk. For each pair on intersections of 2-cells σi, σj as in case (3) we
will choose a particular ordering of i, j that will determine which sheet is pushed by
the Whitney move.

Let K ′ denote the 2-complex obtained as the result of the subdivision and let
f ′ : K ′ −→ R4 be the resulting map. The map Ff,W in Lemma 3.3 was defined by
local modifications of f in disk neighborhoods of the Whitney arcs; Ff ′,W ′ may be
assumed to be defined with respect to the same disk neighborhoods (which are now
located in distinct 2-cells of K ′). It follows that Ff,W is the composition

Cs(K, 2) −→ Cs(K
′, 2) −→ C (R4, 2)

of the inclusion and Ff ′,W ′ . Moreover, the cochain (3.6) defining W3(K) is natural
with respect to subdivisions, soW3(K) is the pullback ofW3(K ′) under the inclusion
Cs(K, 3) −→ Cs(K

′, 3). Thus it suffices to prove Theorem 4.1 for K ′. For the rest of
the proof we will revert to the notation K for the 2-complex, assuming it is subdivided
to satisfy conditions (1)-(3).

Step 2: a lift on the 5-skeleton. Since the homotopy fiber of the map

pR4 : C (R4, 3) −→ C (R4, 2)
3

is 4-connected, there is a lift in (4.2) on the 5-skeleton
Sk5 Cs(K, 3).

Construction 4.2. The construction described below defines a particular Σ3-
equivariant map of the 5-skeleton, F : Sk5 Cs(K, 3) −→ C (R4, 3), lifting up to homo-

topy the Σ3-equivariant map Sk5 Cs(K, 3) −→ C (R4, 2)
3
. Its specific geometric form

will be used for identifying the point preimages of the map to S3 ∨ S3 in diagram
(4.3). The construction relies on the capped surface description of the Whitney move
(Figure 2), and is an extension of Lemma 3.3.

Consider the map on the 4-skeleton induced by f : given any pairwise non adjacent
2-cell σ and 1-cells ν, τ , by general position f(σ), f(ν) and f(τ) are pairwise disjoint;
F is defined on σ×ν×τ (and its orbit under the Σ3 action) by the Cartesian product
f×3.

The main part of the construction concerns the extension of this map to the 5-
cells. We will define F on the boundary of each 6-cell ∂(σ1 × σ2 × σ3), where σi,
i = 1, 2, 3 are 2-cells of K, so that the definition is consistent on the overlap of the
boundaries of 6-cells. The map will be defined for a particular ordering σ1, σ2, σ3 and
extended to triple products corresponding to other orderings using Σ3 equivariance.

There are three cases:
(i) the images of σi, i = 1, 2, 3, are pairwise disjoint,

(ii) two of them, say σ1, σ3 intersect, and W13 ∩ σ2 = ∅,
(iii) two of them, say σ1, σ3 intersect, and W13 ∩ σ2 is a point.
In case (i) the map F is defined on ∂(σ1 × σ2 × σ3) as the Cartesian cube f×3.

Consider case (ii). The boundary of the product ∂(σ1×σ2×σ3) naturally decomposes
as the union of three parts. The definition of F on two of the parts is again f×3. The
definition of F on σ1×∂σ2×σ3 is an analogue of the proof of Lemma 3.3. It is defined
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on D1× ∂σ2× σ3 as f × f × f̃ , where f̃ is the result of the Whitney move on σ3, and
D1 is a disk neighborhood of the Whitney arc in σ1. As in the proof of that lemma
an isotopy in a collar C on the boundary of D1 is used, so that on ∂σ1× ∂σ2×σ3 the
map F equals f×3.

Now consider the most interesting case (iii), shown in Figure 2. As in the previous
case consider a smaller disk neighborhood D1 of the Whitney arc in σ1. We will work
in the 4-ball neighborhood of the Whitney disk W13; the intersection of σi, i = 1, 2, 3
with ∂D4 forms the Borromean rings, illustrated in Figure 4. The disk σ3 may be
converted into a punctured torus as in Figure 2.

It will be convenient to represent disks in D4 as movies in D3× [−1, 1] with time
−1 ≤ t ≤ 1, where most of the activity takes place at time t = 0. The remaining
figures in this section illustrate D3×{0}. Figure 10 shows the capped torus (referred
to above) bounded by ∂σ3 in this representation. The punctured torus consists of
two plumbed bands, with caps C ′ (intersecting σ2) and C ′′ (intersecting D1). The
intersections of D1 and σ2 with the slice D3 × {0} are arcs; they extend as (arc×I)
into the past and the future.
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∂σ3
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C′

Figure 10. Left: the capped torus bounded by ∂σ3 with caps C ′, C ′′. Right:
the map f defining F12.

original map K −→ R4; it is an embedding when restricted to D1

∐
σ2

∐
∂σ3 ↪→ R4, Figure

10 (right).

The maps F23 : ∂D1 × σ2 × σ3 −→ C (R4, 3), F13 : D1 × ∂σ2 × σ3 −→ C (R4, 3) are defined

respectively as f×3, (f̃)×3 = f × f × f̃ where f is again the original map which restricts to

an embedding f : ∂D1

∐
σ2

∐
σ3 ↪→ R4, and f̃ : D1

∐
∂σ2

∐
σ3 ↪→ R4 is the result of the

Whitney move on σ3, Figure 11.
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Figure 11. The map f defining F23 (left) and f̃ defining F13 (right).

The only part of the definition where the map differs from f×3 is D1 × ∂σ2 × σ3, where F

is defined as (f̃)×3 = f × f × f̃ . As in case (ii) and in the proof of Lemma 3.3, consider a

collar C on ∂D1 in σ1 and extend F to C × ∂σ2× σ3 using an isotopy from f̃ to f . The half
point of the isotopy, the symmetric surgery discussed above, is shown in Figure 12. Finally,
the map is set to be f×3 on (σ1 r (C ∪D1))× ∂σ2 × σ3.

∂σ2

∂σ1

σ3

Figure 12. The symmetric surgery on the capped torus.

The map F is well-defined on the 5-skeleton: consider an overlap ∂σ2 ∩ ∂σ′2, where σ2

intersects W13 as in case (iii) and σ′2 is disjoint from W13, as in case (ii). The definition in
the two cases above assigns the same map to σ1 × (∂σ2 ∩ ∂σ′2)× ∂σ3.

Fig. 10. Left: the capped torus bounded by ∂σ3 with caps C′, C′′. Right: the map f defining F12.

The disks bounded by σ3 in Figures 11, 12 are the surgeries along the two caps
and the symmetric surgery, and they will be entirely in the present. The original map
f is recovered by the surgery along the cap C ′′ (Figure 11, left), and the result of the

Whitney move f̃ is the surgery on C ′ (Figure 11, right).

We will now proceed to define F on the three parts of the boundary ∂(D1× σ2×
σ3). The map F12 : D1 × σ2 × ∂σ3 −→ C (R4, 3) is defined as the Cartesian product
f×3 where f is the original map K −→ R4; it is an embedding when restricted to
D1

∐
σ2

∐
∂σ3 ↪→ R4, Figure 10 (right).

The maps F23 : ∂D1×σ2×σ3 −→ C (R4, 3), F13 : D1×∂σ2×σ3 −→ C (R4, 3) are

defined respectively as f×3, (f̃)×3 = f×f× f̃ where f is again the original map which

restricts to an embedding f : ∂D1

∐
σ2

∐
σ3 ↪→ R4, and f̃ : D1

∐
∂σ2

∐
σ3 ↪→ R4 is

the result of the Whitney move on σ3, Figure 11.

The only part of the definition where the map differs from f×3 is D1 × ∂σ2 × σ3,
where F is defined as (f̃)×3 = f × f × f̃ . As in case (ii) and in the proof of Lemma
3.3, consider a collar C on ∂D1 in σ1 and extend F to C × ∂σ2 × σ3 using an isotopy
from f̃ to f . The half point of the isotopy, the symmetric surgery discussed above, is
shown in Figure 12. Finally, the map is set to be f×3 on (σ1 r (C ∪D1))× ∂σ2 × σ3.

The map F is well-defined on the 5-skeleton: consider an overlap ∂σ2 ∩ ∂σ′2,
where σ2 intersects W13 as in case (iii) and σ′2 is disjoint from W13, as in case (ii).
The definition in the two cases above assigns the same map to σ1× (∂σ2∩∂σ′2)×∂σ3.
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is defined as (f̃)×3 = f × f × f̃ . As in case (ii) and in the proof of Lemma 3.3, consider a

collar C on ∂D1 in σ1 and extend F to C × ∂σ2× σ3 using an isotopy from f̃ to f . The half
point of the isotopy, the symmetric surgery discussed above, is shown in Figure 12. Finally,
the map is set to be f×3 on (σ1 r (C ∪D1))× ∂σ2 × σ3.

∂σ2

∂σ1

σ3

Figure 12. The symmetric surgery on the capped torus.

The map F is well-defined on the 5-skeleton: consider an overlap ∂σ2 ∩ ∂σ′2, where σ2

intersects W13 as in case (iii) and σ′2 is disjoint from W13, as in case (ii). The definition in
the two cases above assigns the same map to σ1 × (∂σ2 ∩ ∂σ′2)× ∂σ3.

Fig. 11. The map f defining F23 (left) and f̃ defining F13 (right).

∂σ2

∂σ1

σ3

Fig. 12. The symmetric surgery on the capped torus.

The constructed map F : Sk5 Cs(K, 3) −→ C (R4, 3) lifts Sk5 Cs(K, 3) −→
C (R4, 2)

3
up to homotopy because the surgeries on the two caps, defining F , are

isotopic. This concludes the description of the map F in Construction 4.2.
Step 3: comparing obstructions on the cochain level. In the remainder of

the proof of Theorem 4.1 we will show that the cohomology classes W3(K), i∗O3(K)
coincide on the cochain level. The value of the cocycle w3 in (3.7) is zero on the
6-cell D6 := σ1 × σ2 × σ3 in cases (i), (ii) above, and it equals ±1 in case (iii).
Recall that i∗O3(K) is the 6-dimensional cohomological obstruction to lifting the

map Cs(K, 3) → C (R4, 2)
3

in the diagram (4.2) to a map Cs(K, 3) → C (R4, 3).
We now recall the skeletal construction of the obstruction, which we mentioned in
Section 2. According to the skeletal approach, a choice of a lift F defined on the
5-dimensional skeleton of Cs(K, 3) determines a cochain representative of i∗O3(K).
A change of choice alters the cochain by a coboundary. The value of the obstruction
cochain on the 6-cell D6 is the element represented by F (∂D6) in π5 of the homotopy

fiber of the map pR4 : C (R4, 3) −→ C (R4, 2)
3
; we will focus on the non-trivial case

(iii) to match it with the value of w3.
As we did in Section 2, let us denote the fiber of the map pR4

: C (R4, 3) →
C (R4, 2)

3
by F4. We saw earlier that F4 is 4-connected, and π5(F4) ∼= Z (see Corol-

lary 2.7 and the remark immediately following it). Now we need to identify the
generator of π5(F4) as a Whitehead product.

Choose two points x1, x2 ∈ R4. This choice determines an embedding, which is
also a homotopy equivalence

S3 ∨ S3 '↪→ R4 \ {x1, x2}

as a wedge sum of two round spheres whose centers are x1 and x2. Furthermore, we
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have an embedding

R4 \ {x1, x2} ↪→ C (R4, 3),

which sends x to (x1, x2, x).
Let α, β be the two standard generators of π3(S3∨S3). We also denote the images

of α and β in π3(C (R4, 3)) by the same letters.

Lemma 4.3. The Whitehead product [α, β] is mapped to zero by pR4 . It lifts to a
generator of π5(F4).

Proof. Consider the following diagram:

S3 ∨ S3

F4 R4 \ {x1, x2} S3 × S3

C (R4, 3) C (R4, 2)× C (R4, 2)

C (R4, 2) ∗

'

p12

p13×p23

In this diagram pij is the map that sends (x1, x2, x3) to (xi, xj). The space F4 is the
total homotopy fiber of the bottom square. It is naturally equivalent to the homotopy
fiber of the top right horizontal map, which is the map between vertical fibers of the
bottom square. The top right horizontal map is in turn naturally equivalent to the
inclusion S3 ∨ S3 ↪→ S3 × S3, so we have an identification of F4 with the homotopy
fiber of this inclusion. By classical homotopy theory, the first non-trivial homotopy
group of the homotopy fiber of this inclusion is π5, it is isomorphic to Z, and it is
generated by the Whitehead product [α, β] (see [47, Theorem XI.1.7]).

Now we continue the analysis of F (∂D6). The value of F (∂D6) will be de-
termined as follows. As above, consider the fibration p12 : C (R4, 3) −→ C (R4, 2),
p12(x1, x2, x3) = (x1, x2):

R4 r 2 points S3
13 ∨ S3

23

∂(σ1 × σ2 × σ3) C (R4, 3)

C (R4, 2) S3
12

'

F

p12 p̄12

'

(4.3)

The composition p12 ◦F is null-homotopic, where the map F : ∂(σ1×σ2×σ3) −→
C (R4, 3) is the result of Construction 4.2. In fact, it is clear from Figure 10 that p̄12◦F
is not surjective: its image is contained in a ball D3 ⊂ S3. Trivializing the fibration
over D3, the map F lifts to the fiber, yielding a map F̃ : S5 = ∂(σ1 × σ2 × σ3) −→
S3

13 ∨ S3
23. The remainder of the proof of Theorem 4.1 amounts to checking that the

homotopy class of this map in π5(S3
13 ∨S3

23) represents the Whitehead product of the
two wedge summands.
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Step 4: identifying the homotopy class as the Whitehead product. The
compositions of the map F̃ with the projections of S3

13∨S3
23 onto the wedge summands

are homotopic to p̄13 ◦ F , p̄23 ◦ F in the diagram (4.4). In both diagrams, the map
p̄ij : C (R4, 3) −→ S3

ij is given by p̄ij(x1, x2, x3) = (xi, xj)/|xi − xj |, i 6= j ∈ {1, 2, 3}.

S3
13

∂(σ1 × σ2 × σ3) C (R4, 3)

S3
12 S3

23

F

p̄12

p̄13

p̄23

(4.4)

Using the Pontryagin construction, the homotopy class of F̃ in π5(S3
13 ∨ S3

23) can
be determined by the linking number of point preimages of p̄13 ◦ F , p̄23 ◦ F .
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∂σ2

σ1

σ3

σ2

σ1

∂σ3

Figure 13.

0 ≤ t ≤ 1. The entire point preimage of p̄13 ◦ F is a 2-sphere assembled of these two disks
and the annulus.

Similarly, the point preimage of p̄23◦F is analyzed in Figure 14. It consists of a 2-sphere which
is the union of two disks σ1×{c0}×{d0}, σ1×{c1}×{d1} and the annulus ∂σ1×{ct}×{dt},
0 ≤ t ≤ 1. Here ct ∈ σ2 and dt ∈ σ3 for all t ∈ [0, 1], with d0, d1 ∈ ∂σ3.

Consider σ3 as a product of two intervals I1 × I2, and let D3
i = σi × Ii, i = 1, 2. Note

that the two 0-spheres (b0, b1) and (d0, d1) link in ∂σ3. Reparametrize σ1 × σ2 × σ3 as
D3

1×D3
2. The point preimages of p̄13 ◦F , p̄23 ◦F are seen to be the two 2-spheres {∗}×∂D3

2,
∂D3

1 × {∗} ⊂ ∂(D3
1 ×D3

2). This concludes the proof of Theorem 4.1. �

σ2

∂σ1

σ3

σ2

σ1

∂σ3

Figure 14.

Remark 4.4. Link-homotopy invariants using Whitehead products in configuration spaces
were defined and studied in [21]. The context of the above proof is similar, but the actual
method and details of the proof are independent of the results of [21].

5. Construction of a classifying map

In this section we prove Proposition 2.13. That is, following the notational convention

2.12, we will construct a Σ3-equivariant map C (Rd, 2)
3 → Ω̂2Ω∞Σ∞Ŝ2d that makes the

square (2.7) 3d − 5-cartesian. In fact, we will do something slightly stronger. Namely,

we will construct a Σ3-equivariant map (recall that S̃d−1 is Σ2-equivariantly equivalent to
C (Rd, 2))

f : (S̃d−1)3 → Ω̂2Ŝ2d

Fig. 13.

A transverse point preimage of p̄13 ◦ F is shown in Figure 13, where a point in
S3

13 is represented as a vector v in R4 (colored red online). The preimage of p̄13 ◦ F23

(defined on the left in Figure 11) is empty. The preimage of p̄13 ◦F12 is shown on the
left of Figure 13 and consists of two disks {a0} × σ2 × {b0}, {a1} × σ2 × {b1}. Here
a0, a1 ∈ σ1 and b0, b1 ∈ ∂σ3 are the endpoints of the two vectors parallel to v shown
in the figure. The preimage of p̄13 ◦F13 is shown on the right of Figure 13 and consists
of the annulus {at}× ∂σ2 ×{bt}, 0 ≤ t ≤ 1. The entire point preimage of p̄13 ◦F is a
2-sphere assembled of these two disks and the annulus.

Similarly, the point preimage of p̄23 ◦ F is analyzed in Figure 14. It consists of a
2-sphere which is the union of two disks σ1 × {c0} × {d0}, σ1 × {c1} × {d1} and the
annulus ∂σ1 × {ct} × {dt}, 0 ≤ t ≤ 1. Here ct ∈ σ2 and dt ∈ σ3 for all t ∈ [0, 1], with
d0, d1 ∈ ∂σ3.

Consider σ3 as a product of two intervals I1 × I2, and let D3
i = σi × Ii, i = 1, 2.

Note that the two 0-spheres (b0, b1) and (d0, d1) link in ∂σ3. Reparametrize σ1×σ2×σ3

as D3
1 ×D3

2. The point preimages of p̄13 ◦F , p̄23 ◦F are seen to be the two 2-spheres
{∗} × ∂D3

2, ∂D3
1 × {∗} ⊂ ∂(D3

1 ×D3
2). This concludes the proof of Theorem 4.1.

Remark 4.4. Link-homotopy invariants using Whitehead products in configura-
tion spaces were defined and studied in [21]. The context of the above proof is similar,
but the actual method and details of the proof are independent of the results of [21].
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Remark 4.4. Link-homotopy invariants using Whitehead products in configuration spaces
were defined and studied in [21]. The context of the above proof is similar, but the actual
method and details of the proof are independent of the results of [21].

5. Construction of a classifying map

In this section we prove Proposition 2.13. That is, following the notational convention

2.12, we will construct a Σ3-equivariant map C (Rd, 2)
3 → Ω̂2Ω∞Σ∞Ŝ2d that makes the

square (2.7) 3d − 5-cartesian. In fact, we will do something slightly stronger. Namely,

we will construct a Σ3-equivariant map (recall that S̃d−1 is Σ2-equivariantly equivalent to
C (Rd, 2))

f : (S̃d−1)3 → Ω̂2Ŝ2d

Fig. 14.

5. A triple collinearity interpretation. In this section we prove Proposi-
tion 2.13. That is, following the notational convention 2.12, we will construct a

Σ3-equivariant map C (Rd, 2)
3 → Ω̂2Ω∞Σ∞Ŝ2d that makes the square (2.7) 3d − 5-

cartesian. In fact, we will do something slightly stronger. Namely, we will construct
a Σ3-equivariant map (recall that S̃d−1 is Σ2-equivariantly equivalent to C (Rd, 2))

f : (S̃d−1)3 → Ω̂2Ŝ2d

such that the following composition is Σ3-equivariantly null-homotopic

C (R3, 3)→ (S̃d−1)3 f−→ Ω̂2Ŝ2d

and moreover the following square diagram is 3d− 5-cartesian.

C (Rd, 3) (S̃d−1)3

∗ Ω̂2Ŝ2d

f . (5.1)

We call a map f with these properties a classifying map. Since there is a natural map

Ω̂2Ŝ2d → Ω̂2Ω∞Σ∞Ŝ2d

that is 4d−3-connected, it follows that the square (5.1) is 3d−5-cartesian if and only
if the square (2.7) is 3d− 5-cartesian.

The following lemma gives a practical way to verify that a given map is a classi-
fying map.

Lemma 5.1. Suppose that we have a Σ3-equivariant map

f : (S̃d−1)3 → Ω̂2Ŝ2d

satisfying the following conditions:
(1) The composite map

C (Rd, 3)→ (S̃d−1)3 → Ω̂2Ŝ2d (5.2)

is equivariantly null-homotopic.
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(2) f induces an epimorphism on H2d−2 (or, equivalently, a monomorphism on
H2d−2).

Then f is a classifying map.

Proof. By Lemma 2.6 and Corollary 2.7, the homology of the space C (Rd, 3)

is concentrated in degrees 0, d − 1, 2(d − 1). Similarly the homology of (S̃d−1)3 is
concentrated in degrees i(d− 1), where i ≤ 3. The map

C (Rd, 3)→ (S̃d−1)3

induces an isomorphism on Hd−1 and a monomorphism on H2(d−1). The cokernel of

this map in H2(d−1) is isomorphic to Z, which is also isomorphic to H2(d−1)(Ω
2S2d).

Our assumption implies that the homomorphism from the cokernel of f in H2(d−1) to

H2(d−1)(Ω
2S2d) is an epimorphism from Z to Z. Therefore it is an isomorphism. Since

all the spaces in the diagram 5.1 have trivial homology in dimension above 2(d − 1)
and below 3(d− 1), it follows that the square is 3d− 4-cocartesian. Furthermore, the

maps from C (Rd, 3) to (S̃d−1)3 and to ∗ are 2d− 3 and d− 1-connected respectively.
By the Blakers-Massey theorem, the square (5.1) is 3d− 5-cartesian.

Now we are ready to construct a classifying map. We will use the Thom-
Pontryagin collapse map associated with the diagonal inclusion S̃d−1 ↪→ (S̃d−1)3.
To get a clean description of the Σ3-equivariant properties of this collapse map, let us
first consider a more general setting, where M is a manifold with a free action of Σ2.
The action of Σ2 can be extended to an action of Σ3 via the surjective homomorphism
Σ3 � Σ2. In this way, we consider M as a space with an action of Σ3.

The group Σ3 acts on M3 via either one of the identifications

M3 ∼= mapΣ2
(Σ3,M) ∼= map(Σ3/Σ2,M).

The diagonal inclusion ∆: M ↪→ M3 is a Σ3-equivariant map (note again that the
action of Σ3 on M is not trivial). The normal bundle of this inclusion has an induced
action of Σ3. The normal bundle is Σ3-equivariantly isomorphic to the quotient bundle
3τ/∆(τ). Here τ is the tangent bundle of M , 3τ = τ ⊕τ ⊕τ , and ∆(τ) is the diagonal

copy of τ in 3τ . We denote the normal bundle by 2̂τ . It is the tensor product of τ with

R̂2. Let M 2̂τ denote the Thom space of the normal bundle. The Thom-Pontryagin

collapse map associated with ∆ is a Σ3-equivariant map M3 →M 2̂τ .
Now apply this to the case M = S̃d−1, the (d − 1)-dimensional sphere, endowed

with the antipodal action of Σ2. The Thom-Pontryagin collapse map has the form

(S̃d−1)3 → (S̃d−1)2̂τ

Note that this is an unpointed map, as the space (S̃d−1)3 does not have an equivariant
basepoint. Sometimes we like to think of the collapse map as a pointed map

(S̃d−1)3
+ → (S̃d−1)2̂τ

Let us take smash product of this map with Ŝ2, to obtain the following Σ3-equivariant
map

(S̃d−1)3
+ ∧ Ŝ2 → (S̃d−1)2̂τ ∧ Ŝ2.
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Now observe that there is a homeomorphism

(S̃d−1)2̂τ ∧ Ŝ2 ∼= (S̃d−1)2̂(τ⊕R).

Next, recall that the tangent bundle τ of Sd−1 satisfies the isomorphism τ ⊕R ∼= Rd.
Under this isomorphism, the natural action of Σ3 on τ ⊕ R corresponds to the sign
action on Rd. It follows that there is a Σ3-equivariant homeomorphism

(S̃d−1)2̂(τ⊕R) ∼= (S̃d−1)2̂(Rd) ∼= S̃d−1
+ ∧ Ŝ2d.

The action of Σ3 on Ŝ2d is induced by the tensor product of the standard action on
R̂2 and the sign action on Rd. But this is equivalent to just the standard action of
R̂2, without the sign twist.

Next we compose this homeomorphism with the collapse map S̃d−1
+ ∧ Ŝ2d → Ŝ2d,

and pre-compose with the (suspended) Thom-Pontryagin collapse map above. We
obtain the map

(S̃d−1)3
+ ∧ Ŝ2 → Ŝ2d.

Taking an adjoint, we obtain an unpointed Σ3-equivariant map

(S̃d−1)3 → Ω̂2Ŝ2d. (5.3)

This is our model for a classifying map.

Lemma 5.2. The map (5.3) is a classifying map.

Proof. We need to check that the map satisfies the hypotheses of Lemma 5.1.
The first hypothesis is that the composite map

C (Rd, 3)→ (S̃d−1)3 → Ω̂2Ŝ2d

is equivariantly null homotopic. By construction, the second map factors through
the Thom-Pontryagin collapse map associated with the inclusion of the thin diagonal
of (S̃d−1)3. Clearly the space C (Rd, 3), which is the complement of the fat diago-

nal of (S̃d−1)3, is contained in the complement of the thin diagonal, and therefore
the restriction of the Thom-Pontryagin collapse to C (Rd, 3) is (equivariantly) null
homotopic.

The second hypothesis that we need to check is that the following homomorphism
is an epimorphism

H2d−2((S̃d−1)3)→ H2d−2(Ω̂2Ŝ2d)

This is equivalent to showing that the adjoint map

S2 ∧ (Sd−1 × Sd−1 × Sd−1)+ → S2d

Induces an epimorphism on H2d (till the end of this proof we will omit the ‘tilde’ and
‘hat’ decorations, since we are not concerned with the action of Σ3 at this point).
Once again we recall that this map factors through the Thom-Pontryagin collapse as
follows

S2 ∧ (Sd−1 × Sd−1 × Sd−1)+ → S2 ∧ (Sd−1)2τ ∼=−→ Sd−1
+ ∧ S2d → S2d.
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We need to prove that this composite map induces an epimorphism on H2d. To
see this, choose a point ∗ ∈ Sd−1 and consider the inclusion Sd−1 × Sd−1 × {∗} ↪→
(Sd−1)3. This inclusion intersects the thin diagonal transversely at a single point
(∗, ∗, ∗) ∈ (Sd−1)3. It follows quite easily that the composite map

S2 ∧ Sd−1 × Sd−1 × {∗}+ → S2 ∧ (Sd−1 × Sd−1 × Sd−1)+ → S2d

is the double suspension of the Thom-Pontryagin collapse map associated with the
inclusion of a point (∗, ∗) ↪→ Sd−1×Sd−1. In other words, it is the double suspension
of the map Sd−1 × Sd−1 → S2d−2 that collapses the complement of a Euclidean
neighborhood of (∗, ∗). Clearly this map is surjective on H2d, and therefore the map
S2 ∧ (Sd−1 × Sd−1 × Sd−1)+ → S2d is also surjective on H2d.

Lemma 5.2 leads to a geometric interpretation of the obstruction class O3(K)
as a triple collinearity condition. In the manifold case, such an interpretation was
hinted at by Munson [29]. We will describe this geometric interpretation in the case
of embedding a 2-dimensional complex in R4.

To begin with, Lemma 5.2 tells that the obstruction class O3(K) is the pullback
of a Thom class. Suppose, as usual, that K is a 2-dimensional simplicial complex and
we have a Σ2-equivariant map

f2 : K ×K \K → S̃3.

Recall that we associate with f2 a Σ3-equivariant map

f3
2 ◦ pK : C (K, 3) → S̃3 × S̃3 × S̃3

(k1, k2, k3) 7→ (f2(k1, k2) , f2(k2, k3) , f2(k3, k1)).

Recall that the cohomological obstruction O3(K) is determined by the map f3
2 ◦ pK .

The following lemma is really a corollary of Lemma 5.2. Let S̃3
∆ ⊂ S̃3 × S̃3 × S̃3 be

the diagonal copy of S̃3.

Lemma 5.3. The obstruction class O3(K) is the pullback of the Thom class of

the normal bundle of S̃3
∆ in S̃3 × S̃3 × S̃3.

Proof. It follows from Lemma 5.2, that O3(K) is represented by the following
composition of maps from C (K, 3) to an Eilenberg - Mac Lane space

C (K, 3)
pK−−→ (C (K, 2))3

f×3
2−−−→ (S̃3)3 → (S̃3)2τ → Ω̂2Ŝ8 → Ω̂2Ω∞HZ ∧ Ŝ8 ∼= K(Z[−1]; 6).

Unraveling the definitions, one finds that the composition of the maps (S̃3)3 →
K(Z[−1]; 6) represents the Thom class of the normal bundle of the diagonal in (S̃3)3.
It follows that the composition of the maps C (K, 3) → K(Z[−1]; 6) represents the
pullback of the Thom class along f3

2 ◦ pK .

Now we can use Lemma 5.3 to interpret O3(K) as an intersection class. The
lemma says that that O3(K) is the pullback of the Thom class along f3

2 ◦ pK . For
the purpose of geometric interpretation, let us restrict the domain of this map to
Cs(K, 3), where Cs(K, 3) denotes, as usual, the union of triple products of simplices
σ1×σ2×σ3 of K that are pairwise disjoint. Cs(K, 3) is a subspace of C (K, 3). After
subdividing if necessary, we may assume that the inclusion Cs(K, 3) ↪→ C (K, 3) is a
homotopy equivalence.
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For the purpose of this discussion we restrict the domain of f3
2 ◦pK to be Cs(K, 3)

rather than C (K, 3).

Without loss of generality, (f3
2 ◦ pK)(C (K, 3)) may be assumed to intersect S̃3

∆

transversely. Then the set

(f3
2 ◦ pK)−1(S̃3

∆) = {(k1, k2, k3) ∈ Cs(K, 3) | f2(k1, k2) = f2(k2, k3) = f2(k3, k1)}

is a finite collection of points, contained in the union of interiors of open 6-dimensional
cells of Cs(K, 3).

Consider the following cellular cochain I3 : C6(Cs(K, 3)) → Z. For every cell of
the form σi × σj × σk, where σi, σj , σk are pairwise-disjoint 2-dimensional simplices
of K, I3(σi × σj × σk) is defined to be the algebraic intersection number

(
f3

2 ◦ pK(σi × σj × σk)
)
· S3

∆.

The algebraic intersection number depends on a choice of orientation of each 2-
dimensional simplex of K and also on a choice of orientation of S̃3.

Recall that Σ3 acts on S̃3 by the pullback of the antipodal action of Σ2 along
the surjective homomorphism Σ3 � Σ2. It follows that Σ3 acts trivially on the set
of orientations of S̃3. On the other hand, the action of Σ3 on the set of orientations
of S̃3 × S̃3 × S̃3 is non-trivial; it is the pullback of the free action of Σ2. This
implies that the cochain I3 really is an equivariant cochain with coefficients in the
sign representation. In symbols, I3 ∈ C6(Cs(K, 3);Z[−1]). Since Cs(K, 3) is a 6-
dimensional cell complex, I3 is automatically a cocycle, so it represents an element in
equivariant cohomology [I3] ∈ H6

Σ3
(Cs(K, 3);Z[−1]). Now we are ready for the main

result of this subsection.

Proposition 5.4. The cohomology class [I3] coincides with the obstruction class
O3(K).

Proof. It follows from Lemma 5.3 that O3(K), or rather the restriction of O3(K)
to Cs(K, 3), is the pullback of the Thom class of the normal bundle of the diagonal

in S̃3 × S̃3 × S̃3. Under a transversality assumption, the pullback of the Thom class
is the intersection number with the diagonal, which is the definition of I3.

Remark 5.5. Here is a heuristic explanation why the intersection number I3 is
an obstruction to the existence of an embedding. Suppose that f2 is a normalized
deleted square of some embedding f : K ↪→ R4. I.e., suppose that

f2(k1, k2) =
f(k2)− f(k1)

|f(k2)− f(k1)|

Then for all k1, k2, k3, the three vectors f(k2)−f(k1), f(k3)−f(k2), f(k1)−f(k3) sum

up to zero. On the other hand, (f3
2 ◦ pK)−1(S̃3

∆) represents the set of triples k1, k2, k3

where these three vectors are co-directed. It is natural that this set represents an
obstruction to the existence of f .

(It would be interesting to compare this with the interpretation of the second
coefficient of the Conway polynomial of a knot in terms of collinear triples in [7].)

6. Examples where the obstruction does not vanish. An explicit 2-
complex K which does not embed into R4, but has a vanishing van Kampen obstruc-
tion was constructed in [14]. The proof of non-embeddability in [14] is group-theoretic



172 G. ARONE AND V. KRUSHKAL

in nature (using the Stallings theorem) and is quite different from the methods of this
paper. In this section we reprove the non-embeddability of K by showing that our
obstruction is realized in this example.

Let us begin by reviewing the construction of the complex K in [14]. Let ∆6

(respectively ∆6′) be the six-dimensional simplex with vertex set v1, . . . , v7 (respec-
tively v′1, . . . , v

′
7). Denote the triangle on vertices va, vb, vc by ∆abc and similarly the

triangle on vertices v′a, v
′
b, v
′
c by ∆′abc.

Let skn∆6 denote the n-skeleton of ∆6. Let G7 (respectively G′7) be the 2-skeleton
of ∆6 minus the 2-cell associated with the triangle ∆123 (respectively the analogous

subcomplex of ∆6′).

Let K0 = G7 ∨ G′7 be the wedge sum obtained by identifying v1 and v′1 (in [14]
the authors add an edge v1v

′
1, but this difference does not matter). Finally, let K

be the complex obtained by attaching to K0 a 2-cell along the commutator of the
loops v1v2v3v1 and v′1v

′
2v
′
3v
′
1. The closure of this 2-cell is a torus embedded in K. We

denote this torus simply by ∆123 ×∆′123.

Remark 6.1. This example admits an immediate generalization to a family of
examples, where instead of two copies of G7 and a basic commutator of two loops as
above, one takes n copies of the 2-complex G7 and an element of the mod 2 commu-
tator subgroup of the free group Fn on n generators. The analysis below also goes
through for such commutators which are not in the next (second, in the convention of
[14, Lemma 7]) term of the mod 2 lower central series of Fn; for simplicity of notation
we concentrate on the basic example described above. We expect that the exam-
ples corresponding to higher commutators are detected by our higher obstructions
On(K),Wn(K); see Section 8.

As explained in [14], van Kampen showed that sk2∆6 can not be embedded in
R4, but G7 can. It follows that the complex K0 can be embedded in R4.

Let S ⊂ G7 be the sphere that is the union of the four 2-cells that are disjoint
from the triangle ∆123, namely the cells corresponding to ∆456,∆457,∆467 and ∆567.
S is the dual tetrahedron to the triangle ∆123 in the 6-simplex. Dually, let S′ ⊂ G′7
be the dual sphere to the triangle ∆′123.

The following key result about embeddings of K0 into R4 is proved in [14] (we do
not reprove it).

Proposition 6.2 ([14], Lemma 6). For any PL embedding of K0 into R4,
the linking numbers of S, S′ and ∆123,∆

′
123 satisfy the following (see figure 15 for

a schematic illustration):

link(S,∆123) ≡ link(S′,∆′123) ≡ 1(mod2).

link(S,∆′123) = link(S′,∆123) = 0.

It is also shown in [14] that the van Kampen obstruction vanishes on K. Now
we can state the main result of this section. Of course it is also proved in [14], using
fundamental group instead of cohomology. Another, more recent, viewpoint on this
result using triple intersections may be found in [2, Lemma 2.4]. We present a novel
approach, in terms of the cohomology of configuration spaces and specifically the
Arnold class.
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S

∆123

S′

∆′123

Fig. 15. The 2-complex K is obtained by attaching a 2-cell along the commutator of ∆123 and
∆′123.

Proposition 6.3. Suppose f2 : C (K, 2) → C (R4, 2) is a Σ2-equivariant map,
such that the restriction of f2 to C (K0, 2) is equivalent to the deleted square of some
embedding f : K0 ↪→ R4. Then the following composition map

C (K, 3)
pK−−→ C (K, 2)×C (K, 2)×C (K, 2)

f3
2−→ C (R4, 2)×C (R4, 2)×C (R4, 2) (6.1)

does not lift to a Σ3-equivariant map

C (K, 3)→ C (R4, 3).

It follows in particular that no embedding K0 ↪→ R4 can be extended to an
embedding K ↪→ R4. Also recall from Remark 3.5 that an embedding of K0 extends
to an order 1 Whitney tower. It follows from Lemma 3.3 and Propositions 6.2 and
6.3 that no embedding of K0 extends to an order 2 tower. A more general statement
is likely to be true, that there does not exist any map K −→ R4 (not necessarily
restricting to an embedding of K0) admitting an order 2 Whitney tower. Its proof
requires an extension of Proposition 6.2 from embeddings to maps of Whitney towers
which is outside the scope of this paper.

To prove the proposition, we give a cohomological interpretation of our obstruc-
tion O3(K) in terms of the Arnold class, which may be of independent interest.
Consider, once again, the problem of constructing a Σ3-equivariant lift in a diagram
of the following form

C (R4, 3)

C (K, 3) C (R4, 2)× C (R4, 2)× C (R4, 2)

pR4

f3
2 ◦pK

Recall the definition of the Arnold class

u⊗ u⊗ 1− u⊗ 1⊗ u+ 1⊗ u⊗ u ∈ H6(C (R4, 2)× C (R4, 2)× C (R4, 2)).

By Lemma 2.6, this class generates the kernel of pR4 in H6. We get the following easy
sufficient condition for our obstruction to be non-zero.

Lemma 6.4. Referring to the diagram above, suppose h∗(u⊗ u⊗ 1− u⊗ 1⊗ u+
1⊗ u⊗ u) 6= 0. Then a lift does not exists and O3(K) 6= 0.
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One can make the connection between O3(K) and the Arnold class a little more
precise. By definition, O3(K) is an element in the Σ3-equivariant cohomology group
H6

Σ3
(C (K, 3);Z[−1]). There is a natural homomorphism

H6
Σ3

(C (K, 3);Z[−1])→ H6(C (K, 3);Z[−1])Σ3 ⊂ H6(C (K, 3))

Lemma 6.5. The image of O3(K) in H6(C (K, 3)) under this homomorphism is

(the image of) the Arnold class under the map f3
2 ◦ pK : C (K, 3)→ C (R4, 2)

3
.

Proof. We saw in Section 2 that O3(K) is represented by a map

C (Rn, 2)
3 → K(Z, 2n− 2)

with the property that the sequence

C (Rn, 3)→ C (Rn, 2)
3 → K(Z, 2n− 2)

induces a split short exact sequence in H2n−2 and in H2n−2. It follows that the
map C (Rn, 2)

3 → K(Z, 2n − 2) representing our obstruction sends a generator of

H2n−2(K(Z, 2n − 2)) to a generator of ker(H2n−2(C (Rn, 2)
3
) → H2n−2(C (Rn, 3)),

which is precisely the Arnold class (up to sign, which we can adjust).

Now let us prove the main result of this section.

Proof of Proposition 6.3. The map f3
2 ◦ pK of (6.1) induces a homomorphism in

cohomology

(f3
2 ◦ pK)∗ : H6(C (R4, 2)× C (R4, 2)× C (R4, 2))→ H6(C (K, 3)).

By Lemma 6.4, it is enough to show that this homomorphism does not send the
element u⊗ u⊗ 1− u⊗ 1⊗ u+ 1⊗ u⊗ u to zero.

Inside K there are three disjoint subspaces: the spheres S and S′, and the torus
∆123 ×∆′123. Since these subspaces are disjoint, the obvious inclusion

S × S′ × (∆123 ×∆′123) ↪→ K ×K ×K

factors through an inclusion

i : S × S′ × (∆123 ×∆′123) ↪→ C (K, 3).

We will want to give names to elements in the cohomology of S × S′ ×
(∆123 × ∆′123). For this purpose, let v, v′, τ123, and τ ′123 be generators of
H2(S), H2(S′), H1(∆123), H1(∆′123) respectively.

Consider the composition

S × S′ × (∆123 ×∆′123)
i−→ C (K, 3)

pK−−→

→ C (K, 2)× C (K, 2)× C (K, 2)
f3
2−→ C (R4, 2)× C (R4, 2)× C (R4, 2). (6.2)

We want to analyze the effect of this map on cohomology. Recall that for any space
X, the map pX : C (X, 3)→ C (X, 2)

3
is defined by the formula

pX(x1, x2, x2) = ((x1, x2), (x2, x3), (x3, x1)).
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For i = 1, 2, 3, let priX : C (X, 2)
3 → C (X, 2) be the projection onto the i-th factor.

Notice that priX ◦ pX(x1, x2, x3) = (xi, xi+1), where i+ 1 is computed cyclically. We
have the following commutative diagram:

S × S′ × (∆123 ×∆′123) C (K, 2)
3

C (R4, 2)
3

S × S′ C (K, 2) C (R4, 2)

pK◦i f3
2

pr1
K

pr1
R4

f2

The composition of the two maps at the bottom is a map S × S′ → C (R4, 2). This
map is zero on reduced cohomology for the obvious reason that the target only has
non-trivial cohomology in degree 3 and the source has trivial cohomology in degree 3.
Notice that the right vertical map pr1

R4 takes the cohomology generator u to u⊗1⊗1.
It follows that the composition of the two horizontal map at the top of the diagram
takes the classes u⊗ u⊗ 1 and u⊗ 1⊗ u to zero.

It remains to see what happens to the third summand of the Arnold class, namely
1⊗ u⊗ u. For this purpose consider the following diagram

S × S′ × (∆123 ×∆′123) C (K, 2)
3

C (R4, 2)
3

S × (∆123 ×∆′123) C (K, 2) C (R4, 2)

pK◦i f3
2

pr3
K

pr3
R4

f2

It follows from Proposition 6.2 that the composition of maps at the bottom of
this diagram sends the generator u of H3(C (R4, 2) to an odd multiple of v⊗ τ123⊗ 1.
It follows that the composition of the maps at the top sends 1 ⊗ 1 ⊗ u to an odd
multiple of v ⊗ 1⊗ τ ⊗ 1. A similar diagram shows that the composition of top maps
sends 1⊗ u⊗ 1 to an odd multiple of 1⊗ v′ ⊗ 1⊗ τ ′.

Putting all these calculations together, it follows that the map f3
2 ◦ pK ◦ i sends

the Arnold class to an odd multiple of v⊗v′⊗τ⊗τ ′, which is not zero. It follows that
f3

2 ◦ pK does not send the Arnold class to zero. This is what we wanted to prove.

Remark 6.6. In the discussion above we focused on the case of 2-complexes
in R4, but a similar calculation shows that the obstruction O3(K) detects non-
embeddability of examples (with vanishing obstruction O2(K)) in all dimensions out-
side the metastable range, 2d < 3(m + 1), such that d ≥ max(4,m). Such examples
of m-dimensional complexes were constructed and shown to not admit an embedding
in Rd in [36, 35]. The construction involves the Whitehead product of meridional
spheres Sl, l = d −m − 1, linking two m-spheres S, S′, rather than the commutator
of loops in the construction above. To be precise, this remark concerns the version of
the examples from [36, 35] which is a direct analogue of the example from [14] and
illustrated in figure 15. That is, the wedge sum is taken so that the spheres S, S′ do
not have vertices in common. We discuss the examples of [36, 35] again in Section
8.4.

There are three disjoint subspaces in the complex: the spheres S, S′, and a 2l-
torus, and the calculation of the Arnold class analogous to the above shows that it is
non-trivial. This gives a unified proof of non-embeddability of the examples in [14]
and in [36, 35], while the arguments in these original references are quite different,
both from each other and from the new perspective in this paper.
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7. Higher obstructions. In this section we show how the obstruction O2(K)
and O3(K) can be extended to a sequence of obstructions On(K), using a primitive
version of the Goodwillie-Weiss tower. We will then give a conjectural description of
a framed cobordism refinement of On(K).

Definition 7.1. Let I be the category of finite sets and injective functions
between them, and In ⊂ I be the full subcategory consisting of sets of cardinality at
most n.

As before, let Emb(K,Rd) denote the space of topological embeddings of K into
Rd. In the case when i is a finite set and X is any space, Emb(i,X) is the configuration
space of ordered i-tuples of pairwise distinct points of X. We also denote this space
by C (X, i) := Emb(i,X).

Given a small category C and functors F,G : C → Top, we let NatC(F,G) denote
the space of natural transformations from F to G, and let hNatC(F,G) denote the
space of derived natural transformations from F to G. In other words, hNatC(F,G)
is the space of natural transformations from a cofibrant replacement of F to a fibrant
replacement of G. The (co)fibrant replacements can be taken in any Quillen model
structure on the functor category [C,Top], where the weak equivalences are defined
levelwise. We will use the projective model structure, in which every functor is fibrant.

Remark 7.2. To save notation, if F,G are functors Cop → Top, we will use the
notation hNatC(F,G) rather than hNatCop(F,G).

A topological space K determines a functor C (K,−) : Iop → Top that sends a
set i to C (K, i) = Emb(i,K). A topological embedding f : K ↪→ Rd gives rise to a
natural transformation C (K,−) → C (Rd,−), which sends an embedding α : i ↪→ K
to the embedding f ◦ α : i ↪→ Rd. This gives rise to natural maps.

Emb(K,Rd)→ NatI(C (K,−),C (Rd,−))→ hNatI(C (K,−),C (Rd,−)). (7.1)

One useful feature of the space hNatI(C (K,−),C (Rd,−)) is that it admits a natural
tower of approximations.

Definition 7.3. For each n ≥ 1 define

Tn Emb(K,Rn) = hNatIn(C (K,−),C (Rd,−)) (7.2)

The inclusions of categories · · · In−1 ⊂ In ⊂ · · · ⊂ I give rise to a tower whose
homotopy inverse limit is equivalent to hNatI(C (K,−),C (Rd,−))

hNatI(C (K,−),C (Rd,−))→ · · · → Tn Emb(K,Rn)→ Tn−1 Emb(K,Rd)→ · · ·

Remark 7.4. Readers familiar with the embedding calculus of Goodwillie and
Weiss will readily recognize Tn Emb(K,Rn) as a primitive analogue of the n-the Taylor
approximation in the Goodwillie tower. Indeed, the Goodwillie-Weiss construction is
essentially the same as the one in Definition 7.3, except that instead of the category
In of sets with at most n elements, they use the category whose objects are manifolds
diffeomorphic to the disjoint union of at most n copies of Rm, and whose morphisms
are smooth embeddings. At least this is one way to construct the Goodwillie-Weiss
tower. For more information about this approach to the Goodwillie-Weiss calculus
see the paper of Boavida and Weiss [5].
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The following lemma is an immediate consequence of the existence of the
map (7.1).

Lemma 7.5. If hNatIn(C (K,−),C (Rd,−)) is empty for some n, then there does
not exists an embedding of K into Rd.

Our goal is to study obstructions for a path component of Tn−1 Emb(K,Rd) to
be in the image of Tn Emb(K,Rd). For this purpose it is useful to have an inductive
description of Tn Emb(K,Rd). Such a description is given by Proposition 7.8 below.
The proposition is elementary and no doubt well-known. But for completeness we
will give a proof. We need some preparation.

Definition 7.6. Let

C0 (Rd, n) = holim
S({1,...,n}

C (Rd, S)

In words, C0 (Rd, n) is the homotopy limit of all the ordered configuration spaces
of proper subsets of {1, . . . , n} into Rd.

Remark 7.7. It is worth noting that C0 (Rd, 3) ' C (Rd, 2)
3
-a space that we

encountered in sections 2 and 5. Everything we are doing in this section is a general-
ization of what we did in those two sections for n = 2, 3.

There is another, equivalent, construction of the space C0 (Rd, n) that will come
up. Let In−1 ↓ n be the category whose objects are injective maps of sets i ↪→ n,
where n is shorthand for {1, . . . , n} and i ∈ In−1 denotes a set with strictly fewer
elements than n. Morphisms in In−1 ↓ n are commuting triangles. There is a functor
from In−1 ↓ n to the category (poset) of proper subsets of {1, . . . , n} which sends an
injective map i ↪→ n to its image. This functor is easily seen to be faithful, full and
surjective, so it is an equivalence of categories. Therefore it induces an equivalence

holim
S({1,...,n}

C (Rd, S)
'−→ holim

i↪→n∈In−1↓n
C (Rd, i). (7.3)

Another notion that we will use in the proof of Proposition 7.8 is that of a homotopy
right Kan extension. Let us quickly review what this is. Suppose C is a category and
C0 is a subcategory. Next, suppose G : C0 → Top is a functor defined on a subcategory
of C. Then let RG : C → Top denote the homotopy right Kan extension of G from C0
to C. Recall that RG can be defined on the objects of C by the following formula

RG(x) = holim
x→z∈x↓C0

G(z).

The homotopy right Kan extension is a derived right adjoint to the restriction functor.
This means that for any functor F : C → Top there is a natural equivalence

hNatC(F,RG) ' hNatC0(F |C0 , G) (7.4)

The adjunction also means that there is a natural transformation of functors F →
RF |C0 . If C0 is a full subcategory of C then this natural transformation is an equiva-
lence when evaluated on objects of C0.

Now we are ready to state and prove the inductive description of Tn Emb(K,Rd).
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Proposition 7.8. There is a homotopy pullback square, where the right vertical
map is induced by the canonical map C (Rd, n)→ C0 (Rd, n)

Tn Emb(K,Rd) → map(C (K,n),C (Rd, n))Σn

↓ ↓
Tn−1 Emb(K,Rd) → map(C (K,n),C0 (Rd, n))Σn

Proof. Since Tn Emb(K,Rd) = hNatIn(C (K,−),C (Rd,−)), our task is to prove
that there exists a homotopy pullback diagram of the following form

hNatIn(C (K,−),C (Rd,−)) map(C (K,n),C (Rd, n))Σn

hNatIn−1
(C (K,−),C (Rd,−)) map(C (K,n),C0 (Rd, n))Σn

(7.5)

The strategy is to express all four corners of this square as spaces of homotopy natural
transformations between functors defined on In using homotopy right Kan extension.

Let Rnn−1 C (Rd,−) be the homotopy right Kan extension of the functor C (Rd,−)
from In−1 to In. By (7.4) we know that restriction from In to In−1 induces an
equivalence

hNatIn(C (K,−), Rnn−1 C (Rd,−))
'−→ hNatIn−1

(C (K,−),C (Rd,−)).

Now let us analyse the functor Rnn−1 C (Rd,−). There is a natural transformation of
(contravariant) functors on In

C (Rd,−)→ Rnn−1 C (Rd,−).

This natural transformation is an equivalence when evaluated on objects of In−1

because In−1 is a full subcategory of In. On the other hand, we have the following
formula for Rnn−1 C (Rd, n)

Rnn−1 C (Rd, n) ' holim
i↪→n∈In−1↓n

C (Rd, i)

By (7.3) we have an equivalence

C0 (Rd, n) = holim
S({1,...,n}

C (Rd, S)
'−→ holim

i↪→n∈In−1↓n
C (Rd, i).

Therefore there is an equivalence

Rnn−1 C (Rd, n) ' C0 (Rd, n).

And the map C (Rd, n)→ Rnn−1 C (Rd, n) is equivalent to the natural map C (Rd, n)→
C0 (Rd, n). Now consider the full subcategory of In consisting of the single object n
and its endomorphisms. This category is the symmetric group, and we will denote it
by Σn. A functor from Σn to Top is the same thing as a space with an action of Σn.
Given a space Xn with an action of Σn, we let RI

ΣXn(−) denote the homotopy right
Kan extension of this functor from Σn to In. Since there are no morphisms in In from
n to smaller sets, it follows that RI

ΣXn(n) = Xn and RI
ΣXn(i) ' ∗ for i < n.
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From the discussion above we conclude that there is a homotopy pullback square
of functors from In to Top

C (Rd,−) RI
Σ C (Rd, n)(−)

Rnn−1 C (Rd,−) RI
Σ C0 (Rd, n)(−)

(7.6)

Indeed, when evaluated at a set i < n, the vertical morphisms in this square are
equivalences, and when evaluated at n, the horizontal morphisms are equivalences.
So it is a homotopy pullback square of functors.

Applying hNatIn(C (K,−),−) to (7.6), we obtain a homotopy pullback square

hNatIn(C (K,−),C (Rd,−)) hNatIn(C (K,−), RI
Σ C (Rd, n)(−))

hNatIn(C (K,−), Rnn−1 C (Rd,−)) hNatIn(C (K,−), RI
Σ C0 (Rd, n)(−))

Using the fact that right Kan extension is derived right adjoint to restriction we obtain
that this square is equivalent to the desired square (7.5) at the beginning of the proof.
So we have proved that a homotopy pullback square of this form exists.

Remark 7.9. One can interpret the homotopy pullback square (7.6) as an in-
ductive description of the coskeletal filtration on a functor defined on a (generalized)
Reedy category. See [4, Section 6].

Proposition 7.8 leads to an inductive procedure for constructing obstruc-
tions to the existence of an embedding K ↪→ Rd. Suppose we have a point
gn−1 : hNatIn−1(C (K,−),C (Rd,−)), and we want to know if (the path component
of) gn−1 lies in the image of

hNatIn(C (K,−),C (Rd,−)).

The bottom map in diagram (7.5) sends gn−1 to a Σn-equivariant map

f̃n : C (K,n)→ C0 (Rd, n),

which really factors as a composite

C (K,n)→ C0 (K,n)→ C0 (Rd, n).

The path component of gn−1 is in the image of a path component of
hNatIn(C (K,−),C (Rd,−)) if and only if f̃n lifts up to homotopy to a Σn-equivariant
map fn : C (K,n)→ C (Rd, n), as per the following diagram

C (Rd, n)

C (K,n) C0 (Rd, n)
f̃n

fn (7.7)

At this point obstruction theory kicks in. We will assume that d ≥ 3, so that the spaces
C (Rd, n) and C0 (Rd, n) are simply connected. The first obstruction to the existence
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of a lift fn lies in the equivariant cohomology of C (K,n) with coefficients in the first
non-trivial homotopy group of the homotopy fiber of the map C (Rd, n)→ C0 (Rd, n).
The following proposition is known [17, 20].

Proposition 7.10. The map C (Rd, n) → C0 (Rd, n) is (d − 2)(n − 1) + 1-
connected. Let F be the homotopy fiber of this map. The first non-trivial homotopy
group of F is

π(d−2)(n−1)+1(F ) ∼= Z(n−2)!.

Since the space F is simply-connected, the action of Σn on these spaces induces
a well-defined action on the first non-trivial homotopy group of F . Thus the group
Z(n−2)! is a representation of Σn. Standard obstruction theory implies the following
result.

Theorem 7.11. Suppose, as above, that we have a point
gn−1 : hNatIn−1

(C (K,−),C (Rd,−)), and we want to know if (the path compo-
nent of) gn−1 lies in the image of

hNatIn(C (K,−),C (Rd,−)).

There is a cohomological obstruction On(K, gn−1) to the existence of such a lift. The
class On(K, gn−1) is an element of the equivariant cohomology group.

H
(d−2)(n−1)+2
Σn

(
C (K,n),Z(n−2)!

)
.

We will write simply On(K) rather than On(K, gn−1), when gn−1 is irrelevant. If
dim(K) ·n = (d− 2)(n− 1) + 2 then On(K) is a complete obstruction to the existence
of a lift fn. In particular, this holds when dim(K) = 2 and d = 4.

It is easy to see that for n = 2, 3 the general definition of On(K) agrees with the
definitions of O2(K) and O3(K) that we saw earlier.

We end this section by describing a conjectural refinement of On(K) to an ob-
struction Ofr

n (K) living in equivariant stable cobordism, extending the definitions of
Ofr

2 (K) and Ofr
3 (K) that we saw earlier.

The construction of Ofr
n (K) uses a geometric realization of the group

π(d−2)(n−1)+1(F ) ∼= Z(n−2)! as the cohomology of the space of non 2-connected graphs.
Recall that a graph G is called 2-connected if G connected, and for every vertex x,
G \ {x} is connected.

Definition 7.12. For n > 1, let ∆2
n be the poset of non-trivial non 2-connected

graphs with vertex set {1, . . . , n}. Let Tn be the unreduced suspension of the geometric
realization of ∆2

n.

The space Tn was initially introduced by Vassiliev, and was studied in the pa-
per [3]. For example, T2 = S0, T3 = S2, with the standard (non-trivial) action of
Σ3.

The following is well-known [3].

Theorem 7.13. There is a homotopy equivalence

Tn '
∨

(n−2)!

S2n−4
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Conjecture 7.14. There is a natural Σn-equivariant map

C0 (Rd, n)→ map∗(Tn,Ω
∞Σ∞Sd(n−1))

So that there is an (d− 2)n+ 1-cartesian square

C (Rd, n) C0 (Rd, n)

∗ map∗(Tn,Ω
∞Σ∞Sd(n−1))

Assuming the conjecture, we have natural maps

Tn−1 Emb(K,Rd)→ map(C (K,n),C0 (Rd, n))Σn

→ map∗(C (K,n)+ ∧ Tn,Ω∞Σ∞Sd(n−1))Σn .

This map associates to a point in Tn−1 Emb(K,Rd) an element of the equivariant
stable cohomotopy group of C (K,n) ∧ Tn. This element is an obstruction Ofr

n (K) to
the point of Tn−1 Emb(K,Rd) being in the image of T Emb(K,Rd). The obstruction
is complete so long as d ≥ dim(K) + 2.

Remark 7.15. Our reasons to believe Conjecture 7.14 come from Orthogonal
Calculus [45]. The functor that sends Rd to the spectrum

map∗(Tn,Ω
∞Σ∞Sd(n−1))

is the bottom non-trivial layer of the difference between C (Rd, n) and C0 (Rd, n). In
fact, the conjecture is almost a formal consequence of the existence of orthogonal
calculus and what we know about the derivatives of functors related to C (Rd, n).
However, it would be interesting to have an explicit map

C0 (Rd, n)→ map∗(Tn,Ω
∞Σ∞Sd(n−1))

with some sort of geometric interpretation. The Thom-Pontryagin collapse map that
we defined for the case n = 3 in Section 5 does not seem to generalize easily to higher
values of n.

8. Questions and conjectures. In conclusion we will mention several problems
motivated by the results of this paper.

8.1. Equivalence of higher obstructions.. Theorem 4.1 shows that the ob-
structionW3(K) equals the pullback of O3(K) to H6

Σ3
(Cs(K, 3);Z[(−1)]). We conjec-

ture that the analogous relation holds for higher obstructions as well. More precisely,
we conjecture that a map f : K −→ R4 together with a Whitney tower of order n− 2
for any n ≥ 4 determines a point in Tn−1 Emb(K,R4), and the obstructionWn(K,W )
from Definition 3.12 equals the pullback of On(K) to H2n

Σn

(
Cs(K,n),Z(n−2)!

)
.

8.2. Conjectural higher cohomological obstructions.. Recall the discus-
sion of the Arnold class (Definition 2.4) and its relation with the obstruction O3(K)
(Lemma 6.5). Here we formulate a certain version of Massey products, defined when
the Arnold class vanishes.
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For convenience of choosing signs below, we will restrict ourselves to the case
d = 4; analogous cohomological classes can be constructed for any d.

Notice that for every choice of indices i, j satisfying i 6= j and 1 ≤ i, j ≤ 4, there is
a map ri,j : C0 (R4, 4)→ C (R4, 2), induced by restriction to the ordered pair (i, j). As
usual, let us pick a generator u ∈ H3(C (R4, 2). Let U be some cocycle representative
of u, and for each i, j as above let Uij be the pullback of U along ri,j . Assume that

there exists a map f̃4 : C (K, 4) −→ C0 (Rd, 4) as in diagram (7.7). Denote by Vij the
3-cocycles on C (K, 4) obtained as the pull-backs of Uij , i, j ∈ {1, . . . , 4}. Consider

Vi,j,k := VijVjk + VjkVki + VkiVij .

It follows from the existence of the map f̃4 : C (K, 4) −→ C0 (Rd, 4) and the resulting
vanishing of the Arnold class in Lemma 6.5 that for each subset {i, j, k} ⊂ {1, . . . , 4}
the cohomology class of Vi,j,k in H6(C (K, 4)) is trivial. Consider 5-cochains Xijk on
C(K, 4), defined by δXijk = Vijk. Consider the 8-cochain on C (K, 4):

Y(12)(34) := X123(V14−V24)+X234(V31−V41)+X341(V32−V42)+X412(V13−V23) (8.1)

One checks that this is a cocycle; in fact there are two additional cocycles which we
denote Y(13)(24), Y(14)(23); for example

Y(13)(24) := X123(V34−V14)+X234(V41−V21)+X341(V12−V32)+X412(V23−V43). (8.2)

The sum of these three cocycles is zero. We conjecture that these cohomology classes
are obstructions to lifting f̃4 in diagram (7.7) to a map f4 : C (K, 4) −→ C (Rd, 4),
and that they are related to the obstructions O4(K),W4(K) ∈ H8

Σ4

(
C (K, 4),Z2

)

analogously to Lemma 6.5. Moreover, formulas (8.1), (8.2) suggest that these classes
admit a systematic generalization to C(K,n) for larger n as well.

8.3. Relation to other obstructions for a class of 2-complexes in R4. For
2-complexes K with H1(K;Q) = 0, a sequence of obstructions to embeddability in
R4 was defined in [22]. The context in that reference, in terms of Massey products
on 3-manifold boundary of 4-dimensional thickenings of K, is quite different from the
setting of our work. Determining how the obstructions in [22], for 2-complexes with
vanishing first homology with rational coefficients, fit in the framework developed in
this paper is an interesting question.

8.4. Almost embeddings and complexes with vanishing obstructions.
A PL almost-embedding of a complex K is a PL map K −→ Rd such that non-
adjacent simplices of K do not intersect in the image [14, Section 4].3 Note that
an almost embedding gives rise to a Σn-equivariant map of simplicial configuration
spaces Cs(K,n) −→ Cs(Rd, n); in fact both the obstructions Wn(K) (for 2-complexes
in R4) and the “simplicial” version of On(K), defined using Cs(K,n), are obstruc-
tions to the existence of a PL almost embedding. The same conclusion for the finer
obstructions On(K) (defined using C (K,n) rather than Cs(K,n)) is also possible but
not immediate.

For any pair of dimensions m, d outside the stable range, that is 2d < 3(m + 1),
with d ≥ max(4, n), the authors of [36, 35] constructed examples of m-complexes
which PL almost embed but do not PL embed into Rd; see also related discussion in

3We would like to thank Arkadiy Skopenkov for pointing out the relation to almost-embeddings
and the relevance of the examples of [36, 35], discussed in this section.
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[38, Section 5]. These examples are similar to the complex illustrated in figure 15,
except that the wedge sum identifies vertices of S, S′; PL embeddability is established
using the finger move familiar in 4-manifold topology, and its higher dimensional
analogues.

These observations suggest the question of whether the vanishing of the obstruc-
tions On(K) for all n is sufficient for almost embeddability of a 2-complex K in R4.
In another direction, recall that the embedding obstructions On(K) formulated in
this paper use a weaker version of the Goodwillie-Weiss tower. One may wonder
whether a different version of the tower may be formulated, converging in dimensions
2d < 3(m+ 1).

As mentioned in the introduction, in the special relative case where K is the
disjoint union of disks D2

i and the embedding problem in the 4-ball has a prescribed
boundary condition – a link L formed by the boundaries of the disks ∂D2

i in S3 = ∂D4

– our obstructions correspond to the Milnor invariants (with non-repeating coeffi-
cients) of L. There are well-known examples (boundary links) which have trivial
Milnor’s invariants but are not slice. (Further, there are examples [8] of links with
vanishing Milnor invaraints which are not concordant to boundary links.) However in
our context there is no boundary condition present, and there is considerable flexibility
in re-embedding, thus the obstructions from link theory do not admit an immediate
analogue for embedding of complexes.

8.5. Intrinsic characterization of the obstructions.. Given a 2-complex K
with trivial O2(K), is there an intrinsic characterization of classes in H3(Cs(K, 2))
that arise (as the pullback of a generator of H3(C (R4, 2))) from maps to R4 as in
Lemma 3.3? The proof of non-embeddability of examples in Section 6 relies on Propo-
sition 6.2. A characterization of such classes H3(Cs(K, 2)) might lead to an obstruc-
tion theory (the Arnold class, and higher cohomological operations in Section 8.2)
defined without a reference to maps into configurations spaces of R4.

8.6. Complexity of embeddings.. There have been recent advances in the
subject of complexity of embeddings of complexes into Euclidean spaces, both from
algorithmic and geometric perspectives, cf. [24, 13]. In higher dimensions there is an
upper bound O(exp(N4+ε)) on the refinement complexity (r.c.), i.e. the number of
subdivisions needed to PL embed a simplicial m-complex (with trivial O2(K)) into
R2m, m > 2, in terms of the number N of simplices of K. For 2-complexes in R4

the complexity problem is open. The examples in [13] (relying on the van Kampen
obstruction) have exponential r.c., and the embedding problem in this dimension is
NP-hard [24]. But to the authors’ knowledge it is an open question whether r.c.
could even be non-recursive (and correspondingly whether the embedding problem is
algorithmically undecidable). It is a natural question whether the higher obstruction
theory developed in this paper may be used to shed new light on the problem.
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