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CONTRACTING CONVEX SURFACES BY MEAN CURVATURE

FLOW WITH FREE BOUNDARY ON CONVEX BARRIERS∗

SVEN HIRSCH† AND MARTIN MAN-CHUN LI‡

Abstract. We consider the mean curvature flow of compact convex surfaces in Euclidean 3-space
with free boundary lying on an arbitrary convex barrier surface with bounded geometry. When the
initial surface is sufficiently convex, depending only on the geometry of the barrier, the flow contracts
the surface to a point in finite time. Moreover, the solution is asymptotic to a shrinking half- sphere
lying in a half space. This extends, in dimension two, the convergence result of Stahl for umbilic
barriers to general convex barriers. We introduce a new perturbation argument to establish funda-
mental convexity and pinching estimates for the flow. Our result can be compared to a celebrated
convergence theorem of Huisken for mean curvature flow of convex hypersurfaces in Riemannian
manifolds.
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1. Introduction. Over the past few decades, geometric flows have blossomed
and led to many striking applications in topology and geometry such as the proofs
of Poincaré conjecture in three-dimensional topology by Hamilton [16] and Perel-
man [28, 30, 29], the Riemannian Penrose inequality in general relativity by Huisken-
Ilmanen [20] and the Differentiable Sphere theorem by Brendle-Schoen [4] in Rieman-
nian geometry. For all the results above, geometric flows are considered on manifolds
and submanifolds without boundary, the behaviour of geometric flows for manifolds
with boundary, on the other hand, is much less studied in the literature.

It has been a longstanding question to define Ricci flow with boundary which is
well-posed for general initial data. Recently, there has been some remarkable progress
made by Gianniotis [12, 11]. Short-time existence and regularity were established un-
der certain general geometric boundary conditions which are related to the boundary
value problems for Einstein metrics posed by Anderson [1, 2]. It is an interesting
direction to study the long-time behaviour of the flow.

For mean curvature flow, it is relatively easier to define the flow on submanifolds
(especially hypersurfaces) with boundary. Two geometric boundary conditions have
been most extensively studied. One is Dirichlet boundary condition where the mo-
tion of the boundary is prescribed (see for example [39] and the references therein).
The other one is Neumann boundary condition where the boundary contact angle is
prescribed. When the contact angle is π

2 , this is called Mean Curvature Flow (MCF)
with free boundary and is the main object of study in this paper. The fundamental
short-time existence and uniqueness for MCF with free boundary was first established
by Stahl in [33]. The regularity and singularities of the flow were studied later for
example, in [5, 23, 35] among many other. Certain weak formulations have been in-
troduced in [13, 27, 7]. For mean-convex flow, substantial work has been done by
Edelen [6] and Edelen-Haslhofer-Ivaki-Zhu [8] extending the foundational convexity
estimates of Huisken-Sinestrari [22, 21] and regularity theory of White [36, 37, 38].
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Special cases of MCF with free boundary were also studied, for example in the entire
graphical case [34], in the Lorentzian setting [24] and in the Lagrangian setting [9].

One celebrated classical result of Huisken [17] says that any convex hypersurfaces
in R

n+1 shrink to a round point in finite time under MCF. This result is later general-
ized to the Riemannian setting in [18] provided that the initial hypersurface is convex
enough to overcome the ambient geometry. In the free boundary setting, Stahl [32]
proves that any convex hypersurface with free boundary lying on a flat hyperplane
or a round hypersphere in R

n+1 will shrink to a round point under the MCF with
free boundary. A natural question is whether Stahl’s convergence result can be ex-
tended to more general non-umbilic barrier surfaces. In this paper we answer this
question affirmatively in dimension two (we refer the readers to Section 2 for precise
definitions).

Theorem 1.1. Let S ⊂ R
3 be a complete, properly embedded oriented sur-

face without boundary satisfying the following uniform bounds: there exist constants
K,L1, L2 ≥ 0 such that

0 ≤ ZS ≤ ZS ≤ K, (1.1)

where ZS , ZS are the exterior and interior ball curvature respectively, and

|∇SAS | ≤ HSL1 and |∇2
SÅS | ≤ L2. (1.2)

Then there exists a constant D ≥ 0, depending only on K, L1 and L2, such that
the following holds: let Σ0 be a compact connected surface smoothly immersed in R

3

meeting S orthogonally along its free boundary ∂Σ0 ⊂ S, and suppose that on Σ0 we
have

hij > Dgij , (1.3)

then there exists a unique solution Σt to the free-boundary mean curvature flow on
a finite time interval 0 ≤ t < T and the surfaces Σt remains convex for all time.
Furthermore, as t → T , Σt converges uniformly to half of a “round point” p ∈ S in the
sense that there is a sequence of rescalings which converge to a shrinking hemisphere
with free boundary lying on a plane.

Fig. 1. A convex surface with free boundary contained in a convex barrier surface is evolving
under mean curvature flow to a shrinking hemisphere.

Remark 1.2. The assumptions (1.1) and (1.2) are clearly satisfied for some
K,L1, L2 for any compact convex barrier surface S. Furthermore, it will be apparent
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from the proof that the constant D in (1.3) is close to zero if the barrier S is close to
a flat plane or a round sphere (in the C2-sense). Therefore, we recover in particular
the convergence result of Stahl in [32] for umbilic barriers.

Remark 1.3. The geometry of the barrier surface S can be thought of as an
obstruction to convergence to a round point under the flow and the initial surface
has to be sufficiently convex to overcome this obstruction. This can be compared to
Huisken’s result in [18] where the obstruction arises from the geometry of the ambient
Riemannian manifold. We expect that our results also hold in general Riemannian
3-manifolds other than R

3. For simplicity, we just present our result in the Euclidean
case.

Remark 1.4. Theorem 1.1 also has the topological implication that any suffi-
ciently convex free boundary surface Σ0 is diffeomorphic to a disk. In fact, this also
follows from Gauss-Bonnet as the induced metric on Σ0 has positive Gauss curvature
with convex boundary. If Theorem 1.1 holds in higher dimensions, then it would be
a non-trivial topological consequence of the flow. A version of the converse of the
statement was established for spherical barrier by Ghomi-Xiong [10]. It would be
interesting to see if similar results hold for other convex barriers, provided that the
surface is sufficiently positively curved (see [10, Note 1.4]).

We would like to point out the differences with our main result in comparison
with Huisken’s convergence result [18] in Riemannian manifolds. In [18], the surface
has to be sufficiently convex depending on the zero-th and first order derivatives of
the ambient curvature. The ambient space, when it is non-compact, is required to
have a positive lower bound on the injectivity radius although his convergence result
does not depend explicitly on this lower bound. In our main theorem, the convexity
constantD depends up to first order derivatives of the curvatures of the barrier surface
S as well as the second derivatives of the trace-free second fundamental form of S.
Moreover, the ball curvature bounds in (1.1) implies a positive lower bound on the
boundary injectivity radius of S and our convergence result depends explicitly on this
bound.

We now outline the main ideas of our proof of Theorem 1.1. As in many of the
results for geometric flows, the major analytic tool is the maximum principle which
first and second order conditions hold at any interior local minimum/maximum point.
However, on (sub)-manifolds with boundary, the extrema can happen on the boundary
at which we only get a first order inequality. This presents a major difficulty to deal
with geometric flows on manifolds with boundary. In [32], the barrier surface is
totally umbilic, which can be exploited to avoid unwanted cross terms in the normal
derivatives of the second fundamental form and hence the maximum principle can
still be applied. However, if the barrier is not umbilic, there are additional cross
terms which are not controllable by lower order terms so the arguments in [32] are
not sufficient.

To overcome these difficulties for general convex barriers, we use a perturbation
argument of the second fundamental form which first appeared in [21] (and more
recently in [6] and [8]) by adding a suitably chosen perturbation tensor defined by

PΣ(U, V ) :=(AS(U, ν)ν
♭
S(V ) +AS(V, ν)ν

♭
S(U)) gS(ν, ν)

− (gS(U, ν)ν
♭
S(V ) + gS(V, ν)ν

♭
S(U)) AS(ν, ν)
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where AS and νS are extended to R
3 as explained in Section 2.1. The perturbation

tensor above kills off the cross terms of the second fundamental form along the bound-
ary so that a simpler version of maximum principle [33, Lemma 3.4] can be applied.
Our perturbation tensor can be regarded as a refinement of the one used in [6] that has
better first order property along the boundary and moreover vanishes identically for
the case of totally umbilic barriers. Various estimates for the perturbation tensor have
to be done carefully so that the estimates depend only on the constants appearing in
(1.1) and (1.2).

Finally, we comment on the assumptions of Theorem 1.1 regarding the dimension
restriction and the convexity of the barrier surface. The only place where the dimen-
sion restriction comes in is to prove the convexity and pinching estimates in Section
4 and 5. The boundary normal derivatives contain terms which can be combined in
dimension two to give the mean curvature, whose positive lower bound is preserved
under the flow when the barrier is convex. If we drop the convexity of the barrier
surface, most of our arguments still go through (at places with a further perturbation
argument) with a worse constant depending on S. For example, one can still prove
that the mean curvature still blows up in finite time, provided that the surface is
initially sufficiently convex. To keep our arguments relatively shorter and concise, we
wish to address these issues in another forthcoming work.

The organization of the paper is as follows. In Section 2, we give a precise
quantitative description of the barrier surface S and a way to extend tensors from S
to all of R3. We also recall some fundamental facts about mean curvature flow with
free boundary. In Section 3, we define the perturbation tensor and establish various
foundation estimates which will be used crucially in the rest of our paper. In Section
4, we prove that convexity is preserved up to a fixed multiplicative factor provided
that the surface is convex enough initially. A similar result was then established
for the pinching of second fundamental form in Section 5. In Section 6, we use
Stampacchia iteration (generalized to the free boundary setting by [6]) to prove the
pinching estimate for the traceless second fundamental form. Finally, we establish the
gradient bound for mean curvature in Section 7, from which our main result Theorem
1.1 then follows.
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environment. We would like to thank Prof. Richard Schoen and Prof. Shing-Tung
Yau for their interest in this work. We also thank Simon Brendle, Binglong Chen,
Yng-Ing Lee, Mao-Pei Tsui, Yuanlong Xin, Jonathan Zhu, Xiping Zhu for many
useful comments and insightful discussions. The first author is substantially supported
by a research grant from the Research Grants Council of the Hong Kong Special
Administrative Region, China [Project No.: CUHK 14323516] and CUHK Direct
Grant [Project Code: 4053338].

2. Preliminary results. In this section, we give the precise definitions and
notations that will be used for the rest of the paper. We begin with a quantitative
description of the barrier surface and a way to extend tensors on S to the entire R3. We
then recall some basic facts about free-boundary mean curvature flow. Throughout
this work, R3 is equipped with the Euclidean metric 〈·, ·〉 with norm | · | and the
flat connection D. We sometimes identify vectors and co-vectors when no ambiguity
arises.
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2.1. The barrier surface. Throughout this paper, we let S ⊂ R
3 be a properly

embedded smooth surface (not necessarily compact nor connected) without boundary.
We call S the barrier surface or simply the barrier. Geometric quantities pertaining
to the barrier surface S will be indicated with a sub- or superscript, whichever is more
convenient. Since S is properly embedded, it is always orientable [31] and we can fix
a smooth global unit normal νS . Recall from [3, Definition 1] the notion of interior
and exterior ball curvature at a point p ∈ S defined respectively by

ZS(p) := sup

{

2〈p− q, νS(p)〉
|p− q|2 : q ∈ S, q 6= p

}

, (2.1)

ZS(p) := inf

{

2〈p− q, νS(p)〉
|p− q|2 : q ∈ S, q 6= p

}

. (2.2)

Geometrically, ZS(p) is the principal curvature of the largest “interior ball” (with
respect to νS) which touches S at p and ZS(p) is such for the largest “exterior ball”.
We remark that S does not necessarily bound a region in R

3. The concept of “interior”
and “exterior” is only defined locally relative to the “outward” unit normal νS .

With respect to the unit normal νS , we define the second fundamental form of S
to be the symmetric (0, 2)-tensor AS : TS × TS → R where

AS(u, v) := −〈Duv, νS〉

for any smooth tangential vector fields u, v on S. The principal curvatures are given by
the eigenvalues of AS viewed as an endomorphism on TS. With our sign convention,
S is locally convex if and only if AS is non-negative definite at every p ∈ S. Note
that this is implied (see [3, Proposition 4]) by the inequality ZS(p) ≥ 0 at any p ∈ S.
On the other hand, since a ball of curvature less than the largest principal curvature
cannot touch S from interior at p, we always have ZS(p) at least as big as the largest
principal curvature of S at p. Therefore, the uniform bound (1.1) implies that S is
a locally convex surface with principal curvatures at most K everywhere. Note that
ZS and ZS contain both information on the curvatures of S (which is local) and the
boundary injectivity radius 1 of S (which is non-local). For example, the slab region
bounded by two parallel planes S (appropriately oriented) which are of distance r
apart has zero principal curvatures but ZS = 2/r.

In any local coordinates on S, we denote the components of AS by {hS
ij} and its

covariant derivative ∇SAS by {∇S
kh

S
ij}. The induced metric on S from R

3 is denoted

by gS , which is a (0, 2)-tensor on S represented by {gSij} in local coordinates. We will

use gS to raise or lower indices of tensors, e.g. (hS)
i
j = gikS hS

kj , adopting Einstein

summation convention to sum over repeated indices. For any p ≥ 1, ∇p
SAS denotes

the p-th covariant derivative of AS . Moreover, |T |2 denotes the squared norm of any
tensor, e.g. |AS |2 = hij

S h
S
ij . We use ÅS to denote the trace-free second fundamental

form of S defined by

ÅS := AS − 1

2
HSgS (2.3)

where HS := TrAS is the mean curvature of S.

1The boundary injectivity radius of S is the maximal ρ > 0 such that a ρ-tubular neighborhood
of S is diffeomorphic to S × (−ρ, ρ) under the normal exponential map of S.
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For any x ∈ R
3, we denote the minimal distance of x to S in R

3 by dist(x, S).
For any ǫ > 0, we denote the ǫ-tubular neighborhood of S by

Sǫ := {x ∈ R
3 : dist(x, S) < ǫ}.

From (1.1) we know that for any x ∈ SK−1 , there exists a unique px ∈ S such that
dist(x, S) = |x− px|. Moreover, the (signed) distance function from S, d : SK−1 → R

defined by

d(x) :=

{

− dist(x, S) if 〈x− px, νS(px)〉 ≤ 0
dist(x, S) if 〈x− px, νS(px)〉 ≥ 0

is a C∞ function on SK−1 satisfying the following at any x ∈ SK−1/2 (see [5, Section
3] and [14]):

Dd(x) = νS(px), D2d(x)(Dd(x), ·) = 0 and |D2d(x)| ≤ 2K. (2.4)

Next, we want to extend d to the whole R
3 using a cut-off function. To this end,

we fix a smooth cutoff function χ ∈ C∞(R) such that χ is decreasing with χ ≡ 1
on (−∞, 1), χ ≡ 0 on (2,+∞), χ′ ≥ −2 and |χ′′| ≤ 5 everywhere. Using this cutoff
function, we define the truncation function χK : R3 → R by

χK(x) := χ

( |d(x)|
K−1/4

)

.

Note that χK is a C∞ function on R
3 which is supported in the tubular neighborhood

SK−1/2, and χK ≡ 1 in SK−1/4. Moreover, we have the following at any x ∈ R
3:

DχK(x) =

(

4K
d(x)

|d(x)|χ
′
)

Dd(x),

D2χK(x) =

(

4K
d(x)

|d(x)|χ
′
)

D2d(x) + 16K2χ′′Dd(x) ⊗Dd(x).

From above and (2.4), we obtain easily the bounds |DχK | ≤ 8K and |D2χK | ≤ 96K2.
With the truncation function χK above, we now describe a general procedure

to extend any (0, q)-tensor field φ on S to the entire R
3. At each p ∈ S, we first

extend φ, which is a q-linear form on TpS, to a q-linear form on TpR
3 ∼= R

3 by
defining φ(u1, · · · , uq) = φ(uT

1 , · · · , uT
q ) where (·)T denotes the orthogonal projection

from TpR
3 onto TpS. Then, we extend the q-linear form φ by parallel transport

along normal geodesics emanating from S. Finally, we multiply φ by the truncation
function χK so that it is a smooth (0, q)-tensor field globally defined on R

3. By
abuse of notation, we still denote the extended tensor field as φ. Note that after
the extension, φ is supported in the tubular neighborhood SK−1/2 and satisfies the

bounds (curvatures of S also appear when one differentiates (·)T )

‖φ‖C0(R3) ≤ ‖φ‖C0(S), ‖Dφ‖C0(R3) ≤ 8K‖φ‖C0(S) + ‖∇Sφ‖C0(S),

‖D2φ‖C0(R3) ≤ (96K2 + 2L1K)‖φ‖C0(S) + 16K‖∇Sφ‖C0(S) + ‖∇2
Sφ‖C0(S).

Notation 2.1. From now on, we use parenthesis to denote the dependence of
constants. For example, C(K) denotes any positive constant depending only on the
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constant K in (1.1). We use C(S) denote any positive constant depending only on
the constants K, L1, L2 in (1.1) and (1.2). Moreover, we write f = O(g) to mean
that |f | ≤ C(S)|g|.

For example, when k = 0, 1, 2, we have ‖φ‖Ck(R3) ≤ C(K,L1)‖φ‖Ck(S) for the
extension of any (0, q)-tensor φ on S to R

3. By the same procedure, we can also
extend any vector field, e.g. νS , defined on S to the entire R

3 satisfying the same
bounds.

2.2. Free-boundary mean curvature flow. We now recall some preliminary
results about free-boundary mean curvature flow. First, we restrict to the class of
surfaces meeting (from inside) the barrier surface S orthogonally.

Definition 2.2. Let Σ denote a smooth two-dimensional surface with non-empty
boundary ∂Σ. A free boundary surface (with respect to S) is a smooth immersion
F : Σ → R

3 such that

F (∂Σ) ⊂ S and F∗N = νS ◦ F

where N is the outward unit normal of ∂Σ in Σ, with respect to Σ equipped with the
induced metric from the immersion F .

Note that in case S bounds a region G in R
3, from the definition above a free

boundary surface does not have to lie completely either in G or R3 \G. The condition
F∗N = νS ◦F means that along F (∂Σ) ⊂ S, the surface F (Σ) has to lie locally on one
side of S (as specified by the normal νS). The surface F (Σ), however, can intersect
S somewhere in its interior.

We will assume throughout this paper that Σ is orientable and we fix a choice of
unit normal ν on Σ with respect to the immersion F : Σ → R

3. We use g and A to
denote respectively the induced metric and second fundamental form on Σ, where

A(u, v) := −〈Duv, ν〉

for any tangential vector fields u, v on Σ. The mean curvature of Σ is denoted by
H := TrA. Similar to our previous discussion for the barrier surface, we denote, in
any local coordinates of Σ, the components of A by {hij} and its covariant derivative
∇A by {∇khij}. The induced metric on Σ is denoted by g, whose components in local
coordinates are given by {gij}. We will use g to raise or lower indices of tensors. We
write ∇ and ∆ for the intrinsic covariant derivative and Laplacian on Σ respectively.
Let dV be the area form on Σ. There is a useful relationship between the second
fundamental form A of the free boundary surface Σ and the second fundamental form
AS of the barrier surface S along the free boundary ∂Σ.

Lemma 2.3. Let F : Σ → R
3 be a free boundary surface with respect to S. For

any p ∈ ∂Σ and X ∈ Tp∂Σ, we have A(N,X) = −AS(ν ◦ F, F∗X).

Proof. It follows easily by differentiating the identity 〈ν, νS ◦ F 〉 ≡ 0 along ∂Σ
and using the free boundary condition F∗N ≡ νS ◦ F . See [6, Proposition 4.5] or [32,
Proposition 2.2].

We consider in this paper the mean curvature flow within the class of free bound-
ary surfaces. It was first introduced by Huisken [19] (in the graphical case) and Stahl
[33]. Note that the definition in [33] does not require the surfaces to locally lie on one
side of S near their boundary.
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Definition 2.4. Let F0 : Σ → R
3 be a free boundary surface as in Definition 2.2.

We say that F : Σ×[0, T ) → R
3 is a solution to the free-boundary mean curvature flow

if for each t ∈ [0, T ), Ft := F (·, t) : Σ → R
3 is a free boundary surface, F (·, 0) = F0

and

∂F

∂t
= −Hν. (2.5)

By abuse of notation, we often write Σt := Ft(Σ).

The fundamental short time existence and uniqueness for the free-boundary mean
curvature flow was established by Stahl in [33]. For any smooth compact initial data
F0 : Σ → R

3, there exist a unique solution to (2.5) defined on a maximal time interval
[0, T ). The solution is smooth for t > 0 and C2+α,1+α/2 up to t = 0, with arbitrary
α ∈ (0, 1). Moreover, if T < +∞, then supΣt

|A| → ∞ as t → T [33, Theorem 1.3].
It was shown recently by Guo [15] that either supΣt

|H | → ∞ or Length(∂Σt) → ∞
as t → T , extending the remarkable work of Li and Wang [25] to the free boundary
setting.

We first recall the evolution equations for some basic geometric quantities on Σt.
Note that we will suppress as usual the explicit dependence on t for simplicity when
no ambiguity arises.

Lemma 2.5. Let {Σt}t∈[0,T ) be a solution to the free-boundary mean curvature
flow. Then, we have the following evolution equations for t > 0,

(i) ∂tgij = −2Hhij,
(ii) ∂tν = ∇H,
(iii) ∂tdV = −H2dV ,
(iv) (∂t −∆) hij = −2Hhimhm

j + |A|2hij,

(v) (∂t −∆)H = |A|2H,
(vi) (∂t −∆) |A|2 = 2|A|4 − 2|∇A|2,
(vii) (∂t −∆)

(

|A|2 − 1
2H

2
)

= 2|A|2
(

|A|2 − 1
2H

2
)

− 2
(

|∇A|2 − 1
2 |∇H |2

)

.

Proof. See [17, Section 3].

Besides the evolution equations, we also need the boundary normal derivatives of
various geometric quantities. We first recall the following fundamental result on the
mean curvature, which holds for any positive time.

Lemma 2.6. Along ∂Σ, we have N(H) = hS
ννH for t > 0.

Proof. We obtain the desired formula by differentiating the free boundary condi-
tion 〈N, ν〉 ≡ 0 along ∂Σ with respect to t and using Lemma 2.5 (ii). See, for example,
[6, Proposition 4.3] or [32, Proposition 2.1] for details.

Using the evolution equation and the boundary normal derivative of H , we obtain
the following useful corollary by the maximum principle (c.f. [32, Theorem 3.1 and
3.2]). Note that our barrier surface S is locally convex (i.e. hS

νν ≥ 0) under assumption
(1.1).

Corollary 2.7. Any non-negative lower bound of H is preserved under the flow,
i.e. if H ≥ H0 ≥ 0 at t = 0 for some constant H0 ≥ 0, then H ≥ H0 for all t > 0.

Note that when H0 > 0, H must in fact blow up in finite time with T ≤ H−2
0 .

Note that Lemma 2.6 uses the evolution equation of ν under mean curvature flow and
hence does not hold for a general free boundary surface Σ.
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The boundary normal derivatives of the second fundamental form A were com-
puted by [32, Theorem 2.4] and [6, Lemma 6.1]. We recall their formula here, spe-
cializing to two-dimensional surfaces.

Convention 2.8. At any point p ∈ ∂Σ, we always choose local Fermi coordinates
in Σ around p so that along ∂Σ, ∂1 ≡ N and ∂2 is a unit vector field tangent to ∂Σ.
Moreover, the integral curves of ∂1 are geodesics in Σ. We refer the readers to [26,
Section 2] for a more detailed discussion about Fermi coordinates.

Lemma 2.9. At every p ∈ ∂Σ, we have for t > 0

∇1h11 = 2hS
22H + (hS

νν − 3hS
22)h11 +∇S

ν h
S
22, (2.6)

∇1h22 = hS
22H + (hS

νν − 3hS
22)h22 −∇S

ν h
S
22. (2.7)

Proof. It follows immediately from [6, Lemma 6.1] and that H = h11 + h22,
HS = hS

22 + hS
νν . Note that (2.6) uses the evolution equation in Lemma 2.6. On

the other hand, (2.7) does not use any evolution equation and thus holds for any
free boundary surface (without being a solution to the free-boundary mean curvature
flow).

From Lemma 2.9 we see that the expression

N(|A|2) =6hS
22Hh11 + 2(hS

νν − 2hS
22)|A|2 − 4hS

22h
2
11 (2.8)

+ 2∇S
ν h

S
22(h11 − h22) + 4h12∇1h12 − 4(hS

νν − 2hS
22)h

2
12

contains a term involving ∇1h12, which is not controllable. Note that when S = S
2,

the above formula simplifies to (note that h12 = hS
2ν = 0)

N(|A|2) = 6Hh11 − 2|A|2 − 4h2
11 = O(|A|2) (2.9)

which implies N |A| = O(|A|) and hence N |A| = O(H) if Σ is convex (as |A| ≤ H).
This observation is crucial in establishing the pinching estimate for S = S

2 in [32].
Controlling the terms in (2.8) is the major difficulty to generalize Stahl’s umbilic
convergence result in [32] to general convex barrier surfaces. We will handle this by
introducing a new perturbed second fundamental form with desired properties at S
up to first order.

3. Perturbed second fundamental form. In this section, we define our per-
turbation tensor which is the crucial new ingredient to deal with non-umbilic barriers.
We carefully derive its basic properties and estimates which are required for later sec-
tions.

3.1. The perturbation tensor. We define an auxiliary (0, 5)-tensor P on R
3

which is solely determined by the barrier surface S. Recall that AS and gS are
symmetric (0, 2)-tensors on S. By the extension procedure described in Section 2,
we consider them as (0, 2)-tensors defined on R

3. On the other hand, at each p ∈ S,
consider the co-vector ν♭S dual to the vector νS at p (i.e. ν♭S(·) := 〈νS , ·〉). We have
then a 1-form on R

3 defined only along S. By a similar extension procedure as in
Section 2.1 but without doing the tangential projection, we can regard ν♭S as a 1-form
globally defined on R

3 satisfying the following uniform bounds:

|ν♭S | ≤ 1, |Dν♭S | ≤ 9K and |D2ν♭S | ≤ 104K2 + 2KL1.
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With these extensions understood, we make the following definition.

Definition 3.1. Let P be the (0, 5)-tensor on R
3 defined by

P (U, V,X, Y, Z) :=(AS(U,X)ν♭S(V ) +AS(V,X)ν♭S(U)) gS(Y, Z)

− (gS(U,X)ν♭S(V ) + gS(V,X)ν♭S(U)) AS(Y, Z).

By our way of extension, P is clearly smooth and supported in the tubular neigh-
borhood SK−1/2. One can also express P in terms of the tracefree second fundamental

form ÅS defined in (2.3),

P (U, V,X, Y, Z) =(ÅS(U,X)ν♭S(V ) + ÅS(V,X)ν♭S(U)) gS(Y, Z)

− (gS(U,X)ν♭S(V ) + gS(V,X)ν♭S(U)) ÅS(Y, Z).

From this expression it follows that P vanishes identically whenever S is totally umbilic
(i.e. ÅS ≡ 0). It is clear from the definition that P is symmetric in the first two slots,
i.e. P (U, V,X, Y, Z) = P (V, U,X, Y, Z). Moreover, we have the following estimates
(note that (Dν♭S)

T = AS along S):

‖P‖C0(R3) ≤ 4‖ÅS‖C0(S), ‖DP‖C0(R3) ≤ C(K)‖ÅS‖C1(S),

‖D2P‖C0(R3) ≤ C(K,L1)‖ÅS‖C2(S).

Therefore, we have

‖P‖C2(R3) ≤ C(K,L1)‖ÅS‖C2(S) ≤ C(S). (3.1)

There are some nice additional properties of P which hold for points lying on the
barrier surface S.

Lemma 3.2. The following holds on S:
(i) P (U, V,X, Y, Z) = 0 whenever one of the X, Y and Z belongs to (TS)⊥,
(ii) P (U, V,X, Y, Z) = 0 whenever U, V ∈ TS,
(iii) P (U, V, V, V, V ) = 0 whenever V ∈ TS,
(iv) P (νS , νS , X, Y, Z) = 0,
(v) DνSP = 0.

Proof. (i) - (iv) follow directly from the definition of P and (v) follows from the
way we extend the tensor fields from S to R

3.

Definition 3.3. Given any free boundary surface Σ with unit normal ν, we
define a symmetric (0, 2)-tensor PΣ : TΣ× TΣ → R on Σ by

PΣ(u, v) := P (u, v, ν, ν, ν),

where P is the (0, 5)-tensor defined on R
3 as in Definition 3.1.

Note that as gS(ν, ν) = 1 and gS(u, ν) = 0 for all u ∈ TΣ along ∂Σ, our pertur-
bation term reduces to the one considered in [6, Definition 4.5.1]: for any u, v ∈ TpΣ
where p ∈ ∂Σ ⊂ S, we have

PΣ(u, v) = AS(u, ν)〈v, νS〉+AS(v, ν)〈u, νS〉. (3.2)
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Lemma 3.4. Along ∂Σ, we have

PΣ
11 = PΣ

22 = 0 and PΣ
12 = −h12.

Proof. It follows easily from (3.2) and Lemma 2.3.

The perturbation term (3.2) is already enough for the purpose of proving the
convexity estimates in [6]. However, for our purpose we need a stronger condition at
the boundary, which is given by the following lemma.

Lemma 3.5. Along ∂Σ, we have

∇1P
Σ
11 = ∇1P

Σ
22 = 0.

Proof. By the definition of Fermi coordinates along ∂Σ, we have

∇1∂1 = 0 and ∇1∂2 = hS
22∂2.

Combining this with the Weingarten equations, we have

D∂1
∂1 = −h11ν, D∂1

∂2 = hS
22∂2 − h12ν and D∂1

ν = h11∂1 + h12∂2.

Therefore, we obtain

∇1P
Σ
11 =∂1P11ννν

=D1P11ννν − 2h11Pν1ννν + h11(P111νν + P11ν1ν + P11νν1)

+ h12(P112νν + P11ν2ν + P11νν2)

which vanishes by Lemma 3.2 (iii) (iv) (v) and that ∂1 = νS , and ν ∈ TS along ∂Σ.
Similarly,

∇1P
Σ
22 =D1P22ννν − 2h12Pν2ννν + h11(P221νν + P22ν1ν + P22νν1)

+ h12(P222νν + P22ν2ν + P22νν2)

which vanishes by Lemma 3.2 (ii) (v) since ∂2, ν ∈ TS along ∂Σ.

We derive now the evolution equation for the perturbation tensor PΣ.

Proposition 3.6. Let {Σt}t∈[0,T ) be a solution to the free-boundary mean cur-
vature flow. Then, we have the following evolution equation:

(∂t −∆)PΣ
ij =3|A|2PΣ

ij + hpi(hpkP
Σ
kj −HPΣ

pj) + hpj(hpkP
Σ
ik −HPΣ

ip)

+ 2hpihpk(Pνjkνν + Pνjνkν + Pνjννk)

+ 2hpjhpk(Piνkνν + Piννkν + Piνννk)

− 2hpihpjPννννν − 2hpℓhpk(Pijkℓν + Pijkνℓ + Pijνkℓ)

−D2
p,pPijννν + 2hpiDpPνjννν + 2hpjDpPiνννν

− 2hpk(DpPijkνν +DpPijνkν +DpPijννk).

Moreover, we have the following bounds

PΣ = O(1), ∇PΣ = O(1 + |A|), ∇2PΣ = O(1 + |A|2 + |∇A|), (3.3)
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(∂t −∆)PΣ
ij = O(1 + |A|2). (3.4)

Proof. Choose any orthonormal geodesic coordinates ∂1, ∂2 centered at a point
x ∈ Σ. Similar to the calculations in [6, Proposition 5.1], we have

∇pP
Σ
ij = DpPijννν + hpk(Pijkνν + Pijνkν + Pijννk)− hpiPνjννν − hpjPiνννν .

This implies the bound ∇PΣ = O(1 + |A|). Differentiating once again, using Codazzi
equation, we have

∇q(DpPijννν ) =D2
q,pPijννν − hqpDνPijννν − hqiDpPνjννν − hqjDpPiνννν

+ hqk(DpPijkνν +DpPijνkν +DpPijννk),

∇q(hpkPijkνν ) =(∇khpq)Pijkνν + hpkhqℓ(Pijkℓν + Pijkνℓ)

+ hpk(DqPijkνν − hqiPνjkνν − hqjPiνkνν − hqkPijννν ),

∇q(hpiPνjννν ) =(∇ihpq)Pνjννν + hpi(DqPνjννν − hqjPννννν)

+ hpihqk(Pkjννν + Pνjkνν + Pνjνkν + Pνjννk).

This implies the bound ∇2PΣ = O(1 + |A|2 + |∇A|). Adding up the terms and
summing over p, q, we have

∆PΣ
ij =− (∇iH)Pνjννν − (∇jH)Piνννν + (∇kH)(Pijkνν + Pijνkν + Pijννk)

−HDνPijννν − 3|A|2PΣ
ij − hpihpkP

Σ
kj − hpjhpkP

Σ
ik

− 2hpihpk(Pνjkνν + Pνjνkν + Pνjννk)

− 2hpjhpk(Piνkνν + Piννkν + Piνννk)

+ 2hpihpjPννννν + 2hpℓhpk(Pijkℓν + Pijkνℓ + Pijνkℓ)

+D2
p,pPijννν − 2hpiDpPνjννν − 2hpjDpPiνννν

+ 2hpk(DpPijkνν +DpPijνkν +DpPijννk).

On the other hand, computing the time derivative gives

∂tP
Σ
ij =− (∇iH)Pνjννν − (∇jH)Piνννν + (∇kH)(Pijkνν + Pijνkν + Pijννk)

−HDνPijννν −HhipP
Σ
pj −HhjpP

Σ
ip.

Combining the last two equations yield the desired formula.

Remark 3.7. Examining the proof carefully we have in fact the following

|PΣ| ≤ 4‖ÅS‖C0(S), |∇PΣ| ≤ C(K)‖ÅS‖C1(S)(1 + |A|),

|∇2PΣ| ≤ C(K,L1)‖ÅS‖C2(S)(1 + |A|2 + |∇A|),

|(∂t −∆)PΣ| ≤ C(K,L1)‖ÅS‖C2(S)(1 + |A|2).
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3.2. Perturbed second fundamental form. We now use the perturbation
tensor defined in the previous subsection to construct the new perturbed second fun-
damental form with desirable properties.

Definition 3.8. Given a free boundary surface Σ with unit normal ν, the per-
turbed second fundamental form Ã = (h̃ij) of Σ is a symmetric (0, 2)-tensor on Σ
defined by

Ã(X,Y ) := A(X,Y ) + PΣ(X,Y ) for all X,Y ∈ TΣ.

Moreover, we define the perturbed mean curvature to be H̃ := Tr Ã.

Lemma 3.9. Along ∂Σ, we have

h̃11 = h11, h̃22 = h22 and h̃12 = 0.

Hence, |Ã| ≤ |A| and H̃ = H along ∂Σ.

Proof. The statements follow directly from Lemma 3.4.

Note that Ã = A globally in Σ when S is totally umbilic as P ≡ 0. However, this
is in general not true when S is non-umbilic.

We now compute the boundary normal derivatives for the perturbed second fun-
damental form.

Lemma 3.10. Along ∂Σ, we have

∇1h̃11 = 2hS
22H + (hS

νν − 3hS
22)h11 +∇S

ν h
S
22, (3.5)

∇1h̃22 = hS
22H + (hS

νν − 3hS
22)h22 −∇S

ν h
S
22. (3.6)

Hence, we have NH̃ = hS
ννH̃.

Proof. It follows directly from Lemma 2.9, 3.5 and 3.9.

Lemma 3.11. Along ∂Σ, we have

1

2
N |Ã|2 = 3hS

22Hh11 + (hS
νν − 2hS

22)|Ã|2 − 2hS
22h

2
11 + (∇S

ν h
S
22)(h11 − h22). (3.7)

In particular, we have the following inequality at any |Ã| > 0,

N |Ã| ≤ 3hS
22

H

|Ã|
h11 + (hS

νν − 2hS
22)|Ã|+

√
2|∇S

ν h
S
22|. (3.8)

Proof. It follows by a straightforward calculation from Lemma 3.10. Note that
we do not have a term (c.f. (2.8)) involving ∇1h̃12 since h̃12 = 0 along ∂Σ. Moreover,
|Ã|2 = h2

11 + h2
22 along ∂Σ by Lemma 3.9 and hS

22 ≥ 0 by convexity of S.

We now derive some bounds involving the evolution equation for the perturbed
second fundamental form.

Proposition 3.12. Let {Σt}t∈[0,T ) be a solution to the free-boundary mean cur-
vature flow. Then, we have the following bounds on the evolution equation:

(∂t −∆)h̃ij = |A|2h̃ij − 2Hhimh̃m
j +O(1 + |A|2), (3.9)
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(∂t −∆)H̃ = |A|2H̃ +O(1 + |A|2), (3.10)

(∂t −∆)|Ã|2 = 2|A|2|Ã|2 − 2|∇Ã|2 +O(1 + |A|2), (3.11)

(∂t −∆)

(

|Ã|2 − 1

2
H̃2

)

=2|A|2
(

|Ã|2 − 1

2
H̃2

)

(3.12)

− 2

(

|∇Ã|2 − 1

2
|∇H̃ |2

)

+O(1 + |A|3).

Proof. (3.9) follows directly from Lemma 2.5 (iv), Proposition 3.6 and (3.1).
(3.10) then follows from (3.9) together with Lemma 2.5 (i) and (3.1). For (3.11), we
compute using Lemma 2.5 (i) and (3.9)

1

2
(∂t −∆)|Ã|2 =

1

2
∂t(g

ikgjℓh̃ij h̃kℓ)− 〈∆Ã, Ã〉 − |∇Ã|2

=2Hhikgjℓh̃ij h̃kℓ + gikgjℓh̃kℓ(∂t −∆)h̃ij − |∇Ã|2

=|A|2|Ã|2 − |∇Ã|2 +O(1 + |A|2).

Finally, (3.12) follows immediately from (3.10) and (3.11).

Note that the error term in (3.11) is of order |A|2 instead of |A|3 (c.f. [6, Theorem
5.3]). On the other hand, we only get the error bound in the order of |A|3 in (3.12),
which is enough for our purpose later. From (3.3), we have the following bounds:

Ã = A+O(1), |Ã| = |A|+O(1), (3.13)

∇Ã = ∇A+O(1 + |A|), |∇Ã| = |∇A|+O(1 + |A|). (3.14)

Corollary 3.13. Whenever |Ã| ≥ 1, we have

(∂t −∆)|Ã| ≤ |A|2|Ã|+ O(|Ã|).

Proof. Note that

(∂t −∆)|Ã| = 1

2

(∂t −∆)|Ã|2
|Ã|

+
|∇|Ã||2
|Ã|

= |A|2|Ã|+ |∇|Ã||2 − |∇Ã|2
|Ã|

+O(|Ã|)

from which the estimate follows from Kato’s inequality that |∇|Ã|| ≤ |∇Ã|.
Note that we have the error term bounded by |Ã| instead of |Ã|2 as in [6]. However

it is also enough for our purpose to have the weaker bound.

4. Preservation of convexity. In this section we prove that convexity is pre-
served under free-boundary mean curvature flow, provided that the initial surface Σ0

is convex enough (depending only on S). When S = S
2 or R2, this was established by

Stahl in [32, Theorem 4.4]. Our result generalizes this to arbitrary convex barriers.
We first show that the any sufficiently large positive lower bound for the perturbed

second fundamental form Ã = (h̃ij) as defined in Definition 3.8 is preserved up to a
fixed multiplicative factor. Our proof is based on a maximum principle argument
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applied to the symmetric (0, 2)-tensor h̃ij . The advantage of using the perturbed

second fundamental form is that h̃ij decomposes at the boundary ∂Σ by Lemma
3.9. Therefore, for the maximum principle arguments we only have to consider the
boundary derivatives ∇1h̃11 and ∇1h̃22 but not the cross term ∇1h̃12, on which we
have no control.

Theorem 4.1. There exists a constant D̃0 = D̃0(S) > 0 such that whenever
{Σt}t∈[0,T ) is a solution to the free-boundary mean curvature flow with

h̃ij ≥ D̃gij at t = 0

for some constant D̃ ≥ D̃0, then we have

h̃ij >
1

2
D̃gij for all t ∈ [0, T ).

Proof. We argue by contradiction. Suppose there is a first time t0 ∈ (0, T ) and
a point x0 ∈ Σ such that h̃(v, v) = D̃/2 for some unit tangent vector v ∈ Tx0

Σt0 .
We will derive a contradiction when D̃ > 0 is sufficiently large, depending only on S.
There are two different cases to consider: either x0 lies in the interior of Σ or x0 ∈ ∂Σ.

Suppose first x0 is an interior point of Σ. We can extend v to a neighborhood of
x0 in Σ by parallel transport along radial geodesics (with respect to Σt0) emanating
from x0, and then extend v being constant in time. In other words, we have at (x0, t0)

∇v = 0 and ∂tv = 0. (4.1)

Then the smooth function defined by

f := h̃(v, v)− 1

2
D̃g(v, v)

has an interior minimum at (x0, t0) within a spacetime neighorbood of (x0, t0) in
Σ× (0, t0]. By maximum principle, we have at (x0, t0)

∇f = 0, ∆f ≥ 0 and ∂tf ≤ 0. (4.2)

We will show that this gives rise to a contradiction, provided that D̃ is sufficiently
large depending only on S.

Claim. H ≥ 11D̃/6 for all t ∈ [0, T ).

Proof of Claim. By (3.13), we have hij ≥ 11
12D̃gij at t = 0 provided that D̃

is sufficiently large depending on S. Therefore, H ≥ 11
6 D̃ at t = 0 and the claim

follows from Corollary 2.7. Note that Cauchy-Schwarz inequality implies that for all
t ∈ [0, T ), we have whenever D̃ ≥ 1,

|A|2 ≥ 1

2
H2 ≥ 121

72
D̃2 ≥ 1.

On the other hand, by Lemma 2.5 (i) and (3.9), we have at (x0, t0) that

(∂t −∆)f ≥ |A|2h̃(v, v) +O(|A|2) > 0

provided that h̃(v, v) = D̃/2 is sufficiently large depending on S. This contradicts
(4.2).
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Finally, we show that x0 cannot be a boundary point of Σ either. Suppose x0 ∈
∂Σ. Since Ã decomposes at the boundary by Lemma 3.9. We must have either v = ∂1
or v = ∂2 where ∂1, ∂2 is the orthonormal frame (with respect to Σt0) from the Fermi
coordinates at x0 ∈ ∂Σ. Extend v to a spacetime neighborhood of (x0, t0) (note that
∂Σt0 is convex so any point close to x0 can be connected to x0 by a radial geodesic)
and define f as before. To arrive at a contradiction, it suffices to show ∂1f ≥ 0 at
(x0, t0) when D̃ > 0 is sufficiently large, depending only on S. If ∂1f > 0, then x0

cannot be a spatial minimum. If ∂1f = 0, then the maximum principle can be applied
to give the same contradiction as in the interior case.

Suppose v = ∂1 at (x0, t0). Then h̃22 ≥ h̃11 = D̃/2 at (x0, t0). By Lemma 3.9,
(3.5) and (1.2), we have at (x0, t0) that

∂1f = ∇1h̃11 =2hS
22H + (hS

νν − 3hS
22)h11 +∇S

ν h
S
22

≥(hS
νν + hS

22)h11 +∇S
ν h

S
22

=
1

2
HSD̃ +∇S

ν h
S
22 ≥ 0

provided that D̃ ≥ 2L1.
Suppose now v = ∂2 at (x0, t0). Then h̃11 ≥ h̃22 = D̃/2 at (x0, t0). By the claim

above, Lemma 3.9, (3.6) and (1.2), we have at (x0, t0) that

∂1f = ∇1h̃22 =hS
22H + (hS

νν − 3hS
22)h22 −∇S

ν h
S
22

≥11

6
hS
22D̃ +

1

2
(hS

νν − 3hS
22)D̃ −∇S

ν h
S
22

≥1

3
HSD̃ −∇S

ν h
S
22 ≥ 0

provided that D̃ ≥ 3L1. This finishes the proof of Theorem 4.1.

Note that dim Σ = 2 is crucially used in the proof above so that one can extract a
term involvingH , on which we have a good lower bound. Using (3.13), we immediately
have the following corollary.

Corollary 4.2. There exists a constant D0 = D0(S) > 0 such that whenever
{Σt}t∈[0,T ) is a solution to the free-boundary mean curvature flow with

hij ≥ Dgij at t = 0

for some constant D ≥ D0, then we have

hij >
1

3
Dgij for all t ∈ [0, T ).

Remark 4.3. It is easy to see that one can indeed choose D = D0 = 0 in case S
is totally umbilic. This recovers the two-dimensional case of [32, Theorem 4.4] which
says that convexity is preserved throughout the flow for umbilic barrier surface S.
In the non-umbilic case, we have shown that a convexity lower bound may not be
preserved (c.f. [32, Proposition 4.5]) but will at most decrease by a factor of 1/3.

From now on, we will assume that the hypothesis in Corollary 4.2 is satisfied so
the surfaces Σt are convex for all t ∈ [0, T ). In particular, we always have |A| ≤ H .
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5. Preservation of curvature pinching. In this section, we want to derive
another convexity pinching estimate, which is required to show that the rescaled flow
converges to a shrinking half-sphere.

As already observed in [32], it is impossible to achieve the optimal estimate

ǫHgij ≤ hij ≤ κHgij

for 0 < ǫ ≤ 1/2 < κ < 1 as in [17]. A counterexample is given by Σ0 which is
a spherical cap intersecting the unit sphere S = S

2 orthogonally but Σt will not
remain spherical for any t > 0 (this example also shows that the flow is not C3 up to
t = 0). However, we will establish a weaker pinching estimate in Corollary 5.2 which
is sufficient for our purpose.

We first generalize [32, Theorem 4.8] to arbitrary convex barrier surfaces for the
perturbed second fundamental form.

Theorem 5.1. There exists a constant D̃1 = D̃1(S) > 0 such that whenever
{Σt}t∈[0,T ) is a solution to the free-boundary mean curvature flow with

h̃ij ≥ ǫ|Ã|gij + D̃gij at t = 0

for some constants D̃ ≥ D̃1 and ǫ ∈ (0, 1/100), then we have

h̃ij >
1

2
(ǫ|Ã|gij + D̃gij) for all t ∈ [0, T ).

Proof. We argue by contradiction as in Theorem 4.1. Suppose there is a first time
t0 ∈ (0, T ) and a point x0 ∈ Σ such that

h̃(v, v) =
1

2
(ǫ|Ã|+ D̃)

for some unit tangent vector v ∈ Tx0
Σt0 . As before, we extend the vector v locally

satisfying (4.1) and consider the function

f := h̃(v, v) − 1

2
(ǫ|Ã|+ D̃)g(v, v).

By the claim in the proof of Theorem 4.1, we have H ≥ 11D̃/6 for all t ∈ [0, T ) and
1 = O(|A|2). Moreover, we can assume |Ã| ≥ 1 by (3.13).

If x0 is an interior point of Σ, by Lemma 2.5 (i), (3.9) and Corollary 3.13, we
have at (x0, t0) that

(∂t −∆)f ≥ |A|2
(

h̃(v, v) − 1

2
ǫ|Ã|

)

+O(|A|2) > 0

provided that D̃ is sufficiently large. Hence x0 cannot be an interior point of Σ.

Suppose now x0 ∈ ∂Σ and v = ∂1. Then h̃22 ≥ h̃11 = 1
2 (ǫ|Ã| + D̃) at (x0, t0).

By Lemma 3.9, (3.5), (1.2), (3.8) and Cauchy-Schwarz inequality, we have at (x0, t0)
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that (recall that ǫ < 1
100 )

∂1f =∇1h̃11 −
1

2
ǫN(|Ã|)

≥2hS
22H + (hS

νν − 3hS
22)h11 +∇S

ν h
S
22

− ǫ

2

(

3hS
22

H

|A|h11 + (hS
νν − 2hS

22)|Ã|+
√
2|∇S

ν h
S
22|
)

≥
(

hS
νν +

(

1− 3ǫ√
2

)

hS
22

)

h11 −
ǫ

2
|Ã|(hS

νν − 2hS
22)− 2|∇S

ν h
S
22|

≥
(

hS
νν +

(

1− 3ǫ√
2

)

hS
22

)

D̃

2
− 2|∇S

ν h
S
22|

≥1

4
HSD̃ − 2|∇S

ν h
S
22| ≥ 0

provided that D̃ ≥ 8L1.

Suppose x0 ∈ ∂Σ and v = ∂2. Then h̃11 ≥ h̃22 = 1
2 (ǫ|Ã| + D̃) at (x0, t0). By

Lemma 3.9, (3.6), (1.2), (3.8) and Cauchy-Schwarz inequality, we have at (x0, t0) that
(recall that |A| ≤ H by convexity and ǫ < 1

100 )

∂1f =∇1h̃22 −
1

2
ǫN(|Ã|)

≥hS
22H + (hS

νν − 3hS
22)h22 −∇S

ν h
S
22

− ǫ

2

(

3hS
22

H

|A|h11 + (hS
νν − 2hS

22)|Ã|+
√
2|∇S

ν h
S
22|
)

≥hS
22

(

H − 3
√
2

2
ǫh11

)

− ǫ

2
|Ã|hS

22 + (hS
νν − 3hS

22)
D̃

2
− 2|∇S

νh
S
22|

≥hS
22

(

1− 3
√
2

2
ǫ− 1

2
ǫ

)

H + (hS
νν − 3hS

22)
D̃

2
− 2|∇S

ν h
S
22|

≥hS
22(1− 3ǫ)

11D̃

6
+ (hS

νν − 3hS
22)

D̃

2
− 2|∇S

ν h
S
22|

≥ 1

200
HSD̃ − 2|∇S

ν h
S
22| ≥ 0

provided that D̃ ≥ 400L1. This contradicts the maximum principle.

We see again that it is important to have dim Σ = 2 so that the positive term
involving H arises. Using (3.13) and the Cauchy-Schwarz inequality H√

2
≤ |A|, we

immediately have the following corollary.

Corollary 5.2. There exists a constant D1 = D1(S) > 0 such that whenever
{Σt}t∈[0,T ) is a solution to the free-boundary mean curvature flow with

hij ≥ Dgij at t = 0

for some constant D ≥ D1 and

hij ≥ ǫ|A|gij at t = 0
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for some ǫ ∈ (0, 1/100), then we have

hij >
ǫ

2
√
2
Hgij for all t ∈ [0, T ).

6. Pinching estimate for the traceless second fundamental form. In this
section, we use the Stampacchia iteration scheme to prove a pinching estimate for the
traceless second fundamental form. This is the key ingredient to show that Σt evolves
to half of a “round” point. As in the previous sections, we need to first work with
the perturbed second fundamental form Ã. The corresponding estimates for A then
follow.

According to Corollary 4.2 and 5.2, assuming that Σ0 is sufficiently convex, then
Σt remains convex for all time and there exists a constant ǫ = ǫ(Σ0) > 0 such that

hij ≥ ǫHgij for all t ∈ [0, T ). (6.1)

Similarly, by Theorem 5.1, we can also assume that there exists a constant ǫ̃ =
ǫ̃(Σ0, S) > 0 such that

h̃ij ≥ ǫ̃H̃gij for all t ∈ [0, T ). (6.2)

We shall always assume the two inequalities above in the rest of the paper.
First, we recall the following general result in [6, Theorem 3.1]. Note that we allow

an extra term |Σt| and
∫

Σt
fp (with coefficient depending possibly on β) in (6.4) in

contrast to the “Poincaré-like” inequality in [6]. It is easy to see that the arguments
still go through since this additional term can be absorbed into the corresponding
terms in the “Evolution-like” inequality (6.5). Moreover, the constants depending on
S in [6] actually only depend on the constants K,L1, L2 in (1.1) and (1.2).

Theorem 6.1. Let {Σt}t∈[0,T ) is a solution to the free-boundary mean curvature
flow with T < ∞. Let fα ≥ 0 be some function on Σt, depending on some parameters
α = α(S,Σ0, T ). Let G̃ ≥ 0 and H̃ > 0 be functions on Σt such that

H = O(H̃), ∇H̃ = O(G̃). (6.3)

Let f = fαH̃
σ, and fk = (f − k)+, where σ > 0 will be small and k > 0 large. Write

A(k) = {f ≥ k} and A(k, t) = A(k) ∩ Σt.
Suppose f satisfies the following inequalities: there exist positive constants c =

c(S,Σ0, T, α) and C = C(S,Σ0, T, α, p, σ, β), such that for any p > p0(α, c), 0 < σ <
1/2, k > 0 and β > 0,

1

c

∫

Σt

fpH̃2 ≤p(1 + β−1)

∫

Σt

fp−2|∇f |2 + (1 + βp)

∫

Σt

G̃2

H̃2−σ
fp−1 (6.4)

+

∫

∂Σt

fp−1H̃σ + C

(
∫

Σt

fp + |Σt|
)

,

∂t

∫

Σt

fp
k ≤− 1

3
p2
∫

Σt

fp−2
k |∇f |2 − p

c

∫

Σt

G̃2

H̃2−σ
fp−1
k + cpσ

∫

A(k,t)

H̃2fp (6.5)

− 1

5

∫

Σt

H̃2fp
k + C

∫

A(k,t)

fp + C|A(k)| + cp

∫

∂Σt

fp−1
k H̃σ.
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Then, for p sufficiently large, and σ sufficiently small (depending on p), f is uniformly
bounded on Σ× [0, T ) with the bound depending only on S,Σ0, T, α, p and σ.

The main result of this section is the following:

Theorem 6.2. Under the assumption of (6.1) and (6.2), there exist constants
C̃0 < ∞ and σ > 0, both depending only on Σ0 and S such that for all t ∈ [0, T ), we
have the estimate

|Ã|2 − 1

2
H̃2 ≤ C̃0H̃

2−σ. (6.6)

Our idea is to apply Theorem 6.1 to show that the non-negative function

f :=
|Ã|2 − 1

2H̃
2

H̃2−σ

is uniformly bounded in Σ × [0, T ) for some suitable choice of the parameter σ > 0.
We first observe that from Lemma 3.9, 3.10 and (3.8) that along ∂Σ, we have

NH̃ = hS
ννH̃, |N |Ã|| ≤ C(K,L1)H̃, (6.7)

where we have also used |Ã| ≤ H̃ since Ã > 0 for all time. From (6.7) we obtain

Nf = O(H̃σ). (6.8)

Moreover, it follows from the definition of f that on Σ× [0, T ), we have

0 ≤ f ≤ H̃σ. (6.9)

We first show that f satisfies the “Poincaré-like” inequality (6.4) with G̃ = |∇H̃ |
such that (6.3) is clearly satisfied.

Lemma 6.3. There exist constants c = c(S,Σ0) > 0 and C = C(S,Σ0, σ, p, β) > 0
such that for any β > 0, 0 < σ < 1/2 and p > 4, we have for all t ∈ [0, T ),

1

c

∫

Σt

fpH̃2 ≤p(1 + β−1)

∫

Σt

|∇f |2fp−2 + (1 + pβ)

∫

Σt

|∇H̃ |2
H̃2−σ

fp−1

+

∫

∂Σt

fp−1H̃σ + C

(
∫

Σt

fp + |Σt|
)

.

Proof. We start by observing

|Ã|2 = |A|2 + |PΣ|2 + 2〈A,PΣ〉,

H̃2 = H2 + V 2 + 2HV

where V := Trg P
Σ. By a direct computation exactly as in [17, Lemma 5.2 and 5.4],

we obtain

∇f =
1

H̃2−σ
∇|Ã|2 +

(

σ

H̃
f − 2|Ã|2

H̃3−σ

)

∇H̃, (6.10)
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∆f =
H̃∆|Ã|2 − (2− σ)|Ã|2∆H̃

H̃3−σ
− σ

2H̃1−σ
∆H̃ − 2(2− σ)

H̃3−σ
〈∇|Ã|2,∇H̃〉 (6.11)

+ (2− σ)(3 − σ)
|Ã|2
H̃4−σ

|∇H̃ |2 + σ(1 − σ)

2H̃2−σ
|∇H̃ |2.

=
∆|Ã|2 − H̃∆H̃ − 2|∇Ã|2

H̃2−σ
− 2− σ

H̃
f∆H̃ +

2

H̃4−σ
|H̃∇Ã− Ã∇H̃|2

+
σ(1 − σ)

H̃2
f |∇H̃ |2 − 2(1− σ)

H̃
〈∇H̃,∇f〉.

Since Σt is convex for all time, we have |A| ≤ H . From the proof of Proposition 3.6
and (3.1), we obtain

∆H̃ = ∆H +O(1 + |∇H |+H2). (6.12)

To compute the term ∆|Ã|2, we apply the standard Simons’ identity to obtain a
Simons’-type identity for the perturbed second fundamental form:

1

2
∆|Ã|2 =

1

2
∆|A|2 + 1

2
∆|PΣ|2 +∆〈A,PΣ〉

=(〈hij ,∇i∇jH〉+ |∇A|2 + Z) + 〈PΣ,∆PΣ〉+ |∇PΣ|2

〈∇i∇jH +Hhiℓh
ℓ
j − |A|2hij , P

Σ
ij 〉+ 〈A,∆PΣ〉+ 2〈∇A,∇PΣ〉

=〈h̃ij ,∇i∇jH〉+ |∇Ã|2 + Z + 〈PΣ,∆PΣ〉+ 〈A,∆PΣ〉
+ 〈Hhiℓh

ℓ
j − |A|2hij , P

Σ
ij 〉

=〈h̃ij ,∇i∇jH〉+ |∇Ã|2 + Z +O(1 +H3 + |∇H |+H |∇H |)

where Z := Hhikh
k
ℓh

ℓi − |A|4 as in [17, Section 2] and we have used (3.1), the proof

of Proposition 3.6 and |A| ≤ H in the last equality. Observe that H = H̃ + O(1) by
(3.13) and ∇H = ∇H̃ + O(1 +H) by (3.14). Moreover, we can assume H̃ ≥ 1 since
Σ0 is sufficiently convex and any lower bound of H is preserved throughout the flow.
Therefore, we obtain

1

2
∆|Ã|2 = h̃ij∇i∇jH + |∇Ã|2 + Z +O(H̃3 + H̃|∇H̃ |). (6.13)

Putting (6.12) and (6.13) back into the first term in the last equation of (6.11) and
proceeding as in the proof of [17, Lemma 5.4], we have

∆f =
2

H̃2−σ
〈h̃0

ij ,∇i∇jH〉+ 2Z

H̃2−σ
+

2

H̃4−σ
|H̃∇Ã− Ã∇H̃ |2

− 2− σ

H̃
f∆H̃ +

σ(1 − σ)

H̃2
f |∇H̃ |2 − 2(1− σ)

H̃
〈∇H̃,∇f〉

+O

(

H̃1+σ +
1

H̃1−σ
|∇H̃ |

)

,

where h̃0
ij denotes the trace free part of Ã. Dropping two non-negative terms, we have

∆f ≥ 2

H̃2−σ
〈h̃0

ij ,∇i∇jH〉+ 2Z

H̃2−σ
− 2− σ

H̃
f∆H̃ − 2(1− σ)

H̃
〈∇H̃,∇f〉

+O

(

H̃1+σ +
1

H̃1−σ
|∇H̃ |

)

.
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Since Σt remains convex and (6.1) holds, we can apply the estimate in [17, Lemma
2.3] and use the bounds (3.13) to give the inequality

Z ≥ 2ǫ2H2

(

|A|2 − 1

2
H2

)

= 2ǫ2H̃2

(

|Ã|2 − 1

2
H̃2

)

+O(H̃3).

Therefore, we obtain the following differential inequality

∆f ≥ 2

H̃2−σ
〈h̃0

ij ,∇i∇jH〉+ 4ǫ2fH̃2 − 2− σ

H̃
f∆H̃ − 2(1− σ)

H̃
〈∇H̃,∇f〉 (6.14)

− C(S)

(

H̃1+σ +
1

H̃1−σ
|∇H̃ |

)

.

We will multiply the inequality by fp−1 and integrate by parts as in [17, P.248]. Since
there are new boundary terms showing up and errors terms to be absorbed, let us look
at the terms that are integrated by part more carefully. Since we have the bounds
(6.7), (6.8), (6.9), together with Peter-Paul inequality, we have for any β > 0,

∫

Σ

fp−1∆f =− (p− 1)

∫

Σ

fp−2|∇f |2 +
∫

∂Σ

fp−1N(f)

≤− (p− 1)

∫

Σ

fp−2|∇f |2 + C(S)

∫

∂Σ

fp−1H̃σ,

∫

Σ

1

H̃
fp∆H̃ =

∫

Σ

1

H̃2
fp|∇H̃ |2 − p

∫

Σ

1

H̃
fp−1〈∇H̃,∇f〉+

∫

∂Σ

1

H̃
fpN(H̃)

≤(1 + pβ)

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2 + (4β)−1p

∫

Σ

fp−2|∇f |2 + C(S)

∫

∂Σ

fp−1H̃σ,

By Cauchy-Schwarz, we have

∫

Σ

1

H̃
fp−1〈∇H̃,∇f〉 ≤ 1

2

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2 + 1

2

∫

Σ

fp−2|∇f |2.

The term involving the h̃0
ij requires more work. Recall that ‖h̃0

ij‖2 = fH̃2−σ ≤ H̃2 and

from Codazzi equation ∇ih
0
ij = 1

2∇jH . We will need the crucial fact from Lemma
3.9 that the (trace-free) perturbed second fundamental form decomposes along ∂Σ
to estimate the boundary term. Furthermore, using the uniform bound (3.14) and
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Peter-Paul inequality, we obtain for any β > 0

− 2

∫

Σ

1

H̃2−σ
fp−1〈h̃0

ij ,∇i∇jH〉

=− 2(2− σ)

∫

Σ

1

H̃3−σ
fp−1〈h̃0

ij ,∇iH̃∇jH〉+ 2(p− 1)

∫

Σ

1

H̃2−σ
fp−2〈h̃0

ij ,∇if∇jH〉

+

∫

Σ

1

H̃2−σ
fp−1|∇H |2 +

∫

Σ

fp−1O

( |∇H |
H̃1−σ

)

− 2

∫

∂Σ

1

H̃2−σ
fp−1h̃0

11N(H)

≤4

∫

Σ

1

H̃2− σ
2

fp− 1

2 |∇H̃ ||∇H |+ 2p

∫

Σ

1

H̃1− σ
2

fp− 3

2 |∇f ||∇H |

+

∫

Σ

1

H̃2−σ
fp−1|∇H |2 +

∫

Σ

fp−1O

( |∇H |
H̃1−σ

)

+ C(S)

∫

∂Σ

fp−1H̃σ

≤4

∫

Σ

1

H̃2− σ
2

fp− 1

2 |∇H̃ |2 + 2p

∫

Σ

1

H̃1−σ
2

fp− 3

2 |∇f ||∇H |

+

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2 +

∫

Σ

fp−1O

( |∇H |
H̃1−σ

)

+ C(S)

∫

∂Σ

fp−1H̃σ

≤β−1p

∫

Σ

fp−2|∇f |2 + (βp+ 5)

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2

+ (βp+ 1)

∫

Σ

fp−1O

(

H̃σ +
|∇H̃ |
H̃1−σ

)

+ C(S)

∫

∂Σ

fp−1H̃σ

where we have used the estimates |∇H | = |∇H̃ | + O(H̃) and |∇H |2 = |∇H̃ |2 +
O(H̃ |∇H̃ |+ H̃2). Putting all of these estimates back into (6.14), since p ≥ 2, we have
for any β > 0,

4ǫ2
∫

Σ

fpH̃2 ≤2β−1p

∫

Σ

fp−2|∇f |2 + (3βp+ 8)

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2 (6.15)

+ (βp+ 2)

∫

Σ

fp−1O

(

H̃1+σ +
|∇H̃ |
H̃1−σ

)

+ C(S)

∫

∂Σ

fp−1H̃σ.

It remains to control the error term. Note that by [6, Remark 3.2], for any arbitrary
function g ≥ 0 on Σ = Σt. If r ∈ (0, 2) and q ∈ (0, p) with rp/q < 2, then for any
µ > 0, we have

∫

Σ

gqH̃r ≤ µ−1

∫

Σ

gpH̃2 + C(µ, r, p, q)

∫

Σ

gp + |Σt|. (6.16)

Therefore, we have for any µ > 0, when p > 2/(1− σ),

∫

Σ

fp−1H̃1+σ ≤ µ−1

∫

Σ

fpH̃2 + C(µ, σ, p)

∫

Σ

fp + |Σt|.

On the other hand, by Cauchy-Schwarz

∫

Σ

1

H̃1−σ
fp−1|∇H̃ | ≤ 1

2

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2 + 1

2

∫

Σ

fp−1H̃σ.
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We can then estimate the error term to be

(βp+ 2)

∫

Σ

fp−1O

(

H̃1+σ +
1

H̃1−σ
|∇H̃ |

)

≤C(S, β, p)µ−1

∫

Σ

fpH̃2 + C(S)(βp+ 2)

∫

Σ

1

H̃2−σ
fp−1|∇H̃ |2

+ C(S, µ, σ, p, β)

∫

Σ

fp + C(S, p, β)|Σt|.

If we choose µ > 0 sufficiently large, depending only on S, β, ǫ and p, then we can
absorb the first term to the left hand side of (6.15). This finishes the proof.

Next, we want to establish an “Evolution-like” inequality (6.5) for f . Before that,
we prove a useful lemma in the same spirit as [17, Lemma 2.3 (ii)]. Note that we have
a worse error term of order H4 as opposed to the one of order H2 in [17, Lemma 2.3
(ii)]. Nonetheless, this is still sufficient for our later purpose.

Lemma 6.4. Under the assumption (6.2) and H̃ > 0 for all time, we have

|H̃∇Ã− Ã∇H̃ |2 ≥ 1

4
ǫ̃2H̃2|∇H̃ |2 − C(S)

4ǫ̃2
H̃4.

Proof. Decomposing into symmetric and skew-symmetric parts with respect to i
and k, we have

∇ih̃kl · H̃ −∇iH̃ · h̃kl =
1

2
Ẽikl +

1

2
F̃ikl,

where

Ẽikl =(∇ih̃kl +∇kh̃il) · H̃ − (∇iH̃ · h̃kl +∇kH̃ · h̃il),

F̃ikl =(∇ih̃kl −∇kh̃il) · H̃ − (∇iH̃ · h̃kl −∇kH̃ · h̃il).

Keeping only the skew-symmetric component F̃ikl and we have

|∇ih̃kl · H̃ −∇iH̃ · h̃kl|2 ≥1

4
|(∇ih̃kl −∇kh̃il) · H̃ − (∇iH̃ · h̃kl −∇kH̃ · h̃il)|2

≥1

4
|∇iH̃ · h̃kl −∇kH̃ · h̃il|2 −

1

2
H̃ |∇H̃ ||Ã||∇iP

Σ
kl −∇kP

Σ
il |.

Arguing as in [17, Lemma 2.3(ii)] and using (6.2), we have

1

4
|∇iH̃ · h̃kl −∇kH̃ · h̃il|2 ≥ 1

2
ǫ̃2H̃2|∇H̃ |2.

To estimate the second term, we have the following perturbed Codazzi equation from
the proof of Proposition 3.6,

∇ih̃kl −∇kh̃il = ∇iP
Σ
kl −∇kP

Σ
il = O(H̃).

Hence, by |Ã| ≤ H̃ and Peter-Paul inequality, we have

1

2
H̃ |∇H̃ ||Ã||∇iP

Σ
kl −∇kP

Σ
il | ≤

C(S)

2
H̃3|∇H̃ | ≤ 1

4
ǫ̃2H̃2|∇H̃ |2 + CS

4ǫ̃2
H̃4.
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Plugging them back gives the desired inequality.

Now, we are ready to prove an “Evolution-like” inequality (6.5) for f .

Lemma 6.5. There exists a constant C = C(S,Σ0, p, σ) > 0 such that

d

dt

∫

Σt

fp
k ≤− 1

3
p2
∫

Σt

fp−2
k |∇f |2 − pǫ̃2

4

∫

Σt

|∇H̃ |2
H̃2−σ

fp−1
k + 2σp

∫

A(k,t)

H̃2fp

−
∫

Σ

H̃2fp
k + C(S)p

∫

∂Σt

fp−1
k H̃σ + C

(

∫

A(k,t)

fp + |A(k, t)|
)

where fk = (f − k)+ and A(k, t) = {f ≥ k} ∩ Σt.

Proof. We first have to derive a good evolution inequality for f . To this end, we
compute as in [17, Lemma 5.2] using (3.10), (3.11) and (3.13),

∂tf =
H̃∆|Ã|2 − (2 − σ)|Ã|2∆H̃

H̃3−σ
− σ

2

∆H̃

H̃1−σ
− 2

H̃2−σ
|∇Ã|2 + σ|Ã|2f +O(H̃1+σ).

Combining this with (6.11), and using Lemma 6.4, we obtain the inequality

(∂t −∆)f ≤− 2

H̃4−σ
|H̃∇Ã− Ã∇H̃ |2 + σ|Ã|2f +

2(1− σ)

H̃
〈∇H̃,∇f〉+O(H̃1+σ)

≤2(1− σ)

H̃
〈∇H̃,∇f〉 − ǫ̃2

2

1

H̃2−σ
|∇H̃ |2 + σ|Ã|2f + ǫ̃−2O

(

H̃1+σ
)

.

Multiply the inequality above by pfp−1
k and then integrate by parts as in [17,

Lemma 5.5, 5.7], we have

∂t

∫

Σ

fp
k +

p(p− 1)

2

∫

A(k,t)

fp−1
k |∇f |2 + p

4
ǫ̃2
∫

Σ

1

H̃2−σ
fp−1
k |∇H̃ |2 +

∫

Σ

H2fp
k

≤σp

∫

A(k,t)

H̃2fp−1
k f + ǫ̃−2p

∫

A(k,t)

fp−1
k O

(

H̃1+σ
)

+ p

∫

∂Σ

fp−1
k N(f).

Note that by (3.13) and (6.8), we have

−
∫

Σ

H2fp
k ≤−

∫

Σ

H̃2fp
k +

∫

A(k,t)

fp
kO(H̃)

≤−
∫

Σ

H̃2fp
k +

∫

A(k,t)

fp−1
k O

(

H̃1+σ
)

,

and

p

∫

∂Σ

fp−1
k N(f) ≤ C(S)p

∫

∂Σ

fp−1
k H̃σ.

Finally, it remains to estimate the error term. First of all, applying Young’s
inequality (6.16) we get

C(S)(1 + ǫ̃−2p)

∫

A(k,t)

fp−1
k H̃1+σ ≤σp

∫

A(k,t)

fp
k H̃

2

+ C(S, ǫ̃, σ, p)

(

∫

A(k,t)

fp
k + |A(k, t)|

)

.
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We now apply all the results above to prove Theorem 6.2.

Proof of Theorem 6.2. Lemma 6.3 and 6.5 imply that we can apply Theorem 6.1
to the function f so that for some fixed large p (depending on S and Σ0) and small σ
(depending on p), there exists a constant C̃0 = C̃0(S,Σ0) > 0 such that on the entire
spacetime Σ× [0, T ), we have

|Ã|2 − 1
2H̃

2

H̃2−σ
≤ C̃0 < ∞.

Using (6.6) together with the bound (3.13) and Peter-Paul inequality, we have for
any η > 0

|A|2 − 1

2
H2 ≤|Ã|2 − 1

2
H̃2 + C(S)H̃

≤C̃0H̃
2−σ + C(S)H̃

≤η

2
H̃2 + C(S, η,Σ0) + C(S)H̃

≤η

2
H2 + C(S, η,Σ0) + C(S)H

≤ηH2 + C(S, η,Σ0).

Therefore, we have the following corollary.

Corollary 6.6. For any η > 0, we have

|A|2 − 1

2
H2 ≤ ηH2 + C(S, η,Σ0).

7. Gradient estimate for the mean curvature. In this section, we derive a
gradient estimate for the mean curvature, which can be used to compare the mean
curvature at different points. Together with all the previous parts, our main result
Theorem 1.1 then follows from standard arguments as in [17]. Note that we only need
the gradient estimate below with η > 0 small.

Theorem 7.1. Under the assumption of (6.1) and (6.2), there exists η0 =
η0(S) > 0 such that for each 0 < η < η0, there exists a constant C = C(S, η,Σ0)
such that

|∇H |2 ≤ ηH4 + C(S, η,Σ0)

holds on Σ× [0, T ).

Let η > 0 be fixed. WLOG, we assume η < min{(4K)−1, 1}. As in [17] and [6],
we consider the following test functions defined on Σ× [0, T ) by

g :=
|∇H − hS

ννHνTS |2
H

+ bH
(

|Ã|2 − 1

2
H̃2
)

+ ba|Ã|2 − ηe
1

η
ρH3 + c

where a, b, c are positive constants to be determined later. Here, hS is the second
fundamental form of S extended to R

3 as in Section 2.1, and νTS is the tangential
component (with respect to Σt) of the extended unit normal νS . Moreover, ρ is a
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function depending on the parameter η defined by (recall the signed distance function
d to the barrier S and the radial cutoff function χ from Section 2.1)

ρ(x) := d(x)χ

( |d(x)|
η

)

.

From this definition and a similar calculation as in Section 2.1, we know that ρ is
supported in the tubular neighborhood S2η and satisfies the bounds (using the bounds
in Section 2.1)

‖ρ‖C0(R3) ≤ 2η, ‖Dρ‖C0(R3) ≤ 5 and ‖D2ρ‖C0(R3) ≤
15

η
. (7.1)

Restricting the function ρ to the evolving surface Σ = Σt and using the formula
∆ρ = trΣD

2ρ−HDνρ, we have the estimate

|(∂t −∆)ρ| ≤ 30

η
. (7.2)

Furthermore, we have Nρ ≡ 1 along ∂Σ. Using these, if we let ζ := ηe
1

η
ρ, then along

∂Σ we have

ζ ≡ η and Nζ ≡ 1. (7.3)

Furthermore, from (7.1) and (7.2), we have on Σ the following estimates

ηe−2 ≤ ζ ≤ ηe2, |∇ζ| ≤ 5e2 and |(∂t −∆)ζ| ≤ 55e2

η
. (7.4)

These properties of ζ will become crucial in the proof of Theorem 7.1.
For the proof of Theorem 7.1 we begin with computing the boundary derivatives

of the terms appearing in g.

Lemma 7.2. Along ∂Σ, we have for all t > 0,

N(|∇H − hS
ννHνTS |2) =2(hS

νν − hS
22)|∇H − hS

ννHV |2 (7.5)

+ 2(∇S
2 h

S
νν + 2h22h

S
2ν)H(∂2H),

N

(

|Ã|2 − 1

2
H̃2

)

=2(hS
νν − 4hS

22)

(

|Ã|2 − 1

2
H̃2

)

− 2hS
22h11(h22 − h11) (7.6)

+ 2(∇S
ν h

S
22)(h11 − h22).

Proof. For simplicity, we denote V := νTS . Using Fermi coordinates near ∂Σ and
writing V = V1∂1 + V2∂2, we have

|∇H − hS
ννHV |2 = (∂1H − hS

ννHV1)
2 + g22(∂2H − hS

ννHV2)
2

and |∇H − hS
ννHV |2 = (∂2H)2 at ∂Σ since V1 = 1, V2 = 0, and ∂1H = hS

ννH by
Lemma 2.6. Moreover, along ∂Σ we have ∂1g

22 = −∂1g22 = −2hS
22 and ∂1V2 = 0.

Therefore, putting all these together, we have

1

2
∂1|∇H − hS

ννHV |2 =− hS
22(∂2H)2 + (∂2H)(∂1∂2H)

=(hS
νν − hS

22)(∂2H)2 +H∂2H∂2h
S
νν .
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We then have (7.5), noting that ∂2h
S
νν = ∇S

2 h
S
νν + 2h22h

S
2ν .

For (7.6), we compute using (3.7) and Lemma 3.9, 3.10 that

1

2
N

(

|Ã|2 − 1

2
H̃2

)

=hS
νν

(

|Ã|2 − 1

2
H̃2

)

+ hS
22(3Hh11 − 2|Ã|2 − 2h2

11)

+ (∇S
ν h

S
22)(h11 − h22).

Along ∂Σ, we have |Ã|2 = h2
11 + h2

22 and H = h11 + h22 by Lemma 3.9. Therefore,

3Hh11 − 2|Ã|2 − 2h2
11 =− 2(h22 − h11)

2 − h11(h22 − h11) (7.7)

=− 4

(

|Ã|2 − 1

2
H̃2

)

− h11(h22 − h11)

noting that |Ã|2 − 1
2H̃

2 = 1
2 (h22 − h11)

2.

Next we have to compute the evolution equations of the terms in g. We first
establish a lemma.

Lemma 7.3. We have the following evolution equation:

(∂t −∆)hS
νν = 2|A|2hS

νν − 4hpkDph
S
kν − 2hpkhpℓh

S
kℓ −D2

p,ph
S
νν .

In particular, we have the bounds ∇hS
νν = O(1 + |A|) and (∂t −∆)hS

νν = O(1 + |A|2).
Proof. The calculation is similar to Proposition 3.6, and it is even simpler in this

case since hS
νν is just a function. Choose any orthonormal geodesic coordinates ∂1, ∂2

centered at a point x ∈ Σ. We have

∇ph
S
νν = Dph

S
νν + 2hpkh

S
kν .

Differentiating again, using Codazzi equation, we have

∇q(Dph
S
νν) = D2

q,ph
S
νν − hqpDνh

S
νν + 2hqkDph

S
kν ,

∇q(hpkh
S
kν) = (∇khpq)h

S
kν + hpk(Dqh

S
kν − hqkh

S
νν + hqℓh

S
kℓ).

Adding up the terms and summing over p, q, we have

∆hS
νν =− 2|A|2hS

νν + 2(∇kH)hS
kν −HDνh

S
νν + 4hpkDph

S
kν

+ 2hpkhpℓh
S
kℓ +D2

p,ph
S
νν .

On the other hand, computing the time derivative gives

∂th
S
νν = 2(∇kH)hS

kν −HDνh
S
νν .

Combining the last two equations yield the desired formula.

Using the lemma above, we derive the following bounds on the evolution of the
first term in g. Recall that we always have H ≥ 1 and |A|2 ≤ H2.

Lemma 7.4. We have the following evolution equations:

(∂t −∆)|∇H − hS
ννHνTS |2 ≤ C(S)H2|∇A|2 + C(S)H4 − 2|∇(∇H − hS

ννHνTS )|2,
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(∂t −∆)
|∇H − hS

ννHνTS |2
H

≤ C(S)H |∇A|2 + C(S)H3.

Proof. We write V = νTS as before. From [6, Lemma 9.6], we have

∇V = O(1), ∆V = O(H), (7.8)

∂tVi = −HDνVi −HhijVj − ∂iH〈V, ν〉. (7.9)

Direct computation as in [6, Lemma 9.6] together with Lemma 7.3 gives

1

2
∆|∇H − hS

ννHV |2 =|∇(∇H − hS
ννHV )|2 + (∇iH − hS

ννHVi)·
(

∇i∆H +∇jH(Hhij − hikhkj)

− (∆H)hS
ννVi − (∆hS

νν)HVi +O(H2 +H |∇H |)
)

and

1

2
∂t|∇H − hS

ννHV |2 =(∇iH − hS
ννHVi) ·

(

Hhij∇jH +∇i(∆H + |A|2H)

− (∆H + |A|2H)hS
ννVi − (∂th

S
νν)HVi +O(H2 + |∇H |)

)

.

Combining the two equations above, we obtain

(∂t −∆)|∇H − hS
ννHV |2 =− 2|∇(∇H − hS

ννHνTS )|2 + 2(∇iH − hS
ννHVi)·

(

∇i(|A|2H)− |A|2HhS
ννVi + hikhkj∇jH

−HVi(∂t −∆)hS
νν +O(H2 +H |∇H |)

)

from which the first estimate follows. The first estimate then implies the second one
as in [6, Lemma 9.6].

Lemma 7.5. We have the following evolution equations:

(∂t −∆)H3 ≥ −6H |∇H |2 + 3

2
H5,

(∂t −∆)

(

H

(

|Ã|2 − 1

2
H̃2

))

≤ −1

3
H |∇A|2 + C(S)|∇A|2 + C(S,Σ0)H

5−σ.

Proof. The first inequality follows from [17, Lemma 6.5] and Cauchy-Schwarz
inequality |A|2 ≥ H2/2. From Lemma 2.5(v), (3.12), (3.13), (3.14) and the same
calculations as in [17, Lemma 6.5], we have

(∂t −∆)

(

H

(

|Ã|2 − 1

2
H̃2

))

≤3|A|2H
(

|Ã|2 − 1

2
H̃2

)

− 2H

(

|∇Ã|2 − 1

2
|∇H̃ |2

)

+ 4|∇H ||∇Ã|
√

|Ã|2 − 1

2
H̃2 +O(H4)

≤3|A|2H
(

|Ã|2 − 1

2
H̃2

)

− 2H

(

|∇A|2 − 1

2
|∇H |2

)

+ 4|∇H ||∇Ã|
√

|Ã|2 − 1

2
H̃2 +O(|∇A|2 +H4).
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Applying the pinching estimate of Theorem 6.2, [17, Lemma 2.2 (ii)] and using (3.13),
(3.14) again, together with Peter-Paul inequality, we have

(∂t −∆)

(

H

(

|Ã|2 − 1

2
H̃2

))

≤C(S, C̃0)|A|2H3−σ − 2

3
H |∇A|2

+
1

3
H |∇A|2 + C(S)|∇A|2 + C(S, C̃0)H

4

≤− 1

3
H |∇A|2 + C(S)|∇A|2 + C(S,Σ0)H

5−σ,

which proves our desired inequality.

We are now ready to give the proof of Theorem 7.1. Recall that we always have
H ≥ 1 and |A|2 ≤ H2.

Proof. [Proof of Theorem 7.1] The proof is again a maximum principle argument.
We first analyse the boundary derivatives of g term by term. By (7.5), using triangle
inequality and Peter-Paul inequality, we have

N

(

|∇H − h
S
ννHν

T

S |
2

H

)

≤C(S)
|∇H − h

S
ννHν

T

S |
2

H
+ C(S)H |∇H |

≤C(S)
|∇H − h

S
ννHν

T

S |
2

H
+ C(S)H |∇H − h

S

ννHν
T

S |+C(S)H2

≤C(S)
|∇H − h

S
ννHν

T

S |
2

H
+

1

4
H

3 +C(S).

Next, using (7.6), Lemma 2.6, Theorem 6.2 and Peter-Paul inequality, we have

N

(

bH
(

|Ã|2 − 1

2
H̃2
)

)

≤bC(S)H
(

|Ã|2 − 1

2
H̃2
)

+ bC(S)H2

√

(

|Ã|2 − 1

2
H̃2
)

≤bC(S,Σ0)H
3−σ

≤1

4
H3 + C(S,Σ0, b).

Next, using (3.7) and (7.3) (and that hS ≥ 0), together with Peter-Paul, we have

N(ba|Ã|2 − ζH3) ≤ baC(S)|Ã|2 −H3 ≤ −3

4
H3 + baC(S).

Combining all the above estimates, we obtain

Ng ≤C(S)
|∇H − hS

ννHνTS |2
H

− 1

4
H3 + C(S,Σ0, a, b)

≤C(S)g +

(

ηC(S)− 1

4

)

H3 − cC(S) + C(S,Σ0, a, b).

Hence, by choosing η = η(S) > 0 sufficiently small and c = c(S,Σ0, a, b) > 0 suffi-
ciently large, we then have Ng ≤ C(S)g. This implies for d = d(S) > 0 sufficiently
large, we have

N(e−dρg) ≤ −dg + C(S)g < 0.

Hence e−dρg cannot attain a maximum on the boundary ∂Σ for these choices of the
constants c and d.
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Now we proceed to study the evolution equation of g term by term. First, from
Lemma 7.4 we have

(∂t −∆)
|∇H − hS

ννHνTS |2
H

≤ C(S)H |∇A|2 + C(S)H3.

Next, Lemma 7.5 implies

(∂t −∆)

(

bH

(

|Ã|2 − 1

2
H̃2

))

≤ − b

3
H |∇A|2 + bC(S)|∇A|2 + bC(S,Σ0)H

5−σ.

On the other hand, (3.11), (3.13) and (3.14) imply

(∂t −∆)(ba|Ã|2) ≤− 2ba|∇Ã|2 + 2ba|A|2|Ã|2 + baC(S)H2

≤− 2ba|∇A|2 + baC(S)H |∇A|+ baC(S)H4

≤− ba|∇A|2 + baC(S)H4,

where we have used Cauchy-Schwarz in the last inequality. Using Lemma 2.5(v), (7.4)
and Lemma 7.5, we have

(∂t −∆)(−ζH3) ≤ζ

(

6H |∇A|2 − 3

2
H5

)

+
55e2

η
H3 + 30e2H2|∇H |

≤ − 3e−2

2
ηH5 + 6e2(η + 5)H |∇A|2 + 55e2

η
H3.

Combining all the above inequalities, we obtain (recall that η < 1)

(∂t −∆)g ≤
(

− b

3
+ C(S)

)

H |∇A|2 + b(C(S)− a)|∇A|2

− 3e−2

2
ηH5 + C(S,Σ0, a, b, η)H

5−σ.

By choosing a = a(S) and b = b(S) sufficiently large, using Peter-Paul inequality, we
arrive at

(∂t −∆)g ≤ C(S,Σ0, a, b, η). (7.10)

We now consider the function ϕ := e−dρ−ftg. Note that ϕ cannot attain a boundary
maximum. Moreover, we compute using (7.10), (7.1) and (7.2) that

(∂t −∆)ϕ =− fϕ+ e−dρ−ft(∂t −∆)g + e−ftg(∂t −∆)(e−dρ)− 2e−ft∇e−dρ · ∇g

≤− fϕ+ C(S,Σ0, a, b, d, η) + C(d, η)ϕ − 2e−ft∇e−dρ · ∇g.

Suppose we are looking at a spatial interior maximum of ϕ. Then we have ∇ϕ = 0 at
this point, which implies ∇g = dg∇ρ, hence the gradient term above can be estimated
using (7.1)

−2e−ft∇e−dρ · ∇g ≤ C(d)ϕ.

Putting this back to the inequality above, we have

(∂t −∆)ϕ ≤ (−f + C(d, η))ϕ + C(S,Σ0, a, b, d, η).
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By choosing f = f(d, η) > 0 sufficiently large, we obtain that the maximum of ϕ can
at most increase linearly with time. Finally, observe that the constants a, b, d, f only
depend on S, η has to be small depending only on S and that c = c(S,Σ0, a, b) large
enough. Moreover, T = T (S,Σ0). Therefore, we have

ϕ(x, t) ≤ C(S,Σ0, η)

holds on Σ× [0, T ). Since T < ∞ and ρ is bounded by (7.1), we deduce that

g(x, t) ≤ C(S,Σ0, η)

holds on Σ× [0, T ). Dropping the nonnegative terms in g, we have

|∇H − hS
ννHνTS |2 ≤ ζH4 + C(S,Σ0, η)H.

Thus the result follows from the bound on ζ in (7.4), the triangle inequality and
Peter-Paul inequality.
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