ASIAN J. MATH. (© 2023 International Press
Vol. 27, No. 2, pp. 221-260, April 2023 003

MOMENT MAP FOR COUPLED EQUATIONS OF KAHLER FORMS
AND CURVATURE*

KING LEUNG LEEf

Abstract. In this paper we introduce two new systems of equations in K&hler geometry: The
coupled p equation and the generalized coupled cscK equation. We motivate the equations from the
moment map pictures, prove the uniqueness of solutions and find out the obstructions to the solutions
for the second equation. We also point out the connections between the coupled cscK equation, the
coupled Kéahler Yang-Mills equations and the deformed Hermitian Yang-Mills equation.

Moreover, using this moment map, we can show the Mabuchi functional for the generalized
coupled cscK equation, and a special case of the coupled Kahler Yang-Mills equations and the
deformed Hermitian Yang-Mills equation are convex along the smooth geodesic, which is different
from the one using the moment map picture from the gauge group. In our case, the geodesic is given
by the natural metric on the product of smooth Kéahler potential K(X,wp) X - -+ x K(X, wg).
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1. Introduction.

1.1. Motivation. Over the years, many important equations in complex geom-
etry have been given moment map interpretations. A few examples of equations with
moment map interpretations are the cscK equation ([Don00] and [Fuj92]), the coupled
Kaéhler Yang-Mills equation ([ACGFGP13]) and the coupled constant scalar curvature
([DP20]). In this paper, we combine the moment maps for the latter two together
with some new ideas to define a new type of canonical metrics. We begin by recalling
the definition of the coupled Khler-Yang-Mills equation.

DEFINITION 1.1 (JACGFGP13]). Let P be a principal U(k) bundle on a Kéhler
manifold (X,wyx), A be a connection on P, and F4 be the curvature which is an
Lie(G)-valued 2 form. Then the coupled Kéhler equation is given by

aOSg+a1/\2FAAFA = ¢
/\FA = Zz

where z € Lie(G) is invariant under the adjoint U(k) action and ¢ is a constant,
which depended on the topological constraint on P and ayp, a1, [w]. Also, we need the
integrability condition

F}?=0.

If P = U(1)*, then the Lie algebra is u(1) @ --- ® u(1), and the F4 can be
represented as

Fia=wi+ -+ wg,
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222 K. L. LEE

where w1, ...,wy are L-valued Kéahler forms on X, which can be realized as Kéahler
forms on X. In this special case, the moment map equation is given by

k 2 n—2
g w; A wy o
Qpog + oy Y
=1
Try, (w1) = ¢1.
Try, (wi) = ¢

In [HWN18], Hultgren and Witt Nystrom introduced another type of canonical met-
rics: the coupled Kéhler Einstein equation. This equation was later generalized by
Datar and Pingali ([DP20]) to the coupled cscK equation:

DEFINITION 1.2 ([DP20]). Let X be a Kahler manifold and wy, ..., wy be Kéhler
k

forms on X, and let w = Z w;. Then the coupled cscK equation is given by
i=0

n n
“o Wi

vol(wg)  vol(wy)
Swe = Try,w + ¢,

here ¢ is the topological constant depending on the class of w; and Ric(w). If ¢ = 0,
then this reduces to the coupled Kéhler-Einstein equation.

Both the cKYM equation and the ccscK equation are moment map equations.
For both setups, the domains are in a subspace of Y C J x A, which for each
(J,A), A€ Q5 (ad(P)) (See [ACGFGP13], [DP20]). Notice that in order to get the
topological constraint, the setups are in the complexifed orbit. But we can study
deformation of ths solutions if we consider the bigger subspace ). When P is a
principal U(1) bundle, the moment map for the coupled Kéhler Yang-Mills equation
is

n—2 2 n—1 n
w Aw w ANwa\ w
MCKYM(J7A)(<P7§):/@(C_S(J)_CW X p 4 +a =X n ))y(
X Wx Wx n:

n—1

AN

+/ gAgA(alz_a2w> ey
X Wy

and the moment map for coupled cscK equation is

n—1 n

w A w w
Hecserc (1, A) (He o, He 1) = / Heyo (c—S<J>+X - A)+ / He.a (;? —z)
X Wx X w

We will now explain how both these moment maps can be constructed using the
moment map for the cscK metrics together with a new construction involving maps
between two symplectic manifolds (X, wy) and (Y,wy) which are diffeomorphic to
each others.

DEFINITION 1.3 (Defintion 2.2). We denote the map

tp : Map(X,Y;p)t — Lie(Ham(X,wx) x Ham(Y, wy))*
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by
PN A S S iY A RN QR 0 S O N
= C1 - T N
Mpwx wy n—p nl (TL* — 1) (p+ 1)17 C2— n! (n p)!p!
n—p—1 *, p+1 p
A w * Aw
where ¢; = fX nf Y= fo—Y
fX WX waY

We also have the classical moment map: Denote J;,:(X) be the space of all
integrable almost complex structure, and let

J(X,wo) :={J € Tint(X)|wo(e,®) = wo(Je, Je),wy(e, Je) >0}

be the space of integrable almost complex structure compactible with wg. The metric
gy := w(e, Je) induces a pairing on T;7 (X, wp), and

j(51J,52J) ::/ gJ((SlJ,éQJ)wi‘
X n

Then the map

n n—1

p () = (S5 = Sp) 1t = Rie(X, J) A oy = 870

is a moment map corresponding to (J (X, wp),7) (see [Don97], [Fuj92]), where

1 wy
51 = Vol(X, wn)/XSJH

is the average of S;.

As X is diffeomorphic to Y, if we take wa = f*wy, then under suitable domain,
1) pexym(J,A) = 0iff pr(J)+e1pi(f)—capd(f) = 0 for some suitable constant
C1, C2;
2) preeser (J, A) =0 iff py(J) + cpo(f) = 0 for some suitable constant c.

Notice that with a suitable choice of domain and symplectic form, the sum of two
moment maps can also be a moment map. Therefore, we unify the ccscK equations
and coupled Kahler Yang Mills equation into one general moment map setup, namely,
the sum of different moment maps u,, with the standard moment map p . Moreover,
using the same idea, we reconstruct the moment map for deformed Hermitian Yang
Mills equation (dHYM) (see [CXY17]) and the coupled dHYM ([SS19]) in section 3.4.

1.2. Construction. We will now explain how to choose the symplectic form,
the domain and the range to make the sum of two moment maps a moment map in
general by considering the construction for the moment map p 7 + po, i.e, the moment
map for ccscK, as an example.

Step 1 Define

1700 T (X, w0) X Map(X, X)
— Lie(Ham(X,wp))" @ Lie(Ham(X,wp) x Ham(X, wy))*

pr.0(ds f) = (ng, ko)
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We need to show that this is a moment map for the Kéahler form
Qr0:=Q7+Q

For this moment map, the range contains more equations than we want, and
the domain J and f has no relation. We will fix this issue by the following
steps.

Step 2 Counsider the subgroup H = Ham(X,wp) x Ham(X,w;), and the embedding
map ¢ : H — Ham(X,wp) x Ham (X, wp) x Ham(X,w;) by

L(O—’ 77) = (0—_1’ g, 77)

It induces a map ¢* : Lie(Ham(X,wp) x Ham(X,wp) x Ham(X,w))* —
Lie(H)*, and the map

wg_l A (—Ric(wg, J) + f*w1 — crwp)  fewl — cyuf)

L oHTO0= ( (n—1)! ’ n!

is also a moment map.
Step 3 In order to make sure the solution indeed is Kéhler, we consider the subspace

Yo :={(J,)IDFIDf' € T(X,w1)},

and we need to show that this space has the following properties:
a) It is closed under the action of H;
b) It is a smooth manifold. If we want the solutions to be Kéhler, we need
this space to be a Kéhler manifold.
Then f*w; is J invariant and hence it is a Kahler form. But our theory also
need the domain to be the complexified orbit space HC - (Jy, fo). Notice that
this space is equivalent to

{(¢0, 1) € Map(X, X)|pjw; = w; + v —199h;
for some h; € PSH(X,w;),i=0,1}.

We will show that the solution of t* o j7 o|gc.(g,,5) = 0 is equivalent to the
solution of ccscK equation in the Kéhler class [wo], [w1].

REMARK 1.4.
1) we may also choose Q7 0.a0,.4, = @107 + @28 in step 1 for some positive
number a1, as to affect the constant of the outcome moment map, that is,

wi ™t A (=a1Ric(wo, J) + agfrwi + cjwo) asfuwl — céwf)

* _
b okz0= < (n—1)! ’ n!

but a1,a2 need to be positive so that Q7 ¢ is still a symplectic (or Kéhler
form if it is J invariant).

2) Notice that the embedding is not unique. For example ,it may also be (o, 0, 7),
(0,07, n) or (671, 0,n7 ) . These embedding change part of the sign of the
moment map. For example, if we change the embedding to be (o, 0, 7n), then
the moment map becomes

Wit A (—a1Ric(wo, J) — agfrwi — cjwo) agfiwl — c’zw{‘)

b oBgo= ( (n—1)! ’ n!
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3) Notice that if (J, f) € Yo, then (J=1, f) = (=J,f) € o. This implies
the above choices of embedding won’t affect the space ). However, the
corresponding Mabuchi functional will be the same.

In general, the main technical part for this set up is to find the correct domain space
(which is Yy here). We need a space that is closed under the action and is a Kéahler
submanifold. In section 5, we will discuss the difficulties of finding the suitable
complex submanifold of Map(X, X) for the moment map f,,.

Similarly, for coupled Kéhler Yang-Mills equation, we first construct

po1 = (pg + arpry — a2y )|exy Mo, = t* 0 (U7, o5 147) Y Moy

using step 1 and step 2 with a suitable embedding restricted in a suitable subspace
YM{,. The subspace we take in step 3 should be

YMor c{(J, f,g9) € T(X,wo) x Map(Xy, Xo;n — 2)" x Map(Xy, Xo;n — 1) g
= L, DfIDf! € T(X,w1)},
such that
Qjﬁl;ao,al,ag = aOQj - 04198 + 04291< > 0}

Here p* and Q* are defined in Definition 2.9, as we need
/ (pwr A wgnfu — agw([)n]) =0,
X

k
where wl* = % If we take the undual one, a7 — @190 + @223 must not be

positive.

1.3. Main result. To discuss the main result, We first define the coupled p
equation.

DEFINITION 1.5 (coupled p equation). Let (X,wx), (Y,wy) be symplectic mani-
folds which are diffeomorphic to each other, 0 < p <n — 1 and let Map(X,Y;p)" be
the space of diffeomorphism such that w'y -» A f*wl is a volume form (see definition
(2.1)). Then the couple equation p is given by

pp =0,
where 1, : Map(X,Y:p)tT — Lie(Ham(X,wx) x Ham(Y,wy))* is defined b
fip : Map(X,Y;p : : y

(f) W W TTIALT W LR AW
=|c—= - , g —
Hp ] (n—p—1)! (p—i- 1)! Y (n—p)lp!
with ¢1, co € R such that
/w;lfpl/\f*lﬂrl /w}
= 0
(n p—l)(p+1) x n!
/ faw's P/\wy _ . wi
(n—p)!p! y nl’
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After that, we will study the procedure of combining the moment maps f, and
17 by a special case which we call the generalized ccscK equation:

DEFINITION 1.6. Let X be a compact Kéhler manifold with Kéahler forms
wo, ..., wk. Then we define the generalised ccscK equation to be the following:

k pit+1 n—p;—1 n—1 n
w w, w, w,
i 0 . 0,
LPi 120 — Ric(wo, iy, Jo) A —2 ——22 = 0
sP0 | |
—\ (pi +1)! (n pi—1) (n—1)! n!
n—pi D1
“0,p0 A W10, — 17931 - 0
(n—p1)! 1! n!
nN—pk Pk W
0o A k,pr cn k,or - 0
(n — pg)! D! n!

We will show that this system of equations has a moment map setup. Moreover,
there exists a underlying space which has a Kahler structure and is compatible with
the action. Hence, by considering the orbit space

k
OJJ?:: (HHami(X“wz)> : (Jv fh“wfk)'

i=0
Then the moment map equation is given by theorem 3.11:

THEOREM 1.7. Consider the moment map g : O ; 7 — Lie(Hox...x Hy)" defined
by theorem 3.9 restricted on OJ 7 Then py =0 has a solution iff the generalized ccscK

equation has a solution (po,- -+ , k).

In particular, if Xg = -+ = Xi, f1 = fo =+ = fr =id, p = (0,...,0), then
this is the ccscK equation with the classes fixed. Also, using similar idea, we can get
an alternate setup for the coupled Kéhler Yang-Mills equation (see [ACGFGP13]) for
the case G = U(1)*.

1.4. Application. As a result, similar consequences in [Don00], [Wan04] (see
also [PS04], [PS10], [Sz610], [LS15], [ACGFGP13]) can be applied for generalised

cescK:
k

1) Corollary 4.2: If the solution of py, = 0 exists, then ﬂAut(Xi,Li) is
reductive. =

2) Corollary 4.4: Futaki invariant is given by (us p,€); and if solution exists,
then Futaki variant are 0.

3) Corollary 4.5: Calabi functional is defined by ||p7,|?; and if ||u||? have a
critical point and Futaki invariant vanished implies ;= 0 has a solution.

4) Corollary 4.9: The Mabuchi functional can be defined. (See definition 4.8)
This functional is geodesic convex along the geodesic eV—lE . p, where ¢ €
Lie(G), and the minimums (if exists) are the solutions of p = 0.

5) Corollary 4.10: If the manifold X is a toric variety, then the (S!)" invariant
solution is unique (if it exists).

REMARK 1.8. Notice that if G = Ham(X,w), there is no complexified group
GC. We can still define an orbit space, but the uniqueness of the solution still need to
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investigate. If the orbit is geodesically convex, i.e., any two points can be connected
by the geodesic eV ~1¢-p, then the solution is unique. However, in general, by [Dar14],
Ham®(X,R) is not geodesically convex. Hence the uniqueness still need to study.

Denote K(X,w;) := {h; € C®°(X,R)|w; n, := w; +/—190h; > 0}. The smooth
gedosic we defined is given by (ho.¢, b, -+, het) C K(X,wp) X+ - K(X, wy) such that
for all 0 <17 <k,

hiw = [Vhia|2,-

Consider k = 1 case. In [ACGFGP13], denote the space of metic on the line bundle L
to be H(L), then the geodesic (Proposition 3.17 of [ACGFGP13)) is given by (h, H) €
K(X,w) x H(L).

hot = |Vh0,t|3,0,

Hy = 2dH (T X, ) +V=1Fu,(X;, ,, X}, ,)-

Notice that the second equation is twisted by the Kéhler potential h, while in our
note, the geodesic are independent by each other. Therefore, in this note, we show
that the functional is convex along different geodesic, which is more natural in the
space of K(X,,,) X - K(X,wy).

1.5. More result of 1,. After the above applications, we will study if the cou-
ple p equation can be viewed as a moment map in a Kéahler manifold. Unfortunately,
there is no Kéahler submanifold in the domain which is closed under the action of
Ham(X,wyx) x Ham(Y,w), and € is non -degenerated . The best result is in Propo-
sition 5.7, which implies that p, is a pseudo moment map in Xfpr (as Qp\x;rp may be

degenerated).
After that, we give a special case for the moment map p,, is still a moment map
when X is a submanifold of Y.

Finally, in the appendix, we will give a rough idea about the relation between
this setup and the setup in [ACGFGP13] and [DP20].
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2. moment map for coupled equation p. In this section, we will define a class
of moment map g, on a open subset of Map(X,Y;p)* C Map(X,Y), with a sympectic
form 2, on Map(X,Y;p)*. To do so, first, we define the domain Map(X,Y;p)* and
the symplectic form €, on Map(X,Y;p)*:

DEFINITION 2.1. Let (X,wyx),(Y,wy) be two compact symplectic manifolds
which are diffeomorphic to each other. We define (Map(X,Y;p)*™,€,) to be the
space

Map(X,Y;p)" := {f € Diffeo(X,Y)|wy ¥ A f*w} > 0}.

that is, wy ” A f*w! is a volume form, with the symplectic form

Qp(01f,02f) :W/xwxf(ﬁfﬁzf)w?;p/\f*wpy,

where 51.]“7 (ng S Tf(Map(X, Y)) = f*(TY) = {Sf X = TYHSf|:v S Tf(x)Y}

Notice that €2, is a symplectic form on Map(X,Y"; p) as wy is non degenerate and
closed. Also, we have a group H := Ham(X,wy) x Ham(Y,wy ) acts on Map(X,Y’; p)
defined by

(o,n)- f=mnofoo

where Ham (X, wx) and Ham(Y, wy ) are the Hamiltonian groups with respect to wx
and wy respectively. Also, Map(X,Y;p)T is an open set in Map(X,Y;p), hence it is
also a symplectic manifold.

We will first show that the Hamiltonian action on Map(X,Y;p) is closed in
Map(X,Y;p)*. Then up to constants, we can define a map p, by

DEFINITION 2.2. We denote the map

tp s Map(X,Y;p)t — Lie(Ham(X,wx) x Ham(Y, wy))*

by
oo (1) =~ [ SRS SN e )
pwxwy n—p nl (n—p—Dlp+1)" (n—p)p nl |’
—p—1 +1 —
thr061:fxwg(p /\f*w@ 82:fyf*w?(p/\w€/'
Jx Wk Jy ot

We will show that this is a moment map corresponding to (Map(X,Y;p)*, Q).
In particular, if we take (X, wx) = (X,wp) and (Y,wy) = (X,w1), then we will get
the moment map for coupled equation p.

LEMMA 2.3. The group action H on Map(X,Y;p) is closed in Map(X,Y;p)T.
Also, Qy, is invariant under the action of H forp=0,...,n — 1.

Proof. Let ¢ : X — R be a test function, that is ¢ > 0 is a smooth function, and
there exists € X such that p(z) >0
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Let f € Map(X,Y;p)* and denote u = o~ !(z). Then
/X p(x)wy " Ao foo t)uh = /X p(a)wy " A (o™ fr ' wy
= [ ok A frarl,
= [ ewai A frul,
:/Xgp(x)w}_p/\f*wf/ > 0.
Hence no foo™! € Map(X,Y;p)*. Also,if we choose ¢ such that p(z) = 1, by

the above calculation, we can see that the volume is unchanged. Finally, notice that
(a,m) - (6f)e = 9DN)(6f)|5-1(x)- Hence

/X v (D) E1f), (D) (620 oot (0@ A (0™ 1) Fr
- /X wy (D) (1), (D) (621 lyos ey W A fr ok
- /X *wy (011), (521)) )0 W A Frek

- /X wy (61 1), (62))] s A oL

|

REMARK 2.4. The proof also applies to the case p = n. Indeed, Sym(X,wx) x
Sym(Y,wy) C Sym(Map(X,Y),(,) for all p=0,...,n.

Before we prove the first main theorem, we first prove a technical lemma.

LEMMA 2.5. Let (X, «,f) be a symplectic manifold with symplectic forms «, 3.
Denote 7y, := o™ 1"P ABP. If a™7P A BP > 0, then for any u,v € TX,

Ny A LB Ay = —B(u, v)a A .
Similarly, we have

N A Lyt Ay = —a(u, V) A yp.

Proof. We prove it on local coordinate. As a Ay, > 0, it is a volume form, so if
we denote o = A;;, then for any 2 form n = d;;,

nmn A v ..
P _ g, AT
a A Yp
where A7¢ is the inverse matric of A;;. As a result, if we denote u = u’, v = v,
ﬂ = Bija then
Ny A LoB A Yp

= u'A;;vF By AY = W* By = —B(u, v).
a/\'}/p iJ kl kl 6( 9 )

the second statement follows from the same proof. O
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Notice that We now give the first theorem of this note.

THEOREM 2.6. Let 0 < p < n — 1, then the map p : Map(X,Y;p)t —
Lie(Ham(X,wy ) x Ham(Y,wy))* defined by

n—1l-p p+1 n n—p P
n (c wx Wy - Wy wy  fuwy Wy

n—p B

Hplf) = (p+ 1)V 2 (n—p)  p

n! (n—1-p)!

is a moment map with respect to the action no f oo ™!, where

| o f n 1— p/\f*w];/-i-l

w=al) = G e
! Jy fwy P AWY

co=co(f) = (n —p)'p! . fywy -

Proof. Recall that Lie(Ham(X,wx)) = C§°(X,R) := {¢| [ gw% = 0} such that
for any p € C*°(X,R),

dp = 1g, wx.
Hence we have Lie(Ham(X,wx))* = Q"(X,R), the space of volume form of X.

We let (p,9) € C=(X) x O=(Y) and Hpy)(f) := (up(f), (¢, 9)). Then
n Wit . Wbt wY
Hip)(f) = n_p(—/xso(n_Xl_p)! NS (pil)! +C1/Xs0ﬁ

/Yw(f* —+2/w )

LX(so,wQP(U) = dH(p,4)(v).

Let f; be a family of diffeomorphism. By defining 7; = f; o f =1, then f; = n; o f.
we denote

Our goal is to show that

ne € T,a(Map(Y,Y;p)").

dt),_o

Notice that f*wy is a symplectic form which is closed, therefore,

d * d * * * * *
% ft Wy = % f nwy = f Lowy = f diywy = df LyWy .
t=0 t=0
Similarly,
d d
il = — N =di, frwx.
i, Jrawx i, Nesfswx = diy fuwx

Notice that these are exact forms. By the fact that for any compact manifold M?",
and for any 2k — 1 form 8 and 2n — 2k closed form «,

/MaAdB:—/M(da)AB:O.
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It implies

d n— *

We now identify v € TMap(X,Y) and v € TMap(Y,Y) by

U|f(x) :v/‘ac-
Then
dH () (V)
_ —n n—1-—p *, P i * .
n d n—
_(n—p)!p!/ydj(dt(f Nw >/\f* P 1/\“}{)/
—n n—I1— £ *
:m/}((pwxlp/\fw];/\dfbva
(n—p) lpl/¢dbvf*wXAf*wn PAWY
n
= G Jy N AT A
X
n n—p—1 P
(n—p)'p'/ Ay Nty fewx A fewy A wy
n N n
= m ngwwx A frwy Aoy — m Ywawy Aty fawx N feag,

where ay = w'y 7~ 1/\f*(,uy By Lemma 2.5, as f.ay = fiwy 7~ 1/\wi’,,

nie, Wy Ay fawx Aoy = —niy fawx A, wy Aoy
= wy (v,&y) fawx A ay
= —wy (§, V) fuwx Aoy

Moreover,
N, wx A frpwy Aagle =nf" (Lf*gwf*wX A Lywy A f*ozf|f(m))

= - wY(f*§go|wav‘f(x))f*(f*wX A f*aflf(l’))
= wY(f*fwv/)wX Aag.

Therefore,
dH (4 (V)
:m (_ /X wy (fubpr 0 )ox Ay + /Y oy (g, 0) fotwx A f*af>
1

“th ) (/wa(&pof, Wx/\af_/XWY fubpr ! wXAaf>
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On the other hand, for the action o f oo~! with (p,¢) € C®(X) x C(Y), the
induced vector field is given by

Xppy =&pof — fu &p.

So

1
LX(gp,u;)Qp(U) = ( /X wY(&p of — f« -fwv’)wx Nayfp = ClH(%w)(U).

n—p)lp!
0

REMARK 2.7. Notice that Map(X,Y;p)™ is an open set in Map(X, Y’; p), hence it
is still a symplectic submanifold. Also, ¢;, co may not be constant, as Diffeo(X,Y;p)™
may not be connected. However, if fi, fo are path connected, then ¢;1(f1) = c1(f2)

and Cg(fl) = Cg(fg).

DEFINITION 2.8. We call the above moment map to be the moment map p with
respect to wx,wy, denoted as fip.,y wy , OF simply 1, if no confusion arises.

Finally, we define the ”"dual” moment map by the following.

DEFINITION 2.9. We define the dual moment map of y,, to be py : Map(Y, X;n—
p—1)" = Ham(Y,wy) x Ham(X,wx ), with

N n Wy W AgWY P Wl gewET A wnTPT!
:u'p(g) = Hn—-p-1lwy,wx (g) = Cli}lj - Yl Xl ’CQi)l( - % | - 1)
p+1 n! pl(n —p)! n! p+D(n—p-1)

Notice that (u5)* = pp. Also, it is obvious that

LEMMA 2.10. f: X — Y solves the coupled equation p (i.e., u,(f) =0) iff f!
solve

tip(g) = 0.

Proof. f*= f7! and f. = (f~1)*; and the result follows. O

The main difference between p,(f) and p;(ffl) is the following: if we put g =
f~1, and we reorder the domain into Lie(Ham(X,wx) x Ham(Y,wy))*,

pp(fh = tp(f)-

Hence, we can change the sign of the moment map without changing the action on
Map(X,Y).

Also, we can change the sign by changing the action. For example, we may change
the action to be n~ ' o f o ¢~1, then the sign of the second part of the moment map
will change.
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3. moment map picture for coupled equations with curvature.

3.1. Combining moment maps. We now use this moment map to get some
coupled equations related to Ricci curvature. Recall that we have the following fact:

LEMMA 3.1. Let (My,aq), (M, as) be two symplectic manifolds with hamiltonian
group action G1, G, and let their corresponding moment map be p; : M; — Lie(G;)*.
Let H be a subgroup of G1 x Go and M be a (even dimensional) submanifold of
My x My such that H is closed under M and (1 + Qs2)|as is non degenerate (i.e, it is
a symplectic form). Then the map p: M — Lie(H)* corresponding to the symplectic
form Q1 4+ Qo defined by

pr = Projpecmy- (1, f12) | v

is a moment map, where Projp ;. gy« : Lie(G1)* x Lie(G2)* — Lie(H)* is the projec-
tion map.

Using this lemma, we can combine the moment map we defined above and the
scalar curvature to get different coupled equations.

REMARK 3.2. If Q is a Kéhler form, and M is a complex submanifold, then
Q| is also a Kéhler form. However, in general, for a submanifold M, Q|5 may be
degenerate. For example, we may take M C L, where L is the Lagrangian of My x Ms.

Let Y = X with symplectic forms w;. Let Z; :== Map((X,wo), (X,w;);p)",

1

(011, (01)2) = oy

/ w61, (612wl A frub
X

Denote Ham (X, w;) := H;, and we denote the corresponding moment map to be py, .
in which

ppi(f) =

NN S S AT LRV Y S
n—p n! (n—1-p)! P+ (n—p! " p Pl

by theorem 2.6. Then by considering the space Z; X Z3 X --- Z}, with

n

k
n—p
Q= Z 18,
i=1

k
we have a moment map fi, : 21 X ...2, — H(Ho x H;) defined by
i=1

n —

__ mn-p
Hp = (.u“p,lw"vp’p,k)'

The next step is finding the suitable subgroup so that the image of moment map
can be combined. To be precise, the embedding ¢ : Hy X ...Hy — (Ho X Hy) X - -+ X
(Ho x Hy,) defined by

L(U(J? "~7Gk) = (O-Oa 01,00,02,...,00, Gk)
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k
induces a map ¢ : Lie(H(HO x H;))* — Lie(Ho X Hy X ... x Hg)*. Hence the moment
i=1
map py, = ¢* o u,|z is given by

TR ARt Sl
n! (p+1)! (n—p-—1)!
n—p b n
ok
Mp(flv"'vfkr) = (nip) p: n:
fk*w(r)lip iz _ k%
(n—p)! p! n!

In general, for different ¢, we can choose different 0 < p; < n — 1, hence we have
the following;:

LEMMA 3.3. Let (X;,wi, J;) be Kdhler manifolds, and Xq is diffeomorphic to X;
for alli=0,1,....k. Denote p= (p1,...,px). Consider the space

k
Z5 = [ [ Map(Xo, X);,,
i=1
where

Map(Xo, X;),; := {f € Map(Xo, X;)wy " A f*w?* > 0}.

We define the symplectic form on Z(p1,...,pr) by

n

Z n—Dpi —ps
Qﬁ((vl,...,vk),(wl,...,wk)) = 7/ wi(vi,wi)wg p /\wf.
- X

K3

k
Then with the action of HHam(Xi,wi), the moment map is given by
i=0
w(r)z i wg—l)i—l fi*wfi+1
Co— —
nl —m-p—-1 (pi+1)!
o fl*wg_pl wfl _ clﬂ
pp(f) = (n—p1)! " pi! n!
f"w("]z)liplC wik _ k%
(n—pe)! " P! n!

Also, by identifying Z; and Z}, and considering

k
. ptl,
Q= Z TWH\Qi»
i=1



MOMENT MAP FOR COUPLED EQUATIONS 235

we have

k n—p;—1 x, pitl n
Z wo i Wi OWO
Ze—p -0 Dl

o Clﬂ _ fl*wo o w:fl

Hﬁ( ) = n! (n—p)! " p!

wk fk*wo Pk wzk

cp—%- —

Let (J(X,wx),€s) to be the space of all integrable almost complex structure
which are compatible to wy, and for all A, B € T;J(X,wx),

1
QJ(AﬂB) = f/X<A7B>ng}L(,

n!
where gy (v, w) = w(v, Jw). Also, let the action Ham(X,wx) acts on J(X,wx) by
o-J=Do ' J- Do,

and denote
AG(X) :=={a e A"(X)| /X a=0}.
Then we have a moment map ([Don00],[Don01])
wy o J(X,wx) — Lie(Ham(X,wx))* = AG(X)

which is given by

-1
n _wh

pi(oy) = Ric(w,) A ( Sﬁ = (Sso - ?) w?ﬁs&’

L _
n—1)!
where o wx = wx,,. To sum up, we have the following lemma.

LEMMA 3.4. Let Zj5 be as above and consider J(X,wx) X Z5, Q5 = 7507 +
w585, then we have a moment map

/7,352 j(X,wX) X Zﬁ—) Lie(H1 X H1 X ... X Hk)*

)

defined by

ﬁj,ﬁ(‘]ﬂ f17 "'7fk) = (MJ)M})

Moreover, by considering the group action v : Ho X ... x Hy, — Hqx Hy X Hy X ... X H,
by

-1
00,01, ...,0%) = (04", 00,01, ..., Ok)
we can restrict the moment map to be

Hr.p: J(X,wx) X Zﬁ—) Lie(Ho X ... X Hk)*
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which is given by

k * pi+1 n—p;—1 n—1
wo T w; wy . wg
e A R J) N
“nl ;<<pi+1>! ) R ) A
et (f)swg ™ e
v U)o
w5 (s fry e fx) = n! (n—p)!  p1!

W _ (s

ey (n — pi)! !

REMARK 3.5. We can consider the action on Z; to be (o,1)- fi = (p7 1o fioo™1),
then we can change the sign of all the expression c;wg — fi Wi

Notice that it is not the equation we aim to obtain yet. In the next section, we
will define a suitable submanifold as the domain of the moment map, and discuss how
to transform this moment map equation into the moment map equation we want.

3.2. Kahler structure on generalized ccscK. We now define the domain
of the generalized ccscK )y, which hope to be the largest Kahler manifold which is
closed in the group action, and

Vi C {(wo, - wk) € Q*(Xo, R) x - x Q*(X, R)|w; is Kéhler}.
This space is important as it is useful to study the deformation of solutions. Also,
with this Kahler manifold, any complex orbit is a K&dhler manifold.

DEFINITION 3.6. Denote J/ := DfJDf~'. Define V5 C J(Xo,wo) X Z5 by

yﬁ = {<J? f1, afk>|Jf1 € J(Xl,wl)}

Our goal is to show that )V is Kahler with respect to the symplectic form
ij =0y +Qﬁ.

As a remark, in [DS02], the defintion of complex manifold is really the classical
one; locally homeomorphic to the tangent space, and the change of coordinate maps
is biholomorphic. Or in this case, the change of coordinate maps perserve the J.

Notice that we have a natural almost complex structure on J(Xp,wp) X
k

HMap(Xo,Xi), denote by J, which

=1
J(OJ,8f1, .. 6fn) = (JOJ, T8 f1, ..., TG ).

On the other hand, let (X;,w;) be Kéhler manifolds diffeomorphic to each other.

DEFINITION 3.7. Let X be a compact smooth manifold. Then we define J(X) is
the space of all almost complex structure, and J;,:(X) be the space of all integrable
almost complex structure. Moreover, suppose (X,w) be a Kéhler manifold. Then we
denote

J(X,w) :==A{J € Tint(X)|w(Je, Jo) = w(e,e),w(J]e,e) > 0}.



MOMENT MAP FOR COUPLED EQUATIONS 237

There is a natural almost complex structure in J (X, wo) X Hle J(X;)), where
J € End(TX) x End(TX1) x -+ x End(TX},) which is defined by

T (goee a0y (Aoy -+ Ag) = (JoAo, - -+, JuAg).

By [DS02], J is indeed integrable, and it is a K&hler manifold. Moreover, the map

k k
F: J(Xo,wo) x [ [Map(Xo, X;)) = T (Xo,wo) x [[ 7(X:)

i=1 i=1
defined by
F(J, fuy o fo) = (L, J7 0 = (J,DAIDf, .. DfeJDf )
is a smooth map satisfying
J(DF(A, 0|1y, pi) = (JA, 0, s JTo0) = (DF)(J(A,9)| (.o p)-
Hence J(Xo,wp) X Hle Map(Xo, X;)) can be considered as a J closed submanifold

k
of J(Xo,wp) x l_IMap(XO,XZ-))7 and
i=1

k

Vi =F (T (Xo,wp) x HJ(Xi,wZ—)).

i=1

Therefore, J is integrable as J=F*J], , and hence F' is biholomorphic. By theorem
4 of [DS02], (J(Xo,wo) X Hle J(X;,w;)) is a complex manifold, hence we have:

LEMMA 3.8. Yy is a complex manifold with integrable almost complex structure

J.
As a consequence, we have the following result:
THEOREM 3.9. (Vg,Qyy = Qs + Q. J) is a Kahler manifold which is closed
k
under the action H Ham(X;,w;), in which
i=0
(007'-~70i) : (Ja f17"'7fk) :(0-0_1 : J,O'l o fl o U()_la o, 0k Ofk 00_0—1)

:(DUOJDao_l,al ofio 00_1, <o- 0,0 fro 00_1).
Therefore, the moment map defined in Lemma 3.4 can be restricted in Vg.

We denote this moment map as j1.7 5.

Proof. Let (A, o1, ..., 0k), (B, 1, ..., %) € T(J’fl’m’fk)yﬁ. Then

Qr5((A, @1, 08), (B, Y1, -0, U))

k
(n—p;) / . .
= A,B wo T ] wj ivwi W, be /\fz*wfl
< > 0 ; (ﬂ—pl)'pz' X, (90 ) 0
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Then

QJ,ﬁ(j(Aa PlLs ey Qﬁk% j(B7w17 7¢1€))

k
(n —pi) / , A e
- JA,JB w + _— wj Jfl(P,Jflw pl/\f* p7
I e ey AT

z : n pz
A B w [ 75 [ s * p7
:QJ,ﬁ((Avcpla"'agok’)?( 71/’17---71/%))

as J/i € J(X;,w;). Hence Q5 is J invariant, which implies it is a Kéhler form.

For the action part, first,
(00, e 03) - (S, I, T )
= (DogJDoy ', Doy D f1 Doy ' DogJ Doy ' DogDfy ' Doyt -+
Doy D fyDoy * DagJ Doy ' DogDf, ' Doy t)
= (DogJDoy ', Doy D f1JDf Doy, -+, Doy Dfi.JDf, * Do t).
As in S j(Xi,wi), wi(ino, Jfl.) = wi(.,.),
wi((Do;J' Do e, (Do J i Doy Ye) =owi(J/iDa; e, J/i Do te)
=w;(J' Do e, JIi Do te)
=w;(Do; e, Do te)
=0iwi(Do; e, Da; te)
=w;(e, o).
Hence (0q, ..., 0;) - (J, J/1, - [ J) € V5. O

Recall that Ham§(X,wx) is given as

HamS(X,wX) = {0 € Map(X, X)|p*wx = wx +V—10;0,hs}

k
for some Kahler potential h. Notice that the HHam(Xi7wi) action is closed in Yy
i=0
and Yy is a complex manifold implies that the orbit space is given by

k
= (H HamS,(Xl,w2)> : (Ja fl»'“,fk)
i=0
is in V5. Moreover,

F((007‘ .. 70k) . (J’ flv - 7fk))
:F(DO()JDO'()_l,UlOfloo’o_l,"' ,O’koka(f’:l)
= (DO’QJDO'O_l,D(O'1 ofio 00_1)(D0'0JD0'0_1)D(01 ofio 00_1)_1, e
D(ok o fr 00y ') (DogJ Doy )D(og o froag ') ™)
= (DoyJDoy ', D(oy 0 f1)JD(oy0 f1)~ 4, -+, D(oy o fr)JD(oy o fr) ™)
= (po, ) F(J fr,o o5 fr)
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Therefore, we have

k

] (Ham& (X, wi)) ,

=0

0

Jf

hence (9 1s also a Kahler submanifold of V;.

REMARK 3.10. Notice that although (vg,- -, ¢k) - (J, f1, ...

239

, fx) is well defined,

HamS(X ,wx ) is not a group. As a remark, we can consider the orbit space as a subset

k
of the action coming from HDiffeo(X,»).
i=0
THEOREM 3.11. Consider the moment map p7 5 : OJ]; — Lie(Hp x ... x Hp)*
defined by Theorem 3.9 restricted on O F- Then py = 0 iff
k * ,Pitl n—p;—1 n—1 n
W, W, w
Z fz 1,04 0,%0 — Ric(c,qhw07 Jo) AN 0o _ Opo 0
— \(pi+1)! (n p; — 1)! (n—1)! n!
wg Lpgl ikw;flﬂm _ ffw?#’l _ 0
(n—p1)! p1! n!
wn Pk * ;ch f*wn
0,0 Yok - k™k, ok - 0.
(n— pk) pk! n!
In particular, if Xo =+ =Xg, L = fo=--= fi =1id, = (0,...,0), then this is

the ccscK equation with the classes fized.

Proof.

f* * Pz+1 /\wgipiil
pi — Dl(p; +1)!
L () (eg ) A
(n —p1)'p1!

<P0
(n—

—1
- ®
— Ric(wo, J§°

%

n
Wi
L
n!

n
Yk

Kol

_1)*w0 “PEAWRE

B ‘Pk*(fk)*(.@o
(n — pr)'px!

k 1

n—pi—
0 »P0

n—1
Powo

i1
i*prr Aw

n
wO#Po

—1
— piRic(wo, J70 ) A

20

= (n—1)
fieiw?
n!

900“0 A IT <P1w1
(n P1)1P1~

*, N—Pk *, %, Pk
PoWo /\fk@kwk

(n — pr)'px!

x, _k, M
Irorwy
n!

n!
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k %, pitl n—p;—1 n—1
w; A w w,
1 i, “o,0 Ri 0,90 n
g — Ric(wo,pq, Jo) N — — cowp = 0
P (pi + Di(n—p; — 1)! (n—1)! wo
—p1 *, D1 *, N
wo ot A frwtl,, _lelwl,c/)l — 0
(n— pl)!pl. n!
—DPk *, Pk *, M
0,00 Afkwk Ok 7Ckfkwk,<pk _ 0
(n — pi)'pk! n!

Finally, if f; = id, and p; = 0, then f;w; ,, = wj,,, the equations become

k
. n—1 n
E (Wi — Ric(wo,pp)s Jo) Awp oy — COWGpy = 0
i=0
wy ., —cwt = 0
0,0 1% 01 -
n n J—
W o — CWR o = 0

which is the ccscK equation. O

As a remark, ¢; are constants along the whole orbit. Also, we can replace w; by
a;w;, so the equation becomes

k pit+1 n—p;—1 n—1 n
w! w w w
2 : i 0, : 0, 0,
Le A Lo — RIC(LU()’LPO, Jo) N Lo _ b() £o = 0
— i+ 1) (n—p; —1)! (n—1)! n!
n—pi P1
“o,¢0 Wip1 wﬁ%ﬁ _
AR S = 0
(n—p)! p1! n!
WP n
“0,00 Wk,cpk Yk o _
1 — b — = 0
(n — pg)! D! n!

where b; are the normalizing constants.

3.3. An alternate setup for a special case of the coupled Kaihler
Yang-Mills equation. We first construct the moment map equation described in
[ACGFGP13] for U(1) case. Notice that to solve the equation, we first need

u(J, f) = aopg (J) + aapi(f) + c2ps(f)
under a suitable subspace. We define

Q7 01;00,01,00 = 027 — 1805 + @227,
that is, for g=f1: Y - X

[n—2] [n— 1])

(022 — 1 23) (301 642) = / wx (891, 692) (02D A g2 — (ay)wy A g*wl]
Y

Notice that we take dual moment map as we need

/(ozlwy /\w“ 1 OLQ(UE?]) =0,
Y
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so we cannot choose this as the Kéhler form.
Also, we take

YMor € {(J, f,9) € T(X,wx) x Map(Y, X;n —1)*
x Map(Y, X;n—2)F|f=g7", J) € T(X,wx)}

such that
QJ,01§0407C¥1,O¢2 > O}'

Then we have the following proposition.

PROPOSITION 3.12. Y My, is Kdhler and closed under the action. Moreover, if
Ckij — alQS + QQQT > 0,
then the map pg.01: YMor — Lie(Ham(X,wyx) x Ham(Y,wy))*

Ric(X,wx, J) Awy ! Wit wk A frop?

won=" n—1)! T oy N ey e mr T Ak
) - n—1 n
T few Awy — o frwk
(n—1)! n!
. S
is a moment map, where z = 3 c1pa1 — c11Q2, and here we choose ay such that
a1 —ag =0. As a corollary, pgy01 =0 iff
a0 Ric(X,wx, J) Awh a2w§( A frop? _ Cwig
(n—1)! (n —2)!2! n!
f*w?(_l f*W;L( ’
ANwy =d
(n—1)! Y n!

aq
where d = —, ¢c = a1d + z.
a2

Proof. Notice that Y My; is a submanifold of ), so the complex structure is
defined directly by V. Then Q7 is J invariant and Qq is J/ invariant. Also, if we
define inv : Map(X,Y) — Map(Y, X), and we define J’ on Map(Y, X) such that

inv, (J15f) = Jinv,df,
then
JDft=Df gl =JpDf L.

That means the map inv is a biholomorphism, and Q* is also Kéhler if Q is. As wy
is J-invariant, €2y is also J-invariant, hence

* *
Q7 0100,01,00 = @027 — 18 + a2

is J-invariant, which implies Y Mg is K&hler.
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Moreover, the moment map is given by

NJ,Ol(Ja f)
Ric(X,wx,J) Awiy ! Wit
— /\ *
ao (n—1)! gy Mer
2 -1, n—2 g
ws A filw S
= ron L (5 o —enen ) o
f—l*wnfl f*wn Wl
QQﬁ Nwy — OélT'X - (020041 - C21042) ﬁ
Ric(X,wx,J) Awiy ! Wit . w¥ A frwp? n
e n—1) —dg oy M ey e o Ak
B f*w?{l f*w?( ’
A —d
2 (n—1)! “y n!
where z = — — cjpa1 — ¢11a9, and we choose d = a7 such that cogay — co1a9 = 0.

The last part is obvious. O

Hence we get the same moment map equation for the Kéhler Yang-Mill’s equation
with G = U(1) case (see [ACGFGP13] for general). As a remark, we can easily
generalize it into U(1)" case. We can generalized this moment map by considering
the following equation:

ai(n —p) az(q+1)Q*
5

Qj,pq = Oz()Qj — Q; +
Define

yMpq C {(J7f7g) € j(Xva) X Map(}/,X,’I’L—p)+
X Map(Y7X7n7 q— 1)+‘g = f717']f € j(Y7wY)}
such that Q7 ,, > 0. That is, f € Map(X,Y;p)" NMap(X,Y;¢)". Then YM,, is

closed under the action of Ham(X,wy) x Ham(Y,wy ), and the map

=B,y 20D,

“J,p,q’ao,al,az(‘]v f) = O‘OMJ(J) - n n

is the moment map for

17 pq(J; f)
Ric(X,wx, J) Awy ! wh Pt frwbtt WU f it n
[ 7%) a1 N — Q2 + 2wy
_ (n—1) . (n—p—-1)! (p+1)! (n—qg—1)!(¢g+1)!

- —1% n—q q n—p P n

Wy wy frw’y Wy w

—p—— A — +a N — — (c20a1 — c21002) —

2 n—gq) P + 1(n—p)! ol (c2001 — c21002) ol

Moreover, we can choose a7 such that cogay; — co1a9 = 0.

3.4. Coupled DHYM types equation. In [SS19], Schlitzer and Stoppa
studied coupled Deformed Hermitian Yang-Mills equation using Extended Gauged
group theory. We now using the theory in this note to recover the coupled DHYM
equation.
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Recall that the DHYM equation is given by the following: Let (X,w, L) be a
projective manifold, and o = v/—1F(L). Then the DHYM is given by

Im(eV="(w + v—=1a))" =0

with Re(eV~1%(w 4 v/—1a))™ > 0. Here 6 is some constant defined by the class of w
and . Expend the expression eV~ (w + v/—1a)", we get

k
Imarginay part : cos 6 Z ) CE W AT £ sind Z(AYOSM”*QT Aa® =0;
=0

k k
Real part : cosﬂZ(—l)T CRw" 2" AN — Smgz )OR w2 A L S )
r=0 r=0

Here k is the value such that the 2k =n — 1 or n.
Under the previous construction, consider

k l

Z( 1)" cos 0CY, oy — sin @ Z ) Corg1lort1,

r=0 s=0
where k is chosen such that 2k <n — 1, 21+ 1 < n — 1 under the domain

n—1

Varym C ﬂ Map(X,Y;p)*
p=0

such that

COSHZ ) Caw" A fraPT smﬁz )" Cappqw" TN [T > 0.
Suppose this space is non empty, the equation is given by

k
COS@Z(—].)T On "~ 2r—1 /\f* 2r+41 —SII’IQZ CQrJr W 2r— 2/\f* 2r4-2 = cjw"

k
COSOZ )TC fuw™ 2 A Q2T —smﬂz )Ry fuw™ 2 A @ = cpa”,
r=0
Rewrite it, we get
k
COSQZ )R W A 2L —|—51n92 ) OR W A fa? = et
r=1
k
XCOS@Z CQrf* n=2r p 27 —Slngz C2T+1f* e e WS o™
r=0

where k is the value such that the 2k = n — 1 or n. Notice that the 2 form

Q(5f175f2):/ a(df1,0f2) (COS‘)Z ) Oy fi" T2 A a?"

_SIHQZ 027-+1f* n—2r— 1Aa2r+1>
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define a positive symplectic form iff

k
cos 6 E DTCR.w" ™ A a®" —sinf E DOy w2 AT > 0.
r=0

Hence, when this €2, we get the domain of the moment map. If we also restrict the
subgroup to be Ham (X, w), it is the DHYM equation. So we can recover a moment
map set up in [CXY17]. However, we cannot recover the coupled DHYM using this
moment map as we will couple the scalar curvature with the imginary part, not the
real part.

To recover the setup of the coupled deformed HYM, we consider another setup,
namely,

wr +COSGZ C’2$+1u2g+1 +sm02 ) ORw" T,UQT;
s=0 r=0

where k, [ is chosen such that 2k < n—1, 2141 < n—1. Denote the space as Y,y s
similar to the definition of YV gv 7, and we can define

!
Veanym C Tint X YVauy m

to be the largest Kahler submanifold which is closed under the orbit similar to the
setup of gerenal ccscK. Then the resulting moment map equation is given by

Ric(w, J) Aw"™ +cos0 Y (—1)"Chw" " A f*a®

r=0
. k —op_
—sinf Y _(-1)"C w2 LA fra?rt = qw"
k
0059§ DOy fuw™ A Q™ sing E D)0y w2 AR = cpa®
r=1

if ¢o is positive. In particular, if we consider the orbit space
(Ham(X,w) x Ham(X, a))® - {fo = id},

then the equation can be reformulated as

Ric(wy) Awi™t + COSHZ ) Copwy™ A a2r

r n—2r—1 2r+1 — n
—sinf Z'r:O( 1) 027"+1w Ay = cwg.
cos 6 E )" Cywy™ =l A O¢2T+1 +sinf g D)'Cgqwl A a?[ = o)

Finally, to avoid the sign problem, we may replace all —u, into py, then we can make
sure the {2 is positive.
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4. Application.

4.1. Obstructions on solving generalized ccscK. For moment maps on the
complexified orbit, there are some standard results (see [Wan04]). For example, we
can define the Futaki invariant, Calabi functional and Mabuchi functional that can
provide some obstructions of the moment map equation g = 0 (see [Don01], [Don02],
[PS10] for cscK, [DP20] for cescK, and [ACGFGP13] for Kahler Yang Mill). We will
consider the generalized ccscK equation

k *
wrp: OFia — Lie (H Ham(Xi,wi)> .
i=0
For fix f;, we can define a map f; : Diffeo(X;, X;) — Diffeo(Xy, Xo) by
fio=flogpofi

We also denote (f;). = (f;*)*. Then we can define

Gg = Aut(Xo,Lo) N ﬂlefl*Aut(X“ Lz),
and

] = (1;).G.

LEMMA 4.1. Gf are subgroup of Aut(X;,L;). Moreover, the embedding map

. k
L G(])c — HAut(X“L,L)
=0

defined by
L((p) = (90’ (fl)*% R (fk)*(p)

—

is an homomorphism, and G{; is the stabilizer of (J,f) as a subgroup of

k
[T Aut(x;, Ls).

=0

Proof. Let ¢,v € frAut(X;,L;) Then f;opo i1 fiowo f71 € Aut(X;, L;).
Then

(ficpofio(fiopofi )yt =fiopoy o f e Aut(X;,L;),

hence g o =1 € fr Aut(X;, L;).
For the second part, first,

Ti((@)e(¥)™) = (fiopo fi o (fiovo fi ) = fiopoy o fit =mi(L(poy™h)).

It is well known that we can identify Aut(Xo,Lo) with G;. We can identify
f € gy with &5 € aut(Xo, Lo) defined by

g9 = {f € a510¢ = 0,1¢,w = df.}
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Also, for ¢ € G{;

((fi)sp) - fi=fiopo filofiop™ = fi

k
Finally, if (g, ,¢k) € HAut(Xi, L;) such that ¢; o f; 0 oy = f;, then
i=0

@i = fiowoo fil,

which implies ¢ € G(Jj .

COROLLARY 4.2. Suppose (X;, L;) is a projective manifold with line bundles with

their respective curvatures wy, ...,wk. Suppose generalized ccscK has a solution, then
k

ﬂ Aut(X;, L;) is reductive.

i=0
Proof. We wuse the result in [Wan04], corollary 12. Suppose
-1
w(JZ 00, @1, -, k) = 0 has a solution. Then GEO o1....op 18 Teductive. By as-
suming (wo py, -+ Wk, h,) be the solution, we have f; = id and

. k
Gy = Gyt = () Aut(X;, Ly)
=0

is reductive. O

We can also define the Calabi functional, Futaki invariant and Mabuchi functional
as follow.

k
DEFINITION 4.3. Let & = (&, -..,&k) be an C* action on HAut(Xi, L;), where

i=0
Lgiwi = dhl, 5J7£Z(t) =0
Then the Futaki invariant for the moment map defined in Theorem 3.11 is defined by

Fg.5&) =(ng 5(f), &)
k pit+1 n—p;—1 n—1
_ Ow N\ wy . w, _ wj’

wh /\ftowgp wh
+Z/ ( (n —p;)! “ar )

The Futaki invariant of the ccscK equation is the case f; o = id and p; = 0 for all
1=1,... k.

Again, by the standard result (for example, see proposition 6 in [Wan04], theorem
3.9 in [LSW22] for the independence; or see [Fut83] for the KE case), we have

COROLLARY 4.4. Futaki invariant is independent of the choice of w; with the given
class. Moreover, if the Futaki invariant is non zero for some holomorphic vector field,
then this moment map equation has no solution in the given Kdhler classes.
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Besides, we can define the Calabi functional, which is ||u||? .
By [Wan04], corollary 13, we have the following:

COROLLARY 4.5. We define the extremal metric corresponding to p7 5 to be the
critical point of Cy 5. Then the extremal metric solves g 5 =0 (in the domain O ;q)
iff the Futaki invariaant are zero for all holomorphic vector field.

Let K be a Lie group, and K€ be the complexify orbit. Suppose K acts on a
space X with a hamilitonian group action, and p : X — Lie(K)*, we can define a K
invariant one form on (K©/K), defined by the following: for any v € Lie(K),

o (jtf ~g) = (u(g - 2),v).

It is well-defined and independent of the choice of ¢’ € K - g as

(kg - 2), Adpg) = (Adgp(g - 2), Adi) = (u(g - 2),§).

LEMMA 4.6. « is closed. Therefore, it is an exact form, and hence, there is a
functional M : K®/K — R defined by

M(g) == / a(g0)dt,

where g; is any curve connecting a fiz point go and g.

Proof. Assume [¢,n] = 0, then by identifying Lie(K) and Lie(K)*,

do(,m) = <jt L (e“mtf : Z) 7n> - % <u (e‘mt” : z) ,§>
=(du(J X¢),n) — {du(JXy), &)
=w(JXe, X)) — w(J X, Xe)
=0,

t=0

e~ V=TIt . o Therefore it is closed. O

d
where X is the vector field —
dt{,_,

As a result, given a moment map, we can define the Mabuchi functional by

Mo(g) == / a(g)dt,

where g = id.
In our case, we can define K€ as a complex manifold (the orbit space). Notice
that

k
KC/K -id = H PSH(X;,w;),
1=0

so we can define the Calabi functional and Mabuchi functional by the following.



248 K. L. LEE

DEFINITION 4.7. Let (X;,w;) be Kéhler manifold, then we denote

n—p p
) n! R SaAN T
1,p o 51 2515
HiP(hi, hy) =

n )

(n —p)'p! Wi h,

and the mean is defined by

’p hz,h /H”’ hi, hj)

Lie(Ham(X;,w;)) = {p; € C(X)|dp = 1x, wi}/R,

and

nP/\P

‘w?_p/\f*wf B . Wi .
LL“Jmm@ﬂ‘f;&#“%“” (n =)

J aj(x)

n

. W,
— / (piHé’pH_l(ho, hz) 0,ho ’

J

the explicit formula of Calabi and Mabuchi functional is given by the following:

k
DEFINITION 4.8. The Calabi functional Cz 5 : H PSH(X;,w;) — R is defined by
=0
the formula
Cq.p(h) :Huj,ﬁ(fh)HQ
2
wn
/ ZH’ P (o hi) — Shy — ZH””H ho, hi) + Sh, Z,’L
Xo | =1 ’

n—p; n—p; w’,hj
+Z/¢w7wmm—wvwmmﬁﬁ<

The Mabuchi functional corresponding to p 7 5 is given by

k
Mgz [[PSH(X;,wi) — R

=0

such that the variational formula is

dM 7 5lno.....h, (F)
= (ng5((00, von) - (1, ), &)

k k n
1,0 1,04 W N
= / %o (Z Hy?* (ho, hi) = Sy + S — ZHO*P“mo,m)) e
Xo i=1 i=1 :

a wzhj
nl’

©j (H;J’n_p"'(ho, hi) — Hf’n_pi(ho, hi))



MOMENT MAP FOR COUPLED EQUATIONS 249

where ¢ € C°(X,R).
Following the standard result of moment map on the comlex orbit (for example,
see [Don02],[Wan04]), as the geodesic is given by e~ V=1 . g,

M () = (u(e™Y 18- 2),6),

M(t) = w(=JE &) = [I€|* > 0.
We have the following corollary.

COROLLARY 4.9. M 7 5 is convex along smooth geodesics. Hence the solution of
the generalized ccscK is the minimum of M g 5.

Notice that by [Darl4], not any two Kéhler potential can be connected by the
smooth geodesic in general, not even the limit of a sequence of smooth geodesic.
Therefore, in general, the convexity of Mabuchi functional for smooth geodesic cannot
imply the critical point is unique. However, under some special case, we will still have
uniqueness result directly.

Let (X, Lo, -+, Li) to be a polarized toric manifold and the curvature of the toric
equivariant line bundle L; is w; which are positive. Let P; be the moment polytopes
corresponding to L;. We also denoteP; is defined by the equations

Na{li’ (z) = 0},
where [¥(z) are affine functions. Recall that (See [Gua99] [Don02], [Guel4]), the space
of the (S)™ invariant Kéhler form with the Kéhler class [w;]
{p € C(X, B + v 100 > 0.0(0 - z) = p(x).0 € (')}
is isometric to the space
H; = {u € C(P?)|u is convex, u; = Z(lf‘(m) log(I$(x))),u — u; € C*(P;)},
o

with the geodesic is given by u + tv, v € C*°(P;,R). Therefore, the orbit space is
isometric to the space

Ho X -+ X Hy,

which is geodesicly convex. Therefore, as a direct consequence of 4.9, if we have
two minimum point, we can connect them by a stricly convex geodesic, which lead a
contradiction. Therefore, we have

COROLLARY 4.10. Let (X, Lo,---, L) to be a polarized toric manifold and the
curvature of the toric equivariant line bundle L; is w;. Then the (S')" invariant
solution of the equation

k *, pit+1 n—p;—1 n—1
Z fi Wi A “o,p0 _ RiC(OJ() JO) A “o,p0 — ¢ WSL#PO I
—\(pi+1)! (n—pi—1) wor (n—1)! n!
w&;gl fl*wfi/’l c fikw?llﬁpl _ 0
- —
(n—p1)! 1! n!
wgmogk A fl:wkipk — ¢ flng,wk - 0
(n — pk)l pk! n!

is unique (if exists).
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5. Kahler construction for coupled equation p. In this section, we will
try to find a suitable space for the coupled equation p which is a K&hler manifold.
However, the case is much more subtle then the pervious case. The problem is,
unlike J x Map(X,Y;p)*, it is not easy to find a good complex submanifold inside
Map(X,Y;p)* such that both f*wy and wx form of X and f,wy and wy are Kahler
forms of Y. Before we go on our main disscusion, notice that if we restrict the group
to be either Ham(X,wx) or Ham(Y,wy) we do have a good complex submanifold.
For the first subgroup, the coupled moment map equation become

n—p—1 *, p+1 _ n
Wy A ffwy' = awy.
The second subgroup gives

n—p

fawy P AW = cowy.

‘We have seen this trick when we re-construct the deformed HYM.
The method we suggest is the following: we consider Fy : Map(X,X) X
Map(Y,Y) — Map(X,Y) by

Fi(o,n) =no foo

and consider the pull back image Ff_l(Map(X,Y;p)*). Notice that Ff_l(Qp) is not
a symplectic form as it may be degenerated. Then we can find a ”lagrest com-
plex submanifold” A", and the orbit space Ham®(X,wyx) x Ham®(Y,wy) inside
F~'(Map(X,Y;p)*). And we will show that if Fy(X,") and Fy(Ham®(X,wy) x
HamC(Y, wy)) are complex manifold, then these are the spaces for the moment map
picture for moment map p.

Let Jx to be an integrable almost complex structure of X. Then for any diffeo-
morphism g : X — Y, we can define an almost complex structure of Y by

Jy = J% = DgJxDg "

This is integrable as the complex local coordinate of Y can be defined by X and g,
namely, if

{Ui7%0i : Ul — QZ‘ (- Cn}

are complex local coordinate of X, then {g(U;),v; := p; 0 gt : g(U;) — Q;} with
transition map

Yot

defines the complex local coordinate of Y.
However, let (X, wx, Jx), (Y,wy, Jy) be two Kéhler manifold. Notice that Jx is
compatible with wy doesn’t implies J is compatible with wy .

-1
Yi(g~ 1 (UNU;)) = Pi ©Pi lpi(UinUy)

DEFINITION 5.1. Let (X,wx,Jx), (Y,wy,Jy) be compact Kéhler manifolds.
Define

J(X,wx) ={J € Tint(X)|lwx(J,J-) = wx(-,-),wx(J-,-) > 0}.
Define Fy : Map(X, X) x Map(Y,Y) — Map(X,Y") to be

Fr(p,p) :=1po fop .
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We also denote J% := Dpo JxDp~! for any ¢ € Map(X, X) (and similarly for J;,p)
Notice that

Do~ 'JE = Jx Dyt
Then we define the following:

DEFINITION 5.2. Let (X,wx,Jx), (Y,wy,Jy) be compact Kdhler manifolds.
Then we define

KMap,,, (X,Y;Jx) := {f € Diffeo(X,Y)|JL = DfJxDf ™ € J(Y,wy)}.
We denote KMap(X,Y) = KMap,,, (X,Y’; Jx) if there is no confusion on the Kéhler
form.
As a remark, we can also define KMap(X,Y') by fixing Jy and moving Jx.

LEMMA 5.3. The manifold (Map(X,Y),J), where J6f := DfJxDf~16f = J)f(,
is a complex manifold.

Proof. Tt is obvious that (Map(Y, X), Jx) is a complex manifold as Jx is inte-
grable. Notice that the map inv : Map(X,Y) — Map(Y, X) defined by

inv(f) = f~"
is a diffeomorphism, hence we can consider J on KMap(X,Y') by
invedx = Dinv" Y JxDinv.

For any v € TyKMap(X,Y), D(inv(v)) = Df 'vo f~! € Ty-1KMap(Y, X). There-
fore, for any w € TJTIKMap(KX),

invJ(v) = Df(JxDf *vo f~Yof=DfIxDf v
Therfore, (KMap(X,Y'),J) is a complex manifold with integrable almost complex
structure J. O
LEMMA 5.4. KMap(X,Y) and KMap(X,Y;p)" is a complexr submanifold.

Proof. Consider Map(X,Y) x J(Y,wy) with the product complex structure
J(0, A) = (JLo, Jy A) for all (5,A) € T} 7, Map(X,Y) x J(Y,wy). Then we have a
subvariety

W= {(f, J¥)IDf(J%)Df~" = Jy},

here J% is fixed. We can rewrite the relation as f,Jy — Jx = 0 as an endmorphism.
By this, we can consider the map F': Map(X,Y) x J(Y,wy) = End(TX) by

F(f,Jy) = fuJy — Jx.

Then W = {F(f, Jy) = 0}. When we differenate with respect to Jy direction, say A,
then

d

SaF(f, Jy) = —

= (DFUDf) = DI AD]

t=0
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which is bounded and indeed c|A| < [64F(f, Jy)| < C|A| for some ¢, C, and for any
norm. So W is locally a graph, which gives the smooth structure of W.

d d
We now show W is a complex subvariety. Let T ft = o and an, =Aatt=0.

Then the condition on tangent space is given by
—Df 'DoDf 'JyDf + Df 'ADf + Df*ADo = 0.
We now see if the vector (J)’;o, Jy A) with J}; = Jy satisfies this relation. Notice that
J')f( = Jy implies
JxDf ' =Df 1Jy.
So
—Df'DJLoDf ' JyDf + Df ' Iy ADf + Df LIy DJLo

= —JxDf *DoDf ' JyDf + JxDf *ADf + Df~'JL Jy Do

= —JxDf 'DoDf ' JyDf + JxDf 'ADf + JxDf'Jy Do

=Jx(=Df 'DoDf 'JyDf + Df *ADf + Df 'ADc)

=0.
Also, we need to show that the map 7 : W — Map(X,Y) is injective, holomorphic
and the image is KMap(X,Y"). The injectivity is obvious as if «(f, Jy) = w(f’, J}),
then f = f’. When f = [/, J;( = Jf(. By the definition, Jy € J(X,wx), hence it is

KMap,,, (X,Y). Finally it is holomorphic as this is the restriction of the projection
map 7 : Map(X,Y) x J(Y,wy) — Map(X,Y) which is holomorphic.

Notice that KMap(X,Y;p)* is an open subset of KMap. As w% ” Awl is J
invariant for (Jx, Jy) € J(X,wx) x J(Y,wy), so this is a complex submanifold. O

REMARK 5.5. Using the same argument, we can prove that KMap(X,Y) is a
complex submanifold of (Map(X,Y), Jy) as well.

DEFINITION 5.6. Let (X,wx,Jx), (Y,wy,Jy) be compact Kdhler manifolds.
Then we define

KMap,, (X,Y;Jx) := {f € Diffeo(X,Y)|J% = DfIxDf ' € J(Y,wy)}.

We denote KMap(X, X) = KMap,,, (X, X, Jx) if there is no confusion on the choice
of the Kéhler form. Then we define

X;p = (KMap(X, X) x KMap(Y,Y)) N Ff_l(Map(X,Y;p)"').

Moreover, let (v, w) € T{, ) (Map(X, X) x Map(Y,Y)) we also define an almost com-
plex structure on Map(X, X) x Map(Y,Y) by

Intap (v, w) = (JZv, J$w).

We now prove the main proposition in this section:

ProPOSITION 5.7. Let f : X — Y is a biholomorphism, and define an action
Ham(X,wyx) x Ham(Y,wy) on Map(X, X) x Map(Y,Y) which is given by

(a,m) - (p,9) :== (G op,mop).
Then
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1) Fy commutes with the group action.
2) Xfp is a complex submanifold,

3) The action Ham(X,wx) x Ham(Y,wy) is closed in X;p.
4) FiSy is Jnap invariant.
Proof.

1) Fr(oop,morp) =notpofop lo™ =(a,n) Frp,1)).
2) To show X;fp is a smooth manifold, we only need to show KMap(X, X) is

smooth. As F is continuous, so it implies X’ ;r p 1S an open subset, hence it is
smooth.

Define G : J(X,wx) x KMap(X, X) — End(I'(T'X)) by
G(J, ) = JE — J.
Then KMap(X, X) = {(J,9)|G(J,¢) = 0.} Also, let A € Ty ,J(X,wx), then
DG, (A,0)=—Id,

hence the implicit function theorem implies that there exists H : U C
KMap(X,X) - V C J(X,wx) which for G : U x V — End(I'(TX)), we
have

Therefore, (U, H) gives a local coordinate, which implies KMap(X, X) is
smooth. Hence KMap(Y,Y) is also smooth, and thus X;p is smooth.

We now show X‘t‘p is J invariant. Again, as Ff_l(Map(X,Y;p)) is open,
and KMap(X, X) and KMap(Y,Y') have the same defining function, we only
need to show KMap(X, X) is J¥ invariant. Then the argument can be used

as showing KMap(Y,Y) is also J;//’ invariant. Suppose o € T,KMap(X, X).
The equation we have is the following: for all (v, w) € T, X

rwx (Jxv, Jxw) = p*wx (v, w).
Differentiating it along v, we get

(,L)X(DO'JX’U7 DQDJ)(’LU) + wX(DcpJXv, DO’JXw)
= wx(Dov, Dow) + wx (Dyv, Dow).

Now

wx (J¢DoJxv, DpJxw) + wx (DeJxv, JgDoJxw)

—wx (J¥Dov, Dow) — wx (Dyv, J§ Dow)

=wx(DoJxv, J¢DoJxw) + wx (JE DpJxv, DoJxw)
—wx (Dov, J{ Dow) — wx (J¥ Dyv, Dow)

=wx (DoJxv, DpJx Jxw) + wx (DpJx Jxv, DoJxw)
—wx (Dov, DpJxw) —wx (DyJxv, Dow).
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We let u = Jxw, then w = —Jxu, hence the expression becomes
wx(DoJxv, DpJxu) — wx(Dypv, Dou)
— wx (Dov, Dpu) + wx (DpJxv, DoJxu)
=wx(DoJxv, DpJxu) + wx (DpJxv, DoJxu)
—wx (Dypv, Dou) — wx (Dov, Dpu)
=0.

3) As Fy preserves the group action, we only need to show KMap(X, X) x
KMap(Y,Y) is closed under the action. Let (o,n7) € Ham(X,wx) x
Ham(Y,wy ). Then

(0op)wx =¢ o wx = ¢ wx,
hence (0 o p)*wx is Jx-invariant. Similarly, (1 o 9)*wy is Jy-invariant.

4) For (v, w), (v',w") € T, , KMap(X, X) x KMap(Y,Y),

DFp, (v, w)|z = wlfop-1(a) = DYDfDe™ w10,

SO

EyQp(Intap (v, w), ntap (v, w'))

= FyQ,(J5v, JYw), (Jgu', Jfuw')

= Q,(Jyw — DYDfDe~ J%v, JYw' — DyYDfDetJEu")

= Q,(J¥w — DYDfJIx Do~ v, Jéw' — DD fJx Do~ ')
(- D' J§ = JxDy)

= O, (JYw — DYJy Df Dy~ v, J¢w' — DyJy Df Do~ ')
(- JyDf =DfJx)

= O, (J{ (w — DD fDp~"v), J{ (w' — DD fDp™"v'))
(. Dy = JY DY)

= / wy (JL(w — DYDfDe™ ), J¥ (w' — DYDfDe~ 0" )Wy ™ Awh,
X

_ / wy (w — DYDF DY), (w' — DYD D™ v/ )™ A wh.
X
(- Jy € T(Y,wy))
= F;Qp((v, w), (v, w")).

Hence it is Jyap-invariant.
O

As X]pr is a complex manifold, we observe that if (v,w) € T(%lb)(é\,’;p), then
Intap (v, w) = (JZv, J$w) € T(%w)(ét';fp). As wy(J$u, u) > 0 if u # 0, so for any
(v, w), if

w—DYDfDe v £0,
then we can choose

(v, w") = = JImap (v, w).
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However, if w = DD f Do~ v, then it is degenerate. Indeed, the problem is Fr may
not be injective. Indeed, if we consider X =Y, wx = wy, then f = id solve the
problems, but for any o € Ham®(X), (0, o) will solve the equation as well. Therefore,
we cannot apply the theory directly.

As X is closed under the action of Ham(X,wyx ) x Ham(Y,wy ) and Fy preserves
the action’, we can still consider the orbit space

Oy := Ham"(X,wx) x Ham® (Y, wy) - (id, id) C (X;P)

(as we mentioned before, Ham®(X,wyx) x Ham®(Y,wy ) is not a group). Notice that
it may not be a manifold, but only a complex variety.

Indeed, suppose there exists o € Ham(C(X ,w X)ﬂHam(C(Y, wy ), and wx, wy solved
coupled equation p, then oc*wx, o* f*wy also solved equation p. This example exists,
say,

EXAMPLE 5.8. Consider (X, wq,w;) with
[wo = [w1].
Then by definition, there exists o € HamC(X ,wp) such that
0w = wp.

Then

n—p—1 * p+l _  n, n—p p_, n
W No wi '~ =wy; 0xwy T Awp = wr,

that is (id,0) € Oy solves the equation. Moreover, for any n € Ham®(X,wy) =
o*Ham®(X,w), (7,01m) € Osg and

conon t=o

implies it also solves the same moment map equation.

Notice that we can consider the equivalent class, namely,

(oym) ~ (U/»ﬂ/) if Ff((aa n)) = Ff((alvnl))a

that is,

nlofoa_lflz,rlofoa_fl.

Notice that we may simply consider [O] C Map(X,Y;p)*. Hence we can restrict the
moment map into [Oy] if it is a manifold.

COROLLARY 5.9. Let (X,wx) and (Y,wy) be two Kdhler manifolds with two
Kihler forms, and f is a biholomorphism. Suppose [Of] is a manifold, then p, :
k *
[Of] — Lie HHam(Xi,wi) is a moment map. In particular, if Ham(X, wx) N
i=0
f*Ham(Y,wy ) =1id , then p, is well defined.
Proof. Notice that [Of] C Map(X,Y;p)*, and it is closed under the action. Hence
tplio;) is well defined. O
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6. moment map for embedding. In the previous theory, we always assume
X =Y as a same Kahler manifold, and fo = id. We now provide a case that X and
Y are not diffeomorphic.

Let (X,wx), (Y,wy) be two symplectic manifolds with dimensions n,m, where
n < m. Define EMap(X,Y) to be the space of embedding maps and

EMap(X,Y;p)t := {f € EMap(X,Y)|wy ¥ A f*w} > 0}.

Notice that f~! is well defined on f(X) and for this case, f, = f~! on f(X). Let
Z C Y be a k dimensional submanifold. Then we denote dz be the m — k current on

Y, which
/52/\a::/0z
Y z

LEMMA 6.1. Let (X,wx),(Y,wy) are two symplectic manifolds with finite vol-
ume with respect to wx,wy, and let 0 < p < n — 1. Then the moment map
»  EMap(X,Y;p)" — Lie(Ham(X,wx) x Ham(Y,wy))* is given by

n Wl Wi PTA frobt!
up(f)(n_p<61n)!((nxp_1)(p+1)>

m

m (Qii-ﬂﬁu)AUﬂwipAf%@»)>~

m-=p

for all k£ forms awon Y.

Proof. The proof is basically the same as the proof of theorem 2.6. The main
difference is that EMap(X,Y) and Map(Y,Y) is not a one-one correspondence. How-
ever, given v’ € TyEMap(X,Y), v'|; € Ty)Y. Hence, we can still identify it as
v € T,Map(f(X),Y), where g:(y) := fr o f~'(y). After that, we extend this g; to
g: : Y — Y. Then the same proof can be applied.

i ft*(wX P/\f )
dt], téw)¢@) (n—p)'p!
wX PN flwd
dt i 0/ V(file (n—p)lp!
B . wy PAff vay If*Lowy AWy P A frrpwb !
R e e (= PP

n—p )
wy © A fflewy

I m_p wy (€, (v
—/X vy (&y, (vo f)) v (&, (v)) (n—p)p!

(n —p)'p! m Jfx)
n—p
m-—p wy PA ffLpwh
=—— [ wy (&, (vo f)) = —5"F
mo J T (n—p)'p!
Notice that this is independent of the choice of extension of g as the term f{t,wy

only depends on v and f;, but not the extension ¢ := g;|¢—¢. O

REMARK 6.2. Notice that as p is fixed, we can take Q% = ——Qx, Qf

(n—p)
m
——Qy to remove the leading coefficient. We will denote this moment map as p,
m—

from now on.
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REMARK 6.3. When Y is compact, given any function 1,

L Wy
) /y Voar € Lie(Ham (Y, wy)).

. w
However, for the case where Y is non compact, and / —Y' = 00, we cannot normal-
y m

ized 9. So we need to assume / Ywy = 0.
Y

REMARK 6.4. For p = mn, the map u,(f) : EMap(X,Y;p)t —
Lie(Ham(Y,wy);n)* is a moment map. Therefore, we can still get a non-trivial mo-
ment map for p = n if this is an embedding.

Appendix A. Analytic compuation of convexity of M s ,. In this section,
we will show that the Mabuchi functional M 7, is stictly convex along the smooth
geodesic (ho ¢, -+ , i), where the geodesic equation is given by

t— |tht|ilh =0
for all 0 <4 < k. As the standard Mabuchi functional M 7, is well known to be convex,
it suffices to consider M, = My, — M. For simplicity, we will only consider the
k
case k = 1. We also denote p; ; = h; ¢, and wlkl := % As
wi( Xy, JXo,)

[} ’

IVeoil2, =

The geodesic equation with Lemma 2.5 implies that
IVeil2,wi P Aa? = V=1ndp A Op; Aw;' P~ YAaP.

Hence

n—p/ |V<pi|iiwl[n_p] A alP) :7/ go/\\/flﬁ’&pi/\wz[”_p_l] A alPl,

n X X

As

iMylor 1) = [ eoreli el =D+ [ ol el -l
X

d2
dt?

/w( np=1 5 [p+”—cwg7;>+/ 1o @lTP AWl — eyl

—|—/ ©0.t(vV=100p0.4 A w([ft_p_m A w%:_” — 1V —190p0 4 N w([ft_l])
X

My (ho,t, hat)

+/ P1 (V10000 Ay P /\ng,)l)+/ 0o, (V=180p1, Awi P AWl
X

+/ g017t(\/7135<,01,t A w([ft_p] A w%’ft_l] - 02\/713530” A w;lt_ ])
X
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= /X oa(wtly "I AWl —ewl) + /X 1w’y AWl — eul)
— [ Venild, ] - Rl nuf )
— [ Ve, Bl null— el
+/ 01,:(V—188p0, Al P /\wﬂ)Jr/ 0.t (V=10901¢ Awl P AWl
= p+1/ |V<p0t|w0tw0t AW [pH] +T/ \V<p1t|w“w0nt p]/\w[p]
+/ <P1t(r83s00t/\w[n P I]Awgﬂ)—i—/ @Ot(\/iaaQDIt/\wn AW H)
(p+1)v-1

- /%ow&pomw[" P A wir
n—p—1 J

V=I(n—
+7n/3gp1 /\&plt/\w([)t ]/\wgptl]

/ﬁwlf/\awof/\w[np A +/8<,00f/\3301t/\w["p 1]/\w%}]&)
Using the same proof as in Lemma 2.5, and
V=10pis ANdpje = dpiy Nd°pjs = win(Xe, . 0) Awja(=T X, o),

the expression becomes

m—pl—w/ (X ) NI K 0) A Nt
= p_1 9 R (=T X 9) M At
= p—1 / Xiowa®) Ana(= X 9) A N,
7m (XWOfaJXgaOf)/\Wlt/\/\wot 71/\0"]1%
o= 1/ P T
m/XWu(X@M,JX%f)/\%t Awi g

We claim that if a, 8 are two forms, then
Lobw@ A B = Lyl = LylwB A a.
With this claim, and

th(X(PL“ ']X‘POJ,) = Wl,t(tio‘t’ ‘]til,t)v
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the expression becomes
1
(n—p-— 1)'p'

1
+(7’L p_ 1 / @1 HJXspl,t)/\wn - /\w:f,t

—p—1
/ Wit (Xtﬂo,t’ JX@o,r,) A wo,t A /\W(T)L,t b A wjll?,t

1
C(n—p—1)p! p—l / Xo1 s @) ANwoi(—TXp, ., 0) Awy P70 Awl,

- m /X Wit (Ko = Xor o J (Ko, = Xy g AWy

We finally show the claim. To show that, observe that

(totw@) A B = ty(tw A B) 4ty A 1y = 1y (@) A B) + t (@ A (1)) — @ A Layty 8.

Therefore,

(totw@) A B — @A byl = ty((Lwa) A B) + tw(a A (L0)).
Also,

(bytw) A B — @A byt = (Lite) A — B A Lty = iy ((1,8) A @) + 14 (B A (L)).

as

Lw((tB) A @) + Ly (BA (twa)) = —tw(a A (o)) = to((twa) A B),

2((tytw@) A B —aAtytwf) = ((botwa) A —a A tytyB) + (twtyB) A= B A tytya = 0.

REMARK A.1. We could point out that from this definition, we can see that M,
is not strictly convex when X, = X4. Hence we can see that u, is not a moment map
unless we mod out this relation.
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