A CRITERIA FOR CLASSIFICATION OF WEIGHTED DUAL GRAPHS OF SINGULARITIES AND ITS APPLICATION*

STEPHEN S.-T. YAU ${ }^{\dagger}$, QIWEI ZHU ${ }^{\ddagger}$, AND HUAIQING ZUO ${ }^{\S}$

Abstract

Let (V, p) be a normal surface singularity. Let $\pi:(M, E) \rightarrow(V, p)$ be a minimal good resolution of V, such that the irreducible components E_{i} of $E=\pi^{-1}(p)$ are nonsingular and have only normal crossings. There is a natural weighted dual graph Γ associated to E. Along with the genera of the E_{i}, Γ fully describes the topology and differentiable structure of the embedding of E in M. Intuitively, normal surface singularity has simplest topology if all the irreducible curves in the exceptional set are smooth rational curves with self-intersection number -2 . It can be shown that these are necessary ADE-singularities. In our previous work we classify all the weighted dual graphs of $E=\cup_{i=1}^{n} E_{i}$ such that one of the curves E_{i} is -3 curve, and the rest all are -2 curves. This is a natural generalization of Artin's classification of rational triple points. However there is no general method to classify or examine all possible weighted dual graphs of $E=\cup_{i=1}^{n} E_{i}$. In this article, we introduce a new concept, component factor, which is useful and computable for classifying weighted dual graphs. Based on it, we present a criteria for verifying whether a graph is the weighted dual graph associated to E. As a result, we give a complete classification of weighted dual graphs consist of -2 curves and exactly one -4 curve.

Key words. normal singularities, topological classification, weighted dual graph.
Mathematics Subject Classification. 14B05, 32S25.

1. Introduction. Let (V, p) be a normal surface singularity and $\pi: M \rightarrow V$ be a resolution of V such that the irreducible components $E_{i}, 1 \leq i \leq n$, of $E=\pi^{-1}(p)$ are nonsingular and have only normal crossings. Associated to E is a weighted dual graph Γ (e.g., see [4] or [9]) which, along with the genera of the E_{i}, fully describes the topology and differentiable structure of E in M [15]. On a nonsingular surface M, a $-k$ curve means a nonsingular rational curve with self-intersection $-k$.
M. Artin [1] has studied the rational singularities (i.e., those for which $R^{1} \pi_{*}(\mathcal{O})=$ $0)$. He has shown that all weighted dual graphs of rational double points are one of the graphs: $A_{k}, k \geq 1 ; D_{k}, k \geq 4 ; E_{6}, E_{7}$ and E_{8} which arise in the classification of simple Lie groups. He also shows that the existence of fundamental cycle (see Definiton 2.1) are equivalent to the negative definiteness of $\left(E_{i} \cdot E_{j}\right)$. Moreover, rational triple points are also classified into 9 classes according to the dual graphs in [1]. These 9 classes graphs consist of -2 curves and exactly one -3 curve. In our recent work [28], we classify all the weighted dual graphs of $E=\cup_{i=1}^{n} E_{i}$ such that one of the curves E_{i} is -3 curve, and the rest all are -2 curves. This is a natural generalization of Artin's classification of rational triple points.

The simple here usually means that only finitely many isomorphism classes occur in the versal deformation. By the rational double points and rational triple points are simple. Stevens [18] conjectures that the simple normal surface singularities are

[^0]exactly those rational singularities whose resolution graph can be obtained from the graph of a rational double point or rational triple point by making any number of vertex weights more negative. He shows that no other rational singularities can be simple. He proves simpleness for some special classes of singularities, namely rational quadruple points or sandwiched singularities in [18]. For the classification of certain classes of rational singularities, the interesting readers can refer the recent papers [20], [19], [23], [24].

In [12], Laufer investigates a class of elliptic singularities which satisfy a minimality condition. These minimally elliptic singularities have a theory much like the theory for rational singularities. Laufer [12] also lists all dual graphs which correspond to minimally elliptic hypersurface singularities. These singularities are exactly Gorenstein singularities with geometric genus equals to 1 . Such a list is extremely useful for researchers in the field. For the classification of Gorenstein singularities with geometric genus greater than 1 , the interesting reader can refer to the papers [16], [5], [25], [27], [22], [6]-[7], [8], [15]. Later, in [29] (resp. [2]), the authors generalize Laufer's list of dual graphs of minimally elliptic hypersurface singularities. They classify all weighted dual graphs of the simplest Gorenstein non-complete intersection (resp. complete intersection) singularities of dimension two. These singularities are exactly those minimal elliptic singularities with fundamental cycle self intersection number - 5 (resp. -4).

In [13], Laufer classifies all possible taut singularities. Though his classification is complete, the last step for verifying the negative definiteness of weighted dual graph is not illustrated. In this paper, we solve this problem completely. We give an explicit criteria for verifying whether a graph is negative-definite. As a result, we give a complete classification of weighted dual graphs consist of -2 curves and exactly one -4 curve. This generalizes the work in [28].

Our article is organized as follows. In Section 3, we introduce a new concept, component factor, for tree graph (cf. Definition 3.6). Furthermore, we generalize this construction to loop and multiple edge graphs in Section 4 (cf. Definition 4.5 and Definition 4.8). The following criteria for negative definiteness can be concluded:

Theorem 1.1. Let Γ be a weighted dual graph. Let Γ_{i} 's be subgraphs connected to E_{j} such that Γ_{i} 's are negative-definite. Let $C F\left(\Gamma_{i}\right)$ be component factor of Γ_{i}. Then Γ is negative-definite if and only if

$$
E_{j}^{2}+\sum_{i} C F\left(\Gamma_{i}\right)<0
$$

As an application of Theorem 1.1, we give the complete classification of weighted dual graphs consist of -2 curves and exactly one -4 curve as follows.

Theorem 1.2. Let (V, p) be a normal surface singularity. Let $\pi:(M, E) \rightarrow$ (V, p) be a minimal good resolution of V, such that the irreducible components E_{i} of $E=\pi^{-1}(p)$ are nonsingular and have only normal crossings. Γ is the weighted dual graph associated to E. Assuming that all the exceptional curves E_{i} are -2 curves and except exactly one E_{j} is a -4 curve. Then the weighted dual graph Γ must be one of the three cases: Tree graph, Loop graph or Multiple edge graph (cf. Section 3 for tree case and Section 4 for the last two cases). The complete classifications of tree graphs are listed in Section 3 (cf. Theorem 3.5, and from Theorem 3.11 to Theorem 3.24), loop graphs and multiple edge graphs are listed in Section 4 (cf. Theorem 4.7 and Theorem 4.10).

2. Preliminaries.

2.1. Riemann-Roch and fundamental cycle. Let $\pi: M \rightarrow V$ be a resolution of the normal two-dimensional Stein space V. We assume that p is the only singularity of V. Let $\pi^{-1}(p)=E=\cup E_{i}, 1 \leq i \leq n$, be the decomposition of the exceptional set E into irreducible components.

A cycle $D=\Sigma d_{i} E_{i}, 1 \leq i \leq n$ is an integral combination of the E_{i}, with d_{i} an integer. There is a natural partial ordering denoted by \geq, between cycles defined by comparing the coefficients: $\sum_{i} m_{i} E_{i} \geq \sum_{i} n_{i} E_{i}$ if $m_{i} \geq n_{i}$ for all i. If $D_{1} \geq D_{2}$ but $D_{1} \neq D_{2}$ then we write $D_{1}>D_{2}$. We let $\operatorname{supp} D=\cup E_{i}, d_{i} \neq 0$, denote the support of D.

Let \mathcal{O} be the sheaf of germs of holomorphic functions on M. Let $\mathcal{O}(-D)$ be the sheaf of germs of holomorphic functions on M which vanish to order d_{i} on E_{i}. Let \mathcal{O}_{D} denote $\mathcal{O} / \mathcal{O}(-D)$. Define

$$
\begin{equation*}
\chi(D):=\operatorname{dim} H^{0}\left(M, \mathcal{O}_{D}\right)-\operatorname{dim} H^{1}\left(M, \mathcal{O}_{D}\right) \tag{2.1}
\end{equation*}
$$

The Riemann-Roch theorem [17, Proposition IV.4, p. 75] says

$$
\begin{equation*}
\chi(D)=-\frac{1}{2}\left(D^{2}+D \cdot K\right) \tag{2.2}
\end{equation*}
$$

where K is the canonical divisor on M and $D \cdot K$ is the intersection number of D and K. In fact, let g_{i} be the geometric genus of E_{i}, i.e., the genus of the desingularization of E_{i}. Then the adjunction formula [17, Proposition IV, 5, p. 75] says

$$
\begin{equation*}
A_{i} \cdot K=-A_{i}^{2}+2 g_{i}-2+2 \delta_{i} \tag{2.3}
\end{equation*}
$$

where δ_{i} is the "number" of nodes and cusps on A_{i}. Each singular point on E_{i} other than a node or cusp counts as at least two nodes. It follows immediately from (2.2) that if B and C are cycles, then

$$
\begin{equation*}
\chi(B+C)=\chi(B)+\chi(C)-B \cdot C . \tag{2.4}
\end{equation*}
$$

Definition 2.1. Associated to π is a unique fundamental cycle Z [1, pp. 131-132] such that $Z>0, E_{i} \cdot Z \leq 0$ for all E_{i} and such that Z is minimal with respect to those two properties.

The fundamental cycle Z may be computed from the intersection as follows via a computation sequence for Z in the sense of Laufer [10, Proposition 4.1, p. 607].

$$
\begin{aligned}
Z_{0}=0, Z_{1} & =E_{i_{1}}, Z_{2}=Z_{1}+E_{i_{2}}, \ldots, Z_{j}=Z_{j-1}+E_{i_{j}}, \ldots, \\
Z_{\ell} & =Z_{\ell-1}+E_{i_{\ell}}=Z
\end{aligned}
$$

where $E_{i_{1}}$ is arbitrary and $E_{i_{j}} \cdot Z_{j-1}>0,1<j \leq \ell$.
$\mathcal{O}\left(-Z_{j-1}\right) / \mathcal{O}\left(-Z_{j}\right)$ represents the sheaf of germs of sections of a line bundle over $E_{i_{j}}$ of Chern class $-E_{i_{j}} \cdot Z_{j-1}$. So

$$
H^{0}\left(M, \mathcal{O}\left(-Z_{j-1}\right) / \mathcal{O}\left(-Z_{j}\right)\right)=0
$$

for $j>1$.

$$
\begin{equation*}
0 \rightarrow \mathcal{O}\left(-Z_{j-1}\right) / \mathcal{O}\left(-Z_{j}\right) \rightarrow \mathcal{O}_{Z_{j}} \rightarrow \mathcal{O}_{Z_{j-1}} \rightarrow 0 \tag{2.5}
\end{equation*}
$$

is an exact sheaf sequence. From the long exact cohomology sequence for (2.5), it follows by induction that

$$
\begin{gather*}
H^{0}\left(M, \mathcal{O}_{Z_{k}}\right)=\mathbb{C}, \quad 1 \leq k \leq \ell \tag{2.6}\\
\left.\operatorname{dim} H^{1}\left(M, \mathcal{O}_{Z_{k}}\right)=\sum_{1 \leq j \leq k} \operatorname{dim} H^{1}\left(M, \mathcal{O}\left(-Z_{j-1}\right)\right) / \mathcal{O}\left(-Z_{j}\right)\right) \tag{2.7}
\end{gather*}
$$

Lemma 2.2 ([12]). Let Z_{k} be part of a computation sequence for Z and such that $\chi\left(Z_{k}\right)=0$. Then $\operatorname{dim} H^{1}\left(M, \mathcal{O}_{D}\right) \leq 1$ for all cycles D such that $0 \leq D \leq Z_{k}$. Also $\chi(D) \geq 0$.
2.2. Classfication of weighted dual graphs. In this section, we recall two beautiful results given by Artin in [1]. Let (V, p) be a normal 2-dimensional singularity, $\pi: M \rightarrow V$ be the minimal resolution and Z be the fundamental cycle.

Definition 2.3. The singularity (V, p) is said to be rational if $\chi(Z)=1$.
If p is a rational singularity, then π is also a minimal good resolution, i.e., exceptional set with nonsingular E_{i} and normal crossings. Moreover each A_{i} is a rational curve and $E_{i}^{2}=-2$.

Theorem 2.4 ([1]). If (V, p) is a hypersurface rational singularity, then (V, p) is a rational double point. Moreover the set of weighted dual graphs of hypersurface rational singularities consists of the following graphs:

Theorem 2.4 completely classifies the weighted dual graphs with all $E_{i}^{2}=-2$, which are called $A D E$ graphs. In general, to classify the weighted dual graph we firstly need to classify corresponding negative definite matrices:

Proposition 2.5 ([1]). Let $\left\{E_{i}\right\}_{i=1, \cdots, n}$ be a connected bunch of complete curves on a regular two-dimensional scheme:
(i) Suppose that $\left\|\left(E_{i} \cdot E_{j}\right)\right\|$ is negative definite, then there exist positive cycles $Z=\sum r_{i} E_{i}$ such that $\left(Z \cdot E_{i}\right) \leq 0$ for all i.
(ii) Conversely, if there exists a positive cycle $Z=\sum r_{i} E_{i}$ such that $\left(Z \cdot E_{i}\right) \leq 0$ for all i, then $\left\|\left(E_{i} \cdot E_{j}\right)\right\|$ is negative semi-definite. If in addition $\left(Z^{2}\right)<0$, then $\left\|\left(E_{i} \cdot E_{j}\right)\right\|$ is negative definite.
3. Classfication of tree graph based on component factor. In this section, we give a complete classification of the weighted dual graphs consist of -2 curves and exactly one -4 curve, i.e., all E_{i} 's are nonsingular rational curves, $E_{j}^{2}=-4$ for one j and $E_{i}^{2}=-2$ for all i such that $i \neq j$. We use the notation \bullet to denote those E_{i} with $E_{i}^{2}=-2$ and $*$ denotes the E_{j} with $E_{j}^{2}=-4$. All the exceptional curves are assumed to be rational.

By [3], we know the classification of weighted dual graphs which we want is equivalent to classification of all negative definite matrix $\left(E_{i} \cdot E_{j}\right)$.

By Theorem 2.4, if all E_{i} have $E_{i}^{2}=-2$, then the graph must be $A D E$ graphs. Recall that a tree graph is a connected graph without loops. $A D E$ graphs are all tree graphs.

Notation. For a tree graph with a curve E, we denote the subgraphs connected to E as $\Gamma_{1}, \ldots, \Gamma_{s}$, the point connected to E as F_{1}, \ldots, F_{s}. The subgraphs connected to F_{i} are denoted as $G_{i, 1}, \ldots, G_{i, r_{i}}$:

Theorem 3.1 (Tree determinant formula). Let the weighted dual graph Γ be as above. Then

$$
\operatorname{det}(\Gamma)=\left(\prod_{i=1}^{s} \operatorname{det}\left(\Gamma_{i}\right)\right)\left(E^{2}+\sum_{j=1}^{s} \frac{(-1) \prod_{l=1}^{r_{j}} \operatorname{det}\left(G_{j, l}\right)}{\operatorname{det}\left(\Gamma_{j}\right)}\right)
$$

Proof. We do it by induction. Assume the formula is proved when $s \leq k-1$, now we prove it is true for k. Let the weighted dual graph be as in notation with the number of subgraphs connected to E is k, i.e. the weighted dual graph is:

Let n_{i} be the number of points of Γ_{i}. The intersection matrix can be represented as:

$$
\left(\begin{array}{cccccc}
\Gamma^{\prime} & 1 & 0 & 1 & \ldots & 1 \\
1 & E^{2} & 1 & 0 & \ldots & 0 \\
0 & 1 & E_{k}^{2} & 1 & \ldots & 1 \\
0 & 0 & 1 & G_{k, 1} & \ldots & 0 \\
0 & 0 & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 1 & 0 & \ldots & G_{k, r_{k}}
\end{array}\right)
$$

For simplicity here we use $\left(\begin{array}{cc}\Gamma^{\prime} & 1 \\ 1 & E^{2}\end{array}\right)$ to denote

$$
\left(\begin{array}{cccc}
E^{2} & 1 & \ldots & 1 \\
1 & \Gamma_{1} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
1 & 0 & \ldots & \Gamma_{k-1}
\end{array}\right)
$$

When doing Laplacian expansion on E, we get

$$
\begin{aligned}
\operatorname{det}(\Gamma) & =\operatorname{det}\left(\left(\begin{array}{cc}
\Gamma^{\prime} & 1 \\
1 & E^{2}
\end{array}\right)\right) \operatorname{det}\left(\Gamma_{k}\right)+(-1) \operatorname{det}\left(\left(\begin{array}{ccccc}
\Gamma^{\prime} & 1 & 1 & \cdots & 1 \\
0 & 1 & 1 & \cdots & 1 \\
0 & 0 & G_{k, 1} & \cdots & 0 \\
0 & 0 & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & G_{k, r_{k}}
\end{array}\right)\right) \\
& =\operatorname{det}\left(\left(\begin{array}{cc}
\Gamma^{\prime} & 1 \\
1 & E^{2}
\end{array}\right)\right) \operatorname{det}\left(\Gamma_{k}\right)+(-1) \operatorname{det}\left(\Gamma^{\prime}\right) \prod_{l=1}^{r_{k}} \operatorname{det}\left(G_{k, l}\right) .
\end{aligned}
$$

By induction assumption:

$$
\operatorname{det}\left(\left(\begin{array}{cc}
\Gamma^{\prime} & 1 \\
1 & E^{2}
\end{array}\right)\right)=\left(\prod_{i=1}^{k-1} \operatorname{det}\left(\Gamma_{i}\right)\right)\left(\left(E^{2}\right)+\sum_{j=1}^{k-1} \frac{(-1) \prod_{l=1}^{r_{j}} \operatorname{det}\left(G_{j, l}\right)}{\operatorname{det}\left(\Gamma_{j}\right)}\right) .
$$

Thus

$$
\begin{aligned}
\operatorname{det}(\Gamma) & =\left(\prod_{i=1}^{k-1} \operatorname{det}\left(\Gamma_{i}\right)\right)\left(\left(E^{2}\right)+\sum_{j=1}^{k-1} \frac{(-1) \prod_{l=1}^{r_{j}} \operatorname{det}\left(G_{j, l}\right)}{\operatorname{det}\left(\Gamma_{j}\right)}\right) \operatorname{det}\left(\Gamma_{k}\right) \\
& +(-1) \prod_{i=1}^{k-1} \operatorname{det}\left(\Gamma_{i}\right) \prod_{l=1}^{r_{k}} \operatorname{det}\left(G_{k, l}\right) \\
& =\left(\prod_{i=1}^{k} \operatorname{det}\left(\Gamma_{i}\right)\right)\left(\left(E^{2}\right)+\sum_{j=1}^{s} \frac{(-1) \prod_{l=1}^{r_{j}} \operatorname{det}\left(G_{j, l}\right)}{\operatorname{det}\left(\Gamma_{j}\right)}\right) .
\end{aligned}
$$

Lemma 3.2. Assumptions as in notation. If

$$
\left(E^{2}\right)+\sum_{j=1}^{s} \frac{\prod_{k=1}^{r_{j}}\left|\operatorname{det}\left(G_{j, k}\right)\right|}{\left|\operatorname{det}\left(\Gamma_{j}\right)\right|}<0
$$

then there exists a rational cycle D with $D \cdot E<0$ and $D \cdot E_{i}=0$ for any exceptional curve $E_{i} \neq E$.

Proof. Denote points connected to F_{i} as $E_{i, j}$, and the subgraph connected to $E_{i, j}$ as $H_{i, j, k}$, i.e:

We construct a rational cycle D supported on exceptional set by induction. Let the coefficient of D on E be 1 , on F_{i} be $\prod_{j}\left|\operatorname{det}\left(G_{i, j}\right)\right| /\left|\operatorname{det} \Gamma_{i}\right|$. Next, let the coefficient of F_{i} be $\prod_{j}\left|\operatorname{det}\left(G_{i, j}\right)\right| /\left|\operatorname{det} \Gamma_{i}\right|$, the coefficient of $E_{i, j}$ be $\left(\prod_{j}\left|\operatorname{det}\left(G_{i, j}\right)\right| /\left|\operatorname{det} \Gamma_{i}\right|\right) \cdot\left(\prod_{k}\left|\operatorname{det}\left(H_{i, j, k}\right)\right| /\left|\operatorname{det}\left(G_{i, j}\right)\right|\right)$. Repeat this procedure to get the coefficient of D on all the exceptional curves. Then we get

$$
\begin{gathered}
D \cdot E=E^{2}+\sum_{i} \prod_{j} \frac{\left|\operatorname{det}\left(G_{i, j}\right)\right|}{\left|\operatorname{det} \Gamma_{i}\right|}<0, \\
D \cdot F_{i}=1+\left(\prod_{j} \frac{\left|\operatorname{det}\left(G_{i, j}\right)\right|}{\left|\operatorname{det} \Gamma_{i}\right|}\right)\left(F_{i}^{2}+\sum_{l} \frac{\prod_{k}\left|\operatorname{det}\left(H_{i, l, k}\right)\right|}{\left|\operatorname{det}\left(G_{i, l}\right)\right|}\right) .
\end{gathered}
$$

Use Theorem 3.3 for Γ_{i} :

$$
\left|\operatorname{det}\left(\Gamma_{i}\right)\right|=\prod_{j}\left|\operatorname{det}\left(G_{i, j}\right)\right| \cdot\left|\left(F_{i}^{2}+\sum_{l}\left|\frac{\prod_{k} \operatorname{det}\left(H_{i, l, k}\right)}{\operatorname{det}\left(G_{k, l}\right)}\right|\right)\right| .
$$

Notice that Γ_{i} is negative-definite, hence

$$
\left|\left(E_{i}^{2}+\sum_{l}\left|\frac{\prod_{k} \operatorname{det}\left(H_{i, l, k}\right)}{\operatorname{det}\left(G_{k, l}\right)}\right|\right)\right|=-\left(F_{i}^{2}+\sum_{l}\left|\frac{\prod_{k} \operatorname{det}\left(H_{i, l, k}\right)}{\operatorname{det}\left(G_{k, l}\right)}\right|\right) .
$$

Combining with the above three equations we get

$$
D \cdot F_{i}=0 .
$$

We get a rational cycle D, such that $D \cdot E<0, D \cdot E_{i}=0$ for any exceptional curve $E_{i} \neq E$.

Theorem 3.3 (Criteria for negative definiteness of tree graph). Assumptions as in Notation. Assume furthermore that each Γ_{i} is negative definite for $i=1, \ldots, s$. Then the weighted dual graph is negative definite if and only if

$$
\left(E^{2}\right)+\sum_{j=1}^{s} \frac{\prod_{k=1}^{r_{j}}\left|\operatorname{det}\left(G_{j, k}\right)\right|}{\left|\operatorname{det}\left(\Gamma_{j}\right)\right|}<0 .
$$

Proof. Let n_{j} be the number of points in Γ_{j}. By Γ_{j} is negative-definite, we have $\operatorname{det}\left(\Gamma_{j}\right)=(-1)^{n_{j}}\left|\operatorname{det}\left(\Gamma_{j}\right)\right|, \prod_{k=1}^{r_{j}} \operatorname{det}\left(G_{j, k}\right)=(-1)^{n_{j}-1} \prod_{k=1}^{r_{j}}\left|\operatorname{det}\left(G_{j, k}\right)\right|$. Combine this with Theorem 3.3 we get:

$$
\operatorname{det}(\Gamma)=(-1)^{\sum_{i=1}^{s} n_{i}}\left(\left|\prod_{i=1}^{s} \operatorname{det}\left(\Gamma_{i}\right)\right|\right)\left(\left(E^{2}\right)+\sum_{j=1}^{s}\left|\frac{\prod_{k=1}^{r_{j}} \operatorname{det}\left(G_{j, k}\right)}{\operatorname{det}\left(\Gamma_{j}\right)}\right|\right)
$$

If Γ is negative-definite then $(-1)^{\left(1+\sum_{i=1}^{s} n_{i}\right)} \operatorname{det}(\Gamma)>0$, thus

$$
E^{2}+\sum_{j=1}^{s} \frac{\prod_{k=1}^{r_{j}}\left|\operatorname{det}\left(G_{j, k}\right)\right|}{\left|\operatorname{det}\left(\Gamma_{j}\right)\right|}<0
$$

The converse is immediately by Lemma 3.2 .

Now we turn to the classfication. We first begin with tree weighted dual graphs. We abuse the notation of weighted dual graphs and the corresponding matrices in the following discussion, if without any confusion. Henceforth, whether A_{k} a weighted dual graph or a matrix should be clear from context. For example, A_{n} could either denote the weighted dual graph:

or the matrix:

$$
\left(\begin{array}{cccccc}
-2 & 1 & 0 & 0 & 0 & 0 \\
1 & -2 & 1 & 0 & 0 & 0 \\
0 & 1 & \ddots & \ddots & 0 & 0 \\
0 & 0 & \ddots & \ddots & 1 & 0 \\
0 & 0 & 0 & 1 & -2 & 1 \\
0 & 0 & 0 & 0 & 1 & -2
\end{array}\right)
$$

We choose -4 curve to be E. The remaining connected graphs are denoted as $\Gamma_{1}, \ldots, \Gamma_{s}$. In a dual graph, the $*$ represents the -4 curve. We call it -4 point or -4 cycle later. Others are the point corresponding -2 curve, we call it -2 point or -2 cycle later.

Lemma 3.4. $s \leq 7$, and Γ_{i} must be $A D E$ for any $1 \leq i \leq s$.
Proof. It is easy to see that the matrix

$$
\left(\begin{array}{ccccccccc}
-4 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & -2 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & -2 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & -2 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & -2 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2
\end{array}\right) .
$$

has determinant 0 , so the -4 curve can not connect with more than seven -2 curves, thus we have $s \leq 7$. As for Γ_{i}, notice that if we require Γ to be negative definite, then the fundamental cycle Z, when restricted to each Γ_{i}, satisfies $\left.Z\right|_{\Gamma_{i}} \cdot E_{j} \leq 0, \forall E_{j} \in \Gamma_{i}$ (here it means that E_{j} is in the support of Γ_{i}). Denote $E_{j_{0}}$ the cycle in Γ_{i} connected with -4 point, then $\left.Z\right|_{\Gamma_{i}} \cdot E_{j_{0}}<0$. Thus by Proposition 2.5, we conclude that Γ_{i} is negative definite, which must be $A D E$.

We can classify weighted dual graph according to $s . s=0$ is the simplist case. When $s=1$, we need to illustrate the different connection way of Γ_{i} with -4 point. For $s \geq 1$, we should compute if the matrix is negative definite, which is based on a general formula.

Case 1. $s=0$.
The weighted dual graph is just one -4 point:

Case 2. $s=1$.
Theorem 3.5. When $s=1, \Gamma_{1}$ must be one of the following:
(1) $k-A_{n}:\left\{\begin{array}{l}k=0,1,2,3, n \geq 2 k+1 ; \\ k=4,9 \leq n \leq 23 ; \\ k=5,11 \leq n \leq 16 ; \\ k=6,13 \leq n \leq 15 .\end{array}\right.$
(2) $k-D_{n}: k=0,1,2$ with $n \geq k+4$.
(3) $D_{n}^{\prime}: 5 \leq n \leq 15$.
(4) $D_{n}^{\prime \prime}: n=4,5$.
(5) E_{6}, E_{7}, E_{8}.
(6) E_{7}^{\prime}.
(7) $1-E_{6}$.
(8) $E_{6}^{\prime \prime}, E_{7}^{\prime \prime}$.

Here we use the notation $k-A_{n}$ to denote the following graph: $\Gamma_{1}=A_{n}$ and Γ is

with $n \geq 2 k+1.0-A_{n}$ means that the -4 curve connects A_{n} at the left or right end point.

Similarly the notation $1-D_{n}$ means $\Gamma_{1}=D_{n}$, with $n \geq 5$ and Γ is

$0-D_{n}$ means that the -4 curve connects longest branch of D_{n}.
D_{n}^{\prime} is

$D_{n}^{\prime \prime}$ is

$E_{k}, k=6,7,8$ are

E_{7}^{\prime} is

$1-E_{6}$ is

$E_{6}^{\prime \prime}$ is

$E_{7}^{\prime \prime}$ is

Proof. Use the criteria, for $k-A_{n}$ case, we require:

$$
-4+\left|\frac{\operatorname{det}\left(A_{k}\right) \operatorname{det}\left(A_{n-k-1}\right)}{\operatorname{det}\left(A_{n}\right)}\right|<0
$$

i.e.

$$
-4+\frac{(k+1)(n-k)}{n+1}<0 .
$$

Thus we have

$$
k-3<\frac{(k+1)^{2}}{n+1} .
$$

For $k \leq 3$, this is right. For $k \geq 4$, we have

$$
n+1<\frac{(k+1)^{2}}{k-3}
$$

However, when $\Gamma_{1}=k-A_{n}$, we must require $n \geq 2 k+1$. Thus

$$
2 k+1 \leq n<\frac{(k+1)^{2}}{k-3}-1,
$$

which gives

$$
\left\{\begin{array}{l}
9 \leq n \leq 23, k=4 \\
11 \leq n \leq 16, k=5 \\
13 \leq n \leq 15, k=6
\end{array}\right.
$$

For $k-D_{n}$ case, we require:

$$
-4+\left|\frac{\operatorname{det}\left(D_{n-k-1}\right) \operatorname{det}\left(A_{k}\right)}{\operatorname{det}\left(D_{n}\right)}\right|<0
$$

i.e.

$$
-4+k+1<0
$$

Thus $k=0,1,2$, with $n \geq 4+k$.
For D_{n}^{\prime} case, we require:

$$
-4+\left|\frac{\operatorname{det}\left(A_{n-1}\right)}{\operatorname{det}\left(D_{n}\right)}\right|<0
$$

thus $4 \leq n \leq 15$.
For $D_{n}^{\prime \prime}$-case, we require:

$$
-4+\left|\frac{\left.\operatorname{det}\left(A_{n-3}\right) n \operatorname{det}\left(A_{1}\right) \operatorname{det}\left(A_{1}\right)\right)}{\operatorname{det}\left(D_{n}\right)}\right|<0
$$

thus $n=4,5$.
Definition 3.6 (Component factor). Assumptions as in Notation. The component factor of Γ_{j} is defined to be

$$
C F\left(\Gamma_{j}\right):=\frac{\prod_{k=1}^{r_{j}}\left|\operatorname{det}\left(G_{j, k}\right)\right|}{\left|\operatorname{det}\left(\Gamma_{j}\right)\right|} .
$$

Remark 3.7. One should be careful that the component factor of Γ_{j} not only depends on the graph of Γ_{j}, but also depends on the connection way of Γ_{j} with the central curve.

The criteria for tree graph immediately implies:
Corollary 3.8. Assumptions as in Notation. Assume each Γ_{i} is negative definite for $i=1, \ldots, s$. Then the weighted dual graph is negative definite if and only if

$$
E^{2}+\sum C F\left(\Gamma_{i}\right)<0 .
$$

Lemma 3.9. The component factor of graphs in $s=1$ case (cf. Theorem 3.5) is as follows:
(1) $k-A_{n}: k+1-\frac{(k+1)^{2}}{n+1}$.
(2) $k-D_{n}: k+1$.
(3) $D_{n}^{\prime}: \frac{n}{4}$.
(4) $D_{n}^{\prime \prime}: n-2$.
(5) $E_{6}: \frac{4}{3}, E_{7}: \frac{3}{2}, E_{8}: 2$.
(6) $E_{7}^{\prime}: 2$.
(7) $1-E_{6}: \frac{10}{3}$.
(8) $E_{6}^{\prime \prime}: 2, E_{7}^{\prime \prime}: \frac{7}{2}$.

Example 3.10 . Let the weighted dual graph be $D_{n}+E_{8}$: Then by Corollary 3.8 we need to check

$$
-4+C F\left(D_{n}\right)+C F\left(E_{8}\right)=-4+1+2<0,
$$

which is satisfied. Furthermore, by Corollary 3.9 (5)(6) and (8), we know that $D_{n}+E_{7}^{\prime}$, $D_{n}+E_{6}^{\prime \prime}$ are negative-definite because $C F\left(E_{8}\right)=C F\left(E_{7}^{\prime}\right)=C F\left(E_{6}^{\prime \prime}\right)=2$.

To classify all the possible Γ_{i} we need to know the lower bound of each component factor. For $\Gamma_{i}=k-A_{n}$, the lower bound is taken when $n=2 k+1$:

$$
C F\left(k-A_{n}\right) \geq k+1-\frac{k+1}{2}=\frac{k+1}{2} .
$$

Thus the smallest number of component factor of $k-A_{n}$ is $1 / 2$, and is taken when $k=0, n=1$. The lower bound of other graphs are listed below:

$$
C F\left(k-D_{n}\right) \geq 1, C F\left(D_{n}^{\prime}\right) \geq \frac{5}{4}, C F\left(D_{n}^{\prime \prime}\right) \geq 2
$$

Case 3. $s=2$.
Theorem 3.11. Let $s=2$, when $\Gamma_{1}=k_{1}-A_{n_{1}}$, then $\Gamma_{1}+\Gamma_{2}$ must be one of the following:
(1) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right):$

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}+\frac{\left(k_{2}+1\right)^{2}}{n_{2}+1}>k_{1}+k_{2}-2 .
$$

(2) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right):$

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}+k_{2}-2
$$

(3) $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)$:

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}+\frac{n_{2}}{4}-3 .
$$

(4) $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime \prime}\right)$:

If $n_{2}=4, k_{1}=0,1$, then n_{1} can be arbitrary.
If $n_{2}=4, k_{1}=2$, then $n_{1}=5,6,7,8$.
If $n_{2}=5$, then $k_{1}=0$ and n_{1} arbitrary.
(5) $\left(k_{1}-A_{n_{1}}\right)+\left(E_{6}\right)$:

If $k_{1}=0,1, n_{1}$ can be arbitrary.
If $k_{1}=2$, then $5 \leq n_{1} \leq 26$.
(6) $\left(k_{1}-A_{n_{1}}\right)+\left(E_{7}\right)$:

If $k_{1}=0,1, n_{1}$ can be arbitrary.
If $k_{1}=2$, then $5 \leq n_{1} \leq 17$.
(7) $\left(k_{1}-A_{n_{1}}\right)+\left(E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$:

If $k_{1}=0,1, n_{1}$ can be arbitrary.
If $k_{1}=2$, then $n_{1}=5,6,7,8$.
(8) $\left(A_{1}\right)+\left(1-E_{6}\right)$.

Proof. We have already known that $C F\left(A_{1}\right)=1 / 2$, thus when $\Gamma_{1}=k_{1}-A_{n_{1}}$, we only require

$$
C F\left(\Gamma_{2}\right)<4-C F\left(A_{1}\right)=4-1 / 2=7 / 2
$$

which gives (1) to (8). (1) to (3) are simply component factor inequality. We discuss (4) to (8).
(4): If $n_{2}=4$, then it is same as (7) (See below). If $n_{2}=5$, then

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}+n_{2}-5=k_{1}
$$

which holds only when $k_{1}=0$. And in this case, n_{1} can be arbitrary.
(5): The component factor inequality shows

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}-\frac{5}{3} .
$$

Thus if $k_{1}=0,1, n_{1}$ can be arbitrary. If $k_{1}=2$, then

$$
\frac{9}{n_{1}+1}>\frac{1}{3}
$$

thus $5 \leq n_{1}<27$.
(6): The component factor inequality shows

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}-\frac{3}{2}
$$

Thus if $k_{1}=0,1, n_{1}$ can be arbitrary. If $k_{1}=2$, then

$$
\frac{9}{n_{1}+1}>\frac{1}{2}
$$

thus $5 \leq n_{1}<18$.
(7): The component factor inequality shows

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>k_{1}-1
$$

Thus if $k_{1}=0,1, n_{1}$ can be arbitrary. If $k_{1}=2$, then

$$
\frac{9}{n_{1}+1}>1
$$

thus $n_{1}=5,6,7,8$.
(8): $C F\left(1-E_{6}\right)=10 / 3>3$, thus $k_{1}=0$. The component factor inequality shows

$$
\frac{1}{n_{1}+1}>\frac{1}{3}
$$

So $n_{1}=1$.
Theorem 3.12. Let $s=2$, when $\Gamma_{1}=k_{1}-D_{n_{1}}$ and $\Gamma_{2} \neq k_{2}-A_{n_{2}}$, then $\Gamma_{1}+\Gamma_{2}$ must be one of the following:
(1) $\left(D_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right): k_{2}=0,1$.
(2) $\left(k_{1}-D_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)$: $k_{1}=0,5 \leq n_{2} \leq 11$. $k_{1}=1,5 \leq n_{2} \leq 7$.
(3) $\left(D_{n_{1}}\right)+\left(D_{4}^{\prime \prime}\right)$.
(4) $\left(k_{1}-D_{n_{1}}\right)+\left(E_{6}, E_{7}\right): k_{1}=1,2$.
(5) $\left(D_{n_{1}}\right)+\left(E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$.

Proof. $C F\left(k_{1}-D_{n_{1}}\right)=k_{1}+1$, thus the bound of k_{1} is $4-C F\left(\Gamma_{2}\right)$. And $C F\left(\Gamma_{2}\right)<4-C F\left(D_{n}\right)=3$, which gives (1) to (5).

Theorem 3.13. Let $s=2$, when $\Gamma_{1}=D_{n_{1}}^{\prime}$ and $\Gamma_{2} \neq k_{2}-A_{n_{2}}$ or $k_{2}-D_{n_{2}}$, then $\Gamma_{1}+\Gamma_{2}$ must be one of the following:
(1) $\left(D_{n_{1}}^{\prime}\right)+\left(D_{n_{2}}^{\prime}\right)$:

$$
16>n_{1}+n_{2}
$$

(2) $\left(D_{n_{1}}^{\prime}\right)+\left(E_{6}\right): 5 \leq n_{1} \leq 10$.
(3) $\left(D_{n_{1}}^{\prime}\right)+\left(E_{7}\right): 5 \leq n_{1} \leq 9$.
(4) $\left(D_{n_{1}}^{\prime}\right)+\left(D_{4}^{\prime \prime}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right): n_{1}=5,6,7,8$.

Theorem 3.14. Let $s=2$, besides Theorem 3.11, Theorem 3.12 and Theorem 3.13, the rest $\Gamma_{1}+\Gamma_{2}$ must be one of the following:
(1) $\left(D_{4}^{\prime \prime}\right)+\left(E_{6}, E_{7}\right)$:
(2) $\left(E_{6}\right)+\left(E_{6}, E_{7}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$.
(3) $\left(E_{7}\right)+\left(E_{7}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$.

Case 4. $s=3$.
Theorem 3.15. Let $s=3$, when $\Gamma_{1}=k_{1}-A_{n_{1}}$ and $\Gamma_{2}=k_{2}-A_{n_{2}}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right): k_{1}+k_{2}+k_{3} \leq 4$.

If $k_{1}+k_{2}+k_{3} \leq 1$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-1+\sum_{i=1}^{3} k_{i} .
$$

(2) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-D_{n_{3}}\right): k_{1}+k_{2}+2 k_{3} \leq 3$.

If $k_{1}+k_{2}+k_{3} \leq 1$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-1+\sum_{i=1}^{3} k_{i} .
$$

(3) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right): 2 k_{1}+2 k_{2}+n_{3} \leq 11$.

If $4 k_{1}+4 k_{2}+n_{3} \leq 8$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-2+\frac{n_{3}}{4}+\sum_{i=1}^{2} k_{i}
$$

(4) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime \prime}\right): k_{1}+k_{2}+n_{3} \leq 9$.. If $k_{1}=k_{2}=0, n_{3}=4$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>n_{3}-4+\sum_{i=1}^{2} k_{i}
$$

(5) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(E_{6}\right): k_{1}+k_{2} \leq 3$.

If $k_{1}=k_{2}=0$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-\frac{2}{3}+\sum_{i=1}^{2} k_{i} .
$$

(6) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(E_{7}\right): k_{1}+k_{2} \leq 2$.

If $k_{1}=k_{2}=0$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-\frac{1}{2}+\sum_{i=1}^{2} k_{i} .
$$

(7) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right): k_{1}+k_{2} \leq 1$.

If $k_{1}=k_{2}=0$, then n_{i} can be arbitrary. If else, then n_{i} must satisfy

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=1}^{2} k_{i}
$$

Proof. (1): By computing component factor we get:

$$
\sum_{i=1}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-1+\sum_{i=1}^{3} k_{i}
$$

If $k_{1}+k_{2}+k_{3} \leq 1$, then n_{i} can be arbitrary. The rest is to discuss the bound of k_{i}. The lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ is $\left(k_{i}+1\right) / 2$ when $n_{i}=2 k_{i}+1$. In this case, the inequality can be exchanged to

$$
4>\sum_{i=1}^{3} \frac{k_{i}+1}{2}
$$

Thus

$$
\sum_{i=1}^{3} k_{i} \leq 4
$$

(2): Similar as (1), by computing component factor we get:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-1+\sum_{i=1}^{3} k_{i} .
$$

if $k_{1}+k_{2}+k_{3} \leq 1$ then n_{i} can be arbitrary. Now consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+k_{3}+1,
$$

i.e.

$$
k_{1}+k_{2}+2 k_{3} \leq 3
$$

(3): By computing component factor we get:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-2+\frac{n_{3}}{4}+\sum_{i=1}^{2} k_{i} .
$$

Consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+\frac{n_{3}}{4}
$$

i.e.

$$
2 k_{1}+2 k_{2}+n_{3} \leq 11
$$

(4): By computing component factor we get: $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime \prime}\right)$:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>n_{3}-4+\sum_{i=1}^{2} k_{i} .
$$

Consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+n_{3}-2,
$$

i.e.

$$
k_{1}+k_{2}+n_{3} \leq 9
$$

(5): By computing component factor we get:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-\frac{2}{3}+\sum_{i=1}^{2} k_{i} .
$$

Consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+\frac{4}{3}
$$

i.e.

$$
k_{1}+k_{2} \leq 3
$$

(6): By computing component factor we get:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>-\frac{1}{2}+\sum_{i=1}^{2} k_{i} .
$$

Consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+\frac{3}{2}
$$

i.e.

$$
k_{1}+k_{2} \leq 2
$$

(7): By computing component factor we get:

$$
\sum_{i=1}^{2} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=1}^{2} k_{i}
$$

Consider the lower bound of $C F\left(k_{i}-A_{n_{i}}\right)$ we get

$$
4>\frac{k_{1}+1}{2}+\frac{k_{2}+1}{2}+2,
$$

i.e.

$$
k_{1}+k_{2} \leq 1
$$

Theorem 3.16. Let $s=3$, when $\Gamma_{1}=k_{1}-A_{n_{1}}$ and $\Gamma_{2}=k_{2}-D_{n_{2}}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(k_{3}-D_{n_{3}}\right): k_{1} \leq 2, k_{2}=k_{3}=0$ or $k_{1}=k_{3}=$ $0, k_{2}=1$.
If $k_{1}=2$ then $n_{1}=5,6,7, n_{2}, n_{3}$ can be arbitrary.
If else, all n_{i} can be arbitrary.
(2) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right): 2 k_{1}+4 k_{2}+n_{3} \leq 9, n_{3} \geq 5$. And

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-2+\frac{n_{3}}{4}+\sum_{i=1}^{2} k_{i}
$$

(3) $\left(A_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{4}^{\prime \prime}\right): n_{1}, n_{2}$ can be arbitrary.
(4) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(E_{6}\right): k_{1}=0,1,2, k_{2}=0$ or $k_{1}=0, k_{2}=1$. And

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-\frac{2}{3}+\sum_{i=1}^{2} k_{i} .
$$

(5) $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(E_{7}\right): k_{1}=0,1, k_{2}=0$. And

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-\frac{1}{2}+k_{1} .
$$

(6) $\left(A_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right): n_{1}, n_{2}$ can be arbitrary.

Proof. (1): The lower bound of $C F\left(k_{1}-A_{n_{1}}\right)$ shows that

$$
4>\frac{k_{1}+1}{2}+k_{2}+1+k_{3}+1,
$$

i.e.

$$
k_{1}+2 k_{2}+2 k_{3} \leq 2
$$

Thus it holds only when $k_{1} \leq 2, k_{2}=k_{3}=0$ or $k_{1}=k_{3}=0, k_{2}=1$. The component factor shows that

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-1+\sum_{i=1}^{3} k_{i} .
$$

Note when $k_{1}+k_{2}+k_{3} \leq 1$ then n_{i} can be arbitrary. When $k_{1}=2, k_{2}=k_{3}=0$, then

$$
\frac{9}{n_{1}+1}>1
$$

i.e. $n_{1}<8$. Thus $5=2 k_{1}+1 \leq n_{1} \leq 7$.
(2): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+k_{2}+1+\frac{n_{3}}{4},
$$

i.e.

$$
9 \geq 2 k_{1}+4 k_{2}+n_{3}
$$

The component factor gives

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-2+\frac{n_{3}}{4}+\sum_{i=1}^{2} k_{i} .
$$

Note $n_{3} \geq 5$, thus

$$
2 k_{1}+4 k_{2} \leq 4
$$

Only $k_{1}=0,1,2, k_{2}=0$ or $k_{1}=0, k_{2}=1$ is permitted.
(3): Consider $\left(k_{1}-A_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(D_{n_{3}}^{\prime \prime}\right)$. The lower bound shows

$$
4>\frac{k_{1}+1}{2}+k_{2}+1+n_{3}-2
$$

i.e.

$$
9>k_{1}+2 k_{2}+2 n_{3}
$$

However, $n_{3} \geq 4$, thus $n_{3}=4, k_{1}=k_{2}=0$. The component factor gives

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-2+n_{3}-2+\sum_{i=1}^{2} k_{i}
$$

i.e.

$$
\frac{1}{n_{1}+1}>-2+2
$$

which always holds.
(4): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+k_{2}+1+\frac{4}{3},
$$

i.e.

$$
\frac{7}{3}>k_{1}+2 k_{2}
$$

Thus $k_{1}=0,1,2, k_{2}=0$ or $k_{1}=0, k_{2}=1$.
(5): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+k_{2}+1+\frac{3}{2}
$$

i.e.

$$
2>k_{1}+2 k_{2}
$$

Thus $k_{1}=0,1, k_{2}=0$.
(6): This is same as (3).

Theorem 3.17. Let $s=3$, when $\Gamma_{1}=k_{1}-A_{n_{1}}$ and $\Gamma_{2}=D_{n_{2}}^{\prime}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)+\left(D_{n_{3}}^{\prime}\right): k_{1}=0,1$. $2 k_{1}+n_{2}+n_{3} \leq 13, n_{2}, n_{3} \geq 5$. And

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-3+\frac{n_{2}+n_{3}}{4}+k_{1} .
$$

(2) $\left(A_{n_{1}}\right)+\left(D_{5}^{\prime}\right)+\left(D_{4}^{\prime \prime}\right): n_{1}=1,2$.
(3) $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)+\left(E_{6}\right): k_{1}=0,1$. $2 k_{1}+n_{2} \leq 8, n_{2} \geq 5$. And

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>\frac{n_{2}}{4}-\frac{8}{3}+k_{1} .
$$

(4) $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)+\left(E_{7}\right): k_{1}=0,1$.

$$
2 k_{1}+n_{2} \leq 7, n_{2} \geq 5 . \text { And }
$$

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>\frac{n_{2}}{4}-\frac{3}{2}+k_{1} .
$$

(5) $\left(A_{n_{1}}\right)+\left(D_{5}^{\prime}\right)+\left(E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right): n_{1}=1,2$.

Proof. (1): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+\frac{n_{2}+n_{3}}{4}
$$

i.e.

$$
14>2 k_{1}+n_{2}+n_{3} .
$$

$n_{2}, n_{3} \geq 5$, thus $k_{1}=0,1$.
(2): Consider $\left(k_{1}-A_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)+\left(D_{n_{3}}^{\prime \prime}\right)$. The lower bound shows

$$
4>\frac{k_{1}+1}{2}+\frac{n_{2}}{4}+n_{3}-2
$$

$n_{2} \geq 5, n_{3} \geq 4$, thus $k_{1}=0, n_{2}=5, n_{3}=4$. Then component factor inequality shows that

$$
\frac{1}{n_{1}+1}>-4+2+\frac{5}{4}+1
$$

thus $n_{1}=1,2$.
(3): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+\frac{n_{2}}{4}+\frac{4}{3}
$$

i.e.

$$
\frac{26}{3}>2 k_{1}+n_{2}
$$

Then component factor inequality shows that

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-3+\frac{n_{2}}{4}+\frac{4}{3}+k_{1} .
$$

(4): The lower bound shows

$$
4>\frac{k_{1}+1}{2}+\frac{n_{2}}{4}+\frac{3}{2}
$$

i.e.

$$
8>2 k_{1}+n_{2} .
$$

Thus $k_{1}=0,1$. Then component factor inequality shows that

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}>-3+\frac{n_{2}}{4}+\frac{3}{2}+k_{1} .
$$

(5): The same as (2).

Theorem 3.18. Let $s=3$, when $\Gamma_{1}=k_{1}-A_{n_{1}}$, besides Theorem 3.15, Theorem 3.16 and Theorem 3.17, the rest $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(A_{1}\right)+\left(E_{6}\right)+\left(D_{4}^{\prime \prime}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$.
(2) $\left(k_{1}-A_{n_{1}}\right)+\left(E_{6}\right)+\left(E_{6}\right): k_{1}=0,1$.

If $k_{1}=0$, then n_{1} can be arbitrary. If $k_{1}=1$, then $n_{1}=3,4,5$.
(3) $\left(k_{1}-A_{n_{1}}\right)+\left(E_{6}\right)+\left(E_{7}\right): k_{1}=0,1$.

If $k_{1}=0$, then n_{1} can be arbitrary.
If $k_{1}=1$, then $n_{1}=3$.
(4) $\left(A_{n_{1}}\right)+\left(E_{7}\right)+\left(E_{7}\right): n_{1}$ can be arbitrary.

Proof. (1): Consider $\left(k_{1}-A_{n_{1}}\right)+\left(E_{6}\right)+\left(D_{4}^{\prime \prime}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$. The lower bound shows that

$$
4>\frac{k_{1}+1}{2}+2+\frac{4}{3}
$$

Thus $k_{1}=0$. The component factor inequality gives that

$$
\frac{\left(k_{1}+1\right)^{2}}{n_{1}+1}+4>2+\frac{4}{3}+k_{1}+1
$$

Thus $n_{1}=1$.
(2): The lower bound shows that

$$
4>\frac{k_{1}+1}{2}+\frac{8}{3} .
$$

Thus $k_{1}=0,1$. The component factor inequality gives that if $k_{1}=0$, then n_{1} can be arbitrary, if $k_{1}=1$ then

$$
\frac{4}{n_{1}+1}+4>\frac{8}{3}+1+1
$$

$n_{1} \geq 2 k_{1}+1$, thus when $k_{1}=1, n_{1}=3,4,5$.
(3): The lower bound shows that

$$
4>\frac{k_{1}+1}{2}+\frac{4}{3}+\frac{3}{2}
$$

Thus $k_{1}=0,1$. The component factor inequality gives that if $k_{1}=0$, then n_{1} can be arbitrary, if $k_{1}=1$ then

$$
\frac{4}{n_{1}+1}+4>\frac{4}{3}+\frac{3}{2}+1+1
$$

$n_{1} \geq 2 k_{1}+1$, thus when $k_{1}=1, n_{1}=3$.
(4): Similar as (3).

Theorem 3.19. Let $s=3$, when $\Gamma_{1}=k_{1}-D_{n_{1}}$, and $\Gamma_{2} \neq k_{2}-A_{n_{2}}, \Gamma_{3} \neq$ $k_{3}-A_{n_{3}}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(D_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{n_{3}}\right)$.
(2) $\left(D_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right): n_{3}=5,6,7$.
(3) $\left(D_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(E_{6}, E_{7}\right)$.
(4) $\left(D_{n_{1}}\right)+\left(D_{5}^{\prime}\right)+\left(D_{n_{3}}^{\prime}\right): n_{3}=5,6$.
(5) $\left(D_{n_{1}}\right)+\left(D_{n_{2}}^{\prime}\right)+\left(E_{6}\right): n_{2}=5,6$.
(6) $\left(D_{n_{1}}\right)+\left(D_{5}^{\prime}\right)+\left(E_{7}\right)$.
(7) $\left(D_{n_{1}}\right)+\left(E_{6}\right)+\left(E_{6}, E_{7}\right)$.

Proof. Firstly by computing component factor of $\left(k_{1}-D_{n_{1}}\right)+\left(k_{2}-D_{n_{2}}\right)+\left(k_{3}-\right.$ $D_{n_{3}}$) we know

$$
4>k_{1}+1+k_{2}+1+k_{3}+1
$$

Thus $k_{1}=k_{2}=k_{3}=0$.
For $\Gamma_{i} \neq k_{i}-A_{n_{i}}$, we have $C F\left(\Gamma_{i}\right) \geq C F\left(D_{n_{i}}\right)=1$. Thus for $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ with $\Gamma_{i} \neq k_{i}-A_{n_{i}}$, if some $\Gamma_{i}=k_{i}-D_{n_{i}}$, then $k_{i}=0$. The rest is to compute component factor, we omit here.

Theorem 3.20. Let $s=3$, when $\Gamma_{1}=D_{n_{1}}^{\prime}$, and $\Gamma_{2} \neq k_{2}-A_{n_{2}}$ or $k_{2}-D_{n_{2}}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}$ must be one of the following:
(1) $\left(D_{5}^{\prime}\right)+\left(D_{5}^{\prime}\right)+\left(D_{5}^{\prime}\right)$.
(2) $\left(D_{5}^{\prime}\right)+\left(D_{5}^{\prime}\right)+\left(E_{6}\right)$.
(3) $\left(D_{5}^{\prime}\right)+\left(E_{6}\right)+\left(E_{6}\right)$.

Proof. The criteria shows that above three are permitted. One may consider $D_{5}^{\prime}+E_{6}+E_{7}, D_{5}^{\prime}+D_{5}^{\prime}+E_{7}, D_{5}^{\prime}+D_{5}^{\prime}+D_{6}^{\prime}$ which are not permitted.

Later we will not emphasize on the inequality induced by component factor if there is no further conclusions.

Case 5. $s=4$.
Theorem 3.21. Let $s=4$, then there must be some i such that $\Gamma_{i}=k_{1}-A_{n_{i}}$. Assume $\Gamma_{1}=k_{1}-A_{n_{1}}$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}$ must be one of the following:
(1) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)$:

$$
\frac{1}{n_{1}+1}+\sum_{i=2}^{4} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=2}^{4} k_{i} .
$$

(2) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right)+\left(k_{4}-D_{n_{4}}\right)$:

$$
\frac{1}{n_{1}+1}+\sum_{i=2}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=2}^{4} k_{i} .
$$

(3) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right)+\left(D_{n_{4}}^{\prime}\right)$:

$$
\frac{1}{n_{1}+1}+\sum_{i=2}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=2}^{3} k_{i}+\frac{n_{4}}{4}-1
$$

(4) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right)+\left(E_{6}\right)$:

$$
\frac{1}{n_{1}+1}+\sum_{i=2}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=2}^{3} k_{i}+\frac{1}{3}
$$

(5) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-A_{n_{3}}\right)+\left(E_{7}\right)$:

$$
\frac{1}{n_{1}+1}+\sum_{i=2}^{3} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>\sum_{i=2}^{3} k_{i}+\frac{1}{2}
$$

(6) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(D_{4}^{\prime \prime}, E_{8}, E_{7}^{\prime}, E_{6}^{\prime \prime}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}>1
$$

(7) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-D_{n_{3}}\right)+\left(D_{n_{4}}^{\prime}\right)$:

$$
\frac{1}{n_{1}+1}+\frac{\left(k_{2}+1\right)^{2}}{n_{2}+1}>\sum_{i=2}^{3} k_{i}+\frac{n_{4}}{4}-1
$$

(8) $\left(A_{n_{1}}\right)+\left(k_{2}-A_{n_{2}}\right)+\left(k_{3}-D_{n_{3}}\right)+\left(E_{6}\right)$:

$$
\frac{1}{n_{1}+1}+\frac{\left(k_{2}+1\right)^{2}}{n_{2}+1}>\sum_{i=2}^{3} k_{i}+\frac{1}{3} .
$$

(9) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(D_{n_{3}}\right)+\left(E_{7}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>\frac{1}{2}
$$

(10) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right)+\left(D_{n_{4}}^{\prime}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>k_{2}+\frac{n_{3}+n_{4}}{4}-2
$$

(11) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right)+\left(E_{6}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>\frac{n_{3}}{4}-\frac{2}{3}
$$

(12) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(D_{n_{3}}^{\prime}\right)+\left(E_{7}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>\frac{n_{3}}{4}-\frac{1}{2}
$$

(13) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(E_{6}\right)+\left(E_{6}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>\frac{2}{3}
$$

(14) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(E_{6}\right)+\left(E_{7}\right)$:

$$
\sum_{i=1}^{2} \frac{1}{n_{i}+1}>\frac{5}{6}
$$

(15) $\left(A_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{n_{3}}\right)+\left(D_{n_{4}}\right)$.
(16) $\left(A_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{n_{3}}\right)+\left(D_{n_{4}}^{\prime}\right)$:

$$
\frac{1}{n_{1}+1}>\frac{n_{4}}{4}-1
$$

(17) $\left(A_{n_{1}}\right)+\left(D_{n_{2}}\right)+\left(D_{n_{3}}\right)+\left(E_{6}\right): n_{1}=1,2$.

Proof. If $\Gamma_{i} \neq A_{n_{i}}$ for all $i=1,2,3,4$. Then the lower bound of $C F\left(\Gamma_{i}\right)$ will give

$$
\sum_{i=1}^{4} C F\left(\Gamma_{i}\right)>1+1+1+1=4
$$

which means negative definiteness is not satisfied. Thus there must be at least one $\Gamma_{i}=A_{n_{i}}$. With out loss of generality let $\Gamma_{1}=A_{n_{1}}$. Note the lower bound of $\operatorname{CF}\left(A_{n_{i}}\right)=1 / 2$, when $n_{i}=1$. Thus the criteria tells us

$$
C F\left(\Gamma_{2}\right)+C F\left(\Gamma_{3}\right)+C F\left(\Gamma_{4}\right)<\frac{7}{2}
$$

Thus, for example, $A_{n_{1}}+D_{n_{2}}+D_{n_{3}}^{\prime}+D_{n_{4}}^{\prime}$ is not permitted. Next, we consider $\Gamma_{2}=k_{2}-A_{n_{2}}$. If $k_{2}=1$, then we must require

$$
C F\left(\Gamma_{3}\right)+C F\left(\Gamma_{4}\right)<4-C F\left(A_{1}\right)-C F\left(1-A_{3}\right)=\frac{5}{2},
$$

Thus when $C F\left(\Gamma_{3}\right)+C F\left(\Gamma_{4}\right) \geq 5 / 2, k_{2}=0$. This gives above all cases.
Case 6. $s=5$.
Theorem 3.22. Let $s=5$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}$ must be one of the following
(1) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)+\left(k_{5}-A_{n_{5}}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}+\sum_{i=4}^{5} \frac{\left(k_{i}+1\right)^{2}}{n_{i}+1}>k_{4}+k_{5}+1
$$

(2) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)+\left(k_{5}-D_{n_{5}}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}+\frac{\left(k_{4}+1\right)^{2}}{n_{4}+1}>k_{4}+k_{5}+1
$$

(3) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)+\left(D_{n_{5}}^{\prime}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}+\frac{\left(k_{4}+1\right)^{2}}{n_{4}+1}>k_{4}+\frac{n_{5}}{4}
$$

(4) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)+\left(E_{6}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}+\frac{\left(k_{4}+1\right)^{2}}{n_{4}+1}>k_{4}+\frac{4}{3}
$$

(5) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(k_{4}-A_{n_{4}}\right)+\left(E_{7}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}+\frac{\left(k_{4}+1\right)^{2}}{n_{4}+1}>k_{4}+\frac{3}{2}
$$

(6) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(D_{n_{4}}\right)+\left(D_{n_{5}}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}>1
$$

(7) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(D_{n_{4}}\right)+\left(D_{n_{5}}^{\prime}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}>\frac{n_{5}}{4}
$$

(8) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(D_{n_{4}}\right)+\left(E_{6}\right)$:

$$
\sum_{i=1}^{3} \frac{1}{n_{i}+1}>\frac{4}{3}
$$

Proof. Similar as the discussion in $s=4$ case, we can assume $\Gamma_{1}=A_{n_{1}}, \Gamma_{2}=A_{n_{2}}$, $\Gamma_{3}=A_{n_{3}}$. The rest is to consider component factor, which we omit here.

Case 7. $s=6$.
Theorem 3.23. Let $s=6$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}$ must be one of the following:
(1) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(A_{n_{4}}\right)+\left(A_{n_{5}}\right)+\left(k_{6}-A_{n_{6}}\right): k_{6}=0,1$.

$$
\sum_{i=1}^{5} \frac{1}{n_{i}+1}+\frac{\left(k_{6}+1\right)^{2}}{n_{6}+1}>2+k_{6}
$$

(2) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(A_{n_{4}}\right)+\left(A_{n_{5}}\right)+\left(k_{6}-D_{n_{6}}\right)$:

$$
\sum_{i=1}^{5} \frac{1}{n_{i}+1}>2+k_{6}
$$

(3) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(A_{n_{4}}\right)+\left(A_{n_{5}}\right)+\left(D_{n_{6}}^{\prime}\right)$:

$$
\sum_{i=1}^{5} \frac{1}{n_{i}+1}>1+\frac{n_{6}}{4}
$$

(4) $\left(A_{n_{1}}\right)+\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right)+\left(A_{n_{4}}\right)+\left(A_{n_{5}}\right)+\left(E_{6}\right)$:

$$
\sum_{i=1}^{5} \frac{1}{n_{i}+1}>\frac{7}{3}
$$

Proof. Similar as above we can show there must be at least five $A_{n_{i}}$ in $\Gamma_{1}, \ldots, \Gamma_{6}$. Thus

$$
C F\left(\Gamma_{6}\right)<1-5 \cdot C F\left(A_{1}\right)=\frac{5}{2}
$$

which gives (1) to (4).
Case 8. $s=7$.
Theorem 3.24. When $s=7$, then $\Gamma_{1}+\Gamma_{2}+\Gamma_{3}+\Gamma_{4}+\Gamma_{5}+\Gamma_{6}+\Gamma_{7}$ must be one of the following:

$$
A_{n_{1}}+A_{n_{2}}+A_{1}+A_{1}+A_{1}+A_{1}+A_{1}: n_{2}=1, n_{1} \text { arbitrary or } n_{2}=2, n_{1}=2,3,4
$$

Proof. It is easy to show that all Γ_{i} must be $A_{n_{i}}$. The component factor inequality shows that

$$
\sum_{i=1}^{7} \frac{1}{n_{i}+1}>3
$$

Without loss of generality we can assume $n_{1} \geq n_{2} \geq \ldots \geq n_{7}$. Thus

$$
\frac{7}{n_{7}+1} \geq 3
$$

This means $n_{7}=1$. Take $n_{7}=1$ into inequality we get

$$
\sum_{i=1}^{6} \frac{1}{n_{i}+1}>\frac{5}{2}
$$

This means $n_{6}=1$. Repeat this argument we stops at

$$
\frac{1}{n_{1}+1}+\frac{1}{n_{2}+1}>\frac{1}{2}
$$

Thus $n_{2}=1, n_{1}$ arbitrary or $n_{2}=2, n_{1}=2,3,4$.
4. Component factor of non-tree graphs and classfication. In this section, we explain the definition of component factor for loop graph and multiple edge graphs. Then we generalize the criteria for tree graph and use it to classify all possible the non-tree graphs. Similarly as some $E_{j}^{2}=-3$ presented in [28], the following two cases are allowed:

and

We first consider loop case, it is easy to show that

are not negative definite. Thus we only need to consider one loop case.
Notation. Denote the total graph as Γ. Let E be a point in loop. Denote the two points in loop connected to E as F_{1}, F_{2}. Denote the tree subgraphs connected to loop as $G, H_{1} . H_{2}, G_{1}, \ldots, G_{s}$, where G is connected to E and H_{1}, H_{2} are connected to F_{1}, F_{2} respectively. Removing point E and subgraph G to get a tree graph, we denote it as R_{E}. Removing point E and E_{i} together with G and H_{i} to get two treegraphs, we denote it as $R_{i}, i=1,2$. Denote $E-G$ as E_{G}.
Total graph Γ :

Total graph $\Gamma:\left(\right.$ We omit $\left.G_{i}, i=1, \ldots, s.\right)$

R_{E} :

$R_{1}:$

R_{2} :

E_{G} :

$$
E-G
$$

Theorem 4.1 (Loop determinant formula). Assumptions as in Notation. Then

$$
\begin{aligned}
\operatorname{det}(\Gamma)= & \operatorname{det}\left(R_{E}\right) \operatorname{det}\left(E_{G}\right)-\operatorname{det}(G) \operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)-\operatorname{det}(G) \operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right) \\
& -(-1)^{L} \cdot 2 \operatorname{det}(G) \operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)
\end{aligned}
$$

where L is the number of points in the loop.
Proof. We begin with the simplist case that $G, G_{i}=\emptyset$, and F_{1}, F_{2} are connected. Then

$$
\Gamma=\left(\begin{array}{ccccc}
E^{2} & 1 & 1 & 0 & 0 \\
1 & F_{1} & 1 & 1 & 0 \\
1 & 1 & F_{2} & 0 & 1 \\
0 & 1 & 0 & H_{1} & 0 \\
0 & 0 & 1 & 0 & H_{2}
\end{array}\right)
$$

Using Laplacian expansion we get

$$
\operatorname{det}(\Gamma)=E^{2} \operatorname{det}\left(R_{E}\right)-\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & F_{2} & 0 & 1 \\
0 & 0 & H_{1} & 0 \\
0 & 1 & 0 & H_{2}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cccc}
1 & F_{1} & 1 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & H_{1} & 0 \\
0 & 0 & 0 & H_{2}
\end{array}\right)
$$

While

$$
\begin{gathered}
\operatorname{det}\left(\left(\begin{array}{cccc}
1 & 1 & 1 & 0 \\
1 & F_{2} & 0 & 1 \\
0 & 0 & H_{1} & 0 \\
0 & 1 & 0 & H_{2}
\end{array}\right)\right)=\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(\left(\begin{array}{ccc}
1 & 1 & 0 \\
1 & F_{2} & 1 \\
0 & 1 & H_{2}
\end{array}\right)\right) \\
=\operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)-\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right)
\end{gathered}
$$

Similarly, the third term equals

$$
\operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right)-\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right)
$$

Replace E^{2} by $\operatorname{det}\left(E_{G}\right)$, the formula holds.
Now we turn to the case that F_{1}, F_{2} are connected by one point, say A. And G_{1} is connected to A outside the loop, i.e.

$$
\Gamma=\left(\begin{array}{cccccccc}
G & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & E^{2} & 1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & F_{1} & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & A & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & F_{2} & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & H_{1} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & H_{2} & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & G_{1}
\end{array}\right) .
$$

Use Laplacian expansion on E_{G} we get
$\operatorname{det}(\Gamma)=\operatorname{det}\left(E_{G}\right) \operatorname{det}\left(R_{E}\right)$

$$
-\operatorname{det}\left(\begin{array}{ccccccc}
G & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & A & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & F_{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & H_{1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & H_{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & G_{1}
\end{array}\right)-\operatorname{det}\left(\begin{array}{ccccccc}
G & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & A & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & F_{1} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & H_{2} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & H_{1} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & G_{1}
\end{array}\right) .
$$

The second term is

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccccc}
G & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & A & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & F_{2} & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & H_{1} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & H_{2} & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & G_{1}
\end{array}\right)=\operatorname{det}(G) \operatorname{det}\left(\begin{array}{cccccc}
1 & 1 & 0 & 1 & 0 & 0 \\
0 & A & 1 & 0 & 0 & 1 \\
1 & 1 & F_{2} & 0 & 1 & 0 \\
0 & 0 & 0 & H_{1} & 0 & 0 \\
0 & 0 & 1 & 0 & H_{2} & 0 \\
0 & 1 & 0 & 0 & 0 & G_{1}
\end{array}\right) \\
& =\operatorname{det}(G) \operatorname{det}\left(H_{1}\right) \operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & A & 1 & 0 & 1 \\
1 & 1 & F_{2} & 1 & 0 \\
0 & 0 & 1 & H_{2} & 0 \\
0 & 1 & 0 & 0 & G_{1}
\end{array}\right)
\end{aligned}
$$

Expand on first colomn we get

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & A & 1 & 0 & 1 \\
1 & 1 & F_{2} & 1 & 0 \\
0 & 0 & 1 & H_{2} & 0 \\
0 & 1 & 0 & 0 & G_{1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
A & 1 & 0 & 1 \\
1 & F_{2} & 1 & 0 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
A & 1 & 0 & 1 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right) \\
& =\operatorname{det}\left(R_{1}\right)+\operatorname{det}\left(H_{2}\right) \operatorname{det}\left(G_{1}\right) .
\end{aligned}
$$

Take them into $\operatorname{det}(\Gamma)$ we get the formula.
The last thing is to illustrate the $(-1)^{L}$. Note when F_{1}, F_{2} is connected by $L-3$ points, then the expansion

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & A & 1 & 0 & 1 \\
1 & 1 & F_{2} & 1 & 0 \\
0 & 0 & 1 & H_{2} & 0 \\
0 & 1 & 0 & 0 & G_{1}
\end{array}\right)=\operatorname{det}\left(\begin{array}{cccc}
A & 1 & 0 & 1 \\
1 & F_{2} & 1 & 0 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right)+\operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
A & 1 & 0 & 1 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right) \\
& =\operatorname{det}\left(R_{1}\right)+\operatorname{det}\left(H_{2}\right) \operatorname{det}\left(G_{1}\right)
\end{aligned}
$$

changes to

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
0 & A & 1 & 0 & 1 \\
1 & 1 & F_{2} & 1 & 0 \\
0 & 0 & 1 & H_{2} & 0 \\
0 & 1 & 0 & 0 & G_{1}
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cccc}
A & 1 & 0 & 1 \\
1 & F_{2} & 1 & 0 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right)+(-1)^{(L-2)} \operatorname{det}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
A & 1 & 0 & 1 \\
0 & 1 & H_{2} & 0 \\
1 & 0 & 0 & G_{1}
\end{array}\right) \\
& =\operatorname{det}\left(R_{1}\right)+(-1)^{L} \operatorname{det}\left(H_{2}\right) \operatorname{det}\left(G_{1}\right) .
\end{aligned}
$$

When $s \geq 1$, i.e. G_{1}, \ldots, G_{s} connected to A, it does not affect this expansion. Thus the formula is proved.

Remark 4.2. The determinant of $R_{E}, E_{G}, R_{i}, H_{i}, G, G_{i}$ can be computed by using tree graph determinant formula (Theorem 3.3). Compared to tree graph formula, there exists an extra term $2 \operatorname{det}(G) \operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)$.

Example 4.3. Consider the weighted dual graph:

where $E^{2}=-4$. Then $H_{1}=H_{2}=A_{1}, R_{E}=A_{5}, R_{1}=R_{2}=A_{3}$. Thus

$$
\operatorname{det}(\Gamma)=(-4) \cdot(-6)-2 \cdot(-2) \cdot(-4)-2 \cdot-2 \cdot-2=0 .
$$

Theorem 4.4 (Criteria for loop graph). Assumptions as in Notation. Assume furthermore R_{E} and G are negative-definite. Then Γ is negative definite if and only if:
$E^{2}+C F(G)+\left|\frac{\operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(R_{E}\right)}\right|+\left|\frac{\operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right)}{\operatorname{det}\left(R_{E}\right)}\right|+2\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)}{\operatorname{det}\left(R_{E}\right)}\right|<0$.

Proof. Notice that $\left|\operatorname{det}\left(E_{G}\right)\right|=\left|E^{2} \cdot \operatorname{det}(G) \cdot C F(G)\right|$. Thus dividing $\left|\operatorname{det}(G) \operatorname{det}\left(R_{E}\right)\right|$, we know the only if part holds.

For the if part, we construct a rational cycle D such that $D \cdot E<0$ and $D \cdot E_{i}=0$ for any $E_{i} \neq E$ exceptional curve.

First remove the connection between E and F_{1} and together remove G, we get a tree graph:

Use the construction on tree graph (cf. Lemma 3.2) we get a rational cycle D_{2} such that $D_{2} \cdot E<0 . D_{1} \cdot E_{i}=0$. And the coefficient of D_{2} on F_{2} is

$$
\left|\frac{\operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right)}{\operatorname{det}\left(R_{E}\right)}\right| .
$$

We need to compute the coefficient of D_{2} on F_{1}. If all G_{i} are empty then the induction of coefficient tells us the coefficient of D_{2} on F_{1} is

$$
\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right)}{\operatorname{det}\left(R_{E}\right)}\right|
$$

Now if G_{i} is not empty then G_{i} will add a term on numerator, i.e. the coefficient of D_{2} on F_{1} is

$$
\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)}{\operatorname{det}\left(R_{E}\right)}\right| .
$$

Similarly we construct D_{1} by removing G and the connection between E and F_{2}. The coefficient of D_{1} on F_{1} is

$$
\left|\frac{\operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(R_{E}\right)}\right|
$$

on F_{2} is

$$
\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)}{\operatorname{det}\left(R_{E}\right)}\right|
$$

Let D_{3} be the rational cycle constructed on E_{G}.
Let $D=D_{1}+D_{2}+D_{3}-2 E . D \cdot E_{i}=0$ for any $E_{i} \neq F_{1}, F_{2}, E$ because D_{1}, D_{2}, D_{3}, E. $E_{i}=0$ if $E_{i} \neq F_{1}, F_{2}, E$. Meanwhile,

$$
D \cdot F_{1}=\left(D_{1}+D_{2}+D_{3}-2 E\right) \cdot F_{1}=0+1+0-1=0 .
$$

So is $D \cdot F_{2}$. At last

$$
\begin{aligned}
D \cdot E= & E^{2}+C F(G)+\left|\frac{\operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(R_{E}\right)}\right|+\left|\frac{\operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right)}{\operatorname{det}\left(R_{E}\right)}\right| \\
& +2\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)}{\operatorname{det}\left(R_{E}\right)}\right|<0 .
\end{aligned}
$$

Thus Γ is negative-definite by Proposition 2.5.
Definition 4.5 (Component factor for loop graph). Assumptions as in notation. The component factor of R_{E} is defined to be
$C F\left(R_{E}\right)=\left|\frac{\operatorname{det}\left(R_{1}\right) \operatorname{det}\left(H_{1}\right)}{\operatorname{det}\left(R_{E}\right)}\right|+\left|\frac{\operatorname{det}\left(R_{2}\right) \operatorname{det}\left(H_{2}\right)}{\operatorname{det}\left(R_{E}\right)}\right|+2\left|\frac{\operatorname{det}\left(H_{1}\right) \operatorname{det}\left(H_{2}\right) \prod_{i=1} \operatorname{det}\left(G_{i}\right)}{\operatorname{det}\left(R_{E}\right)}\right|$.

Notice that $C F\left(R_{E}\right)$ only depends on the graph and connection way of R_{E} with E.
Corollary 4.6. Assume R_{E} and G are negative-definite. The loop graph is negative-definite if and only if

$$
E^{2}+C F\left(R_{E}\right)+C F(G)<0
$$

Theorem 4.7. The loop graph must be one of the following:
(1) R_{E} is A-type:

$$
\begin{aligned}
& m=4,5, n=0, G=\emptyset \\
& m=3, n=1,2, G=\emptyset \\
& m=2, G=
\end{aligned}
$$

$$
\emptyset ;
$$

$$
A_{n_{2}}, n=0, n_{2}=1,2,3 \text { or } n=1,2, n_{2}=1
$$

$$
m=1, G=
$$

$$
\emptyset ;
$$

$$
D_{n_{2}} ; \quad A_{n_{2}} ; 1-A_{n_{2}}, \text { if } n_{2}=4 \text { then } n=0 \text {, if } n_{2}=3 \text { then } n \geq 0 \text { can be arbitrary. }
$$

$$
A_{n_{2}}+A_{n_{3}}, n_{2}=n_{3}=1, n \geq 0 \text { or } n_{2}=3, n_{3}=2, n=0,1 .
$$

$$
m=0, G=
$$

$\emptyset ;$
$D_{n_{2}} ; \quad 1-A_{n_{2}} ; \quad E_{6}, E_{7} ; \quad 2-A_{n_{2}}, n_{2} \leq 7 ; \quad D_{n_{2}^{\prime}}, n_{2} \leq 7$.
$\left(A_{n_{2}}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(1-A_{3}\right) /\left(D_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(D_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(E_{6}\right) /\left(E_{7}\right) ;$
$\left(1-A_{n_{2}}\right)+\left(A_{1}\right), n_{2} \leq 6 ; \quad\left(1-A_{4}\right)+\left(A_{n_{2}}\right), n_{2} \leq 3 ; \quad\left(D_{5}^{\prime}\right)+\left(A_{n_{2}}\right), n_{2} \leq 2$.
$\left(A_{1}\right)+\left(A_{1}\right)+\left(A_{n_{3}}\right) ;\left(A_{1}\right)+\left(A_{2}\right)+\left(A_{n_{2}}\right), n_{2} \leq 4$.
(2) R_{E} is D-type:
$G=\emptyset$.
$G=A_{n_{2}}, n=0, n_{2} \geq 1$ or $n=1, n_{2} \leq 2$.

Proof. Let E be the -4 point. Then R_{E} must be $A D E$ graph. We first discuss cases in the condition that $G=\emptyset$, i.e. $E_{G}=E$.

Step 1: R_{E} is A-type.
Consider following graph:

$$
R_{E}=A_{n+2}, H_{1}=H_{2}=A_{1}, G_{i}=\emptyset
$$

i.e.

Then $D:=\sum 1 \cdot E_{i}$ is the fundamental cycle with $D \cdot E_{i}=0$ for any exceptional curve E_{i}. Thus this graph has determinant 0 , which is not negative-definite.
When R_{E} is A-type, next we consider the following:

Then

$$
R_{E}=A_{m+n+2}, H_{1}=\emptyset, H_{2}=A_{m}, G=G_{i}=\emptyset, R_{1}=A_{m+n+1}, R_{2}=A_{n+1}
$$

If Γ is negative-definite, then if $m \geq 1$.

$$
-4(m+n+3)+(m+n+2)+(n+2)(m+1)+2(m+1)<0
$$

i.e.

$$
m-2 n+m n-6<0
$$

Thus

$$
\begin{aligned}
& m=0,1,2, n \geq 0 . \\
& m=3, n \leq 2 \\
& m=4,5, n=0 .
\end{aligned}
$$

Step 2: R_{E} is D-type.
In general $R_{E}=D_{n}$ has 5 possibilities:

Where the lines imply the connection to -4 point.
In fact only the first one is permitted. Consider the following graph:

Then

$$
R_{E}=D_{m+n+4}, R_{1}=D_{n+3}, R_{2}=A_{m+n+3}, H_{1}=A_{m}, H_{2}=A_{1} .
$$

If Γ is negative-definite, then

$$
-4 \cdot 4+4 \cdot(m+1)+(m+n+4)+2 \cdot 2 \cdot(m+1)<0 .
$$

Thus $m=0, n \leq 3$. The rest cases are not permitted by computing similarly.
Step 3: R_{E} is E-type.
We use $R_{E}=E_{6}$ as an example, the rest are similar. Consider the following graph:

Then

$$
\operatorname{det}(\Gamma)=-4 \cdot \operatorname{det}\left(E_{6}\right)-2 \cdot \operatorname{det}\left(D_{5}\right)-2 \cdot \operatorname{det}\left(A_{1}\right)=0
$$

If we change the connection way of E with $R_{E}=E_{6}$, then $-2 \cdot \operatorname{det}\left(D_{5}\right)-2 \cdot \operatorname{det}\left(A_{1}\right)$ will be exchanged for larger value terms. Thus $R_{E}=E_{6}$ is not permitted. Similarly
for $R_{E}=E_{7}$ and E_{8}.
Step 4: G is not empty.
By Step 1,2 and 3, we know that the only possibilities for G nonempty are the followings:

We use Corollary 4.6 to determine G. First we consider the case R_{E} is A-type.

$$
\left|\operatorname{det}\left(R_{E}\right)\right|=m+n+3,\left|\operatorname{det}\left(R_{1}\right)\right|=m+n+2,\left|\operatorname{det}\left(R_{2}\right)\right|=n+2,\left|\operatorname{det}\left(H_{2}\right)\right|=m+1
$$

This shows

$$
C F\left(R_{E}\right)=\frac{m n+5 m+2 n+6}{m+n+3}=\frac{m n+3 m}{m+n+3}+2=\frac{-m^{2}}{m+n+3}+m+2 .
$$

We can compute $C F\left(R_{E}\right)$ of cases listed in Step 1:

$$
\begin{aligned}
& m=0, C F\left(R_{E}\right)=2 . \\
& m=1, C F\left(R_{E}\right)=3-\frac{1}{n+4} . \\
& m=2, C F\left(R_{E}\right)=4-\frac{4}{n+5} . \\
& m=3, n=1, C F\left(R_{E}\right)=5-\frac{9}{3+1+3}=4-\frac{2}{7} . \\
& m=3, n=2, C F\left(R_{E}\right)=5-\frac{9}{3+2+3}=4-\frac{1}{8} . \\
& m=4, n=0, C F\left(R_{E}\right)=6-\frac{16}{7}=4-\frac{2}{7} . \\
& m=5, n=0, C F\left(R_{E}\right)=7-\frac{25}{8}=4-\frac{1}{8} .
\end{aligned}
$$

Note $C F\left(A_{1}\right)=1 / 2$, thus $m=3,4,5$ cannot connect more subgraphs.
When $m=2$, then $G=A_{n_{2}}$ and

$$
4-\frac{4}{n+5}+1-\frac{1}{n_{2}+1}-4<0
$$

i.e.

$$
1<\frac{4}{n+5}+\frac{1}{n_{2}+1}
$$

Thus $n=0, n_{2}=1,2,3$ or $n=1,2, n_{2}=1$.
When $m=1$, then $C F(G)<1+1 /(n+4)$. Thus $G=D_{n_{2}}$ is satisfied.
When $G=k_{2}-A_{n_{2}}$ then

$$
k_{2}+1-\frac{\left(k_{2}+1\right)^{2}}{n_{2}+1}<1+\frac{1}{n+4}
$$

So $k_{2}=0$ is always satisfied. When $k_{2}=1$ then

$$
1<\frac{1}{n+4}+\frac{4}{n_{2}+1}
$$

Note $n_{2} \geq k_{2}+1=3$, thus $n=0, n_{2}=4$ or $n_{2}=3, n \geq 0 . k_{2} \geq 2$ is not permitted by lower bound of $C F\left(k_{2}-A_{n_{2}}\right) \geq 3 / 2>1+1 /(n+4)$.
When $G=A_{n_{2}}+A_{n_{3}}$ then

$$
1<\frac{1}{n+4}+\frac{1}{n_{2}+1}+\frac{1}{n_{3}+1}
$$

i.e. $n_{2}=n_{3}=1, n \geq 0$ or $n_{2}=3, n_{3}=2, n=0,1$.

The case $m=0$ is the same as tree graph with some $\Gamma_{i}=\left(E_{6}^{\prime \prime}, E_{7}^{\prime}, E_{8}\right)$, we list them in the theorem.
Next we consider the case R_{E} is D-type.

$$
\left|\operatorname{det}\left(R_{E}\right)\right|=4,\left|\operatorname{det}\left(R_{1}\right)\right|=4,\left|\operatorname{det}\left(R_{2}\right)\right|=n+4,\left|\operatorname{det}\left(G_{1}\right)\right|=2 .
$$

This shows

$$
C F\left(R_{E}\right)=\frac{4+n+4+2 \cdot 2}{4}=\frac{n}{4}+3 .
$$

Thus $C F(G)<1-\frac{n}{4}, G$ must be $A_{n_{2}}$ and

$$
\frac{1}{n_{2}+1}>\frac{n}{4}
$$

So

$$
\begin{aligned}
& n=0, n_{2} \geq 1 \\
& n=1, \\
& n
\end{aligned}
$$

Next we consider multiple edge graph. The criteria for multiple edge graph is similar. To be more specific, we present it as follows:

Definition 4.8 (Component factor for multiple edge). Let G be a subgraph connected to E with the multiplicity equals n. Denote this connection way as $G-{ }^{n}$. Define

$$
C F\left(G-^{n}\right)=n^{2} C F(G)
$$

Theorem 4.9 (General criteria for negative definiteness). Let Γ be a weighted dual graph. Let Γ_{i} be subgraphs connected to E such that Γ_{i} is negative-definite. Then Γ is negative-definite if and only if

$$
E^{2}+\sum_{i} C F\left(\Gamma_{i}\right)<0
$$

Proof. We have already illustrate the cases when Γ_{i} is tree graph or loop graph in Corollary 3.8 and Corollary 4.6. Note component factor only depends on the connection way and the graph of Γ_{i}, thus we only need to show the case for multiple edge graph. This is a direct observation of Laplacian expansion.
Assume the weighted dual graph is:

Where $-{ }^{n}$ denotes the multiplicity is n, i.e. Γ_{k} connects E with multiplicity n. The intersection matrix can be represented as :

$$
\begin{aligned}
&\left(\begin{array}{cccccc}
\Gamma^{\prime} & 1 & 0 & 1 & \ldots & 1 \\
1 & E^{2} & n & 0 & \cdots & 0 \\
0 & n & F_{k}^{2} & 1 & \cdots & 1 \\
0 & 0 & 1 & G_{k, 1} & \cdots & 0 \\
0 & 0 & \vdots & \vdots & \ddots & 0 \\
0 & 0 & 1 & 0 & \ldots & G_{k, r_{k}}
\end{array}\right) \\
& \operatorname{det}(\Gamma)=\operatorname{det}\left(\left(\begin{array}{cc}
\Gamma^{\prime} & 1 \\
1 & E^{2}
\end{array}\right)\right) \operatorname{det}\left(\Gamma_{k}\right)+(-1)^{\left(n_{k}\right)} \cdot n \cdot \operatorname{det}\left(\left(\begin{array}{ccccc}
\Gamma^{\prime} & 1 & 1 & \cdots & 1 \\
0 & n & 1 & \cdots & 1 \\
0 & 0 & G_{k, 1} & \cdots & 0 \\
0 & 0 & \vdots & \ddots & 0 \\
0 & 0 & 0 & \cdots & G_{k, r_{k}}
\end{array}\right)\right) \\
& \quad=\operatorname{det}\left(\left(\begin{array}{cc}
\Gamma^{\prime} \\
1 & 1 \\
1 & E^{2}
\end{array}\right)\right) \operatorname{det}\left(\Gamma_{k}\right)+(-1)^{\left(n_{k}\right)} \cdot n^{2} \cdot \operatorname{det}\left(\Gamma^{\prime}\right) \prod_{l=1}^{r_{k}} \operatorname{det}\left(G_{k, l}\right) .
\end{aligned}
$$

Here n_{k} is the number of points in Γ_{k}. Compared with the determinant formula for tree graph, Γ_{k} contributes $n^{2} C F\left(\Gamma_{k}\right)$. By definition, $C F\left(\Gamma_{k}-^{n}\right)=C F\left(\Gamma_{k}\right)$, thus the criteria holds.

This criteria helps us for classify possible multiple edge graphs with one -4 point:

Theorem 4.10. If Γ is multiple edge graph, then there exists only one multiple edge with multiplicity 2. Denote the subgraph connected to E with multiplicity 2 as Γ_{1}, then $\Gamma_{1}=A_{n_{1}}$. And the rest Γ_{i} 's are the followings:
$n_{1}=1$:

$$
\begin{aligned}
& D_{n_{2}} ; \quad 1-A_{n_{2}} ; \quad E_{6}, E_{7} ; \quad 2-A_{n_{2}}, n_{2} \leq 7 ; \quad D_{n_{2}^{\prime}}, n_{2} \leq 7 . \\
& \left(A_{n_{2}}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(1-A_{3}\right) /\left(D_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(D_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(E_{6}\right) /\left(E_{7}\right) ; \\
& \left(1-A_{n_{2}}\right)+\left(A_{1}\right), n_{2} \leq 6 ; \quad\left(1-A_{4}\right)+\left(A_{n_{2}}\right), n_{2} \leq 3 ; \quad\left(D_{5}^{\prime}\right)+\left(A_{n_{2}}\right), n_{2} \leq 2 . \\
& \left(A_{1}\right)+\left(A_{1}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(A_{2}\right)+\left(A_{n_{2}}\right), n_{2} \leq 4 .
\end{aligned}
$$

$n_{1}=2$:

$$
1-A_{n_{2}}, n_{2}=3,4 ; \quad A_{n_{2}} ; \quad D_{n_{2}} ; \quad D_{5}^{\prime} .
$$

$6 \geq n_{1} \geq 3:$

$$
A_{n_{2}}
$$

satisfying

$$
\frac{4}{n_{1}+1}>1-\frac{1}{n_{2}+1}
$$

$n_{1} \geq 7, \Gamma_{i}$'s= \quad.

Proof. We first discuss the multiplicity. By $C F\left(\Gamma_{i}-{ }^{n}\right)=C F\left(\Gamma^{n}\right)$ and $C F\left(A_{1}\right)=$ $1 / 2$ we know $n \leq 2$.
Now let Γ_{1} be the subgraph connect -4 point with multiplicity 2 . Then

$$
C F\left(\Gamma_{1}-^{2}\right)=4 C F\left(\Gamma_{1}\right)<4
$$

i.e. $C F\left(\Gamma_{1}\right)<1$. So $\Gamma_{1}=A_{n_{1}}$.

The rest graph must satisfy

$$
\sum_{i \geq 2} C F\left(\Gamma_{i}\right)<4-4 C F\left(A_{n_{1}}\right)=4-4\left(1-\frac{1}{n_{1}+1}\right)=\frac{4}{n_{1}+1}
$$

We discuss n_{1}.
$n_{1}=1$ then $\sum_{i \geq 2} C F\left(\Gamma_{i}\right)<2$. Thus Γ_{i} 's are the following:

$$
\begin{aligned}
& D_{n_{2}} ; \quad 1-A_{n_{2}} ; \quad E_{6}, E_{7} ; \quad 2-A_{n_{2}}, n_{2} \leq 7 ; \quad D_{n_{2}^{\prime}}, n_{2} \leq 7 \\
& \left(A_{n_{2}}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(1-A_{3}\right) /\left(D_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(D_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(E_{6}\right) /\left(E_{7}\right) \\
& \left(1-A_{n_{2}}\right)+\left(A_{1}\right), n_{2} \leq 6 ; \quad\left(1-A_{4}\right)+\left(A_{n_{2}}\right), n_{2} \leq 3 ; \quad\left(D_{5}^{\prime}\right)+\left(A_{n_{2}}\right), n_{2} \leq 2 \\
& \left(A_{1}\right)+\left(A_{1}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(A_{2}\right)+\left(A_{n_{2}}\right), n_{2} \leq 4
\end{aligned}
$$

$n_{1}=2$ then $\sum_{i \geq 2} C F\left(\Gamma_{i}\right)<4 / 3$. Thus Γ_{i} 's are the following:

$$
1-A_{n_{2}}, n_{2}=3,4 ; \quad A_{n_{2}} ; \quad D_{n_{2}} ; \quad D_{5}^{\prime}
$$

$6 \geq n_{1} \geq 3$ then $\sum_{i \geq 2} C F\left(\Gamma_{i}\right)<1$, thus when $n_{1} \geq 3, \Gamma_{i}$'s can only be $A_{n_{2}}$ satisfying

$$
\frac{4}{n_{1}+1}>1-\frac{1}{n_{2}+1}
$$

When $n_{1} \geq 7$, then Γ_{i} 's $=\emptyset$.
REmARK 4.11. In fact, $A D E$ graphs help us to completely classify all possible Γ_{i} 's such that $\sum_{i} C F\left(\Gamma_{i}\right)<2$. We can select any point in $A D E$ graphs to be E and the subgraphs connected to E are the possible Γ_{i} 's. For example, if we remove a point in the chain of A_{n} (not the point on sides), then the rest graphs are Γ_{i} 's, which are $A_{n_{2}}+A_{n_{3}}$:

Remove all possible points in $A D E$ graphs we get Γ_{i} 's are the following:

$$
\begin{aligned}
& D_{n_{2}} ; \quad 1-A_{n_{2}} ; \quad E_{6}, E_{7} ; \quad 2-A_{n_{2}}, n_{2} \leq 7 ; \quad D_{n_{2}^{\prime}}, n_{2} \leq 7 . \\
& \left(A_{n_{2}}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(1-A_{3}\right) /\left(D_{n_{3}}\right) ; \quad\left(A_{n_{2}}\right)+\left(D_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(E_{6}\right) /\left(E_{7}\right) ; \\
& \left(1-A_{n_{2}}\right)+\left(A_{1}\right), n_{2} \leq 6 ; \quad\left(1-A_{4}\right)+\left(A_{n_{2}}\right), n_{2} \leq 3 ; \quad\left(D_{5}^{\prime}\right)+\left(A_{n_{2}}\right), n_{2} \leq 2 . \\
& \left(A_{1}\right)+\left(A_{1}\right)+\left(A_{n_{3}}\right) ; \quad\left(A_{1}\right)+\left(A_{2}\right)+\left(A_{n_{2}}\right), n_{2} \leq 4 .
\end{aligned}
$$

REFERENCES

[1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), pp. 129136.
[2] C. Fan, Y.-J. Xu, and S. S.-T. Yau, Classification of weighted dual graphs with only complete intersection singularities structures, Trans. Amer. Math. Soc., 361:7 (2009), pp. 3535-3596.
[3] H. Grauert, Über Modifikationen und exzeptionelle analyticshe Mengen, Math. Ann., 146 (1962), pp. 331-368.
[4] F. Hirzebruch, W. Neumann, and S. Koh, Differentiable manifolds and quadratic forms, Lecture Notes in Pure and Applied Mathematics, vol. 4, Marcel Dekker, New York, 1971.
[5] S. IshiI, On isolated Gorenstein singularities, Math. Ann., 270 (1985), pp. 541-554.
[6] K. Konno, On the Yau cycle of a normal surface singularities, Asian. J. Math., 16:2 (2012), pp. 279-298.
[7] K. Konno, Certain normal surface singularities of general type, Methods. Appl. Anal., 24:1 (2017), pp. 71-97.
[8] K. Konno and D. Nagashima, Maximal ideal cycles over normal surface singularities of Brieskorn type, Osaka J. Math., 49:1 (2012), pp. 225-245.
[9] H. Laufer, Normal two-dimensional singularities, Annals of Math. Studies, no. 71, Princeton University Press, Princeton, 1971.
[10] H. Laufer, On rational singularities, Amer. J. Math., 94 (1972), pp. 597-608.
[11] H. Laufer, Deformations of resolutions of two-dimensional singularities, Rice University Studies, 1:59 (1973), pp. 53-96.
[12] H. Laufer, On minimally elliptic singularities, Amer. J. Math., 99 (1977), pp. 1257-1295.
[13] H. Laufer, Taut two-dimensional singularities, Math. Ann., 205 (1973), pp. 131-164.
[14] G. MüLLER, Symmetries of surface singularities, J. London Math. Soc., 59:2 (1999), pp. 491506.
[15] W. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc., 268 (1981), pp. 299-344.
[16] A. Némethi, "Weakly" elliptic Gorenstein singularities of surfaces, Invent. Math., 137:1 (1999), pp. 145-167.
[17] J. P. Serre, Groupes algebriques et corps de classes, Actualités Scientifiques et Industrielles, no. 1264, Hermann, Paris, 1959.
[18] J. Stevens, Simple surface singularities, Algebraic Geometry, 4:2 (2017), pp. 160-176.
[19] J. Stevens, On the classification of rational surface singularities, J. Singularities, 7 (2013), pp. 108-133.
[20] D. Lorenzini, Wild quotient singularities of surfaces, Math. Z., 275 (2013), pp. 211-232.
[21] M. Tomari, Maximal-ideal-adic filtration on $R^{1} \phi_{*} O_{\tilde{V}}$ for normal two-dimensional singularities, Adv. Stud. Pure Math., 8 (1986), pp. 633-647.
[22] T. Tomaru, On Gorenstein surface singularities with fundamental genus $p_{f} \geq 2$ which satisfy some minimality conditions, Pacific J. Math., 170 (1995), pp. 271-295.
[23] M. Tosun, A. Ozkan, and Z. Oer, On the classification of rational singularities of surfaces, Int. J. Pure Appl. Math., 41 (2007), pp. 85-110.
[24] L. D. Tráng and M. Tosun, Combinatorics of rational singularities, Comment. Math. Helv., 79:3 (2004), pp. 582-604.
[25] P. Wagreich, Elliptic singularities of surfaces, Amer. J. Math., 92 (1970), pp. 419-454.
[26] S. S.-T. Yau, Normal singularities of surfaces, Proc. Sym. Pure Math., 72 (1978), pp. 195-198.
[27] S. S.-T. Yau, On maximally elliptic singularities, Trans. Amer. Math. Soc., 257 (1980), pp. 269329.
[28] S. S.-T. Yau, Q. W. Zhu, and H. Q. Zuo, Classification of weighted dual graphs consist of -2 curves and exactly one -3 curve, Izavestiya: Mathematics, 87:5 (2023), pp. 232-270.
[29] S. S.-T. Yau, M. Y. Zhang, and H. Q. Zuo, Topological classification of simplest Gorenstein non-complete intersection singularities of dimension 2, Asian J. Math., 19:4 (2015), pp. 651-792.

[^0]: *Received Jun 14, 2022; accepted for publication February 21, 2023.
 ${ }^{\dagger}$ Department of Mathematical Sciences, Tsinghua University, Beijing, 100084; and Yanqi Lake Beijing Institute of Mathematical Sciences and Applications, Huairou District, Beijing 101408, P. R. China (yau@uic.edu). Yau is supported by Tsinghua University Education Foundation fund (042202008) and NSFC Grant 11961141005.
 ${ }^{\ddagger}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China (zhuqw19@mails.tsinghua.edu.cn). Zhu is the co-first author of this paper.
 ${ }^{\S}$ Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China (hqzuo@mail.tsinghua.edu.cn). Zuo is supported by NSFC Grants 12271280, 11961141005, and Tsinghua University Initiative Scientific Research Program.

