
ASIAN J. MATH. c© 2023 International Press
Vol. 27, No. 2, pp. 261–300, April 2023 004

A CRITERIA FOR CLASSIFICATION OF WEIGHTED DUAL
GRAPHS OF SINGULARITIES AND ITS APPLICATION∗

STEPHEN S.-T. YAU† , QIWEI ZHU‡ , AND HUAIQING ZUO§

Abstract. Let (V, p) be a normal surface singularity. Let π : (M,E)→ (V, p) be a minimal good
resolution of V , such that the irreducible components Ei of E = π−1(p) are nonsingular and have
only normal crossings. There is a natural weighted dual graph Γ associated to E. Along with the
genera of the Ei, Γ fully describes the topology and differentiable structure of the embedding of E
in M . Intuitively, normal surface singularity has simplest topology if all the irreducible curves in the
exceptional set are smooth rational curves with self-intersection number −2. It can be shown that
these are necessary ADE-singularities. In our previous work we classify all the weighted dual graphs
of E = ∪ni=1Ei such that one of the curves Ei is −3 curve, and the rest all are −2 curves. This is a
natural generalization of Artin’s classification of rational triple points. However there is no general
method to classify or examine all possible weighted dual graphs of E = ∪ni=1Ei. In this article, we
introduce a new concept, component factor, which is useful and computable for classifying weighted
dual graphs. Based on it, we present a criteria for verifying whether a graph is the weighted dual
graph associated to E. As a result, we give a complete classification of weighted dual graphs consist
of −2 curves and exactly one −4 curve.
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1. Introduction. Let (V, p) be a normal surface singularity and π : M → V be
a resolution of V such that the irreducible components Ei, 1 ≤ i ≤ n, of E = π−1(p)
are nonsingular and have only normal crossings. Associated to E is a weighted dual
graph Γ (e.g., see [4] or [9]) which, along with the genera of the Ei, fully describes the
topology and differentiable structure of E in M [15]. On a nonsingular surface M , a
−k curve means a nonsingular rational curve with self-intersection −k.

M. Artin [1] has studied the rational singularities (i.e., those for which R1π∗(O) =
0). He has shown that all weighted dual graphs of rational double points are one of the
graphs: Ak, k ≥ 1; Dk, k ≥ 4; E6, E7 and E8 which arise in the classification of simple
Lie groups. He also shows that the existence of fundamental cycle (see Definiton 2.1)
are equivalent to the negative definiteness of (Ei ·Ej). Moreover, rational triple points
are also classified into 9 classes according to the dual graphs in [1]. These 9 classes
graphs consist of −2 curves and exactly one −3 curve. In our recent work [28], we
classify all the weighted dual graphs of E = ∪ni=1Ei such that one of the curves Ei is
−3 curve, and the rest all are −2 curves. This is a natural generalization of Artin’s
classification of rational triple points.

The simple here usually means that only finitely many isomorphism classes occur
in the versal deformation. By the rational double points and rational triple points
are simple. Stevens [18] conjectures that the simple normal surface singularities are
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exactly those rational singularities whose resolution graph can be obtained from the
graph of a rational double point or rational triple point by making any number of
vertex weights more negative. He shows that no other rational singularities can be
simple. He proves simpleness for some special classes of singularities, namely rational
quadruple points or sandwiched singularities in [18]. For the classification of certain
classes of rational singularities, the interesting readers can refer the recent papers [20],
[19], [23], [24].

In [12], Laufer investigates a class of elliptic singularities which satisfy a mini-
mality condition. These minimally elliptic singularities have a theory much like the
theory for rational singularities. Laufer [12] also lists all dual graphs which corre-
spond to minimally elliptic hypersurface singularities. These singularities are exactly
Gorenstein singularities with geometric genus equals to 1. Such a list is extremely
useful for researchers in the field. For the classification of Gorenstein singularities
with geometric genus greater than 1, the interesting reader can refer to the papers
[16], [5], [25], [27], [22], [6]-[7], [8], [15]. Later, in [29] (resp. [2]), the authors general-
ize Laufer’s list of dual graphs of minimally elliptic hypersurface singularities. They
classify all weighted dual graphs of the simplest Gorenstein non-complete intersection
(resp. complete intersection) singularities of dimension two. These singularities are
exactly those minimal elliptic singularities with fundamental cycle self intersection
number -5 (resp. -4).

In [13], Laufer classifies all possible taut singularities. Though his classification is
complete, the last step for verifying the negative definiteness of weighted dual graph
is not illustrated. In this paper, we solve this problem completely. We give an explicit
criteria for verifying whether a graph is negative-definite. As a result, we give a
complete classification of weighted dual graphs consist of −2 curves and exactly one
−4 curve. This generalizes the work in [28].

Our article is organized as follows. In Section 3, we introduce a new concept,
component factor, for tree graph (cf. Definition 3.6). Furthermore, we generalize this
construction to loop and multiple edge graphs in Section 4 (cf. Definition 4.5 and
Definition 4.8). The following criteria for negative definiteness can be concluded:

Theorem 1.1. Let Γ be a weighted dual graph. Let Γi ’s be subgraphs connected
to Ej such that Γi ’s are negative-definite. Let CF (Γi) be component factor of Γi.
Then Γ is negative-definite if and only if

E2
j +

∑
i

CF (Γi) < 0.

As an application of Theorem 1.1, we give the complete classification of weighted
dual graphs consist of −2 curves and exactly one −4 curve as follows.

Theorem 1.2. Let (V, p) be a normal surface singularity. Let π : (M,E) →
(V, p) be a minimal good resolution of V , such that the irreducible components Ei of
E = π−1(p) are nonsingular and have only normal crossings. Γ is the weighted dual
graph associated to E. Assuming that all the exceptional curves Ei are −2 curves and
except exactly one Ej is a −4 curve. Then the weighted dual graph Γ must be one
of the three cases: Tree graph, Loop graph or Multiple edge graph (cf. Section 3 for
tree case and Section 4 for the last two cases). The complete classifications of tree
graphs are listed in Section 3 (cf. Theorem 3.5, and from Theorem 3.11 to Theorem
3.24), loop graphs and multiple edge graphs are listed in Section 4 (cf. Theorem 4.7
and Theorem 4.10).



CLASSIFICATION OF WEIGHTED DUAL GRAPHS 263

2. Preliminaries.

2.1. Riemann-Roch and fundamental cycle. Let π : M → V be a resolution
of the normal two-dimensional Stein space V . We assume that p is the only singularity
of V . Let π−1(p) = E = ∪Ei, 1 ≤ i ≤ n, be the decomposition of the exceptional set
E into irreducible components.

A cycle D = ΣdiEi, 1 ≤ i ≤ n is an integral combination of the Ei, with di an
integer. There is a natural partial ordering denoted by ≥, between cycles defined by
comparing the coefficients:

∑
imiEi ≥

∑
i niEi if mi ≥ ni for all i. If D1 ≥ D2 but

D1 6= D2 then we write D1 > D2. We let supp D = ∪Ei, di 6= 0, denote the support
of D.

Let O be the sheaf of germs of holomorphic functions on M . Let O(−D) be the
sheaf of germs of holomorphic functions on M which vanish to order di on Ei. Let
OD denote O/O(−D). Define

χ(D) := dimH0(M,OD)− dimH1(M,OD). (2.1)

The Riemann-Roch theorem [17, Proposition IV.4, p. 75] says

χ(D) = −1

2
(D2 +D ·K), (2.2)

where K is the canonical divisor on M and D ·K is the intersection number of D and
K. In fact, let gi be the geometric genus of Ei, i.e., the genus of the desingularization
of Ei. Then the adjunction formula [17, Proposition IV, 5, p. 75] says

Ai ·K = −A2
i + 2gi − 2 + 2δi (2.3)

where δi is the “number” of nodes and cusps on Ai. Each singular point on Ei other
than a node or cusp counts as at least two nodes. It follows immediately from (2.2)
that if B and C are cycles, then

χ(B + C) = χ(B) + χ(C)−B · C. (2.4)

Definition 2.1. Associated to π is a unique fundamental cycle Z [1, pp. 131-132]
such that Z > 0, Ei · Z ≤ 0 for all Ei and such that Z is minimal with respect to
those two properties.

The fundamental cycle Z may be computed from the intersection as follows via
a computation sequence for Z in the sense of Laufer [10, Proposition 4.1, p. 607].

Z0 = 0, Z1 = Ei1 , Z2 = Z1 + Ei2 , . . . , Zj = Zj−1 + Eij , . . . ,

Z` = Z`−1 + Ei` = Z

where Ei1 is arbitrary and Eij · Zj−1 > 0, 1 < j ≤ `.
O(−Zj−1)

/
O(−Zj) represents the sheaf of germs of sections of a line bundle over

Eij of Chern class −Eij · Zj−1. So

H0(M,O(−Zj−1)
/
O(−Zj)) = 0

for j > 1.

0→ O(−Zj−1)
/
O(−Zj)→ OZj

→ OZj−1
→ 0 (2.5)
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is an exact sheaf sequence. From the long exact cohomology sequence for (2.5), it
follows by induction that

H0(M,OZk
) = C, 1 ≤ k ≤ ` (2.6)

dimH1(M,OZk
) =

∑
1≤j≤k

dimH1
(
M,O(−Zj−1))

/
O(−Zj)

)
. (2.7)

Lemma 2.2 ([12]). Let Zk be part of a computation sequence for Z and such that
χ(Zk) = 0. Then dimH1(M,OD) ≤ 1 for all cycles D such that 0 ≤ D ≤ Zk. Also
χ(D) ≥ 0.

2.2. Classfication of weighted dual graphs. In this section, we recall two
beautiful results given by Artin in [1]. Let (V, p) be a normal 2-dimensional singularity,
π : M → V be the minimal resolution and Z be the fundamental cycle.

Definition 2.3. The singularity (V, p) is said to be rational if χ(Z) = 1.

If p is a rational singularity, then π is also a minimal good resolution, i.e., excep-
tional set with nonsingular Ei and normal crossings. Moreover each Ai is a rational
curve and E2

i = −2.

Theorem 2.4 ([1]). If (V, p) is a hypersurface rational singularity, then (V, p)
is a rational double point. Moreover the set of weighted dual graphs of hypersurface
rational singularities consists of the following graphs:

(1) An, n ≥ 1
−2 −2 −2u u u Z = 1 1 . . . 1

(2) Dn, n ≥ 4
−2 −2 −2 −2

u uu−2 uu u Z = 1

1

2 2 . . . 2 1

(3) E6

−2 −2 −2 −2 −2

u u−2u u u u Z = 1 2

2

3 2 1

(4) E7

−2 −2 −2 −2 −2 −2

u u−2u u u u u Z = 2 3

2

4 3 2 1

(5) E8

−2 −2 −2 −2 −2

u u−2u u u u u u
−2 −2

Z = 2 4

3

6 5 4 3 2

Theorem 2.4 completely classifies the weighted dual graphs with all E2
i = −2,

which are called ADE graphs. In general, to classify the weighted dual graph we
firstly need to classify corresponding negative definite matrices:

Proposition 2.5 ([1]). Let {Ei}i=1,··· ,n be a connected bunch of complete curves
on a regular two-dimensional scheme:

(i) Suppose that ‖(Ei · Ej)‖ is negative definite, then there exist positive cycles
Z =

∑
riEi such that (Z · Ei) ≤ 0 for all i.
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(ii) Conversely, if there exists a positive cycle Z =
∑
riEi such that (Z · Ei) ≤ 0

for all i, then ‖(Ei · Ej)‖ is negative semi-definite. If in addition
(
Z2
)
< 0,

then ‖(Ei · Ej)‖ is negative definite.

3. Classfication of tree graph based on component factor. In this section,
we give a complete classification of the weighted dual graphs consist of −2 curves and
exactly one −4 curve, i.e., all Ei’s are nonsingular rational curves, E2

j = −4 for one

j and E2
i = −2 for all i such that i 6= j. We use the notation u to denote those Ei

with E2
i = −2 and ∗ denotes the Ej with E2

j = −4. All the exceptional curves are
assumed to be rational.

By [3], we know the classification of weighted dual graphs which we want is
equivalent to classification of all negative definite matrix (Ei · Ej).

By Theorem 2.4, if all Ei have E2
i = −2, then the graph must be ADE graphs.

Recall that a tree graph is a connected graph without loops. ADE graphs are all tree
graphs.

Notation. For a tree graph with a curve E, we denote the subgraphs connected
to E as Γ1, ...,Γs, the point connected to E as F1, ..., Fs. The subgraphs connected
to Fi are denoted as Gi,1, ..., Gi,ri :

Γ′ E u
Fi

Gi,1

. . .

Gi,ri

.

Theorem 3.1 (Tree determinant formula). Let the weighted dual graph Γ be as
above. Then

det(Γ) = (

s∏
i=1

det(Γi))(E
2 +

s∑
j=1

(−1)
∏rj

l=1 det(Gj,l)

det(Γj)
)

Proof. We do it by induction. Assume the formula is proved when s ≤ k − 1,
now we prove it is true for k. Let the weighted dual graph be as in notation with the
number of subgraphs connected to E is k, i.e. the weighted dual graph is:

Γ′ E u
Ek

Gk,1

. . .

Gk,rk

.

Let ni be the number of points of Γi. The intersection matrix can be represented
as : 

Γ′ 1 0 1 . . . 1
1 E2 1 0 . . . 0
0 1 E2

k 1 . . . 1
0 0 1 Gk,1 . . . 0

0 0
...

...
. . . 0

0 0 1 0 . . . Gk,rk


.
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For simplicity here we use

(
Γ′ 1
1 E2

)
to denote


E2 1 . . . 1
1 Γ1 . . . 0
...

...
. . .

...
1 0 . . . Γk−1

 .

When doing Laplacian expansion on E, we get

det(Γ) = det(

(
Γ′ 1
1 E2

)
)det(Γk) + (−1)det(


Γ′ 1 1 . . . 1
0 1 1 . . . 1
0 0 Gk,1 . . . 0

0 0
...

. . . 0
0 0 0 . . . Gk,rk

)

= det(

(
Γ′ 1
1 E2

)
)det(Γk) + (−1)det(Γ′)

rk∏
l=1

det(Gk,l).

By induction assumption:

det(

(
Γ′ 1
1 E2

)
) = (

k−1∏
i=1

det(Γi))((E
2) +

k−1∑
j=1

(−1)
∏rj

l=1 det(Gj,l)

det(Γj)
).

Thus

det(Γ) = (

k−1∏
i=1

det(Γi))((E
2) +

k−1∑
j=1

(−1)
∏rj

l=1 det(Gj,l)

det(Γj)
)det(Γk)

+ (−1)

k−1∏
i=1

det(Γi)

rk∏
l=1

det(Gk,l)

= (

k∏
i=1

det(Γi))((E
2) +

s∑
j=1

(−1)
∏rj

l=1 det(Gj,l)

det(Γj)
).

Lemma 3.2. Assumptions as in notation. If

(E2) +

s∑
j=1

∏rj
k=1 |det(Gj,k)|
|det(Γj)|

< 0,

then there exists a rational cycle D with D ·E < 0 and D ·Ei = 0 for any exceptional
curve Ei 6= E.

Proof. Denote points connected to Fi as Ei,j , and the subgraph connected to Ei,j

as Hi,j,k, i.e:

E Fi
u
Ei,j

Hi,j,1

. . .

Hi,j,ri,j

.
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We construct a rational cycle D supported on exceptional set by induction.
Let the coefficient of D on E be 1, on Fi be

∏
j |det(Gi,j)|/|detΓi|. Next,

let the coefficient of Fi be
∏

j |det(Gi,j)|/|detΓi|, the coefficient of Ei,j be
(
∏

j |det(Gi,j)|/|detΓi|) · (
∏

k |det(Hi,j,k)|/|det(Gi,j)|). Repeat this procedure to
get the coefficient of D on all the exceptional curves. Then we get

D · E = E2 +
∑
i

∏
j

|det(Gi,j)|
|detΓi|

< 0,

D · Fi = 1 + (
∏
j

|det(Gi,j)|
|detΓi|

)(F 2
i +

∑
l

∏
k |det(Hi,l,k)|
|det(Gi,l)|

).

Use Theorem 3.3 for Γi:

|det(Γi)| =
∏
j

|det(Gi,j)| · |(F 2
i +

∑
l

|
∏

k det(Hi,l,k)

det(Gk,l)
|)|.

Notice that Γi is negative-definite, hence

|(E2
i +

∑
l

|
∏

k det(Hi,l,k)

det(Gk,l)
|)| = −(F 2

i +
∑
l

|
∏

k det(Hi,l,k)

det(Gk,l)
|).

Combining with the above three equations we get

D · Fi = 0.

We get a rational cycle D, such that D · E < 0, D · Ei = 0 for any exceptional curve
Ei 6= E.

Theorem 3.3 (Criteria for negative definiteness of tree graph). Assumptions
as in Notation. Assume furthermore that each Γi is negative definite for i = 1, ..., s.
Then the weighted dual graph is negative definite if and only if

(E2) +

s∑
j=1

∏rj
k=1 |det(Gj,k)|
|det(Γj)|

< 0.

Proof. Let nj be the number of points in Γj . By Γj is negative-definite, we have
det(Γj) = (−1)nj |det(Γj)|,

∏rj
k=1 det(Gj,k) = (−1)nj−1

∏rj
k=1 |det(Gj,k)|. Combine

this with Theorem 3.3 we get:

det(Γ) = (−1)
∑s

i=1 ni(|
s∏

i=1

det(Γi)|)((E2) +

s∑
j=1

|
∏rj

k=1 det(Gj,k)

det(Γj)
|).

If Γ is negative-definite then (−1)(1+
∑s

i=1 ni)det(Γ) > 0, thus

E2 +

s∑
j=1

∏rj
k=1 |det(Gj,k)|
|det(Γj)|

< 0.

The converse is immediately by Lemma 3.2.
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Now we turn to the classfication. We first begin with tree weighted dual graphs.
We abuse the notation of weighted dual graphs and the corresponding matrices in the
following discussion, if without any confusion. Henceforth, whether Ak a weighted
dual graph or a matrix should be clear from context. For example, An could either
denote the weighted dual graph: u u u u
or the matrix: 

−2 1 0 0 0 0
1 −2 1 0 0 0

0 1
. . .

. . . 0 0

0 0
. . .

. . . 1 0
0 0 0 1 −2 1
0 0 0 0 1 −2


.

We choose −4 curve to be E. The remaining connected graphs are denoted as
Γ1, . . . ,Γs. In a dual graph, the ∗ represents the −4 curve. We call it −4 point
or −4 cycle later. Others are the point corresponding −2 curve, we call it −2 point
or −2 cycle later.

Lemma 3.4. s ≤ 7, and Γi must be ADE for any 1 ≤ i ≤ s.
Proof. It is easy to see that the matrix

−4 1 1 1 1 1 1 1 1
1 −2 0 0 0 0 0 0 0
1 0 −2 0 0 0 0 0 0
1 0 0 −2 0 0 0 0 0
1 0 0 0 −2 0 0 0 0
1 0 0 0 0 −2 0 0 0
1 0 0 0 0 0 −2 0 0
1 0 0 0 0 0 0 −2 0
1 0 0 0 0 0 0 0 −2


.

has determinant 0, so the −4 curve can not connect with more than seven −2 curves,
thus we have s ≤ 7. As for Γi, notice that if we require Γ to be negative definite, then
the fundamental cycle Z, when restricted to each Γi, satisfies Z|Γi

·Ej ≤ 0,∀Ej ∈ Γi

(here it means that Ej is in the support of Γi). Denote Ej0 the cycle in Γi connected
with −4 point, then Z|Γi · Ej0 < 0. Thus by Proposition 2.5, we conclude that Γi is
negative definite, which must be ADE.

We can classify weighted dual graph according to s. s = 0 is the simplist case.
When s = 1, we need to illustrate the different connection way of Γi with −4 point.
For s ≥ 1, we should compute if the matrix is negative definite, which is based on a
general formula.

Case 1. s = 0.
The weighted dual graph is just one −4 point:

∗

Case 2. s = 1.

Theorem 3.5. When s = 1, Γ1 must be one of the following:
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(1) k −An:


k = 0, 1, 2, 3, n ≥ 2k + 1;

k = 4, 9 ≤ n ≤ 23;

k = 5, 11 ≤ n ≤ 16;

k = 6, 13 ≤ n ≤ 15.

(2) k −Dn: k = 0, 1, 2 with n ≥ k + 4.
(3) D′n: 5 ≤ n ≤ 15.
(4) D′′n: n = 4, 5.
(5) E6, E7, E8.
(6) E′7.
(7) 1− E6.
(8) E′′6 , E

′′
7 .

Here we use the notation k−An to denote the following graph: Γ1 = An and Γ is

k + 1 points
︸ ︷︷ ︸∗ u
u

u

with n ≥ 2k+ 1. 0−An means that the -4 curve connects An at the left or right end
point.

Similarly the notation 1−Dn means Γ1 = Dn, with n ≥ 5 and Γ is

∗ uu uu u
0−Dn means that the -4 curve connects longest branch of Dn.

D′n is

u uu u ∗
D′′n is

uu u
∗

u
Ek, k = 6, 7, 8 are

∗ u uu u u
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E′7 is

u u u uu u u ∗
1− E6 is

u u
∗

uu u u
E′′6 is

∗ u uu
u

u u
E′′7 is

∗ u uu
u

u u u
Proof. Use the criteria, for k −An case, we require:

−4 + |det(Ak)det(An−k−1)

det(An)
| < 0,

i.e.

−4 +
(k + 1)(n− k)

n+ 1
< 0.

Thus we have

k − 3 <
(k + 1)2

n+ 1
.

For k ≤ 3, this is right. For k ≥ 4, we have

n+ 1 <
(k + 1)2

k − 3
.

However, when Γ1 = k −An, we must require n ≥ 2k + 1. Thus

2k + 1 ≤ n < (k + 1)2

k − 3
− 1,

which gives 
9 ≤ n ≤ 23, k = 4.

11 ≤ n ≤ 16, k = 5.

13 ≤ n ≤ 15, k = 6.
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For k −Dn case, we require:

−4 + |det(Dn−k−1)det(Ak)

det(Dn)
| < 0,

i.e.

−4 + k + 1 < 0.

Thus k = 0, 1, 2, with n ≥ 4 + k.

For D′n case, we require:

−4 + |det(An−1)

det(Dn)
| < 0,

thus 4 ≤ n ≤ 15.

For D′′n-case, we require:

−4 + |det(An−3)ndet(A1)det(A1))

det(Dn)
| < 0,

thus n = 4, 5.

Definition 3.6 (Component factor). Assumptions as in Notation. The compo-
nent factor of Γj is defined to be

CF (Γj) :=

∏rj
k=1 |det(Gj,k)|
|det(Γj)|

.

Remark 3.7. One should be careful that the component factor of Γj not only
depends on the graph of Γj , but also depends on the connection way of Γj with the
central curve.

The criteria for tree graph immediately implies:

Corollary 3.8. Assumptions as in Notation. Assume each Γi is negative def-
inite for i = 1, ..., s. Then the weighted dual graph is negative definite if and only
if

E2 +
∑

CF (Γi) < 0.

Lemma 3.9. The component factor of graphs in s = 1 case (cf. Theorem 3.5) is
as follows:

(1) k −An: k + 1− (k+1)2

n+1 .

(2) k −Dn: k + 1.

(3) D′n: n
4 .
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(4) D′′n: n− 2.

(5) E6 : 4
3 , E7 : 3

2 , E8 : 2.

(6) E′7 : 2.

(7) 1− E6 : 10
3 .

(8) E′′6 : 2, E′′7 : 7
2 .

Example 3.10. Let the weighted dual graph be Dn +E8: Then by Corollary 3.8
we need to check

−4 + CF (Dn) + CF (E8) = −4 + 1 + 2 < 0,

which is satisfied. Furthermore, by Corollary 3.9 (5)(6) and (8), we know that Dn+E′7,
Dn + E′′6 are negative-definite because CF (E8) = CF (E′7) = CF (E′′6 ) = 2.

To classify all the possible Γi we need to know the lower bound of each component
factor. For Γi = k −An, the lower bound is taken when n = 2k + 1:

CF (k −An) ≥ k + 1− k + 1

2
=
k + 1

2
.

Thus the smallest number of component factor of k − An is 1/2, and is taken when
k = 0, n = 1. The lower bound of other graphs are listed below:

CF (k −Dn) ≥ 1, CF (D′n) ≥ 5

4
, CF (D′′n) ≥ 2.

Case 3. s = 2.

Theorem 3.11. Let s = 2, when Γ1 = k1 − An1 , then Γ1 + Γ2 must be one of
the following:

(1) (k1 −An1
) + (k2 −An2

) :

(k1 + 1)2

n1 + 1
+

(k2 + 1)2

n2 + 1
> k1 + k2 − 2.

(2) (k1 −An1
) + (k2 −Dn2

) :

(k1 + 1)2

n1 + 1
> k1 + k2 − 2.

(3) (k1 −An1) + (D′n2
) :

(k1 + 1)2

n1 + 1
> k1 +

n2

4
− 3.

(4) (k1 −An1
) + (D′′n2

) :
If n2 = 4, k1 = 0, 1, then n1 can be arbitrary.
If n2 = 4, k1 = 2, then n1 = 5, 6, 7, 8.
If n2 = 5, then k1 = 0 and n1 arbitrary.
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(5) (k1 −An1
) + (E6) :

If k1 = 0, 1, n1 can be arbitrary.
If k1 = 2, then 5 ≤ n1 ≤ 26.

(6) (k1 −An1
) + (E7) :

If k1 = 0, 1, n1 can be arbitrary.
If k1 = 2, then 5 ≤ n1 ≤ 17.

(7) (k1 −An1
) + (E8, E

′
7, E

′′
6 ) :

If k1 = 0, 1, n1 can be arbitrary.
If k1 = 2, then n1 = 5, 6, 7, 8.

(8) (A1) + (1− E6).

Proof. We have already known that CF (A1) = 1/2, thus when Γ1 = k1 − An1
,

we only require

CF (Γ2) < 4− CF (A1) = 4− 1/2 = 7/2,

which gives (1) to (8). (1) to (3) are simply component factor inequality. We discuss
(4) to (8).
(4): If n2 = 4, then it is same as (7) (See below). If n2 = 5, then

(k1 + 1)2

n1 + 1
> k1 + n2 − 5 = k1,

which holds only when k1 = 0. And in this case, n1 can be arbitrary.
(5): The component factor inequality shows

(k1 + 1)2

n1 + 1
> k1 −

5

3
.

Thus if k1 = 0, 1, n1 can be arbitrary. If k1 = 2, then

9

n1 + 1
>

1

3
,

thus 5 ≤ n1 < 27.
(6): The component factor inequality shows

(k1 + 1)2

n1 + 1
> k1 −

3

2
.

Thus if k1 = 0, 1, n1 can be arbitrary. If k1 = 2, then

9

n1 + 1
>

1

2
,

thus 5 ≤ n1 < 18.
(7): The component factor inequality shows

(k1 + 1)2

n1 + 1
> k1 − 1.

Thus if k1 = 0, 1, n1 can be arbitrary. If k1 = 2, then

9

n1 + 1
> 1,
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thus n1 = 5, 6, 7, 8.
(8): CF (1− E6) = 10/3 > 3, thus k1 = 0. The component factor inequality shows

1

n1 + 1
>

1

3
.

So n1 = 1.

Theorem 3.12. Let s = 2, when Γ1 = k1−Dn1 and Γ2 6= k2−An2 , then Γ1 +Γ2

must be one of the following:
(1) (Dn1) + (k2 −Dn2) : k2 = 0, 1.
(2) (k1 −Dn1) + (D′n2

) :
k1 = 0, 5 ≤ n2 ≤ 11.
k1 = 1, 5 ≤ n2 ≤ 7.

(3) (Dn1
) + (D′′4 ).

(4) (k1 −Dn1
) + (E6, E7) : k1 = 1, 2.

(5) (Dn1) + (E8, E
′
7, E

′′
6 ).

Proof. CF (k1 − Dn1) = k1 + 1, thus the bound of k1 is 4 − CF (Γ2). And
CF (Γ2) < 4− CF (Dn) = 3, which gives (1) to (5).

Theorem 3.13. Let s = 2, when Γ1 = D′n1
and Γ2 6= k2−An2

or k2−Dn2
, then

Γ1 + Γ2 must be one of the following:
(1) (D′n1

) + (D′n2
) :

16 > n1 + n2.

(2) (D′n1
) + (E6) : 5 ≤ n1 ≤ 10.

(3) (D′n1
) + (E7) : 5 ≤ n1 ≤ 9.

(4) (D′n1
) + (D′′4 , E8, E

′
7, E

′′
6 ) : n1 = 5, 6, 7, 8.

Theorem 3.14. Let s = 2, besides Theorem 3.11, Theorem 3.12 and Theorem
3.13, the rest Γ1 + Γ2 must be one of the following:

(1) (D′′4 ) + (E6, E7):
(2) (E6) + (E6, E7, E8, E

′
7, E

′′
6 ).

(3) (E7) + (E7, E8, E
′
7, E

′′
6 ) .

Case 4. s = 3.

Theorem 3.15. Let s = 3, when Γ1 = k1 − An1
and Γ2 = k2 − An2

, then
Γ1 + Γ2 + Γ3 must be one of the following:

(1) (k1 −An1) + (k2 −An2) + (k3 −An3): k1 + k2 + k3 ≤ 4.
If k1 + k2 + k3 ≤ 1, then ni can be arbitrary. If else, then ni must satisfy

3∑
i=1

(ki + 1)2

ni + 1
> −1 +

3∑
i=1

ki.

(2) (k1 −An1
) + (k2 −An2

) + (k3 −Dn3
): k1 + k2 + 2k3 ≤ 3.

If k1 + k2 + k3 ≤ 1, then ni can be arbitrary. If else, then ni must satisfy

2∑
i=1

(ki + 1)2

ni + 1
> −1 +

3∑
i=1

ki.
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(3) (k1 −An1
) + (k2 −An2

) + (D′n3
): 2k1 + 2k2 + n3 ≤ 11.

If 4k1 + 4k2 + n3 ≤ 8, then ni can be arbitrary. If else, then ni must satisfy:

2∑
i=1

(ki + 1)2

ni + 1
> −2 +

n3

4
+

2∑
i=1

ki.

(4) (k1 − An1) + (k2 − An2) + (D′′n3
): k1 + k2 + n3 ≤ 9.. If k1 = k2 = 0, n3 = 4,

then ni can be arbitrary. If else, then ni must satisfy

2∑
i=1

(ki + 1)2

ni + 1
> n3 − 4 +

2∑
i=1

ki.

(5) (k1 −An1
) + (k2 −An2

) + (E6): k1 + k2 ≤ 3.
If k1 = k2 = 0, then ni can be arbitrary. If else, then ni must satisfy

2∑
i=1

(ki + 1)2

ni + 1
> −2

3
+

2∑
i=1

ki.

(6) (k1 −An1
) + (k2 −An2

) + (E7): k1 + k2 ≤ 2.
If k1 = k2 = 0, then ni can be arbitrary. If else, then ni must satisfy

2∑
i=1

(ki + 1)2

ni + 1
> −1

2
+

2∑
i=1

ki.

(7) (k1 −An1
) + (k2 −An2

) + (E8, E
′
7, E

′′
6 ): k1 + k2 ≤ 1.

If k1 = k2 = 0, then ni can be arbitrary. If else, then ni must satisfy

2∑
i=1

(ki + 1)2

ni + 1
>

2∑
i=1

ki.

Proof. (1): By computing component factor we get:

3∑
i=1

(ki + 1)2

ni + 1
> −1 +

3∑
i=1

ki.

If k1 + k2 + k3 ≤ 1, then ni can be arbitrary. The rest is to discuss the bound of ki.
The lower bound of CF (ki − Ani

) is (ki + 1)/2 when ni = 2ki + 1. In this case, the
inequality can be exchanged to

4 >

3∑
i=1

ki + 1

2
.

Thus

3∑
i=1

ki ≤ 4.

(2): Similar as (1), by computing component factor we get:

2∑
i=1

(ki + 1)2

ni + 1
> −1 +

3∑
i=1

ki.
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if k1 + k2 + k3 ≤ 1 then ni can be arbitrary. Now consider the lower bound of
CF (ki −Ani) we get

4 >
k1 + 1

2
+
k2 + 1

2
+ k3 + 1,

i.e.

k1 + k2 + 2k3 ≤ 3.

(3): By computing component factor we get:

2∑
i=1

(ki + 1)2

ni + 1
> −2 +

n3

4
+

2∑
i=1

ki.

Consider the lower bound of CF (ki −Ani
) we get

4 >
k1 + 1

2
+
k2 + 1

2
+
n3

4
,

i.e.

2k1 + 2k2 + n3 ≤ 11.

(4): By computing component factor we get: (k1 −An1
) + (k2 −An2

) + (D′′n3
):

2∑
i=1

(ki + 1)2

ni + 1
> n3 − 4 +

2∑
i=1

ki.

Consider the lower bound of CF (ki −Ani
) we get

4 >
k1 + 1

2
+
k2 + 1

2
+ n3 − 2,

i.e.

k1 + k2 + n3 ≤ 9.

(5): By computing component factor we get:

2∑
i=1

(ki + 1)2

ni + 1
> −2

3
+

2∑
i=1

ki.

Consider the lower bound of CF (ki −Ani
) we get

4 >
k1 + 1

2
+
k2 + 1

2
+

4

3
,

i.e.

k1 + k2 ≤ 3.
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(6): By computing component factor we get:

2∑
i=1

(ki + 1)2

ni + 1
> −1

2
+

2∑
i=1

ki.

Consider the lower bound of CF (ki −Ani
) we get

4 >
k1 + 1

2
+
k2 + 1

2
+

3

2
,

i.e.

k1 + k2 ≤ 2.

(7): By computing component factor we get:

2∑
i=1

(ki + 1)2

ni + 1
>

2∑
i=1

ki.

Consider the lower bound of CF (ki −Ani) we get

4 >
k1 + 1

2
+
k2 + 1

2
+ 2,

i.e.

k1 + k2 ≤ 1.

Theorem 3.16. Let s = 3, when Γ1 = k1 − An1
and Γ2 = k2 − Dn2

, then
Γ1 + Γ2 + Γ3 must be one of the following:

(1) (k1 − An1) + (k2 − Dn2) + (k3 − Dn3): k1 ≤ 2, k2 = k3 = 0 or k1 = k3 =
0, k2 = 1.
If k1 = 2 then n1 = 5, 6, 7, n2, n3 can be arbitrary.
If else, all ni can be arbitrary.

(2) (k1 −An1) + (k2 −Dn2) + (D′n3
): 2k1 + 4k2 + n3 ≤ 9, n3 ≥ 5. And

(k1 + 1)2

n1 + 1
> −2 +

n3

4
+

2∑
i=1

ki.

(3) (An1
) + (Dn2

) + (D′′4 ): n1, n2 can be arbitrary.
(4) (k1 −An1) + (k2 −Dn2) + (E6): k1 = 0, 1, 2, k2 = 0 or k1 = 0, k2 = 1. And

(k1 + 1)2

n1 + 1
> −2

3
+

2∑
i=1

ki.

(5) (k1 −An1
) + (k2 −Dn2

) + (E7): k1 = 0, 1, k2 = 0. And

(k1 + 1)2

n1 + 1
> −1

2
+ k1.

(6) (An1) + (Dn2) + (E8, E
′
7, E

′′
6 ): n1, n2 can be arbitrary.
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Proof. (1): The lower bound of CF (k1 −An1
) shows that

4 >
k1 + 1

2
+ k2 + 1 + k3 + 1,

i.e.

k1 + 2k2 + 2k3 ≤ 2.

Thus it holds only when k1 ≤ 2, k2 = k3 = 0 or k1 = k3 = 0, k2 = 1. The component
factor shows that

(k1 + 1)2

n1 + 1
> −1 +

3∑
i=1

ki.

Note when k1 +k2 +k3 ≤ 1 then ni can be arbitrary. When k1 = 2, k2 = k3 = 0, then

9

n1 + 1
> 1,

i.e. n1 < 8. Thus 5 = 2k1 + 1 ≤ n1 ≤ 7.
(2): The lower bound shows

4 >
k1 + 1

2
+ k2 + 1 +

n3

4
,

i.e.

9 ≥ 2k1 + 4k2 + n3.

The component factor gives

(k1 + 1)2

n1 + 1
> −2 +

n3

4
+

2∑
i=1

ki.

Note n3 ≥ 5, thus

2k1 + 4k2 ≤ 4.

Only k1 = 0, 1, 2, k2 = 0 or k1 = 0, k2 = 1 is permitted.
(3): Consider (k1 −An1

) + (k2 −Dn2
) + (D′′n3

). The lower bound shows

4 >
k1 + 1

2
+ k2 + 1 + n3 − 2,

i.e.

9 > k1 + 2k2 + 2n3

However, n3 ≥ 4, thus n3 = 4, k1 = k2 = 0. The component factor gives

(k1 + 1)2

n1 + 1
> −2 + n3 − 2 +

2∑
i=1

ki,
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i.e.

1

n1 + 1
> −2 + 2

which always holds.
(4): The lower bound shows

4 >
k1 + 1

2
+ k2 + 1 +

4

3
,

i.e.

7

3
> k1 + 2k2.

Thus k1 = 0, 1, 2, k2 = 0 or k1 = 0, k2 = 1.
(5): The lower bound shows

4 >
k1 + 1

2
+ k2 + 1 +

3

2
,

i.e.

2 > k1 + 2k2.

Thus k1 = 0, 1, k2 = 0.
(6): This is same as (3).

Theorem 3.17. Let s = 3, when Γ1 = k1−An1
and Γ2 = D′n2

, then Γ1 +Γ2 +Γ3

must be one of the following:
(1) (k1 −An1

) + (D′n2
) + (D′n3

): k1 = 0, 1.
2k1 + n2 + n3 ≤ 13, n2, n3 ≥ 5. And

(k1 + 1)2

n1 + 1
> −3 +

n2 + n3

4
+ k1.

(2) (An1
) + (D′5) + (D′′4 ): n1 = 1, 2.

(3) (k1 −An1) + (D′n2
) + (E6): k1 = 0, 1.

2k1 + n2 ≤ 8, n2 ≥ 5. And

(k1 + 1)2

n1 + 1
>
n2

4
− 8

3
+ k1.

(4) (k1 −An1
) + (D′n2

) + (E7): k1 = 0, 1.
2k1 + n2 ≤ 7, n2 ≥ 5. And

(k1 + 1)2

n1 + 1
>
n2

4
− 3

2
+ k1.

(5) (An1
) + (D′5) + (E8, E

′
7, E

′′
6 ): n1 = 1, 2.

Proof. (1): The lower bound shows

4 >
k1 + 1

2
+
n2 + n3

4
,
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i.e.

14 > 2k1 + n2 + n3.

n2, n3 ≥ 5, thus k1 = 0, 1.
(2): Consider (k1 −An1) + (D′n2

) + (D′′n3
). The lower bound shows

4 >
k1 + 1

2
+
n2

4
+ n3 − 2,

n2 ≥ 5, n3 ≥ 4, thus k1 = 0, n2 = 5, n3 = 4. Then component factor inequality shows
that

1

n1 + 1
> −4 + 2 +

5

4
+ 1,

thus n1 = 1, 2.
(3): The lower bound shows

4 >
k1 + 1

2
+
n2

4
+

4

3
,

i.e.

26

3
> 2k1 + n2.

Then component factor inequality shows that

(k1 + 1)2

n1 + 1
> −3 +

n2

4
+

4

3
+ k1.

(4): The lower bound shows

4 >
k1 + 1

2
+
n2

4
+

3

2
,

i.e.

8 > 2k1 + n2.

Thus k1 = 0, 1. Then component factor inequality shows that

(k1 + 1)2

n1 + 1
> −3 +

n2

4
+

3

2
+ k1.

(5): The same as (2).

Theorem 3.18. Let s = 3, when Γ1 = k1−An1
, besides Theorem 3.15, Theorem

3.16 and Theorem 3.17, the rest Γ1 + Γ2 + Γ3 must be one of the following:
(1) (A1) + (E6) + (D′′4 , E8, E

′
7, E

′′
6 ).

(2) (k1 −An1
) + (E6) + (E6): k1 = 0, 1.

If k1 = 0, then n1 can be arbitrary.
If k1 = 1, then n1 = 3, 4, 5.
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(3) (k1 −An1
) + (E6) + (E7): k1 = 0, 1.

If k1 = 0, then n1 can be arbitrary.
If k1 = 1, then n1 = 3.

(4) (An1
) + (E7) + (E7): n1 can be arbitrary.

Proof. (1): Consider (k1−An1
)+(E6)+(D′′4 , E8, E

′
7, E

′′
6 ). The lower bound shows

that

4 >
k1 + 1

2
+ 2 +

4

3
.

Thus k1 = 0. The component factor inequality gives that

(k1 + 1)2

n1 + 1
+ 4 > 2 +

4

3
+ k1 + 1.

Thus n1 = 1.
(2): The lower bound shows that

4 >
k1 + 1

2
+

8

3
.

Thus k1 = 0, 1. The component factor inequality gives that if k1 = 0, then n1 can be
arbitrary, if k1 = 1 then

4

n1 + 1
+ 4 >

8

3
+ 1 + 1.

n1 ≥ 2k1 + 1, thus when k1 = 1, n1 = 3, 4, 5.
(3): The lower bound shows that

4 >
k1 + 1

2
+

4

3
+

3

2
.

Thus k1 = 0, 1. The component factor inequality gives that if k1 = 0, then n1 can be
arbitrary, if k1 = 1 then

4

n1 + 1
+ 4 >

4

3
+

3

2
+ 1 + 1.

n1 ≥ 2k1 + 1, thus when k1 = 1, n1 = 3.
(4): Similar as (3).

Theorem 3.19. Let s = 3, when Γ1 = k1 − Dn1
, and Γ2 6= k2 − An2

,Γ3 6=
k3 −An3

, then Γ1 + Γ2 + Γ3 must be one of the following:
(1) (Dn1) + (Dn2) + (Dn3).
(2) (Dn1) + (Dn2) + (D′n3

): n3 = 5, 6, 7.
(3) (Dn1

) + (Dn2
) + (E6, E7).

(4) (Dn1
) + (D′5) + (D′n3

): n3 = 5, 6.
(5) (Dn1

) + (D′n2
) + (E6): n2 = 5, 6.

(6) (Dn1) + (D′5) + (E7).
(7) (Dn1) + (E6) + (E6, E7).

Proof. Firstly by computing component factor of (k1−Dn1) + (k2−Dn2) + (k3−
Dn3) we know

4 > k1 + 1 + k2 + 1 + k3 + 1.
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Thus k1 = k2 = k3 = 0.
For Γi 6= ki −Ani , we have CF (Γi) ≥ CF (Dni) = 1. Thus for Γ1 + Γ2 + Γ3 with

Γi 6= ki−Ani , if some Γi = ki−Dni , then ki = 0. The rest is to compute component
factor, we omit here.

Theorem 3.20. Let s = 3, when Γ1 = D′n1
, and Γ2 6= k2 − An2 or k2 − Dn2 ,

then Γ1 + Γ2 + Γ3 must be one of the following:
(1) (D′5) + (D′5) + (D′5).
(2) (D′5) + (D′5) + (E6).
(3) (D′5) + (E6) + (E6).

Proof. The criteria shows that above three are permitted. One may consider
D′5 + E6 + E7, D′5 +D′5 + E7, D′5 +D′5 +D′6 which are not permitted.

Later we will not emphasize on the inequality induced by component factor if
there is no further conclusions.

Case 5. s = 4.

Theorem 3.21. Let s = 4, then there must be some i such that Γi = k1 − Ani
.

Assume Γ1 = k1 −An1
, then Γ1 + Γ2 + Γ3 + Γ4 must be one of the following:

(1) (An1) + (k2 −An2) + (k3 −An3) + (k4 −An4):

1

n1 + 1
+

4∑
i=2

(ki + 1)2

ni + 1
>

4∑
i=2

ki.

(2) (An1) + (k2 −An2) + (k3 −An3) + (k4 −Dn4):

1

n1 + 1
+

3∑
i=2

(ki + 1)2

ni + 1
>

4∑
i=2

ki.

(3) (An1
) + (k2 −An2

) + (k3 −An3
) + (D′n4

):

1

n1 + 1
+

3∑
i=2

(ki + 1)2

ni + 1
>

3∑
i=2

ki +
n4

4
− 1.

(4) (An1) + (k2 −An2) + (k3 −An3) + (E6):

1

n1 + 1
+

3∑
i=2

(ki + 1)2

ni + 1
>

3∑
i=2

ki +
1

3
.

(5) (An1) + (k2 −An2) + (k3 −An3) + (E7):

1

n1 + 1
+

3∑
i=2

(ki + 1)2

ni + 1
>

3∑
i=2

ki +
1

2
.

(6) (An1) + (An2) + (An3) + (D′′4 , E8, E
′
7, E

′′
6 ):

3∑
i=1

1

ni + 1
> 1.
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(7) (An1
) + (k2 −An2

) + (k3 −Dn3
) + (D′n4

):

1

n1 + 1
+

(k2 + 1)2

n2 + 1
>

3∑
i=2

ki +
n4

4
− 1.

(8) (An1) + (k2 −An2) + (k3 −Dn3) + (E6):

1

n1 + 1
+

(k2 + 1)2

n2 + 1
>

3∑
i=2

ki +
1

3
.

(9) (An1
) + (An2

) + (Dn3
) + (E7):

2∑
i=1

1

ni + 1
>

1

2
.

(10) (An1) + (An2) + (D′n3
) + (D′n4

):

2∑
i=1

1

ni + 1
> k2 +

n3 + n4

4
− 2.

(11) (An1
) + (An2

) + (D′n3
) + (E6):

2∑
i=1

1

ni + 1
>
n3

4
− 2

3
.

(12) (An1
) + (An2

) + (D′n3
) + (E7):

2∑
i=1

1

ni + 1
>
n3

4
− 1

2
.

(13) (An1
) + (An2

) + (E6) + (E6):

2∑
i=1

1

ni + 1
>

2

3
.

(14) (An1
) + (An2

) + (E6) + (E7):

2∑
i=1

1

ni + 1
>

5

6
.

(15) (An1) + (Dn2) + (Dn3) + (Dn4).
(16) (An1

) + (Dn2
) + (Dn3

) + (D′n4
):

1

n1 + 1
>
n4

4
− 1.

(17) (An1) + (Dn2) + (Dn3) + (E6): n1 = 1, 2.
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Proof. If Γi 6= Ani
for all i = 1, 2, 3, 4. Then the lower bound of CF (Γi) will give

4∑
i=1

CF (Γi) > 1 + 1 + 1 + 1 = 4,

which means negative definiteness is not satisfied. Thus there must be at least one
Γi = Ani

. With out loss of generality let Γ1 = An1
. Note the lower bound of

CF (Ani
) = 1/2, when ni = 1. Thus the criteria tells us

CF (Γ2) + CF (Γ3) + CF (Γ4) <
7

2
.

Thus, for example, An1
+ Dn2

+ D′n3
+ D′n4

is not permitted. Next, we consider
Γ2 = k2 −An2

. If k2 = 1, then we must require

CF (Γ3) + CF (Γ4) < 4− CF (A1)− CF (1−A3) =
5

2
,

Thus when CF (Γ3) + CF (Γ4) ≥ 5/2, k2 = 0. This gives above all cases.

Case 6. s = 5.

Theorem 3.22. Let s = 5, then Γ1 + Γ2 + Γ3 + Γ4 + Γ5 must be one of the
following

(1) (An1
) + (An2

) + (An3
) + (k4 −An4

) + (k5 −An5
):

3∑
i=1

1

ni + 1
+

5∑
i=4

(ki + 1)2

ni + 1
> k4 + k5 + 1.

(2) (An1
) + (An2

) + (An3
) + (k4 −An4

) + (k5 −Dn5
):

3∑
i=1

1

ni + 1
+

(k4 + 1)2

n4 + 1
> k4 + k5 + 1.

(3) (An1
) + (An2

) + (An3
) + (k4 −An4

) + (D′n5
):

3∑
i=1

1

ni + 1
+

(k4 + 1)2

n4 + 1
> k4 +

n5

4
.

(4) (An1) + (An2) + (An3) + (k4 −An4) + (E6):

3∑
i=1

1

ni + 1
+

(k4 + 1)2

n4 + 1
> k4 +

4

3
.

(5) (An1
) + (An2

) + (An3
) + (k4 −An4

) + (E7):

3∑
i=1

1

ni + 1
+

(k4 + 1)2

n4 + 1
> k4 +

3

2
.

(6) (An1
) + (An2

) + (An3
) + (Dn4

) + (Dn5
):

3∑
i=1

1

ni + 1
> 1.
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(7) (An1
) + (An2

) + (An3
) + (Dn4

) + (D′n5
):

3∑
i=1

1

ni + 1
>
n5

4
.

(8) (An1) + (An2) + (An3) + (Dn4) + (E6):

3∑
i=1

1

ni + 1
>

4

3
.

Proof. Similar as the discussion in s = 4 case, we can assume Γ1 = An1
, Γ2 = An2

,
Γ3 = An3

. The rest is to consider component factor, which we omit here.

Case 7. s = 6.

Theorem 3.23. Let s = 6, then Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6 must be one of the
following:

(1) (An1
) + (An2

) + (An3
) + (An4

) + (An5
) + (k6 −An6

): k6 = 0, 1.

5∑
i=1

1

ni + 1
+

(k6 + 1)2

n6 + 1
> 2 + k6.

(2) (An1) + (An2) + (An3) + (An4) + (An5) + (k6 −Dn6):

5∑
i=1

1

ni + 1
> 2 + k6.

(3) (An1
) + (An2

) + (An3
) + (An4

) + (An5
) + (D′n6

):

5∑
i=1

1

ni + 1
> 1 +

n6

4
.

(4) (An1
) + (An2

) + (An3
) + (An4

) + (An5
) + (E6):

5∑
i=1

1

ni + 1
>

7

3
.

Proof. Similar as above we can show there must be at least five Ani
in Γ1, ...,Γ6.

Thus

CF (Γ6) < 1− 5 · CF (A1) =
5

2
,

which gives (1) to (4).

Case 8. s = 7.

Theorem 3.24. When s = 7, then Γ1 + Γ2 + Γ3 + Γ4 + Γ5 + Γ6 + Γ7 must be one
of the following:

An1 +An2 +A1 +A1 +A1 +A1 +A1: n2 = 1,n1 arbitrary or n2 = 2, n1 = 2, 3, 4.
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Proof. It is easy to show that all Γi must be Ani
. The component factor inequality

shows that

7∑
i=1

1

ni + 1
> 3.

Without loss of generality we can assume n1 ≥ n2 ≥ ... ≥ n7. Thus

7

n7 + 1
≥ 3.

This means n7 = 1. Take n7 = 1 into inequality we get

6∑
i=1

1

ni + 1
>

5

2
.

This means n6 = 1. Repeat this argument we stops at

1

n1 + 1
+

1

n2 + 1
>

1

2
.

Thus n2 = 1, n1 arbitrary or n2 = 2, n1 = 2, 3, 4.

4. Component factor of non-tree graphs and classfication. In this section,
we explain the definition of component factor for loop graph and multiple edge graphs.
Then we generalize the criteria for tree graph and use it to classify all possible the
non-tree graphs. Similarly as some E2

j = −3 presented in [28], the following two cases
are allowed: u ∗

and

∗ uu.......
........

............ ........ ........ ........ ........ ........ ....... ....... ....... ........ ......... ........ ........ ........ ......... ......
......
.......................................................................................................................................

........
.......

We first consider loop case, it is easy to show that

∗ uu.......
........

............ ........ ........ ........ ........ ........ ....... ....... ....... ........ ......... ........ ........ ........ ......... ......
......
.......................................................................................................................................

........
..........
...... ......... .......... ........ ........ ....... ........ ...... ...... ....... ........ ........ ........ ......... .......... ....... ...

u u∗.....
......

..........
......... ....... ....... ........ ......... ......

.....
......
.....

............................................................
......

.....
.......
..........

......
....... .... ....... ........ ......... ......

.....
......
.....

.............................................
......

..........
.......

are not negative definite. Thus we only need to consider one loop case.

Notation. Denote the total graph as Γ. Let E be a point in loop. Denote the
two points in loop connected to E as F1, F2. Denote the tree subgraphs connected to
loop as G,H1.H2, G1, ..., Gs, where G is connected to E and H1, H2 are connected to
F1, F2 respectively. Removing point E and subgraph G to get a tree graph, we denote
it as RE . Removing point E and Ei together with G and Hi to get two treegraphs,
we denote it as Ri, i = 1, 2. Denote E −G as EG.
Total graph Γ:
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.....
......

..........
......... ....... ....... ........ ......... ......

.....
......
.....

............................................................
......

..... Gs

G1
. . .

EG
F1

@@
H1

F2

��
H2

Total graph Γ: (We omit Gi, i = 1, ..., s.)

��

@@

H1

H2

F1

F2

@@...��

@@ ��
E G

.

RE :

F1

F2

...��

@@

��

@@

H1

H2

.

R1:

F2

...
@@

@@H2

.

R2:

F1

...��

��
H1

.

EG:

E G
.
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Theorem 4.1 (Loop determinant formula). Assumptions as in Notation. Then

det(Γ) =det(RE)det(EG)− det(G)det(R1)det(H1)− det(G)det(R2)det(H2)

− (−1)L · 2det(G)det(H1)det(H2)
∏
i=1

det(Gi)

where L is the number of points in the loop.

Proof. We begin with the simplist case that G,Gi = ∅, and F1, F2 are connected.
Then

Γ =


E2 1 1 0 0
1 F1 1 1 0
1 1 F2 0 1
0 1 0 H1 0
0 0 1 0 H2

 .

Using Laplacian expansion we get

det(Γ) = E2det(RE)− det


1 1 1 0
1 F2 0 1
0 0 H1 0
0 1 0 H2

+ det


1 F1 1 0
1 1 0 1
0 1 H1 0
0 0 0 H2


While

det(


1 1 1 0
1 F2 0 1
0 0 H1 0
0 1 0 H2

) = det(H1)det(

1 1 0
1 F2 1
0 1 H2

)

= det(R1)det(H1)− det(H1)det(H2).

Similarly, the third term equals

det(R2)det(H2)− det(H1)det(H2).

Replace E2 by det(EG), the formula holds.
Now we turn to the case that F1, F2 are connected by one point, say A. And G1 is
connected to A outside the loop, i.e.

Γ =



G 1 0 0 0 0 0 0
1 E2 1 0 1 0 0 0
0 1 F1 1 0 1 0 0
0 0 1 A 1 0 0 1
0 1 0 1 F2 0 1 0
0 0 1 0 0 H1 0 0
0 0 0 0 1 0 H2 0
0 0 0 1 0 0 0 G1


.
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Use Laplacian expansion on EG we get

det(Γ) =det(EG)det(RE)

− det



G 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 A 1 0 0 1
0 1 1 F2 0 1 0
0 0 0 0 H1 0 0
0 0 0 1 0 H2 0
0 0 1 0 0 0 G1


− det



G 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 A 1 0 0 1
0 1 1 F1 0 1 0
0 0 0 0 H2 0 0
0 0 0 1 0 H1 0
0 0 1 0 0 0 G1


.

The second term is

det



G 1 0 0 0 0 0
0 1 1 0 1 0 0
0 0 A 1 0 0 1
0 1 1 F2 0 1 0
0 0 0 0 H1 0 0
0 0 0 1 0 H2 0
0 0 1 0 0 0 G1


= det(G)det


1 1 0 1 0 0
0 A 1 0 0 1
1 1 F2 0 1 0
0 0 0 H1 0 0
0 0 1 0 H2 0
0 1 0 0 0 G1



= det(G)det(H1)det


1 1 0 0 0
0 A 1 0 1
1 1 F2 1 0
0 0 1 H2 0
0 1 0 0 G1

 .

Expand on first colomn we get

det


1 1 0 0 0
0 A 1 0 1
1 1 F2 1 0
0 0 1 H2 0
0 1 0 0 G1

 = det


A 1 0 1
1 F2 1 0
0 1 H2 0
1 0 0 G1

+ det


1 0 0 0
A 1 0 1
0 1 H2 0
1 0 0 G1


= det(R1) + det(H2)det(G1).

Take them into det(Γ) we get the formula.
The last thing is to illustrate the (−1)L. Note when F1, F2 is connected by L − 3
points, then the expansion

det


1 1 0 0 0
0 A 1 0 1
1 1 F2 1 0
0 0 1 H2 0
0 1 0 0 G1

 = det


A 1 0 1
1 F2 1 0
0 1 H2 0
1 0 0 G1

+ det


1 0 0 0
A 1 0 1
0 1 H2 0
1 0 0 G1


= det(R1) + det(H2)det(G1)
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changes to

det


1 1 0 0 0
0 A 1 0 1
1 1 F2 1 0
0 0 1 H2 0
0 1 0 0 G1



= det


A 1 0 1
1 F2 1 0
0 1 H2 0
1 0 0 G1

+ (−1)(L−2)det


1 0 0 0
A 1 0 1
0 1 H2 0
1 0 0 G1


= det(R1) + (−1)Ldet(H2)det(G1).

When s ≥ 1, i.e. G1, ..., Gs connected to A, it does not affect this expansion. Thus
the formula is proved.

Remark 4.2. The determinant of RE , EG, Ri, Hi, G,Gi can be computed by us-
ing tree graph determinant formula (Theorem 3.3). Compared to tree graph formula,
there exists an extra term 2det(G)det(H1)det(H2)

∏
i=1 det(Gi).

Example 4.3. Consider the weighted dual graph:

��

@@

u

u
u
u @@u��

@@ ��
E

,

where E2 = −4. Then H1 = H2 = A1, RE = A5, R1 = R2 = A3. Thus

det(Γ) = (−4) · (−6)− 2 · (−2) · (−4)− 2 · −2 · −2 = 0.

Theorem 4.4 (Criteria for loop graph). Assumptions as in Notation. Assume
furthermore RE and G are negative-definite. Then Γ is negative definite if and only
if:

E2 +CF (G) + |det(R1)det(H1)

det(RE)
|+ |det(R2)det(H2)

det(RE)
|+ 2|

det(H1)det(H2)
∏

i=1 det(Gi)

det(RE)
| < 0.

Proof. Notice that |det(EG)| = |E2 · det(G) · CF (G)|. Thus dividing
|det(G)det(RE)|, we know the only if part holds.

For the if part, we construct a rational cycle D such that D ·E < 0 and D ·Ei = 0
for any Ei 6= E exceptional curve.

First remove the connection between E and F1 and together remove G, we get a
tree graph:
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��

@@

H1

H2

F1

F2

...��

@@ ��
E

.

Use the construction on tree graph (cf. Lemma 3.2) we get a rational cycle D2 such
that D2 · E < 0. D1 · Ei = 0. And the coefficient of D2 on F2 is

|det(R2)det(H2)

det(RE)
|.

We need to compute the coefficient of D2 on F1. If all Gi are empty then the induction
of coefficient tells us the coefficient of D2 on F1 is

|det(H1)det(H2)

det(RE)
|.

Now if Gi is not empty then Gi will add a term on numerator, i.e. the coefficient of
D2 on F1 is

|
det(H1)det(H2)

∏
i=1 det(Gi)

det(RE)
|.

Similarly we construct D1 by removing G and the connection between E and F2. The
coefficient of D1 on F1 is

|det(R1)det(H1)

det(RE)
|,

on F2 is

|
det(H1)det(H2)

∏
i=1 det(Gi)

det(RE)
|.

Let D3 be the rational cycle constructed on EG.
Let D = D1 +D2 +D3−2E. D ·Ei = 0 for any Ei 6= F1, F2, E because D1, D2, D3, E ·
Ei = 0 if Ei 6= F1, F2, E. Meanwhile,

D · F1 = (D1 +D2 +D3 − 2E) · F1 = 0 + 1 + 0− 1 = 0.

So is D · F2. At last

D · E =E2 + CF (G) + |det(R1)det(H1)

det(RE)
|+ |det(R2)det(H2)

det(RE)
|

+ 2|
det(H1)det(H2)

∏
i=1 det(Gi)

det(RE)
| < 0.

Thus Γ is negative-definite by Proposition 2.5.

Definition 4.5 (Component factor for loop graph). Assumptions as in notation.
The component factor of RE is defined to be

CF (RE) = |det(R1)det(H1)

det(RE)
|+ |det(R2)det(H2)

det(RE)
|+ 2|

det(H1)det(H2)
∏

i=1 det(Gi)

det(RE)
|.
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Notice that CF (RE) only depends on the graph and connection way of RE with E.

Corollary 4.6. Assume RE and G are negative-definite. The loop graph is
negative-definite if and only if

E2 + CF (RE) + CF (G) < 0.

Theorem 4.7. The loop graph must be one of the following:
(1) RE is A-type:

@@
Am

A1

A1

@@An
��

@@ ��
E G

m = 4, 5, n = 0, G = ∅.
m = 3, n = 1, 2, G = ∅.
m = 2, G =

∅;
An2

, n = 0, n2 = 1, 2, 3 or n = 1, 2, n2 = 1.

m = 1, G =

∅;
Dn2

; An2
; 1−An2

, if n2 = 4 then n = 0, if n2 = 3 then n ≥ 0 can be arbitrary.

An2
+An3

, n2 = n3 = 1, n ≥ 0 or n2 = 3, n3 = 2, n = 0, 1.

m = 0, G =

∅;
Dn2

; 1−An2
; E6, E7; 2−An2

, n2 ≤ 7; Dn′2
, n2 ≤ 7.

(An2) + (An3); (An2) + (1−A3)/(Dn3); (An2) + (Dn3); (A1) + (E6)/(E7);

(1−An2) + (A1), n2 ≤ 6; (1−A4) + (An2), n2 ≤ 3; (D′5) + (An2), n2 ≤ 2.

(A1) + (A1) + (An3); (A1) + (A2) + (An2), n2 ≤ 4.

(2) RE is D-type:
G = ∅.
G = An2

, n = 0, n2 ≥ 1 or n = 1, n2 ≤ 2.

@@
A1

A1

A1

@@An
��

@@
E

��
A1

G

Proof. Let E be the −4 point. Then RE must be ADE graph. We first discuss
cases in the condition that G = ∅, i.e. EG = E.
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Step 1: RE is A-type.
Consider following graph:

RE = An+2, H1 = H2 = A1, Gi = ∅.

i.e.

��

@@

A1

A1

A1

A1

@@An
��

@@ ��
E

.

Then D :=
∑

1 ·Ei is the fundamental cycle with D ·Ei = 0 for any exceptional curve
Ei. Thus this graph has determinant 0, which is not negative-definite.
When RE is A-type, next we consider the following:

@@
Am

A1

A1

@@An
��

@@ ��
E

.

Then

RE = Am+n+2, H1 = ∅, H2 = Am, G = Gi = ∅, R1 = Am+n+1, R2 = An+1.

If Γ is negative-definite, then if m ≥ 1.

−4(m+ n+ 3) + (m+ n+ 2) + (n+ 2)(m+ 1) + 2(m+ 1) < 0,

i.e.

m− 2n+mn− 6 < 0.

Thus

m = 0, 1, 2, n ≥ 0.

m = 3, n ≤ 2.

m = 4, 5, n = 0.

Step 2: RE is D-type.
In general RE = Dn has 5 possibilities:

u u uu u

u u uu u
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u u u uu u

u u u uu u

u u u uu u

Where the lines imply the connection to −4 point.
In fact only the first one is permitted. Consider the following graph:

��

@@

Am

A1

A1

A1

@@An
��

@@
E

��
A1

.

Then

RE = Dm+n+4, R1 = Dn+3, R2 = Am+n+3, H1 = Am, H2 = A1.

If Γ is negative-definite, then

−4 · 4 + 4 · (m+ 1) + (m+ n+ 4) + 2 · 2 · (m+ 1) < 0.

Thus m = 0, n ≤ 3. The rest cases are not permitted by computing similarly.
Step 3: RE is E-type.
We use RE = E6 as an example, the rest are similar. Consider the following graph:

��

@@

A1

A1

A1

A1

A1A1
��

@@
E .

Then

det(Γ) = −4 · det(E6)− 2 · det(D5)− 2 · det(A1) = 0.

If we change the connection way of E with RE = E6, then −2 · det(D5)− 2 · det(A1)
will be exchanged for larger value terms. Thus RE = E6 is not permitted. Similarly
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for RE = E7 and E8.
Step 4: G is not empty.
By Step 1,2 and 3, we know that the only possibilities for G nonempty are the fol-
lowings:

@@
Am

A1

A1

@@An
��

@@ ��
E G

@@
A1

A1

A1

@@An
��

@@
E

��
A1

G

We use Corollary 4.6 to determine G. First we consider the case RE is A-type.

|det(RE)| = m+ n+ 3, |det(R1)| = m+ n+ 2, |det(R2)| = n+ 2, |det(H2)| = m+ 1.

This shows

CF (RE) =
mn+ 5m+ 2n+ 6

m+ n+ 3
=

mn+ 3m

m+ n+ 3
+ 2 =

−m2

m+ n+ 3
+m+ 2.

We can compute CF (RE) of cases listed in Step 1:

m = 0, CF (RE) = 2.

m = 1, CF (RE) = 3− 1

n+ 4
.

m = 2, CF (RE) = 4− 4

n+ 5
.

m = 3, n = 1, CF (RE) = 5− 9

3 + 1 + 3
= 4− 2

7
.

m = 3, n = 2, CF (RE) = 5− 9

3 + 2 + 3
= 4− 1

8
.

m = 4, n = 0, CF (RE) = 6− 16

7
= 4− 2

7
.

m = 5, n = 0, CF (RE) = 7− 25

8
= 4− 1

8
.

Note CF (A1) = 1/2, thus m = 3, 4, 5 cannot connect more subgraphs.
When m = 2, then G = An2

and

4− 4

n+ 5
+ 1− 1

n2 + 1
− 4 < 0,

i.e.

1 <
4

n+ 5
+

1

n2 + 1
.
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Thus n = 0, n2 = 1, 2, 3 or n = 1, 2, n2 = 1.
When m = 1, then CF (G) < 1 + 1/(n+ 4). Thus G = Dn2 is satisfied.
When G = k2 −An2 then

k2 + 1− (k2 + 1)2

n2 + 1
< 1 +

1

n+ 4
.

So k2 = 0 is always satisfied. When k2 = 1 then

1 <
1

n+ 4
+

4

n2 + 1
.

Note n2 ≥ k2 + 1 = 3, thus n = 0, n2 = 4 or n2 = 3, n ≥ 0. k2 ≥ 2 is not permitted
by lower bound of CF (k2 −An2

) ≥ 3/2 > 1 + 1/(n+ 4).
When G = An2

+An3
then

1 <
1

n+ 4
+

1

n2 + 1
+

1

n3 + 1
,

i.e. n2 = n3 = 1, n ≥ 0 or n2 = 3, n3 = 2, n = 0, 1.
The case m = 0 is the same as tree graph with some Γi = (E′′6 , E

′
7, E8), we list them

in the theorem.
Next we consider the case RE is D-type.

|det(RE)| = 4, |det(R1)| = 4, |det(R2)| = n+ 4, |det(G1)| = 2.

This shows

CF (RE) =
4 + n+ 4 + 2 · 2

4
=
n

4
+ 3.

Thus CF (G) < 1− n
4 , G must be An2 and

1

n2 + 1
>
n

4
.

So

n = 0, n2 ≥ 1.

n = 1, n2 ≤ 2.

Next we consider multiple edge graph. The criteria for multiple edge graph is
similar. To be more specific, we present it as follows:

Definition 4.8 (Component factor for multiple edge). Let G be a subgraph
connected to E with the multiplicity equals n. Denote this connection way as G−n.
Define

CF (G−n) = n2CF (G).

Theorem 4.9 (General criteria for negative definiteness). Let Γ be a weighted
dual graph. Let Γi be subgraphs connected to E such that Γi is negative-definite. Then
Γ is negative-definite if and only if

E2 +
∑
i

CF (Γi) < 0.
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Proof. We have already illustrate the cases when Γi is tree graph or loop graph
in Corollary 3.8 and Corollary 4.6. Note component factor only depends on the
connection way and the graph of Γi, thus we only need to show the case for multiple
edge graph. This is a direct observation of Laplacian expansion.
Assume the weighted dual graph is:

Γ′ E
n u
Fk

Gk,1

. . .

Gk,rk

.

Where −n denotes the multiplicity is n, i.e. Γk connects E with multiplicity n.
The intersection matrix can be represented as :

Γ′ 1 0 1 . . . 1
1 E2 n 0 . . . 0
0 n F 2

k 1 . . . 1
0 0 1 Gk,1 . . . 0

0 0
...

...
. . . 0

0 0 1 0 . . . Gk,rk


.

det(Γ) = det(

(
Γ′ 1
1 E2

)
)det(Γk) + (−1)(nk) · n · det(


Γ′ 1 1 . . . 1
0 n 1 . . . 1
0 0 Gk,1 . . . 0

0 0
...

. . . 0
0 0 0 . . . Gk,rk

)

= det(

(
Γ′ 1
1 E2

)
)det(Γk) + (−1)(nk) · n2 · det(Γ′)

rk∏
l=1

det(Gk,l).

Here nk is the number of points in Γk. Compared with the determinant formula for
tree graph, Γk contributes n2CF (Γk). By definition, CF (Γk−n) = CF (Γk), thus the
criteria holds.

This criteria helps us for classify possible multiple edge graphs with one −4 point:

Theorem 4.10. If Γ is multiple edge graph, then there exists only one multiple
edge with multiplicity 2. Denote the subgraph connected to E with multiplicity 2 as
Γ1, then Γ1 = An1

. And the rest Γi ’s are the followings:
n1 = 1:

Dn2 ; 1−An2 ; E6, E7; 2−An2 , n2 ≤ 7; Dn′2
, n2 ≤ 7.

(An2
) + (An3

); (An2
) + (1−A3)/(Dn3

); (An2
) + (Dn3

); (A1) + (E6)/(E7);

(1−An2
) + (A1), n2 ≤ 6; (1−A4) + (An2

), n2 ≤ 3; (D′5) + (An2
), n2 ≤ 2.

(A1) + (A1) + (An3
); (A1) + (A2) + (An2

), n2 ≤ 4.

n1 = 2:

1−An2
, n2 = 3, 4; An2

; Dn2
; D′5.
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6 ≥ n1 ≥ 3:

An2

satisfying

4

n1 + 1
> 1− 1

n2 + 1
.

n1 ≥ 7, Γi ’s = ∅.

Proof. We first discuss the multiplicity. By CF (Γi−n) = CF (Γn) and CF (A1) =
1/2 we know n ≤ 2.
Now let Γ1 be the subgraph connect −4 point with multiplicity 2. Then

CF (Γ1−2) = 4CF (Γ1) < 4,

i.e. CF (Γ1) < 1. So Γ1 = An1 .
The rest graph must satisfy∑

i≥2

CF (Γi) < 4− 4CF (An1) = 4− 4(1− 1

n1 + 1
) =

4

n1 + 1
.

We discuss n1.
n1 = 1 then

∑
i≥2 CF (Γi) < 2. Thus Γi ’s are the following:

Dn2
; 1−An2

; E6, E7; 2−An2
, n2 ≤ 7; Dn′2

, n2 ≤ 7.

(An2
) + (An3

); (An2
) + (1−A3)/(Dn3

); (An2
) + (Dn3

); (A1) + (E6)/(E7);

(1−An2
) + (A1), n2 ≤ 6; (1−A4) + (An2

), n2 ≤ 3; (D′5) + (An2
), n2 ≤ 2.

(A1) + (A1) + (An3
); (A1) + (A2) + (An2

), n2 ≤ 4.

n1 = 2 then
∑

i≥2 CF (Γi) < 4/3. Thus Γi ’s are the following:

1−An2
, n2 = 3, 4; An2

; Dn2
; D′5.

6 ≥ n1 ≥ 3 then
∑

i≥2 CF (Γi) < 1, thus when n1 ≥ 3, Γi ’s can only be An2
satisfying

4

n1 + 1
> 1− 1

n2 + 1
.

When n1 ≥ 7, then Γi ’s = ∅.

Remark 4.11. In fact, ADE graphs help us to completely classify all possible
Γi ’s such that

∑
i CF (Γi) < 2. We can select any point in ADE graphs to be E

and the subgraphs connected to E are the possible Γi ’s. For example, if we remove
a point in the chain of An (not the point on sides), then the rest graphs are Γi ’s,
which are An2

+An3
:

u u u u u
An2

︸ ︷︷ ︸
An3

︸ ︷︷ ︸
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Remove all possible points in ADE graphs we get Γi ’s are the following:

Dn2
; 1−An2

; E6, E7; 2−An2
, n2 ≤ 7; Dn′2

, n2 ≤ 7.

(An2) + (An3); (An2) + (1−A3)/(Dn3); (An2) + (Dn3); (A1) + (E6)/(E7);

(1−An2) + (A1), n2 ≤ 6; (1−A4) + (An2), n2 ≤ 3; (D′5) + (An2), n2 ≤ 2.

(A1) + (A1) + (An3); (A1) + (A2) + (An2), n2 ≤ 4.
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