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SPECTRAL CONVERGENCE IN GEOMETRIC QUANTIZATION ON
K3 SURFACES*

KOTA HATTORIT

Abstract. We study the geometric quantization on K3 surfaces from the viewpoint of the
spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of
hyper-Kéhler structures tending to large complex structure limit, and show a spectral convergence
of the d-Laplacians on the prequantum line bundle to the spectral structure related to the set of
Bohr-Sommerfeld fibers.
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1. Introduction. In this paper we study the geometric quantization on the K3
surfaces from the viewpoint of the spectral convergence of the d-Laplacian acting on
sections of the prequantum line bundle.

The prequantum line bundle on a symplectic manifold (X,w) is a triple (L, h, V)
of a complex line bundle 7: L — X equipped with a hermitian metric A and a
hermitian connection V whose curvature form FV is equal to —/—1w. The geometric
quantization is the procedure to derive the quantum Hilbert space consisting of the
regular sections of L in the appropriate sense. To derive it, we consider the Ké&hler
quantization coming from the integrable complex structures and the real quantization
coming from the Lagrangian fibrations in this paper.

Let J be an integrable complex structure on X and suppose that it is w-
compatible. Then w is a Kéhler form on the complex manifold X; := (X, J) and
L is a holomorphic line bundle over X ;. The quantum Hilbert space coming from J
is defined by

V= H(X,,L).

Next we take a Lagrangian fibration p: X — B. We suppose that B is a smooth
manifold of dimension dim X/2, p is almost everywhere submersion and w|,-1() = 0
for every regular value b € B. By the Lagrangian condition, the restriction of (L, V)
to every fiber p~1(b) is a flat bundle. The fiber u~1(b) is called a Bohr-Sommerfeld
fiber if (L|,~1(4), V|,~1(»)) has a nontrivial parallel section. We can also define this
notion even if b is a critical value. Here, we put

BS :={b € B *(b) is a Bohr-Sommerfeld fiber},
Vi = C#BS.

The w-compatible complex structures and the Lagrangian fibrations can be treated
uniformly by the notion of polarizations. Now, suppose that a family of w-compatible
complex structures {Js}s~o is given and it converges to a Lagrangian fibration p as
s — 0 in the sense of polarizations. The aim of this paper is to show the convergence
of the quantum Hilbert spaces V;, — V,, as s — 0. Such a phenomenon has already
been observed in the several examples. In [2], Baier, Mourao and Nunes showed such
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convergence on the smooth abelian varieties, and in [1], Baier, Florentino, Mour&o and
Nunes showed it on the smooth toric varieties. In [11], Hamilton and Konno showed it
on the flag manifolds. In these results, they constructed a family of complex structures
Js and the basis {01 5,...,0n s} of Vj, explicitly then showed that the sections 9;
converge to the delta function section of L supported by the Bohr-Sommerfeld fibers
as s — 0. In [21], Yoshida studied the convergence of the holomorphic sections on
the neighborhood of nonsingular fibers of p by only using the local description of the
almost complex structures.

In [14], Yamashita and the author introduced the new approach to this problem.
We identified the holomorphic sections of (X , L) with the eigenfunctions of the
Laplace operators on some Riemannian manifolds related to Js; and V, and then
showed the spectral convergence as s — 0 in the sense of Kuwae and Shioya [17]. In
[14], we considered the case of p has only nonsingular fibers and in [15] we considered
the case of the smooth toric varieties, then obtained the another proof of the results
in [2], [1], respectively.

In this paper we show the convergence V;, — V), in the case of the K3 surface,
where Jg come from the family of hyper-Kéhler structures tending to a large complex
structure limit in the sense of [10], and p comes from the elliptic fibration. One of the
difficulty to work on the K3 surfaces is that we cannot describe the complex struc-
tures Js and the holomorphic sections explicitly, since the hyper-K&hler structures
on the K3 surfaces are determined by the solutions of the Monge-Ampere equation.
However, the method developed in [14] does not require the explicit description of
V;,. We mention that dimV; = dim V), has been proved by Tyurin in the case of
the K3 surfaces in [19]. Moreover, Chan and Suen constructed the canonical isomor-
phism Vy =V, via the SYZ transforms in the case of the semi-flat Lagrangian torus
fibrations over the compact complete special integral affine manifolds and compact
toric manifolds [3].

Next we explain the main result. Let X be a smooth manifold of dimension 4
diffeomorphic to the K3 surfaces, (g, Ji, J2, J3) be a hyper-Kéhler structure on X
and put w; := g(J;, ), then we regard (X,w;) as a symplectic manifold. We assume
[wi1] € 2mH?(X,Z) and take a prequantum line bundle (L, h, V) on (X,w;). Next we
take a family of Kahler forms (w3 )s>0 on X, such that w3, = wi = wj. We call
p: X — P aspecial Lagrangian fibration if ! (b) is smooth and wy |, -10 = wa|,-10 =
0 for every regular value b € P'. We assume that p comes from the elliptic fibration
X j, — P! whose singular fibers are of Kodaira type I; and lims_,o fufl(b) wz s = 0.

We define A]}p by
Agap = ZQ: (—?;f + 2&8@)
p & 9
for p: R? — C.

THEOREM 1.1. Let (X, w1, w2, wss), i: X — P and (L, h, V) be as above. Then
we have the compact convergence of the spectral structures

2 (x4 2 (g2, e~ lEl? Ags
L2 (X, 55 Lh) . 8y, )= @ (L2 (R% eV dgdg) o C, =

beBS
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as s — 0 in the sense of Definition 3.3. Moreover, if we denote by
w2
Py: L? <X21Lh> — H°(X;, ., L),
s :

P: DL (R27e_‘|5‘|2d§1d§2) P

beBS beBS

the orthogonal projections to the 0-eigenspaces, then we have the compact convergence
of the bounded operators

Psg)PO

as s — 0 in the sense of Definition 3.5.

By the Kodaira Vanishing Theorem, Theorem 1.1 implies the next corollary, which
has been obtained by Tyurin [19].

COROLLARY 1.2. Let (X,g,J1,J2,J3) be a K3 surface equipped with a hyper-
Kihler structure, p1: X — P! be a special Lagrangian fibration coming from the elliptic
fibration X j, — P with 24 singular fibers of Kodaira type I1. Let [w1]/2m € H*(X,Z)
and (L, h,V) be a prequantum line bundle on (X,w). Then we have

dim H°(X,,, L) = #BS.

This paper is organized as follows. In Section 2, we review fundamentals of the
hyper-Kéhler structures on the K3 surfaces and describe the setting of this paper.
Moreover, we see that the holomorphic sections on L can be identified with some
eigenfunctions on the frame bundle of (L, h) equipped with some Riemannian metrics.
In Section 3, we review the convergence of the spectral convergence following [17]
and the notion of the S'-equivariant pointed measured Gromov-Hausdorff topology
following [13]. In Section 4 we describe the main results of this paper and the outline
of the proof. In Subsection 4.3, we explain how to construct the approximation
map between the frame bundle of (L,h) and the limit spaces. In Section 5, we
study the family of hyper-Kéhler structures on the K3 surfaces tending to the large
complex structure limit. It is known by Gross and Wilson [10] that such structures are
approximated by gluing the standard semi-flat metrics and the Ooguri-Vafa metrics.
We modify their argument to apply to our situation, then we may reduce the problem
to the local argument on the standard semi-flat metrics and the Ooguri-Vafa metrics.
In Section 6 we study the detail of the former metric and in Section 7 we consider the
latter one, then we obtain the strong convergence of the spectral structures. To show
the compact convergence of the spectral structures in Theorem 1.1, we need further
argument for the localization of the functions on S, which is discussed in Section 8
following [14]. In Section 9, we show the convergence of the quantum Hilbert spaces
and obtain the latter half of Theorem 1.1.

NOTATIONS.
e For a Riemannian manifold (X, g), denote by d, the Riemannian distance
and denote by v, the Riemannian measure. For a piecewise smooth path
c: [0,1] = X, denote by £,(c) the length of ¢ with respect to g.
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e For a metric space (X, d) or a Riemannian manifold (X, g), denote by B(p, )
the open metric ball of radius » > 0 centered at p € X. If we need to
emphasize the dependence on d or g, we also write By(p,r) or B, (p,r). For
a subset A C X, we denote the diameter of A by

diam(A) :=sup {d(p,q); p,q € A}.

We write diamg(A) or diam,(A) when we emphasize the dependence on d or

g.

e For sets A, B and points a € A, b € B, denote by f: (A,a) — (B,b) the map
f:+ A — B such that f(a) =b.

Acknowledgment. I would like to thank Mayuko Yamashita for her advices

and a lot of discussions on this paper. This work was supported by JSPS KAKENHI
Grant Numbers JP19K03474, JP20H01799.

2. Geometric quantization on the K3 surfaces.
2.1. Hyper-Kahler structures.

DEFINITION 2.1. Let X be a smooth manifold of dimension 4d. A hyper-Kdhler
structure on X is a quadruple (g, Ji, Jo, J3) of a Riemannian metric g and integrable
complex structures J; with

JiJo=Js, Jods=Ji, J3Ji=Ja, g(Ji-,Ji) =g,

such that every 2-form w; := g(J;-,-) is closed. Then (X, g, J1,Jo, J3) is called the
hyper-Kéhler manifold and ¢ is called the hyper-Kéhler metric.

REMARK 2.2. If (X, g, Ji1, Jo, J3) is a hyper-K&hler manifold, then w; is a Kéhler
form on the complex manifold

Xy = (X, J).

Moreover, if (¢, j,k) = (1,2,3),(2,3,1) or (3,1,2), then w; + +/—1wy, is a holomorphic
volume form, i.e., nondegenerate holomorphic 2-form on X,.

REMARK 2.3. If (X, g, J1, J2, J3) is a hyper-Kéhler manifold of dimension 4, then
we have

%3 A wj = (Sij’UOl (1)

for some nowhere vanishing 4-form vol on X. Conversely, if 2-forms wj,ws,ws on
smooth 4-manifold satisfy (1), then it recovers the hyper-Kéhler structure on X after
reordering the forms. For this reason the triple (wy,ws,ws) is also called the hyper-
Kahler structure on X.

2.2. Holomorphic sections and eigenfunctions. Let (X,w) be a symplectic
manifold. A prequantum line bundle (w: L — X, h,V) on (X,w) is a complex line
bundle L over X with a hermitian metric A and a hermitian connection V whose
curvature form FV is equal to —v/—1w. If we consider the prequantum line bundle
on a hyper-Kéhler manifold (X, wq,ws,ws), then we always suppose FV is equal to
—+/—1w; in this paper. Then L is a holomorphic line bundle over X ;. The aim of
this paper is to analyze the behavior of the vector space H(X;,, L) consisting of the
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holomorphic sections under fixing w; and varying J;. To achieve it, we use the corre-
spondence between holomorphic sections and some eigenfunctions on a Riemannian
manifold constructed by (X, g) and (L, h, V), which was also considered in [13], [14]
and [15].

Let (X, w1, ws,ws) be a hyper-Ké&hler manifold of dimension 4. First of all put

S=S(L,h) :={u € L; h(u,u) = 1}.

Notice that S is a principal S!'-bundle over X and the connection V induces the
horizontal distribution H C T'S. Denote by /—1T'V € Q!(S,+v/~1R) the connection
form on S corresponding to V. Then we have a S'-invariant Riemannian metric § on
S such that

g=(V)* + (drlu)"g. (2)

Denote by C*°(X, L) the set of smooth sections of L. There is the natural iden-
tification

C™(X,L*) = (C>(S) ® C)** (3)
={feC®(S)®C; f(ul) = A Ff(u) forallues, A e s},

where pj,: S' — S! is the unitary representation defined by pi()\) = A*. Let Az, =
_ _ 1
V%] V5, is the 0-Laplacian acting on C°°(L). We can also define the J-Laplacian
J1 1
A, 5, actingon C™ (L*). Denote by A the Laplacian of § acting on C*°(S), then it
0Ty

extends to the operator on C°°(S)®C C-linearly. Since S* acts on (S, §) isometrically,
Ay induces

A% (C(S) @ C)P* — (C*°(S) ® C)P*.
By [13], we can see
Avg,, =47~ (K +2k) (4)

under the identification (3). Consequently, if X is compact, we have the following
isomorphism

HY (X, LF) = {f € (C®(S) @ C)**; Ayf = (k* +2k) f}.

2.3. Special Lagrangian fibrations. Let (X, w) be a symplectic manifold. In
this paper we say that u: X — B is a Lagrangian fibration if p is a surjective smooth
proper map from X to a smooth manifold B of dimension (dim X)/2 such that u=1(b)
are Lagrangian submanifolds, namely, w|,-1(;) = 0, for all regular values b € B, and
we also suppose all of the fibers are connected. Then by the Liouville-Arnold theorem,
for all regular values b, the fibers ;~1(b) are diffeomorphic to the torus.

Let (X,w1,ws,ws3) be a hyper-Kdhler manifold of dimension 4. In this paper
w: X — B is said to be a special Lagrangian fibration if it is the Lagrangian fibration
with respect to both of w; and ws.

Since the condition wi -1 = wal,~1) = 0 is equivalent to that p~'(b) is
complex submanifold of X,, hence the special Lagrangian fibration on X is the
elliptic fibration on X j,.
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REMARK 2.4. Harvey and Lawson showed in [12] that the special Lagrangian
submanifold minimizes the volume in its homology class, therefore, the volume of
p~L(b) is independent of b. By the above argument, p~1(b) is a complex submanifold
of X ,, hence the volume of x~1(b) is given by f,rl(b) w3 by choosing the orientation
appropriately.

The inverse image of a critical value of u is called a singular fiber. The singular
fibers of elliptic fibrations are classified by Kodaira. In particular, we suppose in this
paper that all of the singular fibers are of Kodaira type I, which is the irreducible
rational curve with a double point.

DEFINITION 2.5. Let pu: X — B be a special Lagrangian fibrations on the 4-
dimensional hyper-Kéhler manifold X. In this paper we say u is of Kodaira type I if
all of the singular fibers of the corresponding elliptic fibration on X, are of Kodaira
type I.

Next we define the Bohr-Sommerfeld fibers.

DEFINITION 2.6. Let (X,w) be a symplectic manifold with a prequantum line
bundle (L, h,V) and a Lagrangian fibration p: X — B.

(i) u=t(b) is called a Bohr-Sommerfeld fiber if the holonomy group of the con-
nection V|, -1 on L|,-1¢) is trivial. Moreover we call b a Bohr-Sommerfeld
point.

(ii) Let m be a positive integer. We also denote by V the connection on L™ :=
L®™ naturally induced by V on L. pu~1(b) is called a Bohr-Sommerfeld fiber
of level m if the holonomy group of the connection V|,-1¢) on L™|,-1) is
trivial. We put

BS,, := {b€ B; u~'(b) is a Bohr-Sommerfeld fiber of level m},

m—1
BS3T .= BS,, \ < U BSl> .

=1

REMARK 2.7. Notice that we can define the holonomy group not only for the
smooth fibers, but also for the singular fibers.

2.4. K3 surfaces.

DEFINITION 2.8. A K3 surface is a compact simply-connected hyper-Kéahler
manifold of dimension 4.

If the K3 surface admits an elliptic fibration p: X — B, then it is known that
B is the complex projective line P'. Moreover, if all of the singular fibers of y are of
Kodaira type I, then the number of singular fibers is equal to 24, which is the Euler
characteristic of the K3 surface.

DEFINITION 2.9. Let so > 0, X be a K3 surface and (wq,ws,ws s) be a family
of hyper-Kéhler structures on X for every 0 < s < sg. Suppose a special Lagrangian
fibration p: X — P! of Kodaira type I; is given. Then (wi,ws,ws ) is tending to a
large complex structure limit if the volume of the fibers of u converges to 0 as s — 0.

REMARK 2.10. In Definition 2.9, we do not assume that {ws,} continuously
depends on s.
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Here we show an example of a family of hyper-Kéhler structures on the K3 surface
tending to a large complex structure limit.

PROPOSITION 2.11. Let (w1, we,ws) be a hyper-Kdhler structure on the K3 sur-
face X, pi: X — P! be a special Lagrangian fibration of Kodaira type I, and wrg be the
Fubini-Study form on P' normalized such that fX w3 A Wrwps = 1. Put vx = fX w%.
Define the cohomology class as € H?(X,R) by

vx 1 vx
Qg = |8 <w3 - 7H*WFS) + ——p'wrs| .
2 s 2
Then there exists a unique Kdhler form ws s € as such that (w1, we,ws, s) form hyper-
Kahler structures tending to a large complex structure limit.

Proof.  Let (g,J1,J2,J3) be the hyper-K&hler structure corresponding to
(w1, ws,ws). Since a; is represented by positive (1,1) form on Xy, if 0 < s < 1,
then there is a Kéhler form w3, € Q"'(X,) such that w3, = cw] = cw3 for some

¢ > 0 by Yau’s Theorem [20]. Since

a? = [ws]? = [wi]® = [wa]?,

we have ¢ = 1, hence wy, ws,ws, s form hyper-Kéahler structures on X. Since

/ w3.s = s/ w3z — 0
= t(b) = t(b)

as s — 0, we have the assertion. O

3. Convergence of spectral structures. In this paper we consider the con-
vergence of H%(X;, ., L¥) to some Hilbert spaces in an appropriate sense. By (4),
HO(X, ,,L*) can be identified with the (k* 4 2k)-cigenspace of the operator AZ*.
To consider the convergence of eigenspaces, we use the notion of the convergence of
spectral structures introduced by Kuwae and Shioya in [17] to our situation.

3.1. Spectral structures. A spectral structure ¥ = (H, A) is a pair of a Hilbert
space H and a self-adjoint positive linear operator A: D(A) — H, where D(A) is a
subspace of H, such that the quadratic form E(f) := (Af, f)m is closed, i.e., the norm

£l = /£ + E(F)

can be extended to a dense subspace D(£) C H continuously and D(E) is complete
with respect to the norm || - || 4.

Let (X, g) be a compact Riemannian manifold and A, be the Laplacian acting
on C*°(X). Then

S(X, 9) = (L2 (X,vy), Ay)

is a typical example of the spectral structures.

Next we review the definition of the Laplacian on a metric measure space appeared
as the measured Gromov-Hausdorff limit of a sequence of Riemannian manifolds with
a lower bound of the Ricci curvatures following [4].

Let (X, d,v,p) be a pointed metric measure space, that is, d is a metric on X, v
is a Radon measure on X and p € X. We assume that there are constant x € R and
a sequence of Riemannian manifolds {(X;, ¢g;)}; of dimension N such that

Ricy, > kg,
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and (X, d,v,p) is the pointed measured Gromov-Hausdorff limit of

Vg,
X,L' L i ] -
( ’dg”Vgi(B(pi,l))’p>

Denote by Lip,(X) the set of compactly supported Lipschitz functions on X. Then a
bilinear form on Lip,(X), denoted by

/X (., df2)dv (fi, fo € Lip (X))

can be defined so that we have

/ (df. df ydv = / Lip(f)2dv = £(f),
X X

. _ |f(z) — f(y)]
Lip(f)(z) :== inf ~ su Cd(zy)
p(f)(x) 20 poemney A, y)

Let H“?(X,d,v) be the closure of Lip,(X) with respect to the norm || f||%.. =
[ f1I2: + E(f). Denote by D(Ag,) the subspace of H?(X,d,v) consisting of the
functions f such that there is h € L?(X,v) satisfying

/hgpduz/(df,dcp)du (Vo € Lip.(X)).
X p's

We define a self-adjoint operator Ay, : D(Ag,) — L?(X,v) by Ag,f = h, then we
obtain a spectral structure

N(X,d,v) = (L*(X,v), Adg).

If X is a smooth manifold and there are a Riemannian metric g on X and a function
¥ € C°°(X) such that d = d,; and dv = e¥dy,, then we have

Aguf=A0gf = {dip,df)g.

For the brevity, we often write L?(X) = L*(X,v), H'2(X) = HY?(X,d,v) or Ax =
Ay, if there is no fear of confusion.

3.2. Convergence of spectral structures. In this subsection we review the
notion of convergence of the spectral structures, following [17]. Here, we take a
one parameter family of Hilbert spaces {H;}ss0, unbounded self-adjoint operators
{As}s>0 and consider the convergence of them as s — 0. The following notions can
be also defined for sequences.

Let {Hs}s>0 be a family of Hilbert spaces over C. Suppose a dense linear subspace
C C Hy and linear maps ®,: C — H, are given. We say the family {H,}s>0 converges
to Hy as s — 0 if

tim ||, ()

a, = | fllm=,

for all f € C. Although this convergence may depend on the choice of C or &5, We
often write Hy, — Hy for the simplicity.
Next we define the convergence of { fs}s, where f; € H,.

DEFINITION 3.1. Let Hy — Hy as s — 0, and take f, € H for every s > 0.
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(i) {fs}s>o converges to fy strongly if there exists a sequence {fk}z"zo of C con-
verging to fy such that

lim lims(l)lp ||(I)s(fk) — fsllm, = 0.

k—oo g

(ii) {fs}s>o0 converges to fo weakly if
. / o /
‘1'1_I>I%)<f87fS>Hs - <f07f0>H0

for all {f!}s>0 with f, — f§ strongly.

Next we consider a family of spectral structures X5 = (Hy, A,) for every s > 0.
Denote by & the closed quadratic forms defined by As.

DEFINITION 3.2. Let Hy; — Hy as s — 0. In the followings, we suppose fs, f. €
H,.
(i) {Es}s>0 Mosco converges to & if

Eo(fo) < Timinf (1)

for any family {fs}s>0 with fo — fo weakly, and for any fj € Hy there exists
a family {f!}s>0 such that f, — f§ strongly and

limsup & (f1) < E(fL)-
s—0
(ii) The family {&}s>0 is asymptotically compact if for any {fs}s>0 such that

lim sup (”fs”%’ig JrgS(fS)) < o0,
s—0

there exists a sequence s; > 0 with lim;_,~, s; = 0 such that f;, — fo strongly
as ¢ — 00.

DEFINITION 3.3. Let ¥, = (Hg, As) be a spectral structure for every s > 0 and
suppose Hy, — Hy as s — 0.
(i) {Xs}s>0 converges to %o strongly if £ Mosco converges to .
(i) {Xs}ss0 converges to Xg compactly if 5 — 3¢ strongly as s — 0 and {&; }s>0
is asymptotically compact.

REMARK 3.4. There are several conditions equivalent to the strong (resp. com-
pact) convergence of {Xs}s50. See [17, Theorem 2.4].

EXAMPLE. Let {(Xj, gs)}s>0 be a family of complete Riemannian manifolds and
suppose there is £ € R such that Ricy, > kg, for all s. Moreover we take p, € X, and
assume that (X, d,,, vy, /vy, (B(ps,1)),ps) converges to some metric measure space
(X,d,v,p) in the sense of pointed measured Gromov-Hausdorff topology. Cheeger
and Colding showed that if all of X, are compact and sup,diam(X;) < oo, then
Y(Xs,9s) — B(X,d,v) compactly as s — 0 in [4]. In the case of X are noncompact
or diam(X;) — oo, then Kuwae and Shioya showed that (X, gs) — X(X,d,v)
strongly as s — 0 in [17].

DEFINITION 3.5. Let Hy — Hp as s — 0 and B,: H;, — H, be a bounded
operator for every s > 0. We say that By — By compactly as s — 0 if

lim (B fs, f5) i, = (Bofos fo) o

for any f,, fI € Hs with fs — fo, fI — f{ weakly as s — 0.



324 K. HATTORI

3.3. Sl-equivariant convergence of metric measure spaces. From now on
we consider metric measure spaces with S'-actions. We say an action is isomorphic
if it preserves both the metric and the measure. If (S, d, v) is a metric measure space
with an isomorphic S'-action, we denote by m: S — S/S! the quotient map and put
X :=S/St, @ :=n(u) for u € S. X has the natural metric defined by

d(a,a') := \/@f d (u : e\/jlt,u’) :
evV—ltegst

For example, if S = S(L, h) and § is the metric defined by (2), then we have

dy = d,.

DEFINITION 3.6.

(i) Let (S,d,v) and (So,do,vo) be metric measure spaces with isomorphic S*-
action. An S'-equivariant Borel map ¢: S — Sy is said to be S!-equivariant
Borel e-isometry if |do(d(u), p(u')) — d(u,u’)| < e for all u,u’ € S and Sy C
B(4(S),).

(ii) For every s > 0, let (Sg,ds, vs) be metric measure space with isomorphic S!-
action and p, € Sy. Denote by 75: S, — S,/S! the quotient map. The family
(Ss, ds, Vs, ps)s>0 converges to (So,do, v, po) in the sense of S'-equivariant
pointed measured Gromov-Hausdorff topology, or we also write

S'-pmGH
(SS7d8uV57ps) E) (SOad07VU7pO)7
if for any s > 0 there are 5, Rg, R, > 0 and S'-equivariant Borel &,-isometry

@5 (W?l(B(ﬁS,R;)),pS) — (W(;l(B(ﬁOaRs))va)

such that lim,_,oes = 0, lim,_,o R, = limy_,o Rs = o0 and

lim/ f0¢sdysz/ fdvy
s—0 S, So

for any f € C.(Sp).

REMARK 3.7. The above convergence was already introduced by Fukaya and
Yamaguchi in more general setting. They did not assume that the approximation
map is Sl-equivariant. They assume that it is almost equivariant instead. See [7,
Definition 4.1].

Let (S,d,v) be a metric measure space with isomorphic S!-action and assume
that the Laplacian Ag can be defined. Then since Ag is S'-equivariant, it induces
a self-adjoint operator on (L*(S) ® C)?*, which we denote by A£*. Here, recall that
pr is the 1-dimensional unitary representation of S' defined by pi(\) = A\¥. Then we
have the spectral structure

(S, d, v)P* == ((L2(S) @ C)P*, AL¥)

for each k € Z.
Let (X, w1, ws,ws s) be a family of hyper-Kéhler structures on the K3 surface for
s >0, K(s) > 0 be constants depending on s and (L, h, V) be a prequantum bundle
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on (X,w1). Let S = S(L,h) and s be the Riemannian metric defined by g5, V and

(2). Put
5= (3 25

Now we take points p® € S for b=1,..., N. We assume

gi_r)l})dgs(ﬁb,ﬁb/):oo (if b #b), (5)
(S0.p") 2 (shph) (6)
and put
H, = L*(S,)
HP» = (LS, ) )p’ﬂ

L*(Sh) ® C,

=
i
@2

<>
Il
—_

@z

Hg" (LA(sp) ® €)™

S
Il
—

Then we have the convergence HP* — H{* as s — 0 in an obvious way. We put

N N
Psh™ = (H @A@ -
b=1 b=1

Now, since g is the hyper-Kéahler metric, Ric,, = 0. Then by [14, Proposition
3.15], we have Ricy, > —(1/2)gs. Therefore, we obtain the following.

Fact 3.8 ([14, Propositions 3.14, 3.15]). Let (X,w1,wa,ws s, s, L, h, V) be as
above. Assume (5) and (6). Then X(Ss)P* converges to @l])v:l N(SY)Pr strongly.

4. Main results and outline of the proof.

4.1. Main results. In this subsection we describe the main theorems of this
paper and explain the outline of the proof.

Let {(X,w1, w2, w3 s)}ocs<s, be a family of hyper-Kéhler structures on a K3
surface, ;1: X — P! be a special Lagrangian fibration of Kodaira type I;. Suppose
the family tending to a large complex structure limit as s — 0. We may suppose

SZ/ w3, s >0
w1 (b)

without loss of generality. Here, recall that the above integral is independent of the
choice of b by Remark 2.4. Moreover we assume that the cohomology class [w.] is in
2rH?(X,Z). Then there is a prequantum line bundle (L, h, V) on (X, w;). Moreover
it is unique up to rescaling and gauge transformations since the K3 surfaces are
simply-connected by [16, Theorem 2.2.1]. Denote by

(937 Jl,Sa J2,37 J3,s)
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the hyper-Kéhler structure given by (w1, ws,ws s). Then J; ¢ is independent of s, so
we write J3 = J3 5. Put S = S(L, h) and let g, be the Riemannian metric on S defined
by (2). Let m: S — X be the restriction of 7: L — X to S C L.

Denote the coordinates on R? and S* by & = (£1,&,) € R? and eV~ € S, Define
a Riemannian metric go ,,, and a measure 75 on S! x R? by

o ) ) (€ T,

dﬁo = d£1d£2dt,

gO,m

where [|€]2 = & + €3, and put

So,m = (S' xR, d D) .

4o, m >

We define an isomorphic S'-action on So,m by

(e‘/j”,f) ceVTIT = (e\/jl(”””),g)

for eV—17 € 1.
The next theorem is the first main result in this paper.

THEOREM 4.1. Let b € P! and p® € (nonw)~L(b). Ifb € BSST, then
~ 1
(Sa d§37 %7pb) s _p—m>GH (SO,TI’H (151 ) ORQ))

as s — 0. Moreover, if b,b' € BSy, and b # V', then lim,_,q dg, (P, p") = .
By assuming Theorem 4.1, we can show the next lemma.

LEMMA 4.2.  For b € BS, put m(b) = m. 3(S)P* converges to
@bEBSk X(So,m(p))P* strongly.
Proof. 1t follows from Fact 3.8 and Theorem 4.1. O

The next theorem is the second main result.

THEOREM 4.3. Let EP* be the closed quadratic form associated with 3(Sg)P*.
Then the family {EP*}s~o is asymptotically compact with respect to the strong con-
vergence X(Sg)P+ — @beBSk Y (So,mb)) k-

Combining Lemma 4.2 and Theorem 4.3, we have the following results.

THEOREM 4.4. ¥(S;)P* converges to @ycps, 2(So,mv))’* compactly.

The spectral structure of Sy ,,, was already known by [13] as follows. For a positive
integer k, let

HE, = LA(R%, eI gg dey) @ C,
k(2% of . 9f
Apga f = — (85% + 5{%) +2k< 1851 +€23£2>

for f = f(&,&). Here, A, is the Laplacian on the Gaussian space (R?, d¢? +

dgg,e—k”f“zdgld@). For a spectral structure ¥ = (H, A) and constants a; > 0,
az € R, we put a1X + ag := (H,a1 A+ ay -idg). If H = {0}, then we write 3 = 0.
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FacT 4.5 ([13, Section 8]). Let k be a positive integer. If k € mZ, we have
Y (So.m)?* — (K? + 2k) = (HE., Ak.).
If k ¢ mZ, we have X(Sg m)"* = 0.

Now, we put
k 2 W%
(X, LY) = (L7 X, —2S7L,h ’Akagh,s )

Here, the norm of the Hilbert space L? (X, w?/2s, L, h) is given by |l¢||2. := [ M; w?

for a section ¢: X — L*. Note that we have dv,, = w}/2 for a hyper-Kihler metric.
By the identification (4), we have

S(Ss)r 2 25(Xy, ,, LF) + K + 2k.

Then by Fact 4.5 and Theorem 4.4, we have the following.
THEOREM 4.6. $(X, ,, L*) converges to Dicns, (HE,, Ak, /2) compactly.
So our goal is to prove Theorems 4.1 and 4.3.

4.2. Approximation of metrics. Let (S, ;) be as in Subsection 4.1. To show
Theorems 4.1 and 4.3, we need to study the asymptotic behavior of the metrics g
on S =S(L,h) as s — 0. The metrics g5 are obtained by solving the Monge-Ampére
equation, and the solutions cannot be described explicitly. Instead of describing the
metrics explicitly, we construct another family of explicit metrics denoted by g%, which
approximates {gs}s. This strategy is justified by the following argument.

Denote by ¢, the Riemannian metrics defined by ¢., V and (2).

LEMMA 4.7. Let (X,gs) be as above and g, be another family of Riemannian
metrics on X. Assume that there are constants Cg > 1 with limg_,g Cs = 1 such that
C;lgl < gs < Csgl on X. Let (So,do,v0,p0) be a pointed metric measure space with
isomorphic St-action and K(s) > 0 be constants depending only on s such that

Vg St leGH
S, dy , —2 So, d
< s gl K(S)’p> ( 05 07V03p0)

as s — 0 for some p €S. Then

(S dy.; K(S)J?) S pmiH (So, do, 10, po)
as s — 0.
Proof. By the definition of s and §., we have
g = (TV)* + g5, 45 = (TV)* +4l,
on S, hence we have
CotgL < gs < Ougl.
Therefore, by the definition of Riemannian distance, we obtain

C’;l/ngg(uo,ul) < dg (uo,ul) < 1/2 d (UQ ul)
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for ug,u; € S. Since limg_,q 01/2 = 1, then we have the convergence of the metric
structures. The vague convergence of the measure follows from

Co Py, < vy < CYPy;,.

0

4.3. The metric on the frame bundles. In Definition 3.6 (ii), we call ¢
the approximation maps and (Sg, dg, o) the limit space. To show Theorem 4.1, we
need to construct the approximation map from (S, gs,v,,/s) to the limit space. In
this subsection, we discuss how to construct the approximation maps under some
assumptions.

First of all we describe the setting and the assumptions in this subsection. Let
(X,w) be a symplectic manifold of dimension 4 with a prequantum line bundle
(m: L — X,h,V), and g be a Riemannian metric on X. Put S = S(L, h) and define
the metric g on S by (2). Let B be a smooth manifold of dimension 2 and p: X — B
be a proper smooth map such that all of the fibers =1 (b) are connected. We sup-
pose there is an open subset B C B such that #(B \ B™) < oo, all b € B8 are
regular values of yu and p~1(b) are Lagrangian submanifolds for all b € B™. We set
VB 1= [yVy.

Let ¢ € p~'(B"®) and put (V¢), := Ker(du,). Denote by (Vfl)q C T,X the
orthogonal complement of (Vy), with respect to g,, then we have the orthogonal
decomposition T'X|,,~1(pra) = Vy @ Vfl-. By putting gy := glv;, g1 = g\va, we may
write g = g5 + g1. Similarly, for a 1-form v € Q'(X) we put v5 = 7|y, 7L = *y|va
and we write y|,-1 (=) = v + L.

Next we describe the limit space Let (R2, gg) be the Euclidean space of dimension
2andr: R? — R>q be defined by r(&) = ||€|| = /€2 + €2 for € = (&1, &) € R2. Denote
by Oge € R? the origin.

Let go = (dt)?/(1 + r?) + go be a Riemannian metric on S' x R2. If we put
c(r) = (V71 ¢y(7)) € ST x R2, then the length of ¢ with respect to o is given

by
Ci\T
S /¢ AL gl e

Let B(R) := {£ € R%; r(¢) < R} for R > 0.

Now, let b € B, W C B be an open neighborhood of b such that W\ {b} C BS,
U:=pu Y (W), v e QYU) be a 1-form with w|y = dy, (: W — R? be a continuous
map such that ((b) = Og2 and (|y\ {5} is an open embedding, and o, R, 6, K be positive
constants with 6 < 1,0 < R. For the following tuple

(g7b7W5R7’Y7C7075’K)7

we consider the next conditions.

(x1) Let X, = p~Y(w) and ¢,: X,, — U be the inclusion map for every w € W.
;i HY(U,Z) — H'(X,, R) is an isomorphism.

(¥2) Ly is trivial as a complex line bundle.

(x3) There are 1l-cycles e;,, in X, for each i = 1,2 and each w € W such that
{e1,w, 2,0} generates Hy(X,,Z) and, for each i = 1,2, (ty)«(€i0) € H1(U,Z)
is independent of w € W. Moreover, the functions ¥,;: W — R defined by
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U, (w) = fe,- 7Y are continuous, U,;(b) = 0 for each ¢ and b is isolated in the
subset Y

{w e W; ¥;(w) =0foralli=1,2}.

(x4) We have
|'Yl|g <4, |7L|(Cou)*go <9,
on (¢ o p) ™ (B(3R)\{0z2}),

(L+6) " (Com) g0 < gL < (14 8)(Cou)*go,
(1+8)" (Cop) r? < |yfl2 < (14 6)(C o p)r?

on (¢ o u) " (B(3R) \ B(0)) and

ysl2 <6

sup diamg, (Xy) <9,
we(~1(B(3R))

diamy) s ((Con) M BO)) <4

(*7) We have (1+6) v, < K - (g < (1+0)v,, on B(R).

REMARK 4.8. (x1,2,3) is the topological assumption for x on the neighborhood
of u=1(b). By Liouville-Arnold theorem (see [6, Theorem 1.1]), if b € B, then we
can see that every fiber of y is 2-torus, hence (x1,2,3) are satisfied for some (W,~).

REMARK 4.9. In the above conditions, we often suppose that R is large and 9§, o
are small. The condition (x4) implies that g, and |ys| can be controlled by gy and r on
the complement of (¢ ou)~1(B(c)), which is a neighborhood of ;=1 (b). The condition
(x6) implies the diameters of fibers and ((ou)~*(B(c)) are small. In the setting of this
paper, if b is the critical value of the special Lagrangian fibration on the K3 surfaces,
we cannot obtain the good estimate for the metric g on the neighborhood of u~1(b),
however, we may show that the diameter of such neighborhood is sufficiently small.

By (*2) we can take a smooth section E; € I'(L|y) such that h(E;,E;) = 1.
Then there is v; € QY(U) such that VE; = —/—17; ® E;. The holonomy group of
(L|Xb7 V|Xb) is given by

{exp (ﬁ/0%> C e Hl(Xb,Z)} .

LEMMA 4.10. Suppose that the triple (b,W,~) satisfies (x1,2,3). Then b is not
an accumulation point of BS,, N W.
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Proof. Let v1 be as above. Since dy; = dy = w|y, hence 1 — is a closed 1-form
on U, then there are constants ¢; € R such that Wj(w) = [ = Yi(w) + ¢ by
(x3). ’

Assume b € BS,,. Then W/(b) € (2rr/m)Z for any i = 1,2. By the continuity of
W’ if there exists w, € BS,, such that w, — b as n — oo then lim,, o ¥i(w,) =
Wi(b). Since b is isolated in {w; ¥}(w) = Wi(b) for all i} by (x3), hence w, = b for
sufficiently large n.

Next we suppose b ¢ BS,,. Then W.(b) ¢ (2m/m)Z for some i. By the continuity
of W/, there is an open neighborhood W’ C B of b such that W,(W’') N (2r/m)Z = 0,
hence W/ N BS,, = 0. 0

Next we fix b € BSS'™ and describe § on the neighborhood of (y o 7)~1(b), then
construct an approximation map. The following argument is quite technical, therefore
we assume b € BS; for the simplicity, and it is enough to explain the essence of this
subsection. The argument for general b € BSS'T is written in the last of this subsection.
See also [13, Subsection 7.3].

LEMMA 4.11. Let b € BSy, i.e., the holonomy group of (L|x,,V|x,) is trivial.
Suppose that there are an open neighborhood W of b and v € QY(U) with w|y = dy
such that the triple (b,W,~) satisfies (x1,2), where U := p~Y(W). Then there exists
a trivialization of principal S*-bundles S* x U = S(L|y, h) such that

g=(dt—7)>*+g.

Proof. Let Eq and ~; be as above. By the assumption for the holonomy groups,
we can choose E; such that fo v1 =0 for all C € Hy(X}p,Z). Then by (*1), there is
p € C*°(U) such that v = v; + dp, hence we may choose E; such that v; = . Then
by the definition of g, we obtain the result. O

From now on, let b € BS; and we assume that
(9,0,W,R,~,(,0,0,K)
satisfies (x1-7). Then we may suppose
S(Lly,h) = S' x U, §=(dt—7)"+g
by Lemma 4.11. Now we put

U(r) := (o)~ (B(r)),

for » > 0 and we study the distance functions d,,d; restricting to B,(g, R),
77 1(B,(g, R)), respectively. To study them, we need to consider the length of paths,
however, we should remind that a path ¢ connecting points in By(g, R) may not be
included in U in general. It is inconvenient to apply (x4), therefore, we need the next
lemma.

LEMMA 4.12. Let g € p=*(b). Then By(q, R) is contained in U(v1+0R + o).
Moreover, if o < (3—2v2)R/(2v/2), then for any piecewise smooth path c: [0,1] — X
connecting xo, 71 € U(V1+6R + o) with £,(c) < (3/V2)R, ¢([0,1]) is contained in
U(3R).
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Proof. Let x € By(q,R) and ¢ be a path connecting ¢(0) = ¢ and ¢(1) = x.
Assume that ¢([0,1]) is not included in U(v/1+ 0R + o). Then by (x5), there are
70,71 € [0, 1] such that

c([r0,7)) CUW14+0R+0)\U(o),
roCopoc(ry) =o,

roCopoc(n)=v1+diR+o.

By (x4), we have

1
Ly(c) > ﬁﬂgo(c oo cliryn]) = R,

hence we can show that if poc(0) = band £,4(c) < R, then ¢([0,1]) C U(V1+ 0R+0),
therefore x = ¢(1) € U(V1 4+ 6R + o).

Next we take zg,21 € U(v/1+dR + o) and a path ¢ connecting o and 2.
Suppose that the image of ¢ is not contained in U(3R). Then by (%5), there are
To, T1, T2, T3 € [0, 1] such that

c([r0,71)), e((r2,73]) C (¢ o )T (B(3R)),
roCopoc(rg) =roCopoc(rs) =vV1+0R+o,
roCopoc(ry) =rolopoc(rz) =3R.

Then by the similar argument and by 0 < § < 1, we have

32
29(0)22< 7 -R—O‘).

Since o < (3 — 2v2)R/(2V/2), we have £,(c) > 3R/\/2. Therefore, £,(c) < (3/v/2)R
implies that the image of ¢ is included in B(3R). O

Let ug,u; € S* x U(v/1+ 6R + o) and c: [0,1] — S x U be a piecewise smooth
path connecting ug and u;. Put ¢ = (eV~1° ¢y), then we have £4(c) > £,(c2). By
applying Lemma 4.12, we also obtain the next corollary.

COROLLARY 4.13. Let b € BSy and c: [0,1] — S x U be a piecewise smooth
path connecting ug,u; € S* x U(V/1+0R + o) such that £;(c) < (3/V2)R. If o <
(3 —2v2)R/(2v/2), then ¢([0,1]) C S* x U(3R).

Now, we define the approximation map ¢: S* x U — S* x R? by
oeV ™ 2) = (V7 Cop(a))

The next aim is to show that |dg(uo, u1) — dg, (é(uo), ¢(u1))| is small if §, 0 is small.
To show it, we need to estimate the difference between £;(c) and £4,(¢ o ¢) for a
path ¢ in S! x U(3R) and the diameter of the fibers ¢~!(u) for u € S* x B(3R). We
estimate it in the case of Im(c) C S* x (U(3R) \ U(c)) and Im(c) C St x U(o).
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(I) Estimates on S! x (U(3R)\ U(0)).
We describe g on W' := W N B™. On pu~ (W), we have the decomposition
g=gs+gL and vy =77 +v.. On St x p=1(W"8), we have

G=(dt —v1)*+ g1+ (v)* + g — 275 - (dt —71).

Fix any point « € p~ (W) and let e!,...,e" € (V§)*|, be an orthonormal basis
with respect to g¢|,, then we may write g¢|, = J;;€' - €. The basis can be chosen
such that v¢|, = ke' for some k € R. Then we have

1
T(dt—’u)z +91 (7)
g9

/ k i
+ 1+ "Yf|gel - W(dt—’ﬂ_) +Z(e')2.
flg ¢

Define a subspace W, C T,(S* x U) = RZ & T,,U by

k - :
W, = Ker ,/1—}-|7f|§e1 - ﬁ(dt—m_) N <ﬂ Ker(ez)> .
+ 171l i=2

We say the piecewise smooth path c: [0,1] — S x U is horizontal with respect to ¢ if
the image of y1 o7 o ¢ is contained in W' and ¢/(1) € W, for every 7.

Next we compare £4(c) and £4,(¢ o ¢) for a path ¢, however, it is difficult to
compare them directly. Now we define £;¢(c) as follows such that £;¢(c) < £4,(c)
and compare £4(c) and L4 (¢ o c) instead.

Let g be a noncontinuous Riemannian metric on R? defined by

(95)e == (90)e (€ & B(o)),
(95)e =0 (£ €B(0))

Then dy¢ is a pseudodistance function on R?. Next we put

dt?
~O0 — O'.
9o =92 L

By the definition we have g§ < go and g§ < go.

PROPOSITION 4.14. Letb € BSy. For any piecewise smooth path ¢ in S' xU(3R),
we have

1—-9§
£4(c) > 155 Lgg(poe).

Moreover, if ¢ is horizontal with respect to ¢ and Im(c) C S* x U(3R) \ U(o), then

1+6
£4(c) < 135 Lgg(poc).

To show Proposition 4.14, we need the next lemma.
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LeMMA 4.15. Let b € BSy, (V= 2) € S' x UBR) and w € R = T, 1, S",
¥ € T,U and put go = (dt)?/(141?)+go on S* x (R?\{Og=}). Assume that pu(x) € B™S.
Then we have

|(w,v)[3

1-6 ,
mm\ + (1 =8)[vely,

1—

2
do(w,v)3, = 1=

T2 Iw YL@+ (1= 8)|d(¢ 0 1) (V)5
where v is the VfJ-—component of v.
Proof. By (7), we have

w— (1)

2
Tl il

[(w,v)[3 >

Moreover, by (x4), we have |y, (vi)] <d|vi],, , hence

g.i-

Since we have (a — 6b)? > (1 — §)a® — §(1 — 6)b? for a,b € R and 0 < § < 1, we can
see that

(1=8)|w* —6(1 = d)|vr |2,
[(w,0)f5 1+ |2 ol
(1—0)|w|?

2
1+ |'7f|3 + (1 - 5)|Ulng_

Since du(vy) = du(v), we have the first inequality. Next we consider the second
inequality. By d¢(w,v) = (w,d(¢ o p1)(v)), we have

jw]”
A8(w,v) B, = 1 + (¢ o W),
Then by the similar argument we also have the second inequality. O
Proof of Proposition 4.14. Let ¢ = (eV=1¢ ¢5): [0,1] = S! x U(3R). By Lemma
4.15, we have

|01|
)>V1-20 / \/ |2+|'UJ_|

L+ |y
where v, is the Vf -component of c¢§. By (x4), we have (1+0)"1(Cou)*g] < g1 and

(1+9)71 - 1
1T+ (roCop)? = 1+ |y

on U(3R), hence £5(c) > /(1 —0)/(1 + ) L57(poc).
Next we assume c is horizontal with respect to ¢ and Im(c) C S* x U(3R)\ U (o).

Then we have
|C1 yi(vi)
+ vi|2 dr
¢ i
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Since (¥4) gives 1/{1+ (roCopu)?} > (1+6)"'/(1+ |v¢|*) on U(3R) \ U(c), then by
Lemma 4.15 we have

Log(poc) =

(IT) Estimates on S x U(0).

PROPOSITION 4.16. Let b € BS;. For any piecewise smooth path c: [0,1] —
St x B(o), we have

dg(uo,u1) < mﬂ (c) + 26,
I ((0). (1)) < VIT PP 84g(0) + 20

for any ug € ¢71(c(0)) and u1 € 71 (c(1)).

Proof. Let ¢ = (eV~11,¢y): [0,1] = S x B(o) be a piecewise smooth path. Since

||gg > |c}|/v/1 4 o2, we have

ex(1) = 1 (0)]

V1+ o2 ®

Le(c) >

If we take u; € ¢~ '(c(i)) for i = 0,
t; € Rand z; € U(o) such that ¢ (7)
) =

path connecting zg,z1 and let n(7
n(1) = (eV=14© 2) and

@) < [ R+ b= [ TPl

dg(n(1),u1) < fer(1) = er(0)]-

1, then we may put u; = (eY~'%, x;) for some
=1t;. Let ny: [0,1] — U(o) be a piecewise smooth
(eV=1e1(0) p,(7)). Then we have 1(0) = uo,

By (x4) and 6 < 1, we have |y|2 < 2 on B(o). Then we have
dg(uo,u1) < 2L4(n2) + ler(1) — 1 (0)].

By (x6) and (8), we have the first inequality.
Next we consider the second inequality. Since

dgo (¢(0), ¢(1)) < dgy (¢2(0); c2(1)) + [er (1) = e1(0)]
<20+ er(1) — e (0));

then (8) implies

dg,(c(0),¢(1)) <20 + 1+ 02840 (c)
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(ITII) The diameter of a fiber of ¢.
PROPOSITION 4.17. Let b € BSy. Then we have

diamg (¢~ (e¥V™1,€)) < /2 + 18R26
for & € B(3R).

Proof. Let ug,u; € S' x U and assume that ¢(ug) = ¢(u1) = (eV~1,€). Put
u; = (V= ;) for i = 0,1, then ¢ o pu(xo) = ¢ o u(z1) = £. For any € > 0 there
is a piecewise smooth path c: [0,1] — (¢ o u)~1(£) connecting zo and 1 such that
£,(c) < dy(zo, 1) + . We define a path é: [0,1] = ¢~ (eV ", €) connecting ug and
up by é(1) := (e\/jlt7c(7')). Then we can see that

£,(6) = /O 1 VO + | ar.

Since ¢’ € Ker(du), we have v, (¢/) = 0. By (x4), if £ ¢ B(o) then we have {y(c')}? <
(14 0)r?|'|2, and if £ € B(o) then {y(c/)}? < §|¢/|2. Therefore, we obtain

1
£4(6) < / VIF max{(1+ 8)r2, 3} - |¢/| dr

<146+ 9(1 + 6)R?{dy(xo, 1) + €} .

Since we can take ¢ — 0 and we have supposed § < 1, then

2@(6) <24 18R2d9(x0, 1‘1).

Hence we have the result by (x6). O
Next we compare dg, dze and compare dg,, dge by applying the results in (LILIII).

PROPOSITION 4.18. Let R > 44/2(3—2v/2)71, 6 < (4—7)/2,b € BSy, g € p=(b),
ug,u; € 7 H(By(q, R)) and 0 < (3 —2v/2)R/(2v/2). Then

1-46
156 dgg (¢(uo), d(u1)) < dg(uo,ur).

Proof. Fix a sufficiently small ¢ > 0. Let é: [0,1] — S* x U be a piecewise
smooth path connecting ug,u; € 77 1(B,(g, R)) such that £4(¢) < dg(uo,u1) + . If
Im(¢) € S' x U(3R), then by the first inequality of Proposition 4.14, we have the
result. We show Im(é) € S* x U(3R). Since we have

dg(ug,u1) < dg (m(ug), m(u1)) +, (9)

then £;(¢) < dg(m(up),m(u1)) + ™ + . Take ¢ such that ¢ < (4 —7)/2. Since
—2v/2)71, we obtain

e,(6) <2R+4< B

\/i’
hence Im(¢) C S* x U(3R) by Corollary 4.13. O
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Next we give the opposite direction of the estimate in Proposition 4.18. Let
¢ = (e¥71,¢y): [0,1] — S* x R? be a piecewise smooth path. Now, we apply
Proposition 4.16 to every connected component of c|C;1 (B(0))* however, there are a
lot of connected components in general, hence the error terms of the estimates in
Proposition 4.16 may become large. To prevent it, we should show that we can
replace ¢ by another ¢ such that £4¢(¢) < £4¢(c) and the number of the connected
components of ¢, ' (B(c)) is small. We discuss it in the next two lemmas.

LEMMA 4.19. Let £ € v~ (o) and to,t; € R. Then there is a smooth minimizing
geodesic c: [0,1] — S x (B(4 + 0) \ B(0)) with respect to dze such that ¢(0) =
(eV=Tto,€) and c(1) = (e¥711,¢).

Proof. Put ug = (eV=10 &), uy = (eV~111,¢)

)

e(r) = (710, p(r) cos(w (7)), plr) sin(x(7)) )

where #(7) € R, p(7) > 0, and z(7) € R. Moreover, we suppose p(0) = p(1) = o
¢ = (o cos(zg),osin(zg)) € R? for some 7o € R and 2(0) = z(1) = zg. Let ¢*: [0,1] —
S1 x B(R) be a path defined by ¢*(7) := (V=) p(7) cos(xq), p(7) sin(zo)), then it
connects up and u;. It is easy to see £4¢(c*) < Lye(c) and L4, (c*) < L4, ().

Since p~1([0,0)) is open in [0, 1], it is the union of countable open intervals. Let
(7—,74) be one of them, where 0 < 7 < 7 < 1. On (7_,74), replace c*|(
with the path 7 — (e¥~14") & cos(xg), o sin(zg)), which is shorter than ey
with respect to both of £4¢, £5,. Therefore, if ¢: [0,1] — S* x R? is the minimizing
geodesic connecting ug and uq, then its image is contained in S* x (R? \ B()). Since
9§ = go on S* x (R?\ B(0)), hence ¢ is minimizing geodesic with respect to dgg iff it
is minimizing geodesic with respect to dg,.

T,T4)

Now, one can easily check that the geodesic ball By, ((1s1,0gz), R) is contained

in S* x B(R) for any R > 0, consequently, all of the bounded sets in (S! x R?, d,, ) are
precompact. Then by the Hopf-Rinow Theorem there is a minimizing geodesic ¢ with
respect to dg, connecting ug and u;. By the above argument, it is also minimizing
geodesic with respect to dgg and its image is contained in S x (R? \ B(c)). Since ¢
is the geodesic in the smooth Riemannian manifold, it is smooth.

Finally, we show Im(c) C S x B(4 + o). By considering the path 7 — (e =17, ¢)
for 7 € [to,t1], we can see dy,(up,u1) < m/v1+4 02 If Im(c) is not contained in
St x B(4+ o), then we can see dy, (ug,u1) > 4, which is the contradiction. O

LEMMA 4.20. Let o >0, R>4+ 0 and c: [0,1] — S' x B(R) be a piecewise
smooth path. Then we have Im(c) C S* x (B(R)\ B(0)), Im(c) C S* x B(o) or there
is a piecewise smooth path ¢: [0,1] — St x B(R) such that ¢(0) = ¢é(0), c¢(1) = ¢(1),
L4 (¢) < L4e(c) and one of the following holds.
(i) There are 0 < 7_ < 14 <1 such that ¢([0,7_]U [y, 1]) € S* x (B(R) \ B(0))
and ¢([t—,74]) € S x B(o).

(ii) There are 0 < 7_ < 74 < 1 such that ¢([0,7_] U [r4,1]) € S x B(o) and
i m4]) € S x (B(R) \ B(0)).

(iii) There are 0 < 7, < 1 such that &([0,7.]) € S* x B(o) and é([7.,1]) € S* x
(B(R)\ B(0)).

(iv) There are 0 < 7. <1 such that &([r.,1]) € S' x B(o) and &([0,7.]) C S* x
(B(R)\ B(0)).
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Proof. Put ¢(r) = (eV=) p(1)cos(z(7)), p(7) sin(x(7))), where t(1) € R,
p(r) > 0, and z(r) € R. We assume that neither Im(c) C S* x (B(R) \ B(c))
nor Im(c) C S* x B(o). Then we can see that p~1(o) C [0,1] is nonempty. Let
70 :=inf p~1(0) and 71 :=sup p~ (o).

Let ¢* be the minimizing geodesic connecting

(7o), (e\/j”(”), ocos(z(1)), 0 sin(x(ro))> ,

obtained by Lemma 4.19. Define ', c*: [0,0] — S* x B(o) by
cf(r) = (eﬁt(ﬁ), (0 — 7) cos(z(mo)), (0 — 7) sin(x(ro))) :
cHr) = (e\/jlt(n),TCOS(.%‘(Tl)),TSiD(.I(Tl))) ,

then £4e(ct) = Lge(ct) = 0. Let ¢ be the path constructed by joining
cl[0,r0], " cf, ci,c|[ﬁ71]. Then we have the result. O

PROPOSITION 4.21. Let R > 4v/2(3 — 2v/2)7', b € BSy, ¢ € p=*(b), uo,u; €
7 YBy(q, R)) and 0 < o < (3 — 2v2)R/(2V2). Then

o) < e 150 VT gt o)
+ V2 + 18R2§ + 46.

Proof. Fix a small ¢ > 0 and let ¢ = (eV~1,¢p): [0,1] — S x R? be a path
connecting @(uo), ¢(u1) such that £4¢(c) < dgg (p(uo), d(u1)) + . By Lemma 4.12,
d(ug), p(u1) are contained in S' x B(v/1+0R + o). By the similar argument in
the proof of Lemma 4.12 and the assumptions R > 4\/5(3 — 2\/5)_1, o < (3-
2v2)R/(2v/2), we have Im(c2) C B(3R) by taking ¢ > 0 sufficiently small.

Next we apply Lemma 4.20. By the assumption R > 4v/2(3 —2v/2)7! and ¢ <
(3 — 2v/2)R/(2v/2), we can see 4 + o < 3R. Then we can apply Lemma 4.20 to c,
hence we may assume that Im(c) € S* x (B(R) \ B(¢)), Im(¢) € S* x B(g) or ¢ = ¢
satisfies one of (i)-(iv). If we assume (ii) in Lemma 4.20, then we denote by ¢ the
horizontal lift of c|j,_ . j with respect to ¢. Then we have

1+6 ~
T 5206 (Cclir 1) + dg (w1, &(74))

[1+6 —
S 46 + maX{ 171_52@8 (0)7 ]. + 022%1 (C)} .

If Im(c) € S* x (B(3R) \ B(0)), then let ¢ be the horizontal lift of ¢ with respect
to ¢ such that ¢(0) = ug. By Proposition 4.17, we have d;(¢(1),u1) < v2 + 18R26.
Therefore, we have

dg(ug,u1) < dg(uo, (7)) +

1
dy(uo, u1) < %sg () + V2 + 18R%.

In the other cases, we also have the result by the similar way. O
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PROPOSITION 4.22. For any ug,u; € S x R?, we have

dgo (w0, u1) < V' 1+ 02dge (ug,ur) + 4o.

Proof. The proof is similar to that of Proposition 4.21. For any € > 0, there is a
piecewise smooth path ¢: [0,1] — S' x R? connecting ug and u; such that €4 (c) <
dge (ug,u1) + €. We apply Lemma 4.20 to c. For example, assume that c = ¢ satisfies
(ii) in Lemma 4.20. Then we have

d@o (C(O)v C(l)) < d.f]o (C(O)7 C(T—)) + 2?]0 (C| [7—,,7—+]) + df]o (C(l), C(T+))

By the second inequality of Proposition 4.16, we have

dg, (c < V1402840 (c) + 4o,

which gives the result. In the other cases, we have the result by the similar argument. O
The next proposition implies that ¢ is an almost isometry.

PROPOSITION 4.23. Let b € BSy. For any R > 4v/2(3 —2v2)"" and e > 0 there
is a constant 0p ., 0R, > 0 depending only on R,e > 0 such that for any q € p=*(b),
ug,ur € 71 (By(q, R)), if 0 <8 <dpe and 0 <o < op,,

|dg(uo, u1) — dg, (p(uo), ¢(ur))] < e.

Proof. First of all, put

C::max{\lii—g, \/1—1—02} > 1,
fnwx{(v2+48R2+4>540}>0

then lims ,—,0 C = 1 and lims ;0 ¢’ = 0. By Proposition 4.21 and by dgg < dg,, We
have

dg(uo, ur) — dg, (¢(uo), d(u1)) < (C = 1)dgg (d(uo), P(u1)) +0".
Then by Proposition 4.18 and (9), we obtain

dg(uo, u1) — dgy (¢(uo), d(u1)) < C(C = 1)dg(ug, ur) 4 0’
<

C
C(C—-1)(2R+m)+4¢".
By Propositions 4.18 and 4.22, we have

C™2dgy (¢(uo), d(ur)) — C728" < dy(uo, ur)
< C_ng(uo,ul) + (1 - 0_2)(2R+ 7T),

hence we obtain

—(C* = 1)(2R +7) — 8 < dg(uo, u1) — dg, (d(ug), d(u1)).
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Since
(C*—~1)2R+7)+8 =0, C(C—-1)2R+7)+d =0

as 0,0 — 0, we have the result. O

The next proposition implies the almost surjectivity of ¢: 7= (B, (g, R)) — S* x

B(V1+0R+o0).

PROPOSITION 4.24. Let b € BS;. For any R,c > 0 there are 6r > 0 such that
if g€ pu1(b), 0 <8 <dpe and o > 0, we have

§'x B (% + o) C 6(n\(By(q, R)))
C S'xB(V1+6R+0).

Proof. First of all, one can see
¢ (171 (By(q, R))) € S' x BW1+0R +0)

by Lemma 4.12. Next we show
R—-9¢
St x B ——— C “1(B,(q, R))) .
X <m+g) ¢(7T (By(q )))

Let (V=1 €) € ST x B((1 4 6)"'/2(R — ) + ¢). By (x5), there is # € U such that
p(eV~1t x) = (eV~1 €). Denote by ¢: [0,1] — R? the minimizing geodesic such that
¢(0) = Ogz and ¢(1) = £ Then there is a smooth path ¢: (0,1] — U such that
Copoé=clp,y and &(1) € VfL for all 7 € (0,1] and ¢(1) = 2. Assume r(§) > o.
Since c¢ is a geodesic departing from the Ogz, there is a unique 79 € [0, 1] such that
r(e(19)) = 0. Now, we have

dg(q, ) < L4(€l(ry 1)) + diamg (U (o)) < Lg(€l(ry,1)) + 6.
By (%4), we have
L4 (Cliro,11) £ V146 Lgo(cliryy) = V140 (r(§) —0),

hence d,(q,2z) < R. Thus we obtain (V=1 ) € 77 (By(q, R)). If r(£) < o, then we
can see

dy(g.7) < diam,, (U(0)) < 6.

By taking 0r . < R, we have (eV~ 1, x) € 7~*(B,(¢, R)). O
THEOREM 4.25. Let b € BSy, ¢ € u~'(b), p € 71 (q). For any R > 4v/2(3 —
2v/2)71 and € > 0 there is a constant OR.e,0Rre > 0 depending only on R,e > 0 such
that if 0 < <0 and 0 < 0 < oR, then
b: (77 (By(a, R)),p) — (8" x BWITOR +0), (1s1,02))

is an S*-equivariant Borel e-isometry.
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Proof. Tt is easy to check S x B(ry + 1) C Bd_@O(S1 x B(r1),re) for ri,r9 > 0.
Then by Proposition 4.24, we have

S x B(WI+3R+0) C By, <¢(W—1(Bg(q,R)))75\(/]1i?> .

Since limsod(R + 1)//14+6 = 0, hence we have the result by combining with
Proposition 4.23. O

THEOREM 4.26. Let b € BS,. We have

|K fopdy; — / fdtdvg,| < 2mésup|f| vy, (B(R))
Sy §1xR2

for f € C(S* x R?) with supp(f) C S' x B(R).

Proof. Since dvy = dtdv,, we have

/ foddy, = / fdtd¢,vp. (10)
SixU S1xR2

Next we put fy := min{f,0}, f— := min{—f,0} and write f = f. — f_. By (x7), we
have

/ ( L (1+§)f) dtdv,, < K fdtd¢.vg
sixrz \1+0 S1xR2

I3
S /91XR2 ((1 + §)f+ — 1—'—5) dtdl/go,

hence we obtain

‘K / fdtdCovg — / £ dtdu,,
S1xR2 S1xR2

<4 (f4 + f-) dtdyy,
S1xR2

< dsup|f] - 2w, (B(R)).

Combining with (10), we obtain the result. O

For general positive integer m and b € BS3" | we can show the generalization of
Lemma 4.11 as follows.

LEMMA 4.27. Let b € BSS'™, i.e., the holonomy group of (L|x,,V|x,) is given by
{ezﬂﬁl/m; 1=0,1,...,m —1}. Suppose that there are an open neighborhood W of
b and v € QY(U) with w|y = dvy such that the triple (b, W,~) satisfies (x1,2,3), where
U = ,u_l(W). Then there exist covering maps pp, : ﬁm — U and pp: St x Um —
S(L|y, h) such that Top,, = Pm o, and we have the following, where 7, : St x U,, —
U,, is the projection to the second component.

() D5g = (dt = pj7)* + g

(ii) The group of the Deck transformations of py, is Z/mZ.

(iii) Denote by B: Z/mZ — Diff(U,,) the deck transformation of p,,. Then the
map B: Z/mZ — Diff (ST x U,,) defined by

B(e2mV=Tl/my (eﬁgx) _ (eﬁ(t—%l/m)7 B(eQﬂﬁl/m)x)

is the deck transformation of pp,.
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(iv) Pml(e —le )71') = Pl x) eVt

Proof. Let E; and 7, be as above. Since ¢; is an isomorphism, there is a closed
one form 4 on U such that [, = [, for all C € Hi(X,Z). Then v — 7y 47/ is
a closed 1-form on U such that [ (y—~1+7') = 0 for all C € H,(X,,Z) by (x3). By
(x1), there is a function ¢; € C°°(U) such that v — 1 + ' = d.

Denote by p: U — U the universal cover of U. Then there is @5 € C°(U) such
that p*y = dpo. If we denote by f': 71 (U) — Diff(U) the deck transformation
of p, then there exists a group homomorphism F': 71 (U) — R with ¢o(8'(h)(2)) =
w2(Z) + F(h). Moreover, by the assumption for the holonomy groups, we can see that
{Jo7 €R; C € H\(U,Z)} = (2n/m)Z, hence the image of F' is equal to (27/m)Z.
Now, let H C m1(U) be the subgroup defined by H = {h € m1(U); F(h) € 27Z} and
put U, = ff/H, then we obtain an m-fold covering py,: U, — U. Since we have

m(U)/H = Z)mZ = {e%ﬁl/m; 1=0,1,...,m— 1} :
B’ induces the deck transformation 3: Z/mZ — Diff (U,,) of pp.
Define a Z/mZ-action on S x U,, by

e27n/jl/m . (eﬁt’x) . (eﬁ(t—Qﬂl/m)’ ﬁ(@Qﬂ'\/jll/m)(Z‘))

and a smooth map p,: S x Uy, — S(L|y, h) by

(e\/j”,i“mod H) oy oV 1(t=01(p())+e2(2)) (El)p(i)
for # € U and eV~ € §1. Here, @5 descends to thefunction on ffm. Since p,, is
Z/mZ-invariant, it induces the diffeomorphism (S x U,,)/(Z/mZ) = S(L|y, h). By
the definition of p,,, we can see

D = Dy ((dt —11)* + g) = (dt — p},7)* + Dy
0

If b € BS5, we follow the argument in this subsection for (S* x Unn, Py, g) instead
of (S|r,§). Then we can construct the approximation map between (S x U,,, %, 9)
and (S! x R?, go) which is S'-equivariant and Z/mZ-equivariant. Here, the Z/mZ-

action on on S x R? is defined by

(eﬁt7 5) L2V TT/m (eﬁa—zwz/m), 5) ,

then the limit space should be the quotient space S' x R?/(Z/mZ) with the metric
naturally induced by go. This space is isometric to (S* x R?,dg, . ), where go, is the
metric as in Subsection 4.1. Then we obtain the generalization of Theorems 4.25 and
4.26 as follows.

THEOREM 4.28. Let b € BSS, g € u='(b), p € 7 1(q). For any R > 4/2(3 —
2\/5)_1 and € > 0 there is a constant 6rc,0r. > 0 depending only on R,e > 0 such
that if 0 < § < dpe and 0 < 0 < oR., then

¢: (77 (By(q, R)),p) — (51 x BOWI+0R+0), (151,0R2))
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is an S'-equivariant Borel e-isometry with respect to the distance functions dg and

d

QO,HL .

THEOREM 4.29. Let b € BSS™". We have

‘K fopdyy — / fdtdvg,| < 2mdsup |f|ve, (B(R))
Slu S1xR2

for f € C(S* x R?) with supp(f) C S' x B(R).

4.4. Convergence. Let (X,w,L,h,V) and pu: X — B be as in the previous
subsection and let {gs}s~o be a family of Riemannian metrics on X. Define g, by
gs, V as in (2).

DEFINITION 4.30. Let b € B and W be an open neighborhood of b such that
W\ {b} C B*®. Let K; > 0 and put U := pu~(W). We write

5—0

(gsv Ks; bv W) — (R2a gO)
if there are Ry > 0 and sp > 0 for every R > R such that for any 0 < s < sg there are

CS,R: W — R27 Vs,R € Ql(U), and US,R755,R > 0 with lim,_,¢ Os,R = limg o 55,3 =0
such that the following tuple

(gsa b7 VV7 Ra Vs,R» Cs,Ra Os,R, 6S,R7 Ks)

satisfies (x1-7) for all R > Ry and 0 < s < spg.

THEOREM 4.31. Let b € B, W be an open neighborhood of b such that W\ {b} C
B¢ and U := p~Y(W). Fiz q € p=1(b). Assume that there are constants K > 0 such
that (gs, Ks,b, W) — (R?, go) as s — 0. Then for any R > 0 there is sp > 0 such that
By, (q,R) C U for all0 < s < sp, and b is not an accumulation point of BS, N W.
Moreover, if b € BSS™, then for some p € 7~ 1(q) we have

St-pmGH
—

(S,d;., Ksvg.,p) (S* x R?,dy, ., dtdvy,, (151, 0gz))

as s — 0.

Proof. Take sk as in Definition 4.30 and replace by the smaller one if necessary
such that /1 + s rR + 05 r < 3R for all 0 < s < sg. Then by Lemma 4.12 and
(x5), we have By (¢,R) C U(BR) C U for 0 < s < sg. By Lemma 4.10, b is not an
accumulation point of BS,,, N W.

Let oRrc,0r,c be as in Theorem 4.28. Fix a positive integer k, then take 0 < s, <
sg such that oy < op g -1 and 65 < dp 4k -1 for any 0 < s < 55, We determine
sk inductively such that

< 2k
Sk+1 S —.
=

If we put

es:=k™', Ry:=Ro+k, R,:=+\/1+6,Ro+k)+o,
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for sp41 < s < s, then

¢: (7' (By,(q,Rs)),p) = (S' x B(RY), (1s1,0g2))

is an Sl-equivariant Borel e -isometry and limg e = 0, lim,_,o Ry = limy_,o R, =
0.

Next we take f € C'(S' x R?) whose support is compact. Take R > Ry such that
supp(f) C S x B(R). Then by Theorem 4.29, we have

lim ‘Ks/foqﬁdygs/ fdtdyg,
50 s §1xR?

< lim 2765 sup | f| vg, (B(R)) = 0.
s—0

Now, we show some results which is needed in Section 8.
LEMMA 4.32. Let g € p=(b) and p € 7= 1(q). Then we have
7 N U(r)) C€ By(p, V1+0r+6 +7)
for any 0 <r < 3R.

Proof. Let u € 7= 1(U(r)) and take the minimizing geodesic c: [0,1] — R? with
¢(0) = Ogz and ¢(1) = Copom(u). Suppose r(c(1)) > o. Then there exists 0 < 79 < 1
such that ¢(7p) = 0. Let ¢ : [r9,1] — X be a smooth path such that ¢(1) = 7(u),
Copoé=c|p, and du(¢'(7)) = 0. Then we have

dg(&(mo), m(w)) < L4(¢) < VI + L0, (clry1) < VI+(r—0)
by (x4). Moreover, by (x6), we have

dy(4,5(m)) < 6.
Therefore, we obtain
dg(g,m(u)) <8+ £,(8) < VI+0r+4.
If r(c(1)) < o, we have d4(q, m(u)) < 6. By (9), we have

dg(p,u) <VI40r+6+m.

O

PROPOSITION 4.33. Let b € B, W be an open neighborhood of b such that W \
{b} € B8 and U := p~Y(W). Fiz q € p=1(b) and p € 7= 1(q). Assume that there are
constants Ky > 0 such that (gs, Ks,b,W) — (R? go) as s — 0. Let (s g: W — R? be
as in Definition 4.30. Then there is sg > 0 for every R > T such that

(Cs,ropom) ™t (B(R/2)) C By, (p, R)
for any 0 < s < sg.
Proof. Let sp and 65 g be as in Definition 4.30. By Lemma 4.32, we have

(Cs,ropom) N (B(r) C By, (p, /14 05,57 + 05,5 + )

for 0 < r < 3R. Since R/2 > 7/2 > 7, we can replace si smaller such that we have
V140 rR/24+ dsr + 7 < R for every 0 < s < sg. Then we have the result by
putting r = R/2. O
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5. The approximation of hyper-Kahler metrics. In this section we review
a construction of a family of Riemannian metric on a K3 surface, which is a good
approximation of hyper-Kéhler metrics (gs)s tending to a large complex structure
limit based on [10]. See also [5].

Let (X,w1,ws,ws) be a hyper-Kéhler manifold. As we have already mentioned
in Subsection 2.3, the special Lagrangian fibrations on X is equivalent to the elliptic
fibrations on X ;,. Moreover, © := w; + v/—1ws is a holomorphic volume form on X,
by Remark 2.2. Throughout this section we consider complex surfaces equipped with
holomorphic volume forms and elliptic fibrations.

To construct the approximating family of metrics, we need two families of hyper-
Kéhler metrics. One is the semi-flat metric defined on the elliptic surface with no
singular fibers, and the other is the Ooguri- Vafa metric defined on the neighborhood
of the singular fibers of Kodaira type I;. Gluing them by cut-off functions, we obtain
the approximating family.

5.1. Semi-flat metrics. In this subsection we explain the construction of semi-
flat metrics following [10]. The semi-flat metrics are Ricci-flat Kéhler metrics on the
elliptic surfaces, which were first constructed by Greene, Shapere, Vafa and Yau in
(8].

Let X be a complex surface, not necessarily compact, with a holomorphic volume
form © € Q%°(X), B be a 1-dimensional complex manifold and pu: X — B be a
nonsingular elliptic fibration, that is, a holomorphic surjective map such that each
b € B is a regular value of x4 and p~1(b) is an elliptic curve.

Examples of such X can be constructed as follows. Denote by T the holomorphic
cotangent bundle of B. A subset A C 7 is a holomorphically varying family of lattices
if there are an open cover B = |J, U; and holomorphic functions 7; 1, 7; 2 defined on

U; such that Im(7; 1 (y)7i2(y)) # 0 and A, := AN TS|, is given by
Ay = {mimi1(y)dy + mami 2 (y)dy; m1, mo € Z}

for any y € U;. Let Ocayn = dx Ady be the canonical holomorphic 2-form on 7, where
(x,y) is a coordinate on T defined by xdy € Tj;. Then Ocay, descends to X = T35 /A
and the projection map fican: X — B determines an elliptic fibration. Obviously,
the zero section of 77 induces a holomorphic section of X — B. Conversely, every
nonsingular elliptic fibration with a holomorphic 2-form and a holomorphic section
can be obtained by the above process.

Let a € Q?(B,C). Another complex structure on 77 /A is defined so that the
closed 2-form © := Ocay + i, a is holomorphic. Then pcan: T5/A — B is also
holomorphic with respect to this complex structure. In this case pican does not need
to have holomorphic sections.

Let

—1 —_—
n = Yo {Wi(da + biy) A (@ + bdy) + W~ dy ndy}

where W € C°°(T4/A,R) is positive valued and b € C*°(73/A,C). Then one can
see that

7* = Re(Ocan)? = IM(Ocan)?, 1A Ocan = 0.
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7 is called a semi-flat metric on T;/A if it is Kahler. n is Kahler iff
OW _ 0(Wb)

8734 - Oz (11)

) W+ b)) (12)

Now, take an oriented Z-basis {7;1,7; 2} of Aly, such that Im(7; 17;.2) > 0. If we put
b= —? {Im(n,gx) agzl + Im(7; 12) 8;;’2 } ,

then we have (11) and (12) for any positive constant s, and they are independent of
the local coordinate. Hence we obtain the Ricci-flat Kéhler metric

ns =n

defined on 7j/A and we call it the standard semi-flat metric. ~ The triple
(n5F ) Re(Ocan), Im(Ocan)) forms a hyper-Kihler structure on 77 /A. We have

s=/ U
proan (b)

Let u: X — B be an elliptic K3 surface with a holomorphic section, Crt C B be
the subset consisting of the critical values of y and put X' = X \ p~1(Crt), B*® =
B\ Crt. Since pu: X* — B8 has a holomorphic section, there exist a holomorphically
varying family of lattices A C T}:; and a biholomorphic map X' — 7. /A which
identifies © and Oc,,. Therefore, X*® admits the standard semi-flat metric 77§F.

5.2. Ooguri-Vafa metrics. Here we explain the construction of Ooguri-Vafa
metrics following [10]. The Ooguri-Vafa metrics were first constructed by Ooguri and
Vafa in [18]. Let 7,s > 0, D(r) := {2z € C; |z| < r} and

U(r,s) := D(r) x R\ {(0,sn) € D(r) x Ry n € Z} .
Put

1 1 1 1
VO(u) = — - = .
- (W) 4m ngzjx <\/u% +u3 + (uz — sn)? s|n|> " Am|ul
Then VY is a harmonic function on U(r, s), hence the 2-form xdV? represents the
cohomology class in H2(U(r, s),R). Here,  is the Hodge star operator of the Euclidean
metric on R3. Let uf: X(ﬁ)v — U(r, s) be the principal S'-bundle over U(r, s) whose
first Chern class is equal to [xdV?] € H?(U(r, s),Z). Then there is an S'-connection
V—1la € QY U(r,s),/—1R) such that da /27 = (u)*(xdV?). Now, using the standard
coordinate on C x R = R?, put u* = (uy,us,u3). Then the following 2-forms

wi,s = dug A % + Vsodug A dug,

«

W s = dus N — + V;Od’u;z, A du,
2w

«

o + V;odul A dus

w35 = dus A\
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satisfy wi s Awjs = 0 for i # j and wi, = w3, = w3,. In the above expressions,
we suppose that V2 is the pullback (uf)*V?, however, we omit u! for the simplicity

S
of the notations. Taking r > 0 sufficiently small, we may suppose wis is nowhere

vanishing, then they form a hyper-Kahler structure on Xﬁov. Here, by replacing V?
with V0 + h(uy,us) for some harmonic function h(u1,us) on D(r), we obtain other
hyper-Kahler structures.

Moreover, there exist a smooth 4-manifold Xoy, open embedding Xév c Xov
and smooth map u: Xoy — D(r) xR such that u|)~(noV =, XOV\XﬁOV ={pn;n €’}
and u(p,) = (0,sn). Then one can see that w;, extends to the smooth 2-form
on Xov, which we denote by w; , again. Thus we obtain a hyper-Kéahler manifold
(XOV7 Wi,s, W2 s, WS,S)-

There is a free Z-action on Xoy preserving wi.s, U1, Uz, @ and satisfies uz(p-n) =
u3(p) + sn for n € Z. Then we can see the action also preserves V0 and w; ;. Hence
w;,s descend to 2-forms on the quotient space Xov = Xov /Z which we denote by
wi,s again. The hyper-Kéhler manifold (Xovy,wi s, w2 s, w3, s) is called the Ooguri-Vafa
metric.

Here, we regard Xov as a complex manifold such that wq s + \/—71w2,s is a holo-
morphic 2-form. Put poy = u1 + v—1uz: Xov — D(r). Then uoy is an elliptic
fibration over D(r). The fiber ugy (b) is nonsingular if b # 0 and gy (0) is the sin-
gular fiber of Kodaira type I;, with the critical point Opy := py mod Z. Here, we

have
S :/ w3,s-
1oy (b)

5.3. Almost Ricci-flat K&dhler metric. In this subsection let X be a K3
surface with an elliptic fibration p: X — P! over the complex projective line and a
holomorphic volume form ©, and suppose that all of the singular fibers of u are of
Kodaira type I, hence there are exactly 24 singular fibers. We denote by Crt :=
{b1,...,bas} C P! the set of critical values.

For q = 1,...,24, let Xq = Xov be 24 copies of the underlying manifold on
which the Ooguri-Vafa metric is defined. Put

1 1 1 1
‘/s u) = — N +
al) =g nEZZX <\/u§ + u3 + (uz — sn)? 5|n|> Arul

hg(ur,u
+as+¥,

~limy, oo (Do 1/k — logn) — log(2s)
n 27s

Qg

for some harmonic function hy, and define the hyper-Kéhler structure on Xq by
Wi,s,q = duy N o+ %7qdu2 74\ du3,
Wy s,q = duz AN o + Vs gdus A duq,
ws,s.q = dug A a+ Vi gduy A dusy

Although these are defined on the universal covering space of Xgv, they descend to
Xov. The constant as normalizes V; 4 so that we have

s 1
/0 Vs q(u1,uz, t)dt = 5 log \/u? + u3 + hq(ur, us).
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Here, we regard X4 as a complex manifold such that wysq + vV —1lwasq is a
holomorphic 2-form. Put piq = u1 + v/—1lug: Xq — C. By taking r3 > 0 sufficiently
small so that —(log \/u? +u3)/27 + hq > 0 on D(ry), we may suppose Vs q(u) is
positive on pug'(D(r3)) for sufficiently small s > 0. Therefore, we can take sy >
0 such that Vi q(u) is positive on pg'(D(r)) for any 0 < s < s and q. Now,
since fuq: pug' (D(rg) \ {0}) = D(r3) \ {0} is a nonsingular elliptic fibration with a
holomorphic section, we can identify it with jican: Tpay o3 /A — D(r3) \ {0} for
some A. By [10, Proposition 3.2], a Z-basis of A is given by the following holomorphic
functions

() =1, mww=%jci

logy + v—Thq, (13)

where hq is one of the holomorphic functions on D(rd) such that Re(hq) = hq.
Next we fix by € Crt and a sufficiently small neighborhood W3l C P! of b such
that p: p~ ! (W3l) — W3l has a holomorphic section. Then we have an isomorphism

p (W5 == Tipa/A

4 pean |

for some A C T4 Since w1 (bq) is of Kodaira type I1, we can choose the holomorphic
2

coordinate y on Wil such that A is generated by

1
dy, 1 V=1F, | dy,

for some holomorphic function Fq on W3l. Therefor, by putting hq = Re(Fy), we
have the holomorphic embeddings

lq: Xq = X, 1z D(r) < CP',
harmonic functions fq: D(rd) — R and 0 < r{ < r3 such that we have the following

properties.
(i) t4(0) = bq and

ta(Xq) Nip(Xp) =0, 1o(D(r3)) Ny (D(r5)) =0

for any q # p.

(11) (C] ILEI(D(TS)) = Wi,s,q + \/TILUQ,SA.

(iii) po1q = g o tq-

By taking W5' or 73 smaller if necessary, we may suppose W3' = ¢, (D(r3)). Moreover,
we fix 0 < r{ <rg arbitrarily, then put Wit = ¢ (D(r{)). To simplify the notations,
we often write W = D(r) or 1q(Xq) = Xgq if there is no fear of confusion.

Now, note that g: X — P!, may have no holomorphic sections. There exists
the unique elliptic surface j: J — P! which is locally isomorphic to p and has a
holomorphic section. We call j the Jacobian of : X — P'. Then J = X and j = u
as smooth manifolds and smooth maps respectively, and the complex structure of J

is given by © 7 := © + p*a for some a € Q?(P!) ® C by [9, Proposition 7.2].
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For an open subset W C P! and a l-form 8 € QY(W), a diffeomorphism
Tg: pw Y (W) — p=1 (W) is defined in [9, Section 2] as follows. Denote by ug € X (X)
the vector field defined by t,,(Re(©)) = p*8, and denote by ¢; € Diff (u~'(W)) the
flow generated by ug. Then define Ts := ¢1 and call it the translation by the 1-form
B. By [9], the translation acts on p~(W) preserving the fibers of p.

FacT 5.1 ([10, Theorem 4.5]). Let u: X — P! be an elliptic K3 surface with 24
singular fibers of Kodaira type I with holomorphic volume form ©, Crt = {by,...,bas}

be critical values of . Let j: J — P be the Jacobian of u: X — PL. Then there

are sufficiently small positive numbers r < r3, an open cover P! = |J, W, such

that for any s < so and for each Kdhler class [ns] € HYY(X) with ([ns], p=1(b)) = s
and [ns]?> = [Re(O)]* = [Im(©)]?, there is a Kdhler form ns representing [ns] and
translations Ty: p=Y(W,) — j=1(W,) by some 1-forms with respect to Re(© 7) which
satisfy the followings.
(i) We have #(W, N Crt) < 1. If W, N Crt = 0, then W, N (U, W5') = 0. If
bq € Wa, then Wg C W,.
(ii) We have

i

ok S
Melumrowa Uy e = T (187 5w wen ) -
(e

Nsl -1 way =Ty ,s,q|j—1(Wf)) ;
Olu—rw.) =T; (Ol ow.)) -

(iii) ([ns), =1 (b)) = s and [n,]* = [Re(O)]* = [Im(O)]*.

Next we analyze the behavior of 75 obtained by Fact 5.1 on W3'\ Wil

LEMMA 5.2. There is a constant Cs > 1 for every s > 0 such that limg;_,o Cs = 1
and

Cs_lT;wi’),S,q < ns‘u—l(W;\qu) < CST;WB,s,q7
— S S
CoTinS" < sl wavway < CTyns"
for any pair of q,a with by € W,,.

Proof. The estimates are essentially obtained by the proof of [10, Theorem 4.4].
Now we recall the construction of 7, more precisely. Put X := p~' (W3 \ W) By
the proof of [10, Theorem 4.4, there is a function ¢ € C°°(XJ) such that

1Y = ws,sq + V=100
on Xg. By the assumption that by € W, and by (i) of Fact 5.1, we have VV72°l c W,.
Let 0 <9 < 1 be some cut-off function defined on the neighborhood of W3 such that
1 =1 on W and ¢ = 0 on the complement of Wl. On pu~*(W,), n; is given by
(T, ) sl xz = 05" — V=100("p - ) + p* A
for some A € Q2?(W,,), hence we have
(T, ") nslxz — 05" = —V=1000u"p — V=10p"th A D — /=10 A O™
—V=1p*p0dp + 1 A,
(T ) nslxg — was,a = =V =100 — V/=19p" 4 A dp — V=109 A ™)
+ V=11 — )08 + p* A.
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We estimate the norm of the right hand side of the above equations with respect to
the metric n5F. Since 1) is independent of s, we can see

0p* | = || = O(Vs), |0du"y| = O(s).

By the proof of [10, Theorem 4.4], |A| = O(e~¢/#) for some constant C' > 0, with
respect to some metric on P'. Then we can see |u*A| = O(se~ /%) with respect to
nSF. The proof of [10, Theorem 4.4] also gives

|85§0| = |77§F - WS,s,q| = 0(5676/5),
then [10, Lemma 4.1] implies
ol + 10 +|9p| = O(s1e=/).

Consequently, we obtain

Since lim,_,¢ s~ 1/2¢=¢/% = 0, we have the assertion. 00

5.4. C? estimate. Let 7, be the Kihler forms on X obtained by Fact 5.1.
Denote by p,,, the Ricci form of n,. If we put

0/2
-Fs 10g<@/,\,72®/ >7

S

then p,, = V—100F,.
Fact 5.3 ([10, Theorem 4.5]). There are positive constants Dy, ..., Dg and sg
such that
| Fsllco(x)y < DyeP2/s,
I0Fllcox) < Dre™P27,
Pns > _DSe_D4/S775a
diam,, (X) < Dss™1/?,

[ R, llcox) < Dgs™logs™*

for all 0 < s < sg, where O = 070 is the 9-Laplacian of s acting on C=(X), diam,,,
and R, are the diameter and the curvature tensor of 15, respectively.

Now we consider the Monge Ampere equation with the normalization
(77S + \/-185%)2 = e}—sng, (14)
/ usn™ = 0. (15)
X
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Fact 5.4 ([10, Lemma 5.2]). Let Dy and sg be as in Fact 5.3. There is a constant
D7 > 0 such that any 0 < s < sg and any solution us € C°(X) to (14)(15) satisfies

sl e x) < Drs™e™ P2/,

Next we improve [10, Lemma 5.3].

LEMMA 5.5. There are constants Cs > 1 such that limg_,o Cs = 1 and for any
solution us € C>(X) of (14)(15) satisfy

Clng < e+ V—190u, < Cyns.

Proof. The outline of the proof is similar to that of [10, Lemma 5.3], however,
we need some modifications. Let Ny > 0 be a sufficiently large positive constant such
that N, +inf,; R;;;5(x) > 0 for any € X, where R;;;; is the holomorphic sectional
curvature of 7;.

Let [ be the d-Laplacian with respect to 1, +v/—100us. By [20, (2.22)], we have

eNete [ (e7Nets (2 — O, )) < OF, + 4i§f_ Ryi;5(x) + 2N (2 — Ouy)
i#]
i#j
Notice that the Laplace operators in this paper are positive. Next we assume that
e Nous (2 — Cuy) attains its maximum at 2. € X. Then by the same argument in

the proof of [10, Lemma 5.3] we obtain

2e”s
2 — kg

(2 = Oug) — (16)

(2 * e (20F, — Naky)
=\2-%, (2 — ks)N,

2inf;»; Rz (x
at Tmax, where kg := _M_

Now, we fix

s

)
S

Ny := max{ |inf#j Rﬁjj(xmw)’ 1} ,

then we have |ks| < 2s. Note that Nj is different from that is taken in the proof of
[10, Lemma 5.3]. Since we have

lime™ =1, limOF, =0

s—0 s—0
by Fact 5.3, we obtain
27
lim —— =1,
s—0 2 — k‘s

. |es(20F, — Niky) . s |OF,| 2e”ss
lim < lim +
5—0 (2 — ks)Ns s—0 \ 2 —2s 2 —2s

=0
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at Tmax. Then (16) gives
limsup(2 — Dug(Tmax)) <141 =2. (17)

s—0

If we take x € X arbitrarily, then we have
e—Nsus(w)(g — Oug(x)) < e—Nsus(xmax)(Q — Dt (Zmax)),
consequently we have
(2 — Dug(x)) < eNolwelm) 71 @macd) (2 — Dug (2max))
< eNelluclize= (9 — O (2max)). (18)
By Facts 5.3, 5.4 and by the definition of Ny we have

R
lim Ng||us||p~ < lim D7 max {'nco, 1} s PeDe/s
s—0 s—0 S

< lim D7 max {D6s_2 log s~ !, 1} s PeD2/s
s—0

< lim D7Dgs™ " log s~ te P2/* = 0.
s—0

Therefore, combining (17) with (18), we have

lim sup {sup (2 - Dus)} < 2.
5s—0 X

2

Next we fix a point 2 € X and take a coordinate z!, 2?2 around x such that

775|m =V 71 Z (5”(12’; A\ dfi
4,J

and we put

(775 + \/j185u8> o = \/jleijdzaic A di%, A= (Aij)ig-
]

Then we can see
tr(A) = 2 — Oug(z), det(A) = e”+@

and

s—0

0 < limsup {sup tr(A)} <2, limsup|det(4) —1| =0.
X s—0 X
Let A\; and Ay be the eigenvalues of A. Since tr(A) > 0, we have

limsup sup [A; — Ao|? = lim sup {sup {()\1 +A2)? — 4)\1)\2}}
s—0 X s—0 X

< limsupsup {tr(4)* — 4}
s—0 X

+ 41im sup {sup |det(A) — 1|}
p's

s—0
<0

)

hence

lim sup [A\; — 1] = lim sup [\y — 1] =1,
s—0 X s—0 X

thus we have the assertion. O



352 K. HATTORI

5.5. Proof of Theorem 4.1. Here we prove Theorem 4.1 by assuming
some results on the standard semi-flat metrics and the Ooguri-Vafa metrics. Let
(X, w1, wa, w3 5,9s), p: X — Pl and (L, h, V) be as in Subsection 4.1.

Let ns € [wss] be the Kéhler form obtained by Fact 5.1 and denote by g, the
Kéhler metric of n,. By Yau’s theorem, there is a solution us of (14) and (15), and
we can see w3 s = 15 + /—19Ju, by the uniqueness of the solution. Therefore, by
Lemma 5.5, there are constants Cy > 1 with lims_,qg Cs = 1 such that

Colgl < gs < Cigl. (19)

LEMMA 5.6. For any bgq € Crt, there are an open neighborhood W and v €
QY (=Y (W) such that the triple (b = bq, W,~) satisfies (x1-3).

The above lemma will be shown in Section 7.
LEMMA 5.7. For every positive integer k, BS), C P! is a finite set.

Proof. Note that no points in P!\ Crt are accumulation points of BS},. Therefore,
by Lemmas 4.10 and 5.6, none of b € P! is an accumulation point of BSy. Since P!
is compact, BSy is finite. O

Fix k and let P! = U, Wa be an open cover as in Fact 5.1. Now suppose that
we have the assumption of Lemma 5.7, then BSj is finite. By taking the refinement
of {W,}, if necessary, we may suppose that there is a map b — a; for b € BSy, such
that b € Wo,, Wo, N W,,, =0if b # V', Wo, N1U, Wy' =0 if b ¢ Crt and W, C W
if b = bg. Then by Fact 5.1, 9;|V1(W%) is isometric to either the standard semi-flat
metric or the Ooguri-Vafa metric. If b € BS}, then there is the unique positive integer
m such that k/m € Z and b € BS5™.

Lemma 4.7 and the next proposition give Theorem 4.1.

PROPOSITION 5.8. Let b € BSy, and Wy, be as above. Let (L, h,V) be a prequan-
tum line bundle on (X,w) and put S = S(L,h). Let g € u=t(b), p € 7 1(q), m be
the positive integer such that b € BSS™ and denote by gs be the metric on S defined

by (2). Then for any R > 0 there is sg > 0 such that By (q, R) C p~ ' (Wa,) for any
0<s<sprand

Var 1 bm ~
(5. ds. %,p) SR (S X B2, do . dtdry, (151, 0s2)

as s — 0.
Thus, to prove Theorem 4.1, it suffices to show Lemma 5.6 and Proposition 5.8.

6. Neighborhood of nonsingular fibers. In this section we prove Proposition
5.8 for b € BS5™\ Crt. To show it, we can reduce the argument to the local model. Let
B C C be an open neighborhood of the origin 0 € C and A C 75 be a holomorphically
varying family of lattices. We take B sufficiently small so that A is given by

Ay = spang {71 (y)dy, 2(y)dy}

for some holomorphic functions 71, 7 on B. By changing the holomorphic coordinate,
we may suppose 71 = 1 and Im(75) > 0. Let 5" be the standard semi-flat Kihler
form. Now,

W = Re(Ocan), w5’ :=Im(Ocan), wg’z = SF
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form a hyper-Kéhler structure on Xgr := 75/A. Denote by (¢5%, J3%, J5E, J5F)
the induced hyper-Kéhler structures. Let (7: L — Xsr, h, V) be a prequantum line
bundle on (Xgp,w{¥) such that 0 € BSS™. We identify p~*(W) with Xsp and
identify b with 0 € B. Now, we apply [13, Theorem 1.1]. To apply it, we check that
our situation satisfies the following assumptions in the theorem;

(i) Ricy, have the uniform lower bound,

(i) the family {JP5}, satisfies dv in [13].

The condition (i) is automatically satisfied since g5 are Ricci-flat metrics.

Next we check (ii). Let Y (y) be a holomorphic function on B such that % = 72(y)
and put Y = Y; +v/—1Ys, y = y; ++/—1ys for some real valued functions Y7, Ya, y1, ¥o.
Moreover, define real valued functions vy, ve by xdy = —(v1 4+ va72(y))dy € T;. Then
we have

Re(@can) = dyy N dvy + dY1 A dvs.
By using the action-angle coordinate (y1,Y7,v1.v2), we describe a frame of (1,0)-

forms with respect to Jlslz If dyy + A11dvy + Ajadvgy and dY] 4+ Asiduy + Asadug are
(1,0)-forms, then we have (ii) iff the matrix

Im Ay A
=0 Az1 Az
is positive definite.

Let x,y, W, b be as in Subsection 5.1. Put

4
ds

ay = VW(dz + bdy), an:= VW dy.

Then we have

-1 _ _
WEF:T(av/\av—l—ah/\ah), ecan:av/\a}U

hence

1
I @can \% -1 SF ==

_ %1 (av + v Tay) A (8 + v Tay) .

o 1 _ _
(av/\ahfav/\ah)fi(av/\anLah/\ah)

It implies that a, + +/—1ay, a, + +/—1ay, form a frame of QlJ;S()E (Xsr).

Since

we have

a, = —VW(dUl + ngvz),

ap = (T2dy, — dY7)

slm(72)
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and
a, +v-la, = — ﬁ (dvy + Todve) + sIml(TQ) (Tody; — dY7),
a, +v-la, = — ﬁ (dvi + Tadva) + sIml(Tz) (—=Tedys +dY7).
Therefore, we can take
dy + 1\1177%28) (dvy + Re(mz)dva) ,
dYy + I\r/n?:;) (Re(r2)dvr + |12 dvs)

as a frame of Q' (Xgr). Since the following symmetric matrix

Jls}z
(retey )

is positive definite, hence we have (ii). Thus we obtained Proposition 5.8 for b ¢ Crt.

REMARK 6.1. We can show Proposition 5.8 also by proving
1
(QEFa ;a Oa B> — (Rza 90)
as s — 0, where g5% is the Kihler metric of n5¥.

7. Neighborhood of singular fibers of Kodaira type I;. In this section we
show Lemma 5.6 and Proposition 5.8 for b € BS5" N Crt. Let s > 0, Xov be as in
Subsection 5.2, and put

1 1 1 1
Vi(u) = — )
() 4m Z <\/u%+u§+(ussn)2 5|”|> drrlul

nezx

h(uy,u
+a8+%,

for some harmonic function h. Here, a4 is the constant defined in Subsection 5.3. We
fix a sufficiently small positive constant dy > 0 so that

Vi > 0 on U(dp, s), (20)
1
< —logd; " 21
gl(%lh(m,w)l < Jom 8% (21)
1
b < 5. (22)

Define the hyper-Kéhler structure on Xoy by
wi,s = dug A 2 Vidug A dus,
27
wa s = dug A 2 Vidus A duq,
27

w3 s = duz A % + Viduy A dus.
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Let oy and Ogy be as in Subsection 5.2. Denote by g@V the hyper-Kéhler metric
associated with (w1 s, wa,s,wWs s)-

To prove Lemma 5.6 and Proposition 5.8 for b € BSS" N Crt, it suffices to show
that

1 s
(ggva gv 07 D(50)> 30 (R27 gO)

in the sense of Definition 4.30, where g¢ is the Euclidean metric. Here, we identify b
with the origin 0 € C and we regard D(dp) the neighborhood of b.

First of all we determine the prequantum line bundle on Xov. Let (7: L —
Xov,h, V) be a prequantum line bundle on (Xov,ws,s). Since there is a deformation
retraction Xoy onto pg\l,(O), the inclusion map :“6%/(0) C Xov induces an isomor-
phism H?*(Xov,Z) = H?(ugy(0),Z). Since ugy(0) is Lagrangian with respect to
w1 s, we can see [wy 5] =0 € H*(Xov,R). Since H*(Xov,Z) is torsion-free, one can
see
(D) = Y217 = Ly g = 0 € 12 (x0v. ),
hence L is a trivial bundle.

Next we determine vs € Q'(Xov) such that dys = w; s and (x3) of Subsection
4.3 is satisfied. Let J; s, Ja s, J3,5 be complex strucutures on Xoy associated with the
hyper-Kéhler structure (wq,s,ws,s, wW3,s)-

LEMMA 7.1. Let

¢(U17U2,U3) - _/ t%(t,UQ,U3)dt—|—'L/J(U27U3)
0

for a function ¢ with 82’§ + gQ’ﬁ = —V5(0,u2,u3). Then we have wy s = dJy sd¢.

Ous U
Here, we write ¢ = u*¢ for the brevity, if there is no fear of confusion.

Proof. By the definition of ¢, we have

99
Tul —Ulvs(ff)a
3
0%
Brsd == Faz =W

Since we have

a V. la
o (52) = Vedur,  Ji(du) = ==,

JLs(d’U,Q) = 7d’U,3, JLs(d’U,g) = d’ZLQ,

5 Inl

¥ (u2, us) = Z( ud + (ug — sn)? — —2 +(U3—sn))

2s|n|  n

Vud +u3 B asu3 +u§—u§ _/“2 (/t h(O,t)dt> di
0 0

S
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and
uy
6o (ur, g, us) = — / BVt 0 )t + 0 (2, 03)
0

for s > 0. Now we can check that )
o the series u3 + (uz — sn)? — % + ‘—Zl(ug - sn)) converges abso-
lutely,
6% 42

nezZx

au —V5(0,uz, u3),
° u*gbs is smooth on Xqv,

o ¢ (ur,ug,ug — 8) = dg(uy, ug, uz).
Then

Vs = Jl,sd¢s~

descends to a smooth 1-form on Xov.
Next we give generators of Hi(uoy(y),Z). To give it, we observe the Z-action
on the covering space Xov. Denote by v the vector field on Xov defined by vq =
t|t 0q - eV=1t For q € Xov and 71,29 € R, we define the C*-action on Xov by

q- etV =1z exp (z1v + 22J3 5v) (q), (23)

and we can see the action preserves ui,us. Since the period of the elliptic fibration
pov: Xov — D(8) is given by (13), we have ¢ - ™% and ¢ are in the same orbit
of Z-action if uy(q) + v —1ua(q) = y # 0, where

-1

lo
Vi) = =5

5 T h()

and h is a harmonic function on D(8) with Reh = h.

For y = uy ++/—1ug € D(&), let e1,, be a 1-cycle in ugy(y) given as the St-orbit.
If y =0, then e, , = 0.

Next we construct a path eg , : [0, 5] — Xov which generates H, (U, Z). First of all

we construct the following paths eé ) and 6(2)

Let e( ) . [0, 5] = Xov be the mtegral path of —27V,J3 s(v) such that 652(0) = q for

some ¢ Wlth u(q) = (u1,usz,0). Then u(eé 3)4( )) = (uq,us,s). Since we have

then we obtain ey , by connecting them.

uz(g-\)
log |\ = 277/ Vi(ui(q),us(q), 7)dr
uz(q)

for A\ € C*, then 651;(5) = q - e2™Re(V(W)) | Define eg?; by

ey =q-e

2m(Re(V(y))+v—TtIm(V(y)))
for 0 <t < 1. This is the S'-orbit containing ¢ - e2™2¢(V®) and ¢ - >V, Here, e( ;
depends on the choice of the value of Im(V(y)). Here, we suppose 7/2 < Im(logy) <
57/2, then u;Im(logy) is continuous.

We can see that {eq y,es,}, satisfies the first half of (x3). We can also see that
H,(Xy,Z) = Hy(U,Z) = Z is generated by ez, hence we have (x1). The next lemma
completes the proof of Lemma 5.6.
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LEMMA 7.2. Let y = (u; ++v—1uz). We have

/ Vs = U1, / ’YSZH(ULUQ)»
€14 €2

where
1 2 2 u1 h u2
Huy, up) = — 2208 VUL UG | U2 +/ 10 uyae+ [ R0,
2m 2w o Ous 0
+u Im(V(y))

fory # 0, and H(0,0) := 0. Moreover, the function H is continuous on D(dy) and
the origin 0 € D(d¢) is isolated in

{u1 + v —1lug € D((So); up =0, H(U1,U2) = 0} .

Proof. First of all we have

_1 00 « oo ol
s — sd s — — == —d —dus.
i Ti,0d9 Vs Oouy 2m Ous us + Ous 2

Then we obtain

1 D5
Jisdps = —— [ V. "o =u.
/ELy 1,s d)s o /;0 s aula U1
By
0ps ho1
dus (VS(@ 5t 27r)
1 “r 9h uz
=t ug)dt — (0, t)dt
w2 (- [t [ non)
and fos Vi(uy,uz, t)dt = —(log+/u?+u3)/2m + h, we can show fez, J1sdps =
H(ui,uz). If y = 0, then gi’; =0, hence [, Jisdps = 0.
Although Im(V) is not continuous at a point in {u; = 0}, it is bounded on

the neighborhood of {u; = 0}, hence u1Im(V(y)) is continuous. Therefore, H is
continuous.

Suppose that u; ++/—1us is sufficiently close to the origin and u; = H(uq,uz) = 0,
hence H(0,us) = 0. Since the function ¢ — H(0,t) is strictly increasing on the
neighborhood of ¢t = 0, accordingly we have H(0, us) = 0 only if uy = 0 for sufficiently
small ug. Therefore, 0 € D(dy) is isolated in

{1+ V=Tuz € D(o); ur = 0, H(ur,uz) = 0}

The hyper-Kihler metric g©V given by wy s, ws s, w3 s can be written as

gOV =yt (%)2 + Vi (duf + du3 + du3) .
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On Xov \,ua\l,(O), we have the decompositions g€V = g; + g1 and v = v + 7. as
in Subsection 4.3. Then we may write

g1 = Vi (duf + du3)

v = —V_18¢S g _ a(bs U3
! S Quq 2w Oug
s
= dus.
pan Dus U2

The aim of this section is to obtain the estimates in (*4-7) of Subsection 4.3.
From now on we put y := u; ++/—1lus € D(dyp), |y| = /u? + u3 and

S 1 s 1 h y
Vi) = ;/o Vs (u1, ug, t)dt = fﬁlog\m + %

By (21), we have

2log |y| ! - 2log 5y "

Vel >
s 5s ~  bms

(24)

on D((So)

Fact 7.3 ([10, Lemma 3.1(c) and its proof]). There is a constant C' > 0 such
that if 0 < s < m|y| then

‘Vg _ Vvssf‘ < ge—Qﬂ'\st.
S

LEMMA 7.4. Let 0 < r < §g. There is s, > 0 for every r such that for any
0 < s < s, we have Vi > logr=1/(10ms) on U(r,s). In particular, There is s > 0
such that for any 0 < s < so we have Vy > log 85" /(107s) on U(3o, s).

Proof. By Fact 7.3 and (24), if 0 < s < 7r and r = |y|, then we have

06727rr/s - 210g r1 06727rr/s

‘/SZVgSf_

S 5ms S

Put hy i= supp(s,) b < +00 and hy, = infp(s,) h > —oo. Now, take s, > 0 such
that s, < 7r and Cee=27%7/sr <logr~'/(107), then we can see

3logr—!

Vs >
—  10ms

(25)

for 0 < s < s,.. Since

1 1
>
Vud+u3 + (uzg —sn)2 /12 + (uz — sn)?

for u € U(r, s), then

har — b

‘/S(u17u27u3) Z ‘/8(7170711‘3) -
S
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By (21), we have hys — hy, < logdy'/(57). Therefore, by (25),

1 1

3logr~ 10g651 < logr~
107s 5ms  —  10ms

Vi (u1, u2, ug) >

if ly <r. 0O

LEMMA 7.5. There are constants sg > 0 and Cs > 1 for every 0 < s < sg with
limg_,0 Cs = 1 such that if 0 < s < 7|y| then we have

Cs_l‘/SSf < ‘/:9 < CSVSSf-

Proof. By Fact 7.3, if s < 7|y| we have
Ce—27r|y|/s Ce—Qﬂy‘/s
vt f1—-—— V) <v.<vi (14— —
( Vi )— —5<+ e )
therefore it suffices to show

s
SUp o —
veD(so) SV (y)

as s — 0. If |y| < /s, then we can see e=27I¥l/s < 1, hence by (24) we have

e~ 2mlyl/s 5r BT 550
< < — 0.
sVst(y) ~ 2logly|~! ~ logs—!

If |y| > /5, then we can see e~ 27Wl/s < ¢=27/V5_ Therefore, we obtain

efQﬂly‘/S 57_‘_672#/\/;

s—0
< — 0.
sVel(y) = 2logd;!
O
LEMMA 7.6. We have
1
Vo<viy
21\ u? + u3
Proof. By the periodicity of Vy, we may suppose 0 < uz < s. Since
1 1
< n > 0),
Vi +ud + (uz —sn)2  y/uf +ud + 52 (n —1)2 =0
1 1
< (n <0),
VuZ +ud + (ug —sn)2 — Jul +ul + s2n2
we have
1
Vs < Vi(ur,uz,0) + (26)

47r\/u%+u§.
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Similarly, we can also see

1
Valug,ug,0) — ———— < V.. 27
O a o
By integrating (27), we obtain

1

Vi (ur,ug,0) < VF' o —— e,
(1, u2,0) dm/u? + u3
then by (26)(28) we have the result. O

Let x = x(t) be the inverse function of 7 — (72log 77 !) /27 for 7 € [0,1/2]. Then
X is an increasing function such that x(0) = 0 and x((log2)/(87)) = 1/2. For a given
R >0, x(sR?) < iff s < 62 log 6, /(2 R?).

LEMMA 7.7. Take sog > 0 as in Lemmas 7.4 and 7.5. There is a positive constant
C such that for any 0 < s < so we have

2oy <C(VEyl? ] .
vflgov < Syl o

For any R > 0 there is 0 < sp < min{sp, 62 logd; /(187 R?)} such that the following
holds. For every 0 < s < sg, there are constants Cy p > 1 with lim,_,o Cs.g = 1 such
that if y € D(x(9sR?)) \ D(s/7) then we have

Co RV Y < |7f\20v < Cy rVE |y

S,

Proof. First of all we have

B 8¢ 2 B 6¢ 2
2 _ 1 [ Y¥s 1(Z7s
_ V;|y|2 1— 2u2F(U1,U2) F(ul, UQ)2 ’
sVlyl? s?V2y|?

where

U1 h
F(Ul,ug)—hUQ—ﬂ—/ 8 (t’(@dt—/ hOtd
2 0 82

0) = 0, there is a constant A; > 0 such that F(uy,us) <
).  Then we have |F(uj,us2)|/(sVily]) < A;1/(sVs) and
< 2A;/(sVs), therefore, we can see

Since F is C*° and F(0,
Aply| for all y € D(5
2|up F(un, up)| /(sValy[?)

A\’ "Yf@ov A\
1-— < = < |1 . 29
( sv> = Vil —( +sv;> 29)
By Lemma 7.4, we have 1 4+ A;/(sV,) < 1+ A;logdy ' /(107). Then by Lemma 7.6,
there is a constant C' > 0 such that

ol < Cvily <. (vl + ).
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Next we assume s/7 < 7|y| < x(9sR?), then by Lemma 7.5 we have

A C, Ay
C—1st 2 <V, 2 <CSst 2 1 < I8
s VST S Vel < GVl SV S v

hence (29) implies

CeAr)” £1,12 2 C.AL\? £1,12
(1 - Sv‘:f) VSS |y| < |7f|gg)\/ < 1+ s‘/ssf V'SS |y|

Since 1/(sVef) < 57/(2log |y|™") < 57/(2log x(9sR?)~!) and lim, ¢ x(9sR?) = 0,
we have the second estimates. 0

To give the estimate for v, , we need to compute 9%s We have

aug
s ‘o oV s
=— | t @ dt + ==
gt == [ )+ 5 )
1 usz — sn In|
= —— + —
47Tnezzjx{\/u%+u§+(u?,—sn)2 n }
1 us us

NI e R

LEMMA 7.8. We have |233

<1/2x.
Proof. If we put

1 t—n |n| 1 t t
Flat) = —— S L L1 S R S
(2.1) 47TZ{ gg2+(t_n)2+n} 47r\/x2+t2+27r’

nezx
then we may write

8¢S (u17u27u3) = F <|y|7 u3> .

Ous s’ s

We show that |F| < 1/2w. Since F(z,t + n) = F(x,t) for n € Z, we may suppose
0 <t < 1. Since the function ¢t — t/v/x? + t? is nondecreasing, we have
1 n—1 - 1 t—n - 1 n
A\ Jx2 + (n—1)2 = A7 /22 4+ (t —n)?2 T AT V22 + n?
for every n € Z. By using these inequalities, we can show —1/27 < F(z,t) <1/27. O
COROLLARY 7.9. Let gg := V¥ (du? + du3). Then

5s

LN - 58
21 log oy THluoves = g

2
[yLlgov < Srloga. !

Proof. Since we have

1 (08
o lgov = Vi (3u3> S o

8U3

S -1 a¢s ?
12‘6\/93 = (‘/5 f) ( ) ?



362 K. HATTORI

then we have the result by Lemma 7.4 and (24). O
Next we define a map (s: D(dp) — R? by

1 1
Gl =y

[yl = x(s¢s()?) (30)

for any y € D(&p). Recall that we have put B(r) := {¢ € R?; ||£]| < r}, then we have
D(x(sr?)) = ¢;H(B(r)). Hence we have the following.

Then we have

PROPOSITION 7.10. We have (,(D(80)) = B(Joy/logdy*/(2ns)). In particular,

B(3R) C ((D (o)) iff s < doy/log oy /(187 R?).

LEMMA 7.11. Let & = (£1,&) € R? be the standard coordinate and denote by
|d€|? = d€} + d€3 be the Euclidean metric and so be as in Lemma 7.5. Let R > 0 and
0 < s < min{62logdy /(187 R?),s0}. Then there are constants Cs g > 1 such that
lims 0 Cs.r =1 and

CRCIdE? < Vil |dyl® < Cs rC|dEI

fory e (C1(B(3R)).

Proof. Let y = ryeV =1 and ¢ = r¢eV =1 be the polar coordinates. If £ = (,(y),
then r, = X(srg) by (30). Then we have

e () = <logx(s7’§) N h(Qf(f))) (25x'r¢)? dr§

27s
2mh(¢
+ §<1+ i do>.
log x( sr5

Since x' = 27/(2xlogx !

2ms
2 1-—
(2sx're)” = log x~ < 210gx )
hence we obtain

21h 1 -2
—1\x* sf 2 _ o 2
SRR (H logx‘l) <<1 210g><‘1) ke )

Since h is bounded on D(dg) and we have lim,_o 1/(log x(sr?)_l) = 0, then there
are constants Cs g > 1 such that lims_,oCs g = 1 and C;}%(;\ng < Vldyl? <
Cs,r¢sldE?. O

PROPOSITION 7.12. For every R > 0, there is a constant sg > 0 such that

the following holds. For every R > 0 and 0 < s < sgr there are positive constants
OS,R7 O—Sa 5S,R U)Zth

—x) and 77 = x*log x~'/(27s), we have

IimCsgr=1, limdsr=1limos =0,
5—0 ’ s—0 7’ 5—0
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such that if y € (;1(B(3R)), then
vLlgov < dsr,  VLl(coopov)*lag? < Os,Rrs
and if y € (;H(B(3R) \ B(os)), then

C(;E(Cs o pov)*|dé]? < g1 < Cy r(Cs 0 pov)*|déf?,
0;11{(45 o pov)*r? < |’Yf|§gv < Oy r(Cs 0 pov)*r.

Proof. Put

o \/s(log s~ +logm)
05 1= 53

Note that o5 < [(s(y)| < 3R iff s/m < |y| < x(9sR?). If s/7 < |y| < x(9sR?) and s is
sufficiently small, then Lemmas 7.5 and 7.11 give

Co h(Cs 0 pov)|dé|* < g1 < Cs r(Cs © pov)*|dE[.

for some constant Cs g > 1 with lim,_,0Cs g = 1. Combining Corollary 7.9 with
Lemma 7.11, we have

5s

5C RS
2 2 %
hu_\ggv < m, |’7J_|(§souov)*\d§|2 <

87 log 551 '
By putting &, g := 5s/(2m log 6, ') max{1, C; p/4}, we obtain the estimates for 7, .
Since
‘/ssf|y‘2 27T3‘/85f

WP ogly T ! (3D

as s — 0, then we obtain the inequalities for |’7f‘g§)v by Lemma 7.7. O

PROPOSITION 7.13. Let sg > 0 be as in Lemma 7.7 and o4 > 0 be as in Propo-
sition 7.12. Then there are constants 5 > 0 for every 0 < s < sg with lim,_,5ds =0

such that if 0 < s < sg and y € (s *(B(oy)), then |*yf|§oV < ds.

Proof. By Lemma 7.7 we have
2 <C st 2 M
¢ lgov < S e
for some constant C' > 0. Then by (31), it suffices to show that |(s(y)|* — 0 and

ly| — 0 as s — 0. Since |(s(y)]? < 02 — 0 and |y| < x(so?) — 0 as s — 0, we have
the result. O

Fact 7.14 ([10, Proposition 3.5]). There is a constant C > 0 such that
diamgov . )(,u(_)%,(y)) < Cy/slogs™t
° rov(y

for every y € D(dp).



364 K. HATTORI

PROPOSITION 7.15 ([10, Corollary 3.7]). Let o5 be as in Proposition 7.12. There
is a constant C > 0 such that

diam_ ov
9s ‘ug\l,(c;l(rs(m)

) (0¥ (T (B(ow)) ) < 0V/sTogsT.

Proof. The proof was essentially obtained in the proof of [10, Corollary 3.7]. Note
that D(s/m) = (;1(B(0s)). Take a point p € Xoy with u(p) = (scosf, ssinf,s/2).
Then the infimum of the distance between p and the singular fiber /LB%/(O) is bounded
from the above by

/ VVi(rcos,rsinb, s/2) dr.
0

By the proof of [10, Corollary 3.7], there is a constant C' > 0 such that the above
integral is not more than C'slogs™!. Since D(s/m) C D(s), by combining Fact 7.14,
we have the result. O

Next we consider the measure. Define a measure vg on D(dy) by vg :=
(MOV)*V99V~ Since v ov = Vi(a/2m) A dus A duy A dus, we have

Vg = s‘@“duldug.
PROPOSITION 7.16. There are constants Cs gp > 1 with lims_,0 Cs g = 1 such
that

(CS)T*”B < C, pdé,dé

C; hdrdés <

iflgl < R.

Proof. Let y = rye‘/jw and £ = rge\/jw. Since duidus = rydrydf, therefore, by
the computation in the proof of Lemma 7.11,

(Co)wvp = sVE(CTH(E)x(s72) - 25X redred

27h 1 -t
=s|l1l+——- | |1 - — dredf.
s( - logx‘1> ( 210gx‘1) recre
If r¢ < R, we have

amh(c @) (1 -
(1 + 10gx—1(sr§)> (1 210gX_1(87“g)> -0

as s — 0, hence we obtain the result. O

By Propositions 7.12, 7.13, 7.15, 7.16 and Fact 7.14, we have shown

1
(69, 2.0.060)) - @0

as s — 0 for sufficiently small §yg. Thus we complete the proof of Theorem 4.1.
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8. Compact convergence. The aim of this section is to prove Theorem 4.3. In
this section let (X, gs), u: X — P, (L, h, V) be as in Subsection 4.1 and let ¢, be as
in Subsection 5.5. We fix a positive integer k.

8.1. Preparation. Here, we review [14] for the preparation for the following
subsections. Let B C R? be an open set, Xo := B x (R?/27Z?), x = (x1,72) € R?
and 0 = (61,02) € R?/27Z? be the standard coordinates. Put w := dx; A df; +
dxy A dfy and let Ly := Xy x C. Denote by hy the hermitian metric on Ly such
that ho((x,1),(z,1)) = 1, and V be the hermitian connection defined by V, =
d— /=157, ; Adb;. Here, we have BS), = (1/k)Z* N B.

Let g be a Riemannian metric on X such that

1+ 0)w?

-1, .2
(1+9) < dv, < .

Ty S
for a constant § > 0. Note that if g is the K&hler metric of w with respect to an
w-compatible complex structure, then we can take 6 = 0. In the following subsections

we will take g = g/. In this case we can take § = d5 such that lim,_,9ds = 0 by (19).
Next we consider the induced metric on every fiber

2
Il e} x (B2 j2772) = Z gij(x,0)d0;do;.
ij=1

Let So = S(Lg, ho) and § be defined by (2). The next lemma is the generalization of
[14, Proposition 4.3].

LEMMA 8.1. Let k be a positive integer and g(x) = E?,j:l G, (x)d0;d0; be a
family of Riemannian metrics on R?/2rZ? such that Il{zyx (2 /2722) < () for all
x € B. Denote by (g (x))i; the inverse matriz of (g;;(x)): ;. Then we have

P+ K
2 2
/So|df|gd1/g2 R / 1 2dv,

for f € (H“*(So, dg,v;) @ C)P*, where

1
2 e 2 o1
K:=k xlgjfglnf{”:t—f—lﬂg(z), le k:Z },

2

2+ Uigeay = | D (@i + L) (@ +1;)g" ().

i,j=1

Proof. The proof is same as that of [14, Propositions 4.2, 4.3]. Here we explain
the outline. First of all we have

2
dflydvg = | |dfls. |, dvs.
So S0 g

where So|, = S x {z} x R?/2nZ? and §, := (dt — Y, ©;d0;)* + gl{z} xr2 /2772
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Since dvg = dt - dvgy and w?/2 = dx1dwadfidby, we have

/|df|§0|m|? dugz(1+5)*1/ / |df|SD‘m|% dtdf | dz,
So 9z B Sola 9z

/ (/ |f|2dtd6> dx2(1+5)_1/ |f[2dvs.

B So‘:p S()

Since f € (HY“(So,d;,v;) ® C)P*, we may put flsol, = e_‘/jlktgo(G) for some
¢: R?/2772 — C. Then we have

2 Z 0 — op — Y\ i
ij ‘ J

If we put @(f) = V=120 for [ I, € Z, then
Rl + Y (22 4w ) (22— i) 7 (0)
- 00; 04, /
= k> + (k‘l’z + lz) (k{ZZJ + lj)gzj(’l}),

hence we have the result. O

Denote by N, () the maximum eigenvalue of the symmetric positive matrix
(9ij(@,0))i;- Put

N, := sup N,(0),
0ER2 /2772
2 1
Ak, z) := k?inf Li+z)% l,loe -7
(k,x) 1n{;( +x;)% byl 2
for x € B. Then we have
o Ak, @)
K > inf —2—.
- zuelB N,

8.2. Estimates on the nonsingular fibers. Let Wi C W3l C P! be as in
Fact 5.1. Since P! and K := P!\ (Lg Wil) are compact and all of the points in
K are regular values of p, then by Liouville-Arnold Theorem, there are open sets
W! c W! c P\ Crt for a = 1,..., Ng such that the following holds.

(i) On every W/ there is an action-angle coordinate x4 1, 4,2, 04,1, 4,2 With

w1|ﬂ_1(Wé) = dan A daa,l + d(Ea’Q A daayg.

(i) K c U, W/ and W, ¢ W,

(iii) BS,NOW! =0 and z,(W,) C R? is bounded for all a.

Put U, := p=Y(W!). Here, z, = (241,%q2) is a coordinate on P! and 6, =
(04,1,04,2) is the coordinate on the fibers p='(z,) = R?*/27Z%. By [14, Proposition
2.4], we can choose a trivialization L[|y, = U, x C and the action-angle coordinate
such that V|, =d —v/—1 E?Zl Zq,id0,,;. Now, we may suppose BS, N W3 C {bq}-

Next we apply Lemma 8.1. To apply it, we estimate N, and Ay .
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Ifb e WZ\ (Lqg W3l), then g’ is isometric to the standard semi-flat metric. Denote
by g;b =g u—1(v) the fiberwise metric. By the explicit description of nSF, we have

! /
9s,b = 591,05

consequently we have [N, = sN;, 1 for some constant Ny ; > 0 depending only on b. If

be WZ N (W3 \ W), then by Lemma 5.2, we also have N, < sNp ; for some N ;1 > 0
depending only on b. Here, we may suppose that Ny 1 is depending on b continuously

on WZ N K. Therefore, there is a constant C7 , > 0 such that IV, < sC , for all

be WZ N KC, hence Ny < sCy for all b € K, where C = max, C1 4.
Next we put

No

K(r) =K\ U U B(a;b, 1) )

a=1 \beW/NBS),
B(a; b, T) = {y € W(;; |xa(y) - xa(b)| < T’}.

Note that z, (W, N BSk) = x,(W.) N (1/k)Z?. By (iii), there is 7o > 0 such that if
0 <r < rgthen

- 1 -
{y € W;,; |za(y) =1 > r foralll e kZQ} = WZ\ U B(a;b,r)
beW, MBSy

Therefore, we have \(k,b) > k272 for any b € K(r).

Now, we take a Borel set U C (u o)~ (K(r)) and let U = | |,, U(a’) such that
U(a’) are Borel sets and every U(a’) is contained in (o 7)~1(W/) for some a. By
applying Lemma 8.1 to each W (a’), we have

2mk? r2
df1?, dver > —— (14 — 2dvg
/S | f|g3 Yo, = (14 65)2 ( i 8C1>/S |1 dve,

li=10w) L1 0w

for some &5 > 0 with lim, . s = 0. For every b € BS, "W/, fix ¢ € u=1(b). By [13,
Proposition 7.12 (iii)], there are §, > 0, Ry > 0 and sg > 0 such that

=t (B(asb,6p\/sR)) C By (¢ R)
for R > Ry and 0 < s < sp. Moreover, we also have
L (Bg;(qba R)) C By (p*, R+ 7)

for p? € 771(¢%) by (9). If we put § = mingeps, o 0p, then we have

Skc,r = (pom) 1K)\ U BaG".R
bEBS,\Crt

C (pom) HK(BVs(R — 7)),

hence we obtain

2mk? §?(R —m)?
df %, dvy > 1+ )/ 2dg, 32
/S)C,R| f|gs Yo = (1 +(55)2 ( Cl Sk.r |f| v ( )

for R> Rp and 0 < s < spg.
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8.3. Estimates on the neighborhood of the singular fibers. In this sub-
section we fix one of the critical points bq € Crt of ;1 and consider the restriction
of ¢ on p~t(W{), which is isometric to the Ooguri-Vafa metric g©V by Fact 5.1.
Accordingly, we put p=1(W3l) = Xov, ry < §p and we go back to the setting in
Section 7. As we have seen in Section 7, L|x,, is a trivial bundle, hence we may put
Llxov = Xov x C, h((z,1),(x,1)) = 1 for x € Xov, V]xoy = d — v/—17; for some
11 € Q' (Xov) such that wy s = dy;.

First of all we describe wy s by the action-angle coordinate. Recall that we have
defined C*-action on Xov by (23). Let y = uy + v/ —1ug and z = z; + /=12 be a
holomorphic coordinate with respect to Js 5. Then we have

1
wis +V—1lwy s = dy A (21 — \/—1Vsdu3> = 2—dy Adz.
T T

Define another coordinate § = (61,63) on fibers by 6 +— ¢ - eV=101=02V(nov) | where
V(y) = (logy=1)/2m + h(y) and h is a holomorphic function such that Re(h) = h.
Here we assume

0 < Im(log yil) < 2m.
Since we have
dz=d (91 + ﬁew(y))
= df, + V=1V(y)db + \/jwz%dya
we obtain
dy Ndz = dy A dby + =1V (y)dy A dbs.

If we denote by 7:L(y) the holomorphic function such that % =V, then we have
dy A dz = dy A dby + /—1dH A dfs, hence

1 .
Wi,s = ?(dul A db — d(ImH) AN d<92)
s

Since the integral path of 6%2 represents the homology class —es , defined in Lemma

7.2, hence we can see that —dIlmH = dH. Here, we define © = (z1, 22) by

3?12/ Y1, 9U2=/ Y1,
(&4 e

1,y 2,y
. . 2
where ey, ez, are as in Lemma 7.2. Since wy ¢ = > 7, dx; A df;, we have

= (21,22) = (w1 + a1, H(y) + a2)

for some constants a;,as € R. Here, the origin 0 € D(dy) is in BSy iff (a1,a2) €

(1/k)Z2.
By the definition of the coordinate 6, we have
o,
20,
0

9= Im(V(y))v + Re(V(y))J3,sv.
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Consequently, we have

gOv 0 9\ _ Vil
s 891’ 891 47T2 ’

oV (2 9 Im(V(y)Vy™!
s 00, 00 472 ’
ov (0 0\ _PuPv!
s 8927 692 47‘(‘2 ’

therefore we have

Vs_l
9 st = ) (d67 + 2Im(V)d6,dOs + [V(y)|*d63)
V—l
4; 5 {(d6y +Im(V)df,)* + Re(V)?db5 } .

To apply Lemma 8.1, we estimate K. By Lemma 7.4, we have

5s
O
9V izt ) < oo {(d6; + Tm(V)df)? + Re(V)2dh3} .

Now, Im(V) is multivalued, however, we can take the branch of it on every neighbor-

hood such that it is bounded. Moreover, Since log |y|~! — oo as |y| — 0, there is
0 < d; <dp and C > 0 such that

Cs
ov 2 12 7921 _. =
95 lugiw < log [y {d6} + (log |y|~1)?d63} =: 3,

for y € D(61). For € = (£1,&) € R?, we put

o logly[~! , 1 2
||€||gy T \/ Cs 61 + Cslog|y|_1§2'

LEMMA 8.2. There are positive constants dg,d1 > 0 such that

01
inf 032 > ——m—
ze(l/kl)lzl2,z¢—aux(y) + Hgy ~ slogly|~!
for any y € D(d0) and 0y satisfies (20)(21)(22).
Proof. We have
2 —1

o2 W log |y 1 2
Hif a’Hﬁy - C's 0310g|y|_1H(y) :

There is C; > 0 such that [H(y) — uzlog |y| = /27| < Cily| on D(dp). Since |y| < o
and log|y|~! > logd, ' > 0, by taking C; larger if necessary, we have |H(y)| <
Cily|log ly|~1. Therefore, there is Cy > 0 such that

Calyl*log |y| !

2
|z — a”yy < S
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Moreover, there is &7 > 0 such that for any ¢ € R*® we have [|¢[2 >
y

81 (slog |yl =1 L€|?, where [€]2 = €2 + £€2. Consequently, if we take | € (1/k)Z?
then

=+ g, = lla+llg, — [l —allg,
|

o [Cylo -1
1 — CL+Z| o 2 g|y| |y|
slog |yl s

_ VOla+1] — VCaly|log ly| "
Vslogy| ! '

Now,

8y = inf la + 1|

le(1/k)Z2,l#~a
is a positive number depending only on the critical value by € Crt. Since
lyllogy|~! — 0 as y — 0, we can take &y sufficiently small such that we have
(20)(21)(22) and

575
Vtla+1] = /Calyllog |yt > \/>

for every y € D(d). O

LEMMA 8.3. There are constants 8o, d2 > 0 such that &y satisfies (20)(21)(22)
and the following holds. Let R > 0 and take sg > 0 such that x(srR?/4) < 8. For
any 0 < s < sg and y € D(6) \ D(x(sR?/4)), we have

2 2
le(l/k)Z2 l2(y) +Ullg, = 021

Proof. First of all, we give the lower bound of ||z(y) — a||% where a € (1/k)Z>
Note that there is a constant C7 > 0 such that

us log |y~

H(y) — o7

< Cly|

for y € D(0g). If 2|uy| > |usz|, then we have

21 -1 2 42 1 —1 21 1
eIz, > GBI (/5 + 4t/ loglyl ™ Iy logly ™
’ C's Cs 5C's

Since we have |H(y)| > |uz|log |y|~1 /27 — C|y| for a constant C; > 0, if we assume
2|ug| > |u1| then [H(y)| > |ua|log |y| =1 /2w — Ca|us| for a constant Cy > 0. By taking
o sufficiently small, we may suppose Co < (log |y|~!)/2 for y € D(dy). Then we have

e > “aloslvl ™" | uilogly[™h  Jylloglyl ™!
9 Cs 4Cs 4Cs

In both cases, we have

> log [y| ™!
2 S ly )
o) 2, > P28
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Since y ¢ D(x(sR?/4)) iff |y|?log |y|~1/(27) > sR?/4, hence we have

ly|* log |y| ! T2
5C0s  —10C "

le@)2, >

Combining with Lemma 8.2, we have

(51 m
inf 2 >inf{ ————— —R?}.
ze(il/lk)WHx(y)—i_ Hgy = {slogy|1’ 10C }

Since |y| > x(sR?/4), we have

51 51 51 R?/4 51 R?

> = = .
slogly|=! = slogx™'  (sR?/4)logx~!  4x?(logx~1)?

By the assumption y(sR?/4) < &y, we can see

01 < 0 R?
slogly|=! = 462(log o, ')?’

hence we have the result. O

Now, let S := S(L|xoy, ) and denote by 7: S — Xy the projection. By Propo-
sition 4.33, we have the followings.

LEMMA 8.4. Let p € 7 1(0ov). For every R > 7 there is sp > 0 such that we
have

(nov om) ™" (D(x(sR*/4))) C By, (p, R)
for any 0 < s < spg.

Proof. Take sp > 0 as in Proposition 4.33. By (30), we have y € D(x(sr?)) iff
|¢s(y)| < r. By Proposition 4.33, we have

(nov om)~! (B(R/2)) € By, (p. R)
for 0 < s < sg, hence we have the result. O
By Lemmas 8.3 and 8.4, we have the next proposition.
PROPOSITION 8.5. For every bq € Crt and pq € (o) ' (bq) there are ri > 0,

Cq >0, Ry >0 and sg > 0 for every R > Ry such that if R > Ry and 0 < s < sp
then

(df[2, dvg, > 2mk2(1 + CRQ)/ vy,

/S\Hl(wf)\Bf/é (pq,R) S‘Mfl(W{l)\Bgé (pq,R)

Jor any f € (HY2(S,dg,,vg ) ® C)Px.
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8.4. Proof of Theorem 4.3. Let (X,wi,ws,ws35), u: X — P! and (L,h, V)
be as in Subsection 4.1. Denote by (gs, J1,s, Jo.s, J3) be the associated hyper-Kéhler
structure of (w1,wa,ws ) and let g, be as in Subsection 5.5. For every b € BSj, we
fix p® € (o m)~1(b). By Proposition 8.5 and (32), we have the following.

PROPOSITION 8.6. Let k be a positive integer. There are constants C' > 0,
Ry > 0 independent of s, R, f and sg > 0 for every R > Ry such that if R > Ry and
0 < s < sg then

/ |df %, dvg, > CR® / |fIPdvg,
S\UbeBs,C Bg; (P*.R) ) S\Ubngk Bg; (p*,R)
for any f € (HLQ(S, dgé, I/gg) ® (C)pk

Moreover, by (19), we have the following corollary by taking the constant C' in
the above proposition smaller.

COROLLARY 8.7. Let k be a positive integer. There are constants C > 0, Ry > 0
independent of s, R, f and sg > 0 for every R > Ry such that if R > Ry and 0 < s <
Sg then

/ \df 2. dus, > CR? / 1 2dv,,
S\(UbeBSk By, (p*,R)) S\(UbeBs,C Bg, (r*,R))
fO’f’ any f € (Hl,Q(Sv dQs’Vgs) ® (C)pk

Let

Vg,
S = (S.ds., . ).
The next proposition was essentially shown in [14, Proposition 4.4].

PROPOSITION 8.8. For any e, A > 0 there is Re 4 > 0 and s, 4 > 0 such that the
following holds. For any family fs € (H"?(S;) ® C)P* such that || fs||r2s,) = 1 and
supgso ldf |2 s,y < A, we have

24y
/ |f*dvg, >1—¢
S\(Users, Bas#".R:)) %
for any 0 < s < s..
Proof. Put B(R) := Uycps, Ba. (p*, R). By Corollary 8.7, there is sg > 0 such

that
- /Iflzdl/gs _ / F2dvs, / | [2dv,
S S B(R) S S\B(R) s

<[ Uthn A
- B(R) S CR2

for 0 < s < sp. Therefore, we have the result by putting R. = A/v/Ce and s. = sg_. O

Proof of Theorem 4.3. Let fs € (H"*(S;) ® C)?* such that SuPs(||f||2L2(§s) +
EPr(fs)) < oo. Now, since gy are Ricci-flat, the Ricci curvatures of g, have the
uniform lower bound by [14, Proposition 3.15]. Then by Proposition 8.8, we can
apply [14, Proposition 4.7] to this situation, then we obtain the strongly converging
subsequence {fs, }i C {fs}s. O
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9. Convergence of the quantum Hilbert spaces. Let
(X,wi,wo,ws s, L,h,V,u) be as in the previous section. Denote by Hy :=
L?(X,gs, L*, h) the Hilbert space consisting of L2-sections of the complex line bundle
LF — X and let

Ppo: Hy — HY (X, ,L¥), Ppo: HE: — Ker(AL)

be the orthogonal projections. Since the Ricci curvature of gs is zero, we may apply
the argument in [14, Section 5] to our situation, hence the analogous statement with
[14, Theorem 5.1] can be obtained as follows.

THEOREM 9.1. Let k be a positive integer. We have a compact convergence

Pps— @ Pro
beBSk

in the sense of Definition 3.5 as s — 0.

By Theorem 9.1 and Kodaira Vanishing Theorem, we have
dim H°(X, ., L*) = #BS), (33)

for any s > 0 and k > 0.

Now, let (w1, ws,ws3) be a hyper-Kéhler structure on X, (L, h, V) be a prequantum
line bundle on (X,w;) and p: X — P! be a special Lagrangian fibration coming from
the elliptic fibration X, — P! with 24 singular fibers of Kodaira type I;. Then by
Proposition 2.11, there is a family of hyper-Kéhler structures (wi,ws,ws s) tending to

a large complex structure limit and ws; = ws. Therefore, we obtain Corollary 1.2 by
(33).

REFERENCES

[1] T. BAIER, C. FLORENTINO, J. M. MOURAO, AND J. P. NUNES, Toric Kdhler metrics seen from
infinity, quantization and compact tropical amoebas, J. Differential Geom., 89:3 (2011),
pp. 411-454.

[2] T. BAIER, J. M. MOURAO, AND J. P. NUNES, Quantization of abelian varieties: distributional
sections and the transition from Kahler to real polarizations, J. Funct. Anal., 258:10 (2010),
pp. 3388-3412.

[3] K. CHAN AND Y.-H. SUEN, Geometric quantization via SYZ transforms, Adv. Theor. Math.
Phys., 24:1 (2020), pp. :25-66.

[4] J. CHEEGER AND T. H. COLDING, On the structure of spaces with Ricci curvature bounded
below. III, J. Differential Geom., 54:1 (2000), pp. 37-74.

[5] G. CHEN, J. VIACLOVSKY, AND R. ZHANG, Collapsing Ricci-flat metrics on elliptic K3 surfaces,
Comm. Anal. Geom., 28:8 (2020), pp. 2019-2133.

[6] J. J. DUISTERMAAT, On global action-angle coordinates, Comm. Pure Appl. Math., 33:6 (1980),
pp. 687-706.

[7] K. Fukaya AND T. YAMAGUCHL, Isometry groups of singular spaces, Math. Z., 216:1 (1994),
pp. 31-44.

[8] B. R. GREENE, A. SHAPERE, C. VAFA, AND S.-T. YAU, Stringy cosmic strings and noncompact
Calabi- Yau manifolds, Nuclear Phys. B, 337:1 (1990), pp. :1-36.

[9] M. GRross, Special Lagrangian fibrations. II. Geometry. A survey of techniques in the study of
special Lagrangian fibrations. In “Surveys in differential geometry: differential geometry
inspired by string theory”, volume 5 of Surv. Differ. Geom., pp. 341-403. Int. Press, Boston,
MA, 1999.

[10] M. Gross AND P. M. H. WILSON, Large complex structure limits of K3 surfaces, J. Differential
Geom., 55:3 (2000), pp. 475-546.

[11] M. D. HamiLToN AND H. KoNNO, Convergence of Kdihler to real polarizations on flag manifolds
via toric degenerations, J. Symplectic Geom., 12:3 (2014), pp. 473-509.



374

(12]
(13]
(14]
(15]

[16]

(17]
(18]

[19]

K.
H

A.

K. HATTORI

. HARVEY AND H. B. LAwsON, Calibrated geometries, Acta Mathematica, 148:1 (1982), pp. 47—

157.

. HaTTORI, The geometric quantizations and the measured Gromov-Hausdorff convergences,

Journal of Symplectic Geometry, 18:6 (2020), pp. 1575-1627.

. HATTORI AND M. YAMASHITA, Spectral convergence in geometric quantization—the case of

non-singular Langrangian fibrations, arXiv preprint arXiv:1912.07994, 2019.

. HATTORI AND M. YAMASHITA, Spectral convergence in geometric quantization—the case of

toric symplectic manifolds, arXiv preprint arXiv:2002.12495, 2020.

. KOSTANT, Quantization and unitary representations. I. Prequantization. In “Lectures in

modern analysis and applications, III”, pp. 87-208. Lecture Notes in Math., Vol. 170.
1970.

Kuware AND T. SHIOYA, Convergence of spectral structures: a functional analytic theory
and its applications to spectral geometry, Comm. Anal. Geom., 11:4 (2003), pp. 599-673.

. OoauRl AND C. VAFA, Summing up Dirichlet instantons, Phys. Rev. Lett., 77:16 (1996),

pp- 3296-3298.
TYURIN, Geometric quantization and mirror symmetry, arXiv preprint math/9902027, 1999.

[20] S.-T. YAu, On the Ricci curvature of a compact Kdhler manifold and the complex Monge-

Ampere equation. I, Comm. Pure Appl. Math., 31:3 (1978), pp. 339-411.

[21] T. YosHIDA, Adiabatic limits, theta functions, and geometric quantization, arXiv preprint

arXiv:1904.04076, 2019.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType true
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /FlateEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
    /HEB <>
    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


