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SPECTRAL CONVERGENCE IN GEOMETRIC QUANTIZATION ON
K3 SURFACES∗

KOTA HATTORI†

Abstract. We study the geometric quantization on K3 surfaces from the viewpoint of the
spectral convergence. We take a special Lagrangian fibrations on the K3 surfaces and a family of
hyper-Kähler structures tending to large complex structure limit, and show a spectral convergence
of the ∂-Laplacians on the prequantum line bundle to the spectral structure related to the set of
Bohr-Sommerfeld fibers.
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1. Introduction. In this paper we study the geometric quantization on the K3
surfaces from the viewpoint of the spectral convergence of the ∂-Laplacian acting on
sections of the prequantum line bundle.

The prequantum line bundle on a symplectic manifold (X,ω) is a triple (L, h,∇)
of a complex line bundle π : L → X equipped with a hermitian metric h and a
hermitian connection ∇ whose curvature form F∇ is equal to −

√
−1ω. The geometric

quantization is the procedure to derive the quantum Hilbert space consisting of the
regular sections of L in the appropriate sense. To derive it, we consider the Kähler
quantization coming from the integrable complex structures and the real quantization
coming from the Lagrangian fibrations in this paper.

Let J be an integrable complex structure on X and suppose that it is ω-
compatible. Then ω is a Kähler form on the complex manifold XJ := (X, J) and
L is a holomorphic line bundle over XJ . The quantum Hilbert space coming from J
is defined by

VJ := H0(XJ , L).

Next we take a Lagrangian fibration μ : X → B. We suppose that B is a smooth
manifold of dimension dimX/2, μ is almost everywhere submersion and ω|μ−1(b) ≡ 0
for every regular value b ∈ B. By the Lagrangian condition, the restriction of (L,∇)
to every fiber μ−1(b) is a flat bundle. The fiber μ−1(b) is called a Bohr-Sommerfeld
fiber if (L|μ−1(b),∇|μ−1(b)) has a nontrivial parallel section. We can also define this
notion even if b is a critical value. Here, we put

BS := {b ∈ B|μ−1(b) is a Bohr-Sommerfeld fiber},
Vμ := C

#BS .

The ω-compatible complex structures and the Lagrangian fibrations can be treated
uniformly by the notion of polarizations. Now, suppose that a family of ω-compatible
complex structures {Js}s>0 is given and it converges to a Lagrangian fibration μ as
s→ 0 in the sense of polarizations. The aim of this paper is to show the convergence
of the quantum Hilbert spaces VJs

→ Vμ as s → 0. Such a phenomenon has already
been observed in the several examples. In [2], Baier, Mourão and Nunes showed such
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convergence on the smooth abelian varieties, and in [1], Baier, Florentino, Mourão and
Nunes showed it on the smooth toric varieties. In [11], Hamilton and Konno showed it
on the flag manifolds. In these results, they constructed a family of complex structures
Js and the basis {ϑ1,s, . . . , ϑN,s} of VJs

explicitly then showed that the sections ϑi,s

converge to the delta function section of L supported by the Bohr-Sommerfeld fibers
as s → 0. In [21], Yoshida studied the convergence of the holomorphic sections on
the neighborhood of nonsingular fibers of μ by only using the local description of the
almost complex structures.

In [14], Yamashita and the author introduced the new approach to this problem.
We identified the holomorphic sections of (XJs

, L) with the eigenfunctions of the
Laplace operators on some Riemannian manifolds related to Js and ∇, and then
showed the spectral convergence as s → 0 in the sense of Kuwae and Shioya [17]. In
[14], we considered the case of μ has only nonsingular fibers and in [15] we considered
the case of the smooth toric varieties, then obtained the another proof of the results
in [2], [1], respectively.

In this paper we show the convergence VJs
→ Vμ in the case of the K3 surface,

where Js come from the family of hyper-Kähler structures tending to a large complex
structure limit in the sense of [10], and μ comes from the elliptic fibration. One of the
difficulty to work on the K3 surfaces is that we cannot describe the complex struc-
tures Js and the holomorphic sections explicitly, since the hyper-Kähler structures
on the K3 surfaces are determined by the solutions of the Monge-Ampère equation.
However, the method developed in [14] does not require the explicit description of
VJs

. We mention that dimVJ = dimVμ has been proved by Tyurin in the case of
the K3 surfaces in [19]. Moreover, Chan and Suen constructed the canonical isomor-
phism VJ

∼= Vμ via the SYZ transforms in the case of the semi-flat Lagrangian torus
fibrations over the compact complete special integral affine manifolds and compact
toric manifolds [3].

Next we explain the main result. Let X be a smooth manifold of dimension 4
diffeomorphic to the K3 surfaces, (g, J1, J2, J3) be a hyper-Kähler structure on X
and put ωi := g(Ji·, ·), then we regard (X,ω1) as a symplectic manifold. We assume
[ω1] ∈ 2πH2(X,Z) and take a prequantum line bundle (L, h,∇) on (X,ω1). Next we
take a family of Kähler forms (ω3,s)s>0 on XJ3

such that ω2
3,s = ω2

1 = ω2
2 . We call

μ : X → P
1 a special Lagrangian fibration if μ−1(b) is smooth and ω1|μ−1b = ω2|μ−1b =

0 for every regular value b ∈ P
1. We assume that μ comes from the elliptic fibration

XJ3 → P
1 whose singular fibers are of Kodaira type I1 and lims→0

∫
μ−1(b)

ω3,s = 0.

We define Δ1
R2 by

Δ1
R2ϕ :=

2∑
i=1

(
−∂2ϕ

∂ξ2i
+ 2ξi

∂ϕ

∂ξi

)

for ϕ : R2 → C.

Theorem 1.1. Let (X,ω1, ω2, ω3,s), μ : X → P
1 and (L, h,∇) be as above. Then

we have the compact convergence of the spectral structures

(
L2

(
X,

ω2
1

2s
, L, h

)
, Δ∂J1,s

)
→
⊕
b∈BS

(
L2
(
R

2, e−‖ξ‖
2

dξ1dξ2

)
⊗ C,

Δ1
R2

2

)



GEOMETRIC QUANTIZATION ON K3 SURFACES 317

as s→ 0 in the sense of Definition 3.3. Moreover, if we denote by

Ps : L
2

(
X,

ω2
1

2s
, L, h

)
→ H0(XJ1,s

, L),

P0 :
⊕
b∈BS

L2
(
R

2, e−‖ξ‖
2

dξ1dξ2

)
→
⊕
b∈BS

C

the orthogonal projections to the 0-eigenspaces, then we have the compact convergence
of the bounded operators

Ps → P0

as s→ 0 in the sense of Definition 3.5.

By the Kodaira Vanishing Theorem, Theorem 1.1 implies the next corollary, which
has been obtained by Tyurin [19].

Corollary 1.2. Let (X, g, J1, J2, J3) be a K3 surface equipped with a hyper-
Kähler structure, μ : X → P

1 be a special Lagrangian fibration coming from the elliptic
fibration XJ3

→ P
1 with 24 singular fibers of Kodaira type I1. Let [ω1]/2π ∈ H2(X,Z)

and (L, h,∇) be a prequantum line bundle on (X,ω1). Then we have

dimH0(XJ1
, L) = #BS.

This paper is organized as follows. In Section 2, we review fundamentals of the
hyper-Kähler structures on the K3 surfaces and describe the setting of this paper.
Moreover, we see that the holomorphic sections on L can be identified with some
eigenfunctions on the frame bundle of (L, h) equipped with some Riemannian metrics.
In Section 3, we review the convergence of the spectral convergence following [17]
and the notion of the S1-equivariant pointed measured Gromov-Hausdorff topology
following [13]. In Section 4 we describe the main results of this paper and the outline
of the proof. In Subsection 4.3, we explain how to construct the approximation
map between the frame bundle of (L, h) and the limit spaces. In Section 5, we
study the family of hyper-Kähler structures on the K3 surfaces tending to the large
complex structure limit. It is known by Gross and Wilson [10] that such structures are
approximated by gluing the standard semi-flat metrics and the Ooguri-Vafa metrics.
We modify their argument to apply to our situation, then we may reduce the problem
to the local argument on the standard semi-flat metrics and the Ooguri-Vafa metrics.
In Section 6 we study the detail of the former metric and in Section 7 we consider the
latter one, then we obtain the strong convergence of the spectral structures. To show
the compact convergence of the spectral structures in Theorem 1.1, we need further
argument for the localization of the functions on S, which is discussed in Section 8
following [14]. In Section 9, we show the convergence of the quantum Hilbert spaces
and obtain the latter half of Theorem 1.1.

Notations.

• For a Riemannian manifold (X, g), denote by dg the Riemannian distance
and denote by νg the Riemannian measure. For a piecewise smooth path
c : [0, 1]→ X, denote by Lg(c) the length of c with respect to g.
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• For a metric space (X, d) or a Riemannian manifold (X, g), denote by B(p, r)
the open metric ball of radius r > 0 centered at p ∈ X. If we need to
emphasize the dependence on d or g, we also write Bd(p, r) or Bg(p, r). For
a subset A ⊂ X, we denote the diameter of A by

diam(A) := sup {d(p, q); p, q ∈ A} .

We write diamd(A) or diamg(A) when we emphasize the dependence on d or
g.

• For sets A,B and points a ∈ A, b ∈ B, denote by f : (A, a)→ (B, b) the map
f : A→ B such that f(a) = b.

Acknowledgment. I would like to thank Mayuko Yamashita for her advices
and a lot of discussions on this paper. This work was supported by JSPS KAKENHI
Grant Numbers JP19K03474, JP20H01799.

2. Geometric quantization on the K3 surfaces.

2.1. Hyper-Kähler structures.

Definition 2.1. Let X be a smooth manifold of dimension 4d. A hyper-Kähler
structure on X is a quadruple (g, J1, J2, J3) of a Riemannian metric g and integrable
complex structures Ji with

J1J2 = J3, J2J3 = J1, J3J1 = J2, g(Ji·, Ji·) = g,

such that every 2-form ωi := g(Ji·, ·) is closed. Then (X, g, J1, J2, J3) is called the
hyper-Kähler manifold and g is called the hyper-Kähler metric.

Remark 2.2. If (X, g, J1, J2, J3) is a hyper-Kähler manifold, then ωi is a Kähler
form on the complex manifold

XJi
:= (X, Ji).

Moreover, if (i, j, k) = (1, 2, 3), (2, 3, 1) or (3, 1, 2), then ωj +
√
−1ωk is a holomorphic

volume form, i.e., nondegenerate holomorphic 2-form on XJi
.

Remark 2.3. If (X, g, J1, J2, J3) is a hyper-Kähler manifold of dimension 4, then
we have

ωi ∧ ωj = δijvol (1)

for some nowhere vanishing 4-form vol on X. Conversely, if 2-forms ω1, ω2, ω3 on
smooth 4-manifold satisfy (1), then it recovers the hyper-Kähler structure on X after
reordering the forms. For this reason the triple (ω1, ω2, ω3) is also called the hyper-
Kähler structure on X.

2.2. Holomorphic sections and eigenfunctions. Let (X,ω) be a symplectic
manifold. A prequantum line bundle (π : L → X,h,∇) on (X,ω) is a complex line
bundle L over X with a hermitian metric h and a hermitian connection ∇ whose
curvature form F∇ is equal to −

√
−1ω. If we consider the prequantum line bundle

on a hyper-Kähler manifold (X,ω1, ω2, ω3), then we always suppose F∇ is equal to
−
√
−1ω1 in this paper. Then L is a holomorphic line bundle over XJ1 . The aim of

this paper is to analyze the behavior of the vector space H0(XJ1 , L) consisting of the
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holomorphic sections under fixing ω1 and varying J1. To achieve it, we use the corre-
spondence between holomorphic sections and some eigenfunctions on a Riemannian
manifold constructed by (X, g) and (L, h,∇), which was also considered in [13], [14]
and [15].

Let (X,ω1, ω2, ω3) be a hyper-Kähler manifold of dimension 4. First of all put

S = S(L, h) := {u ∈ L; h(u, u) = 1}.

Notice that S is a principal S1-bundle over X and the connection ∇ induces the
horizontal distribution H ⊂ TS. Denote by

√
−1Γ∇ ∈ Ω1(S,

√
−1R) the connection

form on S corresponding to ∇. Then we have a S1-invariant Riemannian metric ĝ on
S such that

ĝ := (Γ∇)2 + (dπ|H)∗g. (2)

Denote by C∞(X,L) the set of smooth sections of L. There is the natural iden-
tification

C∞(X,Lk) ∼= (C∞(S)⊗ C)ρk (3)

:=
{
f ∈ C∞(S)⊗ C; f(uλ) = λ−kf(u) for all u ∈ S, λ ∈ S1

}
,

where ρk : S
1 → S1 is the unitary representation defined by ρk(λ) = λk. Let Δ∂J1

=

∇∗
∂J1

∇∂J1
is the ∂-Laplacian acting on C∞(L). We can also define the ∂-Laplacian

Δk,∂J1
acting on C∞(Lk). Denote by Δĝ the Laplacian of ĝ acting on C∞(S), then it

extends to the operator on C∞(S)⊗C C-linearly. Since S1 acts on (S, ĝ) isometrically,
Δĝ induces

Δρk

ĝ : (C∞(S)⊗ C)ρk → (C∞(S)⊗ C)ρk .

By [13], we can see

2Δk,∂J1
= Δρk

ĝ −
(
k2 + 2k

)
(4)

under the identification (3). Consequently, if X is compact, we have the following
isomorphism

H0(XJ1
, Lk) ∼=

{
f ∈ (C∞(S)⊗ C)ρk ; Δĝf =

(
k2 + 2k

)
f
}
.

2.3. Special Lagrangian fibrations. Let (X,ω) be a symplectic manifold. In
this paper we say that μ : X → B is a Lagrangian fibration if μ is a surjective smooth
proper map from X to a smooth manifold B of dimension (dimX)/2 such that μ−1(b)
are Lagrangian submanifolds, namely, ω|μ−1(b) = 0, for all regular values b ∈ B, and
we also suppose all of the fibers are connected. Then by the Liouville-Arnold theorem,
for all regular values b, the fibers μ−1(b) are diffeomorphic to the torus.

Let (X,ω1, ω2, ω3) be a hyper-Kähler manifold of dimension 4. In this paper
μ : X → B is said to be a special Lagrangian fibration if it is the Lagrangian fibration
with respect to both of ω1 and ω2.

Since the condition ω1|μ−1(b) = ω2|μ−1(b) = 0 is equivalent to that μ−1(b) is
complex submanifold of XJ3 , hence the special Lagrangian fibration on X is the
elliptic fibration on XJ3 .
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Remark 2.4. Harvey and Lawson showed in [12] that the special Lagrangian
submanifold minimizes the volume in its homology class, therefore, the volume of
μ−1(b) is independent of b. By the above argument, μ−1(b) is a complex submanifold
of XJ3

, hence the volume of μ−1(b) is given by
∫
μ−1(b)

ω3 by choosing the orientation

appropriately.

The inverse image of a critical value of μ is called a singular fiber. The singular
fibers of elliptic fibrations are classified by Kodaira. In particular, we suppose in this
paper that all of the singular fibers are of Kodaira type I1, which is the irreducible
rational curve with a double point.

Definition 2.5. Let μ : X → B be a special Lagrangian fibrations on the 4-
dimensional hyper-Kähler manifold X. In this paper we say μ is of Kodaira type I1 if
all of the singular fibers of the corresponding elliptic fibration on XJ3 are of Kodaira
type I1.

Next we define the Bohr-Sommerfeld fibers.

Definition 2.6. Let (X,ω) be a symplectic manifold with a prequantum line
bundle (L, h,∇) and a Lagrangian fibration μ : X → B.

(i) μ−1(b) is called a Bohr-Sommerfeld fiber if the holonomy group of the con-
nection ∇|μ−1(b) on L|μ−1(b) is trivial. Moreover we call b a Bohr-Sommerfeld
point.

(ii) Let m be a positive integer. We also denote by ∇ the connection on Lm :=
L⊗m naturally induced by ∇ on L. μ−1(b) is called a Bohr-Sommerfeld fiber
of level m if the holonomy group of the connection ∇|μ−1(b) on Lm|μ−1(b) is
trivial. We put

BSm :=
{
b ∈ B; μ−1(b) is a Bohr-Sommerfeld fiber of level m

}
,

BSstr
m := BSm \

(
m−1⋃
l=1

BSl

)
.

Remark 2.7. Notice that we can define the holonomy group not only for the
smooth fibers, but also for the singular fibers.

2.4. K3 surfaces.

Definition 2.8. A K3 surface is a compact simply-connected hyper-Kähler
manifold of dimension 4.

If the K3 surface admits an elliptic fibration μ : X → B, then it is known that
B is the complex projective line P

1. Moreover, if all of the singular fibers of μ are of
Kodaira type I1, then the number of singular fibers is equal to 24, which is the Euler
characteristic of the K3 surface.

Definition 2.9. Let s0 > 0, X be a K3 surface and (ω1, ω2, ω3,s) be a family
of hyper-Kähler structures on X for every 0 < s ≤ s0. Suppose a special Lagrangian
fibration μ : X → P

1 of Kodaira type I1 is given. Then (ω1, ω2, ω3,s) is tending to a
large complex structure limit if the volume of the fibers of μ converges to 0 as s→ 0.

Remark 2.10. In Definition 2.9, we do not assume that {ω3,s} continuously
depends on s.
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Here we show an example of a family of hyper-Kähler structures on theK3 surface
tending to a large complex structure limit.

Proposition 2.11. Let (ω1, ω2, ω3) be a hyper-Kähler structure on the K3 sur-
face X, μ : X → P

1 be a special Lagrangian fibration of Kodaira type I1, and ωFS be the
Fubini-Study form on P

1 normalized such that
∫
X
ω3 ∧ μ∗ωFS = 1. Put vX =

∫
X
ω2
3.

Define the cohomology class αs ∈ H2(X,R) by

αs :=

[
s
(
ω3 −

vX
2
μ∗ωFS

)
+

1

s

vX
2
μ∗ωFS

]
.

Then there exists a unique Kähler form ω3,s ∈ αs such that (ω1, ω2, ω3,s) form hyper-
Kähler structures tending to a large complex structure limit.

Proof. Let (g, J1, J2, J3) be the hyper-Kähler structure corresponding to
(ω1, ω2, ω3). Since αs is represented by positive (1, 1) form on XJ3

if 0 < s ≤ 1,
then there is a Kähler form ω3,s ∈ Ω1,1(XJ3

) such that ω2
3,s = cω2

1 = cω2
2 for some

c > 0 by Yau’s Theorem [20]. Since

α2
s = [ω3]

2 = [ω1]
2 = [ω2]

2,

we have c = 1, hence ω1, ω2, ω3,s form hyper-Kähler structures on X. Since∫
μ−1(b)

ω3,s = s

∫
μ−1(b)

ω3 → 0

as s→ 0, we have the assertion.

3. Convergence of spectral structures. In this paper we consider the con-
vergence of H0(XJ1,s

, Lk) to some Hilbert spaces in an appropriate sense. By (4),
H0(XJ1,s

, Lk) can be identified with the (k2 + 2k)-eigenspace of the operator Δρk

ĝs
.

To consider the convergence of eigenspaces, we use the notion of the convergence of
spectral structures introduced by Kuwae and Shioya in [17] to our situation.

3.1. Spectral structures. A spectral structure Σ = (H,A) is a pair of a Hilbert
space H and a self-adjoint positive linear operator A : D(A) → H, where D(A) is a
subspace of H, such that the quadratic form E(f) := 〈Af, f〉H is closed, i.e., the norm

‖f‖A :=
√
‖f‖2H + E(f)

can be extended to a dense subspace D(E) ⊂ H continuously and D(E) is complete
with respect to the norm ‖ · ‖A.

Let (X, g) be a compact Riemannian manifold and Δg be the Laplacian acting
on C∞(X). Then

Σ(X, g) :=
(
L2 (X, νg) ,Δg

)
is a typical example of the spectral structures.

Next we review the definition of the Laplacian on a metric measure space appeared
as the measured Gromov-Hausdorff limit of a sequence of Riemannian manifolds with
a lower bound of the Ricci curvatures following [4].

Let (X, d, ν, p) be a pointed metric measure space, that is, d is a metric on X, ν
is a Radon measure on X and p ∈ X. We assume that there are constant κ ∈ R and
a sequence of Riemannian manifolds {(Xi, gi)}i of dimension N such that

Ricgi ≥ κgi,
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and (X, d, ν, p) is the pointed measured Gromov-Hausdorff limit of(
Xi, dgi ,

νgi
νgi(B(pi, 1))

, pi

)
.

Denote by Lipc(X) the set of compactly supported Lipschitz functions on X. Then a
bilinear form on Lipc(X), denoted by∫

X

〈df1, df2〉dν (f1, f2 ∈ Lipc(X))

can be defined so that we have∫
X

〈df, df〉dν =

∫
X

Lip(f)2dν =: E(f),

Lip(f)(x) := inf
r>0

sup
y∈B(x,r)\{x}

|f(x)− f(y)|
d(x, y)

.

Let H1,2(X, d, ν) be the closure of Lipc(X) with respect to the norm ‖f‖2H1,2 :=
‖f‖2L2 + E(f). Denote by D(Δd,ν) the subspace of H1,2(X, d, ν) consisting of the
functions f such that there is h ∈ L2(X, ν) satisfying∫

X

hϕdν =

∫
X

〈df, dϕ〉dν (∀ϕ ∈ Lipc(X)).

We define a self-adjoint operator Δd,ν : D(Δd,ν) → L2(X, ν) by Δd,νf := h, then we
obtain a spectral structure

Σ(X, d, ν) := (L2(X, ν),Δd,ν).

If X is a smooth manifold and there are a Riemannian metric g on X and a function
ψ ∈ C∞(X) such that d = dg and dν = eψdνg, then we have

Δd,νf = Δgf − 〈dψ, df〉g.

For the brevity, we often write L2(X) = L2(X, ν), H1,2(X) = H1,2(X, d, ν) or ΔX =
Δd,ν if there is no fear of confusion.

3.2. Convergence of spectral structures. In this subsection we review the
notion of convergence of the spectral structures, following [17]. Here, we take a
one parameter family of Hilbert spaces {Hs}s>0, unbounded self-adjoint operators
{As}s>0 and consider the convergence of them as s → 0. The following notions can
be also defined for sequences.

Let {Hs}s≥0 be a family of Hilbert spaces over C. Suppose a dense linear subspace
C ⊂ H0 and linear maps Φs : C → Hs are given. We say the family {Hs}s>0 converges
to H0 as s→ 0 if

lim
s→0

‖Φs(f)‖Hs = ‖f‖H0

for all f ∈ C. Although this convergence may depend on the choice of C or Φs, We
often write Hs → H0 for the simplicity.

Next we define the convergence of {fs}s, where fs ∈ Hs.

Definition 3.1. Let Hs → H0 as s→ 0, and take fs ∈ Hs for every s ≥ 0.
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(i) {fs}s>0 converges to f0 strongly if there exists a sequence {f̃k}∞k=0 of C con-
verging to f0 such that

lim
k→∞

lim sup
s→0

‖Φs(f̃k)− fs‖Hs = 0.

(ii) {fs}s>0 converges to f0 weakly if

lim
s→0

〈fs, f ′s〉Hs = 〈f0, f ′0〉H0

for all {f ′s}s≥0 with f ′s → f ′0 strongly.

Next we consider a family of spectral structures Σs = (Hs, As) for every s ≥ 0.
Denote by Es the closed quadratic forms defined by As.

Definition 3.2. Let Hs → H0 as s → 0. In the followings, we suppose fs, f
′
s ∈

Hs.
(i) {Es}s>0 Mosco converges to E0 if

E0(f0) ≤ lim inf
s→0

Es(fs)

for any family {fs}s≥0 with fs → f0 weakly, and for any f ′0 ∈ H0 there exists
a family {f ′s}s>0 such that f ′s → f ′0 strongly and

lim sup
s→0

Es(f ′s) ≤ E0(f ′0).

(ii) The family {Es}s>0 is asymptotically compact if for any {fs}s≥0 such that

lim sup
s→0

(
‖fs‖2Hs

+ Es(fs)
)
<∞,

there exists a sequence si > 0 with limi→∞ si = 0 such that fsi → f0 strongly
as i→∞.

Definition 3.3. Let Σs = (Hs, As) be a spectral structure for every s ≥ 0 and
suppose Hs → H0 as s→ 0.

(i) {Σs}s>0 converges to Σ0 strongly if Es Mosco converges to E0.
(ii) {Σs}s>0 converges to Σ0 compactly if Σs → Σ0 strongly as s→ 0 and {Es}s≥0

is asymptotically compact.

Remark 3.4. There are several conditions equivalent to the strong (resp. com-
pact) convergence of {Σs}s>0. See [17, Theorem 2.4].

Example. Let {(Xs, gs)}s>0 be a family of complete Riemannian manifolds and
suppose there is κ ∈ R such that Ricgs ≥ κgs for all s. Moreover we take ps ∈ Xs and
assume that (Xs, dgs , νgs/νgs(B(ps, 1)), ps) converges to some metric measure space
(X, d, ν, p) in the sense of pointed measured Gromov-Hausdorff topology. Cheeger
and Colding showed that if all of Xs are compact and sups diam(Xs) < ∞, then
Σ(Xs, gs)→ Σ(X, d, ν) compactly as s→ 0 in [4]. In the case of Xs are noncompact
or diam(Xs) → ∞, then Kuwae and Shioya showed that Σ(Xs, gs) → Σ(X, d, ν)
strongly as s→ 0 in [17].

Definition 3.5. Let Hs → H0 as s → 0 and Bs : Hs → Hs be a bounded
operator for every s ≥ 0. We say that Bs → B0 compactly as s→ 0 if

lim
s→0

〈Bsfs, f
′
s〉Hs

= 〈B0f0, f
′
0〉H0

for any fs, f
′
s ∈ Hs with fs → f0, f

′
s → f ′0 weakly as s→ 0.
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3.3. S1-equivariant convergence of metric measure spaces. From now on
we consider metric measure spaces with S1-actions. We say an action is isomorphic
if it preserves both the metric and the measure. If (S, d, ν) is a metric measure space
with an isomorphic S1-action, we denote by π : S → S/S1 the quotient map and put
X := S/S1, ū := π(u) for u ∈ S. X has the natural metric defined by

d̄(ū, ū′) := inf
e
√−1t∈S1

d
(
u · e

√−1t, u′
)
.

For example, if S = S(L, h) and ĝ is the metric defined by (2), then we have

d̄ĝ = dg.

Definition 3.6.

(i) Let (S, d, ν) and (S0, d0, ν0) be metric measure spaces with isomorphic S1-
action. An S1-equivariant Borel map φ : S→ S0 is said to be S1-equivariant
Borel ε-isometry if |d0(φ(u), φ(u′)) − d(u, u′)| < ε for all u, u′ ∈ S and S0 ⊂
B(φ(S), ε).

(ii) For every s ≥ 0, let (Ss, ds, νs) be metric measure space with isomorphic S1-
action and ps ∈ Ss. Denote by πs : Ss → Ss/S

1 the quotient map. The family
(Ss, ds, νs, ps)s>0 converges to (S0, d0, ν0, p0) in the sense of S1-equivariant
pointed measured Gromov-Hausdorff topology, or we also write

(Ss, ds, νs, ps)
S1-pmGH−→ (S0, d0, ν0, p0),

if for any s > 0 there are εs, Rs, R
′
s > 0 and S1-equivariant Borel εs-isometry

φs :
(
π−1
s (B(p̄s, R

′
s)), ps

)
→
(
π−1
0 (B(p̄0, Rs)), p0

)
such that lims→0 εs = 0, lims→0 R

′
s = lims→0 Rs =∞ and

lim
s→0

∫
Ss

f ◦ φsdνs =

∫
S0

fdν0

for any f ∈ Cc(S0).

Remark 3.7. The above convergence was already introduced by Fukaya and
Yamaguchi in more general setting. They did not assume that the approximation
map is S1-equivariant. They assume that it is almost equivariant instead. See [7,
Definition 4.1].

Let (S, d, ν) be a metric measure space with isomorphic S1-action and assume
that the Laplacian ΔS can be defined. Then since ΔS is S1-equivariant, it induces
a self-adjoint operator on (L2(S) ⊗ C)ρk , which we denote by Δρk

S
. Here, recall that

ρk is the 1-dimensional unitary representation of S1 defined by ρk(λ) = λk. Then we
have the spectral structure

Σ(S, d, ν)ρk :=
(
(L2(S)⊗ C)ρk ,Δρk

S

)
for each k ∈ Z.

Let (X,ω1, ω2, ω3,s) be a family of hyper-Kähler structures on the K3 surface for
s > 0, K(s) > 0 be constants depending on s and (L, h,∇) be a prequantum bundle
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on (X,ω1). Let S = S(L, h) and ĝs be the Riemannian metric defined by gs,∇ and
(2). Put

Ss :=

(
S, dĝs ,

νĝs
K(s)

)
.

Now we take points pb ∈ S for b = 1, . . . , N . We assume

lim
s→0

dgs(p̄
b, p̄b

′
) =∞ (if b �= b′), (5)

(
Ss, p

b
) S1-pmGH−→

(
S
b
0, p

b
0

)
, (6)

and put

Hs := L2(Ss)⊗ C,

Hρk
s :=

(
L2(Ss)⊗ C

)ρk
,

H0 :=

N⊕
b=1

L2(Sb0)⊗ C,

Hρk

0 :=

N⊕
b=1

(
L2(Sb0)⊗ C

)ρk
.

Then we have the convergence Hρk
s → Hρk

0 as s→ 0 in an obvious way. We put

N⊕
b=1

Σ(Sb0)
ρk :=

(
Hρk

0 ,
N⊕
b=1

Δρk

Sb0

)
.

Now, since gs is the hyper-Kähler metric, Ricgs ≡ 0. Then by [14, Proposition
3.15], we have Ricĝs ≥ −(1/2)ĝs. Therefore, we obtain the following.

Fact 3.8 ([14, Propositions 3.14, 3.15]). Let (X,ω1, ω2, ω3,s, gs, L, h,∇) be as

above. Assume (5) and (6). Then Σ(Ss)
ρk converges to

⊕N
b=1 Σ(S

b
0)

ρk strongly.

4. Main results and outline of the proof.

4.1. Main results. In this subsection we describe the main theorems of this
paper and explain the outline of the proof.

Let {(X,ω1, ω2, ω3,s)}0<s≤s0 be a family of hyper-Kähler structures on a K3
surface, μ : X → P

1 be a special Lagrangian fibration of Kodaira type I1. Suppose
the family tending to a large complex structure limit as s→ 0. We may suppose

s =

∫
μ−1(b)

ω3,s > 0

without loss of generality. Here, recall that the above integral is independent of the
choice of b by Remark 2.4. Moreover we assume that the cohomology class [ω1] is in
2πH2(X,Z). Then there is a prequantum line bundle (L, h,∇) on (X,ω1). Moreover
it is unique up to rescaling and gauge transformations since the K3 surfaces are
simply-connected by [16, Theorem 2.2.1]. Denote by

(gs, J1,s, J2,s, J3,s)
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the hyper-Kähler structure given by (ω1, ω2, ω3,s). Then J3,s is independent of s, so
we write J3 = J3,s. Put S = S(L, h) and let ĝs be the Riemannian metric on S defined
by (2). Let π : S→ X be the restriction of π : L→ X to S ⊂ L.

Denote the coordinates on R
2 and S1 by ξ = (ξ1, ξ2) ∈ R

2 and e
√−1t ∈ S1. Define

a Riemannian metric ĝ0,m and a measure ν̂0 on S1 × R
2 by

ĝ0,m :=
(dt)2

m2(1 + ‖ξ‖2) + (dξ1)
2 + (dξ2)

2 (m ∈ Z>0),

dν̂0 := dξ1dξ2dt,

where ‖ξ‖2 = ξ21 + ξ22 , and put

S0,m :=
(
S1 × R

2, dĝ0,m , ν̂0
)
.

We define an isomorphic S1-action on S0,m by(
e
√−1t, ξ

)
· e
√−1τ :=

(
e
√−1(t+mτ), ξ

)
for e

√−1τ ∈ S1.
The next theorem is the first main result in this paper.

Theorem 4.1. Let b ∈ P
1 and pb ∈ (μ ◦ π)−1(b). If b ∈ BSstr

m , then

(
S, dĝs ,

νĝs
s

, pb
)

S1-pmGH−→ (S0,m, (1S1 ,0R2))

as s→ 0. Moreover, if b, b′ ∈ BSk and b �= b′, then lims→0 dgs(p̄
b, p̄b

′
) =∞.

By assuming Theorem 4.1, we can show the next lemma.

Lemma 4.2. For b ∈ BSstr
m , put m(b) := m. Σ(Ss)

ρk converges to⊕
b∈BSk

Σ(S0,m(b))
ρk strongly.

Proof. It follows from Fact 3.8 and Theorem 4.1.

The next theorem is the second main result.

Theorem 4.3. Let Eρk
s be the closed quadratic form associated with Σ(Ss)

ρk .
Then the family {Eρk

s }s>0 is asymptotically compact with respect to the strong con-
vergence Σ(Ss)

ρk →⊕
b∈BSk

Σ(S0,m(b))
ρk .

Combining Lemma 4.2 and Theorem 4.3, we have the following results.

Theorem 4.4. Σ(Ss)
ρk converges to

⊕
b∈BSk

Σ(S0,m(b))
ρk compactly.

The spectral structure of S0,m was already known by [13] as follows. For a positive
integer k, let

Hk
R2 := L2(R2, e−k‖ξ‖2dξ1dξ2)⊗ C,

Δk
R2f := −

(
∂2f

∂ξ21
+

∂2f

∂ξ22

)
+ 2k

(
ξ1

∂f

∂ξ1
+ ξ2

∂f

∂ξ2

)

for f = f(ξ1, ξ2). Here, Δk
R2 is the Laplacian on the Gaussian space (R2, dξ21 +

dξ22 , e
−k‖ξ‖2dξ1dξ2). For a spectral structure Σ = (H,A) and constants a1 > 0,

a2 ∈ R, we put a1Σ+ a2 := (H, a1A+ a2 · idH). If H = {0}, then we write Σ = 0.
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Fact 4.5 ([13, Section 8]). Let k be a positive integer. If k ∈ mZ, we have

Σ(S0,m)ρk − (k2 + 2k) ∼= (Hk
R2 ,Δk

R2).

If k /∈ mZ, we have Σ(S0,m)ρk = 0.

Now, we put

Σ(XJ1,s , L
k) :=

(
L2

(
X,

ω2
1

2s
, L, h

)
,Δk,∂J1,s

)
.

Here, the norm of the Hilbert space L2
(
X,ω2

1/2s, L, h
)
is given by ‖ϕ‖2L2 :=

∫
X
|ϕ|2h
2s ω2

1

for a section ϕ : X → Lk. Note that we have dνgs = ω2
1/2 for a hyper-Kähler metric.

By the identification (4), we have

Σ(Ss)
ρk ∼= 2Σ(XJ1,s

, Lk) + k2 + 2k.

Then by Fact 4.5 and Theorem 4.4, we have the following.

Theorem 4.6. Σ(XJ1,s , L
k) converges to

⊕
b∈BSk

(Hk
R2 ,Δk

R2/2) compactly.

So our goal is to prove Theorems 4.1 and 4.3.

4.2. Approximation of metrics. Let (S, ĝs) be as in Subsection 4.1. To show
Theorems 4.1 and 4.3, we need to study the asymptotic behavior of the metrics ĝs
on S = S(L, h) as s→ 0. The metrics gs are obtained by solving the Monge-Ampère
equation, and the solutions cannot be described explicitly. Instead of describing the
metrics explicitly, we construct another family of explicit metrics denoted by g′s, which
approximates {gs}s. This strategy is justified by the following argument.

Denote by ĝ′s the Riemannian metrics defined by g′s, ∇ and (2).

Lemma 4.7. Let (X, gs) be as above and g′s be another family of Riemannian
metrics on X. Assume that there are constants Cs ≥ 1 with lims→0 Cs = 1 such that
C−1

s g′s ≤ gs ≤ Csg
′
s on X. Let (S0, d0, ν0, p0) be a pointed metric measure space with

isomorphic S1-action and K(s) > 0 be constants depending only on s such that(
S, dĝ′s ,

νĝ′s
K(s)

, p

)
S1-pmGH−→ (S0, d0, ν0, p0)

as s→ 0 for some p ∈ S. Then(
S, dĝs ,

νĝs
K(s)

, p

)
S1-pmGH−→ (S0, d0, ν0, p0)

as s→ 0.

Proof. By the definition of ĝs and ĝ′s, we have

ĝs = (Γ∇)2 + gs, ĝ′s = (Γ∇)2 + g′s,

on S, hence we have

C−1
s ĝ′s ≤ ĝs ≤ Csĝ

′
s.

Therefore, by the definition of Riemannian distance, we obtain

C−1/2
s dĝ′s(u0, u1) ≤ dĝs(u0, u1) ≤ C1/2

s dĝ′s(u0, u1).
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for u0, u1 ∈ S. Since lims→0 C
1/2
s = 1, then we have the convergence of the metric

structures. The vague convergence of the measure follows from

C−5/2
s νĝs ≤ νĝ′s ≤ C5/2

s νĝs .

4.3. The metric on the frame bundles. In Definition 3.6 (ii), we call φs

the approximation maps and (S0, d0, ν0) the limit space. To show Theorem 4.1, we
need to construct the approximation map from (S, ĝs, νĝs/s) to the limit space. In
this subsection, we discuss how to construct the approximation maps under some
assumptions.

First of all we describe the setting and the assumptions in this subsection. Let
(X,ω) be a symplectic manifold of dimension 4 with a prequantum line bundle
(π : L → X,h,∇), and g be a Riemannian metric on X. Put S = S(L, h) and define
the metric ĝ on S by (2). Let B be a smooth manifold of dimension 2 and μ : X → B
be a proper smooth map such that all of the fibers μ−1(b) are connected. We sup-
pose there is an open subset Brg ⊂ B such that #(B \ Brg) < ∞, all b ∈ Brg are
regular values of μ and μ−1(b) are Lagrangian submanifolds for all b ∈ Brg. We set
νB := μ∗νg.

Let q ∈ μ−1(Brg) and put (Vf )q := Ker(dμq). Denote by (V ⊥f )q ⊂ TqX the
orthogonal complement of (Vf )q with respect to gq, then we have the orthogonal
decomposition TX|μ−1(Brg) = Vf ⊕ V ⊥f . By putting gf := g|Vf

, g⊥ := g|V ⊥f , we may

write g = gf + g⊥. Similarly, for a 1-form γ ∈ Ω1(X) we put γf = γ|Vf
, γ⊥ = γ|V ⊥f

and we write γ|μ−1(Brg) = γf + γ⊥.
Next we describe the limit space. Let (R2, g0) be the Euclidean space of dimension

2 and r : R2 → R≥0 be defined by r(ξ) = ‖ξ‖ =
√

ξ21 + ξ22 for ξ = (ξ1, ξ2) ∈ R
2. Denote

by 0R2 ∈ R
2 the origin.

Let ĝ0 = (dt)2/(1 + r2) + g0 be a Riemannian metric on S1 × R
2. If we put

c(τ) = (e
√−1c1(τ), c2(τ)) ∈ S1 × R

2, then the length of c with respect to ĝ0 is given
by

Lĝ0(c) =

∫ 1

0

√
|c′1(τ)|2

1 + r(c(τ))2
+ ‖c′2(τ)‖2 dτ.

Let B(R) := {ξ ∈ R
2; r(ξ) < R} for R > 0.

Now, let b ∈ B, W ⊂ B be an open neighborhood of b such that W \ {b} ⊂ Brg,
U := μ−1(W ), γ ∈ Ω1(U) be a 1-form with ω|U = dγ, ζ : W → R

2 be a continuous
map such that ζ(b) = 0R2 and ζ|W\{b} is an open embedding, and σ,R, δ,K be positive
constants with δ < 1, σ < R. For the following tuple

(g, b,W,R, γ, ζ, σ, δ,K) ,

we consider the next conditions.
(�1) Let Xw := μ−1(w) and ιw : Xw → U be the inclusion map for every w ∈ W .

ι∗b : H
1(U,Z)→ H1(Xb,R) is an isomorphism.

(�2) L|U is trivial as a complex line bundle.
(�3) There are 1-cycles ei,w in Xw for each i = 1, 2 and each w ∈ W such that

{e1,w, e2,w} generates H1(Xw,Z) and, for each i = 1, 2, (ιw)∗(ei,w) ∈ H1(U,Z)
is independent of w ∈ W . Moreover, the functions Ψi : W → R defined by
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Ψi(w) :=
∫
ei,w

γ are continuous, Ψi(b) = 0 for each i and b is isolated in the

subset

{w ∈W ; Ψi(w) = 0 for all i = 1, 2} .

(�4) We have

|γ⊥|g ≤ δ, |γ⊥|(ζ◦μ)∗g0 ≤ δ,

on (ζ ◦ μ)−1(B(3R)\{0R2}),

(1 + δ)−1(ζ ◦ μ)∗g0 ≤ g⊥ ≤ (1 + δ)(ζ ◦ μ)∗g0,
(1 + δ)−1(ζ ◦ μ)∗r2 ≤ |γf |2g ≤ (1 + δ)(ζ ◦ μ)∗r2

on (ζ ◦ μ)−1(B(3R) \ B(σ)) and

|γf |2g ≤ δ

on (ζ ◦ μ)−1(B(σ)).
(�5) B(3R) ⊂ ζ(W ).
(�6)

sup
w∈ζ−1(B(3R))

diamg|Xw
(Xw) < δ,

diamg|
(ζ◦μ)−1(B(σ))

(
(ζ ◦ μ)−1(B(σ))

)
< δ.

(�7) We have (1 + δ)−1νg0 ≤ K · ζ∗νB ≤ (1 + δ)νg0 on B(R).

Remark 4.8. (�1, 2, 3) is the topological assumption for μ on the neighborhood
of μ−1(b). By Liouville-Arnold theorem (see [6, Theorem 1.1]), if b ∈ Brg, then we
can see that every fiber of μ is 2-torus, hence (�1, 2, 3) are satisfied for some (W,γ).

Remark 4.9. In the above conditions, we often suppose that R is large and δ, σ
are small. The condition (�4) implies that g⊥ and |γf | can be controlled by g0 and r on

the complement of (ζ ◦μ)−1(B(σ)), which is a neighborhood of μ−1(b). The condition
(�6) implies the diameters of fibers and (ζ◦μ)−1(B(σ)) are small. In the setting of this
paper, if b is the critical value of the special Lagrangian fibration on the K3 surfaces,
we cannot obtain the good estimate for the metric g on the neighborhood of μ−1(b),
however, we may show that the diameter of such neighborhood is sufficiently small.

By (�2) we can take a smooth section E1 ∈ Γ(L|U ) such that h(E1,E1) = 1.
Then there is γ1 ∈ Ω1(U) such that ∇E1 = −

√
−1γ1 ⊗ E1. The holonomy group of

(L|Xb
,∇|Xb

) is given by{
exp

(√
−1
∫
C

γ1

)
; C ∈ H1(Xb,Z)

}
.

Lemma 4.10. Suppose that the triple (b,W, γ) satisfies (�1, 2, 3). Then b is not
an accumulation point of BSm ∩W .
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Proof. Let γ1 be as above. Since dγ1 = dγ = ω|U , hence γ1− γ is a closed 1-form
on U , then there are constants ci ∈ R such that Ψ′i(w) :=

∫
ei,w

γ1 = Ψi(w) + ci by

(�3).
Assume b ∈ BSm. Then Ψ′i(b) ∈ (2π/m)Z for any i = 1, 2. By the continuity of

Ψ′i, if there exists wn ∈ BSm such that wn → b as n → ∞ then limn→∞Ψ′i(wn) =
Ψ′i(b). Since b is isolated in {w; Ψ′i(w) = Ψ′i(b) for all i} by (�3), hence wn = b for
sufficiently large n.

Next we suppose b /∈ BSm. Then Ψ′i(b) /∈ (2π/m)Z for some i. By the continuity
of Ψ′i, there is an open neighborhood W ′ ⊂ B of b such that Ψ′i(W

′) ∩ (2π/m)Z = ∅,
hence W ′ ∩BSm = ∅.

Next we fix b ∈ BSstr
m and describe ĝ on the neighborhood of (μ ◦ π)−1(b), then

construct an approximation map. The following argument is quite technical, therefore
we assume b ∈ BS1 for the simplicity, and it is enough to explain the essence of this
subsection. The argument for general b ∈ BSstr

m is written in the last of this subsection.
See also [13, Subsection 7.3].

Lemma 4.11. Let b ∈ BS1, i.e., the holonomy group of (L|Xb
,∇|Xb

) is trivial.
Suppose that there are an open neighborhood W of b and γ ∈ Ω1(U) with ω|U = dγ
such that the triple (b,W, γ) satisfies (�1, 2), where U := μ−1(W ). Then there exists
a trivialization of principal S1-bundles S1 × U ∼= S(L|U , h) such that

ĝ = (dt− γ)2 + g.

Proof. Let E1 and γ1 be as above. By the assumption for the holonomy groups,
we can choose E1 such that

∫
C
γ1 = 0 for all C ∈ H1(Xb,Z). Then by (�1), there is

ϕ ∈ C∞(U) such that γ = γ1 + dϕ, hence we may choose E1 such that γ1 = γ. Then
by the definition of ĝ, we obtain the result.

From now on, let b ∈ BS1 and we assume that

(g, b,W,R, γ, ζ, σ, δ,K)

satisfies (�1-7). Then we may suppose

S(L|U , h) = S1 × U, ĝ = (dt− γ)2 + g

by Lemma 4.11. Now we put

U(r) := (ζ ◦ μ)−1(B(r)),

for r > 0 and we study the distance functions dg, dĝ restricting to Bg(q,R),
π−1(Bg(q,R)), respectively. To study them, we need to consider the length of paths,
however, we should remind that a path c connecting points in Bg(q,R) may not be
included in U in general. It is inconvenient to apply (�4), therefore, we need the next
lemma.

Lemma 4.12. Let q ∈ μ−1(b). Then Bg(q,R) is contained in U(
√
1 + δR + σ).

Moreover, if σ ≤ (3−2
√
2)R/(2

√
2), then for any piecewise smooth path c : [0, 1]→ X

connecting x0, x1 ∈ U(
√
1 + δR + σ) with Lg(c) < (3/

√
2)R, c([0, 1]) is contained in

U(3R).
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Proof. Let x ∈ Bg(q,R) and c be a path connecting c(0) = q and c(1) = x.
Assume that c([0, 1]) is not included in U(

√
1 + δR + σ). Then by (�5), there are

τ0, τ1 ∈ [0, 1] such that

c([τ0, τ1)) ⊂ U(
√
1 + δR+ σ) \ U(σ),

r ◦ ζ ◦ μ ◦ c(τ0) = σ,

r ◦ ζ ◦ μ ◦ c(τ1) =
√
1 + δR+ σ.

By (�4), we have

Lg(c) ≥
1√
1 + δ

Lg0(ζ ◦ μ ◦ c|[τ0,τ1]) ≥ R,

hence we can show that if μ◦c(0) = b and Lg(c) < R, then c([0, 1]) ⊂ U(
√
1 + δR+σ),

therefore x = c(1) ∈ U(
√
1 + δR+ σ).

Next we take x0, x1 ∈ U(
√
1 + δR + σ) and a path c connecting x0 and x1.

Suppose that the image of c is not contained in U(3R). Then by (�5), there are
τ0, τ1, τ2, τ3 ∈ [0, 1] such that

c([τ0, τ1)), c((τ2, τ3]) ⊂ (ζ ◦ μ)−1(B(3R)),

r ◦ ζ ◦ μ ◦ c(τ0) = r ◦ ζ ◦ μ ◦ c(τ3) =
√
1 + δR+ σ,

r ◦ ζ ◦ μ ◦ c(τ1) = r ◦ ζ ◦ μ ◦ c(τ2) = 3R.

Then by the similar argument and by 0 < δ ≤ 1, we have

Lg(c) ≥ 2

(
3−

√
2√

2
·R− σ

)
.

Since σ ≤ (3− 2
√
2)R/(2

√
2), we have Lg(c) ≥ 3R/

√
2. Therefore, Lg(c) < (3/

√
2)R

implies that the image of c is included in B(3R).

Let u0, u1 ∈ S1 × U(
√
1 + δR+ σ) and c : [0, 1]→ S1 × U be a piecewise smooth

path connecting u0 and u1. Put c = (e
√−1c1 , c2), then we have Lĝ(c) ≥ Lg(c2). By

applying Lemma 4.12, we also obtain the next corollary.

Corollary 4.13. Let b ∈ BS1 and c : [0, 1] → S1 × U be a piecewise smooth
path connecting u0, u1 ∈ S1 × U(

√
1 + δR + σ) such that Lĝ(c) < (3/

√
2)R. If σ ≤

(3− 2
√
2)R/(2

√
2), then c([0, 1]) ⊂ S1 × U(3R).

Now, we define the approximation map φ : S1 × U → S1 × R
2 by

φ(e
√−1t, x) :=

(
e
√−1t, ζ ◦ μ(x)

)
.

The next aim is to show that |dĝ(u0, u1) − dĝ0(φ(u0), φ(u1))| is small if δ, σ is small.
To show it, we need to estimate the difference between Lĝ(c) and Lĝ0(φ ◦ c) for a
path c in S1 × U(3R) and the diameter of the fibers φ−1(u) for u ∈ S1 × B(3R). We
estimate it in the case of Im(c) ⊂ S1 × (U(3R) \ U(σ)) and Im(c) ⊂ S1 × U(σ).
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(I) Estimates on S1 × (U(3R) \ U(σ)).
We describe ĝ on W rg := W ∩ Brg. On μ−1(W rg), we have the decomposition

g = gf + g⊥ and γ = γf + γ⊥. On S1 × μ−1(W rg), we have

ĝ = (dt− γ⊥)2 + g⊥ + (γf )
2 + gf − 2γf · (dt− γ⊥).

Fix any point x ∈ μ−1(W rg) and let e1, . . . , en ∈ (Vf )
∗|x be an orthonormal basis

with respect to gf |x, then we may write gf |x = δije
i · ej . The basis can be chosen

such that γf |x = ke1 for some k ∈ R. Then we have

ĝ =
1

1 + |γf |2g
(dt− γ⊥)2 + g⊥ (7)

+

⎛
⎝√1 + |γf |2ge1 −

k√
1 + |γf |2g

(dt− γ⊥)

⎞
⎠

2

+

n∑
i=2

(ei)2.

Define a subspace Wp ⊂ Tp(S
1 × U) = R

∂
∂t ⊕ TxU by

Wp := Ker

⎛
⎝√1 + |γf |2ge1 −

k√
1 + |γf |2g

(dt− γ⊥)

⎞
⎠ ∩

(
n⋂

i=2

Ker(ei)

)
.

We say the piecewise smooth path c : [0, 1]→ S1×U is horizontal with respect to φ if
the image of μ ◦ π ◦ c is contained in W rg and c′(τ) ∈ Wc(τ) for every τ .

Next we compare Lĝ(c) and Lĝ0(φ ◦ c) for a path c, however, it is difficult to
compare them directly. Now we define Lĝσ

0
(c) as follows such that Lĝσ

0
(c) ≤ Lĝ0(c)

and compare Lĝ(c) and Lĝσ
0
(φ ◦ c) instead.

Let gσ0 be a noncontinuous Riemannian metric on R
2 defined by

(gσ0 )ξ := (g0)ξ (ξ /∈ B(σ)),
(gσ0 )ξ := 0 (ξ ∈ B(σ))

Then dgσ
0
is a pseudodistance function on R

2. Next we put

ĝσ0 :=
dt2

1 + r2
+ gσ0 .

By the definition we have gσ0 ≤ g0 and ĝσ0 ≤ ĝ0.

Proposition 4.14. Let b ∈ BS1. For any piecewise smooth path c in S1×U(3R),
we have

Lĝ(c) ≥
√

1− δ

1 + δ
Lĝσ

0
(φ ◦ c).

Moreover, if c is horizontal with respect to φ and Im(c) ⊂ S1 × U(3R) \ U(σ), then

Lĝ(c) ≤
√

1 + δ

1− δ
Lĝσ

0
(φ ◦ c).

To show Proposition 4.14, we need the next lemma.
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Lemma 4.15. Let b ∈ BS1, (e
√−1t, x) ∈ S1 × U(3R) and w ∈ R ∼= Te

√−1tS1,
ṽ ∈ TxU and put ĝ0 = (dt)2/(1+r2)+g0 on S1×(R2\{0R2}). Assume that μ(x) ∈ Brg.
Then we have

|(w, v)|2ĝ ≥
1− δ

1 + |γf |2g
|w|2 + (1− δ)|v⊥|2g⊥ ,

|dφ(w, v)|2ĝ0 ≥
1− δ

1 + r2
|w − γ⊥(v⊥)|2 + (1− δ)|d(ζ ◦ μ)(v)|2g0 ,

where v⊥ is the V ⊥f -component of v.

Proof. By (7), we have

|(w, v)|2ĝ ≥
|w − γ⊥(v⊥)|2

1 + |γf |2g
+ |v⊥|2g⊥

Moreover, by (�4), we have |γ⊥(v⊥)| ≤ δ|v⊥|g⊥ , hence

|(w, v)|2ĝ ≥
||w| − δ|v⊥|g⊥ |

2

1 + |γf |2g
+ |v⊥|2g⊥ .

Since we have (a − δb)2 ≥ (1 − δ)a2 − δ(1 − δ)b2 for a, b ∈ R and 0 < δ ≤ 1, we can
see that

|(w, v)|2ĝ ≥
(1− δ)|w|2 − δ(1− δ)|v⊥|2g⊥

1 + |γf |2g
+ |v⊥|2g⊥

≥ (1− δ)|w|2
1 + |γf |2g

+ (1− δ)|v⊥|2g⊥ .

Since dμ(v⊥) = dμ(v), we have the first inequality. Next we consider the second
inequality. By dφ(w, v) = (w, d(ζ ◦ μ)(v)), we have

|dφ(w, v)|2ĝ0 =
|w|2
1 + r2

+ |d(ζ ◦ μ)(v)|2g0 .

Then by the similar argument we also have the second inequality.

Proof of Proposition 4.14. Let c = (e
√−1c1 , c2) : [0, 1]→ S1 ×U(3R). By Lemma

4.15, we have

Lĝ(c) ≥
√
1− δ

∫ 1

0

√
|c′1|

2

1 + |γf |2
+ |v⊥|2g⊥ dτ,

where v⊥ is the V ⊥f -component of c′2. By (�4), we have (1 + δ)−1(ζ ◦ μ)∗gσ0 ≤ g⊥ and

(1 + δ)−1

1 + (r ◦ ζ ◦ μ)2 ≤
1

1 + |γf |2

on U(3R), hence Lĝ(c) ≥
√

(1− δ)/(1 + δ)Lĝσ
0
(φ ◦ c).

Next we assume c is horizontal with respect to φ and Im(c) ⊂ S1×U(3R)\U(σ).
Then we have

Lĝ(c) =

∫ 1

0

√
|c′1 − γ⊥(v⊥)|2

1 + |γf |2
+ |v⊥|2g⊥ dτ.
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Since (�4) gives 1/{1+ (r ◦ ζ ◦ μ)2} ≥ (1+ δ)−1/(1+ |γf |2) on U(3R) \U(σ), then by
Lemma 4.15 we have

Lĝσ
0
(φ ◦ c) ≥

√
1− δ

1 + δ
Lĝ(c).

(II) Estimates on S1 × U(σ).

Proposition 4.16. Let b ∈ BS1. For any piecewise smooth path c : [0, 1] →
S1 × B(σ), we have

dĝ(u0, u1) ≤
√

1 + σ2Lĝσ
0
(c) + 2δ,

dĝ0(c(0), c(1)) ≤
√
1 + σ2Lĝσ

0
(c) + 2σ

for any u0 ∈ φ−1(c(0)) and u1 ∈ φ−1(c(1)).

Proof. Let c = (e
√−1c1 , c2) : [0, 1]→ S1×B(σ) be a piecewise smooth path. Since

|c′|ĝσ
0
≥ |c′1|/

√
1 + σ2, we have

Lĝσ
0
(c) ≥ |c1(1)− c1(0)|√

1 + σ2
. (8)

If we take ui ∈ φ−1(c(i)) for i = 0, 1, then we may put ui = (e
√−1ti , xi) for some

ti ∈ R and xi ∈ U(σ) such that c1(i) = ti. Let η2 : [0, 1]→ U(σ) be a piecewise smooth

path connecting x0, x1 and let η(τ) := (e
√−1c1(0), η2(τ)). Then we have η(0) = u0,

η(1) = (e
√−1c1(0), x1) and

dĝ(η(0), η(1)) ≤
∫ 1

0

√
|γ(η′2)|2 + |η′2|2g dτ =

∫ 1

0

√
1 + |γ|2|η′2|g dτ,

dĝ(η(1), u1) ≤ |c1(1)− c1(0)|.

By (�4) and δ ≤ 1, we have |γ|2g ≤ 2 on B(σ). Then we have

dĝ(u0, u1) ≤ 2Lg(η2) + |c1(1)− c1(0)|.

By (�6) and (8), we have the first inequality.

Next we consider the second inequality. Since

dĝ0(c(0), c(1)) ≤ dg0(c2(0), c2(1)) + |c1(1)− c1(0)|
≤ 2σ + |c1(1)− c1(0)|,

then (8) implies

dĝ0(c(0), c(1)) ≤ 2σ +
√
1 + σ2Lĝσ

0
(c).
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(III) The diameter of a fiber of φ.

Proposition 4.17. Let b ∈ BS1. Then we have

diamĝ(φ
−1(e

√−1t, ξ)) ≤
√
2 + 18R2 δ

for ξ ∈ B(3R).

Proof. Let u0, u1 ∈ S1 × U and assume that φ(u0) = φ(u1) = (e
√−1t, ξ). Put

ui = (e
√−1t, xi) for i = 0, 1, then ζ ◦ μ(x0) = ζ ◦ μ(x1) = ξ. For any ε > 0 there

is a piecewise smooth path c : [0, 1] → (ζ ◦ μ)−1(ξ) connecting x0 and x1 such that

Lg(c) < dg(x0, x1) + ε. We define a path ĉ : [0, 1]→ φ−1(e
√−1t, ξ) connecting u0 and

u1 by ĉ(τ) :=
(
e
√−1t, c(τ)

)
. Then we can see that

Lĝ(ĉ) =

∫ 1

0

√
{γ(c′)}2 + |c′|2gdτ.

Since c′ ∈ Ker(dμ), we have γ⊥(c′) = 0. By (�4), if ξ /∈ B(σ) then we have {γ(c′)}2 ≤
(1 + δ)r2|c′|2g, and if ξ ∈ B(σ) then {γ(c′)}2 ≤ δ|c′|2g. Therefore, we obtain

Lĝ(ĉ) ≤
∫ 1

0

√
1 + max{(1 + δ)r2, δ} · |c′|gdτ

<
√
1 + δ + 9(1 + δ)R2 {dg(x0, x1) + ε} .

Since we can take ε→ 0 and we have supposed δ ≤ 1, then

Lĝ(ĉ) ≤
√

2 + 18R2dg(x0, x1).

Hence we have the result by (�6).

Next we compare dĝ, dĝσ
0
and compare dĝ0 , dĝσ

0
by applying the results in (I,II,III).

Proposition 4.18. Let R ≥ 4
√
2(3−2

√
2)−1, δ ≤ (4−π)/2, b ∈ BS1, q ∈ μ−1(b),

u0, u1 ∈ π−1(Bg(q,R)) and σ ≤ (3− 2
√
2)R/(2

√
2). Then√

1− δ

1 + δ
dĝσ

0
(φ(u0), φ(u1)) ≤ dĝ(u0, u1).

Proof. Fix a sufficiently small ε > 0. Let ĉ : [0, 1] → S1 × U be a piecewise
smooth path connecting u0, u1 ∈ π−1(Bg(q,R)) such that Lĝ(ĉ) < dĝ(u0, u1) + ε. If
Im(ĉ) ⊂ S1 × U(3R), then by the first inequality of Proposition 4.14, we have the
result. We show Im(ĉ) ⊂ S1 × U(3R). Since we have

dĝ(u0, u1) ≤ dg (π(u0), π(u1)) + π, (9)

then Lĝ(ĉ) ≤ dg(π(u0), π(u1)) + π + ε. Take ε such that ε ≤ (4 − π)/2. Since
R ≥ 4

√
2(3− 2

√
2)−1, we obtain

Lĝ(ĉ) < 2R+ 4 ≤ 3R√
2
,

hence Im(ĉ) ⊂ S1 × U(3R) by Corollary 4.13.
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Next we give the opposite direction of the estimate in Proposition 4.18. Let
c = (e

√−1c1 , c2) : [0, 1] → S1 × R
2 be a piecewise smooth path. Now, we apply

Proposition 4.16 to every connected component of c|c−1
2 (B(σ)), however, there are a

lot of connected components in general, hence the error terms of the estimates in
Proposition 4.16 may become large. To prevent it, we should show that we can
replace c by another ĉ such that Lĝσ

0
(ĉ) ≤ Lĝσ

0
(c) and the number of the connected

components of c−1
2 (B(σ)) is small. We discuss it in the next two lemmas.

Lemma 4.19. Let ξ ∈ r−1(σ) and t0, t1 ∈ R. Then there is a smooth minimizing
geodesic c : [0, 1] → S1 × (B(4 + σ) \ B(σ)) with respect to dĝσ

0
such that c(0) =

(e
√−1t0 , ξ) and c(1) = (e

√−1t1 , ξ).

Proof. Put u0 = (e
√−1t0 , ξ), u1 = (e

√−1t1 , ξ),

c(τ) =
(
e
√−1t(τ), ρ(τ) cos(x(τ)), ρ(τ) sin(x(τ))

)
,

where t(τ) ∈ R, ρ(τ) ≥ 0, and x(τ) ∈ R. Moreover, we suppose ρ(0) = ρ(1) = σ,
ξ = (σ cos(x0), σ sin(x0)) ∈ R

2 for some x0 ∈ R and x(0) = x(1) = x0. Let c
∗ : [0, 1]→

S1 × B(R̃) be a path defined by c∗(τ) := (e
√−1t(τ), ρ(τ) cos(x0), ρ(τ) sin(x0)), then it

connects u0 and u1. It is easy to see Lĝσ
0
(c∗) ≤ Lĝσ

0
(c) and Lĝ0(c

∗) ≤ Lĝ0(c).

Since ρ−1([0, σ)) is open in [0, 1], it is the union of countable open intervals. Let
(τ−, τ+) be one of them, where 0 < τ− < τ+ < 1. On (τ−, τ+), replace c∗|(τ−,τ+)

with the path τ �→ (e
√−1t(τ), σ cos(x0), σ sin(x0)), which is shorter than c∗|(τ−,τ+)

with respect to both of Lĝσ
0
,Lĝ0 . Therefore, if c : [0, 1] → S1 × R

2 is the minimizing
geodesic connecting u0 and u1, then its image is contained in S1× (R2 \ B(σ)). Since
ĝσ0 = ĝ0 on S1 × (R2 \ B(σ)), hence ĉ is minimizing geodesic with respect to dĝσ

0
iff it

is minimizing geodesic with respect to dĝ0 .

Now, one can easily check that the geodesic ball Bdĝ0
((1S1 ,0R2), R̃) is contained

in S1×B(R̃) for any R̃ > 0, consequently, all of the bounded sets in (S1×R
2, dĝ0) are

precompact. Then by the Hopf-Rinow Theorem there is a minimizing geodesic c with
respect to dĝ0 connecting u0 and u1. By the above argument, it is also minimizing
geodesic with respect to dĝσ

0
and its image is contained in S1 × (R2 \ B(σ)). Since c

is the geodesic in the smooth Riemannian manifold, it is smooth.

Finally, we show Im(c) ⊂ S1 ×B(4 + σ). By considering the path τ �→ (e
√−1τ , ξ)

for τ ∈ [t0, t1], we can see dĝ0(u0, u1) ≤ π/
√
1 + σ2. If Im(c) is not contained in

S1 × B(4 + σ), then we can see dĝ0(u0, u1) ≥ 4, which is the contradiction.

Lemma 4.20. Let σ > 0, R̃ ≥ 4 + σ and c : [0, 1] → S1 × B(R̃) be a piecewise
smooth path. Then we have Im(c) ⊂ S1 × (B(R̃) \ B(σ)), Im(c) ⊂ S1 × B(σ) or there
is a piecewise smooth path ĉ : [0, 1] → S1 × B(R̃) such that c(0) = ĉ(0), c(1) = ĉ(1),
Lĝσ

0
(ĉ) ≤ Lĝσ

0
(c) and one of the following holds.

(i) There are 0 ≤ τ− < τ+ ≤ 1 such that ĉ([0, τ−]� [τ+, 1]) ⊂ S1 × (B(R̃) \ B(σ))
and ĉ([τ−, τ+]) ⊂ S1 × B(σ).

(ii) There are 0 ≤ τ− < τ+ ≤ 1 such that ĉ([0, τ−] � [τ+, 1]) ⊂ S1 × B(σ) and
ĉ([τ−, τ+]) ⊂ S1 × (B(R̃) \ B(σ)).

(iii) There are 0 ≤ τ∗ ≤ 1 such that ĉ([0, τ∗]) ⊂ S1 × B(σ) and ĉ([τ∗, 1]) ⊂ S1 ×
(B(R̃) \ B(σ)).

(iv) There are 0 ≤ τ∗ ≤ 1 such that ĉ([τ∗, 1]) ⊂ S1 × B(σ) and ĉ([0, τ∗]) ⊂ S1 ×
(B(R̃) \ B(σ)).
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Proof. Put c(τ) = (e
√−1t(τ), ρ(τ) cos(x(τ)), ρ(τ) sin(x(τ))), where t(τ) ∈ R,

ρ(τ) ≥ 0, and x(τ) ∈ R. We assume that neither Im(c) ⊂ S1 × (B(R̃) \ B(σ))
nor Im(c) ⊂ S1 × B(σ). Then we can see that ρ−1(σ) ⊂ [0, 1] is nonempty. Let
τ0 := inf ρ−1(σ) and τ1 := sup ρ−1(σ).

Let c∗ be the minimizing geodesic connecting

c(τ0),
(
e
√−1t(τ1), σ cos(x(τ0)), σ sin(x(τ0))

)
,

obtained by Lemma 4.19. Define c†, c‡ : [0, σ]→ S1 × B(σ) by

c†(τ) :=
(
e
√−1t(τ1), (σ − τ) cos(x(τ0)), (σ − τ) sin(x(τ0))

)
,

c‡(τ) :=
(
e
√−1t(τ1), τ cos(x(τ1)), τ sin(x(τ1))

)
,

then Lĝσ
0
(c†) = Lĝσ

0
(c‡) = 0. Let ĉ be the path constructed by joining

c|[0,τ0], c∗, c†, c‡, c|[τ1,1]. Then we have the result.

Proposition 4.21. Let R ≥ 4
√
2(3 − 2

√
2)−1, b ∈ BS1, q ∈ μ−1(b), u0, u1 ∈

π−1(Bg(q,R)) and 0 < σ ≤ (3− 2
√
2)R/(2

√
2). Then

dĝ(u0, u1) ≤ max

{√
1 + δ

1− δ
,
√
1 + σ2

}
dĝσ

0
(φ(u0), φ(u1))

+
√

2 + 18R2δ + 4δ.

Proof. Fix a small ε > 0 and let c = (e
√−1c1 , c2) : [0, 1] → S1 × R

2 be a path
connecting φ(u0), φ(u1) such that Lĝσ

0
(c) < dĝσ

0
(φ(u0), φ(u1)) + ε. By Lemma 4.12,

φ(u0), φ(u1) are contained in S1 × B(
√
1 + δR + σ). By the similar argument in

the proof of Lemma 4.12 and the assumptions R ≥ 4
√
2(3 − 2

√
2)−1, σ ≤ (3 −

2
√
2)R/(2

√
2), we have Im(c2) ⊂ B(3R) by taking ε > 0 sufficiently small.

Next we apply Lemma 4.20. By the assumption R ≥ 4
√
2(3 − 2

√
2)−1 and σ ≤

(3 − 2
√
2)R/(2

√
2), we can see 4 + σ ≤ 3R. Then we can apply Lemma 4.20 to c,

hence we may assume that Im(c) ⊂ S1 × (B(R̃) \ B(σ)), Im(c) ⊂ S1 × B(σ) or c = ĉ
satisfies one of (i)-(iv). If we assume (ii) in Lemma 4.20, then we denote by c̃ the
horizontal lift of c|[τ−,τ+] with respect to φ. Then we have

dĝ(u0, u1) ≤ dĝ(u0, c̃(τ−)) +

√
1 + δ

1− δ
Lĝσ

0
(c|[τ−,τ+]) + dĝ(u1, c̃(τ+))

≤ 4δ +max

{√
1 + δ

1− δ
Lĝσ

0
(c),

√
1 + σ2Lĝσ

0
(c)

}
.

If Im(c) ⊂ S1 × (B(3R) \ B(σ)), then let c̃ be the horizontal lift of c with respect
to φ such that c̃(0) = u0. By Proposition 4.17, we have dĝ(c̃(1), u1) <

√
2 + 18R2δ.

Therefore, we have

dĝ(u0, u1) ≤
√

1 + δ

1− δ
Lĝσ

0
(c) +

√
2 + 18R2δ.

In the other cases, we also have the result by the similar way.
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Proposition 4.22. For any u0, u1 ∈ S1 × R
2, we have

dĝ0(u0, u1) ≤
√
1 + σ2dĝσ

0
(u0, u1) + 4σ.

Proof. The proof is similar to that of Proposition 4.21. For any ε > 0, there is a
piecewise smooth path c : [0, 1] → S1 × R

2 connecting u0 and u1 such that Lĝσ
0
(c) <

dĝσ
0
(u0, u1) + ε. We apply Lemma 4.20 to c. For example, assume that c = ĉ satisfies

(ii) in Lemma 4.20. Then we have

dĝ0(c(0), c(1)) ≤ dĝ0(c(0), c(τ−)) + Lĝ0(c|[τ−,τ+]) + dĝ0(c(1), c(τ+))

By the second inequality of Proposition 4.16, we have

dĝ0(c(0), c(1)) ≤
√
1 + σ2Lĝσ

0
(c) + 4σ,

which gives the result. In the other cases, we have the result by the similar argument.

The next proposition implies that φ is an almost isometry.

Proposition 4.23. Let b ∈ BS1. For any R ≥ 4
√
2(3− 2

√
2)−1 and ε > 0 there

is a constant δR,ε, σR,ε > 0 depending only on R, ε > 0 such that for any q ∈ μ−1(b),
u0, u1 ∈ π−1(Bg(q,R)), if 0 < δ ≤ δR,ε and 0 < σ ≤ σR,ε,

|dĝ(u0, u1)− dĝ0(φ(u0), φ(u1))| ≤ ε.

Proof. First of all, put

C := max

{√
1 + δ

1− δ
,
√
1 + σ2

}
> 1,

δ′ := max
{(√

2 + 18R2 + 4
)
δ, 4σ

}
> 0,

then limδ,σ→0 C = 1 and limδ,σ→0 δ
′ = 0. By Proposition 4.21 and by dĝσ

0
≤ dĝ0 , we

have

dĝ(u0, u1)− dĝ0(φ(u0), φ(u1)) ≤ (C − 1)dĝσ
0
(φ(u0), φ(u1)) + δ′.

Then by Proposition 4.18 and (9), we obtain

dĝ(u0, u1)− dĝ0(φ(u0), φ(u1)) ≤ C(C − 1)dĝ(u0, u1) + δ′

≤ C(C − 1)(2R+ π) + δ′.

By Propositions 4.18 and 4.22, we have

C−2dĝ0(φ(u0), φ(u1))− C−2δ′ ≤ dĝ(u0, u1)

≤ C−2dĝ(u0, u1) + (1− C−2)(2R+ π),

hence we obtain

−(C2 − 1)(2R+ π)− δ′ ≤ dĝ(u0, u1)− dĝ0(φ(u0), φ(u1)).
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Since

(C2 − 1)(2R+ π) + δ′ → 0, C(C − 1)(2R+ π) + δ′ → 0

as δ, σ → 0, we have the result.

The next proposition implies the almost surjectivity of φ : π−1(Bg(q,R))→ S1 ×
B(
√
1 + δR+ σ).

Proposition 4.24. Let b ∈ BS1. For any R, ε > 0 there are δR,ε > 0 such that
if q ∈ μ−1(b), 0 < δ < δR,ε and σ > 0, we have

S1 × B
(

R− δ√
1 + δ

+ σ

)
⊂ φ(π−1(Bg(q,R)))

⊂ S1 × B(
√
1 + δR+ σ).

Proof. First of all, one can see

φ
(
π−1(Bg(q,R))

)
⊂ S1 × B(

√
1 + δR+ σ)

by Lemma 4.12. Next we show

S1 × B
(

R− δ√
1 + δ

+ σ

)
⊂ φ

(
π−1(Bg(q,R))

)
.

Let (e
√−1t, ξ) ∈ S1 × B((1 + δ)−1/2(R − δ) + σ). By (�5), there is x ∈ U such that

φ(e
√−1t, x) = (e

√−1t, ξ). Denote by c : [0, 1]→ R
2 the minimizing geodesic such that

c(0) = 0R2 and c(1) = ξ. Then there is a smooth path c̃ : (0, 1] → U such that
ζ ◦ μ ◦ c̃ = c|(0,1] and c̃′(τ) ∈ V ⊥f for all τ ∈ (0, 1] and c̃(1) = x. Assume r(ξ) ≥ σ.
Since c is a geodesic departing from the 0R2 , there is a unique τ0 ∈ [0, 1] such that
r(c(τ0)) = σ. Now, we have

dg(q, x) ≤ Lg(c̃|[τ0,1]) + diamg(U(σ)) < Lg(c̃|[τ0,1]) + δ.

By (�4), we have

Lg(c̃|[τ0,1]) ≤
√
1 + δ Lg0(c|[τ0,1]) =

√
1 + δ (r(ξ)− σ),

hence dg(q, x) < R. Thus we obtain (e
√−1t, x) ∈ π−1(Bg(q,R)). If r(ξ) < σ, then we

can see

dg(q, x) ≤ diamg(U(σ)) < δ.

By taking δR,ε ≤ R, we have (e
√−1t, x) ∈ π−1(Bg(q,R)).

Theorem 4.25. Let b ∈ BS1, q ∈ μ−1(b), p ∈ π−1(q). For any R ≥ 4
√
2(3 −

2
√
2)−1 and ε > 0 there is a constant δR,ε, σR,ε > 0 depending only on R, ε > 0 such

that if 0 < δ ≤ δR,ε and 0 < σ ≤ σR,ε, then

φ :
(
π−1(Bg(q,R)), p

)
→
(
S1 × B(

√
1 + δR+ σ), (1S1 ,0R2)

)
is an S1-equivariant Borel ε-isometry.
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Proof. It is easy to check S1 × B(r1 + r2) ⊂ Bdĝ0
(S1 × B(r1), r2) for r1, r2 > 0.

Then by Proposition 4.24, we have

S1 × B(
√
1 + δR+ σ) ⊂ Bdĝ0

(
φ(π−1(Bg(q,R))),

δ(R+ 1)√
1 + δ

)
.

Since limδ→0 δ(R + 1)/
√
1 + δ = 0, hence we have the result by combining with

Proposition 4.23.

Theorem 4.26. Let b ∈ BS1. We have∣∣∣∣∣K
∫
S|U

f ◦ φ dνĝ −
∫
S1×R2

f dtdνg0

∣∣∣∣∣ ≤ 2πδ sup |f | νg0(B(R))

for f ∈ C(S1 × R
2) with supp(f) ⊂ S1 × B(R).

Proof. Since dνĝ = dtdνg, we have∫
S1×U

f ◦ φ dνĝ =

∫
S1×R2

f dtdζ∗νB . (10)

Next we put f+ := min{f, 0}, f− := min{−f, 0} and write f = f+ − f−. By (�7), we
have ∫

S1×R2

(
f+

1 + δ
− (1 + δ)f−

)
dtdνg0 ≤ K

∫
S1×R2

f dtdζ∗νB

≤
∫
S1×R2

(
(1 + δ)f+ −

f−
1 + δ

)
dtdνg0 ,

hence we obtain∣∣∣∣K
∫
S1×R2

f dtdζ∗νB −
∫
S1×R2

f dtdνg0

∣∣∣∣ ≤ δ

∫
S1×R2

(f+ + f−) dtdνg0

≤ δ sup |f | · 2πνg0(B(R)).

Combining with (10), we obtain the result.

For general positive integer m and b ∈ BSstr
m , we can show the generalization of

Lemma 4.11 as follows.

Lemma 4.27. Let b ∈ BSstr
m , i.e., the holonomy group of (L|Xb

,∇|Xb
) is given by

{e2π
√−1l/m; l = 0, 1, . . . ,m − 1}. Suppose that there are an open neighborhood W of

b and γ ∈ Ω1(U) with ω|U = dγ such that the triple (b,W, γ) satisfies (�1, 2, 3), where
U := μ−1(W ). Then there exist covering maps pm : Ũm → U and p̂m : S1 × Ũm →
S(L|U , h) such that π◦ p̂m = pm◦π̃m and we have the following, where π̃m : S1×Ũm →
Ũm is the projection to the second component.

(i) p̂∗mĝ = (dt− p∗mγ)2 + p∗mg.
(ii) The group of the Deck transformations of pm is Z/mZ.
(iii) Denote by β : Z/mZ → Diff(Ũm) the deck transformation of pm. Then the

map β̂ : Z/mZ→ Diff(S1 × Ũm) defined by

β̂(e2π
√−1l/m)

(
e
√−1t, x

)
=
(
e
√−1(t−2πl/m), β(e2π

√−1l/m)x
)

is the deck transformation of p̂m.
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(iv) p̂m(e
√−1(t+t′), x) = p̂m(e

√−1t, x) · e
√−1t′ .

Proof. Let E1 and γ1 be as above. Since ι∗b is an isomorphism, there is a closed
one form γ′ on U such that

∫
C
γ′ =

∫
C
γ1 for all C ∈ H1(Xb,Z). Then γ − γ1 + γ′ is

a closed 1-form on U such that
∫
C
(γ− γ1 + γ′) = 0 for all C ∈ H1(Xb,Z) by (�3). By

(�1), there is a function ϕ1 ∈ C∞(U) such that γ − γ1 + γ′ = dϕ1.
Denote by p : Ũ → U the universal cover of U . Then there is ϕ2 ∈ C∞(Ũ) such

that p∗γ′ = dϕ2. If we denote by β′ : π1(U) → Diff(Ũ) the deck transformation
of p, then there exists a group homomorphism F : π1(U) → R with ϕ2(β

′(h)(x̃)) =
ϕ2(x̃)+F (h). Moreover, by the assumption for the holonomy groups, we can see that
{
∫
C
γ′ ∈ R; C ∈ H1(U,Z)} = (2π/m)Z, hence the image of F is equal to (2π/m)Z.

Now, let H ⊂ π1(U) be the subgroup defined by H = {h ∈ π1(U); F (h) ∈ 2πZ} and
put Ũm := Ũ/H, then we obtain an m-fold covering pm : Ũm → U . Since we have

π1(U)/H ∼= Z/mZ =
{
e2π

√−1l/m; l = 0, 1, . . . ,m− 1
}
,

β′ induces the deck transformation β : Z/mZ→ Diff(Ũm) of pm.
Define a Z/mZ-action on S1 × Ũm by

e2π
√−1l/m · (e

√−1t, x) := (e
√−1(t−2πl/m), β(e2π

√−1l/m)(x)),

and a smooth map p̂m : S1 × Ũm → S(L|U , h) by(
e
√−1t, x̃modH

)
�→ e

√−1(t−ϕ1(p(x̃))+ϕ2(x̃)) (E1)p(x̃)

for x̃ ∈ Ũ and e
√−1t ∈ S1. Here, ϕ2 descends to the function on Ũm. Since p̂m is

Z/mZ-invariant, it induces the diffeomorphism (S1 × Ũm)/(Z/mZ) ∼= S(L|U , h). By
the definition of p̂m, we can see

p̂∗mĝ = p̂∗m
(
(dt− γ1)

2 + g
)
= (dt− p∗mγ)2 + p∗mg.

If b ∈ BSstr
m , we follow the argument in this subsection for (S1× Ũm, p̂∗mĝ) instead

of (S|U , ĝ). Then we can construct the approximation map between (S1 × Ũm, p̂∗mĝ)
and (S1 × R

2, ĝ0) which is S1-equivariant and Z/mZ-equivariant. Here, the Z/mZ-
action on on S1 × R

2 is defined by(
e
√−1t, ξ

)
· e2πl

√−1/m :=
(
e
√−1(t−2πl/m), ξ

)
.

then the limit space should be the quotient space S1 × R
2/(Z/mZ) with the metric

naturally induced by ĝ0. This space is isometric to (S1×R
2, dĝ0,m), where ĝ0,m is the

metric as in Subsection 4.1. Then we obtain the generalization of Theorems 4.25 and
4.26 as follows.

Theorem 4.28. Let b ∈ BSstr
m , q ∈ μ−1(b), p ∈ π−1(q). For any R ≥ 4

√
2(3 −

2
√
2)−1 and ε > 0 there is a constant δR,ε, σR,ε > 0 depending only on R, ε > 0 such

that if 0 < δ ≤ δR,ε and 0 < σ ≤ σR,ε, then

φ :
(
π−1(Bg(q,R)), p

)
→
(
S1 × B(

√
1 + δR+ σ), (1S1 ,0R2)

)
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is an S1-equivariant Borel ε-isometry with respect to the distance functions dĝ and
dĝ0,m .

Theorem 4.29. Let b ∈ BSstr
m . We have∣∣∣∣∣K

∫
S|U

f ◦ φ dνĝ −
∫
S1×R2

f dtdνg0

∣∣∣∣∣ ≤ 2πδ sup |f | νg0(B(R))

for f ∈ C(S1 × R
2) with supp(f) ⊂ S1 × B(R).

4.4. Convergence. Let (X,ω, L, h,∇) and μ : X → B be as in the previous
subsection and let {gs}s>0 be a family of Riemannian metrics on X. Define ĝs by
gs,∇ as in (2).

Definition 4.30. Let b ∈ B and W be an open neighborhood of b such that
W \ {b} ⊂ Brg. Let Ks > 0 and put U := μ−1(W ). We write

(gs,Ks, b,W )
s→0→ (R2, g0)

if there are R0 > 0 and sR > 0 for every R ≥ R0 such that for any 0 < s ≤ sR there are
ζs,R : W → R

2, γs,R ∈ Ω1(U), and σs,R, δs,R > 0 with lims→0 σs,R = lims→0 δs,R = 0
such that the following tuple

(gs, b,W,R, γs,R, ζs,R, σs,R, δs,R,Ks)

satisfies (�1-7) for all R ≥ R0 and 0 < s ≤ sR.

Theorem 4.31. Let b ∈ B, W be an open neighborhood of b such that W \ {b} ⊂
Brg and U := μ−1(W ). Fix q ∈ μ−1(b). Assume that there are constants Ks > 0 such
that (gs,Ks, b,W )→ (R2, g0) as s→ 0. Then for any R > 0 there is sR > 0 such that
Bgs(q,R) ⊂ U for all 0 < s ≤ sR, and b is not an accumulation point of BSm ∩W .
Moreover, if b ∈ BSstr

m , then for some p ∈ π−1(q) we have

(S, dĝs ,Ksνĝs , p)
S1-pmGH−→ (S1 × R

2, dĝ0,m , dtdνg0 , (1S1 ,0R2))

as s→ 0.

Proof. Take sR as in Definition 4.30 and replace by the smaller one if necessary
such that

√
1 + δs,RR + σs,R ≤ 3R for all 0 < s ≤ sR. Then by Lemma 4.12 and

(�5), we have Bgs(q,R) ⊂ U(3R) ⊂ U for 0 < s ≤ sR. By Lemma 4.10, b is not an
accumulation point of BSm ∩W .

Let σR,ε, δR,ε be as in Theorem 4.28. Fix a positive integer k, then take 0 < sk ≤
sR such that σs ≤ σR0+k,k−1 and δs ≤ δR0+k,k−1 for any 0 < s ≤ sk. We determine
sk inductively such that

sk+1 ≤
sk
2
.

If we put

εs := k−1, Rs := R0 + k, R′s :=
√
1 + δs(R0 + k) + σs
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for sk+1 ≤ s < sk, then

φ :
(
π−1(Bgs(q,Rs)), p

)
→
(
S1 × B(R′s), (1S1 ,0R2)

)
is an S1-equivariant Borel εs-isometry and lims→0 εs = 0, lims→0 Rs = lims→0 R

′
s =

∞.
Next we take f ∈ C(S1 ×R

2) whose support is compact. Take R ≥ R0 such that
supp(f) ⊂ S1 × B(R). Then by Theorem 4.29, we have

lim
s→0

∣∣∣∣Ks

∫
S

f ◦ φ dνĝs −
∫
S1×R2

f dt dνg0

∣∣∣∣ ≤ lim
s→0

2πδs sup |f | νg0(B(R)) = 0.

Now, we show some results which is needed in Section 8.

Lemma 4.32. Let q ∈ μ−1(b) and p ∈ π−1(q). Then we have

π−1(U(r)) ⊂ Bĝ(p,
√
1 + δr + δ + π)

for any 0 < r ≤ 3R.

Proof. Let u ∈ π−1(U(r)) and take the minimizing geodesic c : [0, 1] → R
2 with

c(0) = 0R2 and c(1) = ζ ◦μ◦π(u). Suppose r(c(1)) ≥ σ. Then there exists 0 < τ0 ≤ 1
such that c(τ0) = σ. Let c̃ : [τ0, 1] → X be a smooth path such that c̃(1) = π(u),
ζ ◦ μ ◦ c̃ = c|[τ0,1] and dμ(c̃′(τ)) = 0. Then we have

dg(c̃(τ0), π(u)) ≤ Lg(c̃) ≤
√
1 + δLg0(c|[τ0,1]) <

√
1 + δ(r − σ)

by (�4). Moreover, by (�6), we have

dg(q, c̃(τ0)) < δ.

Therefore, we obtain

dg(q, π(u)) ≤ δ + Lg(c̃) <
√
1 + δr + δ.

If r(c(1)) < σ, we have dg(q, π(u)) < δ. By (9), we have

dĝ(p, u) ≤
√
1 + δr + δ + π.

Proposition 4.33. Let b ∈ B, W be an open neighborhood of b such that W \
{b} ⊂ Brg and U := μ−1(W ). Fix q ∈ μ−1(b) and p ∈ π−1(q). Assume that there are
constants Ks > 0 such that (gs,Ks, b,W )→ (R2, g0) as s→ 0. Let ζs,R : W → R

2 be
as in Definition 4.30. Then there is sR > 0 for every R ≥ 7 such that

(ζs,R ◦ μ ◦ π)−1 (B(R/2)) ⊂ Bĝs(p,R)

for any 0 < s ≤ sR.

Proof. Let sR and δs,R be as in Definition 4.30. By Lemma 4.32, we have

(ζs,R ◦ μ ◦ π)−1(B(r)) ⊂ Bĝs(p,
√
1 + δs,Rr + δs,R + π)

for 0 < r ≤ 3R. Since R/2 ≥ 7/2 > π, we can replace sR smaller such that we have√
1 + δs,RR/2 + δs,R + π ≤ R for every 0 < s ≤ sR. Then we have the result by

putting r = R/2.
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5. The approximation of hyper-Kähler metrics. In this section we review
a construction of a family of Riemannian metric on a K3 surface, which is a good
approximation of hyper-Kähler metrics (gs)s tending to a large complex structure
limit based on [10]. See also [5].

Let (X,ω1, ω2, ω3) be a hyper-Kähler manifold. As we have already mentioned
in Subsection 2.3, the special Lagrangian fibrations on X is equivalent to the elliptic
fibrations on XJ3

. Moreover, Θ := ω1+
√
−1ω2 is a holomorphic volume form on XJ3

by Remark 2.2. Throughout this section we consider complex surfaces equipped with
holomorphic volume forms and elliptic fibrations.

To construct the approximating family of metrics, we need two families of hyper-
Kähler metrics. One is the semi-flat metric defined on the elliptic surface with no
singular fibers, and the other is the Ooguri-Vafa metric defined on the neighborhood
of the singular fibers of Kodaira type I1. Gluing them by cut-off functions, we obtain
the approximating family.

5.1. Semi-flat metrics. In this subsection we explain the construction of semi-
flat metrics following [10]. The semi-flat metrics are Ricci-flat Kähler metrics on the
elliptic surfaces, which were first constructed by Greene, Shapere, Vafa and Yau in
[8].

Let X be a complex surface, not necessarily compact, with a holomorphic volume
form Θ ∈ Ω2,0(X), B be a 1-dimensional complex manifold and μ : X → B be a
nonsingular elliptic fibration, that is, a holomorphic surjective map such that each
b ∈ B is a regular value of μ and μ−1(b) is an elliptic curve.

Examples of such X can be constructed as follows. Denote by T ∗B the holomorphic
cotangent bundle of B. A subset Λ ⊂ T ∗B is a holomorphically varying family of lattices
if there are an open cover B =

⋃
i Ui and holomorphic functions τi,1, τi,2 defined on

Ui such that Im(τi,1(y)τi,2(y)) �= 0 and Λy := Λ ∩ T ∗B |y is given by

Λy = {m1τi,1(y)dy +m2τi,2(y)dy; m1,m2 ∈ Z}

for any y ∈ Ui. Let Θcan = dx∧dy be the canonical holomorphic 2-form on T ∗B , where
(x, y) is a coordinate on T ∗B defined by xdy ∈ T ∗B . Then Θcan descends to X = T ∗B/Λ
and the projection map μcan : X → B determines an elliptic fibration. Obviously,
the zero section of T ∗B induces a holomorphic section of X → B. Conversely, every
nonsingular elliptic fibration with a holomorphic 2-form and a holomorphic section
can be obtained by the above process.

Let a ∈ Ω2(B,C). Another complex structure on T ∗B/Λ is defined so that the
closed 2-form Θ := Θcan + μ∗cana is holomorphic. Then μcan : T ∗B/Λ → B is also
holomorphic with respect to this complex structure. In this case μcan does not need
to have holomorphic sections.

Let

η :=

√
−1
2

{
W(dx+ bdy) ∧ (dx+ bdy) +W−1dy ∧ dȳ

}
,

where W ∈ C∞(T ∗B/Λ,R) is positive valued and b ∈ C∞(T ∗B/Λ,C). Then one can
see that

η2 = Re(Θcan)
2 = Im(Θcan)

2, η ∧Θcan = 0.
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η is called a semi-flat metric on T ∗B/Λ if it is Kähler. η is Kähler iff

∂W

∂y
=

∂(Wb)

∂x
, (11)

∂(Wb̄)

∂y
=

∂

∂x

{
W(W−2 + |b|2)

}
. (12)

Now, take an oriented Z-basis {τi,1, τi,2} of Λ|Ui
such that Im(τ̄i,1τi,2) > 0. If we put

W =
s

Im(τ̄i,1τi,2)
,

b = −W

s

{
Im(τi,2x̄)

∂τi,1
∂y

+ Im(τ̄i,1x)
∂τi,2
∂y

}
,

then we have (11) and (12) for any positive constant s, and they are independent of
the local coordinate. Hence we obtain the Ricci-flat Kähler metric

ηSFs = η

defined on T ∗B/Λ and we call it the standard semi-flat metric. The triple
(ηSFs ,Re(Θcan), Im(Θcan)) forms a hyper-Kähler structure on T ∗B/Λ. We have

s =

∫
μ−1
can(b)

ηSFs .

Let μ : X → B be an elliptic K3 surface with a holomorphic section, Crt ⊂ B be
the subset consisting of the critical values of μ and put Xrg = X \ μ−1(Crt), Brg =
B \Crt. Since μ : Xrg → Brg has a holomorphic section, there exist a holomorphically
varying family of lattices Λ ⊂ T ∗Brg and a biholomorphic map Xrg → T ∗Brg/Λ which
identifies Θ and Θcan. Therefore, X

rg admits the standard semi-flat metric ηSFs .

5.2. Ooguri-Vafa metrics. Here we explain the construction of Ooguri-Vafa
metrics following [10]. The Ooguri-Vafa metrics were first constructed by Ooguri and
Vafa in [18]. Let r, s > 0, D(r) := {z ∈ C; |z| < r} and

U(r, s) := D(r)× R \ {(0, sn) ∈ D(r)× R; n ∈ Z} .

Put

V 0
s (u) =

1

4π

∑
n∈Z×

(
1√

u2
1 + u2

2 + (u3 − sn)2
− 1

s|n|

)
+

1

4π|u| .

Then V 0
s is a harmonic function on U(r, s), hence the 2-form �dV 0

s represents the
cohomology class inH2(U(r, s),R). Here, � is the Hodge star operator of the Euclidean

metric on R
3. Let u� : X̃�

OV → U(r, s) be the principal S1-bundle over U(r, s) whose
first Chern class is equal to [�dV 0

s ] ∈ H2(U(r, s),Z). Then there is an S1-connection√
−1α ∈ Ω1(U(r, s),

√
−1R) such that dα/2π = (u�)∗(�dV 0

s ). Now, using the standard
coordinate on C× R ∼= R

3, put u� = (u1, u2, u3). Then the following 2-forms

ω1,s = du1 ∧
α

2π
+ V 0

s du2 ∧ du3,

ω2,s = du2 ∧
α

2π
+ V 0

s du3 ∧ du1,

ω3,s = du3 ∧
α

2π
+ V 0

s du1 ∧ du2
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satisfy ωi,s ∧ ωj,s = 0 for i �= j and ω2
1,s = ω2

2,s = ω2
3,s. In the above expressions,

we suppose that V 0
s is the pullback (u�)∗V 0

s , however, we omit u� for the simplicity
of the notations. Taking r > 0 sufficiently small, we may suppose ω2

1,s is nowhere

vanishing, then they form a hyper-Kähler structure on X̃�
OV. Here, by replacing V 0

s

with V 0
s + h(u1, u2) for some harmonic function h(u1, u2) on D(r), we obtain other

hyper-Kähler structures.
Moreover, there exist a smooth 4-manifold X̃OV, open embedding X̃�

OV ⊂ X̃OV

and smooth map u : X̃OV → D(r)×R such that u|X̃�
OV

= u�, X̃OV\X̃�
OV = {pn; n ∈ Z}

and u(pn) = (0, sn). Then one can see that ωi,s extends to the smooth 2-form

on X̃OV, which we denote by ωi,s again. Thus we obtain a hyper-Kähler manifold

(X̃OV, ω1,s, ω2,s, ω3,s).

There is a free Z-action on X̃OV preserving ωi,s, u1, u2, α and satisfies u3(p ·n) =
u3(p) + sn for n ∈ Z. Then we can see the action also preserves V 0

s and ωi,s. Hence

ωi,s descend to 2-forms on the quotient space XOV := X̃OV/Z which we denote by
ωi,s again. The hyper-Kähler manifold (XOV, ω1,s, ω2,s, ω3,s) is called the Ooguri-Vafa
metric.

Here, we regard XOV as a complex manifold such that ω1,s +
√
−1ω2,s is a holo-

morphic 2-form. Put μOV = u1 +
√
−1u2 : XOV → D(r). Then μOV is an elliptic

fibration over D(r). The fiber μ−1
OV(b) is nonsingular if b �= 0 and μ−1

OV(0) is the sin-
gular fiber of Kodaira type I1, with the critical point 0OV := p0 mod Z. Here, we
have

s =

∫
μ−1
OV(b)

ω3,s.

5.3. Almost Ricci-flat Kähler metric. In this subsection let X be a K3
surface with an elliptic fibration μ : X → P

1 over the complex projective line and a
holomorphic volume form Θ, and suppose that all of the singular fibers of μ are of
Kodaira type I1, hence there are exactly 24 singular fibers. We denote by Crt :=
{b1, . . . , b24} ⊂ P

1 the set of critical values.
For q = 1, . . . , 24, let Xq = XOV be 24 copies of the underlying manifold on

which the Ooguri-Vafa metric is defined. Put

Vs,q(u) :=
1

4π

∑
n∈Z×

(
1√

u2
1 + u2

2 + (u3 − sn)2
− 1

s|n|

)
+

1

4π|u|

+ as +
hq(u1, u2)

s
,

as :=
limn→∞(

∑n
k=1 1/k − log n)− log(2s)

2πs

for some harmonic function hq, and define the hyper-Kähler structure on Xq by

ω1,s,q = du1 ∧ α+ Vs,qdu2 ∧ du3,

ω2,s,q = du2 ∧ α+ Vs,qdu3 ∧ du1,

ω3,s,q = du3 ∧ α+ Vs,qdu1 ∧ du2

Although these are defined on the universal covering space of XOV, they descend to
XOV. The constant as normalizes Vs,q so that we have∫ s

0

Vs,q(u1, u2, t)dt = −
1

2π
log
√
u2
1 + u2

2 + hq(u1, u2).
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Here, we regard Xq as a complex manifold such that ω1,s,q +
√
−1ω2,s,q is a

holomorphic 2-form. Put μq = u1 +
√
−1u2 : Xq → C. By taking rq2 > 0 sufficiently

small so that −(log
√

u2
1 + u2

2)/2π + hq > 0 on D(rq2 ), we may suppose Vs,q(u) is
positive on μ−1

q (D(rq2 )) for sufficiently small s > 0. Therefore, we can take s0 >
0 such that Vs,q(u) is positive on μ−1

q (D(rq2 )) for any 0 < s ≤ s0 and q. Now,
since μq : μ

−1
q (D(rq2 ) \ {0}) → D(rq2 ) \ {0} is a nonsingular elliptic fibration with a

holomorphic section, we can identify it with μcan : TD(rq2 )\{0}/Λ → D(rq2 ) \ {0} for
some Λ. By [10, Proposition 3.2], a Z-basis of Λ is given by the following holomorphic
functions

τ1(y) = 1, τ2(y) =
1

2π
√
−1 log y +

√
−1ĥq, (13)

where ĥq is one of the holomorphic functions on D(rq2 ) such that Re(ĥq) = hq.
Next we fix bq ∈ Crt and a sufficiently small neighborhood Wq

2 ⊂ P
1 of bq such

that μ : μ−1(Wq
2 )→Wq

2 has a holomorphic section. Then we have an isomorphism

μ−1(Wq
2 )

∼=−−−−→ T ∗
Wq

2
/Λ

μ

⏐⏐' μcan

⏐⏐'
Wq

2 Wq
2

for some Λ ⊂ T ∗
Wq

2
. Since μ−1(bq) is of Kodaira type I1, we can choose the holomorphic

coordinate y on Wq
2 such that Λ is generated by

dy,

(
1

2π
√
−1 log y +

√
−1Fq

)
dy,

for some holomorphic function Fq on Wq
2 . Therefor, by putting hq = Re(Fq), we

have the holomorphic embeddings

ιq : Xq ↪→ X, ι′q : D(rq2 ) ↪→ CP 1,

harmonic functions fq : D(rq2 )→ R and 0 < rq1 < rq2 such that we have the following
properties.

(i) ι′q(0) = bq and

ιq(Xq) ∩ ιp(Xp) = ∅, ι′q(D(rq2 )) ∩ ι′p(D(rp2 )) = ∅

for any q �= p.
(ii) Θ|μ−1

q (D(rq2 ))
= ω1,s,q +

√
−1ω2,s,q.

(iii) μ ◦ ιq = ι′q ◦ μq.
By taking Wq

2 or rq2 smaller if necessary, we may suppose Wq
2 = ι′q(D(rq2 )). Moreover,

we fix 0 < rq1 < rq2 arbitrarily, then put Wq
1 = ι′q(D(rq1 )). To simplify the notations,

we often write Wq
i = D(rqi ) or ιq(Xq) = Xq if there is no fear of confusion.

Now, note that μ : X → P
1, may have no holomorphic sections. There exists

the unique elliptic surface j : J → P
1 which is locally isomorphic to μ and has a

holomorphic section. We call j the Jacobian of μ : X → P
1. Then J = X and j = μ

as smooth manifolds and smooth maps respectively, and the complex structure of J
is given by ΘJ := Θ + μ∗a for some a ∈ Ω2(P1)⊗ C by [9, Proposition 7.2].
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For an open subset W ⊂ P
1 and a 1-form β ∈ Ω1(W ), a diffeomorphism

Tβ : μ
−1(W )→ μ−1(W ) is defined in [9, Section 2] as follows. Denote by uβ ∈ X (X)

the vector field defined by ιuβ
(Re(Θ)) = μ∗β, and denote by φt ∈ Diff(μ−1(W )) the

flow generated by uβ . Then define Tβ := φ1 and call it the translation by the 1-form
β. By [9], the translation acts on μ−1(W ) preserving the fibers of μ.

Fact 5.1 ([10, Theorem 4.5]). Let μ : X → P
1 be an elliptic K3 surface with 24

singular fibers of Kodaira type I1 with holomorphic volume form Θ, Crt = {b1, . . . , b24}
be critical values of μ. Let j : J → P

1 be the Jacobian of μ : X → P
1. Then there

are sufficiently small positive numbers rq1 < rq2 , an open cover P
1 =

⋃
a Wa such

that for any s < s0 and for each Kähler class [ηs] ∈ H1,1(X) with 〈[ηs], μ−1(b)〉 = s
and [ηs]

2 = [Re(Θ)]2 = [Im(Θ)]2, there is a Kähler form ηs representing [ηs] and
translations Ta : μ

−1(Wa)→ j−1(Wa) by some 1-forms with respect to Re(ΘJ ) which
satisfy the followings.

(i) We have #(Wa ∩ Crt) ≤ 1. If Wa ∩ Crt = ∅, then Wa ∩ (
⋃

q W
q
2 ) = ∅. If

bq ∈Wa, then W
q

2 ⊂Wa.
(ii) We have

ηs|μ−1(Wa\(
⋃

q Wq
2 )) = T ∗a

(
ηSFs |j−1(Wa\(

⋃
q Wq

2 ))

)
,

ηs|μ−1(Wq
1 ) = T ∗a

(
ω3,s,q|j−1(Wq

1 )

)
,

Θ|μ−1(Wa) = T ∗a
(
ΘJ |j−1(Wa)

)
.

(iii) 〈[ηs], μ−1(b)〉 = s and [ηs]
2 = [Re(Θ)]2 = [Im(Θ)]2.

Next we analyze the behavior of ηs obtained by Fact 5.1 on Wq
2 \Wq

1 .

Lemma 5.2. There is a constant Cs ≥ 1 for every s > 0 such that lims→0 Cs = 1
and

C−1
s T ∗aω3,s,q ≤ ηs|μ−1(Wq

2 \Wq
1 ) ≤ CsT

∗
aω3,s,q,

C−1
s T ∗a η

SF
s ≤ ηs|μ−1(Wq

2 \Wq
1 ) ≤ CsT

∗
a η

SF
s

for any pair of q, a with bq ∈Wa.

Proof. The estimates are essentially obtained by the proof of [10, Theorem 4.4].
Now we recall the construction of ηs more precisely. Put X∗

q := μ−1(Wq
2 \Wq

1 ). By
the proof of [10, Theorem 4.4], there is a function ϕ ∈ C∞(X∗

q) such that

ηSFs = ω3,s,q +
√
−1∂∂ϕ

on X∗
q. By the assumption that bq ∈ Wa and by (i) of Fact 5.1, we have Wq

2 ⊂ Wa.

Let 0 ≤ ψ ≤ 1 be some cut-off function defined on the neighborhood of Wq
2 such that

ψ ≡ 1 on Wq
1 and ψ ≡ 0 on the complement of Wq

2 . On μ−1(Wa), ηs is given by

(T−1
a )∗ηs|X∗q = ηSFs −

√
−1∂∂(μ∗ψ · ϕ) + μ∗A

for some A ∈ Ω2(Wa), hence we have

(T−1
a )∗ηs|X∗q − ηSFs = −

√
−1ϕ∂∂μ∗ψ −

√
−1∂μ∗ψ ∧ ∂ϕ−

√
−1∂ϕ ∧ ∂μ∗ψ

−
√
−1μ∗ψ∂∂ϕ+ μ∗A,

(T−1
a )∗ηs|X∗q − ω3,s,q = −

√
−1ϕ∂∂μ∗ψ −

√
−1∂μ∗ψ ∧ ∂ϕ−

√
−1∂ϕ ∧ ∂μ∗ψ

+
√
−1(1− μ∗ψ)∂∂ϕ+ μ∗A.
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We estimate the norm of the right hand side of the above equations with respect to
the metric ηSFs . Since ψ is independent of s, we can see

|∂μ∗ψ| =
∣∣∂μ∗ψ∣∣ = O(

√
s),

∣∣∂∂μ∗ψ∣∣ = O(s).

By the proof of [10, Theorem 4.4], |A| = O(e−C/s) for some constant C > 0, with
respect to some metric on P

1. Then we can see |μ∗A| = O(se−C/s) with respect to
ηSFs . The proof of [10, Theorem 4.4] also gives∣∣∂∂ϕ∣∣ = ∣∣ηSFs − ω3,s,q

∣∣ = O(se−C/s),

then [10, Lemma 4.1] implies

|ϕ|+ |∂ϕ|+
∣∣∂ϕ∣∣ = O(s−1e−C/s).

Consequently, we obtain∣∣∣(T−1
a )∗ηs|X∗q − ηSFs

∣∣∣ = O(s−1/2e−C/s),∣∣∣(T−1
a )∗ηs|X∗q − ω3,s,q

∣∣∣ = O(s−1/2e−C/s).

Since lims→0 s
−1/2e−C/s = 0, we have the assertion.

5.4. C2 estimate. Let ηs be the Kähler forms on X obtained by Fact 5.1.
Denote by ρηs

the Ricci form of ηs. If we put

Fs := log

(
Θ ∧Θ/2

η2s

)
,

then ρηs =
√
−1∂∂Fs.

Fact 5.3 ([10, Theorem 4.5]). There are positive constants D1, . . . , D6 and s0
such that

‖Fs‖C0(X) ≤ D1e
−D2/s,

‖�Fs‖C0(X) ≤ D1e
−D2/s,

ρηs
≥ −D3e

−D4/sηs,

diamηs
(X) ≤ D5s

−1/2,

‖Rηs
‖C0(X) ≤ D6s

−1 log s−1

for all 0 < s < s0, where � = ∂
∗
∂ is the ∂-Laplacian of ηs acting on C∞(X), diamηs

and Rηs are the diameter and the curvature tensor of ηs, respectively.

Now we consider the Monge Ampère equation with the normalization

(
ηs +

√
−1∂∂us

)2
= eFsη2s , (14)∫

X

usη
n = 0. (15)
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Fact 5.4 ([10, Lemma 5.2]). Let D2 and s0 be as in Fact 5.3. There is a constant
D7 > 0 such that any 0 < s < s0 and any solution us ∈ C∞(X) to (14)(15) satisfies

‖us‖L∞(X) ≤ D7s
−5e−D2/s.

Next we improve [10, Lemma 5.3].

Lemma 5.5. There are constants Cs ≥ 1 such that lims→0 Cs = 1 and for any
solution us ∈ C∞(X) of (14)(15) satisfy

C−1
s ηs ≤ ηs +

√
−1∂∂us ≤ Csηs.

Proof. The outline of the proof is similar to that of [10, Lemma 5.3], however,
we need some modifications. Let Ns > 0 be a sufficiently large positive constant such
that Ns + infi �=j Rīijj̄(x) > 0 for any x ∈ X, where Rīijj̄ is the holomorphic sectional
curvature of ηs.

Let �̂ be the ∂-Laplacian with respect to ηs+
√
−1∂∂us. By [20, (2.22)], we have

eNsus�̂
(
e−Nsus(2−�us)

)
≤ �Fs + 4 inf

i �=j
Rīijj̄(x) + 2Ns(2−�us)

−
(
Ns + inf

i �=j
Rīijj̄(x)

)
e−Fs(2−�us)

2.

Notice that the Laplace operators in this paper are positive. Next we assume that
e−Nsus(2 − �us) attains its maximum at xmax ∈ X. Then by the same argument in
the proof of [10, Lemma 5.3] we obtain

∣∣∣∣(2−�us)−
2eFs

2− ks

∣∣∣∣ ≤
∣∣∣∣∣
(

2eFs

2− ks

)2

+
eFs(2�Fs −Nsks)

(2− ks)Ns

∣∣∣∣∣ (16)

at xmax, where ks := − 2 infi �=j Riījj̄(xmax)

Ns
.

Now, we fix

Ns := max

{∣∣infi �=j Rīijj̄(xmax)
∣∣

s
, 1

}
,

then we have |ks| ≤ 2s. Note that Ns is different from that is taken in the proof of
[10, Lemma 5.3]. Since we have

lim
s→0

eFs = 1, lim
s→0

�Fs = 0

by Fact 5.3, we obtain

lim
s→0

2eFs

2− ks
= 1,

lim
s→0

∣∣∣∣eFs(2�Fs −Nsks)

(2− ks)Ns

∣∣∣∣ ≤ lim
s→0

(
eFs |�Fs|
2− 2s

+
2eFss

2− 2s

)
= 0
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at xmax. Then (16) gives

lim sup
s→0

(2−�us(xmax)) ≤ 1 + 1 = 2. (17)

If we take x ∈ X arbitrarily, then we have

e−Nsus(x)(2−�us(x)) ≤ e−Nsus(xmax)(2−�us(xmax)),

consequently we have

(2−�us(x)) ≤ eNs(us(x)−us(xmax))(2−�us(xmax))

≤ e2Ns‖us‖L∞ (2−�us(xmax)). (18)

By Facts 5.3, 5.4 and by the definition of Ns we have

lim
s→0

Ns‖us‖L∞ ≤ lim
s→0

D7 max

{‖Rηs
‖C0

s
, 1

}
s−5e−D2/s

≤ lim
s→0

D7 max
{
D6s

−2 log s−1, 1
}
s−5e−D2/s

≤ lim
s→0

D7D6s
−7 log s−1e−D2/s = 0.

Therefore, combining (17) with (18), we have

lim sup
s→0

{
sup
X

(2−�us)

}
≤ 2.

Next we fix a point x ∈ X and take a coordinate z1, z2 around x such that

ηs|x =
√
−1
∑
i,j

δijdz
i
x ∧ dz̄jx

and we put (
ηs +

√
−1∂∂us

)
|x =

√
−1
∑
i,j

Aijdz
i
x ∧ dz̄jx, A = (Aij)i,j .

Then we can see

tr(A) = 2−�us(x), det(A) = eFs(x)

and

0 ≤ lim sup
s→0

{
sup
X

tr(A)

}
≤ 2, lim

s→0
sup
X
| det(A)− 1| = 0.

Let λ1 and λ2 be the eigenvalues of A. Since tr(A) > 0, we have

lim sup
s→0

sup
X
|λ1 − λ2|2 = lim sup

s→0

{
sup
X

{
(λ1 + λ2)

2 − 4λ1λ2

}}
≤ lim sup

s→0
sup
X

{
tr(A)2 − 4

}
+ 4 lim sup

s→0

{
sup
X
| det(A)− 1|

}
≤ 0,

hence

lim
s→0

sup
X
|λ1 − 1| = lim

s→0
sup
X
|λ2 − 1| = 1,

thus we have the assertion.
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5.5. Proof of Theorem 4.1. Here we prove Theorem 4.1 by assuming
some results on the standard semi-flat metrics and the Ooguri-Vafa metrics. Let
(X,ω1, ω2, ω3,s, gs), μ : X → P

1 and (L, h,∇) be as in Subsection 4.1.
Let ηs ∈ [ω3,s] be the Kähler form obtained by Fact 5.1 and denote by g′s the

Kähler metric of ηs. By Yau’s theorem, there is a solution us of (14) and (15), and
we can see ω3,s = ηs +

√
−1∂∂us by the uniqueness of the solution. Therefore, by

Lemma 5.5, there are constants Cs ≥ 1 with lims→0 Cs = 1 such that

C−1
s g′s ≤ gs ≤ Csg

′
s. (19)

Lemma 5.6. For any bq ∈ Crt, there are an open neighborhood W and γ ∈
Ω1(μ−1(W )) such that the triple (b = bq,W, γ) satisfies (�1-3).

The above lemma will be shown in Section 7.

Lemma 5.7. For every positive integer k, BSk ⊂ P
1 is a finite set.

Proof. Note that no points in P
1 \Crt are accumulation points of BSk. Therefore,

by Lemmas 4.10 and 5.6, none of b ∈ P
1 is an accumulation point of BSk. Since P

1

is compact, BSk is finite.

Fix k and let P
1 =

⋃
a Wa be an open cover as in Fact 5.1. Now suppose that

we have the assumption of Lemma 5.7, then BSk is finite. By taking the refinement
of {Wa}a if necessary, we may suppose that there is a map b �→ ab for b ∈ BSk such
that b ∈ Wab

, Wab
∩Wab′ = ∅ if b �= b′, Wab

∩⋃q W
q
2 = ∅ if b /∈ Crt and Wab

⊂ Wq
1

if b = bq. Then by Fact 5.1, g′s|μ−1(Wab
) is isometric to either the standard semi-flat

metric or the Ooguri-Vafa metric. If b ∈ BSk, then there is the unique positive integer
m such that k/m ∈ Z and b ∈ BSstr

m .
Lemma 4.7 and the next proposition give Theorem 4.1.

Proposition 5.8. Let b ∈ BSk and Wab
be as above. Let (L, h,∇) be a prequan-

tum line bundle on (X,ω) and put S = S(L, h). Let q ∈ μ−1(b), p ∈ π−1(q), m be
the positive integer such that b ∈ BSstr

m and denote by ĝs be the metric on S defined
by (2). Then for any R > 0 there is sR > 0 such that Bg′s(q,R) ⊂ μ−1(Wab

) for any
0 < s ≤ sR and(

S, dĝ′s ,
νĝ′s
s

, p
)

S1-pmGH−→
(
S1 × R

2, d̂0,m, dtdνg0 , (1S1 ,0R2)
)

as s→ 0.

Thus, to prove Theorem 4.1, it suffices to show Lemma 5.6 and Proposition 5.8.

6. Neighborhood of nonsingular fibers. In this section we prove Proposition
5.8 for b ∈ BSstr

m \Crt. To show it, we can reduce the argument to the local model. Let
B ⊂ C be an open neighborhood of the origin 0 ∈ C and Λ ⊂ T ∗B be a holomorphically
varying family of lattices. We take B sufficiently small so that Λ is given by

Λy = spanZ {τ1(y)dy, τ2(y)dy}

for some holomorphic functions τ1, τ2 on B. By changing the holomorphic coordinate,
we may suppose τ1 ≡ 1 and Im(τ2) > 0. Let ηSFs be the standard semi-flat Kähler
form. Now,

ωSF
1 := Re(Θcan), ωSF

2 := Im(Θcan), ωSF
3,s := ηSFs
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form a hyper-Kähler structure on XSF := T ∗B/Λ. Denote by (gSFs , JSF
1,s , J

SF
2,s , J

SF
3 )

the induced hyper-Kähler structures. Let (π : L → XSF, h,∇) be a prequantum line
bundle on (XSF, ω

SF
1 ) such that 0 ∈ BSstr

m . We identify μ−1(W ) with XSF and
identify b with 0 ∈ B. Now, we apply [13, Theorem 1.1]. To apply it, we check that
our situation satisfies the following assumptions in the theorem;

(i) Ricgs have the uniform lower bound,
(ii) the family {JSF

1,s}s satisfies ♠ in [13].
The condition (i) is automatically satisfied since gs are Ricci-flat metrics.
Next we check (ii). Let Y (y) be a holomorphic function on B such that ∂Y

∂y = τ2(y)

and put Y = Y1+
√
−1Y2, y = y1+

√
−1y2 for some real valued functions Y1, Y2, y1, y2.

Moreover, define real valued functions v1, v2 by xdy = −(v1 + v2τ2(y))dy ∈ T ∗B . Then
we have

Re(Θcan) = dy1 ∧ dv1 + dY1 ∧ dv2.

By using the action-angle coordinate (y1, Y1, v1.v2), we describe a frame of (1, 0)-
forms with respect to JSF

1,s . If dy1 +A11dv1 +A12dv2 and dY1 +A21dv1 +A22dv2 are
(1, 0)-forms, then we have (ii) iff the matrix

d

ds

∣∣∣∣
s=0

Im

(
A11 A12

A21 A22

)

is positive definite.
Let x, y,W,b be as in Subsection 5.1. Put

av :=
√
W(dx+ bdy), ah :=

√
W
−1

dy.

Then we have

ηSFs =

√
−1
2

(av ∧ āv + ah ∧ āh) , Θcan = av ∧ ah,

hence

Im(Θcan) +
√
−1ηSFs =

1

2
√
−1 (av ∧ ah − āv ∧ āh)−

1

2
(av ∧ āv + ah ∧ āh)

=
−1
2

(
av +

√
−1āh

)
∧
(
āv +

√
−1ah

)
.

It implies that av +
√
−1āh, āv +

√
−1ah form a frame of Ω1,0

JSF
1,s

(XSF).

Since

W =
s

Im(τ2)
, b = − Im(x)

Im(τ2)

∂τ2
∂y

,

we have

av = −
√
W (dv1 + τ2dv2) ,

ah =

√
−1

sIm(τ2)
(τ̄2dy1 − dY1)
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and

av +
√
−1āh = −

√
s

Im(τ2)
(dv1 + τ2dv2) +

√
1

sIm(τ2)
(τ2dy1 − dY1) ,

āv +
√
−1ah = −

√
s

Im(τ2)
(dv1 + τ̄2dv2) +

√
1

sIm(τ2)
(−τ̄2dy1 + dY1) .

Therefore, we can take

dy1 +

√
−1s

Im(τ2)
(dv1 +Re(τ2)dv2) ,

dY1 +

√
−1s

Im(τ2)

(
Re(τ2)dv1 + |τ2|2dv2

)
,

as a frame of Ω1,0

JSF
1,s

(XSF). Since the following symmetric matrix

(
1 Re(τ2)

Re(τ2) |τ2|2
)

is positive definite, hence we have (ii). Thus we obtained Proposition 5.8 for b /∈ Crt.

Remark 6.1. We can show Proposition 5.8 also by proving(
gSFs ,

1

s
, 0, B

)
→ (R2, g0)

as s→ 0, where gSFs is the Kähler metric of ηSFs .

7. Neighborhood of singular fibers of Kodaira type I1. In this section we
show Lemma 5.6 and Proposition 5.8 for b ∈ BSstr

m ∩ Crt. Let s > 0, XOV be as in
Subsection 5.2, and put

Vs(u) :=
1

4π

∑
n∈Z×

(
1√

u2
1 + u2

2 + (u3 − sn)2
− 1

s|n|

)
+

1

4π|u|

+ as +
h(u1, u2)

s
,

for some harmonic function h. Here, as is the constant defined in Subsection 5.3. We
fix a sufficiently small positive constant δ0 > 0 so that

Vs > 0 on U(δ0, s), (20)

max
D(δ0)

|h(u1, u2)| ≤
1

10π
log δ−1

0 , (21)

δ0 ≤
1

2
. (22)

Define the hyper-Kähler structure on XOV by

ω1,s = du1 ∧
α

2π
+ Vsdu2 ∧ du3,

ω2,s = du2 ∧
α

2π
+ Vsdu3 ∧ du1,

ω3,s = du3 ∧
α

2π
+ Vsdu1 ∧ du2.
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Let μOV and 0OV be as in Subsection 5.2. Denote by gOV
s the hyper-Kähler metric

associated with (ω1,s, ω2,s, ω3,s).
To prove Lemma 5.6 and Proposition 5.8 for b ∈ BSstr

m ∩ Crt, it suffices to show
that (

gOV
s ,

1

s
, 0, D(δ0)

)
s→0→ (R2, g0)

in the sense of Definition 4.30, where g0 is the Euclidean metric. Here, we identify b
with the origin 0 ∈ C and we regard D(δ0) the neighborhood of b.

First of all we determine the prequantum line bundle on XOV. Let (π : L →
XOV, h,∇) be a prequantum line bundle on (XOV, ω1,s). Since there is a deformation
retraction XOV onto μ−1

OV(0), the inclusion map μ−1
OV(0) ⊂ XOV induces an isomor-

phism H2(XOV,Z) ∼= H2(μ−1
OV(0),Z). Since μ−1

OV(0) is Lagrangian with respect to
ω1,s, we can see [ω1,s] = 0 ∈ H2(XOV,R). Since H2(XOV,Z) is torsion-free, one can
see

c1(L) =

√
−1
2π

[F∇] =
1

2π
[ω1,s] = 0 ∈ H2(XOV,Z),

hence L is a trivial bundle.
Next we determine γs ∈ Ω1(XOV) such that dγs = ω1,s and (�3) of Subsection

4.3 is satisfied. Let J1,s, J2,s, J3,s be complex strucutures on XOV associated with the
hyper-Kähler structure (ω1,s, ω2,s, ω3,s).

Lemma 7.1. Let

φ(u1, u2, u3) = −
∫ u1

0

tVs(t, u2, u3)dt+ ψ(u2, u3)

for a function ψ with ∂2ψ
∂u2

2
+ ∂2ψ

∂u2
3
= −Vs(0, u2, u3). Then we have ω1,s = dJ1,sdφ.

Here, we write φ = u∗φ for the brevity, if there is no fear of confusion.

Proof. By the definition of φ, we have

∂φ

∂u1
= −u1Vs(x),

ΔR3φ = −
3∑

i=1

∂2φ

∂u2
i

= 2Vs.

Since we have

J1,s

( α

2π

)
= Vsdu1, J1,s(du1) = −

V −1
s α

2π
,

J1,s(du2) = −du3, J1,s(du3) = du2,

then dJ1,sdφ = ω1,s.

Put

ψs(u2, u3) := −
1

4π

∑
n∈Z×

(√
u2
2 + (u3 − sn)2 − u2

2

2s|n| +
|n|
n
(u3 − sn)

)

−
√
u2
2 + u2

3

4π
− asu

2
2

2
+

u2
3 − u2

2

4πs
−
∫ u2

0

(∫ t̃

0

h(0, t)

s
dt

)
dt̃
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and

φs(u1, u2, u3) := −
∫ u1

0

tVs(t, u2, u3)dt+ ψs(u2, u3)

for s > 0. Now we can check that
• the series

∑
n∈Z×

(√
u2
2 + (u3 − sn)2 − u2

2

2s|n| +
|n|
n (u3 − sn)

)
converges abso-

lutely,

• ∂2ψs

∂u2
2
+ ∂2ψs

∂u2
3

= −Vs(0, u2, u3),

• u∗φs is smooth on X̃OV,
• φs(u1, u2, u3 − s) = φs(u1, u2, u3).

Then

γs := J1,sdφs.

descends to a smooth 1-form on XOV.
Next we give generators of H1(μ

−1
OV(y),Z). To give it, we observe the Z-action

on the covering space X̃OV. Denote by v the vector field on X̃OV defined by vq :=
d
dt |t=0q · e

√−1t. For q ∈ X̃OV and z1, z2 ∈ R, we define the C
×-action on X̃OV by

q · e−z2+
√−1z1 := exp (z1v + z2J3,sv) (q), (23)

and we can see the action preserves u1, u2. Since the period of the elliptic fibration
μOV : XOV → D(δ0) is given by (13), we have q · e2πV(y) and q are in the same orbit
of Z-action if u1(q) +

√
−1u2(q) = y �= 0, where

V(y) := log y−1

2π
+ ĥ(y)

and ĥ is a harmonic function on D(δ0) with Reĥ = h.
For y = u1+

√
−1u2 ∈ D(δ0), let e1,y be a 1-cycle in μ−1

OV(y) given as the S1-orbit.
If y = 0, then e1,y = 0.

Next we construct a path e2,y : [0, s]→ X̃OV which generatesH1(U,Z). First of all

we construct the following paths e
(1)
2,y and e

(2)
2,y, then we obtain e2,y by connecting them.

Let e
(1)
2,y : [0, s]→ X̃OV be the integral path of −2πVsJ3,s(v) such that e

(1)
2,y(0) = q for

some q with u(q) = (u1, u2, 0). Then u(e
(1)
2,y(s)) = (u1, u2, s). Since we have

log |λ| = 2π

∫ u3(q·λ)

u3(q)

Vs(u1(q), u2(q), τ)dτ

for λ ∈ C
×, then e

(1)
2,y(s) = q · e2πRe(V(y)). Define e

(2)
2,y by

e
(2)
2,y(t) := q · e2π(Re(V(y))+√−1tIm(V(y)))

for 0 ≤ t ≤ 1. This is the S1-orbit containing q · e2πRe(V(y)) and q · e2πV(y). Here, e
(2)
2,y

depends on the choice of the value of Im(V(y)). Here, we suppose π/2 ≤ Im(log y) <
5π/2, then u1Im(log y) is continuous.

We can see that {e1,y, e2,y}y satisfies the first half of (�3). We can also see that
H1(Xb,Z) ∼= H1(U,Z) ∼= Z is generated by e2,b, hence we have (�1). The next lemma
completes the proof of Lemma 5.6.
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Lemma 7.2. Let y = (u1 +
√
−1u2). We have∫

e1,y

γs = u1,

∫
e2,y

γs = H(u1, u2),

where

H(u1, u2) := −
u2 log

√
u2
1 + u2

2

2π
+

u2

2π
+

∫ u1

0

t
∂h

∂u2
(t, u2)dt+

∫ u2

0

h(0, t)dt

+ u1Im(V(y))

for y �= 0, and H(0, 0) := 0. Moreover, the function H is continuous on D(δ0) and
the origin 0 ∈ D(δ0) is isolated in{

u1 +
√
−1u2 ∈ D(δ0); u1 = 0, H(u1, u2) = 0

}
.

Proof. First of all we have

γs = J1,sdφs = −V −1
s

∂φ

∂u1

α

2π
− ∂φ

∂u2
du3 +

∂φ

∂u3
du2.

Then we obtain ∫
e1,y

J1,sdφs = −
1

2π

∫
c0

V −1
s

∂φs

∂u1
α = u1.

By

∂φs

∂u2
= −u2

(
Vs(x)−

h

s
+

1

2πs

)

+
1

s

(
−
∫ u1

0

t
∂h

∂u2
(t, u2)dt−

∫ u2

0

h(0, t)dt

)

and
∫ s

0
Vs(u1, u2, t)dt = −(log

√
u2
1 + u2

2)/2π + h, we can show
∫
e2,y

J1,sdφs =

H(u1, u2). If y = 0, then ∂φs

∂u2
= 0, hence

∫
e2,0

J1,sdφs = 0.

Although Im(V) is not continuous at a point in {u1 = 0}, it is bounded on
the neighborhood of {u1 = 0}, hence u1Im(V(y)) is continuous. Therefore, H is
continuous.

Suppose that u1+
√
−1u2 is sufficiently close to the origin and u1 = H(u1, u2) = 0,

hence H(0, u2) = 0. Since the function t �→ H(0, t) is strictly increasing on the
neighborhood of t = 0, accordingly we have H(0, u2) = 0 only if u2 = 0 for sufficiently
small u2. Therefore, 0 ∈ D(δ0) is isolated in{

u1 +
√
−1u2 ∈ D(δ0); u1 = 0, H(u1, u2) = 0

}
.

The hyper-Kähler metric gOV
s given by ω1,s, ω2,s, ω3,s can be written as

gOV
s = V −1

s

( α

2π

)2
+ Vs

(
du2

1 + du2
2 + du2

3

)
.
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On XOV \ μ−1
OV(0), we have the decompositions gOV

s = gf + g⊥ and γs = γf + γ⊥ as
in Subsection 4.3. Then we may write

g⊥ = Vs

(
du2

1 + du2
2

)
,

γf = −V −1
s

∂φs

∂u1

α

2π
− ∂φs

∂u2
du3,

γ⊥ =
∂φs

∂u3
du2.

The aim of this section is to obtain the estimates in (�4-7) of Subsection 4.3.
From now on we put y := u1 +

√
−1u2 ∈ D(δ0), |y| =

√
u2
1 + u2

2 and

V sf
s (y) :=

1

s

∫ s

0

Vs(u1, u2, t)dt = −
1

2πs
log |y|+ h(y)

s
.

By (21), we have

V sf
s ≥ 2 log |y|−1

5πs
≥ 2 log δ−1

0

5πs
(24)

on D(δ0).

Fact 7.3 ([10, Lemma 3.1(c) and its proof]). There is a constant C > 0 such
that if 0 < s ≤ π|y| then

∣∣Vs − V sf
s

∣∣ ≤ C

s
e−2π|y|/s.

Lemma 7.4. Let 0 < r ≤ δ0. There is sr > 0 for every r such that for any
0 < s ≤ sr we have Vs ≥ log r−1/(10πs) on U(r, s). In particular, There is s0 > 0
such that for any 0 < s ≤ s0 we have Vs ≥ log δ−1

0 /(10πs) on U(δ0, s).
Proof. By Fact 7.3 and (24), if 0 < s ≤ πr and r = |y|, then we have

Vs ≥ V sf
s − Ce−2πr/s

s
≥ 2 log r−1

5πs
− Ce−2πr/s

s
.

Put hM := supD(δ0) h < +∞ and hm := infD(δ0) h > −∞. Now, take sr > 0 such

that sr ≤ πr and Ce−2πδ0r/sr ≤ log r−1/(10π), then we can see

Vs ≥
3 log r−1

10πs
(25)

for 0 < s ≤ sr. Since

1√
u2
1 + u2

2 + (u3 − sn)2
≥ 1√

r2 + (u3 − sn)2

for u ∈ U(r, s), then

Vs(u1, u2, u3) ≥ Vs(r, 0, u3)−
hM − hm

s
.
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By (21), we have hM − hm ≤ log δ−1
0 /(5π). Therefore, by (25),

Vs(u1, u2, u3) ≥
3 log r−1

10πs
− log δ−1

0

5πs
≥ log r−1

10πs

if |y| ≤ r.

Lemma 7.5. There are constants s0 > 0 and Cs ≥ 1 for every 0 < s ≤ s0 with
lims→0 Cs = 1 such that if 0 < s ≤ π|y| then we have

C−1
s V sf

s ≤ Vs ≤ CsV
sf
s .

Proof. By Fact 7.3, if s ≤ π|y| we have

V sf
s

(
1− Ce−2π|y|/s

sV sf
s

)
≤ Vs ≤ V sf

s

(
1 +

Ce−2π|y|/s

sV sf
s

)
,

therefore it suffices to show

sup
y∈D(δ0)

e−2π|y|/s

sV sf
s (y)

→ 0

as s→ 0. If |y| ≤ √s, then we can see e−2π|y|/s ≤ 1, hence by (24) we have

e−2π|y|/s

sV sf
s (y)

≤ 5π

2 log |y|−1
≤ 5π

log s−1

s→0−→ 0.

If |y| ≥ √s, then we can see e−2π|y|/s ≤ e−2π/
√
s. Therefore, we obtain

e−2π|y|/s

sV sf
s (y)

≤ 5πe−2π/
√
s

2 log δ−1
0

s→0−→ 0.

Lemma 7.6. We have

Vs ≤ V sf
s +

1

2π
√
u2
1 + u2

2

.

Proof. By the periodicity of Vs, we may suppose 0 ≤ u3 ≤ s. Since

1√
u2
1 + u2

2 + (u3 − sn)2
≤ 1√

u2
1 + u2

2 + s2(n− 1)2
(n > 0),

1√
u2
1 + u2

2 + (u3 − sn)2
≤ 1√

u2
1 + u2

2 + s2n2
(n ≤ 0),

we have

Vs ≤ Vs(u1, u2, 0) +
1

4π
√
u2
1 + u2

2

. (26)
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Similarly, we can also see

Vs(u1, u2, 0)−
1

4π
√
u2
1 + u2

2

≤ Vs. (27)

By integrating (27), we obtain

Vs(u1, u2, 0) ≤ V sf
s +

1

4π
√
u2
1 + u2

2

, (28)

then by (26)(28) we have the result.

Let χ = χ(t) be the inverse function of τ �→ (τ2 log τ−1)/2π for τ ∈ [0, 1/2]. Then
χ is an increasing function such that χ(0) = 0 and χ((log 2)/(8π)) = 1/2. For a given
R > 0, χ(sR2) ≤ δ0 iff s ≤ δ20 log δ

−1
0 /(2πR2).

Lemma 7.7. Take s0 > 0 as in Lemmas 7.4 and 7.5. There is a positive constant
C such that for any 0 < s ≤ s0 we have

|γf |2gOV
s
≤ C

(
V sf
s |y|2 +

|y|
2π

)
.

For any R > 0 there is 0 < sR ≤ min{s0, δ20 log δ−1
0 /(18πR2)} such that the following

holds. For every 0 < s ≤ sR, there are constants Cs,R ≥ 1 with lims→0 Cs,R = 1 such
that if y ∈ D(χ(9sR2)) \D(s/π) then we have

C−1
s,RV

sf
s |y|2 ≤ |γf |2gOV

s
≤ Cs,RV

sf
s |y|2.

Proof. First of all we have

|γf |2gOV
s

= V −1
s

(
∂φs

∂u1

)2

+ V −1
s

(
∂φs

∂u2

)2

= Vs|y|2
(
1− 2u2F (u1, u2)

sVs|y|2
+

F (u1, u2)
2

s2V 2
s |y|2

)
,

where

F (u1, u2) := hu2 −
u2

2π
−
∫ u1

0

t
∂h

∂u2
(t, u2)dt−

∫ u2

0

h(0, t)dt.

Since F is C∞ and F (0, 0) = 0, there is a constant A1 > 0 such that F (u1, u2) ≤
A1|y| for all y ∈ D(δ0). Then we have |F (u1, u2)|/(sVs|y|) ≤ A1/(sVs) and
2|u2F (u1, u2)|/(sVs|y|2) ≤ 2A1/(sVs), therefore, we can see

(
1− A1

sVs

)2

≤
|γf |2gOV

s

Vs|y|2
≤
(
1 +

A1

sVs

)2

. (29)

By Lemma 7.4, we have 1 + A1/(sVs) ≤ 1 + A1 log δ
−1
0 /(10π). Then by Lemma 7.6,

there is a constant C > 0 such that

|γf |2gOV
s
≤ CVs|y|2 ≤ C

(
V sf
s |y|2 +

|y|
2π

)
.
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Next we assume s/π ≤ π|y| < χ(9sR2), then by Lemma 7.5 we have

C−1
s V sf

s |y2| ≤ Vs|y2| ≤ CsV
sf
s |y2|,

A1

sVs
≤ CsA1

sV sf
s

,

hence (29) implies

(
1− CsA1

sV sf
s

)2

V sf
s |y|2 ≤ |γf |2gOV

s
≤
(
1 +

CsA1

sV sf
s

)2

V sf
s |y|2

Since 1/(sV sf
s ) ≤ 5π/(2 log |y|−1) ≤ 5π/(2 logχ(9sR2)−1) and lims→0 χ(9sR

2) = 0,
we have the second estimates.

To give the estimate for γ⊥, we need to compute ∂φs

∂u3
. We have

∂φs

∂u3
= −

∫ u1

0

t
∂Vs

∂u3
(t, u2, u3)dt+

∂ψs

∂u3
(u2, u3)

= − 1

4π

∑
n∈Z×

{
u3 − sn√

u2
1 + u2

2 + (u3 − sn)2
+
|n|
n

}

− 1

4π

u3√
u2
1 + u2

2 + u2
3

+
u3

2πs
.

Lemma 7.8. We have |∂φs

∂u3
| ≤ 1/2π.

Proof. If we put

F (x, t) := − 1

4π

∑
n∈Z×

{
t− n√

x2 + (t− n)2
+
|n|
n

}
− 1

4π

t√
x2 + t2

+
t

2π
,

then we may write

∂φs

∂u3
(u1, u2, u3) = F

( |y|
s
,
u3

s

)
.

We show that |F | ≤ 1/2π. Since F (x, t + n) = F (x, t) for n ∈ Z, we may suppose
0 ≤ t ≤ 1. Since the function t �→ t/

√
x2 + t2 is nondecreasing, we have

1

4π

n− 1√
x2 + (n− 1)2

≤ − 1

4π

t− n√
x2 + (t− n)2

≤ 1

4π

n√
x2 + n2

for every n ∈ Z. By using these inequalities, we can show −1/2π ≤ F (x, t) ≤ 1/2π.

Corollary 7.9. Let gB := V sf
s (du2

1 + du2
2). Then

|γ⊥|2gOV
s
≤ 5s

2π log δ−1
0

, |γ⊥|2μ∗OVgB ≤
5s

8π log δ−1
0

.

Proof. Since we have

|γ⊥|2gOV
s

= V −1
s

(
∂φs

∂u3

)2

, |γ⊥|2μ∗OVgB =
(
V sf
s

)−1
(
∂φs

∂u3

)2

,
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then we have the result by Lemma 7.4 and (24).

Next we define a map ζs : D(δ0)→ R
2 by

ζs(y) :=

√
log |y|−1

2πs
· y.

Then we have

|y| = χ(s|ζs(y)|2) (30)

for any y ∈ D(δ0). Recall that we have put B(r) := {ξ ∈ R
2; ‖ξ‖ < r}, then we have

D(χ(sr2)) = ζ−1
s (B(r)). Hence we have the following.

Proposition 7.10. We have ζs(D(δ0)) = B(δ0
√
log δ−1

0 /(2πs)). In particular,

B(3R) ⊂ ζs(D(δ0)) iff s ≤ δ0

√
log δ−1

0 /(18πR2).

Lemma 7.11. Let ξ = (ξ1, ξ2) ∈ R
2 be the standard coordinate and denote by

|dξ|2 := dξ21 +dξ22 be the Euclidean metric and s0 be as in Lemma 7.5. Let R > 0 and
0 < s ≤ min{δ20 log δ−1

0 /(18πR2), s0}. Then there are constants Cs,R ≥ 1 such that
lims→0 Cs,R = 1 and

C−1
s,Rζ

∗
s |dξ|2 ≤ V sf

s |dy|2 ≤ Cs,Rζ
∗
s |dξ|2

for y ∈ ζ−1
s (B(3R)).

Proof. Let y = rye
√−1θ and ξ = rξe

√−1θ be the polar coordinates. If ξ = ζs(y),
then ry = χ(sr2ξ) by (30). Then we have

(ζ−1
s )∗

{
V sf
s |dy|2

}
=

(
logχ(sr2ξ)

−1

2πs
+

h(ζ−1
s (ξ))

s

)
(2sχ′rξ)2dr2ξ

+ r2ξ

(
1 +

2πh(ζ−1
s (ξ))

logχ(sr2ξ)
−1

)
dθ2.

Since χ′ = 2π/(2χ logχ−1 − χ) and r2ξ = χ2 logχ−1/(2πs), we have

(2sχ′rξ)2 =
2πs

logχ−1

(
1− 1

2 logχ−1

)−2

,

hence we obtain

(ζ−1
s )∗

{
V sf
s |dy|2

}
=

(
1 +

2πh

logχ−1

)((
1− 1

2 logχ−1

)−2

dr2ξ + r2ξdθ
2

)
.

Since h is bounded on D(δ0) and we have lims→0 1/(logχ(sr
2
ξ)
−1) = 0, then there

are constants Cs,R ≥ 1 such that lims→0 Cs,R = 1 and C−1
s,Rζ

∗
s |dξ|2 ≤ V sf

s |dy|2 ≤
Cs,Rζ

∗
s |dξ|2.

Proposition 7.12. For every R > 0, there is a constant sR > 0 such that
the following holds. For every R > 0 and 0 < s ≤ sR there are positive constants
Cs,R, σs, δs,R with

lim
s→0

Cs,R = 1, lim
s→0

δs,R = lim
s→0

σs = 0,
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such that if y ∈ ζ−1
s (B(3R)), then

|γ⊥|gOV
s
≤ δs,R, |γ⊥|(ζs◦μOV)∗|dξ|2 ≤ δs,R,

and if y ∈ ζ−1
s (B(3R) \ B(σs)), then

C−1
s,R(ζs ◦ μOV)

∗|dξ|2 ≤ g⊥ ≤ Cs,R(ζs ◦ μOV)
∗|dξ|2,

C−1
s,R(ζs ◦ μOV)

∗r2 ≤ |γf |2gOV
s
≤ Cs,R(ζs ◦ μOV)

∗r2.

Proof. Put

σs :=

√
s(log s−1 + log π)

2π3
.

Note that σs ≤ |ζs(y)| < 3R iff s/π ≤ |y| < χ(9sR2). If s/π ≤ |y| < χ(9sR2) and s is
sufficiently small, then Lemmas 7.5 and 7.11 give

C−1
s,R(ζs ◦ μOV)

∗|dξ|2 ≤ g⊥ ≤ Cs,R(ζs ◦ μOV)
∗|dξ|2.

for some constant Cs,R ≥ 1 with lims→0 Cs,R = 1. Combining Corollary 7.9 with
Lemma 7.11, we have

|γ⊥|2gOV
s
≤ 5s

2π log δ−1
0

, |γ⊥|2(ζs◦μOV)∗|dξ|2 ≤
5Cs,R · s
8π log δ−1

0

.

By putting δs,R := 5s/(2π log δ−1
0 )max{1, Cs,R/4}, we obtain the estimates for γ⊥.

Since

V sf
s |y|2
|ζs(y)|2

=
2πsV sf

s

log |y|−1
→ 1 (31)

as s→ 0, then we obtain the inequalities for |γf |gOV
s

by Lemma 7.7.

Proposition 7.13. Let s0 > 0 be as in Lemma 7.7 and σs > 0 be as in Propo-
sition 7.12. Then there are constants δs > 0 for every 0 < s ≤ s0 with lims→0 δs = 0

such that if 0 < s ≤ s0 and y ∈ ζ−1
s (B(σs)), then |γf |2gOV

s
≤ δs.

Proof. By Lemma 7.7 we have

|γf |2gOV
s
≤ C

(
V sf
s |y|2 +

|y|
2π

)

for some constant C > 0. Then by (31), it suffices to show that |ζs(y)|2 → 0 and
|y| → 0 as s → 0. Since |ζs(y)|2 ≤ σ2

s → 0 and |y| ≤ χ(sσ2
s) → 0 as s → 0, we have

the result.

Fact 7.14 ([10, Proposition 3.5]). There is a constant C > 0 such that

diamgOV
s |

μ
−1
OV

(y)
(μ−1

OV(y)) ≤ C
√

s log s−1

for every y ∈ D(δ0).
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Proposition 7.15 ([10, Corollary 3.7]). Let σs be as in Proposition 7.12. There
is a constant C > 0 such that

diamgOV
s |

μ
−1
OV(ζ

−1
s (B(σs)))

(
μ−1
OV

(
ζ−1
s (B(σs))

))
≤ C

√
s log s−1.

Proof. The proof was essentially obtained in the proof of [10, Corollary 3.7]. Note
that D(s/π) = ζ−1

s (B(σs)). Take a point p ∈ XOV with u(p) = (s cos θ, s sin θ, s/2).
Then the infimum of the distance between p and the singular fiber μ−1

OV(0) is bounded
from the above by ∫ s

0

√
Vs(r cos θ, r sin θ, s/2) dr.

By the proof of [10, Corollary 3.7], there is a constant C > 0 such that the above
integral is not more than Cs log s−1. Since D(s/π) ⊂ D(s), by combining Fact 7.14,
we have the result.

Next we consider the measure. Define a measure νB on D(δ0) by νB :=
(μOV)∗νgOV

s
. Since νgOV

s
= Vs(α/2π) ∧ du3 ∧ du1 ∧ du2, we have

νB = sV sf
s du1du2.

Proposition 7.16. There are constants Cs,R ≥ 1 with lims→0 Cs,R = 1 such
that

C−1
s,Rdξ1dξ2 ≤

(ζs)∗νB
s

≤ Cs,Rdξ1dξ2

if |ξ| < R.

Proof. Let y = rye
√−1θ and ξ = rξe

√−1θ. Since du1du2 = rydrydθ, therefore, by
the computation in the proof of Lemma 7.11,

(ζs)∗νB = sV sf
s (ζ−1

s (ξ))χ(sr2ξ) · 2sχ′rξdrξdθ

= s

(
1 +

2πh

logχ−1

)(
1− 1

2 logχ−1

)−1

rξdrξdθ.

If rξ < R, we have

(
1 +

2πh(ζ−1
s (ξ))

logχ−1(sr2ξ)

)(
1− 1

2 logχ−1(sr2ξ)

)−1

→ 0

as s→ 0, hence we obtain the result.

By Propositions 7.12, 7.13, 7.15, 7.16 and Fact 7.14, we have shown(
gOV
s ,

1

s
, 0, D(δ0)

)
→ (R2, g0)

as s→ 0 for sufficiently small δ0. Thus we complete the proof of Theorem 4.1.
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8. Compact convergence. The aim of this section is to prove Theorem 4.3. In
this section let (X, gs), μ : X → P

1, (L, h,∇) be as in Subsection 4.1 and let g′s be as
in Subsection 5.5. We fix a positive integer k.

8.1. Preparation. Here, we review [14] for the preparation for the following
subsections. Let B ⊂ R

2 be an open set, X0 := B × (R2/2πZ2), x = (x1, x2) ∈ R
2

and θ = (θ1, θ2) ∈ R
2/2πZ2 be the standard coordinates. Put ω := dx1 ∧ dθ1 +

dx2 ∧ dθ2 and let L0 := X0 × C. Denote by h0 the hermitian metric on L0 such
that h0((x, 1), (x, 1)) ≡ 1, and ∇0 be the hermitian connection defined by ∇0 =

d−
√
−1∑2

i=1 xi ∧ dθi. Here, we have BSk = (1/k)Z2 ∩B.

Let g be a Riemannian metric on X0 such that

(1 + δ)−1ω2

2
≤ dνg ≤

(1 + δ)ω2

2

for a constant δ ≥ 0. Note that if g is the Kähler metric of ω with respect to an
ω-compatible complex structure, then we can take δ = 0. In the following subsections
we will take g = g′s. In this case we can take δ = δs such that lims→0 δs = 0 by (19).

Next we consider the induced metric on every fiber

g|{x}×(R2/2πZ2) =
2∑

i,j=1

gij(x, θ)dθidθj .

Let S0 = S(L0, h0) and ĝ be defined by (2). The next lemma is the generalization of
[14, Proposition 4.3].

Lemma 8.1. Let k be a positive integer and g(x) =
∑2

i,j=1 gij(x)dθidθj be a

family of Riemannian metrics on R
2/2πZ2 such that g|{x}×(R2/2πZ2) ≤ g(x) for all

x ∈ B. Denote by (gij(x))i,j the inverse matrix of (gij(x))i,j. Then we have

∫
S0

|df |2ĝ dνĝ ≥ 2π
k2 +K

(1 + δ)2

∫
S0

|f |2dνĝ

for f ∈ (H1,2(S0, dĝ, νĝ)⊗ C)ρk , where

K := k2 inf
x∈B

inf

{
‖x+ l‖2g(x); l ∈

1

k
Z
2

}
,

‖x+ l‖g(x) :=

√√√√ 2∑
i,j=1

(xi + li)(xj + lj)g
ij(x).

Proof. The proof is same as that of [14, Propositions 4.2, 4.3]. Here we explain
the outline. First of all we have∫

S0

|df |2ĝ dνĝ ≥
∫
S0

∣∣df |S0|x ∣∣2ĝx dνĝ,
where S0|x = S1 × {x} × R

2/2πZ2 and ĝx := (dt−∑i xidθi)
2 + g|{x}×R2/2πZ2 .
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Since dνĝ = dt · dνg and ω2/2 = dx1dx2dθ1dθ2, we have

∫
S0

∣∣df |S0|x ∣∣2ĝx dνĝ ≥ (1 + δ)−1

∫
B

(∫
S0|x

∣∣df |S0|x ∣∣2ĝx dtdθ
)
dx,

∫
B

(∫
S0|x

|f |2 dtdθ
)
dx ≥ (1 + δ)−1

∫
S0

|f |2dνĝ.

Since f ∈ (H1,2(S0, dĝ, νĝ) ⊗ C)ρk , we may put f |S0|x = e−
√−1ktϕ(θ) for some

ϕ : R2/2πZ2 → C. Then we have

∣∣df |S0|x ∣∣2ĝx ≥ k2|ϕ|2 +
∑
i,j

(
∂ϕ

∂θi
+
√
−1xiϕ

)(
∂ϕ̄

∂θj
−
√
−1xjϕ̄

)
gij(x).

If we put ϕ(θ) = e
√−1

∑
i liθi for l1, l2 ∈ Z, then

k2|ϕ|2 +
∑
i,j

(
∂ϕ

∂θi
+
√
−1xiϕ

)(
∂ϕ̄

∂θj
−
√
−1xjϕ̄

)
gij(x)

= k2 + (kxi + li) (kxj + lj) g
ij(x),

hence we have the result.

Denote by Nx(θ) the maximum eigenvalue of the symmetric positive matrix
(gij(x, θ))i,j . Put

Nx := sup
θ∈R2/2πZ2

Nx(θ),

λ(k, x) := k2 inf

{
2∑

i=1

(li + xi)
2; l1, l2 ∈

1

k
Z

}

for x ∈ B. Then we have

K ≥ inf
x∈B

λ(k, x)

Nx
.

8.2. Estimates on the nonsingular fibers. Let Wq
1 ⊂ Wq

2 ⊂ P
1 be as in

Fact 5.1. Since P
1 and K := P

1 \ (⊔q W
q
1 ) are compact and all of the points in

K are regular values of μ, then by Liouville-Arnold Theorem, there are open sets
W ′′

a ⊂W ′
a ⊂ P

1 \ Crt for a = 1, . . . , N0 such that the following holds.
(i) On every W ′

a there is an action-angle coordinate xa,1, xa,2, θa,1, θa,2 with

ω1|μ−1(W ′
a)

= dxa,1 ∧ dθa,1 + dxa,2 ∧ dθa,2.

(ii) K ⊂ ⋃a W
′′
a and W

′′
a ⊂W ′

a,

(iii) BSk ∩ ∂W ′′
a = ∅ and xa(W

′′
a) ⊂ R

2 is bounded for all a.
Put U ′a := μ−1(W ′

a). Here, xa = (xa,1, xa,2) is a coordinate on P
1 and θa =

(θa,1, θa,2) is the coordinate on the fibers μ−1(xa) ∼= R
2/2πZ2. By [14, Proposition

2.4], we can choose a trivialization L|U ′a = U ′a × C and the action-angle coordinate

such that ∇|U ′a = d−
√
−1∑2

i=1 xa,idθa,i. Now, we may suppose BSk ∩Wq
2 ⊂ {bq}.

Next we apply Lemma 8.1. To apply it, we estimate Nb and λk,b.
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If b ∈W
′′
a\(
⊔

q W
q
2 ), then g′s is isometric to the standard semi-flat metric. Denote

by g′s,b = g′s|μ−1(b) the fiberwise metric. By the explicit description of ηSFs , we have

g′s,b = sg′1,b,

consequently we have Nb = sNb,1 for some constant Nb,1 > 0 depending only on b. If

b ∈W
′′
a ∩ (Wq

2 \Wq
1 ), then by Lemma 5.2, we also have Nb ≤ sNb,1 for some Nb,1 > 0

depending only on b. Here, we may suppose that Nb,1 is depending on b continuously

on W
′′
a ∩ K. Therefore, there is a constant C1,a > 0 such that Nb ≤ sC1,a for all

b ∈W
′′
a ∩ K, hence Nb ≤ sC1 for all b ∈ K, where C1 = maxa C1,a.

Next we put

K(r) := K \

⎛
⎝ N0⋃

a=1

⎛
⎝ ⋃

b∈W ′′
a ∩BSk

B(a; b, r)

⎞
⎠
⎞
⎠ ,

B(a; b, r) := {y ∈W ′
a; |xa(y)− xa(b)| < r} .

Note that xa(W
′
a ∩ BSk) = xa(W

′
a) ∩ (1/k)Z2. By (iii), there is r0 > 0 such that if

0 < r ≤ r0 then

{
y ∈W

′′
a; |xa(y)− l| ≥ r for all l ∈ 1

k
Z
2

}
= W

′′
a \

⎛
⎝ ⋃

b∈W ′′
a ∩BSk

B(a; b, r)

⎞
⎠ .

Therefore, we have λ(k, b) ≥ k2r2 for any b ∈ K(r).
Now, we take a Borel set U ⊂ (μ ◦ π)−1(K(r)) and let U =

⊔
a′ U(a′) such that

U(a′) are Borel sets and every U(a′) is contained in (μ ◦ π)−1(W ′
a) for some a. By

applying Lemma 8.1 to each W (a′), we have∫
S|μ−1(W )

|df |2ĝ′s dνĝ′s ≥
2πk2

(1 + δs)2

(
1 +

r2

sC1

)∫
S|μ−1(W )

|f |2dνĝ′s

for some δs > 0 with lims→0 δs = 0. For every b ∈ BSk ∩W ′
a, fix qb ∈ μ−1(b). By [13,

Proposition 7.12 (iii)], there are δb > 0, R0 > 0 and sR > 0 such that

μ−1
(
B(a; b, δb

√
sR)

)
⊂ Bg′s(q

b, R)

for R ≥ R0 and 0 < s ≤ sR. Moreover, we also have

π−1
(
Bg′s(q

b, R)
)
⊂ Bĝ′s(p

b, R+ π)

for pb ∈ π−1(qb) by (9). If we put δ = minb∈BSk,a δb, then we have

SK,R := (μ ◦ π)−1(K) \

⎛
⎝ ⋃

b∈BSk\Crt

Bĝ′s(p
b, R)

⎞
⎠

⊂ (μ ◦ π)−1(K(δ
√
s(R− π))),

hence we obtain∫
SK,R

|df |2ĝ′s dνĝ′s ≥
2πk2

(1 + δs)2

(
1 +

δ2(R− π)2

C1

)∫
SK,R

|f |2dνĝ′s (32)

for R ≥ R0 and 0 < s ≤ sR.
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8.3. Estimates on the neighborhood of the singular fibers. In this sub-
section we fix one of the critical points bq ∈ Crt of μ and consider the restriction
of g′s on μ−1(Wq

1 ), which is isometric to the Ooguri-Vafa metric gOV
s by Fact 5.1.

Accordingly, we put μ−1(Wq
2 ) = XOV, rq2 ≤ δ0 and we go back to the setting in

Section 7. As we have seen in Section 7, L|XOV
is a trivial bundle, hence we may put

L|XOV
= XOV × C, h((x, 1), (x, 1)) ≡ 1 for x ∈ XOV, ∇|XOV

= d −
√
−1γ1 for some

γ1 ∈ Ω1(XOV) such that ω1,s = dγ1.
First of all we describe ω1,s by the action-angle coordinate. Recall that we have

defined C
×-action on X̃OV by (23). Let y = u1 +

√
−1u2 and z = z1 +

√
−1z2 be a

holomorphic coordinate with respect to J3,s. Then we have

ω1,s +
√
−1ω2,s = dy ∧

( α

2π
−
√
−1Vsdu3

)
=

1

2π
dy ∧ dz.

Define another coordinate θ = (θ1, θ2) on fibers by θ �→ q · e
√−1θ1−θ2V(μOV(q)), where

V(y) = (log y−1)/2π + ĥ(y) and ĥ is a holomorphic function such that Re(ĥ) = h.
Here we assume

0 ≤ Im(log y−1) < 2π.

Since we have

dz = d
(
θ1 +

√
−1θ2V(y)

)
= dθ1 +

√
−1V(y)dθ2 +

√
−1θ2

∂V
∂y

dy,

we obtain

dy ∧ dz = dy ∧ dθ1 +
√
−1V(y)dy ∧ dθ2.

If we denote by Ĥ(y) the holomorphic function such that ∂Ĥ
∂y = V, then we have

dy ∧ dz = dy ∧ dθ1 +
√
−1dĤ ∧ dθ2, hence

ω1,s =
1

2π
(du1 ∧ dθ1 − d(ImĤ) ∧ dθ2).

Since the integral path of ∂
∂θ2

represents the homology class −e2,y defined in Lemma

7.2, hence we can see that −dImĤ = dH. Here, we define x = (x1, x2) by

x1 =

∫
e1,y

γ1, x2 =

∫
e2,y

γ1,

where e1,y, e2,y are as in Lemma 7.2. Since ω1,s =
∑2

i=1 dxi ∧ dθi, we have

x = (x1, x2) = (u1 + a1, H(y) + a2)

for some constants a1, a2 ∈ R. Here, the origin 0 ∈ D(δ0) is in BSk iff (a1, a2) ∈
(1/k)Z2.

By the definition of the coordinate θ, we have

∂

∂θ1
= v,

∂

∂θ2
= Im(V(y))v +Re(V(y))J3,sv.
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Consequently, we have

gOV
s

(
∂

∂θ1
,

∂

∂θ1

)
=

V −1
s

4π2
,

gOV
s

(
∂

∂θ1
,

∂

∂θ2

)
=

Im(V(y))V −1
s

4π2
,

gOV
s

(
∂

∂θ2
,

∂

∂θ2

)
=
|V(y)|2V −1

s

4π2
,

therefore we have

gOV
s |μ−1

OV(y) =
V −1
s

4π2

(
dθ21 + 2Im(V)dθ1dθ2 + |V(y)|2dθ22

)
=

V −1
s

4π2

{
(dθ1 + Im(V)dθ2)2 +Re(V)2dθ22

}
.

To apply Lemma 8.1, we estimate K. By Lemma 7.4, we have

gOV
s |μ−1

OV(y) ≤
5s

6π log |y|−1

{
(dθ1 + Im(V)dθ2)2 +Re(V)2dθ22

}
.

Now, Im(V) is multivalued, however, we can take the branch of it on every neighbor-
hood such that it is bounded. Moreover, Since log |y|−1 → ∞ as |y| → 0, there is
0 < δ1 ≤ δ0 and C > 0 such that

gOV
s |μ−1

OV(y) ≤
Cs

log |y|−1

{
dθ21 + (log |y|−1)2dθ22

}
=: gy

for y ∈ D(δ1). For ξ = (ξ1, ξ2) ∈ R
2, we put

‖ξ‖gy
:=

√
log |y|−1

Cs
ξ21 +

1

Cs log |y|−1
ξ22 .

Lemma 8.2. There are positive constants δ0, δ1 > 0 such that

inf
l∈(1/k)Z2, l �=−a

‖x(y) + l‖2gy
≥ δ1

s log |y|−1

for any y ∈ D(δ0) and δ0 satisfies (20)(21)(22).

Proof. We have

‖x− a‖2gy
=

u2
1 log |y|−1

Cs
+

1

Cs log |y|−1
H(y)2.

There is C1 > 0 such that |H(y) − u2 log |y|−1/2π| ≤ C1|y| on D(δ0). Since |y| < δ0
and log |y|−1 ≥ log δ−1

0 > 0, by taking C1 larger if necessary, we have |H(y)| ≤
C1|y| log |y|−1. Therefore, there is C2 > 0 such that

‖x− a‖2gy
≤ C2|y|2 log |y|−1

s
.
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Moreover, there is δ′1 > 0 such that for any ξ ∈ R
2 we have ‖ξ‖2gy

≥
δ′1(s log |y|−1)−1|ξ|2, where |ξ|2 = ξ21 + ξ22 . Consequently, if we take l ∈ (1/k)Z2,
then

‖x+ l‖gy
≥ ‖a+ l‖gy

− ‖x− a‖gy

≥
√

δ′1
s log |y|−1

|a+ l| −
√

C2 log |y|−1

s
|y|

=

√
δ′1|a+ l| −

√
C2|y| log |y|−1√

s log |y|−1
.

Now,

δ′2 := inf
l∈(1/k)Z2, l �=−a

|a+ l|

is a positive number depending only on the critical value bq ∈ Crt. Since
|y| log |y|−1 → 0 as y → 0, we can take δ0 sufficiently small such that we have
(20)(21)(22) and

√
δ′1|a+ l| −

√
C2|y| log |y|−1 ≥

√
δ′1δ

′
2

2

for every y ∈ D(δ0).

Lemma 8.3. There are constants δ0, δ2 > 0 such that δ0 satisfies (20)(21)(22)
and the following holds. Let R > 0 and take sR > 0 such that χ(sRR

2/4) ≤ δ0. For
any 0 < s ≤ sR and y ∈ D(δ0) \D(χ(sR2/4)), we have

inf
l∈(1/k)Z2

‖x(y) + l‖2gy
≥ δ2R

2.

Proof. First of all, we give the lower bound of ‖x(y) − a‖2gy
where a ∈ (1/k)Z2.

Note that there is a constant C1 > 0 such that∣∣∣∣H(y)− u2 log |y|−1

2π

∣∣∣∣ ≤ C1|y|

for y ∈ D(δ0). If 2|u1| ≥ |u2|, then we have

‖x(y)‖2gy
≥ u2

1 log |y|−1

Cs
≥ (u2

1/5 + 4u2
1/5) log |y|−1

Cs
≥ |y|2 log |y|−1

5Cs
.

Since we have |H(y)| ≥ |u2| log |y|−1/2π − C1|y| for a constant C1 > 0, if we assume
2|u2| ≥ |u1| then |H(y)| ≥ |u2| log |y|−1/2π−C2|u2| for a constant C2 > 0. By taking
δ0 sufficiently small, we may suppose C2 ≤ (log |y|−1)/2 for y ∈ D(δ0). Then we have

‖x(y)‖2gy
≥ u2

1 log |y|−1

Cs
+

u2
2 log |y|−1

4Cs
≥ |y|2 log |y|−1

4Cs
.

In both cases, we have

‖x(y)‖2gy
≥ |y|2 log |y|−1

5Cs
.
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Since y /∈ D(χ(sR2/4)) iff |y|2 log |y|−1/(2π) ≥ sR2/4, hence we have

‖x(y)‖2gy
≥ |y|2 log |y|−1

5Cs
≥ π

10C
R2.

Combining with Lemma 8.2, we have

inf
l∈(1/k)Z2

‖x(y) + l‖2gy
≥ inf

{
δ1

s log |y|−1
,

π

10C
R2

}
.

Since |y| ≥ χ(sR2/4), we have

δ1
s log |y|−1

≥ δ1
s logχ−1

=
δ1R

2/4

(sR2/4) logχ−1
=

δ1R
2

4χ2(logχ−1)2
.

By the assumption χ(sR2/4) ≤ δ0, we can see

δ1
s log |y|−1

≥ δ1R
2

4δ20(log δ
−1
0 )2

,

hence we have the result.

Now, let S := S(L|XOV , h) and denote by π : S→ XOV the projection. By Propo-
sition 4.33, we have the followings.

Lemma 8.4. Let p ∈ π−1(0OV). For every R ≥ 7 there is sR > 0 such that we
have

(μOV ◦ π)−1
(
D(χ(sR2/4))

)
⊂ Bĝs(p,R)

for any 0 < s ≤ sR.

Proof. Take sR > 0 as in Proposition 4.33. By (30), we have y ∈ D(χ(sr2)) iff
|ζs(y)| < r. By Proposition 4.33, we have

(μOV ◦ π)−1 (B(R/2)) ⊂ Bĝs(p,R)

for 0 < s ≤ sR, hence we have the result.

By Lemmas 8.3 and 8.4, we have the next proposition.

Proposition 8.5. For every bq ∈ Crt and pq ∈ (μ ◦ π)−1(bq) there are rq1 > 0,
Cq > 0, R0 > 0 and sR > 0 for every R ≥ R0 such that if R ≥ R0 and 0 < s ≤ sR
then∫

S|
μ−1(W

q
1 )
\Bĝ′s (pq,R)

|df |2ĝ′sdνĝ′s ≥ 2πk2(1 + CR2)

∫
S|

μ−1(W
q
1 )
\Bĝ′s (pq,R)

|f |2dνĝ′s

for any f ∈ (H1,2(S, dĝ′s , νĝ′s)⊗ C)ρk .
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8.4. Proof of Theorem 4.3. Let (X,ω1, ω2, ω3,s), μ : X → P
1 and (L, h,∇)

be as in Subsection 4.1. Denote by (gs, J1,s, J2,s, J3) be the associated hyper-Kähler
structure of (ω1, ω2, ω3,s) and let g′s be as in Subsection 5.5. For every b ∈ BSk, we
fix pb ∈ (μ ◦ π)−1(b). By Proposition 8.5 and (32), we have the following.

Proposition 8.6. Let k be a positive integer. There are constants C > 0,
R0 > 0 independent of s,R, f and sR > 0 for every R ≥ R0 such that if R ≥ R0 and
0 < s ≤ sR then∫

S\⋃b∈BSk
Bĝ′s (p

b,R)

|df |2ĝ′sdνĝ′s ≥ CR2

∫
S\⋃b∈BSk

Bĝ′s (p
b,R)

|f |2dνĝ′s

for any f ∈ (H1,2(S, dĝ′s , νĝ′s)⊗ C)ρk .

Moreover, by (19), we have the following corollary by taking the constant C in
the above proposition smaller.

Corollary 8.7. Let k be a positive integer. There are constants C > 0, R0 > 0
independent of s,R, f and sR > 0 for every R ≥ R0 such that if R ≥ R0 and 0 < s ≤
sR then ∫

S\(⋃b∈BSk
Bĝs (p

b,R))

|df |2ĝsdνĝs ≥ CR2

∫
S\(⋃b∈BSk

Bĝs (p
b,R))

|f |2dνĝs

for any f ∈ (H1,2(S, dĝs , νĝs)⊗ C)ρk .

Let

Ss :=
(
S, dĝs ,

νĝs
s

)
.

The next proposition was essentially shown in [14, Proposition 4.4].

Proposition 8.8. For any ε,A > 0 there is Rε,A > 0 and sε,A > 0 such that the
following holds. For any family fs ∈ (H1,2(Ss) ⊗ C)ρk such that ‖fs‖L2(Ss) = 1 and
sups>0 ‖df‖L2(Ss) ≤ A, we have∫

S\(⋃b∈BSk
Bĝs (p

b,Rε))

|f |2dνĝs
s

≥ 1− ε

for any 0 < s ≤ sε.

Proof. Put B(R) :=
⋃

b∈BSk
Bĝs(p

b, R). By Corollary 8.7, there is sR > 0 such
that

1 =

∫
S

|f |2dνĝs
s

=

∫
B(R)

|f |2dνĝs
s

+

∫
S\B(R)

|f |2dνĝs
s

≤
∫
B(R)

|f |2dνĝs
s

+
A2

CR2

for 0 < s ≤ sR. Therefore, we have the result by putting Rε = A/
√
Cε and sε = sRε

.

Proof of Theorem 4.3. Let fs ∈ (H1,2(Ss) ⊗ C)ρk such that sups(‖f‖2L2(Ss)
+

Eρk
s (fs)) < ∞. Now, since gs are Ricci-flat, the Ricci curvatures of ĝs have the

uniform lower bound by [14, Proposition 3.15]. Then by Proposition 8.8, we can
apply [14, Proposition 4.7] to this situation, then we obtain the strongly converging
subsequence {fsi}i ⊂ {fs}s.
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9. Convergence of the quantum Hilbert spaces. Let
(X,ω1, ω2, ω3,s, L, h,∇, μ) be as in the previous section. Denote by Hs :=
L2(X, gs, L

k, h) the Hilbert space consisting of L2-sections of the complex line bundle
Lk → X and let

Pk,s : Hs → H0(XJ1,s
, Lk), Pk,0 : H

k
R2 → Ker(Δk

R2)

be the orthogonal projections. Since the Ricci curvature of gs is zero, we may apply
the argument in [14, Section 5] to our situation, hence the analogous statement with
[14, Theorem 5.1] can be obtained as follows.

Theorem 9.1. Let k be a positive integer. We have a compact convergence

Pk,s →
⊕

b∈BSk

Pk,0

in the sense of Definition 3.5 as s→ 0.

By Theorem 9.1 and Kodaira Vanishing Theorem, we have

dimH0(XJ1,s
, Lk) = #BSk (33)

for any s > 0 and k > 0.
Now, let (ω1, ω2, ω3) be a hyper-Kähler structure onX, (L, h,∇) be a prequantum

line bundle on (X,ω1) and μ : X → P
1 be a special Lagrangian fibration coming from

the elliptic fibration XJ3
→ P

1 with 24 singular fibers of Kodaira type I1. Then by
Proposition 2.11, there is a family of hyper-Kähler structures (ω1, ω2, ω3,s) tending to
a large complex structure limit and ω3,1 = ω3. Therefore, we obtain Corollary 1.2 by
(33).
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