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Throughout this Supplementary Material, all of the equation numbers, section num-
bers, and references refer to the paper, “A Unified Monte-Carlo Jackknife for Small Area
Estimation after Model Selection”, by J. Jiang, P. Lahiri, and T. Nguyen.

Datta, Lahiri, and Maiti (2002) considered a data set on median income of four-person
families for the fifty states of U.S. and the District of Columbia using cross-sectional and
time series modeling. The primary source of data is the annual supplement to the March
Sample of the Current Population Survey (CPS), which provides individual annual income
data categorized into intervals of $2500. The direct surveyestimates were obtained from
the CPS using linear interpolation. Two secondary sources of data were also available. The
first source is the U.S. decennial census (Census) which produces median incomes for the
50 states and D.C. based on the “long form” filled out by approximately one-sixth of the
U.S. population. These census median income estimates are believed to have negligible
sampling errors. The second source is the Bureau of EconomicAnalysis (BEA) division of
the U.S. Department of Commerce, which produces per-capitaincome estimates. Since the
per-capita income estimates are not based on any sampling techniques, they do not have
any sampling errors associated with them. From the Census and BEA data, an adjusted
census median income (adjusted Census) is obtained by multiplying the preceding census
median income by the ratio of BEA per-capita income for the current year to that of the
preceding census year.

Following Dattaet al. (2002), we consider the four-person families data for the years
1979, and 1981–1989, that is, a total of 10 years. The direct survey estimates are denoted
by yit, wherei = 1, . . . , 51 corresponding to the 50 states and D.C., andt = 1, . . . , 10,
corresponding to the 10 years. The Census variable is denoted byx1,i (note that this variable
is at the state level only, i.e., does not change with the year), and the adjusted Census
variable is denoted byx2,it [note that this variable is at both state and time (year) levels].
The goal is to estimate the median income of four-person families for all 50 states of U.S.
and the D.C. for the year 1989. Dattaet al. (2002) usedx2 as the only covariate in their
modeling for the mean. As for the variance-covariance structure, the authors proposed a
random walk model for the state-level (vector-valued) random effects, in addition to the
sampling errors whose variances are known. We refer this model as DLM model. In a
similar context, Rao and Yu (1994) proposed a cross-sectional/time series model, which is
the same as the DLM model except that the variance-covariance structure of the random
effects follows that of a stationary AR(1) model. This modelis referred to as R-Y model.
We intend to compare the DLM model and R-Y model in this particular application. In
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addition, we are interested in entertaining an additional covariate variable, namely,x1.
Thus, we set up a model-selection framework as follows.

Let yi = (yit)1≤t≤10 denote the vector of direct survey estimators for statei (including
D.C.). LetXi = (x′it)1≤t≤10 denote the matrix of covariates for statei, where the first
component ofxit is 1, corresponding to the intercept, and the rest of the components are
subject to selection fromx1,it = x1,i, x2,it, or both. A candidate model can be expressed as

yi = Xiβ + ui + ei, i = 1, . . . , 51, (A.1)

where the vectorsui, ei are independent withui ∼ N(0,Σ) and ei ∼ N(0,Ψi). Here
Ψi is a diagonal matrix whose diagonal elements are known sampling variances (strictly
speaking, those are estimated using within area observations). The covariance matrixΣ is
eitherΣ(1), corresponding to the DLM model, orΣ(2), corresponding to the R-Y model.
More specifically,Σ(1) = σ2

vJ10 + σ2
ǫ ΓΓ′, with J10 being the10 × 10 matrix of 1’s, andΓ

being the10×10 lower triangular matrix with diagonal and non-zero off-diagonal elements
equal to1, andσ2

v , σ
2
ǫ are unknown variance components.Σ(2) = σ2

vJ10 + σ2
ǫ Σ(ρ), with

Σ(ρ) = (1 − ρ2)−1[ρ|t−s|]1≤s,t≤10, andσ2
v , σ

2
ǫ , ρ are unknown variance components with

|ρ| < 1. In all, (A.1) includes six candidate models:x1, x2, or both, for the covariates, and
Σ(1) or Σ(2) for Σ. Also, to apply McJack we need to have a full model that coversall of
the candidate models as special cases, and there is no such a model among the candidate
models. Note that, althoughx1, x2 is a full model for the covariates, the DLM and R-
Y covariance models do not cover each other as special cases.Therefore, we consider
the following full model which is not a candidate model–it isonly used for the McJack
computation: A convex linear combination ofΣ(1) andΣ(2):

Σf = σ2
vJ10 + σ2

ǫ {λΓΓ′ + (1 − λ)Σ(ρ)},

whereλ ∈ [0, 1] is an additional variance component. It is clear that,Σf includesΣ(1) and
Σ(2) as special cases. The full model is the one withx1, x2 as the covariates andΣf asΣ.

The BIC procedure is used to select the optimal model among the candidates. The
selected model has bothx1, x2 as the covariates, andΣ(1) asΣ. This model is denoted
by M∗. Based on the selected model, maximum likelihood estimation (MLE) is used to
obtain estimates of the model parameters, and the EBLUPs forthe 1989 median income of
4-person families are computed. The results are presented in Table A.1. Also presented are
the corresponding square roots of the MSPE estimates using McJack, taking into account of

the model selection, denoted bŷMSPE
1/2

1 . As a comparison, we also computed the McJack

MSPE estimates based onM∗ (assumed known), denoted bŷMSPE
1/2

2 . All numbers are
rounded to the nearest integers. The Monte-Carlo sample size for computing the McJack
estimates isK = 2000. It is seen that the two MSPE estimates are very close; for some
states one MSPE estimate is slightly larger while for the other states it is slightly smaller. At
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first, this might seem a little surprising, as one would expect thatM̂SPE1, which takes into
account the potentially additional variation in model selection, to be larger than̂MSPE2.
However, MSPE is not just the variation. This can be seen fromthe equation

MSPE = (prediction bias)2 + prediction variance. (A.2)

Although model selection may increase the second term on theright side of (A.2), it may
reduce the first term for selecting the optimal model, which fits the data better. Note that, al-
thoughM∗ is the optimal model for this particular data set, it may not always be the optimal
model, if the data are repeatedly generated, even under the same (estimated) parameters.
For example, out of the 2,000 Monte-Carlo samples generatedunder the M-estimate based
on the full data set,̂ψ, 85.3% selectedM∗; another 14.1% selected the model with onlyx2

as the covariate, and the sameΣ = Σ(1). Note that this is the same model as the one used
by Dattaet al. (2002), denoted byMdlm. Take a look at another example by considering
the M-estimate based on the data with thejth state deleted,̂ψ−j , wherej = 20 (the number
20 is randomly chosen from1, . . . , 51 by a computer). This time, out of the 2,000 Monte-
Carlo samples, 81.8% selectedM∗, and another 17.8% selectedMdlm. To the end, it all
depends on the relative contributions of the two terms on theright side of (A.2), when it
comes to the MSPE measure. It appears that, for this application, the overall MSPE is about
the same for the two McJack estimates. This may also be explained by the fact that there is
not much variation in model selection after all. Once again,using the above examples, for
the majority of the Monte-Carlo samples (85.3% and 81.8%) one hasM∗ as the selected
model, and almost all of the rest (14.1% and 17.8%)Mdlm as the selected model. Note that
the two models,M∗ andMdlm, are actually very close, especially in terms of the prediction
performance, and the two models combined counted for 99.4% and 99.6% of the selected
models, respectively, for those two examples.

For a similar reason, the MSPE estimates are not necessarilysmaller than the corre-
spondingΨi,10, which is the (estimated) sampling variance of the direct estimator. As
noted earlier, MSPE is not just a measure of variation. For the state of FL, for example,
bias appears to be a more significant factor than variation. One standard practice in SAE has
been to compare standard second order MSE estimates of EBLUPwith the corresponding
sampling variance estimates of the direct estimator. This is not a fair comparison because
the MSE estimates are derived using the same model that generates the estimates, so there
is an issue of “double-dipping”. By including variations due to model selection, we are at
least making an effort to make the comparison more fair than the standard practice.
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Table A1:Estimation of 1989 Median Income of 4-Person Families
State EBLUP M̂SPE

1/2

1 M̂SPE
1/2

2 State EBLUP M̂SPE
1/2

1 M̂SPE
1/2

2

ME 38360 2554 2729 NC 38482 682 663

NH 48938 360 370 SC 36039 1092 1130

VT 39056 1892 1841 GA 40113 1487 1326

MA 52018 851 885 FL 37294 3148 3102

RI 44918 337 360 KY 33156 579 586

CT 55118 687 678 TN 34231 1577 1637

NY 44199 240 238 AL 33394 3116 3058

NJ 54902 438 430 MS 30196 2350 2412

PA 39871 1224 1316 AR 29874 1529 1423

OH 40629 418 435 LA 34659 1606 1606

IN 38085 1616 1548 OK 35330 695 669

IL 43540 7236 7194 TX 36216 722 771

MI 43070 975 957 MT 32835 5667 5892

WI 41108 756 757 ID 32335 1900 1970

MN 42940 273 265 WY 36368 1084 1093

IA 36765 457 471 CO 40329 124 126

MO 38425 952 946 NM 29449 3581 3543

ND 34019 1400 1167 AZ 37962 1306 1330

SD 32323 1685 1723 UT 36856 1039 1007

NE 35819 207 218 NV 40622 876 926

KS 38774 1273 1306 WA 42001 1489 1526

DE 42791 463 470 OR 39566 1748 1699

MD 52395 468 489 CA 42586 717 737

DC 40232 7093 7304 AK 47359 990 1004

VA 46561 2156 2115 HI 45780 2360 2273

WV 29813 829 874


