
Annals of Mathematical Sciences and Applications

Volume 4, Number 2, 83–105, 2019

Projection methods for rational Riccati equations
arising in stochastic optimal control

Eric King-Wah Chu, Hung-Yuan Fan, and Liping Zhang

We consider the numerical methods of large-scale rational Ric-
cati equations, arising in stochastic optimal control. We propose
a projection method or a Krylov subspace interpretation of the
generalized Smith method. More importantly, we prove that some
solvability conditions of the rational Riccati equation and their
linearizations are inherited by the projected equation.
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1. Introduction

In this paper, we generalize the projection method to rational Riccati equa-

tions, arising in stochastic optimal control. This is the fourth paper in the

series of papers on the inheritance properties of projection methods for al-

gebraic and rational Riccati equations after [44, 45, 17].

1.1. Continuous-time rational Riccati equations

Consider the control system with state x and control u, governed by the Itô

differential equation [12, 14, 19, 20]:

(1) dx(t) = Ax(t) dt+Bu(t) dt+

N∑
i=1

[Aix(t) +Biu(t)] dwi(t), x(0) = x0.

The stochastic disturbances {wi(t)}t∈R+
are independent zero mean real

Wiener processes and the output y satisfies y(t) = Cx(t) + Du(t). Here

A,Ai ∈ Rn×n, B,Bi ∈ Rn×m, C ∈ Rl×n and D ∈ Rl×m for i = 1, · · · , N .

We denote the transpose by (·)�, the Moore-Penrose generalized inverse by

(·)† and the 2-norm by ‖ · ‖.
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For the control or stabilization of (1), we may choose u to minimize

J(x0, u) ≡ E
∫ ∞

0

[
x
u

]�
T

[
x
u

]
dt, T ≡

[
H L
L� R

]
≥ 0,

where H = CC� ∈ Rn×n, R ∈ Rm×m is positive definite, L ∈ Rn×m and
E denotes the expectation operator. This gives rise to the continuous-time
rational Riccati equation (CRRE):

(2) C(X) ≡ A�X +XA+H +Π1(X)− L(X)R(X)†L(X)� = 0,

with L(X) ≡ L +XB + Π12(X), R(X) ≡ R + Π2(X). The stochasticity of
(1) is embodied in

(3) Π(X) ≡
[

Π1(X) Π12(X)
Π12(X)� Π2(X)

]
,

where Π1(X) ≡
∑N

i=1A
�
i XAi, Π2(X) ≡

∑N
i=1B

�
i XBi and Π12(X) ≡∑N

i=1A
�
i XBi. The linear operator Π is said to be positive as Π(X) ≥ 0

for X ≥ 0 [36]. Note that the positivity of Π implies that of Π1 and Π2. The
optimal control is given by

(4) u = − [R+Π2(X)]† [L+XB +Π12(X)]� x,

with X being the unique maximal stabilizing solution to the CRRE (2). The
applications of projection methods on CRREs and discrete-time rational
Riccati equations (DRREs) will be discussed further in Sections 2 and 3.
We refer to CRREs and DRREs collectively as RREs.

1.2. What have been done

For algebraic Riccati equations (AREs) [30] without stochastic disturbances
(i.e., Π(X) = 0), they can be solved by the efficient doubling algorithms in
[9, 10] (see also the references on other methods therein). Basic results in
optimal control can be found in [33]; see also the surveys and reviews for
Riccati equations in [1, 18, 30].

A good detailed account of RREs (in continuous-time) by Damm can be
found in [12] and useful results are found in [14, 19, 20, 24]. Newton’s method
was applied in [12, 14] and modified Newton’s methods in [21, 24], with the
former considering the special case with R > 0 and Bi = 0 (i = 1, · · · , N),
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where the control u is deterministic. This special case, CRRE0, has a con-
stant rational term R−1 and has been investigated by Wonham [41, 42]. In
[16], the numerical solution of (2) in large-scale (or its discrete-time cousin
(14)) by Newton’s method was considered, driven by an efficient algorithm
for the generalized Lyapunov (or Stein) equations (GLEs or GSEs).

An algorithm of O(n3) computational complexity per iteration has been
proposed for small size GLEs by Damm in [2, 3, 12, 13]. The modified
Newton methods (MNMs) in [24, 25] have an O(n3) complexity per iteration
but converge linearly. Large-scale RREs have not been considered previously
except in [16]. For deterministic large-scale problems, please consult [5, 6,
7, 23, 27, 28, 34, 35] for CAREs, [4] for DAREs and [26, 29, 35, 37] for
Lyapunov and Stein equations, all applying Galerkin or Krylov subspace
methods [37, 38, 39, 40]. See also the recent surveys in [8, 38]. Alternatively,
as in [16], generalized Smith methods have been utilized in [11, 31, 32].

The solvability of the CRRE0 has been considered in [41]. Essentially,
the assumptions limit the influence of the stochastic disturbances in the
control system in (1). More general results on the solvability of the CRRE
(2) can be found in [12, Chapter 5] and [14], under generalized stabilizability
and detectability assumptions.

1.3. Main design

The initial stabilizing solution required in Newton’s method is difficult to
achieve [43]. The only feasible method for a general CRRE, not requiring any
initial stabilizing guess, is the homotopy method in [43], driven by n(n+1)/2
ordinary differential equations of the homotopy flow. However, when the size
of the problem n is large, this involves an overwhelming amount of computing
resources. A new approach is proposed below.

Firstly, from [16], the unique maximal stabilizing solution X of the
CRRE (2) (or DRRE (14)) is numerical low-rank, enabling a low-rank ap-
proximation of X. Happily, this is the basis of all projection method for
matrix equations. Secondly, the iterative solution process in [16] suggests
the Krylov subspace and Arnoldi processes in (5) and (7) (or, (15) and (16))
below for the projection method. Thirdly, after projection, the small pro-
jected CRRE (or DRRE) can then be solved efficiently by the homotopy
method in [43]. Finally, and importantly, the solvability of the projected
CRRE (or DRRE) will be inherited from that of the original CRRE (2) (or
DRRE (14)), as in [44, 45] for AREs, when the quantities θ1 ≡ maxi ‖ri�k Yk‖
and θ2 ≡ maxi,j ‖ri�k Ykr

j
k‖ in (10) (in terms of the Arnoldi residuals rik in

(6) and (7) as well as the solution Yk to the projected RRE) are small.
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1.4. Projection methods for AREs

In [44, 45] for large-scale AREs, the structure-preserving doubling algorithms
[11, 31] lead to the appropriate Krylov subspaces and Arnoldi processes.
Stabilizability, detectability and other sufficient conditions of solvability of
the ARE under consideration have been proved to pass onto the projected
equations, when the Arnoldi residuals are relatively small. The results in this
paper generalize those in [44, 45], with more complicated Krylov subspaces
and inheritance properties, because of the more complex concept of stability
relative to Π [12, 14, 19, 20, 43] and the lack of any link between the CRRE
(2) or DRRE (14), and any eigenvalue problems.

1.5. Main contributions

(1) We propose an algorithm for large-scale RREs, which does not require
any difficult initial stabilization (as in Newton-like methods).

(2) From [16], we propose an appropriate Krylov subspace for the projec-
tion method for RREs.

(3) We prove the solvability of the original ARE is inherited by the pro-
jected equation, under certain conditions.

1.6. Organization

We consider the application of projection methods to RREs, and the asso-
ciated generalized Lyapunov and Stein equations, in Sections 2 and 3. We
present the inheritance properties for RREs in Section 4 and some conclu-
sions in Section 5.

2. Projection methods for CRREs

Inspired by the solution of continuous-time rational Riccati and generalized
Lyapunov equations in [16], we apply the projection method with the gener-
alized Krylov subspace spanned by Vk, described as the following composite
Arnoldi process. With V0 = [C�, L�] scaled to have orthonormal columns
and A(γ) ≡ A− γI, we construct

(5) Zk = [A−�
(γ) Vk, A

�
1 Vk, · · · , A�

NVk].

We then scale [Vk, Zk] to have orthonormal columns by the QR factorization
[22], i.e., [Vk, Zk] = Vk+1Sk+1. In practice, we apply the following generalized
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Arnoldi processes. From the first column block A−�
(γ) Vk in (5), we have an

Arnoldi relationship for A−�
(γ) Vk and rearrangement leads to:

(6) A�Vk = VkΦ
�
k + v0k+1r

0�
k ,

with [Vk, v
0
k+1] having orthonormal columns and the Arnoldi residual r0k

hopefully small. Including (6) with the notation A0 ≡ A, we have the Arnoldi
relationship: (for i = 0, 1, · · · , N)

(7) A�
i Vk = VkΦ

i�
k + vik+1r

i�
k ,

and [Vk, v
i
k+1] has orthonormal columns. Then the QR factorization

[v0k+1, v
1
k+1, · · · , vNk+1] = Ṽk+1S̃k+1 gives rise to Vk+1 = [Vk, Ṽk+1] having

orthonormal columns.

Remark 2.1. The Arnoldi process in (5) and (7) is necessarily complicated
because of the need to include the stochastic components in Ai. Since we
rely on the Arnoldi relationships in (7), we may construct the Krylov sub-
space differently, using A� directly in place of A−�

(γ) in (5) [39]. Subsequent

development uses (7), so any Krylov subspaces satisfying (7) is applicable.

Let the projection matrix P = [P1, P2] with P1 ≡ Vk and P�P = I, the
Arnoldi relationships (7) then imply the useful equalities: (for all i)

P�
1 AiP1 = Φi

k, P�
1 AiP2 = rikv

i�
k+1P2.(8)

The Arnoldi residuals rik (i = 0, 1, · · · , N) play important parts in our

analysis. Let Xk = VkYkV
�
k . From (5) and (8) with B̃i ≡ P�

1 Bi, we ob-

tain Π̃1(Yk) ≡ P�
1 Π1(Xk)P1 =

∑N
i=1Φ

i�
k YkΦ

i
k, Π̃12(Yk) ≡ P�

1 Π12(Xk) =∑N
i=1Φ

i�
k YkB̃i, P

�
2 Π1(Xk)P1 = P�

2

∑N
i=1 v

i
k+1r

i�
k YkΦ

i
k and P�

2 Π12(Xk) =

P�
2

∑N
i=1 v

i
k+1r

i�
k YkB̃i. The projected CRRE, P�

1 C(Xk)P1 = 0, has the form:

(9) C11(Yk) ≡ Φ0�
k Yk+YkΦ

0
k+H11+Π̃1(Yk)−L1(Yk)R11(Yk)

†L1(Yk)
� = 0,

where L1(Yk) ≡ L1 + YkB̃0 + Π̃12(Yk), R11(Yk) ≡ R + Π̃2(Yk), L1 ≡ P�
1 L,

H11 = P�
1 HP1, B̃0 ≡ P�

1 B and Π̃2(Y ) ≡
∑N

i=1(P
�
1 Bi)

�Y (P�
1 Bi). The

projected CRRE (pCRRE) in (9) is small in size (where Φ0
k ∈ Rn0×n0 with

n0 � n), producing Yk efficiently. We need the pCRRE (9) to satisfy the
corresponding solvability condition, which will be proved in Section 4, when
the Arnoldi residuals rik (i = 0, · · · , N) are relatively small.
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In terms of errors, apply P� and P to the residual Rk ≡ C(Xk), with

F ≡ R(Xk)
†L(Xk)

� = R11(Yk)
†L(Xk)

�, F̃ ≡ R11(Yk)
†L1(Yk)

�,

we obtain

P�
2 Rk = P�

2

[
v0k+1r

0�
k YkP1 +

N∑
i=1

vik+1r
i�
k YkP

�
1 (Ai −BiF )

]

P�
2 RkP1 = P�

2

[
v0k+1r

0�
k Yk +

N∑
i=1

vik+1r
i�
k Yk(Φ

i
k − B̃�

i F̃ )

]
,

P�
2 RkP2 = P�

2

{
N∑
i=1

vik+1r
i�
k Yk

·

⎡⎣rikvi�k+1 − B̃i[R+ Π̃2(Yk)]
†

N∑
j=1

B̃�
j Ykr

j
kv

j�
k+1

⎤⎦⎫⎬⎭P2.

Estimating ‖P�RkP‖, with ρ1 ≡ ‖P�
2 RkP1‖ and ρ2 ≡ ‖P�

2 RkP2‖, we have

ρ1 ≤
[
‖Ykr0k‖2 +

N∑
i=1

∥∥∥Φi
k − B̃�

i F̃
∥∥∥2 ‖Ykrik‖2

]1/2
≤ (N + 1)1/2 φ1θ1,

ρ2 ≤

⎡⎣ N∑
i=1

∥∥∥ri�k Ykr
i
k

∥∥∥2 + N∑
i,j=1

∥∥∥ri�k YkB̃i[R+ Π̃2(Yk)]
†B̃�

j Ykr
j
k

∥∥∥2
⎤⎦1/2

≤ Nφ2θ
2
1 +N1/2θ2,

θ1 ≡ max
i≥0

{‖ri�k Yk‖}, θ2 ≡ max
i,j≥1

{‖ri�k Ykr
j
k‖},

(10) φ1 ≡ max
i≥1

{
1, ‖Φi

k − B̃iF̃‖
}
, φ2 ≡ max

i,j≥1

{
‖B̃i[R+ Π̃2(Yk)]

†B̃�
j ‖
}
,

we deduce that

‖Rk‖ ≤ ρ1 +O(
√
ρ1ρ2) ≤ (N + 1)1/2 φ1θ1 +O(θ1θ2).(11)

Note that θ1 and θ2, thus ρ1 and ρ2, can be small even when rik are large as
(Yk)ij → 0 as i, j → ∞, a feature of projection methods [44, Section 3.1]. As
in the deterministic case [44, 45], the residual Rk in (11) is bounded from
above essentially by θ1 ≡ maxi ‖ri�k Yk‖ and θ2 ≡ maxi,j ‖ri�k Ykr

j
k‖.
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2.1. Generalized Lyapunov equations

Consider the linearized version of the CRRE (2) or the GLE:

(12) LΠ1
(X) ≡ A�X +XA+Π1(X) +H = 0,

where LΠ1
is stable (i.e., L0(·) ≡ A�(·) + (·)A is stable with respect to Π1

[12]) and H ≥ 0.
The projection method, with the same Krylov subspace as in (5) and

(7) for CRREs, yields the projected GLE:

(13) L̃Π1
(Yk) ≡ P�

1 LΠ1
(P1YkP

�
1 )P1 = Φ0�

k Yk + YkΦ
0
k + Π̃1(Yk) +H11 = 0.

2.2. Truncation

Counter-intuitively, including more vectors in Vk during the Arnoldi process
in (5) and (7) may actually harm the accuracy or even the viability of the
projection method. For the “quality” of Vk and the condition of Yk, it is
important to truncate nearly dependent basis vectors during the Arnoldi
process. For a detailed discussion consult [44, Section 3.1].

3. Projection methods for DRREs

For DRREs and GSEs, we shall share notations with CRREs and GLEs
without confusion.

From [15, 19, 25], consider the following discrete-time stochastic control
system for the state x and output y:

x(t+1) = Ax(t)+Bu(t)+

N∑
i=1

[Aix(t) +Biu(t)]wi(t), y(t) = Cx(t)+Dv(t).

In stochastic optimal control, we minimize

Jd(x0, u) ≡ E
∞∑
t=0

[
x(t)
u(t)

]�
T

[
x(t)
u(t)

]
.

For the optimal control u = −F̃X(X)x, we require the maximal stabilizing
solution X of the discrete-time rational Riccati equation (DRRE):

(14) D(X) ≡ −X +H +Π1(X) +A�XA− L(X)R(X)†L(X)� = 0,
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with L(X) ≡ L + A�XB + Π12(X)), R(X) ≡ R + B�XB + Π2(X), and

F̃Y (Z) ≡ R(X)†L(X)�. The stochastic disturbances associated with Ai and

Bi manifest themselves in Π in (3).

The solution to (14) has been investigated theoretically and numerically

in [19, 25] and in more general forms in [15]. Inspired by the solution of

discrete-time algebraic Riccati and generalized Stein equations in [16], we

apply the projection method with the generalized Krylov subspace spanned

by Vk, described as the following composite Arnoldi process. From V0 =

[C�, L�] (scaled to have orthonormal columns), we construct

(15) Zk = [A�Vk, A
�
1 Vk, · · · , A�

NVk].

We may scale [Vk, Zk] to have orthonormal columns by the QR factorization,

i.e., [Vk, Zk] = Vk+1Sk+1. In practice, we apply the following generalized

Arnoldi processes. From the first column block A�Vk, it is easy to see that

we have a similar Arnoldi relationships as (7): (for i = 0, 1, · · · , N)

A�
i Vk = VkΦ

i�
k + vik+1r

i�
k ,(16)

with A0 ≡ A, [Vk, v
i
k+1] having orthonormal columns. Then from the QR

factorization [v0k+1, · · · , vNk+1] = Ṽk+1S̃k+1, we built Vk+1 = [Vk, Ṽk+1] with

orthonormal columns.

Let the projection matrix P = [P1, P2] with P1 ≡ Vk and P�P = I, and

Xk = VkYkV
�
k . The projected DRRE is P�

1 D(Xk)P1 = 0, of the form:

D11(Yk) ≡ −Yk +H11 + Π̃1(Yk) + Φ0�
k YkΦ

0
k − L1(Yk)R11(Yk)

†L1(Yk)
� = 0,

with L1(Yk) ≡ L1 + Φ0�
k YkB̃0 + Π̃12(Yk), R̃11(Yk) ≡ R + B̃�

0 YkB̃0 + Π̃1(Yk)

and R11(Yk) ≡ R+ B̃�
0 YkB̃0 + Π̃2(Yk). For errors, with

F ≡ R(Xk)
†L1(Xk)

� = R11(Yk)
†L(Xk)

�, F̃ ≡ R11(Yk)
†L1(Yk)

�,

A0 ≡ A and B0 ≡ B, we obtain

P�
2 Rk = P�

2

N∑
i=0

vik+1r
i�
k YkP

�
1 (Ai −BiF ),

P�
2 RkP1 = P�

2

N∑
i=0

vik+1r
i�
k Yk(Φ

i
k − B̃iF̃ ),



Projection methods for rational Riccati equations 91

P�
2 RkP2 = P�

2

{
v0k+1r

0�
k Yk

[
r0kv

0�
k+1 − B̃0R̃11(Yk)

†
N∑
i=1

B̃�
i Ykr

i
kv

i
k+1

]

+

N∑
i=1

vik+1r
i�
k Yk

⎡⎣rikvi�k+1 − B̃iR11(Yk)
†

N∑
j=1

B̃�
j Ykr

j
kv

i�
k+1

⎤⎦⎫⎬⎭P2.

With θ1 and θ2 as defined in (10), and φ1 ≡ maxi≥0

{
‖Φi

k − B̃iF̃‖
}

and

φ2 ≡ maxi,j≥0

{
‖B̃i[R+ B̃�

0 YkB̃0 + Π̃2(Yk)]
†B̃�

j ‖
}
, we obtain

ρ1 ≡ ‖P�
2 RkP1‖ ≤

[
N∑
i=0

∥∥∥Φi
k − B̃iF̃

∥∥∥2 ‖Ykrik‖2
]1/2

≤ (N + 1)1/2φ1θ1,

ρ2 ≡ ‖P�
2 RkP2‖ ≤

[
N∑
i=1

∥∥∥r0�k YkB̃0R̃11(Yk)
†B̃�

i Ykr
i
k

∥∥∥2

+

N∑
i=0

∥∥∥ri�k Ykr
i
k

∥∥∥2 + N∑
i,j=1

∥∥∥ri�k YkB̃iR11(Yk)
†B̃�

j Ykr
j
k

∥∥∥2
⎤⎦1/2

≤ (N +N2)1/2φ2θ
2
1 + (N + 1)1/2θ2,

treating the second-ordered term in ρ2 as a perturbation, we deduce that

‖Rk‖ ≤ ρ1 +O(
√
ρ1ρ2) ≤ (N + 1)1/2φ1θ1 +O(θ1θ2).(17)

Again from (17), θ1 ≡ maxi ‖ri�k Yk‖ and θ2 ≡ maxi,j ‖ri�k Ykr
j
k‖ can be small

even when rik are large as (Yk)ij → 0 as i, j → ∞.

3.1. Generalized Stein equations

Consider the linearized version of the DRRE (14) or the GSE:

SΠ1
(X) ≡ −X +A�XA+Π1(X) +H = 0,

where SΠ1
is stable (i.e., S0(·) ≡ −(·) +A�(·)A is stable with respect to Π1

[12]) and H ≥ 0.
The projection method, with the same Krylov subspace as in (5) and

(7) for CRREs, leads to the projected GSE:

S̃Π1
(Yk) ≡ P�

1 SΠ1
(P1YkP

�
1 )P1 = −Yk +Φ0�

k YkΦ
0
k + Π̃1(Yk) +H11 = 0.
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4. Inheritance properties for solvability

There are many sufficient conditions for the solvability of the CRREs. For
example, a unique stabilizing solution X exists for the RRE if the underlying
system is stabilizable relatively to Π, Condition (A6) on T , as well as some
null space condition holds for the generalized inverse. Particularly useful to
our discussion, we required X > 0, which is guaranteed by [43, Lemma 3.11].
See also Corollaries 3.7 and 3.10, and Lemma 3.8 in [43] for more related
results. Solvability of RREs is nontrivial, associated with different sufficient
conditions. From [12, Lemma 1.8.4] and [43, Section 3.1.1], the following
assumptions are required, in various combinations, for solvability:

(A1) (Stabilizability) (A,B) is c-stabilizable relative to Π; i.e., there exist
F ∈ Rm×n, X > 0 and

Π̂ ≡
[

I
−F

]�
Π

[
I

−F

]�
,

such that (A−BF )�X +X(A−BF ) + Π̂(X) < 0;
(A2) (Detectability) (H − LR†L�, A − BR†L�) is c-detectable relative to

Π1; i.e., there exist X > 0 such that

(A−BR†L�)�X +X(A−BR†L�) + Π1(X) < H − LR†L�;

(A3) There exists X̂ where Null[R + Π2(X̂)] ⊆ Null(B) and C(X̂) is
(semi-)positive definite.

(A4) Let R(X) ≡ R + Π2(X), L(X) ≡ L + XB + Π12(X) for CRREs, or
R(X) ≡ R + B�XB + Π2(X), L(X) ≡ L + A�XB + Π12(X) for
DRREs, we require

(18) Null(R(X)) ⊆ Null(S(X));

(A5) Null(R) ⊆ Null(L), Null(R) ⊆ Null(B) or Null(R+Π2(X)) ⊆ Null(B);
(A6) H > LR†L�; and

(A7) T ≡
[
R L�

L H

]
≥ 0.

We shall prove the inheritance properties for the sufficient conditions
(A1)–(A7) associated with the solvability of RREs. Previously in other pa-
pers on projection methods for AREs, as discussed in [44, 45], the solvability
of the projected AREs has been assumed. Only results for CRREs will be
shown and the analogous results for DRREs can be deduced similarly.
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4.1. Stabilizability and detectability

By [12, Lemma 1.7.2], the stabilizability of [A, (Ai), B, (Bi)] is equivalent to
the following:

if X ∈ C
n×n is an eigenvector of LA + Π1 corresponding to an eigenvalue

λ �∈ C−, then B∗X, B∗
i X �= 0.

Detectability and stabilizability are adjoint properties, with detectability of

[A, (Ai), C] being equivalent to the stabilizability of [A�, (A�
i ), C

�, (0)].

4.1.1. Inheritance of stabilizability. Expanding using the Kronecker

product, stabilizability is thus equivalent to

(19) M(s) ≡ [A− sI, B] f.r.,

for s �∈ C−, with “f.r.” abbreviating “full-rank” and

A ≡ I ⊗A+A⊗ I +

N∑
i=1

Ai ⊗Ai, B ≡ I ⊗ [B, B1, · · · , BN ].

More rigorously in terms of the minimum singular value, let

(20) τ [A, (Ai); B, (Bi)] ≡ min
s �∈C−

σminM(s).

The stabilizability of [A, (Ai);B, (Bi)] is equivalent to τ [A, (Ai);B, (Bi)] >

0.

First with A⊗ ≡ I ⊗ (P�AP ) + (P�AP ) ⊗ I, consider x1 = y1 ⊗ z1 =

[y1�1 , y1�2 ]� ⊗ [z1�1 , z1�2 ]�, we have

τ [A, (Ai); B, (Bi)] = min
s �∈C−

σmin [A− sI, B]

= min
s �∈C−

min
‖x1‖=1

∥∥∥∥x1�(P� ⊗ P�) [A− sI, B]
[
P ⊗ P 0

0 P ⊗ I

]∥∥∥∥
= min

s �∈C−
min

‖x1‖=1

∥∥∥∥∥
{
x1�
[
A⊗ +

N∑
i=1

(P�AiP )⊗ (P�AiP )− sI

]
,(

I ⊗ [P�B, P�Bi, · · · , P�BN ]
)}∥∥∥

= min
s �∈C−

min
‖x1‖=1

∥∥∥∥{y1� ⊗ (z1�P�AP ) + (y1�P�AP )⊗ z1�
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+

N∑
i=1

(y1�P�AiP )⊗ (z1�P�AiP )− sx1�,

y1� ⊗ (z1�[P�B, P�Bi, · · · , P�BN ])
}∥∥∥ .

With y1 = [y1�1 , 0�]�, y1 = [y1�1 , 0�]�, x11 = y11 ⊗ z11 and (8), we have

τ [A, (Ai); B, (Bi)] ≤ min
s �∈C−

min
‖x1

1‖=1∥∥∥∥∥
{[

y11
0

]�
⊗ (z1�1 [Φ0

k, r
0
kv

0�
k+1P2]) + (y1�1 [Φ0

k, r
0
kv

0�
k+1P2])⊗

[
z11
0

]�

+

N∑
i=1

(y1�1 [Φi
k, r

i
kv

i�
k+1P2])⊗ (z1�1 [Φi

k, r
i
kv

i�
k+1P2])

−s

[
y11
0

]�
⊗
[
z11
0

]�
,

[
y11
0

]�
⊗ (z1�1 [B̃0, B̃1, · · · , B̃N ])

}∥∥∥∥∥(21)

≤ min
s �∈C−

min
‖x1

1‖=1

∥∥∥∥∥
{
y1�1 ⊗ (z1�1 Φ0

k) + (y1�1 Φ0
k)⊗ z1�1 +

N∑
i=1

(y1�1 Φi
k)⊗ (z1�1 Φi

k)

−sy1�1 ⊗ z1�1 , y1�1 ⊗ (z1�1 [B̃0, B̃1, · · · , B̃N ])
}∥∥∥+ ψ1

k

= τ [Φ0
k, (Φ

i
k); B̃0, (B̃i)] + ψ1

k,(22)

where ‖y1 ⊗ z1‖ = ‖y1‖ · ‖z1‖, ϕ1 ≡ maxi{‖Φi�
k y11‖, ‖Φi�

k z11‖},
r1 ≡ maxi≥0{‖ri�k y11‖, ‖ri�k z11‖} and for j = 1:

ψj
k ≡

∥∥∥∥∥
[
yj1
0

]�
⊗
[

0

P�
2 v0k+1r

0�
k zj1

]�
+

[
0

P�
2 v0k+1r

0�
k yj1

]�
⊗
[
zj1
0

]�

+

N∑
i=1

{[
0

P�
2 vik+1r

i�
k yj1

]�
⊗
[

0

P�
2 vik+1r

i�
k zj1

]�
+

[
Φi�
k yj1
0

]�

⊗
[

0

P�
2 vik+1r

i�
k zj1

]�
+

[
0

P�
2 vik+1r

i�
k yj1

]�
⊗
[
Φi�
k zj1
0

]�}∥∥∥∥∥
≤
[
‖r0�k yj1‖2 + ‖r0�k zj1‖2 +

N∑
i=1

(
‖Φi�

k yj1‖2‖ri�k zj1‖2

+‖Φi�
k zj1‖2‖ri�k yj1‖2 + ‖ri�k yj1‖2‖ri�k zj1‖2

)]1/2
(23)
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≤
√

2(Nϕ1 + 1) (r1)2 +N(r1)4,

with y11 and z11 optimize the first term in (4.1.1). For a general x =
∑

j αjy
j⊗

zj with {yj ⊗ zj} being orthonormal, yj = [yj�1 , yj�2 ]�, zj = [zj�1 , zj�2 ]�

and ‖x‖2 =
∑

j α
2
j = 1, the proof follows similarly, with additional sum-

mations with respect to j and applications of the triangular inequality
in (4.1.1) and (23). Let ϕj ≡ maxi{‖Φi�

k yj1‖, ‖Φi�
k zj1‖}, ϕ ≡ maxj{ϕj},

rj ≡ maxi≥0{‖ri�k yj1‖, ‖ri�k zj1‖}, r̃ ≡ maxj{rj} and from (23):

(24) ψk ≡
√∑

j

(ψj
k)

2 ≤
√

2(Nϕ+ 1)r̃2 +Nr̃4,

the result in (22) for the general case has the form

(25) τ [A, (Ai); B, (Bi)] ≤ τ [Φ0
k, (Φ

i
k); B̃0, (B̃i)] + ψk.

Thus (24) implies that ψk = [2(Nϕ+1)]1/2r̃+O(r̃3) which will be small if r̃
is, or ‖ri�k yj1‖ and ‖ri�k zj1‖ are. From (25), the inheritance of stabilizability,
in the terms of τ in (20), holds when τ [A, (Ai); B, (Bi)] > ψk, bounding the
original system from unstabilizability by a distance of at least ψk.

4.1.2. Difficulties with detectability. The inheritance of the adjoint
property of detectability cannot be deduced similarly. Note that detectabil-
ity is substituted by (A6) in some theorems on solvability of RREs.

Expanding using the Kronecker product, detectability is equivalent to

(26) N (s) ≡
[
A− sI
I ⊗ C

]
f.r.,

for s �∈ C−, with A ≡ I ⊗ A + A ⊗ I +
∑N

i=1Ai ⊗ Ai as defined in (19),
without any Ci.

In terms of the minimum singular value, ignoring the argument for de-
generate Ci in τ , let

τ [A�, (A�
i ); C

�] ≡ min
s �∈C−

σminN (s).

The detectability of [A, (Ai), C] is equivalent to τ [A�, (A�
i ); C

�] > 0.
First consider x1 = y1 ⊗ z1 = [y1�1 , y1�2 ]� ⊗ [z1�1 , z1�2 ]�, we have

τ [A�, (A�
i ); C

�] ≡ min
s �∈C−

σmin

[
A− sI
I ⊗ C

]
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= min
s �∈C−

min
‖x1‖=1

∥∥∥∥[ P� ⊗ P� 0
0 P� ⊗ I

][
A− sI
I ⊗ C

]
(P ⊗ P )x1

∥∥∥∥
= min

s �∈C−
min

‖x1‖=1

∥∥∥∥[ A⊗ +
∑N

i=1(P
�AiP )⊗ (P�AiP )− sI
I ⊗ (CP )

]
x1
∥∥∥∥ .

Let A0 ≡ A, C̃ ≡ CP = [C1, 0] and for i = 0, 1, · · · , N :

P�AiP =

[
Φi
k rikv

i�
k+1P2

Ai
21 Ai

22

]
, Ãi ≡

[
Φi
k 0

Ai
21 Ai

22

]
, Âi ≡

[
Φi
k 0
0 0

]
.

With x1 optimizing the first term in (27), we then have

τ [A�, (A�
i ); C

�] ≤ min
s �∈C−

min
‖x1‖=1∥∥∥∥[ I ⊗ Ã0 + Ã0 ⊗ I +
∑N

i=1 Ãi ⊗ Ãi − sI
I ⊗ [C1, 0]

]
x1
∥∥∥∥+ ζ1,(27)

where y̌i2 ≡ vi�k+1P2y
1
2, ž

i
2 ≡ vi�k+1P2z

1
2 and

ζ1 ≡ ‖riky̌12‖+ ‖riky̌12‖+
N∑
i=1

‖riky̌12‖‖rikž12‖.

Assume that

(28) τ [A�, (A�
i ); C

�] > ζ1,

the first term in (27) is positive, indicating that the system associated with
A0

22 is stable. In particular, for some x1 = y1 ⊗ [0, z1�2 ]�, we have

(29) min
s �∈C−

min
‖x1‖=1

∥∥∥∥[ I ⊗ Ã0 + Ã0 ⊗ I +
∑N

i=1 Ãi ⊗ Ãi − sI
I ⊗ [C1, 0]

]
x1
∥∥∥∥ > 0.

Minimum singular value. Expanding (29), we have∥∥∥∥[ I ⊗ Ã0 + Ã0 ⊗ I +
∑N

i=1 Ãi ⊗ Ãi − sI
I ⊗ [C1, 0]

]
x1
∥∥∥∥

=

∥∥∥∥∥∥∥∥
[

A(s)
I ⊗ [C1, 0]

]⎡⎢⎢⎣
y11 ⊗ z11
y12 ⊗ z11
y11 ⊗ z12
y12 ⊗ z12

⎤⎥⎥⎦
∥∥∥∥∥∥∥∥ ,



Projection methods for rational Riccati equations 97

(after appropriate reordering of rows) with I1 ≡ Id, I2 ≡ In−d, I11 ≡ Id2 ,

I12 ≡ Id(n−d), I22 ≡ I(n−d)2 and

[
A(s)

In ⊗ [C1, 0]

]
≡

⎡⎢⎢⎢⎢⎣
A11(s) 0 0
A21 A22(s) 0
A31 A32 A33(s)

I1 ⊗ C1 0 0
0 I2 ⊗ C1 0

⎤⎥⎥⎥⎥⎦,
A11(s) ≡ I1 ⊗ Φ0

k +Φ0
k ⊗ I1 +

∑
i

Φi
k ⊗ Φi

k − sI11,

A21 ≡ A0
21 ⊗ I1 +

∑
i

Ai
21 ⊗ Φi

k,

A22(s) ≡ I2 ⊗ Φ0
k +A0

22 ⊗ I1 +
∑
i

Ai
22 ⊗ Φi

k − sI12,

A31 ≡
[
I1 ⊗A0

21 +
∑

iΦ
i
k ⊗Ai

21∑
iA

i
21 ⊗Ai

21

]
,

A32 ≡
[

0
I2 ⊗A0

21 +
∑

iA
i
22 ⊗Ai

21

]
,

A33(s) ≡
[
I1 ⊗A0

22 +Φ0
k ⊗ I2 +

∑
iΦ

i
k ⊗Ai

22 − sI12
A0

21 ⊗ I2 +
∑

iA21 ⊗Ai
22

∣∣∣∣
0

I2 ⊗A0
22 +A0

22 ⊗ I2 +
∑

iA
i
22 ⊗Ai

22 − sI22

]
.

From the zeroes in C and the fact that (26) implying the full-rank of

[A(s)�, C�]�, we have the nonsingularity of A33(s), which also implies

the same for A22(s). These imply the full rank of

⎡⎢⎢⎣
A11(s) 0
A21 A22(s)

I1 ⊗ C1 0
0 I2 ⊗ C1

⎤⎥⎥⎦ or

⎡⎣ A11(s)

I1 ⊗ C1

−(I2 ⊗ C1)A22(s)
−1A21

⎤⎦.

Either full-rank matrix does not lead to the full-rank of [A11(s)
�, I ⊗C�

1 ]�

we require, unless A21 = 0 which is untrue in general.
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Generalized Lyapunov equations. From (29), under the assumption of
(28), the system [Ã0�, (Ã�

i ); C̃
�] is detectable with respect to

Π̃1(X) ≡
[

Π̃
(1)
11 (X) Π̃

(1)
12 (X)

Π̃
(1)
21 (X) Π̃

(1)
22 (X)

]
=

N∑
i=1

Ã�
i XÃi.

Expanding with X = (Xij) (X21 = X�
12), it is easy to see that

Π̃
(1)
11 (X) = Π̂1(X11) +

N∑
i=1

(Φi�
k X12A

i
21 +Ai�

21X
�
12Φ

i
k +Ai�

21X22A
i
21),

Π̂1(X11) ≡
N∑
i=1

Φi�
k X11Φ

i
k, Π̃

(1)
12 (X) =

N∑
i=1

(Φi�
k X12A

i
22 +Ai�

21X22A
i
22),

Π̃
(1)
21 (X) = [Π̃

(1)
12 (X)]�, Π̃

(1)
22 (X) =

N∑
i=1

Ai�
22X22A22.

From [43, Theorem 3.1], there exists G such that Ã0 − GC̃ is stable with
respect to Π̃1, or there exists a positive definite solution X such that

Ã�
0 X +XÃ0 + Π̃1(X) +Q = 0, Q > 0.

To prove that [Φ0�
k , (Φi�

k );C�
1 ] is detectable with respect to Π̂1, we need to

find G such that Φ0
k − G1C1 is stable with respect to Π̂, or there exists a

positive definite solution X11 such that

Φ0�
k X11 +X11Φ

i
k + Π̂1(X11) +Q11 = 0, Q11 > 0.

Because Π̃ is quadratic in Ãi, inheritance of detectability can only be proved
to be inherited if Ai

21 = 0 (i = 0, 1, · · · , N).

4.2. Null space and other conditions

4.2.1. (A4). The inheritance the null space requirement (A4) or (18) by
the projected quantities

R̃(Yk) ≡ R(Xk), L̃(Yk) ≡ P�
1 L(P1YkP

�
1 ).

is obvious, provided that (18) holds from the structure of R, Bi, L and B,
independent of X. It is the result of the above definitions and the fact that,
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ignoring X or Xk, we have

Null(R̃(Xk)) = Null(R(Xk)) ⊆ Null(L(Xk)) ⊆ Null(L̃(Xk)).

4.2.2. (A3). For (A3), the null space conditions follows as that for (A4).
We need X̂ = P1YkP

�
1 then the (semi-)definiteness of C(X̂) is inherited by

C11(Yk). Condition (A3) provides an upper bound for the monotonely in-
creasing sequence of approximate solutionXk in the proof of solvability using
Newton’s iteration. This technical assumption is unavoidable but is rarely
checked. For the definiteness result, any numerically low-ranked solution
X = P1YkP

�
1 +O(ε) of C(X) > 0 enables the choice X̂ = P1YkP

�
1 provided

that the O(ε) term is small enough to preserve the strict inequality after
projection. For the semi-definite result, X̂ = 0 implies C(X̂) = H ≥ 0 or the
semi-definite requirement. The inheritance holds because C(Ŷ ) = H11 ≥ 0
for Ŷ = 0.

Because of the difficulty in the definiteness case (requiring a numerically
low-ranked solution X = P1YkP

�
1 +O(ε) of C(X) > 0), some may prefer to

abandon the existence results, for instance, in [43, Corollary 3.7].

4.2.3. (A5)–(A7). For (A5), it is clear, for R̃ = R̃(X) independent of X,
that

Null(R̃) = Null(R) ⊆ Null(L) ⊆ Null(P�
1 L) = Null(L1),

Null(R̃) = Null(R) ⊆ Null(B) ⊆ Null(P�
1 B) = Null(B̃0),

Null(R̃+ Π̃2(Yk)) = Null(R+Π2(Xk)) ⊆ Null(B) ⊆ Null(B̃0).

For (A6), we have

λmin(H − LR†L�) ≤ λmin

{
P�
1 (H − LR†L�)P1

}
= λmin(H11 − L1R̃

†L�
1 ).

For (A7), we have

[
I

P�

]
T

[
I

P

]
=

⎡⎣ R L�
1 L�

2

L1 H11 0

L2 0 0

⎤⎦ ≥ 0,

implying the definiteness of the analogous quantity after projection:

T̃ ≡
[
R̃ L�

1

L1 H11

]
=

[
R L�

1

L1 H11

]
≥ 0.
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Remark 4.1. Inheritance properties for DRREs can be considered using
similar approaches and techniques for CRREs. The definitions of stability
for GLEs and GSEs are similar to the stabilizability of CRREs and DRREs,
respectively. The inheritance of stability for projection methods for GLEs
and GSEs is a special case of the inheritance of stabilizability.

4.3. Inheritance for GLEs and GSEs

For the GLE (12), we want to show that stability of LΠ1
passes onto L̃Π1

of
the projected GLE (13). The stability of LΠ1

means that any eigenvalue λ
is stable (with negative real part) and the corresponding eigenvector X �= 0
satisfies

A�X +XA+Π1(X) = λX.

Denote Xij ≡ P�
i XPj (i, j = 1, 2). Apply P� and P from the left and the

right, with the help of the Arnoldi relationships (7) or the results in (8), the
(1,1)-subblock is

L̃11(X11) + R̃k = λX11,

R̃k ≡ X12P
�
2 v0k+1r

0�
k + r0kv

0�
k+1P2X

�
12

+

N∑
i=1

(
Φi�
k X12P

�
2 vik+1r

i�
k + rikv

i�
k+1P2X

�
12Φ

i
k + rikv

i�
k+1P2X22P

�
2 vik+1r

i�
k

)
,

considered only when X11 �= 0. Note that there are many more eigenvalues
(counting multiplicity) of LΠ1

than those of L̃Π1
and it is impossible for

all X11 = 0. The residual R̃k for the eigenvalue problem is hopefully small
of O(r̃) and the stability of LΠ1

will pass onto L̃Π1
if the distance of the

spectrum of L̃Π1
from the imaginary axis (stability radius) is greater than

O(r̃), excluding the original GLE being very ill-conditioned.
A more precise statement on the relationship between the spectra of A

and Φ0
k can be found in [44, Theorem 2.1] and a similar result for the spec-

tra LΠ1
and L̃Π1

may be obtained using perturbation techniques. However,
the above qualitative argument is adequate for our purpose. Inheritance of
solvability can also be investigated using the perturbation approach in [44,
Section 2.2.6].

5. Conclusions

For RREs of moderate sizes, only a few solution methods are available. Apart
from the homotopy method, Newton-type methods are difficult to initialize.
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Large-scale problems are difficult, if at all possible, to solve. The first paper

of its kind, we propose a projection method based on a generalized Krylov

subspace for large-scale RREs and the associated linear equations. The small

projected equations will be efficient to solve, possibly using the homotopy

method. We have also extended the inheritance properties of some solvability

conditions of projection methods, or the solvability of the original equation

is inherited by the projected one, when the Arnoldi residuals are relatively

small. We have only presented some theoretical results in this paper and

illustrative numerical examples for the projection method will follow in later

publications. A comprehensive comparison of different Krylov subspaces is

also left for the future.
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