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Orbit space curvature as a source of mass
in quantum gauge theory

Vincent Moncrief, Antonella Marini, and Rachel Maitra

It has long been realized that the natural ‘orbit space’ for non-
Abelian Yang-Mills dynamics (i.e., the reduced configuration space
of gauge equivalence classes of spatial connections) is a positively
curved (infinite dimensional) Riemannian manifold. Expanding
upon this result I.M. Singer was led to propose that strict positivity
of the corresponding Ricci tensor (computable from the rigorously
defined curvature tensor through a suitable zeta function regular-
ization procedure) could play a fundamental role in establishing
that the associated Schrödinger operator admits a spectral gap.
His argument was based on representing the (suitably regularized)
kinetic term in the Schrödinger operator as a Laplace-Beltrami
operator on this positively curved orbit space. In this article we
revisit Singer’s proposal and show how, when the contribution of
the Yang-Mills (magnetic) potential energy is taken into account,
the role of the original orbit space Ricci tensor is instead played by
a certain ‘Bakry-Émery Ricci tensor’ computable from the ground
state wave functional of the quantum theory. We next review the
authors’ ongoing Euclidean-signature-semi-classical program for
deriving asymptotic expansions for such wave functionals and dis-
cuss how, by keeping the dynamical nonlinearities and non-Abelian
gauge invariances fully intact at each level of the analysis, our ap-
proach surpasses that of conventional perturbation theory for the
generation of such approximate wave functionals.

Though our main focus is on Yang-Mills theory we derive the
corresponding orbit space curvature for scalar electrodynamics and
prove that, whereas the Maxwell factor remains flat, the interac-
tion naturally induces positive curvature in the (charged) scalar
factor of the resulting orbit space. This has led us to the conjec-
ture that such orbit space curvature effects could furnish a source
of mass for ordinary Klein-Gordon type fields provided the latter
are (minimally) coupled to gauge fields, even in the Abelian case.
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1. Introduction

A fundamental question in quantum gauge theory is whether the Schrödinger
operator for certain non-Abelian Yang-Mills fields admits a spectral gap.
Such a gap, if it exists, could represent the energy difference between the
actual vacuum state and that of the lowest energy ‘glueball’ states and
confirm the expectation that massless gluons cannot propagate freely as
photons do but must instead exhibit a form of ‘color confinement’. It seems
to be well understood that this question lies beyond the scope of conventional
perturbation theory and will require a more global analytical treatment for
its ultimate resolution.

Many years ago I.M. Singer proposed an elegant, geometrical approach
to this fundamental problem based on the fact that the classical, reduced
configuration space for Yang-Mills dynamics — namely the ‘orbit space’ of
spatial connections modulo gauge transformations — has a naturally in-
duced, curved Riemannian metric with everywhere non-negative sectional
curvature [1]. The classical Hamiltonian for the reduced dynamics — a real-
valued functional defined on the cotangent bundle of this orbit space —
consists of a ‘kinetic’ term induced from the spatial integral of the square of
the vectorial electric component of the full, spacetime Yang-Mills curvature
tensor and a ‘potential’ term induced from the spatial integral of the square
of its complementary, vectorial magnetic component. The non-vanishing cur-
vature of the Riemannian metric defined by the kinetic term arises from the
implementation of the Gauss-law constraint during the process of reduction
to the quotient, orbit space and was independently computed by several in-
vestigators [1, 2, 3]. The classical reduced dynamics is thus that for a system
point (namely a gauge equivalence class of spatial connections) moving on
a positively curved, infinite dimensional manifold under the influence of a
(non-negative) potential energy.

Upon canonical quantization the Schrödinger operator for this (pure
Yang-Mills) dynamical system will thus include a kinetic term that, formally
at least, encompasses the (negative1) Laplace-Beltrami operator for an in-
finite dimensional, curved Riemannian manifold — namely the orbit space
alluded to above. Whereas the (covariant) Hessian of sufficiently smooth
(wave) functionals can be rigorously defined in such infinite dimensional
contexts, its associated trace need not make sense without some suitable
regularization since the Hessian will not, in general, be trace class. Singer,

1We here adopt the usual physicists’ sign convention for the definition of a Lapla-
cian.
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in particular, proposed an elegant zeta function regularization scheme to
define the needed Laplacian [1].

A classical result in Riemannian geometry due to A. Lichnerowicz [4]
shows that the Laplace operator for a complete, connected (finite-dimen-
sional) Riemannian manifold necessarily exhibits a spectral gap provided
that the Ricci tensor of this manifold is bounded, positively, away from zero.2

Such a result however cannot be expected to extend, in any straightforward
way at least, to the infinite dimensional manifolds arising in quantum Yang-
Mills theory. First of all, as Singer pointed out, their Ricci tensors, which
would result from taking traces of corresponding (rigorously computable)
curvature tensors, are not in general well-defined — the curvature tensors
in question not being trace class — and would require a suitable regulariza-
tion for their meaningful formulation. Again Singer proposed zeta function
regularization as an elegant means of accomplishing this. Some such regular-
ization, however, is actually a desirable feature of the quantum procedure,
at least in 4 spacetime dimensions, since it allows the introduction of a
length scale into the quantum formalism. In the absence of such a scale no
hypothetical spectral energy gap could even be expressed in terms of the
naturally occurring parameters of the theory (Planck’s constant, the speed
of light and the Yang-Mills coupling constant).

Another difficulty with attempting to extend the Lichnerowicz argu-
ment to the infinite dimensional setting of interest here is that, thanks to
the Bonnet-Myers theorem, one knows that a complete, finite dimensional
Riemannian manifold with positive Ricci curvature bounded away from zero
is necessarily compact [5]. For a connected such manifold the lowest eigen-
value of its associated (negative) Laplacian always vanishes and corresponds
to a globally constant eigenfunction. That such an eigenfunction is never-
theless always normalizable follows from the manifold’s compactness. The
spectral gap referred to in Lichnerowicz’s theorem is thus simply the lowest
non-vanishing eigenvalue of the manifold’s (negative) Laplacian which, in
view of compactness, necessarily has a discrete spectrum.

Generalizations of Lichnerowicz’s theorem have been established under
less stringent conditions on the Ricci tensors provided that the manifolds
under study have finite diameters [6, 7]. L. Andersson has proven that Rie-
mannian Hilbert manifolds have finite diameters whenever their full sectional
curvatures are positively bounded away from zero [8] but this result does
not apply to the orbit space sectional curvatures of interest here since these

2It follows from the Bonnet-Myers theorem that such a manifold is necessarily
compact [5].
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latter admit (infinite dimensional) families of 2-planes on which they actu-
ally vanish. In any case the diameters of these Yang-Mills orbit spaces are
known to be infinite [9].

The true, normalizable ground state wave functional must necessarily
reflect the presence of the potential energy term in the Schrödinger operator.
In Section 2 we show how to modify the original Lichnerowicz argument (in
a finite dimensional setting) to allow for the occurrence of such a potential
energy term and show that a corresponding gap estimate follows therefrom
provided that a suitably defined ‘Bakry-Émery Ricci tensor’ is bounded
positively away from zero. This Bakry-Émery Ricci tensor differs from the
actual Ricci tensor by a term in the (covariant) Hessian of the logarithm
of the true ground state wave function. Its positivity could hold on a flat
or even negatively curved space and thus its applicability is not limited to
manifolds of finite diameter.

Furthermore the natural integration measure arising in this (generalized
Lichnerowicz) analysis includes the squared modulus of the ground state
wave function itself so that the total space, even it it has infinite diameter,
now has finite measure simply by virtue of the normalizability of the vac-
uum state. This should prove to be especially significant for any potential
extensions to infinite dimensional problems wherein formal Lebesgue mea-
sures no longer make sense but for which normalizable vacuum state wave
functionals are nevertheless expected to exist.

In Section 3 we discuss an ongoing program, under development by the
authors, to derive asymptotic expansions for the wave functionals of certain
interacting quantum field theories including, in particular Yang-Mills fields
[10, 11, 12]. Our ‘Euclidean signature semi-classical’ analysis extends the
applicability of certain elegant, microlocal methods to the case of bosonic
field theories of renormalizable type. It has the significant advantage over
conventional, Rayleigh-Schrödinger perturbation theory of keeping the non-
linearities and (if present) non-Abelian gauge invariances of an interacting
system fully intact at every level of the analysis. Our expectation is that it
should yield an asymptotic expansion for the needed, fully gauge invariant,
logarithm of the ground state wave functional that is far superior to any
attainable by conventional perturbation methods. The latter, by requiring
an expansion in the Yang-Mills coupling constant, disturb both the nonlinear
structure and the closely associated (non-Abelian) gauge invariance of the
Yang-Mills dynamical system at the outset and attempt to reinstate those
vital features only gradually, order-by-order in the expansion.

Though our main focus is on the Yang-Mills system we show in Section 4
how (non-vanishing) orbit space curvature also arises naturally through the
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(minimal) coupling of a Maxwell field to a charged scalar field. In this case
curvature arises only for the scalar factor of the (product) orbit space and
not for the Maxwell factor which remains flat. We are thus led to conjecture
that orbit space curvature could even serve as an independent source of mass
for matter fields themselves provided that they are (minimally) coupled to
(Abelian or non-Abelian) gauge fields.

Let (4)V := (R4, η), where

(1) η = ημν dxμ ⊗ dxν = −c2 dt⊗ dt+

3∑
i=1

dxi ⊗ dxi,

designate Minkowski space expressed in a standard (Lorentz frame) coor-
dinate system {xμ} = {ct, xi} and consider the Yang-Mills action func-
tional (for a compact gauge group G) defined over domains Ω of the form
Ω = I×R3 where I = [t0, t1]. Variation of this action with respect to the time
component of the spacetime Yang-Mills connection field yields the so-called
Gauss-law constraint equation which, for each fixed t ∈ I, may be viewed
as an elliptic equation on R3 for this time component — a Lie-algebra val-
ued function. If, with suitable boundary conditions imposed, one solves this
constraint and substitutes the solution back into the action, the resulting
reduced kinetic term (a quadratic form in the ‘velocity’ of the spatial con-
nection) is found to be degenerate along gauge orbit directions but smooth,
gauge invariant and positive definite in the transversal directions [1, 2, 3].
It thus follows that this kinetic term defines a smooth, Riemannian metric
on the natural ‘orbit space’ of spatial connections modulo gauge transfor-
mations. This orbit space is (at least almost everywhere) itself a smooth,
infinite dimensional manifold and provides the geometrically natural (re-
duced) configuration space for (classical) Yang-Mills dynamics.

A corresponding smooth potential energy functional is induced on this
orbit space by the integral over R3 (at fixed t) of the square of the curvature
of the spatial connection field — the ‘magnetic’ component of the curvature
of the full spacetime connection field. A Legendre transformation leads in
turn to the Hamiltonian functional for the classical dynamics which takes
the ‘standard’ form of a sum of (curved space) kinetic and potential energies.

The sectional curvature of this reduced configuration space was inde-
pendently computed in [1, 2, 3] and shown to be everywhere non-negative
but almost everywhere non-vanishing whenever the gauge group G is non-
Abelian. Though Singer discussed the need for a suitable regularization
scheme to make sense of the formally (positively) divergent Ricci tensor
of the orbit space metric, the actual form of such a regulated Ricci tensor
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seems still to be unknown. It would be most interesting if a suitably defined
Ricci tensor could be shown to be bounded, positively away from zero on
this orbit space, especially inasmuch as we think it quite unlikely that the
Bakry-Émery ‘enhancement’ of this tensor would nullify its (hypothetical)
positivity properties but perhaps, more likely, complement them.3 Further-
more, as we shall amplify near the end of Section 2, it seems quite plausible
that strict positivity of the Bakry-Émery Ricci tensor, though sufficient for
the implication of a spectral gap, is not absolutely necessary for this con-
clusion to hold.

2. Spectral gap estimates

A lower bound for the spectral gap of the Laplacian of a complete Rie-
mannian manifold having strictly positive Ricci curvature was derived in
a classic work by Lichnerowicz [4]. In view of the Bonnet-Myers theorem
however such a manifold must be compact and, in particular, have its diam-
eter bounded from above in terms of the assumed, positive lower bound on
the Ricci tensor [5]. For compact manifolds the spectrum must of course be
discrete, and thus exhibit a gap, but, in the absence of positive Ricci curva-
ture, further geometrical information about the manifold would be needed
to bound the actual gap. A flat torus, for example can have an arbitrarily
large diameter and a corresponding, arbitrarily small gap.

For Schrödinger operators on the other hand, wherein the Laplacian is
supplemented with a potential energy term, one can modify Lichnerowicz’s
argument so that the role of the Ricci tensor in the spectral gap estimate
is now played by the so-called Bakry-Émery Ricci tensor which includes,
indirectly, information about the potential energy function. For pure geom-
etry problems, which need have no Schrödinger interpretation, the relevant
Bakry-Émery tensor often arises from the study of so-called metric measure
spaces wherein the natural Riemannian volume element is multiplied by a
smooth positive function [13, 14].

In the Schrödinger context in particular, however, manifold compact-
ness may no longer be needed since, in the revised argument, only posi-
tivity of the Bakry-Émery Ricci tensor is required to bound the spectral
gap from below and, depending upon the nature of the potential energy
involved, this condition may well hold in the presence of vanishing or even
negative ordinary Ricci curvature. In an infinite dimensional, field theoretic

3This would be true for example if the relevant logarithm were (almost ever-
where) convex.
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setting on the other hand further possibilities may also arise in that pos-
itive Ricci curvature, which typically requires a suitable regularization to
even be defined, need no longer imply manifold compactness. Setting such
complications momentarily aside though, we sketch below the derivation
of the relevant ‘Bochner identity’ for a conventional, kinetic-plus-potential
Schrödinger operator defined over a (smooth, connected, complete and ori-
entable) Riemannian n-manifold {M, g}.

Let Δg designate the covariant Laplacian (i.e., Laplace-Beltrami opera-
tor) given, in local coordinates for {M, g} by

(2) Δg :=
1

μg
∂i(μgg

ij∂j)

where μg :=
√
det g, the natural volume element for the given manifold. If

V : M → R is a smooth function we define a corresponding Schrödinger
(Hamiltonian) operator Ĥ, for a ‘particle’ with mass m > 0, by

(3) Ĥ := − �2

2m
Δg + V

(with � := h/2π the reduced Planck constant) and assume that {M, g} and
V have been chosen so that Ĥ is well-defined and self-adjoint on a suitable
domain in L2(M, g).

We also assume that the time-independent Schrödinger equation,

(4) ĤΨ = EΨ,

admits a (square integrable) ground state wave function,

(5)
(0)

Ψ =
(0)

Ne−S/�,

with corresponding eigenvalue E =
(0)

E ∈ R, where S : M → R is a smooth

function and
(0)

N ∈ C a normalization constant (unique up to phase) chosen
so that

(6)

∫
M

μg

(0)

Ψ †(0)

Ψdnx = |
(0)

N |2
∫
M

μge
−2S/�dnx = 1.

Normalized excited state wave functions, orthogonal to the ground state,
are expressible in the form

(7)
(∗)

Ψ =
(∗)
ϕe−S/�,
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with
(∗)
ϕ : M → C, and satisfy

〈
(∗)

Ψ|
(∗)

Ψ〉 :=
∫
M

μg

(∗)

Ψ †(∗)Ψdnx

=

∫
M

μg
(∗)
ϕ †(∗)

ϕe−2S/�dnx = 1

(8)

and

(9) 〈
(∗)

Ψ|
(0)

Ψ〉 :=
∫
M

μg
(∗)
ϕ † ·

(0)

Ne−2S/�dnx = 0

where
(∗)

Ψ † =
(∗)
ϕ †e−S/� is the complex conjugate of

(∗)

Ψ.

Noting that

(Ĥ −
(0)

E)
(∗)

Ψ = (Ĥ −
(0)

E)(
(∗)
ϕe−S/�)

=
−�2

2m

[
Δg

(∗)
ϕ− 2

�
S |k(∗)

ϕ|k

]
e−S/�

(10)

where S |k(∗)
ϕ|k := gk�(∇kS)(∇�

(∗)
ϕ), with |k = ∇k designating covariant differ-

entiation with respect to g, we see that if
(∗)

Ψ is an actual eigenstate of Ĥ,

with eigenvalue E =
(∗)

E ∈ R, then

(11) (Ĥ −
(0)

E)
(∗)

Ψ = (
(∗)

E −
(0)

E)
(∗)

Ψ

or, equivalently

(12)
−�2

2m

[
Δg

(∗)
ϕ− 2

�
S |k(∗)

ϕ|k

]
= (

(∗)

E −
(0)

E)
(∗)
ϕ.

The operator

(13) Ĥ := − �2

2m

[
Δg −

2

�
S |k∇k

]
,

which is self-adjoint with respect to the measure μge
−2S/�dnx on M, encom-

passes the so-called Bakry-Émery or Witten Laplacian (on functions) and
its lowest nontrivial eigenvalue (in the case of a discrete spectrum) defines

the spectral gap,
(1)

E −
(0)

E of principal interest herein.



Orbit space curvature as a source of mass in QCD 321

From equations (10–12) one finds that

(
(∗)

E −
(0)

E)

∫
M

(∗)

Ψ †(∗)Ψμgd
nx = (

(∗)

E −
(0)

E)

∫
M

(∗)
ϕ †(∗)

ϕe−2S/�μgd
nx

=
�2

2m

∫
M

μge
−2S/�(∗)

ϕ †
|k

(∗)
ϕ |kdnx

− �2

2m

∫
M

μg

(
(∗)
ϕ †(∗)

ϕ |ke−2S/�
)
|k
dnx

=
�2

2m

∫
M

μge
−2S/�(∗)

ϕ †
|k

(∗)
ϕ |kdnx

(14)

where the vanishing of the integral of the divergence follows from the (as-

sumed) self-adjoincy of Ĥ −
(0)

E. In view of its assumed orthogonality to the

ground state
(∗)
ϕ cannot be constant and thus (14) immediately implies that

(
(∗)

E −
(0)

E) > 0 (in this case of a discrete spectrum). To put a quantitative

lower bound on this gap however requires a further argument.

To this end define, for any smooth function ϕ̃ : M → C, the quantity

(15) Q̃ϕ̃ := gij(∇iϕ̃
†)(∇jϕ̃)e

−2S/�

and apply the covariant Laplacian thereto. The result can be expressed as

ΔgQ̃ϕ̃ = ∇k∇k(g
ijϕ̃ †

|iϕ̃|je
−2S/�)

= −2

(
2m

�2

)2 [
(Ĥ −

(0)

E)(ϕ̃ †e−S/�)
] [

(Ĥ −
(0)

E)(ϕ̃e−S/�)
]

+ 2ϕ̃ †
|ijϕ̃

|ije−2S/� + 2Rijϕ̃
†|iϕ̃ |je−2S/� +

4

�
S |ijϕ̃ †

|iϕ̃|je
−2S/�

+

{
ϕ̃|je−2S/�

(
ϕ̃
†|k
|k − 2

�
S |kϕ̃ †

|k

)
+ ϕ̃†|je−2S/�

(
ϕ̃

|k
|k − 2

�
S |kϕ̃|k

)

− 2

�
S |jϕ̃†|kϕ̃|ke

−2S/�
}

|j

(16)

where the Ricci tensor, Rijdx
i ⊗ dxj , of the metric g has arisen from the

commutation of covariant derivatives followed by contraction of the resultant

curvature tensor. This formula is the ‘Bochner identity’ referred to above and

it naturally incorporates the Bakry-Émery Ricci tensor RS = RS
ijdx

i ⊗ dxj
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defined by

(17) RS
ij = Rij +

2

�
S|ij .

Taking, for the moment, ϕ̃ to have compact support and integrating (16)

over M one arrives at

2

(
2m

�2

)2 ∫
M

μg

[
(Ĥ −

(0)

E)(ϕ̃ †e−S/�)
] [

(Ĥ −
(0)

E)(ϕ̃e−S/�)
]
dnx

=

∫
M

μg

{
2

(
Rij +

2

�
S|ij

)
ϕ̃†|iϕ̃ |je−2S/� + 2ϕ̃ †

|ijϕ̃
|ije−2S/�

}
dnx

= 2

(
2m

�2

)2 ∫
M

μg

{
(ϕ̃ †e−S/�)(Ĥ −

(0)

E)2(ϕ̃e−S/�)
}
dnx

(18)

where the final equality results from the self-adjoincy of the operator

Ĥ −
(0)

E.

If now
(1)

Ψ =
(1)

ϕe−S/� is an eigenstate of Ĥ with eigenvalue
(1)

E corresponding

(in this case of a discrete spectrum) to a minimally excited state then one

can approximate this state by a sequence of functions of compact support,

Ψ̃� = ϕ̃�e
−S/� −−−→

�→∞

(1)

Ψ =
(1)

ϕe−S/�, the space of which densely filling the

relevant Hilbert space, and conclude from (18) that, in the limit,
(1)

Ψ =
(1)

ϕe−S/�

satisfies

2

(
2m

�2

)2

(
(1)

E −
(0)

E)2
∫
M

μg

(1)

Ψ †(1)

Ψdnx

= 2

(
2m

�2

)2

(
(1)

E −
(0)

E)2
∫
M

μg
(1)

ϕ †(1)

ϕe−2S/�dnx

=

∫
M

μg

{
2

(
Rij +

2

�
S |ij

)
(1)

ϕ †
|i

(1)

ϕ|je
−2S/� + 2

(1)

ϕ †
|ij

(1)

ϕ |ije−2S/�
}
dnx

= 2

(
2m

�2

)
(

(1)

E −
(0)

E)

∫
M

μg
(1)

ϕ †
|k

(1)

ϕ |ke−2S/�dnx

(19)

where the last equality results from applying (14) to the case at hand.

Since
(1)

Ψ =
(1)

ϕe−S/� is orthogonal to the ground state
(1)

ϕ cannot be constant
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and thus one gets from (19) that

(
(1)

E −
(0)

E)

=

⎧⎪⎪⎨
⎪⎪⎩

�2

2m

∫
M

μg

{(
Rij +

2

�
S |ij

)
(1)

ϕ †
|i

(1)

ϕ|je
−2S/� +

(1)

ϕ †
|ij

(1)

ϕ |ije−2S/�
}
dnx∫

M
μg

{
(1)

ϕ †
|k

(1)

ϕ |ke−2S/�
}
dnx

⎫⎪⎪⎬
⎪⎪⎭

≥

�2

2m

∫
M

μg

{
e−2S/�

(
Rij +

2

�
S |ij

)
(1)

ϕ †
|i

(1)

ϕ|j

}
dnx∫

M
μg

{
e−2S/�(1)

ϕ †
|k

(1)

ϕ |k
}
dnx

≥ inf
ϕ̃∈A

�2

2m

∫
M

μg

{
e−2S/�RS

ijϕ̃
†|iϕ̃ |j

}
dnx∫

M
μg

{
e−2S/�ϕ̃ †

|kϕ̃
|k
}
dnx

(20)

where A is the space of smooth functions on M satisfying

(21)

∫
M

μge
−2S/�ϕ̃ †ϕ̃dnx = 1

and

(22)

∫
M

μge
−2S/�ϕ̃ † · 1dnx = 0.

From the foregoing it follows that if the Bakry-Émery Ricci tensor,RS =
RS

ijdx
i ⊗ dxj satisfies the global positivity condition,

(23) RS
ijv

ivj ≥ 1

�2o
gijv

ivj ,

for an arbitrary vector field v = vi∂i on M, for some constant �o > 0 (with
the dimensions of length), then the spectral gap satisfies

(24)
(1)

E −
(0)

E ≥ �2

2m

1

�2o
.

As a special case of the above consider a (multi-dimensional) harmonic
oscillator on Euclidean Rn with oscillation frequencies 0 < ω1 ≤ ω2 ≤ · · · ≤
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ωn along the various Cartesian coordinate axes. The function S is then given
by

(25) S =
1

2

n∑
j=1

mωj(x
j)2

so that

(26)
2

�

∂2S
∂xj∂x�

=
2m

�
ωjδj� (no sum on j )

and thus that

(27) RS
j�v

jv� ≥ 2mω1

�
δj�v

jv�

It follows from (24), taking 1
�2o

= 2mω1

�
, that

(28)
(1)

E −
(0)

E ≥ �ω1.

That the gap estimate is sharp in this case results from the fact that
(1)

ϕ is
a first order Hermite polynomial in x1 which, being linear in x1, satisfies
(1)

ϕ|ij = 0.
In the foregoing we assumed that the excited state spectrum was discrete.

Suppose instead that it is continuous with
(1)

E >
(0)

E designating the infimum of
the (continuous) excited state spectrum. From the spectral decomposition
theorem [15] it follows that, for any ε > 0, there will exist normalizable
states, Ψε, orthogonal to the ground state, satisfying∫

M
μgΨ

†
ε (Ĥ −

(1)

E)Ψεd
nx ≥ 0,(29) ∫

M
μg

{[
(Ĥ −

(1)

E)Ψε

]† [
(Ĥ −

(1)

E)Ψε

]}
dnx ≤ ε2

∫
M

μgΨ
†
εΨεd

nx(30)

and

(31)

∫
M

μgΨ
†
ε

(0)

Ψdnx = 0

Note that the imposition of (31) is essential for the validity of (29) since

otherwise one could simply take Ψε →
(0)

Ψ to get a counterexample. One can
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assume for convenience though that Ψε has compact support and is smooth
since the space of such functions is dense in the Hilbert space of interest.

From the Schwarz inequality one has, upon appealing to (30), that

0 ≤
∫
M

μgΨ
†
ε (Ĥ −

(1)

E)Ψεd
nx

≤ (

∫
M

μgΨ
†
εΨεd

nx)1/2
(∫

M
μg

{[
(Ĥ −

(1)

E)Ψε

]† [
(Ĥ −

(1)

E)Ψε

]}
dnx

)1/2

≤ ε

∫
M

μg(Ψ
†
εΨε)d

nx

(32)

Using the fact that (Ĥ−
(1)

E) is a real, self-adjoint operator it is easily verified
that ∫

M
μg

{[
(Ĥ −

(0)

E)Ψε

]† [
(Ĥ −

(0)

E)Ψε

]}
dnx

=

∫
M

μg

{[
(Ĥ −

(1)

E)Ψε

]† [
(Ĥ −

(1)

E)Ψε

]
+ (

(1)

E −
(0)

E)2Ψ †
εΨε + 2(

(1)

E −
(0)

E)Ψ †
ε (Ĥ −

(1)

E)Ψε

}
dnx

≤ ε2
∫
M

μgΨ
†
εΨεd

nx+ 2(
(1)

E −
(0)

E)ε

∫
M

μgΨ
†
εΨεd

nx

+ (
(1)

E −
(0)

E)2
∫
M

μgΨ
†
εΨεd

nx

= (
(1)

E −
(0)

E + ε)2
∫
M

μgΨ
†
εΨεd

nx

(33)

where, in the final step, we have applied (30) and (32).
Setting Ψε = ϕεe

−S/� and combining (33) with (18), with ϕ̃ → ϕε, we
get

2

(
2m

�2

)2

(
(1)

E −
(0)

E + ε)2
∫
M

μg(Ψ
†
εΨε)d

nx

≥ 2

(
2m

�2

)2 ∫
M

μg

[
(Ĥ −

(0)

E)Ψ †
ε

] [
(Ĥ −

(0)

E)Ψε

]
dnx

= 2

(
2m

�2

)2 ∫
M

μg

{[
(Ĥ −

(0)

E)(ϕ †
ε e

−S/�)
] [

(Ĥ −
(0)

E)(ϕεe
−S/�)

]}
dnx

(34)
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= 2

∫
M

μg

{(
Rij +

2

�
S|ij

)
ϕ†|i
ε ϕ|j

ε e
−2S/� + ϕ †

ε|ijϕ
|ij
ε e−2S/�

}
dnx

≥ 2

∫
M

μg

{(
Rij +

2

�
S|ij

)
ϕ†|i
ε ϕ|j

ε e
−2S/�

}
dnx

Thus, assuming the Bakry-Émery bound (23), one arrives at

(
(1)

E −
(0)

E + ε)2
∫
M

μg(Ψ
†
εΨε)d

nx ≥
(

�2

2m

)2
1

�2o

∫
M

μgϕ
†|i
ε ϕ|j

ε gije
−2S/�dnx

=
�2

2m�2o

∫
M

μgΨ
†
ε (Ĥ −

(0)

E)Ψεd
nx ≥ �2

2m�20
(

(1)

E −
(0)

E)

∫
M

μgΨ
†
εΨεd

nx

(35)

where, in the final steps, we have appealed to (10) and (29) together with

an integration by parts. Setting
(1)

E −
(0)

E := ΔE > 0 we thus get from (35)
that

(36) ΔE + 2ε+
ε2

ΔE
≥ �2

2m�2o
, ∀ ε > 0

and thus that

(37) ΔE ≥ �2

2m�20

One might still wonder whether
(1)

E −
(0)

E = 0, i.e., with the normalizable
ground state embedded at the bottom of a continuous excited state spec-
trum, is a remaining possibility. To exclude this, at least heuristically, (under
the Bakry-Émery assumption (23)), note that (34) then gives
(38)∫

M
μg

{
ϕ †
ε|ijϕ

|ij
ε +

1

�20
ϕ †
ε|jϕ

|j
ε

}
e−2S/�dnx≤

(
2m

�2

)2

ε2
∫
M

μgϕ
†
ε ϕεe

−2S/�dnx

But a sequence, ϕ1/�, of normalizable functions whose gradients converge to

zero in H1(M,μge
−2S/�)-norm would have their gradients converging to zero

almost everywhere and thus could not converge to a smooth limit orthogonal
to the ground state.

Although global positivity of the Bakry-Émery Ricci tensor yields the
quantitative lower bound (37) for the spectral gap it is almost surely not
strictly needed for the existence of at least some gap. Suppose for example
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thatRS = RS
ij dx

i⊗dxj actually vanishes on some lower dimensional variety
embedded in M but is strictly positive on the complement. In view of the
Hessian terms occurring in (20) and (34) one cannot simply arrive at a

vanishing gap by assuming that the gradients of
(1)
ϕ and ϕε respectively have

their supports concentrated on the zero set of RS . To convert this intuition
to a quantitative estimate however would require a more detailed analysis
which we shall not pursue here. It is worth emphasizing though that (23)
is almost certainly only a sufficient condition for the existence of a spectral
gap.

The foregoing has primarily been a rather straightforward application
of some familiar techniques of geometric analysis (e.g. Bochner identities,
the Schwarz inequality, Rayleigh quotient variational arguments, spectral
theory) to the specific context of Schrödinger eigenvalue problems formu-
lated on curved manifolds. In the mathematical literature on metric mea-
sure spaces and Bakry-Émery curvature (cf., [13, 14] and references cited
therein) one often simply specifies the metric measure factor (the analogue
of our e−2S/�) and requires it to have certain desirable analytical properties
(e.g., boundedness of S or of its gradient) depending upon the theorem to be
proven (e.g., a generalization of the Bonnet-Myers theorem implying man-

ifold compactness). For us on the other hand
(0)

Ψ :=
(0)

Ne−S/� is the ground
state wave function for the Schrödinger eigenvalue problem under study and
the ‘background’ Riemannian manifold {M, g} is non-compact for the cases
of most interest. Thus, for us, S is never freely specifiable but must satisfy
the relevant differential equation and associated boundary conditions. In
particular S will not be bounded (since this is incompatible with a normal-
izable ground state on a non-compact manifold of infinite volume) nor will
it (as already seen in elementary examples) have bounded gradient. Thus,
unfortunately, many of the hypotheses imposed upon S in the differential
geometry literature are inappropriate for us and, of course, vice-versa.

Our ultimate aim, on the other hand, is to extend the ideas sketched
above to the infinite dimensional ‘configuration’ spaces (typically Rieman-
nian Hilbert manifolds) arising in the functional analytic approach to certain
quantum field theories. The first step in this direction is, of course, to make
sense of the Schrödinger operator itself. Whereas the covariant Hessian of a
sufficiently smooth functional over such a space is still well-defined its cor-
responding metrical ‘trace’, or ‘Laplacian’, will not in general make sense
without some suitable regularization since the Hessian under study will not,
in general, be ‘trace class’. There have however been a number of proposals
in the literature for how best to regularize the formal functional Laplacians
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that occur in the Schrödinger operators for bosonic quantum field theories,

in particular gauge theories. Singer, for example, proposed an elegant ‘zeta

function’ regularization scheme [1]. Later Hatfield [16] and quite recently

Krug [17] have advanced alternative proposals, equally applicable to quan-

tum gauge theories — the latter, in particular, involving a gauge invariant

‘point splitting’ technique.

If one tracks through the derivation above of the Bochner identity for

the model, finite dimensional problem (16) and imagines extending this cal-

culation to the field theoretic setting of primary interest herein, it becomes

clear that the ‘same’ regularized trace operation that arises in defining the

functional Laplacian will act on the curvature tensor of the configuration

space metric g to yield its corresponding Ricci tensor. But the latter would

also (as originally emphasized by Singer) not otherwise be well-defined since

the curvature tensors of the relevant gauge theories are themselves not trace

class. On the other hand the needed regularization procedure also plays the

vital role (uniquely in 3+1 spacetime dimensions) of allowing a length scale

to be introduced into the quantum formalism — a scale without which no

hypothetical ‘mass gap’ could even be expressed in terms of the naturally

occurring constants of the theory (Planck’s constant, the speed of light and

the Yang-Mills coupling constant).

Another key element in the finite dimensional model problem sketched

above is the occurrence of numerous integrals over the Riemannian con-

figuration manifold {M, g}. But thanks to the ubiquitous metric measure

factor e−2S/� these integrals are not being taken with respect to the (Rie-

mannian) Lebesgue measure μgd
nx but instead with respect to the measure

e−2S/�μgd
nx which for a normalizable ground state, will give a finite total

measure for the non-compact manifold {M, g}. This distinction will prove to

be crucial for our intended upgrade of the foregoing arguments to an infinite

dimensional setting wherein Lebesgue measures no longer make sense but for

which a normalizable ground state wave functional, together with its associ-

ated metric measure factor, is expected to exist. Furthermore the integrals to

be carried out have much in common with the (Euclidean-signature) func-

tional integrals arising in the Feynman path integral formalism with the

important distinction that they only now involve the integrals over fields

defined in one lower dimension than for the Feynman formalism. More

precisely the integrals envisioned here would only be over ‘instantaneous’

field configurations defined over say R3 rather than over the (more techni-

cally problematic) spaces of field ‘paths’ defined over R4. This distinction is

already dramatic in ordinary quantum mechanics wherein ordinary (finite
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dimensional) Lebesgue integrals must be upgraded to genuine functional

integrals in passing to the Feynman path integral formalism.

The naturally occurring metric measure factor e−2S/�, which yields non-

compact metric measure spaces {M, g, e−2S/�} of finite total measure, is the

principal feature in our setup that allows us to contemplate extending the

foregoing arguments to interesting infinite dimensional settings. Its absence

was a key shortcoming in the original Singer proposal for exploiting Lich-

nerowicz type arguments for the existence of a spectral gap.4 To carry out

the needed extension (to field theoretic problems) in a technically precise

way, on the other hand, would take us much further afield, analytically,

than we are currently prepared to wander. Our intuition though is that

such developments should be mathematically possible if one could gain suf-

ficient control over the fundamental, logarithm functional S. This latter step
is, in large part, the aim of our Euclidean-signature semi-classical program

which, for the convenience of the reader, we briefly review in the section to

follow.

3. Euclidean signature semi-classical methods

3.1. Quantum mechanical systems

Elegant ‘microlocal analysis’ methods have long since been developed for the

study of Schrödinger operators of the form (3) in the special cases for which

M ≈ Rn, the metric g is flat and for which the potential energy function

V : M → R is of a suitable ‘non-linear oscillatory’ type [10, 18, 19, 20].

These methods5 begin with an ansatz for the ground state wave function of

the form

(39)
(0)

Ψ�(x) = N� e−S�(x)/�

4Singer, of course, was well aware of this limitation and does not explicitly men-
tion the mass gap problem as motivation or the Lichnerowicz spectral gap estimate
as a potentially useful tool in his original paper. He did however mention these
both informally during a lecture at the Yale Mathematics Department in 1981 at
which the senior author (V.M.) was present. Without this fortuitous clarification
we would not have appreciated the potential for generalizing Singer’s argument to
allow for a normalizable ground state on a non-compact manifold.

5For reasons to be clarified below we here follow a recent reformulation of the
traditional microlocal approach developed by the authors in [10].
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and proceed to derive asymptotic expansions for the logarithm, S� : Rn → R,

expressed formally as a power series in Planck’s constant,

S�(x)  S(0)(x) + �S(1)(x) +
�2

2!
S(2)(x)

+ · · ·+ �n

n!
S(n)(x) + · · · ,

(40)

together with the associated ground state energy eigenvalue
(0)

E� expressed

as

(41)
(0)

E�  �(
(0)

E (0) + �

(0)

E (1) +
�2

2!

(0)

E (2) + · · ·+ �n

n!

(0)

E (n) + · · · ).

N� is a corresponding (for us inessential) normalization constant which one

could always evaluate at any (finite) level of the calculation.

When the above ansätze are substituted into the time-independent

Schrödinger equation and the latter is required to hold order-by-order in

powers of � the leading order term in the expansion (40) is found to satisfy

an inverted-potential-vanishing-energy ‘Hamilton-Jacobi’ equation given by

(42)
1

2m
gijS(0),iS(0),i − V = 0.

For a large class of (non-linear oscillatory) potential energy functions and

when g is flat (with g =
∑n

i=1 dx
i⊗dxi) this equation can be proven to have

a globally-defined, smooth, positive ‘fundamental solution’ that is unique up

to a (trivial) additive constant. In particular this is true whenever

1. V is smooth, non-negative and has a unique global minimum attained

at the origin of Rn where V vanishes,

2. V can be expressed as

(43) V (x1, . . . , xn) =
1

2

n∑
i=1

m ω2
i (x

i)2 +A(x1, . . . , xn)

where each of the ‘frequencies’ ωi > 0 for i ∈ {1, . . . , n} and wherein

the smooth function A : Rn → R satisfies

(44)

A(0, . . . , 0) =
∂A(0, . . . , 0)

∂xi
=

∂2A(0, . . . , 0)

∂xi∂xj
= 0 ∀ i, j ∈ {1, . . . , n}
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and the coercivity condition

(45) A(x1, . . . , xn) ≥ −1

2
m

n∑
i=1

λ2
i (x

i)2 ∀ (x1, . . . , xn) ∈ R
n

and for some constants {λi} such that λ2
i < ω2

i ∀ i ∈ {1, . . . , n}, and
3. V satisfies the convexity condition

n∑
i,j=1

∂2V (x1, . . . , xn)

∂xi∂xj
ξiξj ≥ 0

∀ (x1, . . . , xn) ∈ R
n and all

(ξ1, . . . , ξn) ∈ R
n.

(46)

Since only the sufficiency of these conditions was actually established in [10]
it is quite conceivable that a satisfactory fundamental solution to Eq. (42)
exists under weaker hypotheses on the potential energy.

Our approach to proving the existence of a global, smooth fundamental
solution to the (inverted-potential-vanishing-energy) Hamilton-Jacobi equa-
tion

(47)
1

2m
∇S(0) · ∇S(0) − V = 0

is quite different from that developed previously in the microlocal literature
but has the advantage of being applicable to certain field theoretic problems
whereas it seems the latter does not.6

To establish the existence of S(0) we began by proving that the (inverted
potential) action functional

Iip[γ] :=
∫ 0

−∞

{
1

2
m

n∑
i=1

[
(ẋi(t))2 + ω2

i (x
i(t))2

]

+A (xi(t), . . . , xn(t))

}
dt,

(48)

defined on an appropriate Sobolev space of curves γ : (−∞, 0] → Rn, has a
unique minimizer, γx, for any choice of boundary data

(49) x = (x1, . . . , xn) = lim
t↗0

γx(t) ∈ R
n

6The reasons for this apparent limitation are clarified in the discussion to follow.
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and that this minimizer always obeys

(50) lim
t↘−∞

γx(t) = (0, . . . , 0).

We then showed that every such minimizing curve is smooth and satisfies
the (inverted potential) Euler-Lagrange equation

(51) m
d2

dt2
γix(t) =

∂V

∂xi
(γx(t))

with vanishing (inverted potential) energy

Eip(γx(t), γ̇x(t)) :=
1

2
m

n∑
i=1

(γ̇ix(t))
2 − V (γx(t))

= 0 ∀ t ∈ (−∞, 0] := I.

(52)

Setting S(0)(x) := Iip[γx] for each x ∈ Rn we proceeded to prove, using
the (Banach space) implicit function theorem, that the S(0) : Rn → R,
so-defined, satisfies the Hamilton-Jacobi equation

(53)
1

2m
|∇S(0)|2 − V = 0

globally on Rn and regenerates the minimizers γx as the integral curves of
its gradient (semi-)flow in the sense that

d

dt
γx(t) =

1

m
∇S(0)(γx(t))

∀ t ∈ I := (−∞, 0] and

∀ x ∈ R
n

(54)

Actually each such integral curves γx : I → Rn extends to a larger inter-
val, (−∞, t∗(γx)) with 0 < t∗(γx) ≤ ∞ ∀ x ∈ Rn but since, in general,
t∗(γx) < ∞ we only have a semi-flow rather than a complete flow gener-
ated by 1

m∇S(0). Purely harmonic oscillations on the other hand (for which
A(x1, . . . , xn) = 0) are an exception, having t∗(γx) = ∞ ∀ x ∈ Rn.

Among the additional properties established for S(0) were the Taylor
expansion formulas

S(0)(x) =
1

2
m

n∑
i=1

ωi(x
i)2 +O(|x|3),(55)
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∂jS(0)(x) = mωjx
j +O(|x|2)(56)

and

∂j∂kS(0)(x) = mωkδ
k
j +O(|x|),(57)

where here (exceptionally) no sum on the repeated index is to be taken, and
the global lower bound

(58) S(0)(x) ≥ S∗
(0) :=

1

2
m

n∑
i=1

νi(x
i)2

where νi :=
√

ω2
i − λ2

i > 0 ∀ i ∈ {1, . . . , n}. Note especially that this last
inequality guarantees that, in particular, e−S(0)/� will always be normalizable
on {Rn, g =

∑n
i=1 dx

i ⊗ dxi}.
The higher order ‘quantum corrections’ to S(0) (i.e., the functions S(k)

for k = 1, 2, . . .) can now be computed through the systematic integra-
tion of a sequence of (first order, linear) ‘transport equations’, derived from
Schrödinger’s equation, along the integral curves of the gradient (semi-)flow
generated by S(0). The natural demand for global smoothness of these quan-
tum ‘loop corrections’ forces the (heretofore undetermined) energy coeffi-

cients {
(0)

E (0),
(0)

E (1),
(0)

E (2), . . .} all to take on specific, computable values.
Excited states can now be analyzed by substituting the ansatz

(59)
(∗)
Ψ�(x) =

(∗)
φ�(x)e

−S�(x)/�

into the time independent Schrödinger equation and formally expanding the

unknown wave functions
(∗)
φ� and energy eigenvalues

(∗)
E� in powers of � via

(∗)
φ� 

(∗)
φ(0) + �

(∗)
φ(1) +

�2

2!

(∗)
φ (2) + · · ·(60)

(∗)
E�  �

(∗)
E �  �

(
(∗)
E (0) + �

(∗)
E (1) +

�2

2!

(∗)
E (2) + · · ·

)
(61)

while retaining the ‘universal’ factor e−S�(x)/� determined by the ground
state calculations.

From the leading order analysis one finds that these excited state ex-
pansions naturally allow themselves to be labelled by an n-tuple m =
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(m1,m2, . . . ,mn) of non-negative integer ‘quantum numbers’, mi, so that
the foregoing notation can be refined to

(m)

Ψ �(x) =
(m)

φ �(x)e
−S�(x)/�(62)

and

(m)

E � = �

(m)

E �(63)

with
(m)
ϕ � and

(m)

E � expanded as before. Using methods that are already well-
known from the microlocal literature [18] but slightly modified to accord

with our setup [10] one can now compute all the coefficients {
(m)

φ (k),
(m)

E (k),
k = 0, 1, 2 . . .} through the solution of a sequence of linear, first order trans-
port equations integrated along the semi-flow generated by S(0).

A key feature of this program, when applied to an n-dimensional har-
monic oscillator, is that it regenerates all the well-known, exact results for
both ground and excited states, correctly capturing not only the eigen-
values but the exact eigenfunctions as well [10, 18, 19]. One finds for ex-
ample that the fundamental solution to the relevant (inverted-potential-
vanishing-energy) Hamilton-Jacobi equation, for an n-dimensional oscillator
(with mass m and (strictly positive) oscillation frequencies {ωi}) is given by

(64) S(0)(x) =
1

2
m

n∑
i=1

ωi(x
i)2

and that all higher order corrections to the logarithm of the ground state
wave function vanish identically leaving the familiar gaussian

(65)
(0)

Ψ�(x) =
(0)

N� e−
m

2�

∑n
i=1 ωi(xi)2

where x = (x1, . . . , xn) and
(0)

N� is a normalization constant.
The construction of excited states begins with the observation that the

only globally regular solutions to the corresponding, leading order ‘transport
equation’ are composed of the monomials

(66)
(m)

φ (0)(x) = (x1)m1(x2)m2 · · · (xn)mn ,
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where m = (m1,m2, . . . ,mn) is an n-tuple of non-negative integers with

|m| :=
∑n

i=1mi > 0, and proceeds after a finite number of unequivocal

steps, to assemble the exact excited eigenstate prefactor

(m)

φ �(x) =
(m)

N �Hm1

(√
mω1

�
x1
)
Hm2

(√
mω2

�
x2
)

· · ·Hmn

(√
mωn

�
xn
)(67)

whereHk is the Hermite polynomial of order k (and
(m)

N k is the corresponding

normalization constant) [10, 18, 19].

While there is nothing especially astonishing about being able to red-

erive such well-known, exact results in a different way, we invite the reader to

compare them with those obtainable via the textbook WKB methods of the

physics literature [21, 22]. Even for purely harmonic oscillators conventional

WKB methods yield only rather rough approximations to the wave func-

tions and are, in any case, practically limited to one-dimensional problems

and to those reducible to such through a separation of variables. The lesser

known Einstein Brillouin Keller (or EBK) extension of the traditional semi-

classical methods does apply to higher (finite-)dimensional systems but only

to those that are completely integrable at the classical level [23]. In sharp

contrast to these well-established approximation methods the (Euclidean

signature7) semi-classical program that we are advocating here requires nei-

ther classical integrability nor (as we shall see) finite dimensionality for its

implementation.

As was discussed in the concluding section of Ref. [10] our fundamen-

tal solution, S(0)(x), to the (inverted-potential-vanishing-energy) Hamilton-

Jacobi equation for a coupled system of nonlinear oscillators has a natural

geometric interpretation. The graphs, in the associated phase space T ∗Rn,

of its positive and negative gradients correspond precisely to the stable

(W s(p) ⊂ T ∗Rn) and unstable (W u(p) ⊂ T ∗Rn) Lagrangian submanifolds

of the assumed, isolated equilibrium point p ∈ T ∗Rn:

W u(p) =
{
(x,p) : x ∈ R

n,p = ∇S(0)(x)
}

(68)

W s(p) =
{
(x,p) : x ∈ R

n,p = −∇S(0)(x)
}

(69)

7The significance of this qualifying expression will become clear when we turn
to field theoretic problems.
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Another result established for the aforementioned nonlinear oscillators
of Ref. [10] is that the first quantum ‘loop correction’, S(1)(x

1, . . . , xn), to
the (‘tree level’) fundamental solution, S(0)(x

1, . . . , xn), also has a natural
geometric interpretation in terms of ‘Sternberg coordinates’ for the gradient
(semi-)flow generated by this fundamental solution. Sternberg coordinates,
by construction, linearize the Hamilton-Jacobi flow equation

m
dxi(t)

dt
=

∂S(0)

∂xi
(x1(t), . . . , xn(t))(70)

to the form

dyi(t)

dt
= ωiy

i(t) (no sum on i)(71)

through, as was proven in Ref. [10], the application of a global diffeomor-
phism

μ : Rn → μ(Rn) ⊂ R
n =

{
(y1, . . . , yn)

}
,(72)

x �→ μ(x) =
{
y1(x), . . . , yn(x)

}
(73)

that maps Rn to a star-shaped domain K = μ(Rn) ⊂ Rn with μ−1(K) ≈
Rn =

{
(x1, . . . , xn)

}
.

Though not strictly needed for the constructions of Ref. [10], Sternberg
coordinates have the natural feature of generating a Jacobian determinant
for the Hilbert-space integration measure that exactly cancels the contribu-
tion of the first quantum ‘loop correction’, S(1)(x), to inner product calcu-
lations, taking, for example,

〈
(m)

Ψ ,
(m)

Ψ

〉
:=

∫
Rn

∣∣∣∣∣
(m)

Ψ (x)

∣∣∣∣∣
2

dnx

=

∫
μ(Rn)

∣∣∣∣∣
(m)

Ψ ◦ μ−1(y)

∣∣∣∣∣
2 √

det g∗∗(y) d
ny

(74)

to the form〈
(m)

Ψ ,
(m)

Ψ

〉
=

∫
μ(Rn)

∣∣∣∣
[
(m)
ϕ e

−S(0)

�
− �

2!
S(2)+···

]
◦ μ−1(y)

∣∣∣∣
2

√
det g∗∗(0) d

ny

(75)
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where, in the last integral, the contribution of S(1) ◦ μ−1(y) to the wave
function

(76)
(m)

Ψ ◦ μ−1(y) =
(m)
ϕ e

−S(0)

�
−S(1)− �

2!
S(2)··· ◦ μ−1(y)

has precisely cancelled the non-Cartesian measure factor
√

det g∗∗(y), leav-

ing the constant (Euclidean) factor
√

det g∗∗(0) in its place. Roughly speak-
ing therefore, this role of S(1) is to ‘flatten out’ the Sternberg coordinate
volume element, reducing it to ordinary Lebesgue measure (albeit only over
the star-shaped domain μ(Rn)), by exactly cancelling the Jacobian determi-
nant that arises from the coordinate transformation.

For the nonlinear oscillators discussed in Ref. [10], Sternberg coordinates
also have the remarkable property of allowing the leading order transport
equation for excited states to be solved in closed form. Indeed, the regular
solutions to this equation are comprised of the monomials

(77)
(m)
ϕ (0)(y) = (y1)m1(y2)m2 · · · (yn)mn

wherein, precisely as for the harmonic case, the mi are non-negative integers
with |m| :=

∑n
i=1mi > 0. On the other hand the higher order corrections,{

(m)
ϕ (k)(y); k = 1, 2, . . .

}
, to these excited state prefactors will not in gen-

eral terminate at a finite order as they do for strictly harmonic oscillators
but they are nevertheless systematically computable through the sequential
integration of a set of well-understood linear transport equations [10, 18].
Formal expansions (in powers of �) for the corresponding (ground and ex-
cited state) energy eigenvalues are uniquely determined by the demand for
global regularity of the associated eigenfunction expansions. More precisely
one finds, upon integrating the relevant transport equation at a given order,
that the only potential breakdown of smoothness for the solution would nec-
essarily occur at the ‘origin’ x = 0 (chosen here to coincide with the global
minimum of the potential energy) but that this loss of regularity can always
be uniquely avoided by an appropriate choice of eigenvalue coefficient at the
corresponding order.

A number of explicit calculations of the eigenfunctions and eigenvalues
for a family of 1-dimensional anharmonic oscillators of quartic, sectic, oc-
tic, and dectic types were carried out in Ref. [10] and compared with the
corresponding results from conventional Rayleigh/Schrödinger perturbation
theory. To the orders considered (and, conjecturally, to all orders) our eigen-
value expansions agreed with those of Rayleigh/Schrödinger theory whereas
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our wave functions, even at leading order, more accurately captured the
more-rapid-than-gaussian decay known rigorously to hold for the exact so-
lutions to these problems. For the quartic oscillator in particular our results
strongly suggested that both the ground state energy eigenvalue expansion
and its associated wave function expansion are Borel summable to yield
natural candidates for the actual exact ground state solution and its energy.

Remarkably all of the integrals involved in computing the quantum cor-
rections

{
S(1),S(2),S(3), · · ·

}
to S(0) (up to the highest order computed in

[10], namely S(25)) were expressible explicitly in terms of elementary func-
tions for the quartic and sectic oscillators whereas for the octic and dectic
cases some (but not all) of the quantum corrections required, in addition, hy-
pergeometric functions for their evaluation. It seems plausible to conjecture
that these patterns persist to all orders in � and thus, for the quartic and
sectic8 cases in particular, lead to formal expansions for S� in terms of ele-
mentary functions. The evidence supporting the conjectured Borel summa-
bility of this formal expansion in the quartic case is discussed in detail in
Section V.A. of [10].

For the Lagrangians normally considered in classical mechanics it would
not be feasible to define their corresponding action functionals over (semi-)
infinite domains, as we have done, since the integrals involved, when eval-
uated on solutions to the Euler-Lagrange equations, would almost never
converge. It is only because of the special nature of our problem, with its
inverted potential energy function and associated boundary conditions, that
we could define a convergent action integral for the class of curves of interest
and use this functional to determine corresponding minimizers.

A remarkable feature of our construction, given the hypotheses of con-
vexity and coercivity imposed upon the potential energy V (x), is that it led
to a globally smooth solution to the corresponding Hamilton-Jacobi equa-
tion. Normally the solutions to a Hamilton-Jacobi equation in mechanics
fail to exist globally, even for rather elementary problems, because of the
occurrence of caustics in the associated families of solution curves. For our
problem however caustics were non-existent for the (semi-)flow generated
by the gradient of S(0)(x). The basic reason for this was the inverted po-
tential character of the forces considered which led to the development of
diverging (in the future time direction) solution curves having, in effect, uni-
formly positive Lyapunov exponents that served to prevent the occurrence
of caustics altogether.

8These results were subsequently extended to significantly higher orders by
P. Tang [24].
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By contrast, the more conventional approach (in the physics litera-
ture) to semi-classical methods leads instead to a standard (non-inverted-
potential-non-vanishing-energy) Hamilton-Jacobi equation for which, espe-
cially in higher dimensions, caustics are virtually unavoidable and for which,
even in their absence, a nontrivial matching of solutions across the bound-
ary separating classically allowed and classically forbidden regions must be
performed. While Maslov and others have developed elegant methods for
dealing with these complications [25] their techniques are more appropriate
in the short wavelength limit wherein wave packets of highly excited states
are evolved for finite time intervals. On the other hand our approach is aimed
at the ground and lower excited states though, in principle, it is not limited
thereto.

As we have already mentioned though, our approach is a natural vari-
ation of one that has been extensively developed in the microlocal analysis
literature but it also differs from this innovative work in fundamental ways
that are crucial for our ultimate, intended application to field theoretic prob-
lems. In the microlocal approach [18, 19, 20] one begins by analyzing the
(classical, inverted potential) dynamics locally, near an equilibrium, by ap-
pealing to the stable manifold theorem of mechanics [26]. One then shows,
by a separate argument, that, for an equilibrium p (lying in some neigh-
borhood U ⊂ Rn) the corresponding stable (W s(p) ⊂ T ∗U) and unstable
(W u(p) ⊂ T ∗U) submanifolds of the associated phase space T ∗U are in fact
Lagrangian submanifolds that can be characterized as graphs of the (positive
and negative) gradients of a smooth function φ : U → R:

W s(p) = {(x,p)|x ∈ U,p = ∇φ(x)}(78)

W u(p) = {(x,p)|x ∈ U,p = −∇φ(x)} .(79)

This function is shown to satisfy a certain ‘eikonal’ equation (equivalent to
our inverted-potential-vanishing-energy Hamilton-Jacobi equation restricted
to U ) and φ(x) itself is, of course, nothing but the (locally defined) analogue
of our action function S(0)(x). A further argument is then needed to extend
φ(x) to a solution globally defined on Rn.

The potential energies, V (x), dealt with in the microlocal literature of-
ten entail multiple local minima, or “wells”, for which our global convexity
and coercivity hypotheses are not appropriate. Much of the detailed analysis
therein involves a careful matching of locally defined approximate solutions
(constructed on suitable neighborhoods of each well) to yield global asymp-
totic approximations to the eigenvalues and eigenfunctions for such prob-
lems. Since, however, we are focussed primarily on potential energies having
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single wells (corresponding to unique classical “vacuum states”), many of
the technical features of this elegant analysis are not directly relevant to the
issues of interest herein.

For the case of a single well, however, we have essentially unified and
globalized several of the, aforementioned, local arguments, replacing them
with the integrated study of the properties of the (inverted potential) action
functional (48). When one turns from finite dimensional problems to field
theoretic ones [11, 12] this change of analytical strategy will be seen to play
an absolutely crucial role. For the typical (relativistic, bosonic) field theories
of interest to us in this context, the Euler Lagrange equations for the cor-
responding, inverted potential action functionals that now arise are the Eu-
clidean signature, elliptic analogues of the Lorentzian signature, hyperbolic
field equations that one is endeavoring to quantize. While generalizations of
the aforementioned stable manifold theorem do exist for certain types of in-
finite dimensional dynamical systems, the elliptic field equations of interest
to us do not correspond to well-defined dynamical systems at all. In particu-
lar their associated Cauchy initial value problems are never well-posed. This
is the main reason, in our opinion, why the traditional microlocal methods
have not heretofore been applicable to quantum field theories.

On the other hand the direct method of the calculus of variations is
applicable to the Euclidean signature action functionals of interest to us
here and allows one to generalize the principle arguments discussed above
to a natural infinite dimensional setting.

3.2. Interacting scalar fields

For a first glimpse at how these techniques can be applied to relativistic
quantum field theories consider the formal Schrödinger operator for the mas-
sive, quartically self-interacting scalar field on (3+1 dimensional) Minkowski
spacetime given by

Ĥ =

∫
R3

{
−�2

2

δ2

δφ2(x)
+

1

2
∇φ(x) · ∇φ(x)

+
m2

2
φ2(x) + λφ4(x)

}
d3x

(80)

where m and λ are constants > 0. Though the functional Laplacian term, in
particular, requires regularization to be well-defined, the influence of this reg-
ularization will only be felt at the level of quantum ‘loop’ corrections and not
for the ‘tree level’ determination of a fundamental solution, S(0)[φ(·)], to the
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‘vanishing-energy-Euclidean-signature’ functional Hamilton-Jacobi equation
given by

∫
R3

{
1

2

δS(0)

δφ(x)

δS(0)

δφ(x)
− 1

2
∇φ(x) · ∇φ(x)

− m2

2
φ2(x)− λφ4(x)

}
d3x = 0.

(81)

As in the quantummechanical examples discussed above this equation arises,
at leading order, from substituting the ground state wave functional ansatz

(82)
(0)

Ψ�[φ(·)] = N�e
−S�[φ(·)]/�

into the time-independent Schrödinger equation

(83) Ĥ
(0)

Ψ� =
(0)

E�

(0)

Ψ�,

and demanding satisfaction, order-by-order in powers of �, relative to the
formal expansions

S�[φ(·)]  S(0)[φ(·)] + �S(1)[φ(·)]

+
�2

2!
S(2)[φ(·)] + · · ·

(84)

and

(0)

E�  �

{
(0)

E (0) + �

(0)

E (1) +
�2

2!

(0)

E (2) + · · ·
}
.(85)

In the foregoing formulas φ(·) symbolizes a real-valued distribution on R3

belonging to a certain Sobolev ‘trace’ space that we shall characterize more
precisely below. In accordance with our strategy for solving the functional
Hamilton-Jacobi equation (81) each such φ(·) will be taken to represent
boundary data, induced on the t = 0 hypersurface of (Euclidean)

(86) R
4 =

{
(t,x)|t ∈ R,x ∈ R

3
}
,

by a real (distributional) scalar field Φ defined on the half-space R4− :=
(−∞, 0] × R3. Here Φ plays the role of the curve γ : (−∞, 0] → Rn in
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the quantum mechanics problem and φ(·) the role of its right end point
(x1, . . . , xn).

By generalizing the technique sketched above for the quantum mechan-
ical problems the authors have proven the existence of a (globally-defined,
Fréchet smooth) ‘fundamental solution’, S(0)[φ(·)] to Eq. (81) by first estab-
lishing the existence of unique minimizers, Φφ, for the Euclidean-signature
action functional

Ies[Φ] :=
∫
R3

∫ 0

−∞

{
1

2
Φ̇2 +

1

2
∇Φ · ∇Φ

+
1

2
m2Φ2 + λΦ4

}
dt d3x

(87)

for ‘arbitrary’ boundary data φ(·), prescribed at t = 0 and then setting

(88) S(0)[φ(·)] = Ies[Φφ].

This was accomplished by defining the action functional Ies[Φ] on the
Sobolev spaceH1(R4−,R), with boundary data naturally induced on the cor-
responding trace space, and proving that this functional is coercive, weakly
(sequentially) lower semi-continuous and convex [11]. Through an applica-
tion of the (Banach space) implicit function theorem we then proved that the
functional so-defined is Fréchet smooth throughout its (Sobolev trace space)
domain of definition and that it indeed satisfies the (Eucliedean-signature-
vanishing-energy) functional Hamilton-Jacobi equation,

1

2

∫
R3

∣∣∣∣δS(0)[φ(·)]
δφ(x)

∣∣∣∣
2

d3x

=

∫
R3

{
1

2
∇φ(x) · ∇φ(x) +

1

2
m2 φ2(x) + λφ4(x)

}
d3x,

(89)

and thus provides the fundamental solution that one needs for the com-
putation of all higher order quantum ‘loop’ corrections. These analytical
methods were shown to work equally well in lower spatial dimensions for
certain higher-order nonlinearities, allowing, for example, Φ6 in (Euclidean)
R3− and Φp for any even p > 2 in R2−, and also for more general con-
vex polynomial interaction potentials P(Φ), allowing terms of intermediate
degrees, replacing the 1

2m
2Φ2 + λΦ4 of the example above. These corre-

spond precisely to the usual ‘renormalizable’ cases when treated by more
conventional quantization methods. For us the restriction on the allowed
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polynomial degree in a given spacetime dimension results from applying the
Sobolev embedding theorem,

(90) H1(R− × R
n) ↪→ Lp(R− × R

n)

for 2 ≤ p ≤ 2(n+1)/(n− 1) if n > 1 and for any p ≥ 2 if n = 1 (noting here
that the domain in question has dimension n + 1), to the demand (needed
in our analysis) that the higher order terms in the corresponding action
functional be bounded by (some power of) the H1(R− × Rn) norm defined
by the quadratic terms.

To compute higher order ‘loop’ corrections in this field theoretic setting
one will first need to regularize the formal functional Laplacian that arises in
the Schrödinger operator (80) and that will reoccur in each of the transport
equations that result from substituting ansätze such as (82), (84) and (85)
into the time independent Schrödinger equation (83) and requiring satis-
faction order-by-order in powers of �. Solving these transport equations for
the ‘loop corrections’, {S(1)[ϕ(·)],S(2)[ϕ(·)], . . .}, to the ground state wave
functional simply amounts to evaluating sequentially computable, smooth
functionals on the Euclidean signature action minimizers, Φφ, for arbitrarily
chosen boundary data ϕ(·).

Solving the transport equations for excited states is somewhat more
involved since these equations entail a lower order term in the unknown
but the technology for handling this (at least in finite dimensions) is well-
understood [10, 18, 19]. If, in particular, a Sternberg diffeomorphism could
be shown to exist for field theoretic problems of the type discussed herein
then the leading order, excited state transport equation could be solved in
closed form. Otherwise though one could simply fall back on the machin-
ery developed in Refs. [10, 18, 19], which does not assume the existence
of Sternberg coordinates, and solve this and the corresponding higher or-
der excited state equations in a less direct fashion since the aforementioned
‘machinery’ apparently generalizes, in a straightforward way, to this infinite
dimensional setting. In either case it is intriguing to note that the excited
states for interacting field theories would be naturally labeled by sequences
of (integral) ‘particle excitation numbers’ in much the same way that the
Fock-space excited states of a free field are characterized.

Indeed, modulo some apparently quite modest technicalities, needed to
handle a continuous range of frequencies, it seems clear that when these same
(Euclidean-signature-semi-classical) methods are applied to free, bosonic
field theories they will simply regenerate the well-known (Fock-space) ex-
act solutions for these systems. In particular the fundamental solutions to
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the relevant (Euclidean signature) Hamilton-Jacobi equations are explicitly

known for the most interesting cases ([27], and from a different perspec-

tive [28]), the higher order ‘loop corrections’ {S(1)[ϕ(·)],S(2)[ϕ(·)], . . .} will

be found all to vanish (as they do for finite dimensional, harmonic oscil-

lators) and the natural coordinates on the configuration manifold (i.e., the

associated trace space described above) are already of Sternberg type.

One often hears that the fundamental particle interpretation of inter-

acting quantized fields hinges upon their approximation, asymptotically, by

corresponding free fields. This is somewhat unsatisfactory since, of course,

an elementary particle cannot ‘turn off’ its self-interactions to behave, even

asymptotically, like a Fock-space, free field quantum. While we do not yet

have a clear ‘physical interpretation’ of the integral, ‘excitation numbers’

that would label our excited states one of the natural features of this

(Euclidean-signature-semi-classical) program is that it maintains the dy-

namical nonlinearities of an interacting quantum system intact at every level

of the analysis rather than attempting to reinstate nonlinear effects gradually

through a perturbative expansion. One of our main motivations for pursu-

ing it is the expectation that it will ultimately provide much more accurate

approximations for wave functionals and their associated, non-gaussian in-

tegration measures than those generated by conventional (Rayleigh/Schrö-

dinger) perturbation theory.

3.3. Yang-Mills fields

In continuing research the authors are currently applying these (Euclidean-

signature-semi-classical) techniques to the quantization of Yang-Mills fields

[12]. While the methods in question apply equally well to both 3 and 4

dimensional gauge theories (i.e., to the renormalizable cases), we shall fo-

cus here on the physically most interesting case of Yang-Mills fields in 4

spacetime dimensions. The formal Schrödinger operator for this system is

expressible as

ĤYM :=

∫
R3

ΣI

{
−�2

2

3∑
i=1

δ

δAI
i (x)

δ

δAI
i (x)

+
1

4

3∑
j,k=1

F I
jkF

I
jk(x)

⎫⎬
⎭ d3x

(91)
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where the index I labels a suitable basis for the Lie algebra of the gauge

structure group G, AI
k is the spatial connection field with curvature

(92) F I
jk = ∂jA

I
k − ∂kA

I
j + q[Aj , Ak]

I ,

q is the gauge coupling constant and [·, ·] the bracket in the Lie algebra of

the structure group G (under a matrix representation, the commutator).

As in the case of scalar field theory the functional Laplacian requires

regularization to be well-defined even when acting on smooth functionals

of the (spatial) connection but, since the influence of this regularization

will not be felt until higher order quantum ‘loop’ corrections are computed,

we can temporarily ignore this refinement here and attempt first to con-

struct a (gauge invariant) fundamental solution, S(0)[A(·)], to the Euclidean-

signature-vanishing-energy Hamilton-Jacobi equation

∫
R3

Σi

{
1

2

3∑
i=1

δS(0)

δAI
i (x)

δS(0)

δAI
i (x)

− 1

4

3∑
j,k=1

F I
jk(x)F

I
jk(x)

⎫⎬
⎭ d3x = 0

(93)

by seeking minimizers of the corresponding Euclidean-signature action func-

tional in the form of (spacetime) connections {AI
μ} defined on R4− =

(−∞, 0]× R3 with boundary data AI
i prescribed at t = 0.

As usual in our approach, Eq. (93) results from substituting the ansätze

(0)

Ψ�[A(·)] = N�e
−S�[A(·)]/�,(94)

S�[A(·)]  S(0)[A(·)] + �S(1)[A(·)] + �2

2!
S(2)[A(·)]

+ · · ·+ �k

k!
S(k)[A(·)] + · · · ,

(95)

(0)

E�  �

(
(0)

E (0) + �

(0)

E (1) +
�2

2!

(0)

E (2) + · · ·

+ · · ·+ �k

k!

(0)

E (k) + · · ·
)(96)
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into the Schrödinger equation

ĤYM

(0)

Ψ� =
(0)

E�

(0)

Ψ�(97)

and demanding satisfaction order by order in �.

To construct the functional S(0)[A(·)] we treat the (spatial) connection

field A = {AI
i } on R3 as (tangential) boundary data for the Euclidean-

signature Yang-Mills Dirichlet problem — prescribing this data on the hy-
persurface {x0 = ct = 0} of R4 = {(xμ) = (ct,x) : x = (x1, x2, x3)}.
Thus for ‘arbitrary’ boundary data A defined on {0} × R3 (and lying in a
suitable ‘trace space’ for spacetime connection fields A = {AI

μ}), we seek
an absolute minimizer, AA, for the Euclidean-signature Yang-Mills action
functional, Ies[A], defined on the half-space R− × R3 := (−∞, 0]× R3 by

Ies[A] :=
1

4

∫
R−×R3

⎧⎨
⎩ΣI

3∑
μ,ν=0

[
FI
μνFI

μν

]⎫⎬⎭ dt d3x

=
1

2

∫ 0

−∞
dt

∫
R3

d3x

{
ΣI

[
3∑

i=1

(∂0AI
i − ∂iAI

0)
2

+
1

2

3∑
j,k=1

FI
jkFI

jk

⎤
⎦
⎫⎬
⎭

(98)

where F = {FI
μν}, the curvature of the connection A, is given by

(99) FI
μν := ∂μAI

ν − ∂νAI
μ + q[Aμ,Aν ]

I .

The first question our construction must address is that of defining the
function space from which Yang-Mills connections on {0} × R3 (viewed as
initial data for the Euclidean-signature Dirichlet problem on the half-space
R4−) are to be drawn. Modulo the action of gauge transformations, this
function space of connections yields as its quotient the orbit space which is
the true Yang-Mills configuration space.

In particular, our construction proceeds differently depending on
whether or not we require each connection to approach a coherent value
at spatial infinity, as done for instance by Jackiw in [29]. Under this re-
quirement, the initial hypersurface {0} ×R3 effectively becomes a 3-sphere,
introducing a distinction between ‘small’ and ‘large’ gauge transformations
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(homotopically trivial and nontrivial, respectively), and an attendant divi-
sion of the Yang-Mills configuration space into distinct topological sectors.
The dichotomy between large and small gauge transformations is usually
seen as the origin of the ‘vacuum angle’ in quantum Yang-Mills theory, with
wave functionals invariant only up to a phase under large gauge transforma-
tions [29]. As in the treatment by Khoze [30], we allow connections to have
no coherent limit at spatial infinity, and regard all gauge transformations
on the same footing. Nevertheless our approach, like others with the same
definition of the configuration space, is not incompatible with the introduc-
tion of a vacuum angle, since such a feature (if present in nature) can be
incorporated in the Lagrangian as observed in [29] and [30].

To prove existence of a minimizer for the Euclidean-signature Yang-Mills
action with (tangential) initial data A prescribed from our configuration
space on {0} × R3, we use the direct method in the calculus of variations
to conclude that any action-minimizing sequence with given initial data has
a convergent subsequence, on whose limit the Euclidean-signature Yang-
Mills action is indeed minimized. As in the physical models discussed in
the preceding sections, we then define S(0)[A(·)] to assume the absolute
minimizing value of the Euclidean-signature Yang-Mills action for initial
data A.

The existence of a convergent minimizing subsequence is essentially due
to weak compactness of bounded sets in Sobolev spaces. One is enabled
to invoke Sobolev weak compactness by gauge transforming to a ‘Hodge’
or ‘Coulomb’ gauge locally on neighborhoods of R4− where the curvature
of connections in the minimizing sequence has sufficiently small L2 norm.
On such neighborhoods, a pivotal result of Uhlenbeck [31] states that one
can transform to the Hodge gauge, and that the L2

1 Sobolev norm of the
transformed connection is bounded in terms of the L2 norm of its curvature.
Additionally, use of the (local) Hodge gauge allows the top order term in the
Yang-Mills equation to be viewed as a Laplace-de Rham operator, making
available elliptic regularity results to establish smoothness of the solution.
For further details, the reader is referred to the work of Sedlacek [32] for
a compact manifold without boundary, Marini [33] for a compact manifold
with boundary, and the present authors [27, 12] for a possibly noncompact
manifold with boundary.

While the local Hodge gauge is key to achieving existence and regular-
ity of a minimizer, it should be noted that this method is internal to the
proof and thence the construction of S(0). Thus it does not introduce a Gri-
bov ambiguity since it does not constitute a global gauge fixing within the
Yang-Mills configuration space. We treat the domain of S(0) as a Sobolev
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space of connections, noting that gauge invariance of the Euclidean-signature

Yang-Mills action immediately implies that S(0)[A(·)] is a (fully non-Abelian)
gauge invariant solution to the Hamilton-Jacobi equation (93) and accord-

ingly satisfies the corresponding Gauss-law constraint — namely the vanish-

ing of the gauge covariant divergence of its (electric field) functional gradient,
δS(0)

δAI(x) [A(·)]. As such S(0)[A(·)] will naturally pass to the quotient, orbit space

whereon it will correspondingly satisfy the reduced Hamilton-Jacobi equa-

tion for this (positively curved) infinite dimensional Riemannian manifold.

In establishing smoothness results for S(0), we use the Sobolev topology on

the space of connections which form its domain, employing the Banach space

version of Rademacher’s theorem to show that S(0) is Gâteaux differentiable

almost everywhere in a suitable sense (for details, see [12]). Application of

the Banach space implicit function theorem to establish Fréchet differentia-

bility of S(0) to all orders is the topic of current investigations.

The self-interactions of ‘gluons’ (the quanta of the Yang-Mills field)

are closely connected to the non-Abelian character of the associated gauge

group. Thus a conventional perturbative approach to quantization, which

disregards these interactions at the lowest order, necessarily ‘approximates’

the gauge group as well, replacing it with the Abelian structure group of

the associated free field theory (i.e., several copies of the Maxwell field la-

belled by the index I ), and then attempts to reinstate both the interactions

and the non-commutative character of the actual gauge group gradually,

through the development of series expansions in the Yang-Mills coupling

constant. By contrast the Euclidean-signature-semi-classical program that

we are advocating for the Yang-Mills problem has the advantage of main-

taining full, non-Abelian gauge invariance at every order of the calculation

and of generating globally defined (approximate) wave functionals on the

naturally associated Yang-Mills configuration manifold.

4. The orbit space curvature for scalar electrodynamics

The Lagrangian density for ‘scalar electrodynamics’, as we shall use the term

herein, is given by

(100) L = −1

4
FμνF

μν − ημν(Dμϕ)
†(Dνϕ)− U(ϕ†ϕ)

where ϕ := ϕ1+iϕ2, with ϕa real, is a complex scalar field, ϕ† := ϕ1−iϕ2 its

complex conjugate and where F = Fμν dxμ⊗dxν is the electromagnetic field
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tensor expressible in terms of its associated connection or ‘vector potential’
A = Aμdx

μ as

(101) Fμν = ∂μAν − ∂νAμ.

The gauge covariant derivatives Dμϕ, (Dμϕ)
† are defined by

Dμϕ = ∂μϕ− iqAμϕ(102)

(Dμϕ)
† = ∂μϕ

† + iqAμϕ
†(103)

wherein q is a gauge ‘coupling’ constant having the dimensions

(104) [q] =
[ e

�c

]

with e the fundamental constant of electric charge, � the (reduced) Planck
constant and c the speed of light. The self-interaction potential U : R → R

is assumed to be smooth and positive. In the standard (Lorentz frame)
coordinates, {xμ;μ = 0, 1, 2, 3} = {ct, xi; i = 1, 2, 3}, that we shall use the
Minbowski metric η = ημνdx

μ ⊗ dxν takes the form

(105) η = −c2dt⊗ dt+

3∑
i=1

dxi ⊗ dxi

with corresponding line element

(106) ds2 = −c2dt2 + dx · dx

where x := (x1, x2, x3) and · designates the Euclidean metric on R3.

As is well-known L is invariant with respect to the group G of ‘gauge
transformations’ under which

(107) Aμ → Aμ + ∂μΛ, ϕ → ϕeiqΛ

where Λ is an arbitrary, smooth function having the dimensions of ‘charge’,
[e], and vanishing at infinity, |x| :=

√
x · x → ∞. The action functional

defined on any domain of the form Ω = I × R3, with I = [t0, t1] ⊂ R, is
given by

(108) IΩ[ϕ,A] :=
1

c

∫
Ω
d4x L =

∫
I
dt L
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where L is the Lagrangian defined by

(109) L :=

∫
R3

d3x L.

The Euler-Lagrange equations (for the domain Ω) obtained by varying
IΩ[ϕ,A] with respect to ϕ and A are given (respectively) by

(110) ημνDμDνϕ− U ′(ϕ†ϕ)ϕ = 0

and

(111) ∂νF
μν = iqημν

[
(Dνϕ)

†ϕ− ϕ†(Dνϕ)
]

wherein U ′(u) := dU(u)
du .

The time component, μ → 0, of the Maxwell equation (111) gives, of
course, the Gauss law ‘constraint’

∂iF
0i = −∂iF0i

= −iq
[
(D0ϕ)

†ϕ− ϕ†(D0ϕ)
](112)

which, expressed in terms of the vector potential A, becomes

(113) −ΔA0 + 2q2ϕ†ϕA0 = −∂i(Ai,0) + iq
[
(∂0ϕ

†)ϕ− ϕ†(∂0ϕ)
]

with Δ the Laplacian on (Euclidean) R3,

(114) Δ =

3∑
i=1

∂2

∂xi2
,

and where, in the above, we have adopted the summation convention for
sums over repeated spatial indices (writing, e.g., ∂iv

i for
∑3

i=1 ∂iv
i).

The operator Δϕ defined by

(115) Δϕ := Δ− 2q2ϕ†ϕ

will play a fundamental role in the following. In a suitable function space
setting its inverse, Δ−1

ϕ , will exist and allow one to solve the elliptic, Gauss
law constraint for A0 by setting

(116) A0 = Δ−1
ϕ

[
(∂iAi,0)− iq

[
(∂0ϕ

†)ϕ− ϕ†(∂0ϕ)
]]

.
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Reexpressed in this 3+1 dimensional notation the Lagrangian defined

above now takes the form

(117)

L =

∫
R3

d3x

{
1

2
F0jF0j−

1

4
FjkFjk+(D0ϕ)

†(D0ϕ)−(Djϕ)
†(Djϕ)−U(ϕ†ϕ)

}
.

Defining canonical momenta πϕ and πj conjugate to ∂ and Aj (respectively)

by the Legendre transformation

πϕ :=
δL

δϕ,t
=

1

c
(D0ϕ)

†(118)

πj :=
δL

δAj,t
=

1

c
(Aj,0 −A0,j) =

1

c
F0j(119)

with, of course,

(120) π†
ϕ :=

δL

δϕ †
,t

=
1

c
(D0ϕ)

and noting that

(121) π0 :=
δL

δA0,t
≡ 0

one arrives at the associated Hamiltonian density

(122) H := πϕϕ,t + πϕ†ϕ †
,t + πjAj,t − L.

The corresponding Hamiltonian takes the explicit form

H :=

∫
R3

dx3H

=

∫
R3

d3x

{
1

2
c2πjπj + c2π†

ϕπϕ +
1

4
FjkFjk + (Djϕ)

†(Djϕ) + U(ϕ†ϕ)

− A0

[
∂j(cπ

j)− iqc(ϕπϕ − ϕ†π†
ϕ)
]}

+

∫
R3

d3x(∂j
(
A0cπ

j)
)

(123)
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wherein A0 now plays the role of a ‘Lagrange multiplier’ with respect to
whose variation one recovers the Hamiltonian form of the Gauss constraint

(124) ∂j(cπ
j) = iq

(
ϕ(cπϕ)− ϕ†(cπ†

ϕ)
)
.

Noting that cπj = F0j = −Ej , where E = Ej ∂
∂xj

is the electric field, one

sees that the (gauge invariant) charge density ρ of the ϕ field is given by

4πρ = −iq
(
ϕ(cπϕ)− ϕ†(cπ†

ϕ)
)

= −iq
(
ϕ(D0ϕ)

† − ϕ†(D0ϕ)
)
.

(125)

Again in a suitable function space setting one can decompose π = πj ∂
∂xj

into L2-orthogonal ‘transverse’ and ‘longitudinal’ components,

(126) π = πT + πL,

with

∇ · πT = ∂j(π
T )j = 0,(127)

πL = ∇λ(128)

so that

(129) ∇ · π = ∇ · πL = Δλ

and thereby express the solution of the Gauss constraint in the (Hamilto-
nian) form

−(cπL)j := (EL)j

= −∇j
(
Δ−1

[
iq
(
ϕ(cπϕ)− ϕ†(cπ†

ϕ)
)])

= ∇j
(
Δ−1(4πρ)

)(130)

where, more explicitly,

(131)
(
Δ−1(4πρ)

)
(x) = −

∫
R3

d3x′
ρ(x′)

|x− x′|

with |x− x′| the Euclidean distance from x to x′.
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In parallel with the above decomposition of π, we can also express Ai in
terms of L2-orthogonal transverse and longitudinal summands via

(132) Ai = AT
i +AL

i

with

(133) ∇ ·AT = ∂jA
T
j = 0

and

(134) ∇×AL = 0

with AL given explicitly by

(135) AL
j (x) = −∂j

[∫
R3

d3x′
(
(∂kAk(x

′))

4π|x− x′|

)]
.

Note accordingly that one can always achieve the ‘Coulomb gauge’ condition
AL = 0 with the G action generated by

(136) Λ(x) =

∫
R3

d3x′
(

∂kAk(x
′)

4π|x− x′|

)

under which ϕ undergoes the corresponding change of ‘phase’ ϕ → ϕeiqΛ.
In an arbitrary gauge it is easily verified that {AT ,πT } and {AL,πL} are
canonically conjugate variables. Since πL is uniquely determined by the
charge density however (cf. 130) and since its conjugate partner can be
eliminated by the choice of Coulomb gauge it is natural to pass to a reduced
Hamiltonian framework.

We therefore define a ‘reduced’ Hamiltonian by substituting the above
expression (130) for πL into H, dropping the boundary integral,∫
R3 d

3x
(
∂j(A0cπ

j)
)
, (which makes no contribution to the field equations)

and imposing the Coulomb gauge condition under which Aj → AT
j . The

result is

Hreduced :=

∫
R3

d3x

{
1

2
c2πT · πT + c2π†

ϕπϕ +
1

4
FjkFjk

+ (Djϕ)
†(Djϕ) + U(ϕ†ϕ)

+
1

2
q2c2(ϕπϕ − ϕ†π†

ϕ)Δ
−1(ϕπϕ − ϕ†π†

ϕ)

}(137)
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wherein

(138)
(
Δ−1(ϕπϕ − ϕ†π†

ϕ)
)
(x) = − 1

4π

∫
R3

d3x′
(
(ϕπϕ − ϕ†π†

ϕ)(x′)

|x− x′|

)
.

Note that, in this gauge, Eq. (116) for A0 simplifies to

(139) A0 = Δ−1
ϕ

[
−iq

[
(∂0ϕ

†)ϕ− ϕ†(∂0ϕ)
]]

or, since

(140) ΔϕA0 = −iq
[
(∂0ϕ

†)ϕ− ϕ†(∂0ϕ)
]

can be expressed as

(141) ΔA0 = −iq
[
(cπϕ)ϕ− (cπ†

ϕ)ϕ
†
]
,

also to

(142) A0 = Δ−1
[
−iq

[
(cπϕ)ϕ− (cπ†

ϕ)ϕ
†
]]

.

The reduced Lagrangian that corresponds to Hreduced may be equivalently
derived by substituting (139) andAL = 0 into L or by inverting the Legendre
transformation determined by Hreduced. The result is:

Lreduced :=

∫
R3

d3x

{
1

2c2
AT

,t ·AT
,t +

1

c2
(ϕ†

,t)(ϕ,t)

− 1

4
FjkFjk − (Djϕ)

†(Djϕ)− U(ϕ†ϕ)

− q2

2c2
(ϕ†

,tϕ− ϕ,tϕ
†)Δ−1

ϕ (ϕ†
,tϕ− ϕ,tϕ

†)

}(143)

Prior to reduction the configuration manifold Q can be regarded as the
product of the space of (spatial) connections A with the space of complex
scalar fields S, all defined over R3:

(144) Q = A× S

The Hamiltonian H is defined on its associated cotangent bundle

(145) P = T ∗Q
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but depends not only on the corresponding canonical variables but also on
the (at this point still arbitrary) ‘Lagrange multiplier’ field A0. The natu-
ral reduced configuration manifold, Qreduced, can be viewed as the abstract
quotient of Q by the gauge group G

(146) Qreduced := Q/G

so that, in more geometric language, Q is a G-bundle over Qreduced. By the
same token the reduced phase space (over which Hreduced is defined) can be
regarded as the cotangent bundle of Qreduced

(147) Preduced := T ∗Qreduced.

The Coulomb gauge condition defines a smooth, global cross-section of
this (topologically trivial) bundle

(148) Q → Qreduced = Q/G

and thus may be viewed as providing a concrete realization of this ab-
stract quotient space in terms of an explicit submanifold of Q. In this
setting the reduced-space canonical variables {AT , ϕ} effectively provide a
global coordinate system for the quotient manifold, Qreduced, and, together
with their conjugate momenta {πT , πϕ}, define global canonical coordinates
for Preduced. A different choice of gauge up in the bundle (other than the
Coulomb one that we have made) would have induced a different coordinate
system down in the base without, however, modifying the (gauge) invariant
dynamics unfolding in the quotient, ‘orbit’ space.

From the purely ‘kinetic energy’ terms in Lreduced (i.e., those bilinear in

ϕ,t and ϕ†
,t) and in Hreduced (i.e., those bilinear in πϕ and π†

ϕ) one can read
off coordinate expressions for the naturally induced (product) Riemannian
metric, Qg, defined on Qreduced and its inverse, Qg−1. The metric in the AT

factor is manifestly ‘Euclidean’ whereas that on the S factor takes (in a
notation explicitly geared to the chosen coordinate system) the form:

(149) gϕa(x)ϕb(x′) :=
2

c2

{
δabδ(x,x

′) + 2q2εacϕ
c(x)Δ−1

ϕ (x,x′)εbdϕ
d(x′)

}
where Δ−1

ϕ (x,x′) is the kernel function for the operator Δ−1
ϕ and where

εab = −εba with ε12 = 1. The inverse (i.e., contra-variant) form of this
metric is given by

(150) gϕ
a(x)ϕb(x′) :=

c2

2

{
δabδ(x,x′) + 2q2

εacϕc(x)ε
bdϕd(x

′)

4π|x− x′|

}
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with ϕa = δabϕ
b = ϕa and εab = εab. With these definitions the kinetic

energy term, Kϕ, for the S factor can be written as

(151) Kϕ =
1

2

∫
R3

d3x

∫
R3

d3x′
{
gϕa(x)ϕb(x′)ϕ

a
,t(x)ϕ

b
,t(x

′)
}

or, equivalently, as

(152) Kϕ =
1

2

∫
R3

d3x

∫
R3

d3x′
{
gϕ

a(x)ϕb(x′)πa(x)πb(x
′)
}

where

(153) π1 := πϕ + π†
ϕ

and

(154) π2 := i(πϕ − π†
ϕ)

are the momenta conjugate to ϕ1 and ϕ2 (respectively) so that, in particular,

(155) πϕϕ,t + π†
ϕϕ

†
,t = π1ϕ

1
,t + π2ϕ

2
,t.

Recalling that the kernel function, Δ−1(x,x′), for the operator Δ−1 is
given by

(156) Δ−1(x,x′) =
−1

4π|x− x′|

it is not difficult to verify directly that g and g−1 are indeed inverses of one
another and hence satisfy

(157)

∫
R3

d3x′
(
gϕa(x)ϕb(x′)g

ϕb(x′)ϕc(x′′)
)
= δcaδ(x,x

′′).

This identity plays a key role in the Legendre transformation relating
Lreduced to Hreduced.

While it would now be straightforward to compute the curvature of the
manifold (S, g) directly in the global chart defined above there is an alter-
native approach that allows for an easier comparison of the curvatures at
different points of S as well as for an illuminating comparison with the cor-
responding results for Yang-Mills fields derived in [1, 2, 3]. This alternative
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involves solving the geodesic equations for the manifold (S, g), constructing
the exponential map associated to an arbitrary point of S and thereby intro-
ducing an analogue of normal coordinates centered at the chosen point. In
normal coordinates the connection components vanish at the chosen point
thereby dramatically simplifying the evaluation of the corresponding curva-
ture at that point.

The reduced Hamilton equations for the ϕ field are readily found to be

ϕ,t =
δHreduced

δπϕ

= c2π†
ϕ + iqcA0ϕ

(158)

and

(π†
ϕ),t = −δHreduced

δϕ†

= iqcA0π
†
ϕ − δ

δϕ†

∫
R3

d3x
{
(Djϕ)

†(Djϕ) + U(ϕ†ϕ)
}(159)

in which

(160) A0 = Δ−1
[
−iq(ϕcπϕ − ϕ†cπ†

ϕ)
]

as was shown (in Eq. (142)) above. The geodesic equations result from simply

dropping the ‘forcing term’ in the (π†
ϕ),t equation and thus correspond to

(161) ϕ,0 − iqA0ϕ = cπ†
ϕ = D0ϕ

and

(162) (cπ†
ϕ),0 − iqA0(cπ

†
ϕ) = 0.

It follows immediately from differentiating Eq. (160) for A0 that, for the
geodesics problem,

(163) A0,0 = 0 (for geodesics).

Combining Eqs. (161), (162) and (163) one arrives at a second order form
for the geodesic equations

D0D0ϕ = ϕ,00 − 2iqA0ϕ,0 − q2A2
0ϕ

= 0.
(164)



358 Vincent Moncrief et al.

The general solution of this equation is expressible as

(165) ϕ = (α+ βx0)eiqA0x0

where α and β are ‘arbitrary’ complex fields independent of x0. One easily

finds that

(166) ϕ(D0ϕ)
† − ϕ†(D0ϕ) = β†α− βα†

so that A0 becomes expressible as

iqA0 = q2Δ−1
[
ϕ(D0ϕ)

† − ϕ†(D0ϕ)
]

= q2Δ−1(β†α− βα†)
(167)

which explicitly displays its time independence.

For the exponential map however we want the geodesic expressed in

terms of tangent space initial data {ϕ|x0=0 , ϕ,0 |x0=0} but, whereas ϕ|x0=0 =

α, one finds that

(168) β = ϕ,0|x0=0 − iqA0 ϕ|x0=0

which, in view of (167), is difficult to solve for β. Using the alternative

expression for A0 given by (139), however, one can write

iqA0 =
{
q2Δ−1

ϕ

[
ϕ(∂0ϕ

†)− ϕ†(∂0ϕ)
]}∣∣∣

x0=0

= q2Δ−1
α [αζ† − α†ζ]

(169)

where ζ := ϕ,0|x0=0. Substituting these expressions into (165) yields the

derived formula for geodesics expressed in terms of tangent space initial

data {α, ζ}:

(170) ϕ =
(
α(1− iqA0x

0) + ζx0
)
eiqA0x0

.

Evaluating this at a fixed ‘unit of time’ x0 = �0 = ct0 and defining the
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‘normal’ coordinate h by9

(171) h := �0ζ = �0(∂0ϕ)
∣∣
x0=0

one arrives at our explicit formula for the exponential map

(172) ϕh =
{
α
(
1− q2Δ−1

α (αh† − α†h)
)
+ h

}
eq

2Δ−1
α [αh†−α†h]

which for arbitrary fixed α, will be smoothly invertible on a sufficiently small
‘normal’ neighborhood of this chosen point which, of course, corresponds to
the ‘origin’ h = 0.

To compute the metric g in normal coordinates we need only evaluate
the kinetic energy term Kϕ (cf. Eq. (151)) along an arbitrary differentiable
curve (in the chosen chart for S) after substituting ϕh for ϕ everywhere. To
calculate the curvature tensor at the (arbitrary) reference point α, however,
one only needs the transformed expression for g expanded out to second
order in h. To this end note that

Δϕh
:= Δ− 2q2ϕ †

hϕh

= Δα + F
(173)

where

(174) Δα := Δ− 2q2α†α

and

F = −2q2(α†h+ αh†)

− 2q2
{
h†h− α†α

(
q2Δ−1

α (αh† − α†h)
)(

q2Δ−1
α (αh† − α†h)

)
+ (α†h− h†α)q2Δ−1

α (αh† − α†h)
}
.

(175)

The latter expresses F as an explicit sum of first and second order terms,

(176) F :=
(1)

F +
(2)

F
9More precisely, actual normal coordinates would be the components of an ex-

pansion of the coordinate vector h in terms of an orthonormal basis for the tangent
space, TαS, to S at the point ϕ = α. Since there is no apparent ‘canonical’ choice
for such a basis we shall leave it unspecified in the discussion to follow. In terms
of any such (herein suppressed) choice of actual normal coordinates, however, the
metric at ϕ = α would simplfy to an explicitly ‘Cartesian’ form.
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with

(177)
(1)

F = −2q2(α†h+ αh†).

What we actually need however is the inverse operator Δ−1
ϕh

expanded to

second order in h.

Note, however, that, for any field B lying in the range of Δ−1
ϕh

, we have

B = Δϕh
(Δ−1

ϕh
B)

= (Δα + F)(Δ−1
ϕh

B)
(178)

so that

Δ−1
ϕh

B = Δ−1
α B −Δ−1

α

[
F(Δ−1

ϕh
B)
]

= Δ−1
α B −Δ−1

α

[
F
(
Δ−1

α B −Δ−1
α

[
F(Δ−1

ϕh
B)
])]

= Δ−1
α

{
B − F

(
Δ−1

α

[
B − F(Δ−1

α B)
])}

+O(|h|3)

(179)

One could have iterated the intermediate steps above to get the result ex-

pressed to an arbitrary high order in h but, for the present purposes, the

formula given here will suffice.

To evaluate the transformed kinetic energy we need to apply Δ−1
ϕh

to the

specific quantity

(180) B = (ϕ†
h),0ϕh − (ϕh),0ϕ

†
h.

Expanding this expression out through the use of (172) one arrives at

(181) B =
(0)

B +
(1)

B +
(2)

B

where

(0)

B := (αh †
,0 − α†h,0)(182)

(1)

B =
[
hh †

,0 − h†h,0 − (αh †
,0 + α†h,0)q

2Δ−1
α (αh† − a†h)

+(α†h+ h†α)q2Δ−1
α (α†h,0 − αh †

,0)
](183)
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and

(2)

B :=
[
2(α†h− h†α)q2Δ−1

α (αh† − α†h)

− 2α†α
(
q2Δ−1

α (αh† − α†h)
)(

q2Δ−1
α (αh† − α†h)

)
+ 2h†h

]
q2Δ−1

α (α†h,0 − αh †
,0).

(184)

A useful identity satisfied by the
(i)

B and
(i)

F is:

(185)
(2)

B −
(2)

FΔ−1
α

(0)

B = 0.

Assembling these various components for the kinetic energy Kϕ and
retaining terms explicitly only through second order in h one finally arrives
at:

Kϕ =

∫
R3

d3x

{
h †
,0h,0 −

q2

2
(αh †

,0 − α†h,0)Δ
−1
α (αh †

,0 − α†h,0)

}

− q2

2

∫
R3

d3x
{
(

(1)

B −
(1)

FΔ−1
α

(0)

B)Δ−1
α (

(1)

B −
(1)

FΔ−1
α

(0)

B)
}

+O(|h|3)

(186)

where

(1)

B −
(1)

FΔ−1
α

(0)

B = 2iεab

[
ha,0 + εafαf2q

2Δ−1
α (εcdh

c
,0α

d)
]

×
[
hb + εbgαg2q

2Δ−1
α (εmnh

mαn)
](187)

wherein

αf = δfgα
g = αf , εcd = δcmδdnε

mn = εcd(188)

h = h1 + ih2, α = α1 + iα2(189)

h† = h1 − ih2, α† = α1 − iα2(190)

and εab = −εba with ε12 = 1 as before.
Noting that

αh †
,0 − α†h,0 = −2iεcdα

chd,0

= −2i

c
εcdα

chc,t
(191)
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and recalling Eq. (149) it is straightforward to verify that the first integral
on the right hand side of Eq. (186) is simply 1/2 the squared norm of the
velocity vectors h,t evaluated in the metric at ϕ = α. As explained in the
footnote for (171) this expression would simplify to purely ‘Cartesian’ form
if h,t were expanded in actual normal coordinates there.

From the classical, Riemannian result for the expansion of a metric in
normal coordinates it follows that the second integral on the right hand
side of Eq. (186) is −1/6 of the curvature tensor of the metric (149) at
ϕ = α evaluated, on both its first and last pair of ‘slots’, on the tangent
plane spanned by the vectors h and h,t. As such it corresponds (up to the
usual normalization factor expressible in terms of the ‘dot’ products of these
vectors) to the sectional curvature of this metric at the point α. Again, as
explained in the previous footnote, this expression would directly yield the
normal coordinate components of the sectional curvature at α if the vectors h
and h,t were both expressed in a common orthonormal basis for the tangent
space TαS.

Furthermore, in view of the factors of i in the defining equation (187) of
(1)

B−
(1)

FΔ−1
α

(0)

B and of the negativity of the operator Δα defined by Eq. (115), it
is clear that the curvature defined via Eq. (186) is everywhere non-negative
(i.e., ∀ α and for any pair {h, h,t} in TαS) but also that it vanishes on those

2-planes in TαS for which
(1)

B −
(1)

FΔ−1
α

(0)

B vanishes.
The authors have not, so far, decided which regularization scheme fits

most naturally with their overall Euclidean-signature semi-classical pro-
gram. Such a decision is not needed until the higher order, quantum ‘loop
corrections’ to field theoretic problems are under construction. These latter
however (as one can see from sections IIB and IVB of Ref. [10] which treats
the analogue quantum mechanical systems) will be governed entirely by
the integration of first order, linear transport equations of a comparatively
elementary type. By contrast we have instead focussed our efforts so far
on solving the analytically more challenging, uniquely nonlinear functional
partial differential equations for the fields of interest — namely the corre-
sponding Euclidean-signature vanishing-energy functional Hamilton-Jacobi
equations (cf., Sections 3.2 and 3.3 herein).

Until we do settle upon an appropriate regularization scheme we can-
not, consistently, carry out the regularized construction of the relevant orbit
space Ricci tensors for our program (or, for that matter, their loop cor-
rected Bakry-Émery ‘enhancements’). One hopes though, as is often the
case in quantum field theory, that the result aimed for (e.g., positivity of
the relevant Bakry-Émery Ricci tensor) will not crucially depend upon the
method of regularization employed.
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