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Statistical science in information technology and
precision medicine
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Broadly speaking, statistical science is the science that deals with
the collection and analysis of data. Although its methodological de-
velopments are rooted in mathematical sciences, particularly prob-
ability and optimization, it has transcended mathematical sciences
as a discipline by growing in multidisciplinary platforms. Exam-
ples in the United States and Canada are biostatistics and epi-
demiology, biomedical data science/informatics, statistics in infor-
mation engineering/data science, financial engineering and statis-
tics, statistics and actuarial science. In China, mathematics and
statistics are first-class disciplines at Peking University and Nankai
University, whereas statistics but not mathematics is listed as a
first-class discipline at Renmin University, Xiamen University and
Shanghai University of Finance and Economics. Herein we first give
an overview of statistical science in online experimentation, web-
based personalized marketing, recommender systems, and precision
medicine and health. We then develop new statistical methods to
address two challenging problems in online experimentation and
precision medicine.

Keywords and phrases: A/B testing, adaptive subgroup selection,
enrichment designs, familywise error rate in multiple testing, group se-
quential methods, hybrid resampling, online experiments.

1. Introduction

We begin by describing the background of this paper, which is related to the
Forum on Mathematical Sciences at the Frontiers of Science and Technology
on the opening day of 8th International Congress of Chinese Mathematicians
(June 9–13, 2019). The forum featured lectures on discrete geometric analy-
sis for materials research and mathematicians in the development of science
and technology from a European perspective, by Motoko Kotani and Jean-
Pierre Bourguignon, respectively, followed by panel discussions on Statistics
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and Artificial Intelligence. The first author attended the forum, in which

he was a panelist and which led him to reflect on his work with other two

coauthors in online experimentation, A/B testing and recommender systems

– topics that can be considered as some of the frontiers in information tech-

nology (IT). This section gives an overview of this and related work not only

at the IT frontiers but also at the frontiers of biomedicine and healthcare. It

also provides the background for the new methods and results in Section 2

on group sequential multiple testing in online experimentation and precision

medicine. Further discussion and concluding remarks are given in Section 3.

1.1. Online experimentation, sequential analysis, multiple testing

Online controlled experiments conducted on internet traffic are important

for data-driven decision making at many IT companies, including Ama-

zon, eBay, Facebook, Google, Microsoft, MSN.com, Optimizely, Yahoo and

Zynga. A/B testing is arguably the most common type of online experi-

ments. A small fraction of users are randomly selected to experience a new

treatment (e.g., changing the color of the logo on a web browser) within a

predetermined period of time. During the same period, another small frac-

tion of users are also randomly selected to serve as the control group that is

not exposed to the new treatment. Hundreds of metrics will then be com-

puted and compared between the treatment and control groups. The metrics

are related to the experimentation objectives, e.g., Amazon’s e-ecommerce-

revenue per user, revenue per session, etc.; MSN’s content – number of vis-

itors, clicks per visitor, clicks per session, etc.; Bing’s search – searches per

session, sessions per user, etc.; Microsoft’s support – length of session, ses-

sion success, etc. The scope of new treatments to be tested includes changes

in text/content/design, colors and fonts for user interface, options for user

support, email and other customer contact channels, apps, algorithms and

underlying codebase, etc.

For a particular metric, say clicks per user, letting X1, . . . , Xnt
be the

number of clicks for the users in the treatment group and X̄ be their sam-

ple mean, Y1, . . . , Ync
be the number of clicks for the users in the control

group with sample mean Ȳ , X̄ − Ȳ is approximately normal with mean 0

under the null hypothesis of no mean treatment difference between the new

and old web designs, and Var(X̄ − Ȳ ) can also be consistently estimated.

Because hundreds of such tests are performed for the hundreds of metrics,

multiplicity adjustments need to be made to guarantee that the type I error

of multiple hypothesis testing, either in the form of familywise error rate
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(FWER) or the weaker false discovery rate [11, pp. 158–159], does not ex-

ceed some prescribed level. In Section 2, after giving an overview of group

sequential multiple testing and adaptive design of clinical trials, we further

develop some recent advances in these areas for A/B testing in online exper-

iments and for the development and testing of biomarker-guided treatment

strategies in confirmatory clinical trials. Further discussion, additional ap-

plications and concluding remarks are given in Section 3.

1.2. Classical and contextual multi-armed bandits, precision

medicine and recommender systems

The K-armed bandit problem, introduced by Robbins [41] for the case

K = 2, is prototypical in the area of stochastic adaptive control that ad-

dresses the dilemma between “exploration” (to generate information about

the unknown system parameters needed for efficient system control) and

“exploitation” (to set the system inputs that attempt to maximize the ex-

pected rewards from the outputs). Robbins considered the problem of which

of K populations to sample from sequentially in order to maximize the

expected sum E(
∑N

i=1 Yi). If the population with the largest mean were

known, then obviously one should sample from it to receive expected re-

ward Nμ∗, where μ∗ = max1≤k≤K μk and μk is the mean of the kth pop-

ulation, which is assumed to be finite. By using the law of large num-

bers and infrequent forced sampling from all populations, he showed that

limN→∞N−1E(
∑N

i=1 Yi) = μ∗ could still be attained. Important advances

were subsequently made by Bellman [8], Chernoff and Ray [12], Gittins [21],

Whittle [48], before Robbins revisited the problem with Lai in [34], which

we review below.

Let Ft be the σ-algebra of events up to time t. An allocation rule φ =

(φ1, . . . , φN ) is said to be “adaptive” if its choice of the population φt to

sample from at time t is Ft−1-measurable, i.e., {φt = k} ∈ Ft−1 for k =

1, . . . ,K. Suppose Yt has density function fθk (with respect to some measure

m) when φt = k, and let θ = (θ1, . . . , θK). Then

Eθ(

N∑
t=1

Yt) =

N∑
t=1

K∑
k=1

Eθ{Eθ(YtI{φt=k}|Ft−1)} =

K∑
k=1

μ(θk)EθTN (k),(1.1)

where μ(θ) =
∫∞
−∞ yfθ(y)dm(y) and TN (k) =

∑N
t=1 I{φt=k} is the total sam-

ple size from population k. Hence maximizing the expected sum Eθ(
∑N

t=1 Yt)
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is equivalent to minimizing the regret, or shorfall from Nμ∗(θ):

RN (θ) = Nμ∗(θ)− Eθ(

N∑
t=1

Yt) =
∑

k:μ(θk)<μ∗(θ)

{μ∗(θ)− μ(θk)}EθTN (k),

(1.2)

in which the second equality follows from (1.1) and shows that the regret is

a weighted sum of expected sample sizes from inferior populations. Making

use of this representation in terms of expected sample sizes, Lai and Robbins

[34] derive an the asymptotic lower bound, as N → ∞, for the regret RN (θ)

of uniformly good adaptive allocation rules:

RN (θ) ≥ (1 + o(1))
∑

k:μ(θk)<μ∗(θ)

μ(θ∗)− μ(θk)

I(θk, θ∗)
logN,(1.3)

where θ∗ = θK(θ) and K(θ) = argmax1≤k≤K μ(θk), I(θ, λ) =

Eθ{log(fθ(Y )/fλ(Y ))} is the Kullback-Leibler information number, and an

adaptive allocation rule is called “uniformly good” if RN (θ) = o(Na) for all

a > 0 and θ.

Putting independent priors Gj on θj , the infinite-horizon problem of

maximizing

E(

∞∑
t=1

βt−1Yt) =

∫
. . .

∫
Eθ(

∞∑
t=1

βt−1Yt)dG1(θ1) . . . dGK(θK),(1.4)

with 0 < β < 1 can be analyzed by Markovian dynamic programming

(MDP) introduced by Bellman [8], who also introduced the term “multi-

armed bandit” for an imagined slot machine (which typically “robs” the

player’s money) with K levers, Gittins [21] and Whittle [48] used MDP to

show that the Bayes rule that maximizes (1.4) in the index rule φ∗ that

samples at stage n + 1 from the population k∗n will be the largest dynamic

allocation index M(Gk∗
n|Tn(k)) over the posterior distributions Gk|Tn(k). The

dynamic allocation index, subsequently called Gittins index, of a distribution

G is the infimum of solutions M of the equation

sup
τ≥0

E{
τ−1∑
t=0

βtE[μ(θ)|Y1, . . . , Yt] +M

∞∑
i=τ

βt} = M

∞∑
t=0

βt,(1.5)
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where supτ≥0 is the supremum over stopping times τ . As pointed out by
Whittle [48], the right-hand side of (1.5) can be interpreted as retiring im-
mediately to collect retirement rewards M now and over subsequent pe-
riods with discount factor β per period, which the left-hand side of (1.5)
refers to finding the optimal stopping time for retirement, hence (1.5) can
be interpreted as the value of M for which one is indifferent to retiring
now or optimally hereafter. Although M(G) may be difficult to compute,
the index rule represents a major advance as it reduces a K-dimensional
stochastic control problem to K optimal stopping problems. For the finite-
horizon Bayes rule, Chernoff and Ray [12] considered the one-armed ban-
dit problem of choosing between sampling from a population with 0 re-
ward and another population with N(0, 1) rewards, in which θ has a normal
prior distribution. The Bayes procedure in this case samples from Π1 until
T ∗ = min{n ≤ N :

∑n
i=1 Yi + an,N ≤ 0}. Chernoff and Ray used Brownian

motion and an associated free boundary problem for the PDE to determine
asymptotic expansions for an,N ≈ h(n/N).

Chang and Lai [10] developed asymptotic expansions for the Gittins in-
dex Mc define by (1.5) as β = e−c → 1 and found them to agree with an,N
as n/N → 0. Noting that Chernoff and Ray’s rule is tantamount to sam-
pling from the N(0, 1) population or the zero-reward population according
to whether Un,N > 0 or Un,N ≤ 0, where Un,N = Ȳn + n−1an,N is an up-
per confidence bound for θ, Lai [29] proposed a general upper confidence
bound (UCB) rule for the finite-horizon problem in the exponential family
of densities fθ(y) = exp{θy −Ψ(θ)} with respect to some dominating mea-
sure: Sample at stage n+1 from the population that has the largest Uk,T (k),

where Uj,t = inf{λ ≥ θ̂j,t : 2tI(θ̂j,t, λ) ≥ h2(t/N)}, θ̂j,t is the maximum
likelihood estimate and I(θ, λ) is the Kullback-Leibler information number.
Uj,t is therefore an upper confidence bound for θ obtained by inverting gen-
eralized likelihood ratio (GLR) tests in the exponential family. Lai [29] has
shown that the UCB rule attains the assumption lower bound (1.3) for the
regret RN (θ) of uniformly good rules at every θ, and that it also attains
asymptotically the Bayes regret as N → ∞. The Bayes regret is of the or-
der C(logN)2 when the prior distribution for θ has a positive continuous
density over θk ∈ (θ∗k − δ, θ∗k + δ) for 1 ≤ k ≤ K, where θ∗k = maxj �=k θj [29].

New applications and advances in IT and biomedicine in the new mil-
lenium have led to the development of contextual multi-armed bandits, also
called bandits with side information or covariates, while the classical multi-
armed bandits reviewed above are often referred to as “context-free” bandits.
Personalized marketing (e.g., Amazon) uses web sites to track a customer’s
purchasing records and thereby to market products that are individualized
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for the customer. Recommender systems select items such as movies (e.g.,
Netflix) and news (e.g., Yahoo) for users based on the users’ and items’ fea-
tures (covariates). Li et al. [37] model the click probability of a news article
as a function, estimated by machine learning methods, of the user’s and ar-
ticle’s features. They apply a UCB-type policy targeted towards maximizing
the click probability, but provide no theoretical analysis or simulation study
of the performance of the policy. Tang et al. [44] describe web-based per-
sonalization to show online ads for each user, with the goal of maximizing
“its effectiveness, measured in terms of click-through rate or total revenue.”
They formulate the optimization problem as a contextual multi-armed ban-
dit problem with a page request of each user as side (covariate) information
and layouts of advertisements available for the requested page as arms. In
Section 2.2 we describe applications of contextual multi-armed bandits to
personalized treatment strategies (also called precision medicine) for stroke
or cancer patients.

Whereas classical K-armed bandits reviewed above aim at choosing φi

sequentially so that Eθ(
∑N

i=1 Yi) is as close as possible to N max1≤k≤K μk,

contextual bandits basically replace Nμk by
∑N

i=1 μk(xi), where xi is the
covariate of the ith subject, noting that analogous to (1.1),

Eθ(Yi) =

K∑
k=1

Eθ{Eθ(YiI{φi=k}|xi,Ft−1)} =

K∑
k=1

Eθ(μk(xi)I{φi=k}).(1.6)

Assuming xi to be i.i.d. with distribution G, we can define g∗(x) =
argmax1≤k≤K μ(θk, x), θ

∗(x) = θj∗(x) and the regret
(1.7)

RN (θ, B) = N

∫
B
μ(θ∗(x),x)dG(x)−

N∑
i=1

K∑
k=1

∫
B
μ(θk,x)Eθ(I{φi=k})dG(x)

=

K∑
k=1

∫
B
{μ(θ∗(x),x)− μ(θk,x)}EθTN (k,x)dG(x)

for Borel subsets B of supp(G), where TN (k,B) =
∑N

i=1 I{φi=k,xi∈B}, noting
that the measure EθTN (k, ·) is absolutely continuous with respect to G,
hence EθTN (k,x) in (1.7) is its Radom-Nikodym derivative with respect to
G. The UCB rule (index policy) in classical bandit theory basically samples
from an inferior arm k until the sample size satisfies the asymptotic lower
bound for EθTN (k). For contextual bandits, an arm that is inferior at x may
be the best at x′. Therefore the uncertainty in the sample mean reward at
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xt does not need to be immediately reduced, and adaptive randomization
(rather than UCB rule) can yield an asymptotically optimal policy, as will
be illustrated in Sections 2.2 and 2.3.

2. Group sequential multiple testing in biomedicine and IT

We begin with group sequential design of comparative clinical trials in Sec-
tion 2.1 that also describes valid p-values and confidence intervals for sta-
tistical analysis of the data. Because of the lack of information on both the
magnitude and the sampling variability of the treatment effect of a new
treatment at the design stage, there has been increasing interest from the
biopharmaceutical industry in adaptive designs that can adapt to the infor-
mation collected during the course of the trial, as reviewed in Section 2.1.
The past decade witnessed major developments in innovative designs of con-
firmatory clinical trials, and adaptive designs represent the most active area
of these developments. Section 2.2 gives an overview of adaptive enrich-
ment designs for subgroup selection in precision medicine and introduces
new methods for the development and testing of biomarker-guided treat-
ment strategies in confirmatory clinical trials. Section 2.3 further develops
similar ideas in the context of A/B testing in online experiments.

2.1. Design and analysis of group sequential comparative trials

As pointed in [6, p. 77], in standard designs of clinical trials comparing a
new treatment with a control (which is a standard treatment or placebo),
the sample size is determined by the power at a given alternative, but it
is often difficult to specify a realistic alternative in practice because of lack
of information on the magnitude of the treatment effect difference before
actual clinical trial data are collected. On the other hand, many trials have
Data and Safety Monitoring Committees (DSMCs) who conduct periodic
reviews of the trial, particularly with respect to incidence of treatment-
related adverse events, hence one can use the trial data at interim analyses
to estimate the effect size. This is the idea underlying group sequential trials
in the late 1970s, and one such trial was the Beta-blocker Heart Attack Trial
(BHAT) that was terminated in October 1981, prior to its prescheduled
end in June 1982 [6, pp. 3–4]. BHAT, which was a multicenter, double-
blind, randomized placebo-controlled trial to test the efficacy of long-term
therapy with propranolol given to survivors of an acute myocardial infarction
(MI), drew immediate attention to the benefits of sequential methods not
because it reduced the number of patients but because it shortened a 4-year
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study by 8 months, with positive results for a long-awaited treatment for
MI patients. The success story of BHAT paved the way for major advances
in the development of group sequential methods in clinical trials and for the
widespread adoption of group sequential design. Sections 3.5 and 4.2 of [6]
describe the theory developed by Lai and Shih [35] for nearly optimal group
sequential tests in exponential families to provide a definitive method amidst
the plethora of group sequential stopping boundaries that were proposed in
the two decades after BHAT, as reviewed in [6, Chapter 6].

Lai and Shih’s theory is based on (a) asymptotic lower bounds for the
sample sizes of group sequential tests that satisfy prescribed type I and type
II error probability bounds, and (b) group sequential GLR tests with mod-
ified Haybittle-Peto boundaries that can be shown to attain these bounds.
Noting that the efficiency of a group sequential test depends not only on
the choice of the stopping rule but also on the test statistics, Lai and Shih
use generalized likelihood ratio statistics that have been shown in earlier
works of Lai to have asymptotically optimal properties for sequential test-
ing in one-parameter exponential families [6, Section 3.7] and can be readily
extended to multiparameter exponential families for which the type I and
type II errors are evaluated at u(θ) = u0 and u(θ) = u1, respectively, where
u : Θ → R is a continuously differentiable function on the natural parameter
space Θ such that Kullback-Leibler information number I(γ,θ) is increasing
in |u(θ) − u(γ)| for every γ [6, Section 4.2.4]. An important consideration
in this approach is the choice of the alternative θ1 (in the one-parameter
case, or u1 in the multiparameter exponential families). To test H0 : θ ≤ θ0,
suppose the significance level is α and no more than M observations are to
be taken because of funding and administrative constraints on the trial. The
FSS (fixed sample size) test that rejectsH0 if SM ≥ cα has maximal power at
any alternative θ > θ0. Although funding and administrative considerations
often play an important role in the choice of M , justification of this choice
in clinical trial protocols is typically based on some prescribed power 1− β
at an alternative θ(M) “implied” by M . The implied alternative is defined
by that M and can be derived from the prescribed power 1 − β at θ(M).
It is used to construct the futility boundary in the modified Haybittle-Peto
group sequential test [6, pp. 81–85].

Using Lai and Shih’s theory of modified Haybittle-Peto group sequen-
tial tests, Bartroff and Lai [3, 4] developed a new approach to adaptive
design of clinical trials. In standard clinical trial designs, the sample size
is determined by the power at a given alternative, but in practice, it is
often difficult for investigators to specify a realistic alternative at which
sample size determination can be based. Although a standard method to
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address this difficulty is to carry out a preliminary pilot study, the re-
sults from a small pilot study may be difficult to interpret and apply, as
pointed out by Wittes and Brittain [47], who proposed to treat the first
stage of a two-stage clinical trial as an internal pilot from which the overall
sample size can be re-estimated. The specific problem considered by [47]
as an example of internal pilots actually dated back to Stein’s two-stage
procedure [43], introduced in 1945 for testing hypothesis H0 : μX = μY

versus the two-sided alternative μX �= μY for the means of two indepen-
dent normal distributions with common, unknown variance σ2. In its first
stage, Stein’s procedure samples n0 observations from each of the two nor-
mal distributions and computes the usual unbiased estimate s20 of σ2. The

second stage samples n1 = n0∨ [
(
t2n0−2,α/2 + t2n0−2,β

)2
2s20/δ

2] observations
from each population, where α is the prescribed type I error probability,
tν,α denotes the upper α-quantile of the t-distribution with ν degrees of
freedom, and 1 − β is the prescribed power at the alternatives satisfying
|μX − μY | = δ. The null hypothesis H0 : μX = μY is then rejected if
|X̄n1

− Ȳn1
| > t2n0−2,α/2

√
2s20/n1. Modifications of the two-stage procedure

were provided by [47] and [9, 16, 22, 24], which represent the “first genera-
tion” of adaptive designs. The second generation of adaptive designs adopts
a more aggressive viewpoint of re-estimating the sample size from the es-
timate of δ (instead of the nuisance parameter σ) based on the first-stage
data; see [20, 40].

Assuming normally distributed outcomes with known variances, Jenni-
son and Turnbull [26] introduced adaptive group sequential tests that choose
the jth group size and stopping boundary on the basis of the cumulative
sample size nj−1 and the sample sum Snj−1

over the first j − 1 groups,
and that are optimal in the sense of minimizing a weighted average of the
expected sample sizes over a collection of parameter values, subject to pre-
scribed error probabilities at the null and a given alternative hypothesis.
They showed how the corresponding optimization problem can be solved
numerically by using backward induction algorithms. They also showed in
[27] that standard (non-adaptive) group sequential tests with the first stage
chosen appropriately are nearly as efficient as their optimal adaptive tests.
Earlier they showed in [10] that the adaptive tests proposed in the preceding
paragraph performed poorly in terms of expected sample size and power in
comparison with the group sequential tests. Tsiatis and Mehta [46] indepen-
dently came to the same conclusion, attributing this inefficiency to the use
of the non-sufficient “weighted” statistic. Bartroff and Lai’s new approach to
adaptive designs [3, 4], developed in the general framework of multiparam-
eter exponential families, uses efficient generalized likelihood ratio statistics
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in this framework and adds a third stage to adjust for the sampling variabil-

ity of the first-stage parameter estimates that determine the second-stage

sample size. The possibility of adding a third stage to improve two-stage de-

signs dated back to Lorden [38]. Whereas Lorden used crude upper bounds

for the type I error probability that are too conservative for practical appli-

cations, Bartroff and Lai overcame this difficulty by using new methods to

compute the type I error probability, and also extended the three-stage test

to multiparameter and multi-armed settings, thus greatly broadening the

scope of these efficient adaptive designs. Hybrid resampling plays an impor-

tant role in the statistical analysis of the data generated by these adaptive

designs, especially for primary and secondary analysis.

Rosner and Tsiatis [42] developed exact confidence intervals for the mean

of a normal distribution with known variance following a group sequen-

tial test. Subsequently, Chuang and Lai [13, 14] noted that even though√
n(X̄n − μ) is a pivot in the case of Xi ∼ N(μ, 1),

√
T (X̄T − μ) is highly

non-pivotal for a group sequential stopping time, hence the need for the

exact method of [42], which they generalized as follows. If F = {Fθ : θ ∈ Θ}
is indexed by a real-valued parameter θ, an exact equal-tailed confidence

region can always be found by using the well-known duality between hy-

pothesis tests and confidence regions. Suppose one would like to test the

null hypothesis that θ is equal to θ0. Let R(X, θ0) be some real-valued test

statistic. Let uα(θ0) be the α-quantile of the distribution of R(X, θ0) under

the distribution Fθ0 . The null hypothesis is accepted if uα(θ0) < R(X, θ0) <

u1−α(θ0). An exact equal-tailed confidence region with coverage probabil-

ity 1 − 2α consists of all θ0 not rejected by the test and is therefore given

by {θ : uα(θ) < R(X, θ) < u1−α(θ)}. The exact method, however, applies

only when there are no nuisance parameters and this assumption is rarely

satisfied in practice. To address this difficulty, Chuang and Lai [13, 14] in-

troduced a hybrid resampling method that “hybridizes” the exact method

with Efron’s [18, 19] bootstrap method to construct confidence intervals.

The bootstrap method replaces the quantiles uα(θ) and u1−α(θ) by by the

approximate quantiles u∗α and u∗1−α obtained in the following manner. Based

on X, construct an estimate F̂ of F ∈ F . The quantile u∗α is defined to be

α-quantile of the distribution of R(X∗, θ̂) with X∗ generated from F̂ and

θ̂ = θ(F̂ ), yielding the confidence region {θ : u∗α < R(X, θ) < u∗1−α} with

approximate coverage probability 1− 2α. For group sequential designs, the

bootstrap method breaks down because of the absence of an approximate

pivot, as shown in [13]. The hybrid confidence region is based on reducing

the family of distributions F to another family of distributions {F̂θ : θ ∈ Θ},
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which is used as the “resampling family” and in which θ is the unknown pa-
rameter of interest. Let ûα(θ) be the α-quantile of the sampling distribution
of R(X, θ) under the assumption that X has distribution F̂θ. The hybrid
confidence region results from applying the exact method to {F̂θ : θ ∈ Θ}
and is given by

{θ : ûα(θ) < R(X, θ) < û1−α(θ)} .(2.1)

The construction of (2.1) typically involves simulations to compute the quan-
tiles as in the bootstrap method.

Since an exact method for constructing confidence regions is based on
inverting a test, such a method is implicitly or explicitly linked to an ordering
of the sample space of the test statistic used. The ordering defines the p-
value of the test as the probability (under the null hypothesis) of more
extreme values (under the ordering) of the test statistic than that observed
in the sample. Under a total ordering ≤ of the sample space of (T, ST ),
Lai and Li [32] call (t, s) a qth quantile if P{(T, ST ) ≤ (t, s)} = q, which
generalizes the exact method of [42] for randomly stopped sums ST of of
independent normal random variables with unknown mean μ. For the general
setting where a stochastic process Xu, in which u denotes either discrete or
continuous time, is observed up to a stopping time T , Lai and Li [32] define
x = {xu : u ≤ t} to be a qth quantile if

P{X ≤ x} ≥ q, P{X ≥ x} ≥ 1− q,(2.2)

under a total ordering ≤ for the sample space of X = {Xu : u ≤ T}.
For applications to confidence intervals of a real parameter θ, the choice
of the total ordering should be targeted toward the objective of interval
estimation. Let {Ur : r ≤ T} be real-valued statistics based on the observed
process {Xs : s ≤ T}. For example, let Ur be an estimate of θ based on
{Xs : s ≤ r}. A total ordering on the sample space of X can be defined via
{Ur : r ≤ T} as follows:

X ≥ x if and only if UT∧t ≥ uT∧t,(2.3)

in which {ur : r ≤ t} is defined from x = {xr : r ≤ t} in the same way as
{Ur : r ≤ T} is defined from X and which has the attractive feature that the
probability mechanism generating Xt needs only to be specified up to the
stopping time T in order to define the quantile. Section 7.4 of [6] describes
how this ordering can be applied to implement resampling for secondary
endpoints, and Section 7.5 describes its applications to time-sequential trials
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which involve interim analyses at calendar time tj (1 ≤ j ≤ k), with 0 <

t1 < · · · < tk = t∗ (the prescribed duration of the trial), and which have
time to failure as the primary endpoint.

2.2. Adaptive enrichment designs in precision medicine

We begin by describing the work of Lai, Lavori and Liao [30] on enrich-

ment designs in precision medicine. Adaptive (data-dependent) choice of

the patient subgroup to compare the new and control treatments is a natu-
ral compromise between ignoring patient heterogeneity and using stringent

inclusion-exclusion criteria in the trial design and analysis. Section 2 of [30]

first provides an asymptotic theory for trials with fixed sample size, in which
n patients are randomized to the new and control treatments and the re-

sponses are normally distributed, with mean μj for the new treatment and
μ0j for the control treatment if the patient falls in a pre-defined subgroup

Πj for j = 1, . . . , J , and with common known variance σ2. Let ΠJ denote

the entire patient population for a traditional randomized controlled trial
(RCT) comparing the two treatments, and let Π1 ⊂ Π2 ⊂ · · · ⊂ ΠJ be the J

prespecified subgroups. Since there is typically little information from previ-
ous studies about the subgroup effect size μj−μ0j for j �= J , [30] begins with

a standard RCT to compare the new treatment with the control over the en-

tire population, but allows adaptive choice of the patient subgroup Î, in the
event HJ is not rejected, to continue testing Hi : μi ≤ μ0i with i = Î so that

the new treatment can be claimed to be better than control for the patient
subgroup Î if HÎ is rejected. Letting θj = μj −μ0j and θ = (θ1, . . . , θJ), the

probability of a false claim is the type I error

α(θ) =

{
Pθ(reject HJ) + Pθ(θÎ ≤ 0, accept HJ and reject HÎ) if θJ ≤ 0

Pθ(θÎ ≤ 0, accept HJ and Reject HÎ) if θJ > 0,

(2.4)

for θ ∈ Θ0. Subject to the constraint α(θ) ≤ α, [30, Appendix A] es-
tablishes the asymptotic efficiency of the procedure that randomly assigns

n patients to the experimental treatment and the control, rejects HJ if

GLRi ≥ cα for i = J , and otherwise chooses the patient subgroup Î �= J
with the largest value of the generalized likelihood ratio statistic GLRi =

{nin0i/(ni + n0i)}(μ̂i − μ̂0i)
2
+/σ

2 among all subgroups i �= J and rejects HÎ
if GLRÎ ≥ cα, where μ̂i(μ̂0i) is the mean response of patients in Πi from

the treatment (control) arm and ni(n0i) is the corresponding sample size.
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The test statistic GLRi is the sample estimate of the Kullback-Leibler infor-

mation (npi/4)(μi − μ0i)
2
+/σ

2, noting that nin0i/(ni + n0i) ≈ npi as study

subjects are equally likely to receive the new treatment or control. After es-

tablishing the asymptotic efficiency of the procedure in the fixed sample size

case, [30] proceeds to extend it to a 3-stage sequential design by making use

of the theory of Bartroff and Lai [3, 4] reviewed in the preceding paragraph.

It then extends the theory from the normal setting to asymptotically normal

test statistics, such as the Wilcoxon rank sum statistics.

We next consider another adaptive design for the development and test-

ing of biomarker-guided treatment strategies, introduced by Lai, Liao and

Kim [33], that attempts to select the best of k treatments for each biomarker-

classified subgroup of cancer patients in phase II studies. The clinical trial

has several objectives, which include (a) treating accrued patients with

the best (yet unknown) available treatment, (b) developing a biomarker-

guided treatment strategy for future patients, and (c) demonstrating that

the strategy developed indeed has statistically significantly better treat-

ment effect than some predetermined threshold. The group sequential design

uses an outcome-adaptive randomization rule, which updates the random-

ization probabilities at interim analyses and use GLR statistics and modified

Haybittle-Peto rules to include early elimination of inferior treatments from

a biomarker class. It is shown to provide substantial improvements, besides

being much easier to implement, over the Bayesian outcome-adaptive ran-

domization design used in the BATTLE (Biomarker-integrated Approaches

of Targeted Therapy for Lung Cancer Elimination) trial of personalized

therapies for non-small cell lung cancer [28]. An April 2010 editorial in Na-

ture Reviews in Medicine points out that BATTLE design, which “allows”

researchers to avoid being locked into a single, static protocol of the trial”

that requires large sample sizes for multiple comparisons of several treat-

ments across different biomarker classes, can “yield breakthroughs, but must

be handled with care” to ensure that “the risk of reaching a false positive

conclusion” is not inflated. Besides BATTLE, another design mentioned in

the editorial is that of the I-SPY2 (Investigation of Serial Studies to Predict

Your Therapeutic Response with Imaging and Molecular Aanalysis) trial

[7]. We use the following example to illustrate the basic idea of Lai, Liao

and Kim’s adaptive design of late-phase clinical trials for the development

and validation of biomarker-guided personalized therapies.

As pointed out in [33, pp. 651–653, 662], targeted therapies that target

the cancer cells (while leaving healthy cells unharmed) and the “right” pa-

tient population (that has the genetic or other markers for the sensitivity to
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the treatment) have great promise in cancer treatments but also challenges
in designing clinical trials for drug development and regulatory approval.
One challenge is to identify the biomakers that are predictive of response,
another is to develop a biomarker classifier that can identify patients who are
sensitive to the treatments, and the third is that classical frequentist clini-
cal trial designs and the more recent Bayesian trial designs are inadequate
to address these issues and gain regulatory approval of the new treatment.
This is pointed out in [33, p. 653], where it is also noted that the Bayesian
“BATTLE and BATTLE-2 trials share the philosophy of the classical muti-
armed bandit problem”, which we have reviewed in Section 1.2. To achieve
the objectives (a), (b) and (c) in the preceding paragraph, Lai et al. [33, pp.
654–655] use contextual bandit theory which we have reviewed in Section 1.2
and which we illustrate below with J = 3 groups of patient and K = 3 treat-
ments, assuming normally distributed responses with mean μjk and known
variance 1 for patients in group j receiving treatment k. Using Bartroff and
Lai’s adaptive design [3, 4] reviewed in Section 2.1, let ni denote be the total
sample size up to the time of the ith interim analysis, nij denote the total
sample size from group j in those ni patients, and let nijk be the total sam-
ple size from biomarker class j receiving treatment k up to the ith interim
analysis. Because it is unlikely for patients to consent to being assigned to
a seemingly inferior treatment, randomization in a double blind setting (in
which the patient and the physician both do not know whether treatment
or control is assigned) is needed for informed consent. The randomization

probability π
(i)
jk , with which patient j is assigned to treatment k at the ith

interim analysis, is described in Algorithm 1, in which μ̂ijk is the MLE of

μjk and k̂
(i)
j = argmaxk μ̂ijk is the MLE of k∗j = argmaxk μjk at the ith

interim analysis, and

2�ij(k, k
∗
j ) = nijkμ̂

2
ijk + nijk̂

(i)
j
μ̂2
ijk̂

(i)
j

− (nijkμ̂ijk + nijk̂
(i)
j
μ̂ijk̂

(i)
j
)2/(nijk + nijk̂

(i)
j
).

(2.5)

Contextual multi-armed bandit theory suggests assigning the highest

randomization probability between interim analyses i and i + 1 to k̂
(i)
j and

“nearby” treatments that are lumped into the set Hij , where δij → 0 but√
nijδij → ∞, with the randomization scheme in Step 3 of Algorithm 1, in

which

π
(i)
jk = (1− ε|Kij \ Hij |) /|Hij | for k ∈ Hij ,(2.6)
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Algorithm 1 Randomization probabilities π
(i)
jk and GLR tests for arm elim-

ination at the ith interim analysis
1: Let Kij be the set of surviving treatments in biomarker class j; “surviving”

means that the treatment is not eliminated at or before interim analysis i.
Compute the GLR statistic �ij(k, k

∗
j ) by (2.5) for testing the null hypothesis

μjk = μj,k∗
j
that the kth treatment has the same effect as that of the best

treatment k∗j on the jth biomarker class is �ij(k, k
∗
j ).

2: Eliminate treatment k from Kij at the ith interim analysis if �ij(k, k
∗
j ) > 5δij .

3: Let Hij = {k ∈ Kij : |μ̂(i)
jk − μ̂

(i)

j,k̂
(i)
j

| ≤ δij}. Randomize treatments in Hij with

the probabilities π
(i)
jk given by (2.6) below, and assign probability ε to each

treatment in Kij \ Hij .

where |A| denotes the cardinality of a finite set A. Equal randomization
(with randomization probability 1/K) for the K treatments is used up to
the first interim analysis. In particular, for the simulation study with results

summarized in Table 1, we choose J = K = 3, δij = n
−2/5
ij (for which√

nijδij → ∞ as nij → ∞), ni − ni−1 = 200 and ε = 0.1. In context-free
multi-armed bandit theory, this corresponds to the ε-greedy algorithm which
has been shown by Auer et al. [2] to provide an alternative to the UCB rule
for attaining the asymptotic lower bound for the regret.

We illustrate this 3-stage adaptive clinical trial design in a simulation
study, the results of which are provided in Table 1 (for patients accrued to
the trial) and Table 2 (for future patients); each result is based on 1000
simulations. The simulation study considers six scenarios of mean responses
μjk that are listed in Table 1, which also gives in parentheses the expected
number of patients in biomarker class j receiving treatment k. Note that the
total number of patients in the trial is n3 = 600 if there is no early stopping
for futility. Scenarios S1–S3 have the biomarker class size proportional to
3:2:1 for j = 1, 2, 3. Scenarios S4–S6 have the same mean responses as S1–S3,
but the class sizes are proportional to 1:1:1. Scenarios S1 and S4 have a best
treatment that is substantially better than the others, and no negative effects
for all treatments. Scenarios S2 and S5 have positive μjk (0.2, 0.3, 0.5) for j =
k, and 0 or negative μjk for j �= k. Scenarios S3 and S6 have μjk = 0.1 for j =
k, and negative μjk ∈ {−0.05,−0.5} for j �= k. Table 1 shows that most of the
patients in the trial are treated with the best treatment. Table 2 shows that
our new test-based procedure for FWER control, described below, controls
FWER in all six scenarios and also has good power for S1 and S4 (0.98,
0.95), moderate power for S2 and S5 (0.68, 0.73), and low power for S3 and
S6.
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Lai et al. [33] introduced a subset selection method for selecting a subset
of treatments at the end of the trial to be used for future patients, with an
overall probability guarantee of 1−α to contain the best treatment for each
biomarker class, and such that the expected size of the selected subset is as
small as possible in some sense. Here we develop a test-based approach that
is more directly related to the elimination rule and FWER control in multiple
testing. For the statistical analysis after the conclusion of the trial, test for
each biomarker class j the simple (multivariate) hypothesis H0j : μjk = 0 for
1 ≤ k ≤ K, at significance level α. Since the probability (under H0j) of early
stopping for futility and accepting H0j is 1, we can restrict to i = I (the
final analysis) for which the likelihood ratio test rejects H0j if μ̂Ijk̂

(I)
j

exceeds

some threshold cα such that PH0j
(max1≤k≤K μ̂Ijk > cα) = α, which can be

evaluated by Monte Carlo simulations (using the aforementioned “exact”
resampling method for the adaptive design).

Table 1: Mean response and expected sample size (in parentheses) for sce-
narios S1–S6 involving K = 3 treatments and J = 3 biomarker classes

Class Treatment
j 1 2 3

S1 1 0.5 (141.33) 0.0 (29.64) 0.0 (28.93)
2 0.0 (29.21) 0.5 (141.21) 0.0 (30.11)
3 0.0 (28.42) 0.0 (28.72) 0.5 (142.43)

S2 1 0.2 (109.33) −0.1 (37.97) 0.0 (52.41)
2 −0.1 (32.78) 0.3 (126.37) 0.0 (41.63)
3 0.0 (28.97) −0.1 (26.18) 0.5 (144.36)

S3 1 0.1 (113.90) −0.5 (24.88) −0.05 (62.18)
2 −0.5 (24.79) 0.1 (111.37) −0.05 (63.72)
3 −0.05 (60.72) −0.5 (24.74) 0.1 (113.70)

S4 1 0.5 (221.77) 0.0 (39.72) 0.0 (38.54)
2 0.0 (29.20) 0.5 (140.33) 0.0 (30.13)
3 0.0 (19.50) 0.0 (18.59) 0.5 (62.22)

S5 1 0.2 (177.03) −0.1 (50.18) 0.0 (72.10)
2 −0.1 (32.64) 0.3 (126.35) 0.0 (41.43)
3 0.0 (19.05) −0.1 (16.95) 0.5 (64.27)

S6 1 0.1 (179.75) −0.5 (34.52) −0.05 (85.68)
2 −0.5 (24.61) 0.1 (113.49) −0.05 (61.72)
3 −0.05 (34.04) −0.5 (14.93) 0.1 (51.26)

2.3. Group sequential multiple testing in online experiments

For online experiments of IT companies and A/B testing, a predetermined
duration is usually specified, during which we carry out T interim (including
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Table 2: FWER and power of test-based subset selection method (α = 0.05)

S1 S2 S3 S4 S5 S6
FWER 0.03 0.01 0.01 0.02 0.01 0
Power 0.98 0.68 0.1 0.95 0.73 0.11

final) analyses. As noted in the second paragraph of Section 1.1, the sample

mean difference is approximately normal with variance that can be consis-

tently estimated. We therefore assume in the sequel that the responses to

treatment (respectively, control) are i.i.d. normal. Moreover, one often finds

a treatment to have markedly positive effect on a subgroup but negligible or

even negative effects for other subgroups after dividing the population into

disjoint subgroups G1, . . . , GJ . The A/B test also involves multiple metrics.

For the metric m(1 ≤ m ≤ M), let μm,j (respectively, μ0
m,j) be the mean

of the responses to treatment (respectively, control) for subgroup Gj . To

test the null hypothesis H
(m)
0j : μm,j = μ0

m,j versus the one-sided alternative

μm,j > μ0
m,j , compute at the tth interim analysis the test statistic

Z
(m)
tj = {ntjn

0
tj/(ntj + n0

tj)}1/2(μ̂t;m,j − μ̂0
t;m,j)/σ̂t;m,j ,(2.7)

which is the signed-root GLR statistic when the responses are normal and

in which ntj (respectively, n0
tj) is the sample size of subgroup Gj up to the

tth interim analysis and

σ̂2
t;m,j =

ntj∑
i=1

(Xi;m,j − μ̂t;m,j)
2/(ntj − 1) +

n0
tj∑

i=1

(X0
i;m,j − μ̂0

t;m,j)
2/(n0

tj − 1)

is a consistent estimate of σ2
m,j = Var(Xi;m,j − X0

i;m,j). Let Hm =⋂
1≤j≤J H

(m)
0j ,

Z
(m)
t = max

1≤j≤J
Z

(m)
tj .(2.8)

We use Bartroff and Lai’s [5] multistage extension of Holm’s step-down

procedure [25], which we summarize in Algorithm 2 below with

C(ρ) = (1− ρ)th quantile of the distribution of max
1≤t≤T

Z
(m)
t under Hm,

(2.9)
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to control the FWER in testing the multiple hypotheses Hm, 1 ≤ m ≤ M .

Note that under Hm, μm,j − μ0
m,j = 0 for all j, hence the distribution of

max1≤t≤T Z
(m)
t (and therefore C(ρ) also) does not depend on m and

PHm

{
max
1≤t≤T

Z
(m)
t ≥ C(ρ)

}
≤ ρ for 1 ≤ m ≤ M.(2.10)

For the values of ρ in Algorithm 2, we use Monte Carlo simulations to

compute the quantile in the right-hand side of (2.9) to evaluate C(ρ).

Algorithm 2 Multistage step-down procedure for testing Hm, 1 ≤ m ≤ M ,
with FWER control rate α and C(ρ) given by (2.9)

1: Order the test statistics as Z(t,1) ≥ . . . ≥ Z(,M) and reject H(1), . . . ,H(mt),
where

mt = max
{
m ≥ 1 : min

1≤j≤m

[
Z(t,m) − C

( α

M − j + 1

)]
≥ 0

}
.

2: If t < T and there is no rejected hypothesis, set t = t + 1 and GOTO Step 1.
Otherwise STOP and output the set of rejected hypotheses.

From (2.10) and Theorem 2.1 of [5], the 3-stage multiple test has FWER

controlled at level α. Simulation studies are conducted to illustrate the per-

formance of the 3-stage test, which is compared with the traditional fixed

sample size (FSS) step-down t-tests for multiple testing of mean differences

with FWER control. The results are summarized in Tables 3 and 4. There

are 5 scenarios for the alternative hypotheses in each table besides scenario

S0 for the null hypothesis. In each scenario, 550 users are accrued to the

online experiment, with 250 for the first interim analysis, 150 added to the

second interim analysis and the remaining 150 added to the final analysis.

The metrics are normally distributed with the same mean μ0
m,j = 0 for users

assigned to the control, and different means μm,j for those assigned to the

treatment. There are 50 metrics, the first six of which are the only ones af-

fected by the treatment. Their values are listed in the vector μ in the tables,

which give the expected stopping time E(τ), the FWER, power (i.e., proba-

bility of rejecting all false null hypotheses), and the detection rate DetRate;

each result is based on 1000 Monte Carlo simulations. Since an IT company

would decide to launch a new feature when significant positive effects are

found in some metric, we also report the probability of detecting some metric

with positive treatment effect, which we call the “detection rate”. The tables

show that both the 3-stage test and the FSS test have FWER controlled at
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the prespecified α = 0.2 level. While Table 3 assumes the relative frequen-

cies rj(j = 1, . . . , 6) of the subgroups Gj to be 1/6, Table 4 assumes unequal

relative frequencies (0.2, 0.1, 0.3, 0.1, 0.1, 0.2) for (r1, r2, r3, r4, r5, r6). The 3-

stage test stops at the first stage with very high probability in scenarios

S1-S5, although FSS has substantially higher power in S1-S4. Scenario S5

represents the situation where the treatment has negative effects on most

subgroups but also has strong positive effects on some subgroups. While FSS

has near-zero power and detection rate, the 3-stage test has detection rate

1 and power around 0.8.

Table 3: Comparison of 3-stage procedure in upper row with FSS test in
lower row; FWER controlled at level α = 0.2

Scenario E(τ) FWER Power DetRate
S0: μ = (0, 0, 0, 0, 0, 0) 2.82 0.00 0 0

3 0.02 0 0
S1: μ = (1, 0.8, 0.6, 0, 0, 0) 1.06 0.01 0.48 1

3 0.01 0.78 1
S2: μ = (0.6, 0.6, 0.6, 0.6, 0.6, 0.6) 1.26 0.00 0.35 0.98

3 0.03 0.80 1
S3: μ = (0.8, 0.6, 0.4, 0, 0, 0) 1.40 0.01 0.31 0.97

3 0.02 0.64 1
S4: μ = (1, 1, 0.6, 0.6, 0.2, 0.2) 1.01 0.01 0.58 1

3 0.02 0.80 1
S5: μ = (1.2, 1.2,−0.6,−0.6,−0.6,−0.6) 1 0.00 0.79 1

3 0.02 0.01 0.04

Table 4: Comparison in the case of unequal group frequencies

Scenario E(τ) FWER Power DetRate
S0: μ = (0, 0, 0, 0, 0, 0) 2.68 0.01 0 0

3 0.02 0 0
S1: μ = (1, 0.8, 0.6, 0, 0, 0) 1.01 0.01 0.56 1

3 0.02 0.8 1
S2: μ = (0.6, 0.6, 0.6, 0.6, 0.6, 0.6) 1.13 0.01 0.38 0.99

3 0.02 0.80 1
S3: μ = (0.8, 0.6, 0.4, 0, 0, 0) 1.21 0.01 0.35 0.97

3 0.02 0.73 1
S4: μ = (1, 1, 0.6, 0.6, 0.2, 0.2) 1.01 0.01 0.61 1

3 0.02 0.80 1
S5: μ = (1.2, 1.2,−0.6,−0.6,−0.6,−0.6) 1 0.01 0.77 1

3 0.02 0 0.02
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3. Conclusion

This section gives some concluding remarks and ongoing work, together with
further discussion of the methods and results in Section 2, which builds upon
recent advances in contextual bandit theory, adaptive design of clinical trials
and group sequential multiple testing to develop adaptive subset selection
for biomarker-guided personalized strategies in precision medicine and A/B
testing with multiple metrics and user subgroups in on-line experiments.
Resampling methods play an important role to implement the likelihood ra-
tio or generalized likelihood tests with analytically intractable distributions
under the null hypothesis in the adaptive designs. It should be noted that
the GLR statistics are approximate pivots for composite null hypotheses,
and this explains why hybrid resampling is so effective for GLR statistics;
see [6] and [15, Chapter 16].

3.1. Adaptive enrichment designs for confirmatory trials

We provide here more details and discussion of the adaptive enrichment de-
signs reviewed in the first paragraph of Section 2.1. Although conventional
randomized controlled trial (RCT) designs can be used for enrichment clin-
ical trials through the inclusion-exclusion criteria for patient accrual if the
patient characteristics for enrichment can be delineated at the planning stage
on the basis of early-phase trials or related studies reported in the literature,
this is often not the case even for confirmatory Phase III trials and adaptive
designs that allow mid-course enrichment using data collected have been re-
cently developed by Lai, Lavori and Liao [30] in connection with the design
of the DEFUSE 3 clinical trial at the Stanford Stroke Center to evaluate a
new method for augmenting usual medical care with endovascular removal
of the clot after a stroke, resulting in reperfusion of the area of the brain
under threat, in order to salvage the damaged tissue and improve outcomes
over standard medical care with intravenous tissue plasminogen activator
(tPA) alone. The clinical endpoints of stroke patients are the Rankin scores,
and Wilcoxon rank sum statistics are used to test for differences in Rankin
scores between the new and control treatments. The DEFUSE 3 (Diffusion
and Perfusion Imaging Evaluation for Understanding Stroke Evolution) trial
design involves a nested sequence of J = 6 subsets of patients, defined by
a combination of elapsed time from stroke to start of tPA and an imaging-
based estimate of the size of the unsalvageable core region of the lesion. The
sequence was defined by cumulating the cells in a two-way (3 volumes × 2
times) cross-tabulation as described in Lai et al. [30, p. 195]. In the upper
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left cell, c11, which consisted of the patients with a shorter time to treatment
and smallest core volume, the investigators were most confident of a posi-
tive effect, while in the lower right cell c23 with the longer time and largest
core area, there was less confidence in the effect. The six cumulated groups,
Π1, . . . ,Π6 give rise to corresponding one-sided null hypotheses, H1, . . . , H6

for the treatment effects in the cumulated groups.
Shortly before the final reviews of the protocol for funding were com-

pleted, four RCTs of endovascular reperfusion therapy administered to
stroke patients within 6 hours after symptom onset demonstrated decisive
clinical benefits. Consequently, the equipoise of the investigators shifted,
making it necessary to adjust the intake criteria to exclude patients for
whom the new therapy had been proven to work better than the standard
treatment. The subset selection strategy became even more central to the
design, since the primary question was no longer whether the treatment was
effective at all, but for which patients should it be adopted as the new stan-
dard of care. Besides adapting the intake criteria to the new findings, another
constraint was imposed by the NIH sponsor, which effectively limited the
total randomization to 476 patients. The first interim analysis was scheduled
after the 200 patients, and the second interim analysis after an additional
140 patients. DEFUSE 3 has a Data Coordinating Unit and an indepen-
dent Data and Safety Monitoring Board (DSMB). Besides examining the
unblinded efficacy results prepared by a designated statistician at the data
coordination unit, which also provided periodic summaries on enrollment,
baseline characteristics of enrolled patients, protocol violations, timeliness
and completeness of data entry by clinical centers, and safety data. During
interim analyses, the DSMB would also consider the unblinded safety data,
comparing the safety of endovascular plus IV-tPA to that of IV-tPA alone,
in terms of deaths, serious adverse events, and incidence of symptomatic
intracranial hemorrhage.

In June 2017 positive results of another trial DWI or CTP Assessment
with Clinical Mismatch in the Triage of Wake-Up and Late Presenting Stokes
undergoing Neurointervention with Trevo (DAWN), which involved patients
and treatments similar to those of DEFUSE 3, were announced. Enrollment
in the DEFUSE 3 trial was placed on hold; an early interim analysis of the
182 patients enrolled to date was requested by the sponsor (NIH); see Al-
bers et al. [1] that says: “As a result of that interim analysis, the trial was
halted because the prespecified efficacy boundary (P < 0.0025) had been
exceeded.” As reported by the aforementioned authors [1], DEFUSE 3 “was
conducted at 38 US centers and terminated early for efficacy after 182 pa-
tients had undergone randomization (92 to the endovascular therapy group
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and 90 to the medical-therapy group).” For the primary and secondary effi-

cacy endpoints, the results show significant superiority of endovascular plus

medical therapies. The DAWN trial “was a multicenter randomized trial with

a Bayesian adaptive-enrichment design” and was “conducted by a steering

committee, which was composed of independent academic investigators and

statisticians, in collaboration with the sponsor, Stryker Neurovascular” [39].

Early termination of DEFUSE 3 provides a concrete example of importance

of a flexible group sequential design that can adapt not only to endogenous

information from the trial but also to exogenous information from advances

in precision medicine and related concurrent trials.

3.2. Contextual bandits and mobile health

This is an ongoing project, which is related to Section 1.2. Advances in

mobile technology offer opportunities to deliver interventions that accom-

modate an individual’s immediate needs [45]. Just-in-time adaptive interven-

tions (JITAIs) aim to provide support for health behavior change at times

when users most need the support. A key problem in designing JITAIs for

mobile health is to learn decision rules from data that can map tailoring vari-

ables (e.g., user mood, time of day) to intervention options (e.g., whether a

message should be sent to the user’s phone right now or later). Contextual

bandits provide a natural framework for sequential decision making in mo-

bile health regarding attempts to construct decision rules with the goal of

maximizing some numerical outcome (metric) following every decision point.

The field of interactive machine learning encompasses applications to mobile

health, and contextual bandits enable personalization such that (a) the set

of possible interventions can be enlarged, thus improving their efficacy, and

(b) it can take advantage of the already logged data for system optimiza-

tion, without the need of a user model, to provide impactful innovations in

personalized mHealth interventions [17, 36].
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