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Angiogenesis is one of the main processes of vascularization re-

sulting in the formation of capillary sprouts in response to exter-

nally supplied chemical stimuli. Till date, most of the numerical

works simulating the process of angiogenesis has been carried out

by lower order accurate schemes like Euler explicit, which may

not be good enough to predict the physiological process correctly

because of their over diffusive nature. In the present work, we pro-

pose a fourth order spatially accurate and second order temporally

accurate finite difference scheme for the equations governing the

process of angiogenesis from an existing continuous model. For the

discrete counterpart of the same model, the coefficients represent-

ing the probability density is computed by our high order compact

(HOC) data. The proposed scheme is employed to carry out com-

putation of the evolution of endothelial cell migration for three

cases: the first two corresponds to the advancement of the density

of endothelial-cell in time and space mirroring the migration of

the endothelial-cells from the parent vessel towards a tumor cell

source in the shape of a line, one in the presence of haptotaxis and

the other without it. The last deals with the same with a circular

tumor cell source with haptotaxis. We also demonstrate that sim-

ulation resulting from a lower order accurate scheme might lead

to misrepresentation of the physiological process, particularly in

the later stages. Contrary to this, in each of the cases, our HOC

simulations match excellently with earlier benchmark numerical

and some experimental results for all stages of the process, thus

confirming the robustness and efficiency of the proposed numerical

scheme.
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1. Introduction

Angiogenesis (syn neovascularization) [1, 3, 9, 13, 14, 15, 22, 35, 36, 44,

45, 53, 54, 56] is the sprouting of fresh blood vessels and capillary beds from

existing vessels, which plays a fundamental role in embryonic development,

resolution of inflammation, and onset of neoplasia. Angiogenesis is linked to

certain pathologies – e.g., cancer, diabetic retinopathy, rheumatoid arthritis,

etc. One can also find its occurence during tissue repair in adult mammals,

albeit in a controlled manner [3]. On the other hand, Falkman et al. [14, 15]

have reported that uncontrolled or excessive blood-vessel formation is vital

for tumorigenesis and manifests in abnormal neovascularization of the eye,

arthritis, duodenal ulcers, and in many more physiological processes such as

myocardial infarction. However, in all the cases, the well-ordered sequence of

events typical of angiogenesis is the same: it starts with the rearrangement

and migration of endothelial cells from a preexisting vasculature and then

culminates in the formation of a widespread network of fresh capillaries

[35]. The progress of tumor induced angiogenesis occurs mainly through the

following sequence of three events:

• The process of angiogenesis starts with the secretion of certain chem-

icals by the carcinogenic cells of a solid tumor into the surrounding

tissues; they are popularly known in abbreviated form as TAF, stand-

ing for tumor angiogenic factors [15].

• Subsequently, diffusion of the TAF takes place through the tissue space

leading to the formation of a chemical gradient between the tumor and

any existing vasculature.

• On reaching any neighboring blood vessels situated on their edges,

the endothelial cells are first induced to damage the parent venule

basement membranes and then wander towards the tumor through

the damaged membrane.

The isolation of several TAF such as vascular endothelial growth factor

(VEGF), acidic and basic fibroblast growth factor (aFGF, bFGF), angio-

genin and others [15], and subsequent discovery of endothelial cell receptors

for these proteins have been extensively reported in literature [11, 16, 20,

21, 23, 38, 40, 41, 43]. Experiment shows that the disruption of these re-

ceptors has a direct bearing on the final structure of the capillary network

[12]. Hence, the study of the movement of endothelial cells during angio-

genesis has generated a renewed interest amongst the mathematical biology

community [1, 9, 36, 26].
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Initially, endothelial cells have a chemotactic response to the aforemen-
tioned angiogenic factors [49], which initiates the movement of cells towards
the tumor. Subsequently, tiny, claw-like capillary sprouts are formed by the
accumulation of endothelial cells [10, 49] which continue to grow and move
towards the tumor. The movement of the capillaries is usually determined by
the motion of the foremost endothelial cell located at the sprout tip. The pro-
cess of sprout extension continues further when the endothelial cells begin to
multiply. The movement of the sprout tip and its consequent multiplication
of sprout-wall cells lead to the formation of solid strands of endothelial cells
amongst the extracellular matrix. The meandering of the cells through the
extracellular matrix continues further; the matrix is made up of fibronectin,
collagen fiber and interstitial tissues as well as other components [33]. The
role of fibronectin, more specifically that of haptotaxis in the adhesion
of cells to the extracellular matrix and the interplay of TAF with them in
cell migration can be found in the studies of [6, 25, 26, 31, 37, 46, 48]. On
the other hand the role of sprout branching and looping in spreading the
capillary bed resulting in cell migration have been well documented in the
studies of [44] and [39].

Mathematical modeling of tumor induced angiogenesis has attracted the
attention of oncologists, biologists, the pharmaceutical industry and math-
ematicians alike in the last half of the century. A comprehensive discussion
on this can be found in the work of Mantzaris et al. [36] and Valinova et
al [54]. As would be seen in the subsequent sections, the modeling of an-
giogenesis involves solving a coupled system of partial differential equations
one of which is of reaction-diffusion type and highly nonlinear. As such, it
must be solved by numerical methods. A close look at the numerical studies
on this topic over the years reveal that in most of the cases some standard
lower order accurate schemes like Euler’s explicit finite difference scheme
[1, 13, 36] was used to discretize the governing equations. However, all these
schemes are fraught with inherent implicit numerical diffusion and dispersion
[2, 24] and the simulation resulting from these schemes may not represent
the physiological phenomena accurately, specifically at the later part of the
evolution. Moreover, because of stability issues, extremely smaller time steps
are required for simulation.

In this context, it is imperative to explore the possibility of employing
High Order Compact (HOC) [18, 19, 27, 28, 29, 32, 42, 51] scheme for the
governing equations modelling angiogenesis and examine how this scheme
behaves when applied to simulate the evolution of cell migration. The mo-
tivation behind embarking on a study such as the current one is to devise
an HOC scheme for such equations. If a finite difference method utilizes no
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more than one grid point away from the node about which finite difference

approximations are taken, it is called a compact scheme. Along with this, if

its spatial accuracy is O(h2) or more (h being the space step length), it is

termed as an HOC method. The marriage between the higher order accuracy

and the compactness of the difference stencils of the HOC methods yields

high quality numerical solutions with greater computational economy. In the

present work, we develop an HOC scheme mainly for the equation governing

the motion of endothelial cell density; the scheme is implicit, second order

accurate in time and fourth order accurate in space.

This paper is organized in the following way. In Section 2, we provide

a brief discussion on the mathematical model being used, in Section 3, we

give the details of development of the numerical scheme for the endothelial

cell density equation, in Section 4, we provide a brief on the discrete model,

Section 5 and 6 respectively deal with the numerical simulations with the

continuous and discrete models, Section 7 with numerical issues and finally

in Section 8, we summarize our achievements in conclusions.

2. The mathematical model used

In the existing literature, one can find a plethora of mathematical models de-

veloped over the years using different approaches. These models have evolved

over the years by gradually incorporating more crucial features of angiogen-

esis induced by a tumor. Most of the earlier one of these models employed a

deterministic framework in a continuum of one space dimension [5, 9, 34, 55].

Despite being capable of exhibiting several important features of angiogene-

sis, these models fell short in predicting the morphology and actual structure

of the capillary network. In 1998, Anderson and Chaplain proposed a more

realistic model of angiogenesis in two space dimensions [1] which utilizes a

blend of the continuum and probabilistic (discrete) approaches, merging the

respective strengths of each approach. It focuses on the three crucial vari-

ables involved in angiogenesis induced by a tumor that had been mentioned

in Section 1, viz., endothelial cells, TAF and fibronectin. In the following,

we provide a brief description on the coupled system of partial differential

equations governing the phenomenon.

If the normalized endothelial-cell density per unit area is denoted by

n, the TAF concentration by c and the fibronectin concentration by f, the

equations governing this physiological phenomena reduce to
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∂n

∂t
= D∇2n−∇ ·

(
χ

1 + αc
n∇c

)
−∇ · (ρn∇f)

∂f

∂t
= βn − γnf(1)

∂c

∂t
= ηnc

subject to the following no-flux condition

(2) ξ ·
(
−D∇n + n

(
χ

1 + αc

)
∇c+ ρ∇f

)
= 0

on the boundaries (ξ being a unit normal to the boundary), where it is
assumed that the domain under consideration is a unit square.

The details of the derivation of the partial differential equations gov-
erning the physiological phenomena and their non-dimensionalisation along
with the description of the constants and coefficients D, χ, α, ρ, β, γ, and
η can be found in [1, 13, 36].

3. Solution of equations by HOC schemes

To solve the first equation in the system of eauations (1) governing endo-
thelial-cell motion, we will frame an implicit, unconditionally stable higher
order compact (HOC) difference scheme in the line of the one proposed
in [28]. The scheme has a second-order temporal accuracy and a spatial
accuracy of four. It is set on a stencil that utilizes nine and five points at the
nth and (n+1)th time levels respectively and as such termed a (9,5) HOC
scheme. It was seen to efficiently capture both transient and steady solutions
of linear and non-linear convection-diffusion equations with Dirichlet as well
as Neumann boundary conditions.

3.1. Introduction to higher order compact scheme for the
continuous model

The unsteady two-dimensional (2-D) convection-diffusion equation for a
transport variable φ in some continuous domain with suitable boundary
conditions can be written as

(3) a
∂φ

∂t
−∇2φ+ c (x , y , t)

∂φ

∂x
+ d (x , y , t)

∂φ

∂y
+ ε (x, y, t)φ = g (x , y , t)

where a is a constant, c and d are the convection coefficients, ε some po-
tential function and g, a source term. This scheme is able to solve very
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accurately and efficiently the transient 2-D convection-diffusion problems.
Owing to a more compact difference stencil than the standard high order
schemes coupled with its temporal accuracy, it is seen to be more CPU
time-wise efficient than them.

3.2. The governing equation in the convection-diffusion format

On expanding and simplifying the expression of ∇2 and ∇ of in the first
equation in n of the set of equations (1), the resultant equation becomes

∂n

∂t
= D

(
∂2n

∂x 2
+

∂2n

∂y2

)
−
(

χ

1 + αc

∂c

∂x

)
∂n

∂x
−
(

χ

1 + αc

∂c

∂y

)
∂n

∂y
(4)

−
(

χ

1 + αc

∂2c

∂x 2
− χ

(1 + αc)2

(
∂c

∂x

)2

+
χ

1 + αc

∂2c

∂y2
− χ

(1 + αc)2

(
∂c

∂y

)2
)
n

−
(
ρ
∂f

∂x

)
∂n

∂x
−
(
ρ
∂f

∂y

)
∂n

∂y
−
(
ρ
∂2f

∂x 2
+ ρ

∂2f

∂y2

)
n

On collecting the coefficients of
∂n

∂x
,
∂n

∂y
, n and rearranging, equation (4)

reduces to

(5) ã
∂n

∂t
−∇2n + c̃ (x , y , t)

∂n

∂x
+ d̃ (x , y , t)

∂n

∂y
+ ε̃ (x , y , t)n = g̃ (x , y , t)

where ã, c̃, d̃ , ε̃ and g̃ are as follows:

ã =
1

D

c̃ (x , y , t) =
1

D

(
χ

1 + αc

∂c

∂x
+ ρ

∂f

∂x

)

d̃ (x , y , t) =
1

D

(
χ

1 + αc

∂c

∂y
+ ρ

∂f

∂y

)

ε̃ (x , y , t) =
1

D

(
χ

1 + αc

∂2c

∂x 2
− χ

(1 + αc)2

(
∂c

∂x

)2

+
χ

1 + αc

∂2c

∂y2
− χ

(1 + αc)2

(
∂c

∂y

)2
)

+
1

D

(
ρ
∂2f

∂x 2
+ ρ

∂2f

∂y2

)
g̃ = 0
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3.3. Discretization

We consider the problem domain in a rectangular Cartesian framework and
create a uniform mesh over it assuming that the uniform step lengths in
the x- and y-directions are h and k respectively. Using the standard central
difference approximation for the space derivative and forward-time approxi-
mation for the time derivatives, the first equation in (1) at the (i, j)th node
can be discretized as(

ãδ+t − δ2x − δ2y + c̃δx + d̃δy + ε̃
)
nij − ζij = 0

δ+t fij = βnij − γnij fij(6)

δ+t cij = −ηnij cij

where nij denotes n(xi , yj ), fij denotes f (xi , yj ), cij denotes c(xi , yj ); δx , δ
2
x

and δy , δ
2
y are the first and second-order central difference operators along

x- and y-directions respectively and δ+t is the first-order forward difference
operator for time. The truncation error ζij with a uniform time step Δt is
given by

ζij =

[
ã
Δt

2
+

h2

12

(
2c̃

∂3n

∂x 3
− ∂4n

∂x 4

)
+

k2

12

(
2d̃

∂3n

∂y3
− ∂4n

∂y4

)]
ij

(7)

+ O
(
Δt2, h4, k4

)
Following the work of Kalita and Chhabra [28], we substitute ζij from equa-
tion (7) to equation (6) and applying the same spatio-temporal approxima-
tions yields an O

(
Δt2, h4, k4

)
for equation (5) on a (9, 5) stencil as

ã
[
1 +

(
h2

12 − Δt
2ã

) (
δ2x − c̃ij δx

)
+
(
k2

12 − Δt
2ã

)(
δ2y − d̃ij δy

)
+ Δt

2ã εij

]
δttnij

+
(
−αij δ

2
x − βij δ

2
y + Cijδx +Dijδy + Eij

)
nij

−
(
h2+k2

12

)(
δ2xδ

2
y − c̃ij δxδ

2
y − d̃ij δ

2
xδy − γ̃ij δxδy

)
nij = 0(8)

where αij , βij , Cij , Dij , Eij and γij are as follows:

αij = 1 +
h2

12

(
c̃2ij − 2δx c̃ij − ε̃ij

)
βij = 1 +

k2

12

(
d̃2
ij − 2δy d̃ij − ε̃ij

)
Cij =

[
1 +

h2

12

(
δ2x − c̃ij δx

)
+

k2

12

(
δ2y − d̃ij δy

)
+

Δt

2
δ−t

]
c̃ij
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+
h2

12
(2δx − c̃ij ) ε̃ij

Dij =

[
1 +

h2

12

(
δ2x − c̃ij δx

)
+

k2

12

(
δ2y − d̃ij δy

)
+

Δt

2
δ−t

]
d̃ij

+
k2

12

(
2δy − d̃ij

)
ε̃ij

Eij =

[
1 +

h2

12

(
δ2x − c̃ij δx

)
+

k2

12

(
δ2y − d̃ij δy

)
+

Δt

2
δ−t

]
ε̃ij

γ̃ij =
2

h2 + k2

(
h2δx d̃ij − k2δy c̃ij

)
− c̃ij d̃ij

Equation (8) in single matrix form can be written as

(9) Aφ(n+1) = f (φn) .

The coefficient matrix A above is an asymmetric pentadiagonal sparse ma-
trix. We have employed biconjugate gradient stabilized method (BiCGStab)
[30, 50] with algebraic multigrid as preconditioner to solve the (9) using the
LIS library [57].

A forward time (FT) approximation is used to discretize the second
equation of (1) to solve the concentration of fibronectin (f ):

(10) δ+t fij = βnij − γnij fij

writing equation (10) in (n+1)th and (n)th time level, we get

(11) fij
(n+1) = fij

(n) +Δt
(
βnij

(n) − γnij
(n)fij

(n)
)

Likewise, in order to solve the concentration of TAF (c), the third equa-
tion of (1) is discretized as:

(12) cij
(n+1) = cij

(n) +Δt
(
−ηnij

(n)cij
(n)

)
We now move to the discretization of the no flux condition given by

equation (2). Note that ξ represents a unit outward normal vector chosen
suitably in accordance with the location of the boundary. For the top and
bottom boundaries, ξ is ĵ, a unit vector parallel to y-axis, so that the no-flux
boundary condition at the top and bottom reduces to:

(13)

(
−D

∂n

∂y
+ n

(
χ

1 + αc

)
∂c

∂y
+ ρ

∂f

∂y

)
= 0
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Since the approximation of the time derivative of f and c involve only the
(i, j)th spatial point, the approximation of the no-flux boundary condition
is rendered only for the n-equation. As such equation (13) can be written as

(14)
∂n

∂y
= f1(x, y),

where f1(x, y) is known. At the bottom boundary (denoted by the index
b), we approximate the values of n arising out of this Neumann boundary
condition by the fifth order backward difference formula (see [2]):

ni,b =
1

25

[
48ni,b+1 − 36ni,b+2 + 16ni,b+3 − 3ni,b+4 − 12h (f1)i,b

]
+O(h5),

where the values of the spatial derivatives appearing in the expression for f1
can again be approximated by using a similar formula as above with slight
adjustments. Approximations to the other no-flux boundary conditions could
be carried out in a similar way.

In the next section, we briefly describe the discrete mathematical model
used in the simulation of the movement of capillary sprout networks of en-
dothelial cells.

4. The discrete mathematical model

Anderson and Chaplain [1] developed an innovative approach for the discrete
mathematical model of angiogenesis induced by tumor that paved the way
for both qualitative and quantitative comparison with its corresponding in
vivo experimental counterparts. It involves firstly the discretization of the
partial differential equation governing the rate of change of endothelial-cell
density equation (1) and then the use of the resulting coefficients of the
finite-difference stencil to generate the probabilities of movement of a single
cell in response to its local environment. Since they used Euler’s explicit
forward time centered space scheme, using space-step lengths h in x- and
y-directions and a time step of Δt resulted in the five point formula ([1]) is
as follows:

(15) n
(n+1)
i,j = P0n

(n)
i,j + P1n

(n)
i+1,j + P2n

(n)
i−1,j + P3n

(n)
i,j+1 + P4n

(n)
i,j−1

where,

P0 = 1− 4ΔtD

h2
+

Δtαχ
(
c
(n)
i,j

)
4h2

(
1 + αc

(n)
i,j

) [(
c
(n)
i+1,j − c

(n)
i−1,j

)2
+
(
c
(n)
i,j+1 − c

(n)
i,j−1

)2
]
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−
Δtαχ

(
c
(n)
i,j

)
4h2

[(
c
(n)
i+1,j + c

(n)
i−1,j − 4c

(n)
i,j + c

(n)
i,j+1 + c

(n)
i,j−1

)]
− Δtρ

4h2

[(
f
(n)
i+1,j + f

(n)
i−1,j − 4f

(n)
i,j + f

(n)
i,j+1 + f

(n)
i,j−1

)]

P1 =
ΔtD

h2
− Δt

4h2

[
χ
(
c
(n)
i,j

)(
c
(n)
i+1,j − c

(n)
i−1,j

)
+ ρ

(
f
(n)
i+1,j − f

(n)
i−1,j

)]

P2 =
ΔtD

h2
+

Δt

4h2

[
χ
(
c
(n)
i,j

)(
c
(n)
i+1,j − c

(n)
i−1,j

)
+ ρ

(
f
(n)
i+1,j − f

(n)
i−1,j

)]

P3 =
ΔtD

h2
− Δt

4h2

[
χ
(
c
(n)
i,j

)(
c
(n)
i+1,j − c

(n)
i,j−1

)
+ ρ

(
f
(n)
i,j+1 − f

(n)
i,j−1

)]

P4 =
ΔtD

h2
+

Δt

4h2

[
χ
(
c
(n)
i,j

)(
c
(n)
i+1,j − c

(n)
i,j−1

)
+ ρ

(
f
(n)
i,j+1 − f

(n)
i,j−1

)]
and the subscripts specify the location on the grid and the superscripts
the time steps. That is x = ih, y = jh and t = nΔt. By using the data
generated from the numerical solution of equation (1), the discrete equation
(15) determines the endothelial-cell density at (i, j)th space location at the
current time level by taking the average of the densities of the (i− 1, j)th,
(i+ 1, j)th, (i, j − 1)th and (i, j + 1)th space locations at the previous time
level.

Note that the scheme developed in section 3.3 is an implicit scheme which
uses five points at the (n+ 1)th and nine points at the (n)th time level. As
such a discrete model based on the proposed scheme should ideally involve
nine coefficients involving the probability density function. Because of the
implicitness of the scheme, the probability density functions must involve the
effect of the coefficient matrix of the algebraic system of equations result-
ing from dicretization of the governing equations described in section 3.3
as well. However, devising such a mechanism is not an easy job, and the
work on this is currently under progress by the authors. Moreover, this is a
post-processing task involving the data accrued from the computation of the
variables c and f , representing TAF and fibronectin concentrations respec-
tively. As such, we have used the same five coefficients P0-P4 from equation
(15) utilizing the data from our HOC computation to generate the movement
of a single endothelial-cell. This strategy is justified under the assumption
that these coefficients are directly proportional to the probabilities of the
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Figure 1: Schematic of branching: a capillary sprout tip producing two fresh
sprouts and a loop formed by the anastomosis of two capillary sprouts.

endothelial cell, viz., stationary when probability is P0 or moving up (P3),
down (P4), left (P1) or right (P2).

As pointed out by Anderson and Chaplain [1], all the coefficients P0-P4

essentially consists of three vital components,

(16) Pn = random movement+ chemotactic+ haptotatic

demonstrating the connection between the discrete and the continuous sys-
tem of equations (1).

Thus P0-P4 are functions of the fibronectin and TAF concentrations sur-
rounding a single endothelial cell. As such the movement of the endothelial
cells and the biasness of the coefficients towards the tumor source or any
other direction depends on the amount of fibronectin and TAF gradients.
The rules of branching and anastomosis used in the simulation is same as the
ones used in Anderson and Chaplain [1]. The schematic diagram of Figure
1 shows how a capillary sprout tip produces two fresh sprouts and a loop is
formed by the anastomosis of two capillary sprouts.

The probability density function mentioned above works in the follow-
ing way: Once the five coefficients P0-P4 are known, probability ranges Rk,
0 ≤ k ≤ 4 are estimated by summing up the coefficients by the formula
R0 = −P0 and Ri =

∑i−1
k=0−

∑i
k=0, where 1 ≤ i ≤ 4. Next, a random

number lying between 0 and 1 is generated. Whether the individual cell
under consideration will remain stationary (R0), move towards left (R1),
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right (R2), top (R3) or bottom (R4) is decided by the range into which this
number falls [1].

5. Numerical simulations for the continuous model

In the previous sections we have already introduced the normalized set of
partial differential equations (1) subject to boundary conditions (2). Wher-
ever possible, the parameter values appearing in equations (1) have been
chosen from the already available benchmark data. Based on the obser-
vations in [1, 17, 39, 47, 52], we assign the following set of values to our
parameters

D = 0.00035, α = 0.6, χ = 0.38,

γ = 0.1, h = 0.005, Δt = 0.0001, and η = 0.1

In the following, we provide the results from our numerical simulations
for the system of equation (1) from the continuous model, where we have
primarily considered three cases. The first two corresponds to the time-
space advancement of the endothelial-cell density mirroring the journey of
endothelial-cell from the parent vessel towards tumor cell source in the shape
of a line, once in the presence of haptotaxis and then without it. The last
case deals with the same with a circular source of tumor cell in the presence
of haptotaxis.

The initial conditions for the fibronectin concentration f (see figure 2(c))
and the endothelial-cell density distributions n (see figure 2(d)) for all the
cases are respectively as follows

f (x, y, 0) = ke
− x2

ε2 , (x, y) ∈ [0, 1]× [0, 1] ,(17)

n (x, y, 0) = ke
− x2

ε3 sin2(6πy),(18)

while the initial conditions for the TAF concentration c (figure 2(a)) for the
line source is taken as

(19) c (x, y, 0) = e
− (1−x)2

ε1 , (x, y) ∈ [0, 1]× [0, 1] ,

and that of the circular source (figure 2(b)) is [36]

(20) c (x, y, 0) =

{
1 0 ≤ r ≤ 0.1

(v−r)2

(v−0.1)2 otherwise
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Figure 2: The initial TAF concentration for (a) the line and (b) the circular
source, and the initial (c) fibronectin concentration and (d) endothelial cell
density distribution.

with v =

√
5− 0.1√
5− 1

and r =

√
(x− 1)2 +

(
y − 1

2

)2

(x, y) ∈ [0, 1] × [0, 1].

For the current simulation, ε1 = ε2 = 0.45, and ε3 = 0.001 as in [1, 36].
Unless otherwise stated, all the simulations have been carried out on a grid
size of 201× 201.

5.1. Time-space advancement with a line source of tumor cells
without haptotaxis

In the following, we present our results of the simulation without the pres-
ence of haptotaxis which corresponds to ρ = 0. The initial conditions are
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Figure 3: Surface plots of the time-space advancement of the density of
endothelial-cell lacking haptotaxis with a line tumor cell source for (a) t =
1,(b) t = 2, (c) t = 3, and (d) t = 4.

as given by equations (17), (18) and (19), and depicted in figures 2(a), (c)
and (d).

In Figure 3, we present the surface plots of the time-space advancement
of the density of endothelial-cell in the absence of any haptotaxis resulting
from our computation for the duration t = 1 to t = 4. The corresponding
contour plots for the same duration are shown in Figure 4. From Figures
3(a)-(b), and 4(a)-(b), one can see that before reaching t = 2 (corresponding
to 3 days) the endothelial cells have already swept aside over 50% of the
domain, and by t = 4 (6 days) they have travelled through the whole domain.
One crucial aspect of this migration is that there is hardly any movement
of the endothelial cells parallel to the y-axis. One can also see that even
after reaching the line source tumor cells, the shape of the surface of initial
distribution represented by the three peaks is retained by the major chunk of
the endothelial-cell density surface. This is owing to the fact that chemotaxis
is dominant in controlling the movement of the cells with very little effect
caused by random motility which is responsible for the lateral movement.
We also compare our numerical results at times t = 3 and t = 4 with those
of [1] in figures 4(c)-(d) and 4(e)-(f) respectively; one can see that they are
very close to each other.
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Figure 4: Time-space advancement of the density of endothelial-cell lacking
haptotaxis in time and space (ρ = 0) at (a) t = 1,(b) t = 2, (c) t = 3, (d)
t = 3 ([1]), (e) t = 4 and (f) t = 4 ([1]).

5.2. Time-space advancement with a line source of tumor cells
with haptotaxis

Next, setting ρ = 0.34, we check the the significance of chemotaxis and
haptotaxis on the endothelial-cell movement. In Figure 5, we present the
surface plots of the time-space advancement of the density of of endothelial-
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Figure 5: Surface plots of the time-space advancement of the density of
endothelial-cell having both chemotaxis and haptotaxis from the parent ves-
sel towards a line tumor cell source for (a) t = 2,(b) t = 4, (c) t = 7, (d)
t = 10, (e) t = 15 and (f) t = 20.

cells for the duration t = 2 to t = 20 and the corresponding contour plots are

shown in Figure 6. Once again the initial conditions are as in the previous

example.

The surface plots from figures 3 and 4 clearly indicated that in the

absence of haptotaxis, the three peaks during the entire course of evolution

remained unattached throughout the whole the domain. On the other hand,

in the presence of haptotaxis, the same bunches have merged with each other

to form a continuous band even before t = 4 (see also figure 6(b)). At t = 7,

one can see the presence of high concentration of endothelial cells at four
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Figure 6: Time-space advancement of the density of endothelial-cell from
HOC simulation in the presence of haptotaxis with ρ = 0.34 (a) t = 2, (b)
t = 4, (c) t = 7, (d) t = 10, (e) t = 15 and (f) t = 20.

distinct locations (depicted by color red representing highest contour value

in figure 6(c)) within the band. The initial peaks have overlapped with each

other and there is clear evidence of parallel movement along y-axis now.

Another interesting observation here is that the movement of the cells

towards the tumor is much slower than the previous case and also the circular

shape of endothelial-cell density distribution as in figures 3 and 4 is no longer
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Figure 7: Initial and current fibronectin concentration differential of the
fibronectin uptake at (a) t = 2, (b) t = 4, (c) t = 7, (d) t = 10, (e) t = 15
and (f) t = 20.
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seen. The band is now more prominent at t = 10 (15 days) and stratified
and gradually progressing toward the tumor in the presence of highest cell
concentration at leading edge (figures 3(d)-(f) and 4(d)-(f)). However, the
choice of the chemotactic function (χ in equation (1)) prevents the cells from
reaching the tumor.

Figure 7 shows the difference in fibronectin concentration between the
initial and current time at certain time junctures. The regions barring the
red coloured ones are those having gained in fibronectin by the endothelial
cells. This figure is a clear indication of the uptake process being confined
in the first half of the entire domain 0 ≤ x ≤ 0.5 and remaining almost
invariant after t = 7. The behaviour of the endothelial cells in Figures 5
and 6 is a direct consequence of these fibronectin gradients formed in the
extracellular matrix.

The panel on the right of each of the figures of 7 shows the contour
values and as such indicates the gradation of these colours being directly
proportional to the net uptake of fibronectin, enabling the the endothelial
cells to move forward.

5.3. Time-space advancement with a circular source of tumor
cells with haptotaxis

This case resembles the laboratory experiment of Muthukkarupan et al. [39],
who implanted a spherical tumor in the cornea of a mouse in order to observe
the angiogenic response. All the parameters and governing equations are as
in the previous subsections except that the initial conditions are now as in
equations (17), (18) and (20) which are depicted in figures 2(b)-(d). The
distribution of TAF concentration resulting from a circular tumor implant

(figure 2(b)) centered at

(
1,

1

2

)
and the value v of equation (20) is chosen

in such a way that the continuity of the TAF concentration is maintained
at r = 0.1 and the minimum value of c at x = 0 resulting from equations
(19) and (20) are approximately the same.

In Figure 8, we show the surface plots of the time-space advancement of
the density of endothelial-cells from the current simulation from the parent
vessel towards a circular tumor implant. Compared to the line source tumor
case, the response of the cells to the tumor implant is quite different here.
A close look at figures 5(a)-(b) and 8(a)-(d) reveals that while in the former
the clusters in the shape of crescent moved almost laterally, here at t =
2, the outer clusters have moved towards the central one. Moving along
laterally, they merge to form two clusters at t = 3, which eventually form a
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Figure 8: Surface plots of the time-space advancement of the density of
endothelial-cell from the parent vessel towards a circular tumor cell from
the current HOC simulation for (a) t = 1,(b) t = 2, (c) t = 3, (d) t = 5, (e)
t = 10, (f) t = 12, (g) t = 15 and (h) t = 18.
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single cluster at t = 4. Moreover, the movements of the clusters are much
slower here as evidenced by the surface plots of both the cases at t = 4.
Subsequently, one can also see both forward and backward migration of the
cells (figures 8(e)-(h)) for this particular case. While we saw high density
region at the forefront in the line source case, here they appear both at the
forefront as well as near the parent vessel at x = 0 (figure 8(f)). The single
cluster flattens, move both in lateral and transverse direction and due to its
slow motion does not reach the source even at t = 20. Interestingly, while
the simulations of Anderson and Chaplain [1] reported a small cluster of
cells reaching the tumor, no such event was observed in our simulation. We
shall discuss about this issue and present more simulation results for the
later part of the physiological evolution in Section 7.

6. Discrete model simulation results

For the discrete model, in order to study the migration of the endothelial
cells, initially five points (see figure 1 also) were chosen at the extreme left of
the domain (x = 0). These five points represent the tips of capillary sprouts
initiated the endothelial cells; three of them are assumed to be at the posi-
tions where the continuous endothelial-cell density is maximum at time t = 0
(data corresponds to figure 2(d)). The remaining two are exactly located
midway through between the top and middle, and the middle and bottom.
Thus, we have endothelial cells starting at y = 0.17, 0.3, 0.5, 0.65, 0.84
all at x = 0 (see figure 1). We present the same cases considered under the
continuous model in sections 5.2 and 5.3, viz., the time-space advancement
of the density of endothelial-cells in the presence of haptotaxis, once with a
line source of tumor cells and then with a circular source. The initial and
boundary conditions for both the cases are as in the continuous model.

6.1. Line source of tumor cells with haptotaxis

In Figure 9, we show the time-space advancement of a capillary network
from the numerical simulation of the discrete model by our HOC scheme in
the presence of haptotaxis. The figures show the journey of the endothelial
cells at the capillary sprout tips starting at the parent vessel in the extreme
left (x = 0) towards the extreme right (x = 1) where the line source of tumor
cells is located. We also compare our results with those of [1] at later times.
Initially at t = 3 (figure 9(a)), one can see a trace of branching occuring at
the third sprout which eventually leads to anastomosis between the second
and the third sprouts as can be see in Figure 9(b). As time elapses, the
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Figure 9: Space-time advancement of a capillary network from using data
generated from HOC scheme for the discrete mathematical model for the
line source at (a) t = 3,(b) t = 7.5, (c) t = 15, (d) t = 15 ([1]), (e) t = 20
and (f) t = 20 ([1]).
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sprouts begin to branch and expand into the entire domain leading to the
line tumor source (figures 9(c)-(f)). We have also compared our results with
those obtained by Anderson and Chaplain [1] at times t = 15 and t = 20 in
figures 9(c)-(d) and 9(e)-(f) respectively; the slight discrepancy one observes
here between the two computations may be due to the data resulting from
numerical schemes of different accuracies.

6.2. Circular source of tumor cells with haptotaxis

Next we move to the case of a circular tumor sitting in the extreme right of
the domain. This case is a classic example of how the geometry of the tumor
holding the TAF concentration influences the cell movement and capillary
network formation. This is exemplified by Figure 10, where we show the
time-space advancement of a capillary network from the current numerical
simulation of the discrete model arising out of the circular source. One can
clearly see from figure 10(a) that by t = 3, the sprouts have formed anas-
tomosis with further indication of loop formation by itself. The backward
movement of one of the sprouts towards the parent vessel and branching
thereof is clearly visible from figures 10(a)-(b) which is corroborated by the
profiles shown in Figures 8(a)-(d). Cell migration towards the tumor is much
slower than the previous case of line tumor. At later time, one can observe
the formation of brush-border structure as reported in [39, 53] (Figures
10(e)-(h)) which is characterized by a very dense distribution of the vessels
at the front region encompassing the neighbourhood of the tumor compared
to the rest of the domain. Our observation is in conjunction with the ones
observed experimentally in neovascularization induced by mammary ade-
nocarcinomas implant in the mouse cornea (Muthukkaruppan et al., [39]).
A close match was obtained while comparing our results with those obtained
by Anderson and Chaplain [1] at time junctures t = 15 and t = 20 in Figures
10(e)-(f) and 10(g)-(h) respectively.

7. Numerical issues and physiological misrepresentation

In this section we discuss the numerical issues related to the simulation
of tumor induced angiogenesis and how the use of lower order accurate
numerical schemes could end up showing misrepresented simulation of the
actual process.

Note that in our computation with the HOC scheme, we have used spa-
tial grids of size 101×101, 201×201, 301×301 and 401×401, and a time step
of Δt = 0.001 for all the grids. In Figure 11(a), we show the contour plots of
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Figure 10: Space-time advancement of a capillary network from using data
generated from HOC scheme for the discrete mathematical model for the
circular source leading to brush border structure at (a) t = 1,(b) t = 3, (c)
t = 5, (d) t = 10, (e) t = 15, (f) t = 15 ([1]), (g) t = 20 and (h) t = 20 ([1]).
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Figure 11: (a) Grid independence study for the current scheme: contour
plots of the endothelial cell density at time t = 2 on grids of size 101× 101,
201× 201 and 401× 401 for a line source with haptotaxis, and (b) Surface
plots of the endothelial cell density with a circular source at time t = 10
with the explicit and the HOC scheme.

the endothelial cell density at time t = 2 on grids of size 101×101, 201×201
and 401×401 for a line source with haptotaxis. One can clearly see that the
contours are extremely close to each other in all grids, and particularly the
contours are overlapping each other on the grids 201 × 201 and 401 × 401.
Although a grid of size 101× 101 was good enough to capture all the details
of tumor induced angiogenesis, for a better resolution, all the results from
our HOC computation shown here are on a grid of size 201× 201. Only on
figure 13, we have used a grid of size 301×301 in order to capture the details
of the interaction of the circular tumor source and the endothelial cells in
the later part of the process.

We have also numerically solved the governing equations using the Eu-
ler’s explicit scheme as done by Anderson and Chaplain [1] and many other
earlier studies (see [36, 54] also) in order to gain more insight of the nu-
merical simulation process. Because of stability issues involved with explicit
scheme, an extremely small time step Δt = 10−5 had to be used on a grid
of size 301× 301 for the circular tumor source case. Even with Δt as small
as this, the solution blew up after non-dimensional time t = 5.12, 9.93 and
17.22 on grids of size 101× 101, 201× 201, 257× 257 respectively. In Figure
11(b), by superposing the surface plots of the endothelial density for the
circular tumor case at t = 10, we compare the computed results by the ex-
plicit and HOC scheme. One can clearly see that the results from the explicit
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Figure 12: Surface plots of the space-time advancement of the density of
endothelial-cells resulting from the explicit scheme mirroring the journey of
endothelial cells from the parent vessel towards a circular tumor implant for
(a) t = 10,(b) t = 15 and (c) t = 20.

scheme is over diffusive as evidenced by the lower height and extent of the
surface for the explicit case.

Another very interesting observation resulting from the computation
through the explicit and HOC scheme come into fore at the later stages
of the endothelial cell migration. These are depicted in Figure 12 repre-
senting the surface plots resulting from the explicit scheme between time
t = 10 and t = 20, and that from the HOC scheme between time t = 20
and t = 30 in figure 13. One can clearly see a cluster of endothelial cells
around the source of the tumor at time t = 15 in Figure 12(b) in the form
of a bulge; this however seems highly non-feasible as one can see complete
detachment of the this small concentration and the part migrating originally
from the parent cells. Figure 12(c) in isolation seems a more realistic one
as it shows the endothelial cells migrating towards the center of the tumor
and a small cluster forming around it. Anderson and Chaplain [1] reported
that “at this stage interactions between the endothelial cells and the tumor
cells is now important and our model is no longer valid”. However, after
computing the endothelial cell density by our HOC for a much longer pe-
riod of time (see Figure 13), we strongly believe that the model is still very
much valid, but the discrepancy in the actual representation of the fact by
the explicit scheme is because of the presence inherent implicit numerical
diffusion (and probably some implicit numerical dispersion also [24]) owing
to its lower spatial and temporal accuracy.

It is heartening to note that the simulation from the HOC scheme is
able to provide a more realistic picture of the situation. From Figures 13(a)-
(f), it is clear that the HOC scheme has been able to capture the gradual
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Figure 13: Surface plots of the space-time advancement of the density of
endothelial-cells from the current simulation from the parent vessel towards
a circular tumor implant for (a) t = 20,(b) t = 22, (c) t = 24, (d) t = 26,
(e) t = 28 and (f) t = 30.

migration of the cells towards the tumor source finally culminating with
interaction with it and producing a small cluster of endothelial cells around
it. The results from the discrete model also corroborate the fact as one
compares Figures 10(e)-(f) and 10(g)-(h). The brush border structure near
the tumor resulting from our HOC computation is more prominent than the
one computed by [1] using Euler explicit scheme.

8. Conclusions

In the current study, we have proposed a High Order Compact finite dif-
ference scheme for the tumor induced angiogenesis, more specifically for
the equation governing the endothelial cell density evolution. Contrary to
the earlier schemes that were employed to tackle such problems which were
spatially second order accurate at the most and explicit in nature, the one
proposed here is implicit, O(Δx4,Δy4,Δt2). Moreover, unconditional sta-
bility of the scheme enables a much larger time step to reach steady-state
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or final time. In conjunction with a fourth order approximation of normal
derivatives, the scheme was seen to tackle the no-flux Neumann boundary
conditions with ease. To the best of our knowledge, an HOC approach for
discretizing the equations for tumor induced angiogenesis has never been im-
plemented before. In order to validate the scheme, we apply it to three perti-
nent problems. The first two corresponds to the time-space advancement of
the density of endothelial-cells mirroring the migration of endothelial-cells
from the parent vessel towards a line tumor cell source with and without
haptotaxis. The last deals with the same with a circular source of tumor
cell with haptotaxis. We compare our numerical results with available nu-
merical and experimental ones and in all the cases, the match is excellent.
The robustness of the scheme can be gauged from the fact that it accurately
envisages the interaction between a circular tumor cell and the migrating
endothelial cells in the later stages, which the Euler’s explicit scheme fails
to do so. We thus demonstrate in the process that simulation resulting from
lower order accurate schemes might lead to misrepresentation of the physi-
ological process owing to their over-diffusive nature. The current results are
clear indications of the potential of the scheme for more efficient application
to many problems of mathematical biology, specifically in the field of cancer
research.
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