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In this paper, we develop a new direct-forcing immersed bound-

ary approach combined with the Choi-Moin projection scheme for

simulating the dynamics of freely falling solid bodies in an incom-

pressible viscous fluid. At first, the solid object region is regarded

as made of fluid and we then introduce a virtual force distributed

only on that region that enforces it to behave like a real solid body

with the solid velocity. The time integration of the momentum

equation is performed by using a third-order Runge-Kutta formula

for the convection and a second-order Crank-Nicolson formula for

the diffusion. Moreover, second-order centered differences over a

staggered Cartesian grid are employed for all the spatial discretiza-

tions in the projection scheme. We also integrate a collision model

into the method for circular particles to mimic the repulsion force

arising from body-body or body-wall collisions in the fluid-solid in-

teraction process. The most advantageous feature of the proposed

method is that it is conceptually simple and rather easy to imple-

ment without involving any discrete Dirac delta functions or post

interpolations for accuracy like most immersed boundary methods

in the literature. Several numerical experiments are carried out to

illustrate the effectiveness of the newly proposed method.
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1. Introduction

The main purpose of this paper is to develop a new direct-forcing immersed
boundary approach combined with the Choi-Moin projection scheme for
simulating the dynamics of freely falling solid bodies in an incompressible
viscous fluid. It is well known that the interaction between moving solid
object and fluid may display complicated and even unpredictable behavior.
A typical example is the freely falling plate in an incompressible viscous
fluid that can exhibit rich dynamical behavior such as fluttering, looping,
and tumbling motions, see, e.g., [1, 2, 3, 12, 14, 19, 20, 26, 29, 30, 32, 36, 37]
and many references cited therein. However, due to the geometrical com-
plexity encountered in the moving boundary problems, it is still challenging
and computationally expensive to simulate such kind of two-way fluid-solid
interaction (FSI) problems by using the conventional body-fitted approach.

A powerful Cartesian grid based non-boundary conforming method for
simulating the dynamics of FSI problems with moving boundaries is the
so-called immersed boundary (IB) method which was first developed in the
1970s by Peskin [38, 39]. In the IB method, the immersed structure exerts
a force on the fluid, and the interaction between structure and fluid can
be represented by a contribution to the forcing term in the fluid momen-
tum equation. Instead of generating a boundary-fitted grid to the immersed
boundary at each time step, the spatial discretization of the IB method is
implemented over Cartesian grids for the entire domain and the immersed
boundary is discretized by a set of Lagrangian marker points that are not
constrained to lie on the grids. Broadly speaking, the existing IB methods
can be divided into the feedback-forcing and direct-forcing approaches, ac-
cording to how the momentum-forcing term associated with the method is
generated [31]. For the past two decades, due to its conceptual simplicity
and computational efficiency, the direct-forcing approach has been attracted
a lot of attention, see e.g., [8, 11, 15, 23, 26, 27, 28, 33, 41, 42, 43, 44, 45]
and many references cited herein.

In the works [21, 22] of Kajishima et al., see also [34], a simple direct-
forcing IB approach combined with the first-order in time Chorin projection
scheme [6, 7] has been successfully developed. In contrast to most direct-
forcing IB methods in the literature, the momentum forcing introduced in
that method, called the virtual force [34] here, is not just distributed on
the immersed solid boundary, but is actually distributed on the whole solid
body region. Moreover, the solid object region is regarded as made of fluid,
but the virtual force enforces the region to behave like a real solid body
with the solid velocity. In other words, this virtual force plays the role of
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momentum forcing term to accommodate the interaction between solid and
fluid. The major advantage of this method is its simplicity in implementation
when combining with the projection schemes. Although this direct-forcing
IB method can produce reasonable results for simulating many FSI appli-
cations, we have pointed out in [18] that it is not always convergent if the
method is combined with an arbitrarily chosen projection scheme, unless
the time step is chosen sufficiently small. The reason for this failure is the
inconsistency between velocity and pressure at the end of each time step
with velocity being changed but not pressure in the immersed solid region.
This particularly causes a problem in calculating the intermediate velocity
of the next time step when employing pressure from the previous time step.
We therefore provided a two-stage prediction-correction approach in [18] to
alleviate the inconsistency arising in the method [21, 22, 34].

It was also pointed out in [18] that in the direct-forcing IB method
[21, 22, 34], the divergence-free condition may be destroyed in cut cells in
a Cartesian grid of the fluid domain at which the solid-fluid interface is
located. However, from the numerical results of the problem of flow over a
cylinder reported in [18], we can find that the divergence-free condition of
the method is generally satisfied except only at the leading edge of cylinder.
To observe more carefully, we can also find that these non-zero divergence
spots appear as pairs of mass sink and source of equal magnitude (doublet),
which upholds global mass conservation of the method.

In this paper, we will continue the study of this simple direct-forcing
IB projection approach for numerical simulations of the FSI problems with
freely falling solid bodies in an incompressible viscous fluid. We will combine
the direct-forcing IB approach with the Choi-Moin second-order in time
projection scheme [5] instead of the Chorin first-order scheme. We remark
that the Choi-Moin projection scheme is particularly suitable for this direct-
forcing IB approach which has been discussed in [18]. The key idea of this
newly proposed method is still based on introducing a virtual fluid force. We
first treat the solid object region as made of fluid and then introduce a virtual
force distributed only on that region to make the region behaving like a real
solid body with the solid velocity. Certainly, the role of the virtual force
plays is to accommodate the interaction between solid and fluid such that
the unsteady velocity boundary condition at the immersed solid boundary
can be appropriately satisfied.

In the present method, the time integration of the momentum equation
is performed by using a third-order Runge-Kutta formula for the convec-
tion term and a second-order Crank-Nicolson formula for the diffusion term
[16, 17, 25]. Moreover, second-order centered differences over a staggered
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Cartesian grid are employed for all the spatial discretizations in the projec-

tion scheme. We also integrate a collision model into the method for circular

particles to mimic the repulsion force arising from body-body or body-wall

collisions in the fluid-solid interaction process, if necessary. The most advan-

tageous feature of this method is that it is conceptually simple and rather

easy to implement, without involving any discrete Dirac delta functions or

any post interpolations for accuracy like most IB methods in the literature.

We will perform several numerical experiments to illustrate the effectiveness

of the proposed method. To validate the method, we first consider the flow

past a swimming fish-like solid body with a given varying solid shape and

a prescribed solid velocity. We then study the falling of a single circular

solid ball and two circular solid balls in a rectangular tank filled with an

incompressible Newtonian viscous fluid, and the sedimentation of a cloud of

circular particles in a non-rectangular fluid domain. We can find that the

obtained results are in very good agreement with the previous works in the

literature.

The remainder of this paper is organized as follows. In Section 2, we

introduce the basic idea of the direct-forcing approach for solving FSI prob-

lems and derive the governing equations of motion of a freely falling solid

body. In Section 3, a simple collision model is presented. In Section 4, we

propose the direct-forcing IB projection method with all the details. Several

numerical experiments are carried out in Section 5. Finally, a summary and

conclusions are given in Section 6.

2. The governing equations of FSI problems

In this section, we consider for simplicity a two-dimensional bounded fluid

domain Ω ⊂ R
2 that encloses a single freely falling solid body positioned

at Ωs(t), where the solid velocity us(t,x) obeys the equations of motion

that will be derived later. The cases of three-dimensional fluid domain and

multiple freely falling solid bodies can be treated in a similar way.

In the direct-forcing IB approach, we first regard the solid object region

as made of fluid and then introduce a virtual force F distributed only on

the region Ωs that enforces the region to behave like a real solid body with

the solid velocity. Actually, the virtual force will be incorporated into the

equations of motion of the immersed solid object and also appended to the

momentum equations of the incompressible Navier-Stokes equations to ac-

commodate the interaction between the solid and fluid such that the velocity

boundary condition at the immersed boundary is satisfied. Later on, we will
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specify such virtual force in its discrete version in the projection compu-

tations. Let u be the velocity field, p the pressure (divided by a constant

fluid density ρf ), ν the kinematic viscosity, and f the density of body force.

In general, f will be set to zero for two-dimensional fluid domains. At this

moment, the governing equations of the dynamics of the freely falling solid

in an incompressible viscous fluid can be posed as follows:

(2.1)

∂u

∂t
− ν∇2u+ (u · ∇)u+∇p = f + F , t ∈ (0, T ), x ∈ Ω,

∇ · u = 0, t ∈ (0, T ), x ∈ Ω,

u = us t ∈ (0, T ), x ∈ Ωs,

u = ub, t ∈ (0, T ), x ∈ ∂Ω,

u = u0, t = 0, x ∈ Ω,

where F is the virtual force to make u = us on Ωs for t ∈ (0, T ) and us is

the velocity of the immersed solid body which obeys the equations of motion

as described below.

Figure 2.1: A schematic diagram of a moving solid body Ωs(t).

To derive the equations of motion of the solid body immersed in an in-

compressible viscous fluid, we mainly follow the ideas of [35, 45]. In Newton’s

mechanics, the dynamics of freely falling solid in an incompressible viscous

fluid is determined by the gravitational force, the buoyancy force and the

hydrodynamic force due to the interaction between solid and fluid. Consider

a solid object of constant density ρs positioned at Ωs, whose centroid is lo-

cated at Xc and moves at translational velocity uc and angular velocity ω.

Then the velocity of the solid object is given by

(2.2) us(t,x) = uc(t) + ω(t)× r(t,x),
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for all x ∈ Ωs(t), where r = (r1, r2) := x−Xc and

ω(t)× r(t,x) :=
(
−ω(t)r2(t,x), ω(t)r1(t,x)

)�
.

Notice that

(2.3)
dXc

dt
= uc and

dθ

dt
= ω,

where θ is the rotational angle in counter-clockwise.
First, we imagine that the solid object region is made of fluid and there

is a virtual force F distributed on the region Ωs. Taking the control volume
Ωs for the momentum equation, from Newton’s second law, we have

duc

dt

∫
Ωs

ρf dV =

∫
∂Ωs

σ · n dS +

∫
Ωs

ρfF dV +

∫
Ωs

ρfg dV,(2.4)

If
dω

dt
=

∫
∂Ωs

r × (σ · n) dS +

∫
Ωs

ρfr × F dV,(2.5)

where σ = −pI + 2μfε(u) is the stress tensor of the fluid, ε(u) is the rate
of strain tensor, μf is the dynamic viscosity, n is the outward unit normal
vector to ∂Ωs, ρf is the density of fluid, g is the gravity, If =

∫
Ωs

ρf |r|2 dV
is the rotational inertia for the fluid.

On the other hand, the motion of solid object can also be described by
the translational and angular momentum of the solid body and thus we have

duc

dt

∫
Ωs

ρs dV =

∫
∂Ωs

σ · n dS +

∫
Ωs

ρsg dV,(2.6)

Is
dω

dt
=

∫
∂Ωs

r × (σ · n) dS,(2.7)

where Is =
∫
Ωs

ρs|r|2 dV is the rotational inertia for the solid object.
In fact, the virtual force F makes (2.4)-(2.5) equivalent to (2.6)-(2.7).

Now, we have the following equations of motion:

duc

dt

∫
Ωs

(ρs − ρf ) dV =

∫
Ωs

(ρs − ρf )g dV −
∫
Ωs

ρfF dV,(2.8)

(Is − If )
dω

dt
= −

∫
Ωs

ρfr × F dV.(2.9)

The first and second terms in the right hand side of (2.8) represent the
difference of gravity and buoyant force and the drag force, respectively. The
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equation (2.8) can be further expressed as

(2.10) (Ms −Mf )
duc

dt
= (Ms −Mf )g −

∫
Ωs

ρfF dV,

where the solid mass Ms and the fluid mass Mf of the region Ωs are respec-

tively defined by

(2.11) Ms :=

∫
Ωs

ρs dV =

∫
Ω
ηρs dV, Mf :=

∫
Ωs

ρf dV =

∫
Ω
ηρf dV,

and the indicator function η is defined as

(2.12) η(t,x) =

{
1 x ∈ Ωs(t),

0 x �∈ Ωs(t).

To summarize, the two-way fluid-solid interaction problem of the freely

falling solid body in an incompressible viscous fluid with a virtual force can

be formulated as the following initial-boundary value problem: find u, p, F ,

uc and ω such that

∂u

∂t
− ν∇2u+ (u · ∇)u+∇p = f + F , t ∈ (0, T ), x ∈ Ω,

∇ · u = 0, t ∈ (0, T ), x ∈ Ω,

u = ub, t ∈ (0, T ), x ∈ ∂Ω,

u = u0, t = 0, x ∈ Ω,

u = us = uc + ω × r, t ∈ (0, T ), x ∈ Ωs,

(Ms −Mf )
duc

dt
+

∫
Ωs

ρfF dV = (Ms −Mf )g, uc(0) = uc0,

(Is − If )
dω

dt
+

∫
Ωs

ρfr × F dV = 0, ω(0) = ω0,

(2.13)

where uc0 and ω0 are the given initial values.

3. A simple collision model

It is unavoidable that the collisions may occur between solid objects or

solid objects with the boundaries of container (walls) during the free-falling

process. Therefore, the effect of collision should be taken into account in
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the actual numerical simulations. In what follows, we will briefly introduce
a simple collision model which was also considered in [4, 14] for describing
the repulsion force arising from body-body or body-wall collisions in the
fluid-solid interaction process.

We assume for simplicity that there are Np solid objects (but not neces-
sarily identical) immersed in fluid, all of which are two-dimensional circular
particles and labelled as 1, 2, · · · , Np. We assume that the repulsive force
occurs whenever a particle is already touching or close enough to the other
particles or the walls during the interaction process. The repulsive force will
include a small parameter εp > 0 to control the size of the force and a small
tolerance δ > 0 to adjust the force effecting the system or not. We denote
the total repulsive force by

(3.1) F co := F p + Fw :=

Np∑
i=1

F p
i +

Nw∑
i=1

Fw
i ,

where F p is the repulsive force between particles and Fw is the repulsive
force with the walls (labelled as 1, 2, · · · , Nw) that are respectively defined
below. We define the repulsive force that particle i bears by

(3.2) F p
i =

Np∑
j=1,j �=i

F p
ij ,

where the repulsive force F p
ij , distributed only on the region of particle i,

arising from the collision with particle j is given by

(3.3) F p
ij =

⎧⎪⎨
⎪⎩

0, dij > Ri +Rj + δ,

X
(i)
c −X

(j)
c

εp
(Ri +Rj + δ − dij)

2, dij ≤ Ri +Rj + δ,

where X
(i)
c and Ri are respectively the coordinates of the center and the

radius of particle i, while dij is the distance between the centers of particles
i and j; see Figure 3.1 (left).

On the other hand, the repulsive force with walls that particle i bears is
defined by

(3.4) Fw
i =

Nw∑
j=1

Fw
ij ,
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Figure 3.1: A schematic diagram of the collision model: (left) particle i
collided with particle j; (right) particle i collided with wall j.

where Nw is the number of walls and Fw
ij is the repulsive force, distributed

only on the region of particle i, coming from wall j is given by

(3.5) Fw
ij =

⎧⎪⎨
⎪⎩

0, d′ij > 2Ri + δ,

X
(i)
c −X ′

ij

εw
(2Ri + δ − d′ij)

2, d′ij ≤ 2Ri + δ,

where εw > 0 is a small parameter to control the size of the force, X ′
ij is

the coordinates of the center of a fictitious particle with the same radius Ri

inside and tangent to the wall j, and d′ij is the distance between the centers
of particle i and the fictitious particle; see Figure 3.1 (right).

Based on some physical models, Glowinski et al. [14] have indicated how
to design the collision parameters εp, εw, and δ in the repulsive force. The
explicit formulations of the parameters εp and εw can be found in [14] (see
also [4]), and the range of the repulsive force δ is recommended to be taken
of the order of the grid size parameter h of the numerical method.

Now, the induced total repulsive force F co can be viewed as an additional
momentum forcing term which should be integrated into the FSI problem
(2.13). That is, the first equation in (2.13) should be replaced by

(3.6)
∂u

∂t
− ν∇2u+ (u · ∇)u+∇p = f + F co + F .

In addition, with this total repulsive force F co, similar to the derivation of
the equations of motion (2.8)-(2.9), we find that the sixth equation in (2.13)
should also be replaced by the following one:

(3.7) (Ms −Mf )
duc

dt
+

∫
Ωs

ρfF dV = (Ms −Mf )(g+F co), uc(0) = uc0.
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4. The direct-forcing immersed boundary projection method

In this section, we will present a new direct-forcing IB projection method
which combines the direct-forcing approach with the Choi-Moin second-
order in time projection scheme [5] for approximating the initial-boundary
value problem (2.13). To simplify the presentation, in this section we tem-
porarily ignore the repulsive force F co.

Let ti = iΔt, i = 0, 1, 2, · · · , with Δt > 0 be the time step length. We
first consider the fluid part of (2.13), i.e., the system (2.1). The time inte-
gration of momentum equation for the fluid part (2.1) is performed by using
a third-order low-storage Runge-Kutta formula for the convection term and
a second-order Crank-Nicolson formula for the diffusion term [17, 16, 25].
More specifically, in the time interval [tn, tn+1], a three-step time advance-
ment scheme for the incompressible Navier-Stokes equations (2.1) in the
absence of virtual force F can be posed as follows [25]: for k = 1, 2, 3, solve

uk − uk−1

Δt
− αk(ν∇2uk + ν∇2uk−1)+

γk[(u · ∇)u]k−1 + ξk[(u · ∇)u]k−2 + 2αk∇pk = 2αkf
n+1 in Ω,

∇ · uk = 0 in Ω,

uk = ub on ∂Ω,

(4.1)

where the superscript k denotes the sub-step index, and u0 := un and
un+1 := u3 are the velocity fields at time levels tn and tn+1, respectively.
The coefficients αk, γk and ξk for k = 1, 2, 3 are constants selected such
the total time advancement between tn and tn+1 is third-order accurate for
convective term and second-order for the viscous term [17, 25]:

(4.2)

α1 = 4/15, α2 = 1/15, α3 = 1/6;

γ1 = 8/15, γ2 = 5/12, γ3 = 3/4;

ξ1 = 0, ξ2 = −17/60, ξ3 = −5/12.

The advantages of this time-discretization scheme is that the numerical sta-
bility number CFL = Δt‖u‖∞/Δx is about

√
3 based on the total time step

Δt (cf. [25]). That means it allows us to simulate the FSI problem using a
larger time step length than our previous work [18] in which we used explicit
Adams-Bashforth scheme to treat the nonlinear convection term.

We are now in a position to describe the direct-forcing IB projection
method for the FSI problem (2.13).
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A direct-forcing IB projection method: Suppose that at the beginning
of time level t = tn+1, the velocity field un, the pressure pn, the density of
body force fn+1 and virtual force terms F n, F n−1, as well as the position
Xn

c , the translational velocity un
c and angular velocity ωn of the falling solid

object are all given. We then perform the following steps:

(S1) Compute the translational velocity un+1
c and angular velocity ωn+1 of

the solid object by

un+1
c − un

c

Δt
= g − 1

Ms −Mf

(3
2

∫
Ωn

s

ρfF
n − 1

2

∫
Ωn−1

s

ρfF
n−1

)
,

ωn+1 − ωn

Δt
=

−1

Is − If

(3
2

∫
Ωn

s

ρfr
n×F n − 1

2

∫
Ωn−1

s

ρfr
n−1×F n−1

)
.

One can check that the above two schemes are second-order time-
discretizationes of the two initial value problems in (2.13), respectively.

(S2) Compute the new position of the solid object by

Xn+1
c = Xn

c +
Δt

2
(un+1

c + un
c ),

θn+1 = θn +
Δt

2
(ωn+1 + ωn),

which are respectively the second-order in time implicit trapezoidal
discretizations of the equations in (2.3).

(S3) Solve the system (4.1) for each sub-step k = 1, 2, 3 by using the Choi-
Moin projection scheme as follows:

(3a) Solve for the intermediate velocity fields ũk and u∗ by

ũk − uk−1

Δt
− αk(ν∇2ũk + ν∇2uk−1) +

γk[(u · ∇)u]k−1 + ξk[(u · ∇)u]k−2 + 2αk∇pk−1 = 2αkf
n+1 in Ω,

ũk = ub on ∂Ω,

u∗ − ũk

Δt
− 2αk∇pk−1 = 0 in Ω.

(3b) Solve for the pressure increment ϕk by

∇2ϕk =
1

2αk

1

Δt
∇ · u∗ in Ω,
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∇ϕk · n = 0 on ∂Ω,

and update the velocity field by

uk = u∗ − 2αkΔt∇ϕk.

(3c) Update the pressure by

pk = ϕk − ν

2
∇ · ũk.

At the end of this step, we set u∗∗ := u3 and pn+1 := p3.
(S4) In order to make the velocity of solid body region to cope with the

solid velocity, we need an additional step to reset the velocity of solid
body region to be the same as that of solid’s velocity given by

un+1
s = un+1

c + ωn+1 × rn+1 in Ω
n+1
s .

This can be accomplished by first defining the virtual force in the
whole solid body region as

F n+1 := η
un+1
s − u∗∗

Δt
in Ω,

and then solve the velocity un+1 by directly setting

un+1 − u∗∗

Δt
= F n+1 in Ω,

where the indicator function η(tn+1,x) is given in (2.12). When the
whole domain Ω is discretized using the Cartesian grids, η will denote
the volume fraction of solid inside a cell and it is generally between 0
(pure fluid) and 1 (pure solid) and can be fractional for cells cut by
immersed solid boundary [18].

5. Numerical experiments

In this section, we will perform several numerical experiments to illustrate
the effectiveness of the direct-forcing IB projection method proposed in Sec-
tion 4. In all these 2-D examples, we apply the second-order centered differ-
ences over a uniform staggered Cartesian grid for the space-discretizations
in the projection scheme (cf. [10]). More specifically, the unknown functions
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Figure 5.1: A schematic diagram of the computational domain Ω with a
staggered Cartesian grid.

u and F1, v and F2, and p are approximated at the staggered grid points
marked by →, ↑ and •, respectively; see Figure 5.1.

To validate the proposed method, we first consider the FSI problem of
flow past a swimming fish-like solid body with a given varying solid shape
and with a prescribed solid velocity. Then we examine examples of the falling
of a single circular solid ball and two circular solid balls in a rectangular
tank filled with an incompressible Newtonian viscous fluid. We also consider
the sedimentation of a cloud of circular particles in a non-rectangular fluid
domain to demonstrate the ability of the collision model for handling com-
plicated collisions between particles and walls. In all examples, the density
of body force of fluid is set to be zero, f = 0.

5.1. Flow past a swimming fish-like solid body

In this example, we study the complex dynamics of a fish-like solid body,
which takes a transverse prescribed motion, swimming in a uniform flow in
a rectangular tank. We are given the varying shape of the solid body whose
equilibrium position is represented by the contour of NACA0012 airfoil and
the swimming motion of the solid body is governed by a backbone oscillation
equation; see [9, 15] for more details. In Figure 5.2, we show the computa-
tional domain Ω with boundary conditions and the schematic diagram of
the fish-like body.

The detailed settings of the simulation are given below:

• The Reynolds number is defined as Re := U∞L/ν, where L is the chord
length of the airfoil, U∞ the free-stream velocity and ν the kinematic
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Figure 5.2: Boundary conditions of the FSI problem of flow past a swimming
fish-like solid body.

viscosity. In this example, the characteristic velocity is U∞ = 1, the
chord line is L = 1, and the considered Reynolds number is Re =
1/ν = 5000.

• The computational domain is taken as Ω = (−2L, 4L)× (−L,L). The
spatial mesh size is taken as h = 1/480, the time step Δt = 2× 10−3,
and the final time T = 20. Note that here our time step Δt is larger
by 10 times than that used in [15].

• The midline of the fish-like solid body makes a lateral oscillation in
the form

ym(x, t) = Am(x) cos(2π(x− t)), 0 ≤ x ≤ 1,

where Am represents the amplitude and x is the position along the
chord line. To model the backbone undulation during swimming, the
amplitude Am is approximated by a quadratic polynomial given by

Am(x) = 0.02− 0.0825x+ 0.1625x2.

The symmetrical shape of the fish-like body about the midline is de-
scribed by the equation:

y(x) = 0.6
(
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1036x4

)
,

where y(x) is the half thickness at a given value x, from the centerline
to the solid body surface.

Numerical results of the instantaneous vorticity contours are shown in
Figure 5.3, from which we can find that the proposed direct-forcing IB pro-
jection method is capable of simulating the complex dynamics of flow past
a swimming fish-like solid body. In the vorticity contours, the flow wakes
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Table 5.1: The comparison of convergent time step and CPU time of the
RK3 and AB schemes employed in the proposed method for the time interval
[0, 4]

time step Δt 2× 10−3 1× 10−3 8× 10−4 5× 10−4 CPU time

RK3 scheme convergent − − − 2627.39 s
AB scheme divergent divergent divergent convergent 4570.35 s

evolve behind the solid body as the time goes on. The wakes undulate up
and down when the body oscillates. As the time goes further, the wakes get
into a periodic behavior, which is very similar to that reported in [15].

As we have pointed out in Section 4 that for allowing a larger time
step Δt in the time integration scheme, we employ a third-order low-storage
Runge-Kutta scheme (RK3 scheme) [25] in the step (S3) of the proposed
method, instead of using the usual explicit Adams-Bashforth scheme (AB
scheme) [18] for the nonlinear convection term. A comparison of the conver-
gent time step and the CPU time of these two different approaches is pre-
sented in Table 5.1, where we consider the RK3 scheme with Δt = 2× 10−3

and the AB scheme with Δt = 5 × 10−4 for simulating the FSI problem
of flow past a swimming fish-like solid body on the time interval [0, 4]. In
the numerical computations, all the Helmholtz equations for intermediate
velocity are solved by a preconditioned conjugate gradient scheme and all
the Poisson equations for pressure increment are solved by the fast Fourier
transform technique. Numerical results shows that the RK3 scheme is more
efficient than the AB scheme. The CPU time of the RK3 scheme is much
less than that of the AB scheme. This is because that the time step Δt of
the RK3 scheme can be taken as about 4 times larger than that of the ex-
plicit AB scheme and the stability can be retained well, though the former
needs to solve more Helmholtz equations and more Poisson equations than
the latter. Another possible reason is that in the RK3 scheme, we employ
the solution of the current sub-step as an initial guess for the preconditioned
conjugate gradient iterations of the next sub-step, which is intuitively a good
initial approximation in accelerating the convergence process.

To close this subsection, we plot in Figure 5.4 the instantaneous vorticity
contours at time t = 4 produced by the proposed method with the RK3 and
AB schemes. Clearly, both schemes show stable periodic behavior.

5.2. A single freely falling circular solid body

In this example, we consider a 2-D solid ball falling in a rectangular tank
filled with an incompressible Newtonian viscous fluid. The settings of simula-
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Figure 5.3: The instantaneous vorticity contours of the FSI problem of flow
past a swimming fish-like solid body.
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Figure 5.4: The instantaneous vorticity contours of the FSI problem of flow
past a swimming fish-like solid body at time t = 4 produced by the proposed
method with Runge-Kutta (left) and Adams-Bashforth (right) schemes.

tion are same with that in the work of Glowinski et al. [14]. More specifically,
the settings of the simulation are given below:

• The computational domain is Ω := (0, 2)× (0, 6), the diameter of the
solid ball Ωs is d = 0.25 and the center is located at (1, 4) at the initial
time t = 0.

• We consider the initial condition u0 = 0 in Ω and the boundary func-
tion ub = 0 on ∂Ω for all time.

• The density of fluid part is ρf = 1 and solid part is ρs = 1.5, the fluid
viscosity is ν = 0.01, and the gravity is taken as g = (0,−980).

• We take the grid size h = 1/256 and the time step Δt = 10−4.
• The collision parameter εw in the repulsive force (3.4) with the bottom
of tank is taken as εw = 10−7 and the tolerance distance is taken as
δ = 2h.

In the above settings, the tolerance distance is taken as δ = 2h which is
recommended by Blasco et al. [4]; see also [14]. However, the choice of the
collision parameter εw = 10−7 (and another collision parameter εp = 10−7

in the next two subsections) is based on our numerical experience, which is
larger than that suggested in [14] and consequently, the repulsive force is
relatively small in the present paper. In addition, we note that the stability
of the proposed method seems not to be affected by these small parameters
as long as the repulsive force is not too large.

Numerical results of the position of freely falling solid ball and the flow
field visualization at different times are displayed in Figure 5.5. Furthermore,
the time evolution of position and translational velocity of the solid ball in
y-component compared with the results of Glowinski et al. [14] and Horng
et al. [18] are depicted in Figure 5.6, from which we can find that the results
produced by the proposed method are in very well agreement with that
in [14] with the finer grid size h = 1/384, and obviously better than that
presented in [18].
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Figure 5.5: The position of freely falling solid ball and the flow field visual-
ization at time t = 0.1, 0.25, 0.35, 0.5.

5.3. Two freely falling circular solid bodies

In this example, we simulate two identical balls freely falling in the fluid
to study the drafting, kissing and tumbling phenomena [4, 14, 26, 42]. To
demonstrate these interesting phenomena, we consider the following settings:

• The computational domain, initial and boundary conditions are taken
the same as the case of single free-falling ball in Subsection 5.2.

• The fluid density is ρf = 1, the fluid viscosity is ν = 0.01, and the
gravity is taken as g = (0,−980).

• These two identical solid balls are respectively centered at
(1 − 0.001, 4.5) and (1 + 0.001, 5) at time t = 0 and both with di-
ameter d = 0.25 and density ρs = 1.5.

• The time step size is Δt = 10−4 and the spatial mesh size is h = 1/256.
• The collision parameters in the total repulsive force (3.1) are given by
εw = 10−7, εp = 10−7, and the tolerance distance δ = 2h.

From the numerical results presented in Figure 5.7, we observe that the
falling process is qualitatively consistent with the experimental results re-
ported in [13]. At first, each ball has the same acceleration by gravitational
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Figure 5.6: The time evolution of position (left) and translational velocity
(right) of the freely falling solid ball in y-component compared with the
results of Glowinski et al. [14] and Horng et al. [18].

force. Then the velocity of the upper ball becomes faster than that of the

lower ball because of the lower ball undergoes more resistant against the

fluid comparing to the upper one as time goes on. Consequently, the lower

ball drafts the upper ball and then the two balls become kissing to be com-

bined together like an elongated rigid body. However, at this moment, some

instability arises in the motion of the combined ball, so that it has a ten-

dency to rotate. Finally, the upper ball tumbles over the lower ball and two

balls are separated apart from each other.

More specifically, as shown in the Figure 5.7, the upper ball becomes

falling faster than that of the lower ball at t = 0.1 (drafting). About t = 0.18,

the upper ball touches the lower one (kissing). But the combined ball is

unstable and the two balls separate at about t = 0.22. After all, the upper

ball tumbles over the lower ball at t = 0.26 (tumbling). These numerical

results are similar to those obtained in the literature [4, 14, 26, 42]. For

experimental results, we refer the reader to [13].

5.4. Sedimentation of multiple particles

In this example, we consider the sedimentation of a cloud of small circular

particles in a non-rectangular fluid domain. This example will demonstrate

the good ability of the simple collision model described in Section 3 for

simulating complicated collisions between the falling particles and particles

with walls. The settings of the simulation are given as follows:
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Figure 5.7: The positions of two freely falling solid balls and the flow field
visualization at time t = 0.1 (drafting), t = 0.18 (kissing), t = 0.22, and
0.26 (tumbling).

• The computational domain is same as that used in Subsection 5.2 and

Subsection 5.3, except that there is a slope at the bottom, that is,

Ω := (0, 2)× (0, 6) \ {(x, y) : x, y ≥ 0, x+ y ≤ 1}.
• There are 10 rows of identical particles at the top of cavity, and each

row has 10 particles of diameter d = 0.15 at the initial time t = 0. We

consider the initial condition u0 = 0 in Ω and the boundary function

ub = 0 on ∂Ω for all time.

• The fluid density is ρf = 1 and the particles density are all ρs = 1.5.

The fluid viscosity is ν = 0.01 and the gravity is g = (0,−980).

• The time step size is Δt = 10−4 and the spatial mesh size is h = 1/256.

The collision parameters in the total repulsive force (3.1) are given by

εw = 10−7, εp = 10−7, and the tolerance distance δ = 2h.

The numerical results are displayed in Figure 5.8. We can find that the

proposed direct-forcing IB projection method can handle the complicated

collisions of the multiple falling particles system very well, and the sedimen-

tation process can be successfully simulated.
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Figure 5.8: The sedimentation of multiple particles and the flow field visu-
alization at time t = 0, 0.5, 1.0, and 2.0.

6. Summary and conclusion

In this paper, we have successfully developed a new direct-forcing IB ap-
proach combined with the second-order in time Choi-Moin projection scheme
to simulate the dynamical behavior of freely falling solid bodies in an incom-
pressible viscous fluid. The basic idea of the direct-forcing approach is that
we first regard the solid object region as made of fluid and then introduce a
momentum forcing distributed only on that region that enforces the region
to behave like a real solid body with the solid velocity.

In the proposed method, we have used a third-order Runge-Kutta for-
mula for the convection and a second-order Crank-Nicolson formula for the
diffusion to discretize the time variable in the momentum equation. More-
over, we have employed second-order centered differences over a staggered
Cartesian grid for all the spatial discretizations in the projection scheme. We
have also integrated a collision model into the method for circular particles
to mimic the repulsion force arising from body-body or body-wall collisions.
The most advantageous feature of this method is that it is conceptually
simple and rather easy to implement, without involving any discrete Dirac
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delta functions or any post interpolations for accuracy like most IB methods

in the literature. We have presented several numerical examples to illustrate

the effectiveness of the newly proposed method. From the numerical results,

we have found that this direct-forcing IB projection method is capable of

simulating the complex behavior of two-way FSI problems.

To conclude this paper, we remark that the proposed direct-forcing IB

projection approach can also be applied to study the heat transfer process

in thermal FSI problems, provided we additionally introduce an appropriate

virtual heat source to the energy transport equation. This issue deserves

further investigation.
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