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Principal component analysis (PCA) is arguably the most widely
used dimension-reduction method for vector-type data. When ap-
plied to a sample of images, PCA requires vectorization of the
image data, which in turn entails solving an eigenvalue problem
for the sample covariance matrix. We propose herein a two-stage
dimension reduction (2SDR) method for image reconstruction from
high-dimensional noisy image data. The first stage treats the im-
age as a matrix, which is a tensor of order 2, and uses multilinear
principal component analysis (MPCA) for matrix rank reduction
and image denoising. The second stage vectorizes the reduced-rank
matrix and achieves further dimension and noise reduction. Sim-
ulation studies demonstrate excellent performance of 2SDR, for
which we also develop an asymptotic theory that establishes con-
sistency of its rank selection. Applications to cryo-EM (cryogenic
electronic microscopy), which has revolutionized structural biology,
organic and medical chemistry, cellular and molecular physiology in
the past decade, are also provided and illustrated with benchmark
cryo-EM datasets. Connections to other contemporaneous devel-
opments in image reconstruction and high-dimensional statistical
inference are also discussed.

Keywords and phrases: Generalized information criterion, image de-
noising and reconstruction, random matrix theory, rank selection, Stein’s
unbiased estimate of risk.

1. Introduction

As noted by Chen et al. [9], determining the 3D atomic structure of biomole-
cules is important for elucidating the physicochemical mechanisms underly-
ing vital processes, and major breakthroughs in this direction led to Nobel
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Prizes in Chemistry awarded to Roger Kornberg in 2006, Venkatraman Ra-
makrishnan, Thomas Steitz and Ada Yonath in 2009, and Brian Kobilka and
Robert Lefkowitz in 2012. While X-ray crystallography played an important
role in the last two discoveries, most large proteins resisted attempts at crys-
tallization. Cryogenic electron microscopy (cyro-EM), which does not need
crystals and is therefore amenable to structural determination of proteins
that are refractory to crystallization [14], has emerged as an alternative to
X-ray crystallography for determining 3D structures of macromolecules in
the past decade, culminating in the Nobel Prize in chemistry awarded to
Jacques Dubochet, Joachim Frank and Richard Henderson in 2017.

Chen et al. [9, pp. 260–261] first describe the workflow of cryo-EM image
analysis and then focus on 2D clustering step that identifies structurally ho-
mogeneous sets of images after these images have gone through the alignment
and other image processing steps of the workflow. The size of a cryo-EM im-
age is often larger than 100 pixels measured in each direction. Treating an
image as a vector with dimension p, which is the pixel number that exceeds
100× 100 = 104, clustering a large set of these high-dimensional vectors is a
challenging task, particularly because of the low signal-to-noise ratio (SNR)
in each cryo-EM image. Chen et al. [9] proposed to use a novel cluster-
ing method called γ-SUP, in which γ refers to γ-divergence and SUP refers
to “self-updating process”, to address these challenges. Section 1.1 gives
an overview of γ-SUP, while Section 1.2 describes visualization of multidi-
mensional data using t-distributed Stochastic Neighbor Embedding (t-SNE)
plots [24]. Section 1.3 provides an overview of multilinear principal compo-
nent analysis (MPCA) which we developed its statistical properties in [20]
and which will be used in Section 2 to develop a new two-stage dimension
reduction (2SDR) method for high-dimensional noisy images. The first stage
of 2SDR uses MPCA of a random matrix X ∈ R

p×q to represent the image,
together with consistent selection of the actual rank (p0, q0) of the matrix X
as a second-order tensor; representing a high-dimensional image as a matrix
has computational advantages over image vectorization. The second stage
of 2SDR carries out PCA for the vectorized reduced-rank image to achieve
further dimension reduction; Sections 1.4 and 1.5 give an overview of the lit-
erature on rank selection for MPCA and PCA. In Section 3, applications of
2SDR to cryo-EM images are illustrated with benchmark datasets including
70S ribosome and 80S ribosome. We show that 2SDR can improve 2D image
clustering to curate the clean particles and 3D classification to separate var-
ious conformations. In particular, for a dataset containing 11,000 volumes
of 5 conformations of 70S ribosome structure, we demonstrate that the t-
SNE plot of 2SDR shows clear separation of the 5 groups, which illustrates
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the promise of the method for cryo-EM image analysis. The 80S ribosome
dataset, which has huge sample size and large pixel numbers, exemplifies
the computational capability of 2SDR. Section 4 gives further discussion
and concluding remarks.

1.1. γ-SUP and 2D clustering of cryo-EM images

An important step in the workflow of cryo-EM image analysis is 2D clus-
tering to identify structurally and orientationally homogeneous sets of par-
ticle images. Sorzano et al. [33] proposed a k-means algorithm which, for
a given number of clusters, iteratively bisects the data to achieve this via
a kernel-based entropy measure to mitigate the impact of outliers. Yang et
al. [41] subsequently noted the difficulty to find good initial values and pre-
specify a manageable number of clusters, and found the k-means approach
to be unsatisfactory. This led Chen et al. [9] to develop an alternative 2D
clustering method called γ-SUP, in which γ stands for “γ-divergence” and
SUP is abbreviation for “self-updating process” (introduced by Shiu and
Chen [32]) and to demonstrate its superior performance in 2D clustering
of cryo-EM images. Their γ-SUP algorithm can be viewed as an iteratively
reweighted procedure using kernel weights that are inversely proportional to
the γ-divergence Dγ(f ||g) of the chosen working parametric model (with a
density function g) from the empirical measure with a kernel density func-
tion f ; 0 < γ < 1 and the case γ → 0 gives the Kullback-Leibler divergence
[15]. Chen et al. [9] propose to choose the working model of q-Gaussian dis-
tribution [2] so that the chosen model g has the smallest γ-divergence from
f . The q-Gaussian distribution over Rp, with q < 1 + 2p−1, is a generaliza-
tion of the Gaussian distribution (corresponding to q → 1) and has a density
function of the form

gq(x;μ, σ) = (
√
2πσ)−pcp,q expq

(
−‖x− μ‖2/(2σ2)

)
, x ∈ R

p,

where expq(u) is the q-exponential function expq(u) = {1 + (1− q)u}
1

1−q

+

and x+ = max(x, 0). For 1 < q < 1 + 2p−1, it corresponds to the multi-
variate t-distribution with ν = 2(q − 1)−1 − p degrees of freedom, whereas
it has compact support for q < 1, which is assumed by Chen et al. [9] in
applications to cryo-EM images and for which cp,q = (1− q)p/2Γ(1 + p/2 +
(1− q)−1)/Γ(1 + (1− q)−1).

Instead of working with a mixture density that requires specification
of the number of mixture component and therefore encounters the same
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difficulty as the k-means approach, Chen et al. [9] propose to fit each com-
ponent j with gq(·;μj , σ) separately but with same σ. For given σ, the min-
imizer μ∗

j of D(f ‖ gq(·;μj , σ)) is given by the solution of the equation
μj =

∫
yw(y;μj , σ)dF (y)/

∫
w(y;μj , σ)dF (y), where F is the distribution

function with density f . Hence replacing F by the empirical distribution F̂
of the sample {yi, 1 ≤ i ≤ n} leads to the recursion

μ̂
(�+1)
j =

∫
yw(y;μ

(�)
j , σ)dF̂ (y)∫

w(y;μ
(�)
j , σ)dF̂ (y)

, � = 0, 1, · · ·

Using the SUP algorithm of [32] to replace F̂ by the empirical distribution

F̂ (j) of {μ(j)
i : 1 ≤ i ≤ n} leads to the γ-SUP recursion

μ̂
(�+1)
j =

∫
yw(y;μ

(�)
j , σ)dF̂ (�)(y)∫

w(y;μ
(�)
j , σ)dF̂ (�)(y)

, � = 0, 1, · · · ,

in which w
(�)
ij has the explicit formula w

(�)
ij = exp1−s

(
−
∥∥(μ̂(�)

j − μ̂
(�)
i )/τ

∥∥2),
where τ =

√
2σ/

√
γ − (1− q) > 0 and s = (1 − q)/{γ − (1 − q)} > 0.

This explicit formula is derived by Chen et al. [9, p. 269] who also show that
eventually “γ-SUP converges to certain K clusters, where K depends on the
tuning parameters (τ, s) but otherwise is data-driven.” Another advantage
of γ-SUP is that σ is absorbed in the tuning parameter τ , hence selection
of τ obviates the need to select σ. As pointed out by Chen et al. [9, p. 268],
γ-SUP “involves (s, τ) as the tuning parameters” and “numerical studies
have found that γ-SUP is quite insensitive to the choice of s and that τ
plays the decisive role in the performance of γ-SUP”, for which they suggest
to use a small positive value (e.g. 0.025) of s and a “phase transition plot”
for practical implementation in their Section 4, where performance of a
clustering method is measured by “purity” and “c-impurity” numbers that
will be discussed below in Section 3.1.

1.2. t-distributed stochastic neighbor embedding (t-SNE)

Data visualization is the graphical representation of data, for which tools
from multiple disciplines have been developed, including computer graph-
ics, infographics, and statistical graphics. Recent advances, which include
t-SNE and Laplacian eigenmap, focus on complex data belonging to a low-
dimensional manifold embedded in a high-dimensional space. Laplacian
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eigenmap builds a graph from neighborhood information of the dataset. Us-
ing the adjacency matrix wij to incorporate this neighborhood information,
Belkin and Niyogi [6] consider the optimization problem of choosing config-
uration points yi to minimize

∑
j>iwij ||yj − yi||2, which forces yi and yj to

be close to each othe if wij is large, and apply graph theory and the Laplace-
Beltrami operator to formulate the optimization problem as an eigenvalue
problem [11]. However, until Maaten and Hinton [24] developed t-SNE for
data visualization in 2008, no visualization was able to separate the MNIST
benchmark dataset, consisting of 28 × 28 pixel images each of which has a
hand-written digit from 0 to 9, into ten groups (corresponding to the ten
digits).

Similar to Laplacian eigenmap, t-SNE also has underpinnings in local
information of the dataset {X1, . . . , Xn}, with distance measure d(Xi, Xj)
between Xi and Xj . Instead of using the adjacency matrix of a graph to
incorporate the local information, t-SNE uses a Gaussian Kernel to trans-
form the distance matrix d(Xi, Xj) first into a probability transition ma-
trix π̃ij ∝ exp(−d(Xi, Xj)/2σ

2
i ), i.e., π̃ij is the conditional probability of

moving from position Xj given the initial position Xi, and then into a
probability mass function pij = (π̃ij + π̃ji)/2n over pairs of configuration
points yi and yj . This probability distribution enables Maaten and Hin-
ton [24] to combine ideas from multidimensional scaling [26] which mini-
mizes

∑
j>i(dij − d∗ij)

2, where dij (respectively, d∗ij) is the Euclidean dis-
tance between configuration points yi and yj in the dataset (respectively,
in a low-dimensional subspace of the high-dimensional space), to choose
the t-distribution for “stochastic neighbor embedding” (hence t-SNE) that
minimizes the Kullback-Leibler divergence I(p, q) =

∑
i

∑
j pij log(pij/qij),

where qij = (1 + ||yi − yj ||2)−1/
∑

k �=l (1 + ||yk − yl||2)−1 for configuration
points yi and yj with i �= j, which corresponds to the density function of the
t-distribution for ||yi − yj || with one degree of freedom. Applying stochastic
gradient to minimize I(p, q) yields

δI

δyi
= 4

∑
j

(pij − qij)(yj − yi)(1 + ||yj − yi||2)−1,

which then leads to the iterative scheme

y
(t)
i = y

(t−1)
i + η(

δI

δyi
) + α(t)(y

(t−1)
i − y

(t−2)
i ),

where η is the “learning rate” and α(t) is the “momentum” at iteration t of
machine learning algorithms. How to choose them and σ2

i in pij (via π̃ij) is
also discussed in [24].
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1.3. PCA and MPCA

Let X,X1, · · · , Xn be i.i.d. p× q random matrices. Let y = vec(Xi), where
vec is the operator of matrix vectorization by stacking the matrix into a
vector by columns. The statistical model for PCA is

(1.1) y = μ+ Γν + ε,

where μ is the mean, ν ∈ R
r with r ≤ pq, Γ is a pq×r matrix with orthonor-

mal columns, and ε is independent of ν with E(ε) = 0 and Cov(ε) = c Ipq.
The zero-mean vector ν has covariance matrix Δ = diag(δ1, δ2, · · · , δr)
with δ1 ≥ δ2 ≥ · · · ≥ δr > 0 . The estimate Γ̂ contains the first r eigenvec-
tors of the sample covariance matrix Sn = n−1

∑n
i=1(yi − y)(yi − y)�, and

vec(X)+Γ̂ν̂i provides a reconstruction of the noisy data vec(Xi). The compu-
tational cost, which increases with both the sample size n and the dimension
pq, becomes overwhelming for high-dimensional data. For example, the 80S
ribosome dataset in [40] has more than n = 100,000 images of dimension
pq (after vectorization) with p = q = 360. The computational complex-
ity of solving for the first r eigenvectors of Sn is O((pq)2r) = O(1010 × r)
in this case, as shown by Pan and Chen [27], which may be excessive for
many users. An alternative to matrix vectorization is MPCA [20, 42] or
higher-order singular value decomposition (HOSVD) [13], and both meth-
ods have been found to reconstruct images from noisy data reasonably well
while MPCA has better asymptotic performance than HOSVD [20], hence
we only consider MPCA in the sequel.

MPCA models the p× q random matrix X as

(1.2) X = Z + E ∈ R
p×q, Z = M +AUB�,

where M ∈ R
p×q is the mean, U ∈ R

p0×q0 is a random matrix with p0 ≤
p, q0 ≤ q, A and B are non-random p× p0, q × q0 matrices with orthogonal
column vectors, E is a zero-mean radnom vector independent of U such that
Cov(vec(E)) = σ2 Ipq. Ye [42] proposed to use generalized low-rank approx-

imations of matrices to estimate A and B. Given (p0, q0), Â consists of the
leading p0 eigenvectors of the covariance matrix

∑n
i=1(Xi−X)PB̂(Xi−X)�,

and B̂ consists of the leading q0 eigenvectors of
∑n

i=1(Xi −X)�PÂ(Xi −X),

where the matrix PÂ = ÂÂ� (respectively, PB̂ = B̂B̂�) is the projection

operator into the span of the column vectors of Â (respectively, B̂). The
estimates can be computed by an iterative procedure that usually takes no
more than 10 iterations to converge. Replacing A and B by their estimates
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Â and B̂ in (1.2) yields

Ûi = Â�(Xi −X)B̂, hence ÂÛiB̂
� = PÂ(Xi −X)PB̂,(1.3)

i.e., vec(ÂÛiB̂
�) = PB̂⊗Âvec(Xi−X) where ⊗ denotes the Kronecker prod-

uct and PB̂⊗Â = (B̂B̂�)⊗ (ÂÂ�).
Hung et al. [20, p. 571] used the notion of the Kronecker envelope intro-

duced by Li et al. [23] to connect MPCA and PCA models. For the PCA
model (1.1) with y = vec(X), they note form Theorem 1 of [23] that there
exists a full rank p0q0 × r matrix G such that Γ = (B⊗A)G for which (1.1)
becomes

(1.4) vec(X) = vec(M) + (B ⊗A)Gν + vec(E) ∈ R
pq, with ν ∈ R

r.

The components of ν in (1.4) are pairwise uncorrelated, whereas those of
vec(U) in the MPCA model (1.2) are not; the subspace span(B⊗A) is “the
unique minimal subspace that contains span(Γ)” and is “called the Kro-
necker envelope of Γ”. From (1.3) and (1.4), we need to specify (p0, q0) and
r, respectively, and the following two subsections will summarize previous
works on how to select them.

1.4. Rank selection for MPCA

We first review the recent work of Tu et al. [36] using Stein’s unbiased risk
estimate (SURE) to derive a rank selection method for the MPCAmodel, un-
der the assumption that vec(E) has a multivariate normal distribution with
mean 0 and covariance matrix σ2Ipq. They note that “with the advent of
massive data, often endowed with tensor structures,” such as in images and
videos, gene-gene environment interactions, dimension reduction for tensor
data has become an important but challenging problem. In particular, Tao
et al. [35] introduced a mode-decoupled probabilistic model for tensor data,
assuming independent Gaussian random variables for the stochastic compo-
nent of the tensor, and applied the information criteria in AIC and BIC in-
dependently to each projected tensor mode. In the special case of the MPCA
model for tensors of order 2, the stochastic components correspond to the
entries of U in (1.2), which are pairwise correlated and therefore not indepen-
dent. For the MPCA model (1.2), Tu et al. [36] introduce the risk function

R(p0, q0;σ
2) =

n∑
k=1

E‖Zk − Ẑk‖2F

(1.5)
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=

n∑
k=1

[
E‖Xk − Ẑk‖2F − 2E[tr{E�

k (Xk − Ẑk)}] + E‖Ek‖2F
]

to be used as the risk that SURE estimates by using Stein’s identity [34, 37]
under the assumption that vec(E) ∼ N(0, σ2Ipq). The last (i.e., third) sum-
mand in (1.5) is npqσ2, the first summand can be estimated by

∑n
k=1 |Xk −

ÂÛkB̂
�‖2F , and the second summand is equal to

−2σ2
n∑

k=1

E

[
tr

{
∂vec(Xk − Ẑk)

∂vec(Xk)�

}]
= −2npqσ2

(1.6)

+ 2σ2
n∑

k=1

E

[
tr

{
∂vec(Ẑk)

∂vec(Xk)�

}]
,

by Stein’s identity. Letting Σ denote the covariance matrix of vec(X) in (1.2)
and Σ̂ = n−1

∑n
i=1 vec(Xi−X̄)vec(Xi−X̄)� be its estimate, Tu et al. [36, pp.

35–37] note that vec(Ẑk) = PB̂⊗Âvec(Xk) and that Â and B̂ depend on Σ̂,

and use the chain rule to compute the derivative ( ∂
∂vec(Xk)�

)(PB̂⊗Âvec(Xk))=

(
∂(PB̂⊗Âvec(Xk))

∂(vec(Σ̂))�
)( ∂vec(Σ̂)

∂vec(Xk)�
) and then prove that the second summand of (1.6)

can be estimated by 2σ2df(p0,q0), where

df(p0,q0) = pq + (n− 1)p0q0 +

p0∑
i=1

p∑
�=p0+1

λ̂i + λ̂�

λ̂i − λ̂�

+

q0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�
(1.7)

is the “degree of freedom” and the λ̂i (respectively, ξ̂j) are the eigenvalues,
in decreasing order of their magnitudes, of n−1

∑n
k=1(Xk−X)PB̂(Xk−X)�

(respectively, n−1
∑n

k=1(Xk − X)PÂ(Xk − X)�). Their Section 3.2 gives
interpretations and discussion of df(p0,q0), and their proof of (1.7) keeps the
numerator terms to be column vectors and denominator terms to be row
vectors, and uses the identity vec(ABC) = (C� ⊗A)vec(B) together with

n∑
i=1

XiB̂B̂�X�
i =

n∑
i=1

Xi

⎛⎝ q0∑
j=1

b̂j b̂
�
j

⎞⎠X�
i =

n∑
i=1

q0∑
j=1

(Xib̂j)(Xib̂j)
�

=

n∑
i=1

q0∑
j=1

(
(b�j ⊗ Ip)vec(Xi)

)(
vec(Xi)

�(bj ⊗ Ip)
)
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= n

q0∑
j=1

{
(b�j ⊗ Ip)Σ̂(bj ⊗ Ip)

}
in which B̂ = {b̂1, . . . , b̂q0}, where b̂j is the normalized eigenvector of

n−1
∑n

i=1X
�
i ÂÂ�Xi associated with the eigenvalue ξ̂j , and we have as-

sumed X = 0 to simplify the notation involving Xi −X.
The rank selection method chooses the rank pair (p̂0, q̂0) to minimize

over (p0, q0) the criterion

SURE(p0, q0;σ
2) = n−1

n∑
k=1

‖Xk − ÂÛkB̂
�‖2F + 2n−1σ2df(p0,q0) − pqσ2,

(1.8)

in which σ2 is assumed known or replaced by its estimate σ̂2 descirbed in
Section 3.3 and Algorithms 1 and 2 of Tu et al. [36]. A basic insight under-
lying high-dimensional covariance matrix estimation is that the commonly
used average of tail eigenvalues tends to under-estimate σ2 because the em-
pirical distribution (based on a sample of size n) of the eigenvalues of Ip
converges weakly to the Marchenko-Pastur distribution as n → ∞ and p/n
converges to a positive constant. For a large random martix, Ulfarsson and
Solo [37] use an upper bound on the number of eigenvalues for its bulk and
Tu et al. [36] modify this idea in their Algorithm 2 for the PCA model,
which they then apply to the estimation of σ2 in the MPCA model.

1.5. Rank selection for PCA

Noting that the commonly used information criterion AIC or BIC for vari-
able selection in regression and time series models can be viewed as an
estimator of the Kullback-Leibler divergence between the true model and a
fitted model under the assumption that estimation is carried out by maxi-
mum likelihood for a parametric family that includes the true model, Kon-
ishi and Kitagawa [22] introduced a “generalized information criterion”
(GIC) to relax the assumption in various ways. Recently Hung et al. [19]
developed GIC for high-dimensional PCA rank selection, which we sum-
marize below and will use in Section 2. A generalized spiked covariance
model for an m-dimensional random vector has the spectral decomposition
Σ = ΓΔΓ� for its covariance matrix Σ, where Δ = diag(δ1, . . . , δm) with
δ1 > · · · > δr  δr+1 > · · · > δm. We call r the “generalized rank”. The sam-
ple covariance matrix Sn has the spectral decomposition Sn = Σm

j=1δ̂j γ̂j γ̂
�
j .

Bai et al. [5] consider the special case of with δr+1 = · · · = δm, called the
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“simple spiked covariance model” and denoted by Σr. Under the assumption
of i.i.d. Gaussian yi, Bai et al. [5] prove consistency of AIC and BIC by using
random matrix theory.

Following Konishi and Kitagawa’s framework of model selection [22],
Hung et al. [19] develop GIC for PCA rank selection in possibly misspeci-
fied generalized spiked covariance models with generalized rank r, for which
they use bGIC

r to denote the asymptotic bias correction, a major ingredi-
ent of GIC. Their Theorem 2 shows that under the distributional working
model assumption of i.i.d. normal yi with covariance matrix Σr, b

GIC
r can be

expressed as

bGIC
r =

(
r
2

)
+

r∑
j=1

m∑
�=r+1

δ�(δj − δr)

δr(δj − δ�)
+ r +

(m− r)−1
∑m

j=r+1 δ
2
j{

(m− r)−1
∑m

j=r+1 δj

}2 ,

(1.9)

and the GIC-based rank selection criterion is

r̂GIC = argmin
r≤m

(
log |Σ̂r|+

log n

n
b̂GIC
r

)
,(1.10)

where b̂GIC
r replaces δi by δ̂i in (1.9).1 Note that the last summand in (1.9)

is ≥ 1, with equality if and only if δr+1 = · · · = δm, which is the simple
spiked covariance model considered by Bai et al. [5],2 and that GIC assumes
yi to be a random sample generated from an actual distribution with den-
sity function f and uses the Kullback-Leibler (KL) divergence I(f, g) of a
“working model” g that is chosen to have the smallest KL divergence from
a family of densities; see [22, pp. 876–879]. Since f is unknown, Konishi and
Kitagawa’s idea is to estimate I(f, g) via an “empirical influence function”.
Hung et al. [19] basically implement this approach in the context of PCA
rank selection, for which random matrix theory and the Marchenko-Pastur
distribution provide key tools in the setting of high-dimensional covariance
matrices. However, even with these powerful tools, the estimate of I(f, g)
involves either higher moments of yi “which can be unstable in practice” or
the Stieltjes transform of the limiting Marchenko-Pastur distribution that
is difficult to invert to produce explicit formulas for the bias-corrected esti-
mate of I(f, g). Hung et al. [19] preface their Theorem 2 with the comment

1The second summand on the right-hand side of (1.9) is actually a slight modi-
fication of that in [19] to achieve improved performance.

2Bai et al. [5] assume that the smallest m− r eigenvalues of the true covariance
matrix to be all equal in their proof of rank selection consistency of AIC or BIC.
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that “a neat expression of bGIC
r that avoids calculating high-order moments

(of the yi) can be derived under the working assumption of (their) Gaus-
sianity” and follow up with Remark 2 and Sections 3.2 and 3.3 to show that
this Gaussian assumption “is merely used to get an explicit neat expres-
sion for bGIC

r ” and “is not critical in applying” the rank selection criterion
r̂GIC, which is shown in their Theorems 7,8 and 10 to be consistent under
conditions that do not require Gaussianity.

2. Two-stage dimensional reduction (2SDR) for
high-dimensional noisy images

We have reviewed in Sections 1.3–1.5 previous works on PCA and MPCA
models, in particular the use of the “Kronecker envelope” span(B ⊗ A)
in (1.4) as an attempt to connect both models. This attempt, however, is
incomplete because it does not provide an explicit algorithm to compute the
“full rank p0q0 × r matrix G” that is shown to “exist”. In this section we
define a new model, called hybrid PCA and denoted by HMPCA, in which
the subscript M stands for MPCA and H stands for “hybrid” of MPCA and
PCA. Specifically, HMPCA assumes the MPCA model (1.2) with reduced
rank (p0, q0) via the p0 × q0 random matrix U and then assumes a rank-r
model, with r ≤ p0q0, for vec(U) to which a zero-mean random error ε with
Cov(ε) = cIp0,q0 is added, as in (1.1). This leads to dimension reduction of
vec(X−M −E) = vec(Ap0

UB�
q0) from p0q0 to r. Since U = A�

p0
(X−M)Bp0

in view of (1.3), vec(Ap0
UB�

q0) = PBq0⊗Ap0
vec(X −M −E) is the projection

of X−M −E into span(Bq0 ⊗Ap0
), which has dimension r after this further

rank reduction. The actual ranks, which we denote by (p∗0, q
∗
0) and r∗, are

unknown as are the other parameters of the HMPCA model, and 2SDR uses
a sample of size n to fit the model and estimate the ranks.

The first stage of 2SDR uses (1.2) to model a noisy image X as a matrix.
Ye’s estimates Â and B̂ that we have described in the second paragraph of
Section 1.3 depend on the given value of (p0, q0), which is specified in the
criterion SURE(p0, q0;σ

2). Direct use of the criterion to search for (p0, q0)
would therefore involve computation-intensive loops. To circumvent this dif-
ficulty, we make use of the analysis of the optimization problem associated
with Ye’s estimates at the population level by Hung et al. [20] and Tu et al.
[36, pp. 27–28], who have shown that if the dimensionality is over-specified
(respectively, under-specified) for span(A) (or span(B)), then it contains (re-
spectively, is a proper subspace of) the true subspace. We therefore choose
a rank pair (pu, qu) such that pu ≥ p∗0 and qu ≥ q∗0, where (p∗0, q

∗
0) is the

true value of (p0, q0), and then solve for (Âu, B̂u) such that Âu (respectively,
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B̂u) consists of the leading pu eigenvectors of
∑n

k=1(Xk −X)PB̂u
(Xk −X)�

(respectively, qu eigenvectors of
∑n

k=1(Xk−X)PÂu
(Xk−X)�); see Ye’s esti-

mate in the second paragraph of Section 1.3. This is tantamout to replacing
(p∗0, q

∗
0) by the larger surrogates (p̂u, q̂u) in df(p∗

0 ,q
∗
0 )
defined by (1.7). For given

(p0, q0) with p0 ≤ pu and q0 ≤ qu, let Âp0
(respectively, B̂q0) be the submatrix

consisting of the first p0 (respectively, q0) column vectors of Âu (respectively,
B̂u). The rank selection criterion (1.8) into the SURE criterion is

S(n)u (p0, q0;σ
2)=n−1

n∑
k=1

‖Xk − Âp0
ÛkB̂

�
q0‖

2
F +2n−1σ2df(n)p0,q0 − pqσ2, where

(2.1)

df(n)p0,q0 = pq + (n− 1)p0q0 +

p0∑
i=1

p∑
�=p0+1

λ̂i + λ̂�

λ̂i − λ̂�

+

q0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�
,(2.2)

in which Ûk = Â�
p0
(Xk −X)B̂q0 and

(p̂0, q̂0) = argminp0≤pu,q0≤quS
(n)
u (p0, q0;σ

2).(2.3)

In Section 2.1, we prove the consistency of (p̂0, q̂0) as an estimate of (p∗0, q
∗
0).

After rank reduction via consistent estimation of (p∗0, q
∗
0) by (p̂0, q̂0), the

second stage of 2SDR achieves further rank reduction by applying the GIC-
based rank selection criterion (1.10) to Svec(Û) = n−1

∑n
i=1 vec(Ûi)vec(Ûi)

�,

where Ûi = Â�
p̂0
(Xi − X)B̂q̂0 . Consider the corresponding matrix Σvec(U)

at the population level and its ordered eigenvalues κ1 ≥ κ2 ≥ . . . and the
orthonormal eigenvectors gj associated with κj . Suppose vec(U − ε) belongs
to an r-dimensional subspace. Since ε is independent of vec(U − ε) and has
mean 0 and covariance matrix cIp∗

0q
∗
0
, it then follows that

(2.4) Σvec(U) =

r∑
j=1

κjgjg
�
j + c

p∗
0q

∗
0∑

j=r+1

gjg
�
j ,

SinceXi = M+Ap0∗UiB
�
q0∗+Ei with Cov(Ei) = σ2Ipq in view of (1.2), it then

follows that the covariance matrix of vec(Xi), 1 ≤ i ≤ n, has eigenvalues

(2.5) κ1 + σ2, . . . , κr + σ2, c+ σ2, · · · c+ σ2︸ ︷︷ ︸
p∗
0q

∗
0 − r times

, σ2, · · · , σ2︸ ︷︷ ︸
pq − p∗

0q
∗
0 times

.

Although p∗0, q
∗
0, r, σ

2, c and other parameters such as κ1, · · · , κr are actually
unknown in (2.4) and (2.5), 2SDR uses a sample of size n to fit the model
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Figure 1: Schematic of 2SDR procedure.

and thereby obtain the estimate of κ1, · · · , κr, which can be put into log |Σ̂r|
after replacing p∗0q

∗
0 by p̂0q̂0; details are given in Section 2.1 and illustrated

in Section 2.2.

2.1. Implementation and theory of 2SDR

The first paragraph of this section has already given details to implement the
MPCA stage of 2SDR that yields Âu, B̂u, Âp0

, B̂q0 , pu, qu, p̂0 and q̂0, hence
this subsection will provide details for the implementation of the basic idea
underlying the second (PCA) stage of 2SDR described in the preceding
paragraph and develop an asymptotic theory of 2SDR, particularly the con-
sistency of the rank estimates in the HmPCA model. Figure 1 is a schematic
diagram of the 2SDR procedure, which consists of 4 steps, the first two
of which constitute the MPCA stage while the last two form the second
(PCA) stage of 2SDR, based on a sample of p×q matrices Xi (i = 1, · · · , n)
representing high-dimensional noisy images.

• Step 1. Fit the MPCAmodel (1.2) to the sample of size n to obtain the

eigenvalues λ̂1, · · · , λ̂p, ξ̂1, · · · , ξ̂q in (2.2) and the matrices Âu and B̂u.
• Step 2. Estimate σ2 by the method of Tu et al. [36]3 described in
the last paragraph of Section 1.4 and use the SURE rank selection
criterion (2.3) to choose the reduced rank (p̂0, q̂0).

• Step 3. Perform PCA on Svec(Û) = n−1
∑n

i=1 vec(Ûi)vec(Ûi)
� to ob-

tain its ordered eigenvalues κ̂1 ≥ · · · κ̂p̂0q̂0 .

3We use 7/8 from the tail to estimate the variance of noise for the SURE method.
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• Step 4. For r ≤ p̂0q̂0, define (2.4) with κj replaced by κ̂j , and compute

log |Σ̂r| and b̂GIC
r . Estimate the actual rank r∗ by r̂GIC defined in (1.10).

Hung et al. [20, Corollary 1] have shown that vec(PB̂⊗Â) is a
√
n-

consistent estimate of vec(PB⊗A) under certain regularity conditions, which
we use to prove the following theorem on the consistency of (p̂0, q̂0). The

theorem needs the condition c > σ2 because 2n−1σ2df
(n)
p0,q0 in (2.1) can dom-

inate the value of the criterion S
(n)
u (p0, q0;σ

2), especially when p0 < p∗0 and
q0 < q∗0. The condition c > σ2, or equivalently c + σ2 > 2σ2, ensures suf-

ficiently large S
(n)
u (p0, q0;σ

2) to avoid erroneous rank selection in this case.
The asymptotic analysis, as n → ∞, in the following proof also shows how
the condition c > σ2 is used.

Theorem. Assume that the MPCA model (1.2) holds and c > σ2. Suppose
p∗0 ≤ pu and q∗0 ≤ qu. Then P(p̂0 = p∗0 and q̂0 = q∗0) → 1 as n → ∞.

Proof. The basic idea underlying the proof is the decomposition for the rank
pair (p0, q0) with p0 ≤ pu and q0 ≤ qu:

S(n)u (p0, q0;σ
2)− S(n)u (p∗0, q

∗
0;σ

2) = A1n +A2n +A3n(2.6)

consisting of three summands which can be analyzed separately by using
different arguments to show that (2.6) is (a) at least of the order n−1/2 in
probability, (b) equal to 1 + oP (1) if p0 < p∗0 or q0 < q∗0, and (c) of the
OP (n

−1/2τn) order if p0 ≥ p∗0 and q0 ≥ q∗0, ensuring that (2.6) is sufficiently
above zero if p0 �= p∗0 or q0 �= q∗0. In view of (2.1), the left-hand side of (2.6)
is equal to

1

n

n∑
i=1

{
‖Xi − Âp0

Û iB̂q0‖2F − ‖Xi − Âp∗
0
Û iB̂q∗0‖

2
F

}
+A3n,(2.7)

A3n =
2σ2

n
(df(n)p0q0 − df

(n)
p∗
0q

∗
0
).

We next show that the first summand in (2.7) is equal to A1n +A2n, where

A1n =
1

n

n∑
i=1

‖(P B̂q∗
0

⊗ P Âp∗
0

− P B̂q0

⊗ P Âp0

)vec(Xi)‖2F

A2n =
2

n

n∑
i=1

〈(Ipq − P B̂q∗
0

⊗ P Âp∗
0

)vec(Xi),

(P B̂q∗
0

⊗ P Âp∗
0

− P B̂q0

⊗ P Âp0

)vec(Xi)〉,
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by writing n−1
n∑

i=1

‖Xi − Âp0
Û iB̂

�
q0‖

2
F as

1

n

n∑
i=1

‖Xi − P Âp∗
0

XiP B̂q∗
0

+ (P Âp∗
0

XiP B̂q∗
0

− P Âp0

XiP B̂q0

)‖2F

=
1

n

n∑
i=1

‖(Ipq − P B̂q∗
0

⊗ P Âp∗
0

)vec(Xi)

+ (P B̂q∗
0

⊗ P Âp∗
0

− P B̂q0

⊗ P Âp0

)vec(Xi)‖2F

=
1

n

n∑
i=1

‖Xi − Âp∗
0
Û iB̂

�
q∗0
‖2F +A1n +A2n.

LetΣ be the covariance matrix of vec(X), Σ̂=n−1
n∑

i=1

vec(Xi)vec(Xi)
�,

and note that Σ̂ = Σ+OP (n
−1/2). By Corollary 1 of [20],

Âp∗
0
= Ap∗

0
+OP (n

−1/2), B̂q∗0 = Bq∗0 +OP (n
−1/2),(2.8)

Âp0
= Ap0

+OP (n
−1/2), B̂q0 = Bq0 +OP (n

−1/2),

for 1 ≤ p0 ≤ pu and 1 ≤ q0 ≤ qu. Note also that A2n = 2tr([P B̂(q∗
0
∧q0)

⊗
P Â(p∗

0
∧p0)

− P B̂q0

⊗ P Âp0

]Σ̂). From this and (2.8), it follows that

A2n = 2σ2{(p∗0 ∧ p0)(q
∗
0 ∧ q0)− p0q0}+OP (n

−1/2).(2.9)

Similar calculations show that A1n = tr((P B̂q∗
0

⊗ P Âp∗
0

)Σ̂) + tr((P B̂q0

⊗
P Âp0

)Σ̂)− 2tr((P B̂q0∧q∗
0

⊗P Â(p0∧p∗
0
)
)Σ̂)+OP (n

−1/2), to which (2.8) can be

applied to obtain

A1n = tr([Ip∗
0q

∗
0
− (B�PBq0

B)⊗ (A�PAp0
A)]Σvec(U))(2.10)

+σ2(p∗0q
∗
0 + p0q0 − 2(p∗0 ∧ p0)(q

∗
0 ∧ q0)) +OP (n

−1/2).

By the assumption c > σ2, Σvec(U) − σ2Ip∗
0q

∗
0
is positive definite. By von

Neumann’s trace inequality (cf. [10]),

1st summand in (2.10) ≥ tr({Ip∗
0q

∗
0
− (B�P B̂q0

B)⊗ (A�P Âp0

A)}σ2Ip∗
0q

∗
0
)

(2.11)

= σ2(p∗0q
∗
0 − (p∗0 ∧ p0)(q

∗
0 ∧ q0)).
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In the first inequality of (2.11), “=” holds only when p0 ≥ p∗0 and q0 ≥ q∗0.
Note that Ip∗

0q
∗
0
−(B�P B̂q0

B)⊗(A�P Âp0

A) is symmetric and nonnegative

definite. By (2.10) and (2.11),

A1n = σ2(2p∗0q
∗
0 + p0q0 − 3(p∗0 ∧ p0)(q

∗
0 ∧ q0)) +OP (n

−1/2).(2.12)

Moreover, A3n in (2.7) is equal to

2(n− 1)σ2

n
(p0q0 − p∗0q

∗
0) +

2σ2

n

⎡⎣ p0∑
j=1

p∑
�=p0+1

λ̂j + λ̂�

λ̂j − λ̂�

+

q0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�

⎤⎦
− 2σ2

n

⎡⎣ p∗
0∑

j=1

p∑
�=p∗

0+1

λ̂j + λ̂�

λ̂j − λ̂�

+

q∗0∑
j=1

q∑
�=q∗0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�

⎤⎦ ,

which can be combined with (2.9), (2.12) and (2.6) to yield

S(n)u (p0, q0;σ
2)− S(n)u (p∗0, q

∗
0;σ

2) ≥ σ2(p0q0 − (p∗0 ∧ p0)(q
∗
0 ∧ q0))(2.13)

+
2σ2

n

⎡⎣ p0∑
j=1

p∑
�=p0+1

λ̂j + λ̂�

λ̂j − λ̂�

+

q0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�

⎤⎦
− 2σ2

n

⎡⎣ p∗
0∑

j=1

p∑
�=p∗

0+1

λ̂j + λ̂�

λ̂j − λ̂�

+

q∗0∑
j=1

q∑
�=q∗0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�

⎤⎦+OP (n
−1/2).

Note that

p0∑
j=1

p∑
�=p0+1

λ̂j + λ̂�

λ̂j − λ̂�

−
p∗
0∑

j=1

p∑
�=p∗

0+1

λ̂j + λ̂�

λ̂j − λ̂�

=

p0∑
j=p∗

0+1

p∑
�=j+1

λ̂j + λ̂�

λ̂j − λ̂�

≥ 0 if p0>p∗0;

q0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�
−

q∗0∑
j=1

q∑
�=q0+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�
=

q0∑
j=q∗0+1

q∑
�=j+1

ξ̂j + ξ̂�

ξ̂j − ξ̂�
≥ 0 if q0>q∗0.

On the other hand, if p0 < p∗0 (respectively, q0 < q∗0), (λ̂j + λ̂�)/(λ̂j − λ̂�)

(respectively, (ξ̂j + ξ̂�)/(ξ̂j − ξ̂�)) is positive and bounded away from 0 for
j ≤ p0 and � > p0 (respectively, j ≤ q0 and � > q0). Thus, we obtain from
(2.13) that

S(n)u (p0, q0;σ
2)− S(n)u (p∗0, q

∗
0;σ

2)≥σ2(p0q0− (p∗0 ∧ p0)(q
∗
0 ∧ q0))+OP (n

−1/2),
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with equality only when p0 ≥ p∗0 and q0 ≥ q∗0, from which it follows that as
n → ∞,

S(n)u (p0, q0;σ
2)− S(n)u (p∗0, q

∗
0;σ

2)

{
= 0 if p0 = p∗0 and q0 = q∗0
> oP (1) otherwise.

.

(2.14)

In (2.14), “sn > oP (1)” means that given ε > 0 and δ > 0, there exists nε,δ

such that P(sn > ε) ≥ 1− δ for n ≥ nε,δ, which completes the proof.

Since (p∗0, q
∗
0) and PBq∗

0
⊗Ap∗

0
can be consistently estimated in the first

stage of 2SDR, we can apply the consistency of r̂GIC established by Hung et
al. [19] for PCA models to obtain the following.

Corollary. Assume that the HMPCA model holds and c > σ2. Suppose that
r∗ ≤ ru. Then P(r̂GIC = r∗) → 1 as n → ∞.

2.2. Simulation study of performance

Table 1(a) (respectively, Table 1(b)) summarizes the results, each of which
is based on 100 simulation replications, of a simulation study of the per-
formance of 2SDR in the PCA model (respectively, the HMPCA model).

Table 1: MSE, with standard deviation in parentheses, of PCA, MPCA and
2SDR

(a) Data generated from PCA model (2.15).

PCA MPCA 2SDR PCA MPCA 2SDR
�����c

n
1000 100

4
0.1831 1.9851 1.8070 1.2297 2.0951 1.9694
(0.0011) (0.0172) (0.0172) (0.0089) (0.0562) (0.0562)

20
1.1695 3.1956 2.2868 6.8777 3.8893 3.1972
(0.0078) (0.0199) (0.0188) (0.0461) (0.0585) (0.0576)

(b) Data generated from HMPCA model (2.16).

PCA MPCA 2SDR PCA MPCA 2SDR
�����σ2

n
1000 100

1.1
0.0174 0.0578 0.0089 0.1105 0.0705 0.0255
(0.0001) (0.0003) (0.0001) (0.0011) (0.0010) (0.0001)

5.6
0.0937 0.2947 0.0457 0.6150 0.3662 0.1363
(0.0008) (0.0016) (0.0005) (0.0073) (0.0057) (0.0031)
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Note that if the actual ranks p∗0, q
∗
0 and r∗ are all known, 2SDR has com-

putational complexity of the order O(p2p∗0 + q2q∗0) +O((p∗0q
∗
0)

2r∗), in which
the first summand is that of MPCA, in contrast to O(p2q2r) for PCA that
vectorizes the image without going through MPCA first. Table 1(a) assumes
that the data are generated from the PCA model (1.1) with y = vec(X) and
pq × r∗ random matrix Γ with orthonormal columns,

(2.15) p = q = 40, r∗ = 25;μ = 0, c−1ε ∼ N(0, Ipq), ν ∼ N(0,Δ),

where Δ = diag(δ1, δ2, · · · , δr∗) with δi = 10(26 − i), and the value of c is
listed in Table 1(a) alongside the sample size n used to fit the model. Note
that this choice of relatively small p, q and r∗ makes fitting the PCA model
computationally feasible. We apply the SURE criterion for fitting MPCA
model which is incompatible with the data generating mechanism (2.15),
and we get p̂0 = q̂0 = 1 in all 100 simulations. Although the SURE crite-
rion fails to choose a reasonable rank, we still carry out MPCA and 2SDR
by assuming that nominal values of p0 = q0 = 10 in running 100 simula-
tions of the (wrong) working model and the actual values r∗ = 25. However,
although 2SDR starts with the wrong working model when the data are
generated from the PCA model (1.1), what really matters is the perfor-
mance of image reconstruction, and fitting working models to a sample of
size n and dimension reduction are means to that end. A commonly used
performance measure in image reconstruction is the Mean Squared Error
(MSE)=

∑n
i=1 ‖vec(X̂i) − vec(true image)‖2/(pqn), where X̂i is the recon-

structed image. Table 1(a) gives the simulation results of MSE for 2SDR, in
comparison with fitting the PCA model that generates the data and with
fitting the wrong MPCA model. The four settings in Table 1(a) cover two
sample sizes (n = 1000, 100) and two signal-to-noise ratios (SNR = 0.5, 0.1,
corresponding to c = 4, 20) defined by E(||Γν||2)/(pqc). It shows that 2SDR
has MSE comparable to PCA for n = 100 and has about 1/2 of the MSE of
PCA for (n, c) = (100, 20). Table 1(b) assumes that the data are generated
from the HMPCA model with

p = q = 50, p∗0 = q∗0 = 8, σ−1vec(E) ∼ N(0, Ipq) for its MPCA component,

(2.16)

r∗ = 8, c−1ε ∼ N(0, Ip∗
0q

∗
0
) and c = 1.001σ2 for subsequent PCA component,

in which κi = 40(9 − i), with 1 ≤ i ≤ r∗, A (respectively, B) is a p ×
p∗0 (respectively, q × q∗0) matrix with orthonormal columns, which are the
eigenvectors of the ordered eigenvalues of (X−M)PB(X−M)� (respectively,
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Table 2: Accuracy rates of r̂GIC, AIC and BIC

SNR = 0.5 SNR = 0.1
AIC BIC r̂GIC AIC BIC r̂GIC

Gaussian 0.96 1.00 1.00 0.98 1.00 1.00
T5 0.00 0.85 0.97 0.00 0.82 0.93

(X −M)PA(X −M)�); see the second paragraph of Section 1.3. The four
settings in Table 1(b) cover two sample sizes (n = 1000, 100) and two signal-
to-noise ratios (SNR = 0.5 corresponding to σ2 = 1.1, 0.1 corresponding to
σ2 = 5.6); here SNR ={

∑r∗

i=1(κi−c)}/(pqσ2+p∗0q
∗
0c). Table 1(b) shows that

2SDR outperforms both MPCA and PCA in all settings, particularly for
relatively small sample size n = 100 or low SNR ratio = 0.1.

We next conduct a simulation study of the accuracy ratio of p̂0, q̂0 using
the SURE criterion under the HMPCA model for n = 1000 and σ2 = 1.1, 5.6,
not only for the Gaussian model for σ−1vec(E) and c−1ε but also for the
non-Gaussian case σ−1vec(E) ∼ T5 and c−1ε ∼ T5, where T5 is the pq-
dimensional (or p∗0q

∗
0-dimensional, for c−1ε) t-distribution with 5 degree of

freedom. All of the 100 simulations give (p̂0, q̂0) = (p∗0, q
∗
0). We then consider

the accuracy rate P(r̂GIC = r∗) in the PCA stage of 2SDR and compare it
with AIC and BIC that assume p∗0, q

∗
0 to be known. The results are given in

Table 2 and show that r̂GIC has marked improvement over AIC and BIC in
the non-Gaussian case of T5.

3. Cryo-EM applications

In this section we apply 2SDR to the analysis of cryo-EM benchmark data-
sets in Sections 3.2 and 3.3 dealing with 70S ribosome and 80S ribosome.
A ribosome is made from complexes of RNAs (ribonucleic acids) that are
present in all living cells to perform protein synthesis by linking amino acids
together in the order specified by the codons of mRNA (messenger RNA)
molecules to form polypeptide chains. A 70S ribosome comprises of a large
50S subunit and small 30S subunit; the “S” stands for Svedberg, a unit
of time equal to 10−13 seconds, measuring how fast molecules move in a
centrifuge. Eukaryotic ribosomes are also known as 80S ribosomes and have
a large 60S subunit and small 40S subunit.

In a cell or a virus, biological processes are carried out by numerous
nano-machines made of protein complexes. When the structures of these
protein machines are visualized, they go through a series of functionally rel-
evant conformations along the time trajectory. Because the protein sample
for a cryo-EM experiment is under an almost physiological environment, it
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usually collects various conformations of the protein structure. However, a
homogeneous conformation dataset is a basic requirement to push high res-
olution of the 3D density map. Thus, 3D clustering which aims to separate
the data into subsets of homogeneous conformation has become an effective
approach in cryo-EM data analysis [21, 28, 31]. In the past decade, the linear
subspace model that represents the protein motion using the eigenvolumes
from the covariance matrix of 3D structures is an active research area. This
technique not only can analyze discrete heterogeneity [21, 28], but can also
obtain energy landscape associated with the 3D structures [3, 16, 17]. In all
these approaches, PCA plays an important role to estimate the top eigenvol-
umes. However, volume vectorization may produce enormous dimensionality
and the traditional solution by voxel binning usually results in blurring of
the variations among groups and degrading the clustering performance [3].
Section 3.1 uses a heterogeneous dataset of 2D cryo-EM images to analyze
the 3D variability of the reconstructed images.

3.1. 3D variability analysis using a heterogeneous dataset of 2D
images

We follow [28] to generate a dataset containing 9,453 2D particle images
projected from five 70S ribosome conformations with minor differences due
to combinations of the absence or presence of tRNA (transfer RNA) and
EF-G (elongation factor G). Next, we resampled these particle images to
generate 11,000 3D volumes (density maps) on 75 × 75 × 75 voxels. We
then solve the eigenvolumes using PCA or 2SDR,4 and compare the per-
formance of these two methods using the factorial coordinates defined in
[28].

As shown in Figure 2, more broken portions appear in the eigenvolumes
solved by PCA, which suggests that the eigenvolumes solved by 2SDR is
more reliable. This is confirmed by the t-SNE plots and k-means with 5
classes on their factorial coordinates. Since each particle image corresponds
to a projection of one of the five conformations, we expect to see five clus-
ters among the factorial coordinates of all the particle images. The t-SNE
plot can separate 5 groups better for 2SDR approach than that for PCA as
shown in Figure 2. The clustering performance is also quantitatively eval-
uated through impurity and c-impurity [25] defined as follows. Let {ci} be
sets of true class labels, {wj} be sets of predicted cluster labels, and |.| be

4To perform 2SDR, the rank of each mode for the first stage is set to 80% of
explain variance ratio; the rank for the second stage is 8 suggested by the elbow
method of the scree plot.
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the cardinality of the set. The impurity and c-impurity are defied as

impurity = 1− n−1
∑
j

max
i

|ci ∩ wj |

c-impurity = 1− n−1
∑
i

max
j

|ci ∩ wj |

The impurity is 0 if each predicted cluster contains only members of a single
class. The c-impurity is 0 if all members of a given class label are assigned
to the same predicted cluster. In summary, small values of the impurity and
c-impurity indicate better performance of the clustering results. The impu-
rity and c-impurity numbers are 0.01 for 2SDR whereas those for PCA are
0.1995 and 0.2413, respectively, showing the superiority of 2SDR in dimen-
sion reduction for 3D density maps.

3.2. Performance measure and applications to 70S ribosome data

Here, we apply our algorithm and the rank selection procedure on the syn-
thetic cryo-EM data in this subsection where the dataset is prepared as fol-
lows. We first downloaded the Relion [30] classification benchmark dataset,
E. coli 70S ribosome, which contains 10000 particle images with box size
130 × 130. The first 5000 and the second 5000 images of this dataset rep-
resent different structure conformations. Second, we apply CryoSparc [29]
to generate the 3D density map from the first 5000 images referred to the
ribosome bound with an elongation factor (EF-G). Then, a total of 50 dis-
tinct 2D images with 130× 130 pixels were generated by projecting the 3D
density map in equally spaced (angle-wise) orientations. Third, 5000 images
were generated from these 50 projections.5 Each image was then convoluted
with the electron microscopy contrast transfer function randomly sampled
from a set of 50 CTF values.6 Finally, i.i.d. Gaussian noise N

(
0, σ2Ipq

)
with

different σ2 is added to generate 3 datasets such that the SNR is equal to
0.09, 0.06 and 0.03, respectively.

Quantitative comparison on five dimension reduction or denoising meth-
ods including PCA, MPCA, 2SDR, Wavelet [8] and BM3D [12] are then

5Here, to reflect the fact that real data is often collected with preferred orien-
tations, 10 projections are repeated with 400 copies and the other projections are
repeated with 25 copies.

6Here, the defocus is randomly sampled from 2.1um to 3.5um and the astigma-
tism angle is from 0.2 to 1.4 radian. The electron beam accelerating voltage was
set to be 300KeV with spherical aberration Cs = 2mm, amplitude contrast = 0.07
and pixel size is 2.82Å.

https://www.ebi.ac.uk/pdbe/emdb/test_data.html
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Figure 2: 3D variability analysis. (a) The average volume. (b) The Scree plot
that shows leading 20 eigenvalues. (c), (d) The scatter plot of t-SNE embed-
ding of 8 factorial coordinates computed by PCA and 2SDR approaches and
the color labels are according to the class assignments by k-means. (e) The
first and second eigenvolume solved by performing PCA on 11,000 resampled
volumes. (f) Same as (e) but with 2SDR.
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Figure 3: (a) MSE and (b) PSNR of synthetic E. coli 70S ribosome dataset
using PCA, MPCA, 2SDR, Wavelet and BM3D. Three simulations un-
der different settings are tested: Label 1 for SNR = 0.09; Label 2 for
SNR = 0.06; Label 3 for SNR = 0.03. The details results of each setting
are in the Table 3.

conducted on the synthetic dataset. MSE and Peak Signal to Noise Ra-

tio (PSNR) are computed based on 100 replica simulation with three SNR

levels, where PSNR is defined as

(3.1) PSNR(Xi, X̂i) = 10× log10
Range(Xi)

2

MSE
,

where Range(Xi) is the value range according to the datatype of Xi.
7 MSE

and PSNR in Figure 3 show that 2SDR outperforms all the other methods.

The images reconstructed by these methods are presented in Figure 4, where

the SNR is decreased from left-hand side to right-hand side. When SNR is

0.09, all methods can reconstruct the particles well. As the noise increases,

Figure 4 shows that the particles reconstructed by 2SDR and PCA match

the original images much better than those by MPCA, Wavelet and BM3D.

When SNR drops to 0.03, 2SDR performs better than PCA in regarding to

the contrast and background noise reduction. We further apply t-SNE on

the scores solved by PCA, MPCA and 2SDR at SNR = 0.03 in Figure 5 and

observe that MPCA and 2SDR can perfectly separate the 50 clusters of the

synthetic dataset while PCA tends to have small groups aggregate together.

7For instance, if the data type of image is unit8 then it is 255.
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Table 3: MSE and PSNR comparison for various dimension reduction meth-
ods on synthetic E. coli 70S ribosome dataset

Method PCA MPCA 2SDR Wavelet BM3D
Parameters Setting 1 : SNR = 0.09
MSE (10−3) 1.1435 1.2040 0.7268 1.1825 1.2669

Std of MSE (10−5) 0.4056 0.0985 0.0490 0.0748 0.0501
PSNR 29.4176 29.1939 31.3860 29.2718 28.9727

Std of PSNR (10−1) 0.1540 0.0356 0.0295 0.0274 0.0173
Setting 2 : SNR = 0.06

MSE (10−3) 1.7109 1.5484 0.9402 1.3703 1.6493
Std of MSE (10−5) 0.5474 0.1323 0.0742 0.1034 0.1609

PSNR 27.6679 28.1010 30.2676 28.6319 27.8270
Std of PSNR (10−1) 0.1390 0.0371 0.0344 0.0328 0.0424

Setting 3 : SNR = 0.03
MSE (10−3) 2.6263 2.3199 1.6331 1.7182 2.5267

Std of MSE(10−5) 0.5925 0.2107 0.1315 0.1616 0.2536
PSNR 25.8066 26.3453 27.8698 27.6493 25.9744

Std of PSNR (10−1) 0.0980 0.0395 0.0349 0.0409 0.0436

Overall speaking, 2SDR performs the best and can prepare the data best
for clustering.

After the encouraging results obtained from the synthetic dataset, we
proceed to test 2SDR on experiment dataset. The first 5000 particle images
from the 70S ribosome dataset are used for demonstration, where Sparx [18]
package for alignment. To implement the rank selection procedure intro-
duced in Section 2.1, we choose (pu, qu) as the 35% of total variance on both
column and row spaces. We present the reconstructed images of 9 randomly
selected particles by PCA, MPCA, 2SDR, Wavelet and BM3D in Figure 6.
MPCA, Wavelet and BM3D do not perform well in presenting the particle
shapes on this real dataset.

We apply t-SNE on the scores solved by PCA, MPCA and 2SDR.8 Figure
7 shows that PCA and 2SDR can better separate the groups representing
different orientated projections. The γ-SUP is further applied on the scores
to evaluate the performance. Since γ-SUP is insensitive to the parameter s,
we set it to a small value s = 0.025 as suggested in the original paper [9].
The scale parameter τ is selected using phase transition plot as follows. We

8Here, the images are aligned using multireference alignment [18] for better vi-
sualization.
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Figure 4: Reconstruction of synthetic 70S ribosome images by 5 dimension
reduction methods. The first row shows the 9 original clean synthetic images.
The second row shows the noisy images corresponding to different SNR
levels; the first 3 columns from the left correspond to SNR = 0.09, the middle
3 columns correspond to SNR = 0.06 and the last 3 columns correspond to
SNR = 0.03. The third row is the result by applying PCA to the second row
with r̂GIC = 53 (first 3 images from the left), r̂GIC = 48 (middle 3 images)
and r̂GIC = 33 (last 3 images). The fourth row is the result by applying
MPCA with (p̂0, q̂0) = (15, 15) for the first 3 images from the left, (14, 14)
for the middle 3 images, and (11, 11) for the last 3 images. The fifth row is
the result by applying 2SDR, with the same choice of (p̂0, q̂0) as in MPCA
followed by that of r̂GIC = 53, 48, 33. The sixth (respectively, seventh) row
gives the result by applying Wavelet (respectively, BM3D).

first normalize the scores and set an upper bound τ such that γ-SUP groups

all points into one cluster. Second, we recursively divide the τ by 2 until

each points forms one cluster and record it as the lower bound. Finally, we

perform the grid search between the upper and lower bound and select the

τ that maximizes the cluster number with the condition that each cluster
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Figure 5: t-SNE embedding of (a) PCA, (b) MPCA and (c) 2SDR at SNR
= 0.03 on synthetic E. coli 70S ribosome dataset.

Figure 6: Reconstruction of experiment E. coli 70S ribosome particle images
by 5 dimension reduction methods. The first row shows the 9 original par-
ticle images. The second row is by PCA with r̂GIC = 60 components. The
third row is by MPCA with (p̂0, q̂0) = (25, 25), which contributes 625 basis
components. The fourth row is by 2SDR: (p̂0, q̂0) = (25, 25) for MPCA fol-
lowed by choosing r̂GIC = 60 for PCA. The fifth row is by Wavelet denoising
and the sixth row is by BM3D.
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Figure 7: (a), (b), (c) from left to right, contains three t-SNE plots of the
scores generated by PCA, MPCA and 2SDR; (d), (e), (f) presents the class
averages output by the clustering algorithm γ-SUP of PCA, MPCA and
2SDR; (g), (h), (i) shows the transition plot of γ-SUP on the experiment
E. coli 70S ribosome dataset. In (g), (h), (i), the left scale bar corresponds
to circle marker, which is the number of clusters, and the right scale bar
corresponds to triangle marker, which is the number of clusters with cluster
size larger than 10.

is larger than a prescribed size. γ-SUP shows that 2SDR can produce the

largest number of good classes and the class averages from PCA and 2SDR

show more structural details in Figure 7.

3.3. Relion 80S ribosome benchmark dataset

To further demonstrate the computational advantage of 2SDR on large

dataset, we test 80S ribosome that comes from Relion Benchmark example.

This dataset contains 105,247 particle images with pixel size 360 by 360

that many current PCA implementations fail to solve the complete set of

eigenvectors due to the limitation of the underlying numerical linear alge-

https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10028/ 


310 Szu-Chi Chung et al.

Figure 8: Reconstruction of 9 randomly selected 80S ribosome particle im-
ages: first row shows the original images, second row the MPCA recon-
struction with (p̂0, q̂0) = (26, 26), third row the 2SDR reconstruction with
(p̂0, q̂0) = (26, 26) and r̂GIC = 152, fourth row the Wavelet reconstruction,
and fifth row the BM3D reconstruction.

bra package LAPACK [4].9 In contrast, we can perform 2SDR in the server
since the computational complexity has been reduced by several orders of
magnitude. Figure 8 shows nine randomly selected images and their recon-
structions by MPCA, 2SDR, Wavelet and BM3D; 2SDR clearly performs
much better than the other methods.

4. Discussion

PCA was introduced in the early development of single particle cryo-EM
analysis to reduce the dimension of the 2D projection images to facilitate 2D
image clustering [14, 38]. Recently Amit Singer and his coauthors [7, 43, 44]
introduced a method called “steerable PCA” to deal with the random orien-
tation nature of 2D projection images by including all possible rotated 2D
projections into the data covariance matrix to yield promising outcomes on
particle denoising. PCA has more general applications in cryo-EM analysis

9We used a server equipped with two Intel Xeon CPU E5-2699 v4 at 2.20GHz
and 512GB memory to execute PCA for this dataset.
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[1, 39] such as analyzing discrete heterogeneity [21, 28] and obtaining en-

ergy landscape associations with 3D structures [3, 16, 17]. A disadvantage

of applying PCA to these tensor structure data lies in its computational

bottleneck.

Many current statistical algorithms are designed for vector data. To

handle matrix data or high-order tensor data, a naive approach is to accom-

modate the input format requirement by data vectorization, which can have

prohibitive computational cost. We have shown that 2SDR can overcome

this computational difficulty and yet have superior performance over PCA.

In addition, HMPCA can be readily extended to a mixture model of the

form

X | z = M +A(Uz)B
� + E

vec(Uz) = μz +Gν + ε, z ∈ {1, . . . ,K},

where we introduce a random variable z for cluster label and μz is the mean

of vec(Uz), P (z = k) = πk, k ∈ {1, ...,K} and
∑K

k=1 πk = 1. We have

recently applied this extension to cryo-EM image analysis and found excel-

lent performance, and the promising results have led to further development

of this idea as our ongoing project. Moreover, 2SDR is not limited to the

2D cryo-EM image analysis. We have also demonstrated 2SDR provides a

promising alternative to PCA with better performance and less computa-

tional overhead in the 3D heterogeneous volume analysis. In conclusion,

2SDR is a powerful innovation that can provide an alternative to PCA for

dimension reduction in the analysis of noisy high-dimensional data.
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