Perturbation analysis of rational Riccati equations

Peter Chang-Yi Weng

In this paper, we consider the perturbation analyses of the con-tinuous-time rational Riccati equations using the normwise, mixed and componentwise analyses, which arises from the stochastic H_{∞} problems and the indefinite stochastic linear quadratic control problems. We derive sufficient conditions for the existence of stabilizing solutions of the perturbed rational Riccati equations. Moreover, we obtain the perturbation bounds for the relative errors with respect to the stabilizing solutions of the rational Riccati equations under three kinds of perturbation analyses. Numerical results are presented to illustrate sharper perturbation bounds under the normwise, mixed and componentwise perturbation analyses.

AMS 2000 SUbJECT CLASSIFICATIONS: 15A24, 47H10, 65F35, 93C05, 93E20.
KEYWORDS AND Phrases: Rational Riccati equation, perturbation bound, mixed condition number, componentwise perturbation analysis, stochastic optimal control.

1. Introduction

Consider the continuous-time rational Riccati equation (CRRE):

$$
\mathcal{R}(X) \equiv A^{*} X+X A+Q+\Pi_{1}(X)-\left[L+X B+\Pi_{12}(X)\right]\left[R+\Pi_{2}(X)\right]^{\dagger}
$$

$$
\begin{equation*}
\left[L+X B+\Pi_{12}(X)\right]^{*}=0 \tag{1}
\end{equation*}
$$

with
(2) $\Pi_{1}(X) \equiv \sum_{i=1}^{N} A_{0}^{i *} X A_{0}^{i}, \Pi_{2}(X) \equiv \sum_{i=1}^{N} B_{0}^{i *} X B_{0}^{i}, \Pi_{12}(X) \equiv \sum_{i=1}^{N} A_{0}^{i *} X B_{0}^{i}$,
where $A, Q, A_{0}^{i} \in \mathbb{K}^{n \times n}, B, L, B_{0}^{i} \in \mathbb{K}^{n \times m}$ and $R \in \mathbb{K}^{m \times m}$, for $i=1,2, \ldots, N$. It arises in the linear time-invariant (LTI) systems such as stochastic H_{∞} problem [21] and indefinite stochastic linear quadratic control problem [30]. The linear operator

$$
\Pi(X) \equiv\left[\begin{array}{cc}
\Pi_{1}(X) & \Pi_{12}(X) \\
\Pi_{12}(X)^{*} & \Pi_{2}(X)
\end{array}\right]
$$

is said to be positive if $\Pi(X) \geq 0$, for $X \geq 0$ and $\Pi_{1}(X), \Pi_{2}(X) \geq 0$. The solution to the CRRE (1) $X \in \mathbb{K}^{n \times n}$, which is required to be maximal and stable, is difficult to solve. Only a few methods work, including Newton's method (NM) [10, 11], modified Newton's method (MNM) [19, 23] and homotopy method (HM) [33]. In this paper, we choose to apply an efficient method called the generalized Smith method (GSM) [14]. Let

$$
\begin{align*}
\mathcal{L}_{A}(X) & \equiv A^{*} X+X A, \quad F_{X}(X) \equiv F(X)^{\dagger} E(X)^{*} \tag{3}\\
E(X) & \equiv L+X B+\Pi_{12}(X), F(X) \equiv R+\Pi_{2}(X)
\end{align*}
$$

we apply NM to the CRRE (1) and get

$$
\begin{equation*}
\mathcal{L}_{A-B F_{X_{k}}\left(X_{k}\right)}\left(X_{k+1}\right)+\Pi_{X_{k}}\left(X_{k+1}\right)+T_{X_{k}}=0 \tag{4}
\end{equation*}
$$

which is linear in X_{k+1}, with

$$
\begin{align*}
\Pi_{Y}(Z) & \equiv\left[\begin{array}{c}
I \\
-F_{Y}(Y)
\end{array}\right]^{*} \Pi(Z)\left[\begin{array}{c}
I \\
-F_{Y}(Y)
\end{array}\right] \tag{5}\\
T_{Y} & \equiv\left[\begin{array}{c}
I \\
-F_{Y}(Y)
\end{array}\right]^{*} T\left[\begin{array}{c}
I \\
-F_{Y}(Y)
\end{array}\right] \\
T & \equiv\left[\begin{array}{cc}
Q & L \\
L^{*} & R
\end{array}\right] \geq 0 \tag{6}
\end{align*}
$$

For the generalized inverse in (1) and (3), we need the null space requirement:

$$
\operatorname{ker}[F(X)] \subseteq \operatorname{ker}[E(X)], F(X) \geq 0
$$

This came from the elimination of Lagrange multipliers from the optimal conditions, guaranteeing the solvability of the associated linear equation despite of the singularity of the corresponding matrix operator $F(X)$.

The stabilizing solution plays an important role in some applications of control theory and we introduce the stability definitions. We first represent $\sigma(T) \subset \mathbb{C}$ for the spectrum of a linear operator T and $\rho(T)=\max \{|\lambda| \mid \lambda \in$ $\sigma(T)\}$ for the spectral radius. An $n \times n$ matrix M is said to be c-stable if all of its eigenvalues lie in the open left-half complex plane s.t. $\sigma(M) \subset \mathbb{C}_{-}$, and M is said to be d-stable if its spectral radius satisfies $\rho(M)<1$.

CRREs (1) can be degenerated into continuous-time algebraic Riccati equations called CAREs

$$
A^{\top} X+X A-X G X+H=0
$$

with $G=B R^{-1} B^{\top}$ and $H=C T^{-1} C^{\top}$, where $A, X \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}$, $C \in \mathbb{R}^{n \times p}, R \in \mathbb{R}^{m \times m}$ and $T \in \mathbb{R}^{p \times p}$, which arise in linear-quadratic optimal control problems [26, 29]. In the past 40 years, many efficient methods such as disk function method [1], matrix sign function method [4], structurepreserving doubling algorithm (SDA) [8, 9], NM [20], Schur method [27], and many others were developed.

The condition number, which is a measure of the sensitivity, is important in the numerical computation. Moreover, perturbation analysis is to study the sensitivity of solutions to the small perturbation in the input data, and the perturbation bounds are usually discussed. There were a number of references about perturbation analyses and perturbation bounds in $[3,5,13,16,24,25,31,32,34]$, but only relatively few references discussed those of the CAREs with stochastic disturbances. Chiang et al. [6, 7] discussed the residual bound of the continuous-time stochastic algebraic Riccati equation (SARE) with one-dimensional Wiener process of white noise in the stochastic disturbance, including the normwise local and non-local residual bounds, derived from the appropriate solution of the SARE by NM. Furthermore, they derived the relative error and the condition number of SARE and provided a tight perturbation bound of the stabilizing solution to SARE. This paper, as an important extension of the previous research [7], derives new perturbation bounds for the relative errors with respect to the stabilizing solutions of CRREs with multi-dimensional disturbances, respectively. The CRREs are more complex than SARE, but the derivations of new perturbation bounds under normwise, mixed and componentwise perturbation analyses are simple. Moreover, we apply an efficient method called GSM to solve the perturbed CRREs and get the unique and stabilizing solutions.

The rest of this paper is organized as follows. We discuss the solvable results of CRREs (1) in Section 2. In Section 3, the perturbation equation of CRREs (1) is derived. We provide some sufficient conditions to present the existence of the solution of the perturbed equation (10) in the Supplementary Material S1, then recall some lemmas of stability analysis of the linear operator to discuss the uniqueness of the stabilizing solution shown in the Supplementary Material S2. Then, we compute the relative errors with respect to the unique and stabilizing solution of CRREs (1). By dropping the second and high-order terms in the perturbed CRREs (10), we derive new perturbation bounds under normwise, mixed and componentwise perturbation analyses, originated from Gohberg and Koltracht (1993). The algorithm about perturbation analyses of CRREs is provided and we select one representative numerical example to illustrate the sharpness of new perturbation bounds, corresponding to the relative errors of the sta-
bilizing solutions of CRREs (1) in Section 4. Section 5 concludes the paper. Finally, we provide some proofs of several theorems in the Supplementary Material (http://intlpress.com/site/pub/files/_supp/amsa/2020/0005/ 0002/AMSA-2020-0005-0002-s001.pdf).

2. Solvable conditions

Before we discuss the perturbation analysis of CRREs, we introduce the concept of c-stability and some solvability results for stochastic control systems in continuous-time. This leads to the unique and stable solution of CRREs.

First we quote the theorem on c-stability.
Theorem 2.1. Let $A \in \mathbb{R}^{n \times n}$, and consider linear operators $\mathcal{L}_{A}, \Pi: \mathbb{R}^{n \times n} \rightarrow$ $\mathbb{R}^{n \times n}$, where \mathcal{L}_{A} is defined by $\mathcal{L}_{A}(X)=A^{*} X+X A$ and Π is nonnegative defined in (5). The following are equivalent:
(a) For all $Y>0, \exists X>0$ such that $\mathcal{L}_{A}(X)+\Pi=-Y$;
(b) $\exists Y, X>0$ such that $\mathcal{L}_{A}(X)+\Pi=-Y$;
(c) $\exists Y \geq 0$ with (A, Y) observable, $\exists X>0$ such that $\mathcal{L}_{A}+\Pi=-Y$;
(d) $\sigma\left(\mathcal{L}_{A}+\Pi\right) \subset \mathbb{C}_{-}$;
(e) $\sigma\left(\mathcal{L}_{A}\right) \subset \mathbb{C}_{-}$and $\rho\left(\mathcal{L}_{A}^{-1} \Pi\right)<1$.

If any of these conditions is fulfilled then A is called c-stable relative to Π.

Then we present some definitions associated with c-stability.
Definition 2.2 (c-Stabilizability). A matrix pair $(A, B)\left(A \in \mathbb{R}^{n \times n}\right.$ and $\left.B \in \mathbb{R}^{n \times m}\right)$ is said to be c-stabilizable relative to Π if there is a matrix $\hat{F} \in \mathbb{R}^{m \times n}$ such that $A-B \hat{F}$ is c-stable relative to

$$
\hat{\Pi} \equiv\left[\begin{array}{c}
I \tag{7}\\
-\hat{F}
\end{array}\right]^{*} \Pi\left[\begin{array}{c}
I \\
-\hat{F}
\end{array}\right] .
$$

Definition 2.3 (Stabilizing Solution). If X is a solution of $\mathcal{R}(X)=0$ and if $\hat{F}=\hat{F}(X)$ denotes the corresponding feedback matrix then X is called stabilizing, if $A-B \hat{F}$ is c-stable relative to $\hat{\Pi}$ as defined in (7).
Definition 2.4 (c-Detectability). A pair (C, A) of matrices $A \in \mathbb{R}^{n \times n}$ and $C \in \mathbb{R}^{l \times n}$ is said to be c-detectable relative to Π if there is a matrix $K \in \mathbb{R}^{n \times l}$ such that $A-K C$ is c-stable relative to Π.

Next we quote some solvability results for CRREs in our notations. The importance of these results is to establish conditions under which a semidefinite or stabilizing solution is the unique maximal stabilizing solution we
seek. This also makes the selection of the initial X_{0} easier for the NM, as any stabilizing solution X_{0} will do.

Theorem 2.5 ($[15$, Theorem 5.2]). Assume that (A, B) is c-stabilizable relative to Π and that there exists a matrix $\hat{X} \in D(\mathcal{R})$, the domain of \mathcal{R} (in which the null space requirement is satisfied), with $\operatorname{ker}\left[R+\Pi_{2}(\hat{X})\right] \subseteq \operatorname{ker}(B)$ for which $\mathcal{R}(\hat{X}) \geq 0$. Then there exists a solution $X_{+} \in D(\mathcal{R})$ of $\mathcal{R}(X)=0$ such that $X_{+} \geq X$ for every solution of $\mathcal{R}(X) \geq 0$ with $\operatorname{ker}\left[R+\Pi_{2}(X)\right] \subseteq$ $\operatorname{ker}(B)$. Moreover, all the eigenvalues of

$$
\begin{equation*}
A_{+} \equiv A-B\left[R+\Pi_{2}\left(X_{+}\right)\right]^{\dagger}\left[L+X_{+} B+\Pi_{12}\left(X_{+}\right)\right]^{*} \tag{8}
\end{equation*}
$$

lie in the closed left half-plane.
Corollary 2.6 ([15, Corollary 5.3]). Assume that $\operatorname{ker}(R) \subseteq \operatorname{ker}(B),(A, B)$ is c-stabilizable relative to Π and $T \geq 0$ (c.f. (6)). Then $\mathcal{R}(X)=0$ has a solution $X_{+} \geq 0$, and all the eigenvalues of the matrix A_{+}in (8) lie in the closed left half-plane.

Corollary 2.7 ([15, Corollary 5.4]). Assume that (A, B) is c-stabilizable relative to Π and that there exists a matrix $\hat{X} \in D(\mathcal{R})$ with $\operatorname{ker}\left[R+\Pi_{2}(\hat{X})\right] \subseteq$ $\operatorname{ker}(B)$ for which $\mathcal{R}(\hat{X})>0$. Then there exists a solution $X_{+} \in D(\mathcal{R})$ of $\mathcal{R}(X)=0$ such that $X_{+}>X$ for every solution $\mathcal{R}(X)>0$ with $\operatorname{ker}[R+$ $\left.\Pi_{2}(X)\right] \subseteq \operatorname{ker}(B)$. Moreover, all the eigenvalues of A_{+}in (8) lie in the open left half-plane.

Lemma 2.8 ([15, Lemma 5.5]). If $\mathcal{R}(X)=0$ has a stabilizing solution X_{s}, then $X_{s} \geq X$ for every solution X of $\mathcal{R}(X) \geq 0$. In particular, X_{s} is the (unique) maximal solution of $\mathcal{R}(X)=0$.

Lemma 2.9 ([15, Lemma 5.6]). Assume that $R>0, T \geq 0$ and that ($Q-$ $\left.L R^{\dagger} L^{*}, A-B R^{\dagger} L^{*}\right)$ is c-detectable relative to

$$
\check{\Pi} \equiv\left[\begin{array}{c}
I \tag{9}\\
-R^{\dagger} L^{*}
\end{array}\right]^{*} \Pi\left[\begin{array}{c}
I \\
-R^{\dagger} L^{*}
\end{array}\right]
$$

Then every positive semidefinite solution of $\mathcal{R}(X)=0$ is stabilizing.
Corollary 2.10 ([15, Lemma 5.8]). Assume that $R \geq 0$, $\operatorname{ker}(R) \subseteq \operatorname{ker}(L)$, $Q>L R^{\dagger} L^{*}$. If $X \geq 0$ is a solution of $\mathcal{R}(X)=0$, then X is stabilizing and positive definite.

Theorem 2.11 ([15, Theorem 5.9]). Assume that $R>0, T \geq 0,(A, B)$ is c stabilizable relative to Π and $\left(Q-L R^{\dagger} L^{*}, A-B R^{\dagger} L^{*}\right)$ is c-detectable relative
to $\bar{\Pi}$ (defined in (9)). Then $\mathcal{R}(X)=0$ has a unique positive semidefinite solution X_{+}. Moreover, X_{+}is stabilizing and maximal among all solutions of $\mathcal{R}(X)=0$.

3. Perturbation analysis of CRREs

From (1), we represent the perturbed CRRE as

$$
\begin{equation*}
\tilde{\mathcal{R}}(\tilde{X}) \equiv \tilde{A}^{*} \tilde{X}+\tilde{X} \tilde{A}+\tilde{Q}+\tilde{\Pi}_{1}(\tilde{X})-\tilde{E}(\tilde{X}) \tilde{F}(\tilde{X})^{\dagger} \tilde{E}^{*}(\tilde{X})=0 \tag{10}
\end{equation*}
$$

with

$$
\tilde{E}(\tilde{X})=\tilde{L}+\tilde{X} \tilde{B}+\tilde{\Pi}_{12}(\tilde{X}) \text { and } \tilde{F}(\tilde{X})=\tilde{R}+\tilde{\Pi}_{2}(\tilde{X})
$$

and express the perturbed disturbances $\tilde{\Pi}_{1}(\tilde{X}), \tilde{\Pi}_{2}(\tilde{X}), \tilde{\Pi}_{12}(\tilde{X})$ as

$$
\tilde{\Pi}_{1}(\tilde{X}) \equiv \sum_{i=1}^{N} \tilde{A}_{0}^{i *} \tilde{X} \tilde{A}_{0}^{i}, \tilde{\Pi}_{2}(\tilde{X}) \equiv \sum_{i=1}^{N} \tilde{B}_{0}^{i *} \tilde{X} \tilde{B}_{0}^{i}, \tilde{\Pi}_{12}(\tilde{X}) \equiv \sum_{i=1}^{N} \tilde{A}_{0}^{i *} \tilde{X} \tilde{B}_{0}^{i}
$$

where

$$
\begin{aligned}
\tilde{A} & =A+\Delta A, \tilde{Q}=Q+\Delta Q, \tilde{L}=L+\Delta L, \tilde{B}=B+\Delta B \\
\tilde{R} & =R+\Delta R, \tilde{A}_{0}^{i}=A_{0}^{i}+\Delta A_{0}^{i}, \tilde{B}_{0}^{i}=B_{0}^{i}+\Delta B_{0}^{i}, \tilde{X}=X+\Delta X,
\end{aligned}
$$

for $i=1,2, \ldots, N$ and $\Delta A, \Delta Q, \Delta L, \Delta B, \Delta R, \Delta A_{0}^{i}, \Delta B_{0}^{i}$ are small perturbation matrices. In order to compute the first-order perturbation matrices, we seperate $\tilde{E}(\tilde{X})$ and $\tilde{F}(\tilde{X})$ into

$$
\begin{aligned}
\tilde{E}(\tilde{X}) & =\tilde{E}(X)+E(\Delta X), \tilde{E}(X)=E(X)+\delta E, \\
\tilde{F}(\tilde{X}) & =\tilde{F}(X)+F(\Delta X), \tilde{F}(X)=F(X)+\delta F
\end{aligned}
$$

with

$$
\begin{aligned}
& E(\Delta X)=E_{1}(\Delta X)+E_{2}(\Delta X), \delta E=\delta E_{1}+\delta E_{2} \\
& F(\Delta X)=F_{1}(\Delta X)+F_{2}(\Delta X), \delta F=\delta F_{1}+\delta F_{2}
\end{aligned}
$$

where

$$
E_{1}(\Delta X)=\Delta X B+\sum_{i=1}^{N} A_{0}^{i *} \Delta X B_{0}^{i}, F_{1}(\Delta X)=\sum_{i=1}^{N} B_{0}^{i *} \Delta X B_{0}^{i}
$$

$$
\begin{aligned}
E_{2}(\Delta X) & =\Delta X \Delta B+\sum_{i=1}^{N}\left(A_{0}^{i *} \Delta X \Delta B_{0}^{i}+\Delta A_{0}^{i *} \Delta X B_{0}^{i}+\Delta A_{0}^{i *} \Delta X \Delta B_{0}^{i}\right) \\
F_{2}(\Delta X) & =\sum_{i=1}^{N}\left(B_{0}^{i *} \Delta X \Delta B_{0}^{i}+\Delta B_{0}^{i *} \Delta X B_{0}^{i}+\Delta B_{0}^{i *} \Delta X \Delta B_{0}^{i}\right) \\
\delta E_{1} & =\Delta L+X \Delta B+\sum_{i=1}^{N}\left(A_{0}^{i *} X \Delta B_{0}^{i}+\Delta A_{0}^{i *} X B_{0}^{i}\right) \\
\delta E_{2} & =\sum_{i=1}^{N} \Delta A_{0}^{i *} X \Delta B_{0}^{i} \\
\delta F_{1} & =\Delta R+\sum_{i=1}^{N}\left(B_{0}^{i *} X \Delta B_{0}^{i}+\Delta B_{0}^{i *} X B_{0}^{i}\right), \delta F_{2}=\sum_{i=1}^{N} \Delta B_{0}^{i *} X \Delta B_{0}^{i}
\end{aligned}
$$

$E(\Delta X)$ and $F(\Delta X)$ are linear functions of $\Delta X, \delta E_{1}$ and δF_{1} are firstorder perturbation matrices, δE_{2} and δF_{2} are second-order perturbation matrices. Set $\Phi_{C}=A-B F(X)^{\dagger} E(X)^{*}$ and $\Psi_{C}^{i}=A_{0}^{i}-B_{0}^{i} F(X)^{\dagger} E(X)^{*}$, for $i=1,2, \ldots, N$, then we can obtain $\tilde{\Phi}_{C}=\tilde{A}-\tilde{B} \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*}$ and $\tilde{\Psi}_{C}^{i}=$ $\tilde{A}_{0}^{i}-\tilde{B}_{0}^{i} \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*}$, we obtain the following equation from (1) and (10) (11) $\tilde{\mathcal{R}}(\tilde{X})-\mathcal{R}(X)=\tilde{\Phi}_{C}^{*} \Delta X+\Delta X \tilde{\Phi}_{C}+\sum_{i=1}^{N} \tilde{\Psi}_{C}^{i *} \Delta X \tilde{\Psi}_{C}^{i}-E_{1}-E_{2}-h_{2}(\Delta X)=0$,
using the generalization of the Sherman-Morrison-Woodbury formula (GSMWF) [12]

$$
\left(A+U V^{*}\right)^{\dagger}=A^{\dagger}-A^{\dagger} U\left(I+V^{*} A^{\dagger} U\right)^{-1} V^{*} A^{\dagger}
$$

on

$$
\begin{aligned}
\tilde{F}(\tilde{X})^{\dagger} & =(\tilde{F}(X)+F(\Delta X))^{\dagger}=\tilde{F}(X)^{\dagger}-\tilde{F}(X)^{\dagger} F(\Delta X) F_{1} \tilde{F}(X)^{\dagger} \\
\tilde{F}(X)^{\dagger} & =(F(X)+\delta F)^{\dagger}=F(X)^{\dagger}-F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \\
F_{1} & =\left(I_{m}+\tilde{F}(X)^{\dagger} F(\Delta X)\right)^{-1} \\
& =I_{m}-\tilde{F}(X)^{\dagger}\left(I_{m}+F(\Delta X) \tilde{F}(X)^{\dagger}\right)^{-1} F(\Delta X) \\
F_{2} & =\left(I_{m}+F(X)^{\dagger} \delta F\right)^{-1}=I_{m}-F(X)^{\dagger}\left(I_{m}+\delta F F(X)^{\dagger}\right)^{-1} \delta F
\end{aligned}
$$

with

$$
\begin{aligned}
E_{1} & =-\Delta A^{*} X-X \Delta A-\Delta Q-\sum_{i=1}^{N}\left(A_{0}^{i *} X \Delta A_{0}^{i}+\Delta A_{0}^{i *} X A_{0}^{i}\right) \\
& -E(X) F(X)^{\dagger} \delta F_{1} F(X)^{\dagger} E(X)^{*} \\
& +E(X) F(X)^{\dagger} \delta E_{1}^{*}+\delta E_{1} F(X)^{\dagger} E^{*}(X), \\
E_{2} & =-\sum_{i=1}^{N}\left(\Delta A_{0}^{i *} X \Delta A_{0}^{i}\right)-E(X) F(X)^{\dagger} \delta F_{2} F(X)^{\dagger} E(X)^{*} \\
& +E(X) F(X)^{\dagger} \delta F F(X)^{\dagger} F_{2}^{*} \delta F F(X)^{\dagger} E(X)^{*}+E(X) F(X)^{\dagger} \delta E_{2}^{*} \\
& -E(X) F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*}+\delta E_{2} F(X)^{\dagger} E(X)^{*} \\
& -\delta E F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \tilde{E}(X)^{*}+\delta E F(X)^{\dagger} \delta E^{*}, \\
h_{2}(\Delta X) & =\tilde{E}(X) \tilde{F}(X)^{\dagger} F(\Delta X) \tilde{F}(X)^{\dagger} F_{1}^{*} F(\Delta X) \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*} \\
& -\tilde{E}(X) \tilde{F}(X)^{\dagger} F(\Delta X) F_{1} \tilde{F}(X)^{\dagger} E(\Delta X)^{*} \\
& -E(\Delta X) \tilde{F}(X)^{\dagger} F(\Delta X) F_{1} \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*} \\
& +E(\Delta X) \tilde{F}(\tilde{X})^{\dagger} E(\Delta X)^{*} .
\end{aligned}
$$

We rewrite (11) into

$$
\begin{equation*}
\tilde{\Phi}_{C}^{*} \Delta X+\Delta X \tilde{\Phi}_{C}+\sum_{i=1}^{N} \tilde{\Psi}_{C}^{i *} \Delta X \tilde{\Psi}_{C}^{i}=E_{1}+E_{2}+h_{2}(\Delta X) \tag{12}
\end{equation*}
$$

From the definitions of $\tilde{\Phi}_{C}$ and $\tilde{\Psi}_{C}^{i}$, we obtain

$$
\begin{aligned}
\tilde{\Phi}_{C} & =(A+\Delta A)-(B+\Delta B)\left(F(X)^{\dagger}\right. \\
& \left.-F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger}\right)(E(X)+\delta E)^{*} \\
& =\Phi_{C}+\Delta \Phi_{C}, \\
\tilde{\Psi}_{C}^{i} & =\left(A_{0}^{i}+\Delta A_{0}^{i}\right)-\left(B_{0}^{i}+\Delta B_{0}^{i}\right)\left(F(X)^{\dagger}\right. \\
& \left.-F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger}\right)(E(X)+\delta E)^{*} \\
& =\Psi_{C}^{i}+\Delta \Psi_{C}^{i},
\end{aligned}
$$

with

$$
\begin{aligned}
\Delta \Phi_{C} & =\Delta A-B F(X)^{\dagger} \delta E^{*}+B F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} E(X)^{*} \\
& +B F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*}-\Delta B F(X)^{\dagger} E(X)^{*}-\Delta B F(X)^{\dagger} \delta E^{*} \\
& +\Delta B F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} E(X)^{*}+\Delta B F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*},
\end{aligned}
$$

$$
\begin{aligned}
\Delta \Psi_{C}^{i} & =\Delta A_{0}^{i}-B_{0}^{i} F(X)^{\dagger} \delta E^{*}+B_{0}^{i} F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} E(X)^{*} \\
& +B_{0}^{i} F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*}-\Delta B_{0}^{i} F(X)^{\dagger} E(X)^{*}-\Delta B_{0}^{i} F(X)^{\dagger} \delta E^{*} \\
& +\Delta B_{0}^{i} F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} E(X)^{*}+\Delta B_{0}^{i} F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*}
\end{aligned}
$$

We express the left-hand side of (12) using $\Delta \Phi_{C}$ and $\Delta \Psi_{C}^{i}$ as follows

$$
\begin{align*}
\tilde{\Phi}_{C}^{*} \Delta X+\Delta X \tilde{\Phi}_{C}+\sum_{i=1}^{N} \tilde{\Psi}_{C}^{i *} \Delta X \tilde{\Psi}_{C}^{i} & =\Phi_{C}^{*} \Delta X+\Delta X \Phi_{C} \\
& +\sum_{i=1}^{N} \Psi_{C}^{i *} \Delta X \Psi_{C}^{i}-h_{1}(\Delta X) \tag{13}
\end{align*}
$$

with

$$
\begin{aligned}
h_{1}(\Delta X) & =-\left(\Delta \Phi_{C}^{*} \Delta X+\Delta X \Delta \Phi_{C}+\sum_{i=1}^{N}\left(\Psi_{C}^{i *} \Delta X \Delta \Psi_{C}^{i}\right.\right. \\
& \left.\left.+\Delta \Psi_{C}^{i *} \Delta X \Psi_{C}^{i}+\Delta \Psi_{C}^{i *} \Delta X \Delta \Psi_{C}^{i}\right)\right)
\end{aligned}
$$

From (12) and (13), we get

$$
\Phi_{C}^{*} \Delta X+\Delta X \Phi_{C}+\sum_{i=1}^{N} \Psi_{C}^{i *} \Delta X \Psi_{C}^{i}=E_{1}+E_{2}+h_{1}(\Delta X)+h_{2}(\Delta X)
$$

Lemma 3.1. Let X be the stabilizing solution of the CRRE (1) and \tilde{X} be a symmetric solution of the perturbed CRRE (10), then ΔX satisfies the equation
(14) $\Phi_{C}^{*} \Delta X+\Delta X \Phi_{C}+\sum_{i=1}^{N} \Psi_{C}^{i *} \Delta X \Psi_{C}^{i}=E_{1}+E_{2}+h_{1}(\Delta X)+h_{2}(\Delta X)$, where

$$
\begin{aligned}
E_{1} & =-\Delta A^{*} X-X \Delta A-\Delta Q-\sum_{i=1}^{N}\left(A_{0}^{i *} X \Delta A_{0}^{i}+\Delta A_{0}^{i *} X A_{0}^{i}\right) \\
& -E(X) F(X)^{\dagger} \delta F_{1} F(X)^{\dagger} E(X)^{*}+E(X) F(X)^{\dagger} \delta E_{1}^{*} \\
& +\delta E_{1} F(X)^{\dagger} E^{*}(X) \\
E_{2} & =-\sum_{i=1}^{N}\left(\Delta A_{0}^{i *} X \Delta A_{0}^{i}\right)-E(X) F(X)^{\dagger} \delta F_{2} F(X)^{\dagger} E(X)^{*}
\end{aligned}
$$

$$
\begin{aligned}
& +E(X) F(X)^{\dagger} \delta F F(X)^{\dagger} F_{2}^{*} \delta F F(X)^{\dagger} E(X)^{*}+E(X) F(X)^{\dagger} \delta E_{2}^{*} \\
& -E(X) F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \delta E^{*}+\delta E_{2} F(X)^{\dagger} E(X)^{*} \\
& -\delta E F(X)^{\dagger} \delta F F_{2} F(X)^{\dagger} \tilde{E}(X)^{*}+\delta E F(X)^{\dagger} \delta E^{*} ; \\
h_{1}(\Delta X) & =-\left(\Delta \Phi_{C}^{*} \Delta X+\Delta X \Delta \Phi_{C}+\sum_{i=1}^{N}\left(\Psi_{C}^{i *} \Delta X \Delta \Psi_{C}^{i}\right.\right. \\
& \left.\left.+\Delta \Psi_{C}^{i *} \Delta X \Psi_{C}^{i}+\Delta \Psi_{C}^{i *} \Delta X \Delta \Psi_{C}^{i}\right)\right) ; \\
h_{2}(\Delta X) & =\tilde{E}(X) \tilde{F}(X)^{\dagger} F(\Delta X) \tilde{F}(X)^{\dagger} F_{1}^{*} F(\Delta X) \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*} \\
& -\tilde{E}(X) \tilde{F}(X)^{\dagger} F(\Delta X) F_{1} \tilde{F}(X)^{\dagger} E(\Delta X)^{*} \\
& -E(\Delta X) \tilde{F}(X)^{\dagger} F(\Delta X) F_{1} \tilde{F}(X)^{\dagger} \tilde{E}(X)^{*} \\
& +E(\Delta X) \tilde{F}(\tilde{X})^{\dagger} E(\Delta X)^{*} .
\end{aligned}
$$

E_{1} and E_{2} are first-order and high-order perturbation matrices respectively, and they do not depend on $\Delta X . h_{1}(\Delta X)$ and $h_{2}(\Delta X)$ are the linear and high-order degree functions of ΔX, respectively.

3.1. Perturbation equation

We focus on the condition of the existence of a fixed point, that is, the perturbed CRRE (10) has some solution. From the definition of the linear operator L_{c}, we represent (14) as

$$
L_{c}(\Delta X)=E_{1}+E_{2}+h_{1}(\Delta X)+h_{2}(\Delta X)
$$

We provide a lemma to show the property of invertibility of the linear operator L_{c}.

Lemma 3.2 (Damm and Hinrichsen [11]). Let $\mathcal{L}: \mathcal{H}^{n} \rightarrow \mathcal{H}^{n}$ be resolvent positive and $\Pi: \mathcal{H}^{n} \rightarrow \mathcal{H}^{n}$ be positive. Then the following are equivalent:
(a) $\mathcal{L}+\Pi$ is stable, i.e. $\sigma(\mathcal{L}+\Pi) \subset \mathbb{C}_{-}$.
(b) $-(\mathcal{L}+\Pi)$ is inverse positive.
(c) $\exists X>0$: $(\mathcal{L}+\Pi)(X)<0$.
(d) $\sigma(\mathcal{L}) \subset \mathbb{C}_{-}$and $\rho\left(\mathcal{L}^{-1} \Pi\right)<1$.
(e) $\sigma(\mathcal{L}) \subset \mathbb{C}_{-}$and $\operatorname{det}(\mathcal{L}+\tau \Pi) \neq 0$ for $\tau \in[0,1]$.

According to the definition of $\Pi_{X}(X)$ in (6), we can obtain that $\Pi_{X}=$ $\sum_{i=1}^{N} \Psi_{C}^{i *} X \Psi_{C}^{i}$ is positive. Let X be the stabilizing solution to the CRREs (1), $\mathcal{L}_{\Phi_{C}}$ is resolvent positive since Φ_{C} is c-stable and \mathcal{L}_{A} is a Lyapunov operator. By applying the Lemma 3.2, $L_{c}=\mathcal{L}_{\Phi_{C}}+\Pi_{X}$ is c-stable i.e. $\sigma\left(L_{c}\right) \subset$ \mathbb{C}_{-}. In addition, L_{c} is invertible s.t. L_{c}^{-1} exists. Then, we define a function
$f(\Delta X)$ by

$$
\begin{equation*}
f(\Delta X)=L_{c}^{-1} E_{1}+L_{c}^{-1} E_{2}+L_{c}^{-1} h_{1}(\Delta X)+L_{c}^{-1} h_{2}(\Delta X) \tag{15}
\end{equation*}
$$

$f(\Delta X)$ can be regarded as a continuous mapping $f: \mathcal{S}^{n \times n} \rightarrow \mathcal{S}^{n \times n}$, and any fixed point of the mapping f is a solution to the perturbed equation (14). We provide the existence and uniqueness of the fixed point in (15), that is, a unique and stabilizing solution to the perturbed CRREs (14). In conclusion, there exists a unique and stabilizing solution of (10) since X and ΔX are the unique stabilizing solutions of (1) and (14), respectively. Here, we sketch the outlines of proofs about the existence and uniqueness of the stabilizing solution to the perturbed CRREs (14):
[1] We apply the Brouwer fixed point theorem to show that it exists some fixed point to the mapping f in (15), that is, the existence of some solution to the perturbed equation (14) is existed.
[2] We apply the singular property of the linear operator to get the perturbation bound of perturbation matrices, and furthermore to show some conditions to get the stable perturbed linear operator. Therefore, we can get the uniqueness of the stabilizing solution to the perturbed equation (14).

For the details of proofs, please see the Supplementary Material S1 and S2.

3.2. Normwise condition number

We first discuss the perturbation analysis of the CRRE (1) and derive its normwise condition numbers. From (14), we drop the second and high-order terms and it yields

$$
\begin{aligned}
\Phi_{C}^{*} & \Delta X+\Delta X \Phi_{C}+\sum_{i=1}^{N} \Psi_{C}^{i *} \Delta X \Psi_{C}^{i} \\
& =-\Delta A^{*} X-X \Delta A-\Delta Q-\sum_{i=1}^{N}\left(A_{0}^{i *} X \Delta A_{0}^{i}\right. \\
& \left.+\Delta A_{0}^{i *} X A_{0}^{i}\right)-E(X) F(X)^{\dagger} \Delta R F(X)^{\dagger} E(X)^{*} \\
& -E(X) F(X)^{\dagger} \sum_{i=1}^{N}\left(B_{0}^{i *} X \Delta B_{0}^{i}\right. \\
& \left.+\Delta B_{0}^{i *} X B_{0}^{i}\right) F(X)^{\dagger} E(X)^{*} \\
& +E(X) F(X)^{\dagger} \Delta L^{*}+E(X) F(X)^{\dagger} \Delta B^{*} X
\end{aligned}
$$

$$
\begin{align*}
& +E(X) F(X)^{\dagger} \sum_{i=1}^{N}\left(\Delta B_{0}^{i *} X A_{0}^{i}+B_{0}^{i *} X \Delta A_{0}^{i}\right) \\
& +\Delta L F(X)^{\dagger} E(X)^{*}+X \Delta B F(X)^{\dagger} E(X)^{*} \\
& +\sum_{i=1}^{N}\left(A_{0}^{i *} X \Delta B_{0}^{i}+\Delta A_{0}^{i *} X B_{0}^{i}\right) \\
& \cdot F(X)^{\dagger} E(X)^{*} \tag{16}
\end{align*}
$$

We recall some notations about vectorization. For a matrix $A=\left[a_{i j}\right] \in$ $\mathbb{R}^{n \times n}$, we define $\operatorname{vec}(A)=\left[a_{1}^{\top}, a_{2}^{\top}, \ldots, a_{n}^{\top}\right]^{\top} \in \mathbb{R}^{n^{2}}$, where $A=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with $a_{i} \in \mathbb{R}^{n}, i=1,2, \ldots, n$. Some useful properties of Kronecker products found in [18] are listed below:

$$
\begin{align*}
\|\operatorname{vec}(A)\|_{2} & =\|A\|_{F} \\
\|\operatorname{vec}(A)\|_{\infty} & =\|A\|_{\max } \\
\operatorname{vec}(A X B) & =\left(B^{\top} \otimes A\right) \operatorname{vec}(X) \tag{17}
\end{align*}
$$

where $\|A\|_{\text {max }}=\max _{i, j}\left|a_{i j}\right|$, for $i, j=1,2, \ldots, n$ and $B, X \in \mathbb{R}^{n \times n}$. By applying the operator "vec" to both sides of the equation (16), we reset the index i into j such as A_{0}^{j} and B_{0}^{j} in order to differentiate $\Pi_{12}(X)$ and $\Pi_{2}(X)$ inside of $E(X)$ and $F(X)$ and set $E(X) F(X)^{\dagger} \equiv e_{f}, A_{0}^{j *} X \equiv a_{x}^{j}$ and $E(X) F(X)^{\dagger} B_{0}^{j *} X \equiv e_{b}^{j}$, then obtain

$$
\begin{equation*}
Z \operatorname{vec}(\Delta X)=P s \tag{18}
\end{equation*}
$$

with

$$
\begin{aligned}
Z & =I_{n} \otimes \Phi_{C}^{*}+\Phi_{C}^{*} \otimes I_{n}+\sum_{i=1}^{N} \Psi_{C}^{i *} \otimes \Psi_{C}^{i *} \\
P & =\left[P_{1}, P_{2}\right], P_{2}=\left[P_{2}^{1}, P_{2}^{2}, \ldots, P_{2}^{j}\right] \\
s & =\left[s_{1}, s_{2}\right]^{\top}, s_{2}=\left[s_{2}^{1}, s_{2}^{2}, \ldots, s_{2}^{j}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
P_{1}= & {\left[-\left(X \otimes I_{n}\right),-\left(I_{n} \otimes X\right),-\left(I_{n} \otimes I_{n}\right),-\left(e_{f} \otimes e_{f}\right),\left(I_{n} \otimes e_{f}\right),\right.} \\
& \left.\left(X \otimes e_{f}\right),\left(e_{f} \otimes I_{n}\right),\left(e_{f} \otimes X\right)\right], \\
P_{2}^{j}= & {\left[-\left(I_{n} \otimes a_{x}^{j}\right),-\left(a_{x}^{j} \otimes I_{n}\right),-\left(e_{f} \otimes e_{b}^{j}\right),-\left(e_{b}^{j} \otimes e_{f}\right),\left(a_{x}^{j} \otimes e_{f}\right),\right.} \\
& \left.\left(I_{n} \otimes e_{b}^{j}\right),\left(e_{f} \otimes a_{x}^{j}\right),\left(e_{b}^{j} \otimes I_{n}\right)\right],
\end{aligned}
$$

$$
\begin{aligned}
s_{1}= & {\left[\operatorname{vec}\left(\Delta A^{*}\right)^{\top}, \operatorname{vec}(\Delta A)^{\top}, \operatorname{vec}(\Delta Q)^{\top}, \operatorname{vec}(\Delta R)^{\top}, \operatorname{vec}\left(\Delta L^{*}\right)^{\top},\right.} \\
& \left.\operatorname{vec}\left(\Delta B^{*}\right)^{\top}, \operatorname{vec}(\Delta L)^{\top}, \operatorname{vec}(\Delta B)^{\top}\right], \\
s_{2}^{j}= & {\left[\operatorname{vec}\left(\Delta A_{0}^{j}\right)^{\top}, \operatorname{vec}\left(\Delta A_{0}^{j *}\right)^{\top}, \operatorname{vec}\left(\Delta B_{0}^{j}\right)^{\top}, \operatorname{vec}\left(\Delta B_{0}^{j *}\right)^{\top}, \operatorname{vec}\left(\Delta B_{0}^{j *}\right)^{\top},\right.} \\
& \left.\operatorname{vec}\left(\Delta A_{0}^{j}\right)^{\top}, \operatorname{vec}\left(\Delta B_{0}^{j}\right)^{\top}, \operatorname{vec}\left(\Delta A_{0}^{j *}\right)^{\top}\right],
\end{aligned}
$$

for $j=1,2, \ldots, N$. Before we solve the equation (18) and derive the explicit expression and its upper bound of the normwise condition number of CRRE (1), we state a lemma about the nonsingular property of Z.

Lemma 3.3 (Horn and Johnson [22]). Given $A, B \in \mathbb{R}^{n \times n}$ and let α_{1}, α_{2}, \ldots, α_{n} and $\beta_{1}, \beta_{2}, \ldots, \beta_{n}$ be eigenvalues of A and B, respectively. Then the eigenvalues of $I_{n} \otimes A^{\top}+A^{\top} \otimes I_{n}+B^{\top} \otimes B^{\top}$ and $A^{\top} \otimes A^{\top}+B^{\top} \otimes B^{\top}-I_{n} \otimes I_{n}$ can be represented as $2 \alpha_{i}+\beta_{i}^{2}$ and $\alpha_{i}^{2}+\beta_{i}^{2}-1$, respectively.

Let X be the maximal and stabilizing solution of (1), then $\sigma\left(L_{c}\right) \subset \mathbb{C}_{-}$. Furthermore,

$$
L_{c}\left(I_{n}\right)=\Phi_{C}^{*}+\Phi_{C}+\sum_{i=1}^{N} \Psi_{C}^{i *} \Psi_{C} \text { and } \sigma\left(L_{c}\left(I_{n}\right)\right) \subset \mathbb{C}_{-}
$$

From the Lemma 3.3,

$$
\sigma(Z) \subset \mathbb{C}_{-} \text {and } \operatorname{det}(Z) \neq 0
$$

Then, we can solve this equation (18)

$$
\begin{equation*}
\operatorname{vec}(\Delta X)=Z^{-1} P s \tag{19}
\end{equation*}
$$

Define a mapping

$$
\varphi:\left(A, B, Q, L, R, A_{0}^{j}, B_{0}^{j}\right) \mapsto \operatorname{vec}(X),
$$

where X is the maximal and stabilizing solution of CRRE (1). The normwise condition number of CRRE (1) is defined as follows:

$$
\begin{equation*}
n(\varphi, u)=\lim _{\epsilon \rightarrow 0} \sup _{\mathcal{E}} \frac{\|\operatorname{vec}(\Delta X)\|}{\delta(u+\Delta u, u)\|X\|_{F}} \tag{20}
\end{equation*}
$$

where

$$
\delta(u+\Delta u, u)=\max _{\substack{i=1,2, \ldots, p, p \\ u_{i} \neq 0}}\left\{\frac{\left|\Delta u_{i}\right|}{\left|u_{i}\right|}\right\}
$$

$$
\begin{aligned}
\mathcal{E} & =\left\{\Delta E \mid\|\Delta E\|_{F} \leq \epsilon\|E\|_{F}, E: A, B, Q, L, R, A_{0}^{j}, B_{0}^{j}, \epsilon>0\right\} \\
u & \equiv\left[u_{i}\right] \equiv\left(u_{1}, u_{2}\right)^{\top}, u_{2}=\left[u_{2}^{1}, u_{2}^{2}, \ldots, u_{2}^{j}\right], \text { for } j=1,2, \ldots, N
\end{aligned}
$$

with

$$
\begin{aligned}
u_{1}= & \left(\operatorname{vec}\left(A^{*}\right)^{\top}, \operatorname{vec}(A)^{\top}, \operatorname{vec}(Q)^{\top}, \operatorname{vec}(R)^{\top}, \operatorname{vec}\left(L^{*}\right)^{\top}, \operatorname{vec}\left(B^{*}\right)^{\top},\right. \\
& \left.\operatorname{vec}(L)^{\top}, \operatorname{vec}(B)^{\top}\right) ; \\
u_{2}^{j}= & \left(\operatorname{vec}\left(A_{0}^{j}\right)^{\top}, \operatorname{vec}\left(A_{0}^{j *}\right)^{\top}, \operatorname{vec}\left(B_{0}^{j}\right)^{\top}, \operatorname{vec}\left(B_{0}^{j *}\right)^{\top}, \operatorname{vec}\left(B_{0}^{j *}\right)^{\top}, \operatorname{vec}\left(A_{0}^{j}\right)^{\top},\right. \\
& \left.\operatorname{vec}\left(B_{0}^{j}\right)^{\top}, \operatorname{vec}\left(A_{0}^{j *}\right)^{\top}\right)
\end{aligned}
$$

Theorem 3.4. The explicit expression and its upper bound of the normwise condition number $n(\varphi, u)$ are

$$
\begin{align*}
n(\varphi, u) & =\|t\| /\|X\|_{F} \\
n_{u}(\varphi) & =\left\|Z^{-1}\right\| w_{1} /\|X\|_{F} \tag{21}
\end{align*}
$$

where

$$
\begin{aligned}
t & =\left|Z^{-1}\left(X \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A^{*}\right|\right)+\left|Z^{-1}\left(I_{n} \otimes X\right)\right| \operatorname{vec}(|A|) \\
& +\left|Z^{-1}\left(I_{n} \otimes I_{n}\right)\right| \operatorname{vec}(|Q|)+\left|Z^{-1}\left(e_{f} \otimes e_{f}\right)\right| \operatorname{vec}(|R|) \\
& +\left|Z^{-1}\left(I_{n} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|L^{*}\right|\right)+\left|Z^{-1}\left(X \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B^{*}\right|\right) \\
& +\left|Z^{-1}\left(e_{f} \otimes I_{n}\right)\right| \operatorname{vec}(|L|)+\left|Z^{-1}\left(e_{f} \otimes X\right)\right| \operatorname{vec}(|B|) \\
& +\sum_{j=1}^{N}\left(\left|Z^{-1}\left(I_{n} \otimes a_{x}^{j}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j}\right|\right)+\left|Z^{-1}\left(a_{x}^{j} \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j *}\right|\right)\right. \\
& +\left|Z^{-1}\left(e_{f} \otimes e_{b}^{j}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j}\right|\right)+\left|Z^{-1}\left(e_{b}^{j} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j *}\right|\right) \\
& +\left|Z^{-1}\left(a_{x}^{j} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j *}\right|\right)+\left|Z^{-1}\left(I_{n} \otimes e_{b}^{j}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j}\right|\right) \\
& \left.+\left|Z^{-1}\left(e_{f} \otimes a_{x}^{j}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j}\right|\right)+\left|Z^{-1}\left(e_{b}^{j} \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j *}\right|\right)\right) ; \\
w_{1} & =2\|A\|_{F}\|X\|_{F}+\|Q\|_{F}+\left\|e_{f a}\right\|_{F}^{2}\|R\|_{F}+2\left\|e_{f a}\right\|_{F}\|L\|_{F} \\
& +2\left\|e_{f a}\right\|_{F}\|B\|_{F}\|X\|_{F}+\sum_{j=1}^{N}\left(2\left\|a_{x a}^{j}\right\|_{F}\left\|A_{0}^{j}\right\|_{F}+2\left\|e_{f a}\right\|_{F}\left\|B_{0}^{j}\right\|_{F}\left\|e_{b a}^{j}\right\|_{F}\right. \\
& \left.+2\left\|e_{f a}\right\|_{F}\left\|B_{0}^{j}\right\|_{F}\left\|a_{x a}^{j}\right\|_{F}+2\left\|e_{b a}^{j}\right\|_{F}\left\|A_{0}^{j}\right\|_{F}\right) .
\end{aligned}
$$

Proof. From the formula of the normwise condition number of CRRE (1), we compute Δu and $\operatorname{vec}(\Delta X)$ via (19). Adding some small perturbations
to the vector u and we get the equality $s=\Delta u$. From the property of the absolute value, we have

$$
\begin{aligned}
\left|e_{f}\right| & \leq|E(X)|\left|F(X)^{\dagger}\right| \equiv e_{f a} \\
\left|a_{x}^{j}\right| & \leq\left|A_{0}^{j *}\right||X| \equiv a_{x a}^{j} \\
\left|e_{b}^{j}\right| & \leq|E(X)|\left|F(X)^{\dagger}\left\|B_{0}^{j *}\right\| X\right| \equiv e_{b a}^{j}
\end{aligned}
$$

Hence, we derive the explicit expression and its perturbation bound of $n(\varphi, u)$ using the formula (20)

$$
\begin{aligned}
n(\varphi, u) & =\frac{\left\|\left|Z^{-1} P\|u \mid\|\right.\right.}{\|X\|_{F}} ; \\
& =\|\left|Z^{-1}\left(X \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A^{*}\right|\right)+\left|Z^{-1}\left(I_{n} \otimes X\right)\right| \operatorname{vec}(|A|) \\
& +\left|Z^{-1}\left(I_{n} \otimes I_{n}\right)\right| \operatorname{vec}(|Q|)+\left|Z^{-1}\left(e_{f} \otimes e_{f}\right)\right| \operatorname{vec}(|R|) \\
& +\left|Z^{-1}\left(I_{n} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|L^{*}\right|\right)+\left|Z^{-1}\left(X \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B^{*}\right|\right) \\
& +\left|Z^{-1}\left(e_{f} \otimes I_{n}\right)\right| \operatorname{vec}(|L|)+\left|Z^{-1}\left(e_{f} \otimes X\right)\right| \operatorname{vec}(|B|) \\
& +\sum_{j=1}^{N}\left(\left|Z^{-1}\left(I_{n} \otimes a_{x}^{j}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j}\right|\right)+\left|Z^{-1}\left(a_{x}^{j} \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j *}\right|\right)\right. \\
& +\left|Z^{-1}\left(e_{f} \otimes e_{b}^{j}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j}\right|\right)+\left|Z^{-1}\left(e_{b}^{j} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j *}\right|\right) \\
& +\left|Z^{-1}\left(a_{x}^{j} \otimes e_{f}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j *}\right|\right)+\left|Z^{-1}\left(I_{n} \otimes e_{b}^{j}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j}\right|\right) \\
& \left.+\left|Z^{-1}\left(e_{f} \otimes a_{x}^{j}\right)\right| \operatorname{vec}\left(\left|B_{0}^{j}\right|\right)+\left|Z^{-1}\left(e_{b}^{j} \otimes I_{n}\right)\right| \operatorname{vec}\left(\left|A_{0}^{j *}\right|\right)\right)\|/\| X \|_{F} ; \\
& \equiv\|t\| /\|X\|_{F} ; \\
& \leq\left\|Z^{-1}\right\|\| \|\left|A ^ { * } \left\|X\left|+\left|X\left\|A\left|+|Q|+\left|e_{f}\right|\right| R\right\| e_{f}^{*}\right|+\left|e_{f}\right|\right| L^{*} \mid\right.\right. \\
& +\left|e_{f}\right|\left|B^{*}\right||X|+\left|L \left\|e _ { f } ^ { * } \left|+\left|X\|B\| e_{f}^{*}\right|+\sum_{j=1}^{N}\left(\left|a_{x}^{j} \| A_{0}^{j}\right|+\left|A_{0}^{j *}\right|\left|a_{x}^{j *}\right|\right.\right.\right.\right. \\
& +\left|e_{b}^{j} \| B_{0}^{j}\right|\left|e_{f}^{*}\right|+\left|e_{f}\right|\left|B_{0}^{j *}\right|\left|e_{b}^{j *}\right|+\left|e_{f}\right|\left|B_{0}^{j *}\right|\left|a_{x}^{j *}\right|+\left|e_{b}^{j}\right|\left|A_{0}^{j}\right| \\
& \left.+\left|a_{x}^{j} \| B_{0}^{j}\right|\left|e_{f}^{*}\right|+\left|A_{0}^{j *}\right|\left|e_{b}^{j *}\right|\right)\left\|_{F} /\right\| X \|_{F} ; \\
& \leq\left\|Z^{-1}\right\|\| \|\left|A^{*}\right||X|+|X \| A|+|Q|+e_{f a}|R| e_{f a}^{*}+e_{f a}\left|L^{*}\right| \\
& +e_{f a}\left|B^{*}\right||X|+|L| e_{f a}^{*}+|X||B| e_{f a}^{*}+\sum_{j=1}^{N}\left(a_{x a}^{j}\left|A_{0}^{j}\right|+\left|A_{0}^{j *}\right| a_{x a}^{j *}\right. \\
& +e_{b a}^{j}\left|B_{0}^{j}\right| e_{f a}^{*}+e_{f a}\left|B_{0}^{j *}\right| e_{b a}^{j *}+e_{f a}\left|B_{0}^{j *}\right| a_{x a}^{j *}+e_{b a}^{j}\left|A_{0}^{j}\right|+a_{x a}^{j}\left|B_{0}^{j}\right| e_{f a}^{*} \\
& \left.+\left|A_{0}^{j *}\right| e_{b a}^{j *}\right)\left\|_{F} /\right\| X \|_{F} ;
\end{aligned}
$$

$$
\begin{aligned}
& \leq\left\|Z^{-1}\right\|\left(2\|A\|_{F}\|X\|_{F}+\|Q\|_{F}+\left\|e_{f a}\right\|_{F}^{2}\|R\|_{F}+2\left\|e_{f a}\right\|_{F}\|L\|_{F}\right. \\
& +2\left\|e_{f a}\right\|_{F}\|B\|_{F}\|X\|_{F}+\sum_{j=1}^{N}\left(2\left\|a_{x a}^{j}\right\|_{F}\left\|A_{0}^{j}\right\|_{F}\right. \\
& +2\left\|e_{f a}\right\|_{F}\left\|B_{0}^{j}\right\|_{F}\left\|e_{b a}^{j}\right\|_{F}+2\left\|e_{f a}\right\|_{F}\left\|B_{0}^{j}\right\|_{F}\left\|a_{x a}^{j}\right\|_{F} \\
& \left.\left.+2\left\|e_{b a}^{j}\right\|_{F}\left\|A_{0}^{j}\right\|_{F}\right)\right) /\|X\|_{F} \\
& \equiv\left\|Z^{-1}\right\| w_{1} /\|X\|_{F}
\end{aligned}
$$

3.3. Mixed and componentwise condition numbers

By considering the matrix structure, we introduce a lemma about mixed and componentwise perturbation anlayses to compute condition numbers of CRREs (1) efficiently.

Lemma 3.5 (Gohberg and Koltracht [17]). Let $F: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}$ be a continuous map defined on an open set $\operatorname{Dom}(F) \subset \mathbb{R}^{p}$. For a given $a \neq 0 \in$ $\operatorname{Dom}(F)$, such that $F(a) \neq 0$, where $\operatorname{Dom}(F)$ denotes the domain of the function F. Let $B^{0}(a, \epsilon)=\left\{x:\left|x_{i}-a_{i}\right| \leq \epsilon\left|a_{i}\right|, i=1,2, \ldots, p\right\}$, where $a=\left(a_{1}, a_{2}, \ldots, a_{p}\right)^{\top}, x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\top} \in \mathbb{R}^{p}$ and $\epsilon>0$.
(a) The mixed condition number of the map F at the point a is defined

$$
m(F, a)=\lim _{\epsilon \rightarrow 0} \sup _{\substack{x \in B^{0}(a, \epsilon) \\ x \neq a}} \frac{\|F(x)-F(a)\|_{\infty}}{\|F(a)\|_{\infty}} \frac{1}{\delta(x, a)}
$$

where $\delta(x, a)=\max \underset{\substack{i=1,2, \ldots, p \\ a_{i} \neq 0}}{ }\left\{\frac{\left|x_{i}-a_{i}\right|}{\left|a_{i}\right|}\right\}$.
(b) Suppose $F(a)=\left(f_{1}(a), f_{2}(a), \ldots, f_{q}(a)\right)$ such that $f_{j}(a) \neq 0$, for $j=1,2, \ldots, q$. The componentwise condition number of F at the point a is

$$
c(F, a)=\lim _{\epsilon \rightarrow 0} \sup _{\substack{x \in B^{0}(a, \epsilon) \\ x \neq a}} \frac{\delta(F(x), F(a))}{\delta(x, a)}
$$

where $\delta(F(x), F(a))=\max _{j=1,2, \ldots, q}\left\{\frac{\left|f_{j}(x)-f_{j}(a)\right|}{\left|f_{j}(a)\right|}\right\}$.

Theorem 3.6. Based on Lemma 3.5 and the definitions of φ and u, we express the mixed and componentwise condition numbers of CRRE (1) as

$$
\begin{aligned}
m(\varphi, u) & =\|t\|_{\infty} /\|X\|_{\max } \\
c(\varphi, u) & =\|t / \operatorname{vec}(X)\|_{\infty}
\end{aligned}
$$

The upper bounds of $m(\varphi, u)$ and $c(\varphi, u)$ are respectively

$$
\begin{align*}
m_{u}(\varphi) & =\left\|Z^{-1}\right\|_{\infty} w_{2} /\|X\|_{\max } \tag{22}\\
c_{u}(\varphi) & =\left\|\operatorname{Diag}^{-1}(\operatorname{vec}(|X|)) Z^{-1}\right\|_{\infty} w_{2} \tag{23}
\end{align*}
$$

where

$$
\begin{aligned}
w_{2} & =2\|A\|_{\max }\|X\|_{\max }+\|Q\|_{\max }+\left\|e_{f a}\right\|_{\max }^{2}\|R\|_{\max }+2\left\|e_{f a}\right\|_{\max }\|L\|_{\max } \\
& +2\left\|e_{f a}\right\|_{\max }\|B\|_{\max }\|X\|_{\max }+\sum_{j=1}^{N}\left(2\left\|a_{x a}^{j}\right\|_{\max }\left\|A_{0}^{j}\right\|_{\max }\right. \\
& +2\left\|e_{f a}\right\|_{\max }\left\|B_{0}^{j}\right\|_{\max }\left\|e_{b a}^{j}\right\|_{\max }+2\left\|e_{f a}\right\|_{\max }\left\|B_{0}^{j}\right\|_{\max }\left\|a_{x a}^{j}\right\|_{\max } \\
& \left.+2\left\|e_{b a}^{j}\right\|_{\max }\left\|A_{0}^{j}\right\|_{\max }\right)
\end{aligned}
$$

If $x=\left(x_{1}, x_{2}, \ldots, x_{p}\right)^{\top} \in \mathbb{R}^{p}$, then $\operatorname{Diag}(x)$ denotes the $p \times p$ diagonal matrix with $x_{1}, x_{2}, \ldots, x_{p}$ on its diagonal.

Proof. Let $x \equiv u+\Delta u, a \equiv u$ and $F \equiv \varphi$. Based on (a) of Lemma 3.5, the definition of the mapping φ and the properties of Kronecker products (17), we can get

$$
\begin{aligned}
\frac{\|F(x)-F(a)\|_{\infty}}{\|F(a)\|_{\infty}} & =\frac{\|\varphi(u+\Delta u)-\varphi(u)\|_{\infty}}{\|\varphi(u)\|_{\infty}} \\
& =\frac{\|\operatorname{vec}(X+\Delta X)-\operatorname{vec}(X)\|_{\infty}}{\|\operatorname{vec}(X)\|_{\infty}} \\
& =\frac{\|\operatorname{vec}(\Delta X)\|_{\infty}}{\|\operatorname{vec}(X)\|_{\infty}}=\frac{\|\operatorname{vec}(\Delta X)\|_{\infty}}{\|X\|_{\max }}
\end{aligned}
$$

The formula of mixed condition number of CRRE (1) can be rewritten

$$
\begin{equation*}
m(\varphi, u)=\lim _{\epsilon \rightarrow 0} \sup _{\mathcal{F}} \frac{\|\operatorname{vec}(\Delta X)\|_{\infty}}{\delta(u+\Delta u, u)\|X\|_{\max }} \tag{24}
\end{equation*}
$$

where $\mathcal{F}=\left\{\Delta F| | \Delta F|\leq \epsilon| F \mid, F: A, B, Q, L, R, A_{0}^{j}, B_{0}^{j}, \epsilon>0\right\}$. Similarly, we can also rewrite the formula of componentwise condition number of

CRRE (1)

$$
\begin{equation*}
c(\varphi, u)=\lim _{\epsilon \rightarrow 0} \sup _{\mathcal{F}} \frac{1}{\delta(u+\Delta u, u)}\left\|\frac{\operatorname{vec}(\Delta X)}{\operatorname{vec}(X)}\right\|_{\infty} \tag{25}
\end{equation*}
$$

From (19) and (24), we can get the explicit expression and its perturbation bound of the mixed condition number of CRRE (1)

$$
\begin{aligned}
m(\varphi, u) & =\frac{\left\|\mid Z^{-1} P\right\| u \|_{\infty}}{\|X\|_{\max }} \\
& =\|t\|_{\infty} /\|X\|_{\max } \\
& \leq\left\|Z^{-1}\right\|_{\infty} w_{2} /\|X\|_{\max }
\end{aligned}
$$

Analogously, the explicit expression and its upper bound of the componentwise condition number are derived using (25)

$$
\begin{aligned}
c(\varphi, u) & =\left\|\frac{\left|Z^{-1} P\right||u|}{\operatorname{vec}(X)}\right\|_{\infty} \\
& =\|t / \operatorname{vec}(X)\|_{\infty} \\
& \leq\left\|\operatorname{Diag}^{-1}(\operatorname{vec}(|X|)) Z^{-1}\right\|_{\infty} w_{2}
\end{aligned}
$$

4. Numerical experiments

In this section, we have shown relative errors with respect to the solutions of CRREs (1) under normwise, mixed and componentwise perturbation analyses such as $\frac{\|\Delta X\|_{F}}{\|X\|_{F}}, \frac{\|\Delta X\|_{\max }}{\|X\|_{\max }}$ and $\left\|\frac{\Delta X}{X}\right\|_{\max }$ and their sharper upper bounds in (21), (22), (23). The numerical algorithm is described in Algorithm 1 for condition numbers of rational Riccati equations. We have chosen one representative example:
(1) The CRREs in Example 4.1 are quoted from [2].

All the numerical experiments were conducted using MATLAB [28] Version R2018a on a MacBook Pro with a 2.30 GHz Intel Core 8 Duo processor and 64 GB RAM, with machine accuracy eps $=2.22 \times 10^{-16}$.

For the numerical results, we express $r_{n}^{C R R E}, r_{m}^{C R R E}, r_{c}^{C R R E}$ for relative errors; $n_{u}^{C R R E}, m_{u}^{C R R E}, c_{u}^{C R R E}$ for their upper bounds in the normwise, mixed and componentwise perturbation analyses.

Algorithm 1 (Condition numbers of rational Riccati equations)

```
Input: }\quadA,Q,\mp@subsup{A}{0}{i}\in\mp@subsup{\mathbb{K}}{}{n\timesn},B,L,\mp@subsup{B}{0}{i}\in\mp@subsup{\mathbb{K}}{}{n\timesm}\mathrm{ , and }R\in\mp@subsup{\mathbb{K}}{}{m\timesm}\mathrm{ , for }i=1,2,\ldots,N
Output: Normwise, mixed and componentwise condition numbers rn
and \mp@subsup{r}{c}{CRRE}}\mathrm{ , upper bounds }\mp@subsup{n}{u}{CRRE},\mp@subsup{m}{u}{CRRE}\mathrm{ and }\mp@subsup{c}{u}{CRRE}
    Let }\DeltaA,\DeltaQ,\Delta\mp@subsup{A}{0}{i}\in\mp@subsup{\mathbb{K}}{}{n\timesn},\DeltaB,\DeltaL,\Delta\mp@subsup{B}{0}{i}\in\mp@subsup{\mathbb{K}}{}{n\timesm}\mathrm{ , and }\DeltaR\in\mp@subsup{\mathbb{K}}{}{m\timesm
    be selected from normal distribution and the weighted coefficients be
    10-k}\mathrm{ such as }\DeltaE=1\mp@subsup{0}{}{-k}\times\operatorname{randn}(n,m)\mathrm{ , for }E\in\mp@subsup{\mathbb{K}}{}{n\timesm}
    Set \tilde{A}=A+\DeltaA,\tilde{Q}=Q+\DeltaQ,\tilde{B}=B+\DeltaB,\tilde{L}=L+\DeltaL,
    \tilde{R}=R+\DeltaR,\tilde{A}}\mp@subsup{|}{0}{i}=\mp@subsup{A}{0}{i}+\Delta\mp@subsup{A}{0}{i}\mathrm{ and }\mp@subsup{\tilde{B}}{0}{i}=\mp@subsup{B}{0}{i}+\Delta\mp@subsup{B}{0}{i}
    Solve the CRREs (1) and its perturbation equation (10)
    by the GSM and get the solutions X and \tilde{X}}\mathrm{ , respectively;
    Compute the relative errors with respect to the solution X under the
    normwise, mixed and componentwise perturbation analyses,
    rn
    where }\frac{A}{B}=\frac{(\mp@subsup{a}{ij}{})}{(\mp@subsup{b}{ij}{})}\mathrm{ , with A=(a, (aij) and B=( (bij);
    Estimate the upper bounds }\mp@subsup{n}{u}{CRRE},\mp@subsup{m}{u}{CRRE}\mathrm{ and }\mp@subsup{c}{u}{CRRE}\mathrm{ in (21),(22)
    and (23);
End Do
```


Example 1 (CRREs [2])

This example 1 is an application of a mathematical model about an L-1011 aircraft, quoted from [2, Example 3] with the addition of stochastic disturbances in Π. Consider the CRREs (1) with $n=4, m=2$ and $N=1$,

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -1.89 & 0.39 & -5.53 \\
0 & -0.034 & -2.98 & 2.43 \\
0.034 & -0.0011 & -0.99 & -0.21
\end{array}\right], \quad B=\left[\begin{array}{rr}
0 & 0 \\
0.36 & -1.6 \\
-0.95 & -0.032 \\
0.03 & 0
\end{array}\right] \\
Q=\left[\begin{array}{llll}
2.313 & 2.727 & 0.688 & 0.023 \\
2.727 & 4.271 & 1.148 & 0.323 \\
0.688 & 1.148 & 0.313 & 0.102 \\
0.023 & 0.323 & 0.102 & 0.083
\end{array}\right], \quad L=\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right], \quad R=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \\
A_{0}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad B_{0}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
X_{0}=\left[\begin{array}{rrr}
1.3239 & 0.9015 \\
0.9015 & 0.9607 \\
0.5466 & 0.4334 \\
-1.7672 & -1.1989 & 0.5466 \\
-1.7672 \\
-1.3633 & -1.1989 \\
0.4605 & -1.3633 \\
4.4612
\end{array}\right]
\end{gathered}
$$

Table 1: Example 4.1 (Condition Numbers of CRREs; $n=4, m=2$, $N=1$)

k	$r_{n}^{C R R E}$	$\epsilon_{n} n_{u}^{C R R E}$	$r_{m}^{C R R E}$	$\epsilon_{m} m_{u}^{C R R E}$	$r_{c}^{C R R E}$	$\epsilon_{m} c_{u}^{C R R E}$
5	$4.5270 \mathrm{e}-05$	$2.7967 \mathrm{e}-03$	$3.7340 \mathrm{e}-05$	$5.4646 \mathrm{e}-04$	$3.7340 \mathrm{e}-05$	$1.6244 \mathrm{e}-03$
6	$4.5986 \mathrm{e}-06$	$4.2636 \mathrm{e}-04$	$3.8116 \mathrm{e}-06$	$1.6425 \mathrm{e}-04$	$3.8116 \mathrm{e}-06$	$4.8825 \mathrm{e}-04$
7	$5.3009 \mathrm{e}-07$	$2.4990 \mathrm{e}-05$	$5.3509 \mathrm{e}-07$	$1.3955 \mathrm{e}-05$	$5.3509 \mathrm{e}-07$	$4.1483 \mathrm{e}-05$
8	$1.1444 \mathrm{e}-07$	$2.6815 \mathrm{e}-06$	$1.1903 \mathrm{e}-07$	$2.0314 \mathrm{e}-06$	$1.1903 \mathrm{e}-07$	$6.0385 \mathrm{e}-06$
9	$1.5689 \mathrm{e}-09$	$2.4698 \mathrm{e}-07$	$1.9287 \mathrm{e}-09$	$2.9215 \mathrm{e}-07$	$1.9287 \mathrm{e}-09$	$8.6845 \mathrm{e}-07$
10	$1.1968 \mathrm{e}-09$	$2.4907 \mathrm{e}-08$	$1.3123 \mathrm{e}-09$	$2.0833 \mathrm{e}-08$	$1.3123 \mathrm{e}-09$	$6.1927 \mathrm{e}-08$

X_{0} is the initial solution of (4) to the CRREs solved by NM. Let the perturbed coefficient matrices $\Delta A, \Delta B, \Delta R, \Delta L, \Delta Q, \Delta A_{0}$ and ΔB_{0} be generated using the MATLAB command "randn" associated with the weighted coefficient 10^{-k}, then we add the perturbation matrices to the original ones and get $\left(\tilde{A}, \tilde{B}, \tilde{R}, \tilde{L}, \tilde{Q}, \tilde{A}_{0}, \tilde{B}_{0}\right)=(A+\Delta A, B+\Delta B, R+\Delta R, L+\Delta L, Q+$ $\Delta Q, A_{0}+\Delta A_{0}, B_{0}+\Delta B_{0}$), which are coefficient matrices of the perturbed CRREs (10). We apply the efficient method called GSM [14] associated with NM to solve the CRREs (1) and perturbed CRREs (10) and get the unique stabilizing and maximal solutions X and \tilde{X} respectively, then compute the relative errors under three kinds of perturbation analyses such as $r_{n}^{C R R E}, r_{m}^{C R R E}$ and $r_{c}^{C R R E}$ with different weighted coefficients 10^{-k}, for $k=5, \ldots, 10$.

From Theorems 3.4 and 3.6, we can obtain their upper bounds $n_{u}^{C R R E}$, $m_{u}^{C R R E}$ and $c_{u}^{C R R E}$. Set

$$
\begin{aligned}
\epsilon_{n}:= & \max \left\{\frac{\|\Delta A\|_{F}}{\|A\|_{F}}, \frac{\|\Delta B\|_{F}}{\|B\|_{F}}, \frac{\|\Delta R\|_{F}}{\|R\|_{F}}, \frac{\|\Delta L\|_{F}}{\|L\|_{F}}, \frac{\|\Delta Q\|_{F}}{\|Q\|_{F}}, \frac{\left\|\Delta A_{0}\right\|_{F}}{\left\|A_{0}\right\|_{F}},\right. \\
& \left.\frac{\left\|\Delta B_{0}\right\|_{F}}{\left\|B_{0}\right\|_{F}}\right\} \\
\epsilon_{m}:= & \min \{\epsilon:|\Delta A| \leq \epsilon|A|,|\Delta B| \leq \epsilon|B|,|\Delta Q| \leq \epsilon|Q|,|\Delta L| \leq \epsilon|L| \\
& \left.|\Delta R| \leq \epsilon|R|,\left|\Delta A_{0}\right| \leq \epsilon\left|A_{0}\right|,\left|\Delta B_{0}\right| \leq \epsilon\left|B_{0}\right|, \epsilon>0\right\}
\end{aligned}
$$

it can be found from Table 1 that the perturbation bounds are close to relative errors under three kinds of perturbation analyses such as $r_{n}^{C R R E} \lesssim$ $\epsilon_{n} n_{u}^{C R R E}, r_{m}^{C R R E} \lesssim \epsilon_{m} m_{u}^{C R R E}$ and $r_{c}^{C R R E} \lesssim \epsilon_{m} c_{u}^{C R R E}$, that is, (21), (22) and (23) give sharper upper bounds of the relative errors with respect to the unique stabilizing solution X.

Example 2 (CRREs [27])

The example 2 involves circulant matrices, modified from [27, Example 5] with the addition of stochastic disturbances A_{0} and B_{0}. Consider the CRREs (1) with $n=m=100$ and $N=1$,

$$
\begin{aligned}
& A=\left[\begin{array}{cccccc}
-2 & 1 & 0 & \cdots & 0 & 1 \\
1 & \ddots & \ddots & & & 0 \\
0 & \ddots & \ddots & \ddots & & \vdots \\
\vdots & & \ddots & & & \vdots \\
\vdots & & & & & 0 \\
0 & & & & & 1 \\
1 & 0 & \cdots & 0 & 1 & -2
\end{array}\right], \\
& Q=\left[\begin{array}{cccccc}
4.595 & -2 & 0 & \cdots & 0 & -2 \\
-2 & 4.99 & \ddots & & & 0 \\
0 & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & & & 0 \\
0 & & & & & -2 \\
-2 & 0 & \cdots & 0 & -2 & 4.99
\end{array}\right], \\
& L=0_{100}, \quad B R^{-1} B^{\top}=I_{100}, \quad X_{0}=I_{100}, \\
& A_{0}=0.1 * I_{100}, \quad B_{0}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & 0 & \cdots & \cdots & 0 \\
\vdots & \vdots & & & \vdots \\
\vdots & \vdots & & & \vdots \\
0 & 0 & \cdots & \cdots & 0
\end{array}\right]
\end{aligned}
$$

We generate one random sample $\left(\Delta A, \Delta B, \Delta R, \Delta L, \Delta Q, \Delta A_{0}, \Delta B_{0}\right)$ and obtain coefficient matrices of the perturbed CRREs (10), then the relative errors under the normwise, mixed and componentwise perturbation analysis are computed according to different weighted coefficients 10^{-k}, for $k=9,10,11,12,13,14$, respectively. Moreover, upper bounds under three kinds of perturbation analysis are following derived.

It can be seen from Table 2 that the values of the relative errors are closely bounded by our perturbation bounds of (21), (22) and (23). In other

Table 2: Example 4.2 (Condition Numbers of CRREs; $n=100, m=100$, $N=1$)

k	$r_{n}^{C R R E}$	$\epsilon_{n} n_{u}^{C R R E}$	$r_{m}^{C R R E}$	$\epsilon_{m} m_{u}^{C R R E}$	$r_{c}^{C R R E}$	$\epsilon_{m} c_{u}^{C R R E}$
9	$5.6622 \mathrm{e}-09$	$1.8864 \mathrm{e}-05$	$2.0797 \mathrm{e}-09$	$4.7837 \mathrm{e}-09$	$2.0797 \mathrm{e}-09$	$4.7837 \mathrm{e}-09$
10	$5.6475 \mathrm{e}-10$	$1.8865 \mathrm{e}-06$	$1.6699 \mathrm{e}-10$	$2.1944 \mathrm{e}-10$	$1.6699 \mathrm{e}-10$	$2.1944 \mathrm{e}-10$
11	$5.5968 \mathrm{e}-11$	$1.9095 \mathrm{e}-07$	$2.5674 \mathrm{e}-11$	$4.8917 \mathrm{e}-11$	$2.5674 \mathrm{e}-11$	$4.8917 \mathrm{e}-11$
12	$5.6183 \mathrm{e}-12$	$1.8865 \mathrm{e}-08$	$2.0756 \mathrm{e}-12$	$4.8413 \mathrm{e}-12$	$2.0756 \mathrm{e}-12$	$4.8413 \mathrm{e}-12$
13	$5.7175 \mathrm{e}-13$	$1.8679 \mathrm{e}-09$	$2.4425 \mathrm{e}-13$	$4.8040 \mathrm{e}-13$	$2.4425 \mathrm{e}-13$	$4.8040 \mathrm{e}-13$
14	$5.6072 \mathrm{e}-14$	$1.8882 \mathrm{e}-10$	$2.2871 \mathrm{e}-14$	$4.4806 \mathrm{e}-14$	$2.2871 \mathrm{e}-14$	$4.4806 \mathrm{e}-14$

words, (21), (22) and (23) does provide a sharp upper bound of the relative errors of the stabilizing solution X. Table 2 shows that our estimates are tight.

5. Conclusions

In this paper, we present condition numbers and upper bounds for the rational Riccati equations (1) under small perturbation in the coefficient matrices. Furthermore, some sufficient conditions are presented for the existence of the stabilizing solution to the $\operatorname{CRRE}(1)$ and perturbed CRRE (10), respectively. We highlight and compare the practical performance of the derived condition numbers and perturbation bounds under the normwise, mixed and componentwise perturbation analyses through two numerical examples. Numerical results show that we provide tight and sharp perturbation bounds of the stabilizing solution to CRRE, that is, our perturbation bound is very sensitive to the condition numbers of the stabilizing solution in small- and medium-sized problems about applications of a mathematical model [2] and a circulant matrix [27], respectively. For the large-scale problem, we can also get the condition estimates and upper bounds by modifying our algorithm and only need to consider the numerically low-rank and sparsity structures in solving CRREs. This will be our future work.

Acknowledgements

This work was supported by (a) Career Development Award of Academia Sinica (Taiwan) grant number 103-CDA-M04. (b) Ministry of Science and Technology (Taiwan) grant number 103-2811-M-001-166.

References

[1] P. Benner, Contributions to the Numerical Solutions of Algebraic Riccati Equations and Related Eigenvalue Problems, PhD Thesis, Fakultät für Mathematik, TU Chemnitz-Zwickau, Chemnitz, Germany, 1997.
[2] P. Benner, A.J. Laub, V. Mehrmann, A collection of benchmark examples for the numerical solution of algebraic Riccati equations i : continuous-time case, Tech. Report SPC 95_22, Fak. f. Mathematik, TU Chemnitz-Zwickau, Germany, October, 1995.
[3] R. Byers, Numerical condition of the algebraic Riccati equation, In: Datta, B.N. (ed.), pp. 35-49. AMS, Providence, RI, 1985. MR0828291
[4] R. Byers, Solving the algebraic Riccati equation with the matrix sign function, Linear Algebra Appl. 85 (1987) 267-279. MR0869359
[5] C.-H. Chen, Perturbation analysis for solutions of algebraic Riccati equations, J. Comput. Math. 6 (1988) 336-347. MR0968549
[6] C.-Y. Chiang, H.-Y. Fan, Residual bounds of the stochastic algebraic Riccati equation, Appl. Numer. Math. 63 (2013) 78-87. MR2997903
[7] C.-Y. Chiang, H.-Y. Fan, M.M. Lin, H.-A. Chen, Perturbation analysis of the stochastic algebraic Riccati equation, J. Inequal. Appl. 580 (2013) 1-22. MR3213004
[8] E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl. 396 (2005) 55-80. MR2112199
[9] E.K.-W. Chu, H.-Y. Fan, W.-W. Lin, C.-S. Wang, A structurepreserving doubling algorithm for periodic discrete-time algebraic Riccati equations, Int. J. Control 77 (2004) 767-788. MR2072208
[10] T. Damm, Rational Matrix Equations in Stochastic Control, Lecture Notes in Control and Information Sciences, vol. 297, Springer Verlag, Berlin, 2004. MR2038790
[11] T. Damm, D. Hinrichsen, Newton's method for a rational matrix equation occurring in stochastic control, Lin. Algebra Applic. 332-334 (2001) 81-109. MR1839427
[12] C.Y. Deng, A generalization of the Sherman-Morrison-Woodbury formula, Appl. Math. Letts. 24 (2011) 1561-1564. MR2803709
[13] H.-A. Diao, D. Liu, S. Qiao, Structured condition numbers and small sample condition estimation of symmetric algebraic Riccati equations, Appl. Math. Comp. 314 (2017) 80-97. MR3683858
[14] H.-Y. Fan, P.C.-Y. Weng, E.K.-W. Chu, Numerical solution to generalized Lyapunov/Stein and rational Riccati equations in stochastic control, Numer. Algor. 71 (2016) 245-272. MR3452930
[15] G. Freiling, A. Hochhaus, On a class of rational matrix differential equations arising in stochastic control, Lin. Algebra Applic. 379 (2004) 43-68. MR2039296
[16] A.R. Ghavimi, A.J. Laub, Backward error, sensitivity, and refinement of computed solutions of algebraic Riccati equations, Numer. Linear Algebra Appl. 2 (1995) 29-49. MR1312129
[17] I. Gohberg, I. Koltracht, Mixed, componentwise, and structured condition numbers, SIAM J. Matrix Anal. Appl. 14 (1993) 688-704. MR1227773
[18] A. Graham, Kronecker Products and Matrix Calculus with Applications, Wiley, New York, 1981. MR0640865
[19] C.-H. Guo, Iterative solution of a matrix Riccati equation arising in stochastic control, Oper. Theory Adv. Appl. 130 (2001) 209-221. MR1902010
[20] C.-H. Guo, P. Lancaster, Analysis and modification of Newton's method for algebraic Riccati equations, Math. Comp. 67 (1998) 1089-1105. MR1459388
[21] D. Hinrichsen, A.J. Pritchard, Stochastic H_{∞}, SIAM J. Control Optim. 36 (1998) 1504-1538. MR1626868
[22] R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, Cambridge, 1991. MR1091716
[23] I.G. Ivanov, Iterations for solving a rational Riccati equations arising in stochastic control, Comput. Math. Applic. 53 (2007) 977-988. MR2333341
[24] C. Kenney, G. Hewer, The sensitivity of the algebraic and differential Riccati equations, SIAM J. Control Optim. 28 (1990) 50-69. MR1035972
[25] M.M. Konstantinov, P.H. Petkov, N.D. Christov, Perturbation analysis
of matrix quadratic equations, SIAM J. Sci. Statist. Comput. 11 (1990) 1159-1163. MR1068502
[26] P. Lancaster, L. Rodman, Algebraic Riccati Equations, Clarendon Press, Oxford, 1995. MR1367089
[27] A.J. Laub, A Schur method for solving algebraic Riccati equations, IEEE Trans. Autom Control 24 (1979) 913-921. MR0566449
[28] Mathworks, MATLAB User's Guide, 2002.
[29] R.V. Patel, A.J. Laub, P.M. Van Dooren, Introduction and survey, in Numerical Linear Algebra Techniques for Systems and Control, A Selected Reprint Volume, IEEE Control Systems Society, New York, 1994.
[30] M.A. Rami, X.Y. Zhou, Linear matrix inequalities, Riccati equations, and indefinite stochastic linear quadratic controls, IEEE Trans. Autom. Control 45 (2000) 1131-1143. MR1778371
[31] J.-G. Sun, Perturbation theory for algebraic Riccati equations, SIAM J. Matrix Anal. Appl. 19 (1998) 39-65. MR1609929
[32] S.-F. Xu, Sensitivity analysis of the algebraic Riccati equations, Numer. Math. 75 (1996) 121-134. MR1417866
[33] L. Zhang, H.-Y. Fan, E.K.-W. Chu, Y. Wei, Homotopy for rational Riccati equations arising in stochastic optimal control, SIAM J. Sci. Comput. 37 (2015) 103-125. MR3313834
[34] L. Zhou, Y. Lin, Y. Wei, S. Qiao, Perturbation analysis and condition numbers of symmetric algebraic Riccati equations, Automatica 45 (2009) 1005-1011. MR2535361

Peter Chang-Yi Weng
Guangdong-Taiwan College of Industrial Science and Technology
Dongguan University of Technology
Guangdong 523808
China
E-mail address: 2018232@dgut.edu.cn
Received July 8, 2020

