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Computational solution of fractional pantograph
equation with varying delay term

M. KHALID*, S. K. FAREEHA, AND S. MARIAM

Delay Differential Equations DDEs have great importance in real
life phenomena. Among them is a special type of equation known
as Pantograph Delay Differential Equation PDDE. Such kind of
equations cannot be solved using ordinary methods, and hence,
it becomes a challenge when the complexity increases, especially if
one wants to study Fractional Pantograph Delay Differential Equa-
tion (FPDDE). In this work, FPDDEs with a general Delay term is
solved numerically by an iteration method called Perturbation It-
eration Algorithm (PIA). It is based on the Taylor series and elim-
inates the non-linear terms easily. Iterative results are discussed in
detail in both tabular and graphical forms. A graphical interpre-
tation of the variability of the Delay term is also provided for a
deeper understanding of its range.
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1. Introduction

There is a class of differential equations known as Delay Differential Equa-
tions (DDEs), in which, for a certain time, the derivative of an unknown
function is provided in the form of previous functional values. DDEs are
important in applied form as:

e [t is well understood that engineers want their prototypes and simula-
tions to respond very much like the real processes, along with increas-
ing demands of dynamic efficiency. Most systems have a delay effect
phenomenon in their inner dynamics. Furthermore, such delays are
introduced by actuators, communication networks, and sensors now
involved in feedback control loops. Furthermore, in contrast to real
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delays, time lags are often used to simplify models of very high order.
This way, interest in DDEs continues to grow in all scientific fields,
particularly in control engineering.

e Delay systems are always sensitive to many basic controllers. If one
might try to replace them with some finite-dimensional approxima-
tions, which would be the easiest solution, sadly, neglecting results rep-
resented adequately by DDEs is not a particularly acceptable solution.
It contributes towards the same level of certainty in the control model
in the best possible situation (even for constant and known delays).
In the worst case scenario, it is potentially devastating in terms of
stabilization and oscillations (for example, time-varying delays).

e Delay characteristics are, however, remarkable as numerous researches
have shown that the insertion of delays on a voluntary basis can also
benefit control.

e However, given their complexities, DDEs often emerge as simple arbi-
trary infinite-dimensional models in differential equations.

General form of a time-delaying differential equation is given as
d
Eu(t) = f(t,u(kt),u(t)) whereu(t) € R"

Among them is a special kind of delay differential equation known as the
Pantograph Delay Differential equation

u'(t) = u(kt) where 0 < k <1

Due to the presence of k, even the linear form of pantograph equation cannot
be solved by using the basic methods available for solving such differential
equations. Also its initial value problems do not provide a particular solution.
Existence and uniqueness of solutions for the initial value problems of the
linear pantograph equation have notable differences for the varying choices
of initial points.

Pantograph equations were first derived in 1940 as part of the Number
Theory by Mahler [1]. But the term pantograph originates from Ockendon
and Taylor’s work on the existing range using the electric locomotive’s cate-
nary system. Their work was to assess the motion of a pantograph head
on an electric locomotive that receives current from a trolley overhead wire
by forming an equation [6]. Later, Kato & Mcleod [5] discussed the asymp-
totic properties and stability of solution for the pantograph equation of the
type ' (t) = au(kt) + bu(t). Later, Hale and Bellman & Cooke wrote two
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remarkable and comprehensive informative texts referring to the theories
of these DDEs, which included existence and uniqueness of their solutions,
continuous dependence, continuity of their solutions, differentiability of their
solutions, backward continuation, caratheodory conditions, asymptotic be-
haviour and stability of solutions [9, 8]. Some other researchers namely Derfel
[10], Kuang & Feldstein [11] and Morris [12] studied pantograph equation
for its stability properties, existence, and the uniqueness, continuous de-
pendence, continuity, differentiability of its solutions in complex domain C.
Later, Iserles [7] was the one who presented the pantograph equation in
generalized form i.e

o' (t) = au(kt) + bu(t) + cu’(kt)

and analyzed that there was no comprehensive explanation for the behaviour
of u on the stability boundary. Iserles also established that u was almost
periodic along a significant portion of that boundary, and if & was kept
rational, it was almost rotationally symmetrical.

This fascinating equation has a broad range of applications in the physi-
cal world and various fields of science as well. Some of these examples are the
graph theory [21], light absorption by interstellar structures [13], population
dynamics [20], analytic number theory [1], stochastic games [19], non linear
dynamical systems [14], queues and risk theory [18], probability theory of
algebraic structures [15], the theory of dielectric materials [17] and contin-
uum mechanics [16]. For such widely used DDEs, solving them analytically
is not always easy because of its delay term therefore numerical methods
have been applied to evaluate DDEs behaviour.

Wanjin & Hui [22] solved pantograph equation by utilizing higher-order
derivative methods with variable step size. Another researcher in [23] pro-
vided optimal tests of local super convergence for the differential pantograph
delay equation as special case of their general analysis. Numerical methods
that have been used to find the numerical solution of pantograph equation
are Differential Transform Method [26], Adomian Decomposition Method
[27], Homotopy Perturbation Method [28], Taylor Polynomials Method [29],
Bessel Functions Method [30], quadrature and interpolation procedures [24],
pseudo-spectral methods [25] etc. Another work was published in which
Perturbation Iteration Algorithm (PIA) was utilized for analyzing the nu-
merical solution of pantograph equation [2] and their results were approx-
imately better when compared with other numerical methods. PIA has al-
ready proven to be, among other contemporary numerical methods, the easi-
est and uncomplicated numerical method. It can numerically solve any kind
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of equation and it provides detailed and accurate results, for details, see
[31, 32, 33, 34, 35, 36]. However, all of the aforementioned methods have
only been used to solve the pantograph equation. Fractional pantograph
equation becomes more abstract and therefore requires enormous effort and
uncertainty in calculations.

Although the fractional calculus theory is as old as the integer calculus,
researchers are becoming more interested in it because of its comprehensive
and in-depth understanding of the real-world phenomena represented by
mathematical models. Fractional calculus can indeed be considered as a
generalization of classical calculus; it examines the complex number as well
as the real number as a derivative order. Infectious disease models, signal
processing, electrical networks, fluid mechanics, process of diffusion reaction,
HIV / Aids model, dengue fever and other physical phenomena have recently
been studied using fractional derivatives by a number of researchers [3, 4].

By using concepts of fractional calculus, various researchers studied frac-
tional pantograph equation. Among them Isah et al. [37] used a collocation
method on Genocchi Operational Matrix to obtain a solution for general-
ized fractional pantograph equation. Fractional pantograph equation was
also solved using Muntz—Legendre wavelet operational matrix of fractional-
order integration by Rahimkhani et al. see [41]. Spectral collocation method
was also utilized for finding the solution of fractional pantograph equa-
tion see [42]. Another interesting technique was applied based on Bernoulli
wavelets for the numerical solution of pantograph equation see [40]. By us-
ing preliminary concepts of fractional calculus and some fixed point theo-
rems, K. Balachandran et al. [43] studied the existence of solutions of non
linear fractional pantograph equation. Some analytical work is also been
done by some researchers including D. Vivek et al. [38] and A. Anguraj et
al. [39]. By considering fractional order derivatives and some related frac-
tional calculus principles, they studied the existence and uniqueness prop-
erties and stability of fractional pantograph equation in a very interesting
way.

Another numerical scheme of spectral collocation method was introduced
for solving this fractional pantograph equation with variable coefficients on
a semi-infinite domain. Spectral collocation method is based on the gener-
alized Laguerre polynomials and Gauss quadrature integration, which then
reduces to a system of algebraic equations for solving the generalized frac-
tional pantograph equation [44].

The main aim of this study is to numerically solve the fractional panto-
graph equation with delay term ‘k’, then review the results and evaluate the
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numerical differences caused by the delay term and fractional order deriva-
tive.

This paper is divided into the following sections: Section 1 is about
the historical background of pantograph equation with a brief overview of
its applications and numerical methods. Section 2 is about the preliminary
concepts of fractional calculus used in PIA for solving FPDDESs. Section 3 is
related to the mathematical formulation of PIA for solving FPDDEs. Finally,
Section 4 is based on four numerical examples that prove the efficacy of this
numerical method. Section 5 is the conclusion of this work.

2. Preliminary concepts of fractional calculus

Basic definitions of fractional calculus that will be used for solving FPDDESs
in this paper are as follows:

Definition 2.1. First of all, a famous and mostly used definition of Caputo
fractional derivative for fractional order « is defined as

(1) DFult) = oy [ (=7 ) dr

where n —1 < a <n, n € N, t>0. For « =1, Caputo sense derivative
becomes

du( )

) Du(t) = =4

2.1. Properties of Caputo fractional derivative

Some important properties of Caputo fractional derivative are given below:

) LA+ e
F'l++v—-a)

(b) D ( u(t)) = eDfu(t),

(¢) D (au(t) + bu(t)) = aDgu(t) + bDv ),

(d) Df‘c = 0, where a, b and c are constants.

(a) DytY = v >0,

Definition 2.2. Another important definition is of Riemann-Liouville inte-
gral

(3) Tou(t) = ﬁ /t (t— 1) lu(r)dr, a>0t>0,
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Another way to define Riemann-Liouville integral is as follows:

1 t — e lqr
m/tuu@)(t JeLar,

to is arbitrary but have fixed base point. Riemann-Liouville integral is well
defined and locally integrable function.

(4) oDy “ult) =

2.2. Properties of Riemann-Liouville integral

Some properties of Riemann-Liouville integral used in this paper are given
below:

JOu(t) = u(t),
d a+1 _ Jo
%J u(t) = Ju(t),
I'1+7~)
Jat’y = 3 ta+75
Fl4+v+a)

(5) J(JPu) = Jo P,
3. Mathematical formulation

Perturbation iteration algorithm is a method based on the Taylor series
which requires a small perturbation parameter to remove non linear terms
by formulating an iterative expansion. Therefore the equation obtained af-
ter iterative formula is the fractional delay differential equation that can be
solved by using any fractional definitions for solving a simple fractional dif-
ferential equation. The steps of perturbation iteration algorithm for solving
fractional pantograph delay differential equation are given below.
Consider the general form of FPDDE be written as

(6)
P = Fou(t) — g(t,u(kot), Fuu(kit), - - ,Fgu(kjt)> —0, j=0,1,2,---,

with initial conditions F"u(0) = C,(t) for r =0,1,2,---. Alsop < a < p+1
where p € R that describes the order of time fractional derivative and ¢t is
an independent variable. Here k; € (0,1) for j € R and u(t) is the unknown
function.
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PIA(1,1) denotes the expansion of Taylor series and correction terms
up to first order derivatives only. Assume an approximate solution of the
System

(7) UL i1 = Ul + €UT .

In Eq. (7) ug ,, is the only one correction term in the perturbation expansion
within the neighbourhood of ¢ = 0 and can be expanded or approximated
by Taylor series, where subscript m describes the number of iteration as m!"
iteration over this approximate solution

® Py L[] _en

where i is defined as
de

d ou O
(9) &~ dcou

+
[M]<

<apgu(kjt) ) ) )

- + .
O OF]u(k;t)! = Oe

J=1

Combining Eq. (8) and Eq. (9), an iteration equation is obtained

M1 poud K OFu(kit) 0 o1 .
(10) P_n;)EKE%JFZ( tae] apgu(kjt)>+ELoe‘

Eq. (6) is defined for the m + 1'” iterative equation by using Eq. (10) as
(1) Feult) = gt uma (ko) P ulkat), - P Dugkgt)) <o,

where j = 0,1,2,---. By using initial condition on Eq. (11) it may simply
reduce to the correction terms only.

(12) (Feu(t)) = L(g (t, u(kot), Fru(krt), - - ,Fgu(kjt))).

Eq. (12) can be integrated some initial guess, in most cases this initial guess
is the initial condition of respective problem. Therefore the first solution of
iterative process is obtained as ujo(t) = C,(t). Similarly by using Eq. (7)
further iterations i.e. uy 1 (%), u1,2(t), u1,3(t), -+ can be obtained up to n iter-
ations. These iterations can be terminated after getting a satisfactory result.
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For more general algorithm in PIA(n,m) more corrected terms can be added
in Eq. (7), since by increasing the number of corrected terms more algebra

and higher calculations will be involved so for this paper only one correction
term i.e. PIA(1,1) will be used.

4. Numerical examples

Now to show the efficacy of PIA for finding the numerical solution of
FPDDEs, four examples are considered

4.1. Example 1
First example [2] is
(13) Dou(t) =1—u?(kt),0<t<1,0<a<l,

with initial values u(t) = 0 and exact solution u(t) = Sin(t). For applying
PIA, put € with the nonlinear terms

D&u(t) = 1 — 2eu?(kt).
Using iteration formula of Eq. (10) and taking € = 1, we have
(Dfu(t)® = —Du(t) + 1 — 2u®(kt).

By applying the iteration formula with initial guess as ug(t) = 0 and solving
for PTA(1,1) following iterations have been obtained

t()é
=—
w () T(a+1)
e ol—2ap2043a (90 4 1
t@(t) = — ( )

IM'Na+1) T(a+1)TBa+1) "’
us(t) = t* 21T (2a + 1) N k0T (20 + NI (4 +1)
lla+1) T(a+1)2I'Ba+1) T(a+1)3TBa+ DI(5a+1)
2310970 (204-11)2T (6+-!1)
I+ 1) (3 + 1)2T(Ta + 1)’
te 21-2ak20130D (20 4 1)
“l) = 50T T Tat )TBat D)
23k09459T (20 + DT (da+ 1) 23k109%479T (20 + 1)2T (6ar + 1)

Ma+1)TBa+1)I'Ga+1) a4+ 1DTBa+1)2T(Ta+1)
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25k1294797 (20 + 1) (4o + )T (6 + 1)
a4+ DT Ba+ 1)I'(5a+ 1)I(Ta+ 1)

(14)
26k16at9ar(2a 4 1)2F(4a + 1)F(80¢ + 1)
I(a+ )T (B3a+ 1)2T(5a + DI (9 + 1)

4+ e

Iterations for a specific case of k = 1/2

sa
Ma+1)
t 2120439 (200 + 1)
Ta+1) T(a+1)2TBa+1)
to ol-20g3a] (20 4 1) 22720430(20 + 1)
) = 7T T e s ) T@a 1) T(a £ 1T (Ea £1)
23-60450 (20 + 1) (4a +1) 2371094707 (20 + 1)2 (6 4 1)
Fa+1)2TBa+ )L(Ga+1) I(a+1)*T(Ba+1)T(Ta+1)’
t 21720430 (20 + 1) 227294397 (20 + 1)
ul) = 5 P T s )T Ba 1) Tla+ 2 Ga + 1)
23623 (20 + 1)I'(4a + 1)
T(a+1)2CBa+ )T(Ga+1)
237100470 (20 + 1) (6 + 1)
T(a+1)TBa+ 1) (Ta+1)
25-120470 (20 4+ 1)T(4av + 1) (6 + 1)

( )

( )T

( ) (
Fla+1)TBa+ DNI'Ga+ 1)I(7Ta+1

( ) r

( 1)

( )

Ul (t) =

u9 (t) =

26~16a491 (200 4+ 1)2T" (4o + 1)T(8cx + 1)
I'(a+1)°T'(3a + 1)?T'(5a + 1)I'(9a + 1)
) )

) )

20-18ap9a (20 4+ 1)2T (6 + 1)T(8ar + 1
Ia+1)°T(3a+ 1)2T

—~|=< <=
—~|=< <=

1
(15) Tao+ 1T

Now, in order to check whether this numerical solution is accurate, compare
the iterative numerical solution at a = 1 and k = % with the exact solution
in tabular and graphical form. In Table 1 the comparison of series solution
of Example 4.1 obtained by PIA and the exact solution clearly shows the
accuracy of PIA for FPDDE. In Figure 1d the convergence of iterative so-
lutions is shown with the exact solution for interval ¢ € (0,10), it can be
clearly observed that as the number of iterations increases, the series solu-
tion converges. Hence the accuracy of PIA is proved for FPDDE. Figure 1c
also indicates the accuracy by the propagation of absolute error in fourth
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Table 1: Comparison of series solution of FPDDE in Example 4.1 obtained
through PIA at @« = 1 and k = % with its exact solution and its absolute

PIA

Abs Error

error
t Exact
0.0 | 0.0000000000
0.1 | 0.0998334166
0.2 | 0.1986693308
0.3 | 0.2955202067
0.4 | 0.3894183423
0.5 | 0.4794255386
0.6 | 0.5646424734
0.7 | 0.6442176872
0.8 | 0.7173560909
0.9 | 0.7833269096
1.0 | 0.8414709848

0.0000000000
0.0998334166
0.1986693308
0.2955202067
0.3894183423
0.4794255384
0.5646424721
0.6442176821
0.7173560740
0.7833268613
0.8414708609

0.000000000E4-00
1.249000903E-16
6.600275881E-14
2.532973831E-12
3.363703760E-11
2.496770013E-10
1.282366990E-09
5.107050005E-09
1.687976903E-08
4.837695300E-08
1.238749689E-07

u(t)

0.8

— a=0.6
a=0.7

0.6

=08
047 — =09

— a=10
0.2

L L L L -
0.2 04 0.6 0.8 1.0

(a) PIA solution for different value of
o

Error
12x1077
1.x1077 f
8.x107%
6.x1078 |
4.x1078 1

2.x1078 |

0.‘2 0.‘4 0.‘6 0.‘8 l:O
(c¢) Propagation of absolute error in
4th iteration at =1 and k = 1/2

0.5 1.0 1.5 2.0

(b) Comparison of solution with dif-
ferent values of k at o = 1 for Exam-

ple 4.1

—— dth Iteration

(d) Convergence of solution for dif-
ferent iteration with the exact solu-
tion for ¢ € (0, 10).

Figure 1: A complete graphical description of numerical solution of Exam-

ple 4.1 obtained by PTA.
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iteration of PIAat a = 1 and k = % Figure 1b is very interesting as it shows
the behaviour of numerical solution at a = 1 for different values of k. It is
observed that as the value of k gets closer to zero, the function stretches and
deviates downwards; but as the value of k£ gets bigger, the graph stretches
upwards. Figure la shows the fractional behaviour of PTA series solution
obtained for FPDDE at k = % Figure 1 gives a complete numerical analysis
of FPDDE in Example 4.1.

4.2. Example 2
Consider the linear fractional Pantograph differential equation
l<a<2 0<t<l,

(16) Dfu(t) = %u(t) + u(kt) — 2 + 2,

with initial condition 4(0) = 0, /(0) = 0 and exact solution u(t) = t>. Now
apply € with the nonlinear terms

Du(t) = %u(t) + eu(kt) — t* + 2.
Using iteration formula of Eq. (10) and consider € = 1, we have
3
(Dfu(t))® = =Difu(t) + Jult) + u(kt) - 2+ 2.

By applying the iteration formula and solving for PTA(1,1) with initial guess
as up(t) = t? following iterations have been obtained

2t 2t +2
ul) = 5t  Tatd)
u2(t) _ 2 B 2to<+2 (3 +4ka)t2a B (3 +4ka+2)t2a+2
[(a+1) T(a+3) 2I'(2a+1) 2(2a+3) 7
us(t) = 2t 202 N (3+4kY)t** (3 4 4koT2)per?
L(a+1) T(a+3) 2I'(2a+1) 2 (2a + 3)
k3030 3(AK2Y + 4k + 3)t3
[(Ba+1) 8T (3 + 1)
(16k3a+4 + 12k20¢+2 + 12ka+2 _ 9)t301+2
8T'(3cx + 3) ’
walt) = 2t 2 t? (B+ 4k (3 4 4koT2)pPor?
F(a+1) T(a+3) 2I'(2a+1) 2T (2 + 3)
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233 N 3(4Kk2 + 4k 4 3)13
I'(3a+1) 8'(3ar + 1)
(16k30+4 4 12k20+2 4 1250 +2 — g)3a+2

8I'(3a + 3)
(6459 + 48K5™ + 48K + 84K3* + 36k~ + 36k* + 27t N
32l (4 + 1)
(64k6a+6 + 48/?4(]{50‘ 4 k4a 4 k3a)>t4a+2
32I' (4o + 3)
36](72 kSa + k2a k) — 27 t4a+2
an (36 ) —2mper
32T (4o + 3)
iterations after assuming k = 1/2
2> 2t0+2
ul (t) = — N
MNa+1) T(a+3)
2 2ta+2 3t2a 217at2a 3t2a+2
ug(t) = - + + - -
MNa+1) T(a+3) 2I'2a+1) T'2a+1) 2I'(2a+3)
2—a—lt2a+2
I'2a+3)’
2 2ta+2 3t2a 217at2a 3t2a+2
us(t) = - - + - -
MNa+1) T(a+3) 2I'a+1) TI'(2a+1) 2I'(2a+3)
27a71t2a+2 32 . t3a 273a+12t3a 3. 272a71t3a
T(2a+3)  2TBatl) | T@at+l) | TBatl)
3.9-a—143a 3243042 3.9 2a—33a+2 3. 9—a—143a+2
Fla+1)  2Ba+3) I'(3a+3)  T'(Ba+3)
9—3a—343a+2
I'Ba+3) ’
2t 2t +2 32 1o 32t
uy(t) = — + + — —
MNa+1) T(a+3) 2'2a+1) T'(2a+1) 2I'(2a+3)
27a71t2a+2 32 . t3a 273a+12t3a 3. 272047115304
T2a+3)  2TBatl)  T@at+l) | TBatl)
3. 270471t3o¢ 32t3a+2 273a73t3a+2 3. 272a73t3a+2
Tla+1) 2I(3a+3) TI(Ba+3)  T(Ba+3)
3. 2—a—3t304+2 33t40¢ 2—60¢+1t4a 3. 2—5a—1t4o¢

M2a+3)  PTdatl)  T@a+1) = Tla+D)
3. 2—4a—1t4a 21 - 2—3@—3t4a 32 . 2—2@—3t4a 32 . 2—04—3t4a

Tdat+1) | T@a+1) | T@at1) | T@a+l)
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Table 2: Comparison of series solution of FPDDE in Example 4.2 obtained
through PIA at @« = 2 and k = % with its exact solution and its absolute

error

t Exact PIA Abs Error
0.0 | 0.0000000000 | 0.0000000000 | 0.0000000000E+00
0.1 | 0.0100000000 | 0.0100000000 | 0.0000000000E+00
0.2 | 0.0400000000 | 0.0400000000 6.9388939039E-18
0.3 | 0.0900000000 | 0.0900000000 7.7715611724E-16
0.4 | 0.1600000000 | 0.1600000000 2.4674706722E-14
0.5 | 0.2500000000 | 0.2500000000 3.5901837059E-13
0.6 | 0.3600000000 | 0.3600000000 3.2010505358E-12
0.7 | 0.4900000000 | 0.4900000000 2.0354162800E-11
0.8 | 0.6400000000 | 0.6399999999 1.0105460913E-10
0.9 | 0.8100000000 | 0.8099999996 4.1532333128E-10
1.0 | 1.0000000000 | 0.9999999985 1.4705379137E-09
3p4a+2
25T (4 + 3)

Now to check the accuracy, compare the iterative numerical solution at a = 2
and k = % with the exact solution in tabular and graphical form. In Table 2,
the comparison of series solution of Example 4.2 obtained by PTA and exact
solution clearly shows the accuracy of PIA for FPDDE. In Figure 2d, it
can be clearly observed that as the number of iterations increase the series
solution converges to exact solution. Figure 2c also indicates the accuracy
by propagation of absolute error in fourth iteration of PIA at o = 2 and
k = % Figure 2b is very interesting as it shows the behaviour of FPDDE
for different values of k at @ = 2. It is observed that as the value of k gets
closer to zero, the function stretches and deviates downwards. As the value
of k gets bigger, the graph stretches upwards. Figure 2a shows the fractional
behaviour of PIA series solution obtained for FPDDE at k = % Figure 2
gives a complete numerical analysis of Example 4.2.

4.3. Example 3

Consider non linear variable coefficient fractional differential equation with
pantograph delay [2]

(19) Dou(t) = u(t) — su(kt)?, t>0,1<a<2,

’

with initial condition w(0) = 0, v (0) = 1, and u(t) = te .
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u(t)

— a=16
a=17
a=18

— =19

05k — =20

L L L Lot
0.2 04 0.6 08 1.0

(a) PIA solution for different values  (b) Comparison of solution with dif-

of « ferent values of k£ at o = 2 for Exam-
ple.4.2
Error
14x107° F
12x107° F u(®)
Lx107°F
20
8.x1071°F .
1
6.x10710F
4.x10710F 1 2 3 4 5
2.x10710F o
=20

. . . | Loy
0.2 0.4 0.6 0.8 1.0

(¢) Propagation of absolute error in  (d) Convergence of solution for dif-
4th iteration at o = 2 and k = 1/2 ferent iteration with the exact solu-
tion for ¢ € (0,5).

Figure 2: A complete graphical description of numerical solution of Exam-
ple 4.2 obtained by perturbation iteration algorithm describing the accuracy
of this method.

Apply € with the non linear terms
o 8 2
Dfu(t) = u(t) — et—2u(kt) .
Using iteration formula of Eq. (10) and consider € = 1, we have
e’ c a 8 2
(Dfu(t)) = =D u(t) + u(t) — t—2u(kt) .

By applying the iteration formula and solving for PTA(1,1) with initial guess
as ug(t) =t

8kt~ ot
Ta+l) Tat2)

ul(t) =t—
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(t) . 8k2t°‘ N 128ka+3t2o¢—1r(a) N toz—f—l N
T T e+ ) T TeN(a+1) | T(a+2)

128k2°F3¢3710(2a)  8K*** 16k*T*°T(a + 1)
FBa)l(a+ 1l'(a+2) TRa+1) T(a+2)T'2a+1)
£ott 512K (20 — 1) SRR PAPOT (200 4 1)
I'2a +2) I'a+1)2I'(3a — 1) I(a+2)T(Ba+1)’
8kt 128k 320710 (o) 128k 343271 ()
us(t) =t — + +
L(a+1) I'(2a)(a +1) ['(3a)T(a + 1)

ot 128k2a 33011 (2q) 128k2e 3491 (2q)

T(a+2) + PBa)l(a+ 1) (a+2) T(da)T(a+ 1) (a+2)
8k 128k2et3¢39=10(20)  256Kk4 T34~ (3a) (o + 1)

F2a+1)  IBa)l(2a+ 1) ['(40)T(a + 1)2T'(2a + 1)
128k3a 344911 (3q) 16k2T2429T (o + 1)

(200 T@a)l(a+202a+1) Tla+2)l2a+1)
256k 331D (20) (a4 1)
L(4a)l(a+2)I'(2a + 1)

iterations for k = 1/2

2t tott
t)=t—
wi(t) TatD) T@t2)
ot 247at2aflr(a) tOerl
UQ(t) =t — +
MNa+1) TCol'(a+1) TI'(a+2)
24—2at3a—1F(2a) 2t2a (22—o¢t2ar(a + 1)

FBa)l(a+ 1Hl'(a+2) TRa+1) Ta+2)(2a+1)
t2a+1 (25—2at3a—21‘\(2a o 1) (21—2at2a—11-\(2a 4 1)

F2a+2) T(a+1)2TBa—1) T(a+1)2TBa+1)’

(t) . U 24—at2a—lr(a) 25—at2a—lr(a)

U =t- —

3 Ta+1) TR2a)l(a+1) TR (a+1)
247at3a711'\(a) taJrl 2472at3aflr(2a)

— - +
FBa)l'(a+1) Ia+2) T'Ba)l(a+1)I'(a+2)
24720%404711‘\(206) 2t2a N 2472at304711'\(2a)

Tda)(a+ D)l(a+2) T(2a+1)  TIBa)l(2a+1)
25—4o¢t4a—1r 3a)T 1 24—3at4o¢—1F 3

- (Ball(a+1) (a)

T(4a)T (a4 2)2T(2a +1) ' [(4a)l(a + D20 + 2)
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Table 3: Comparison of series solution of FPDDE in Example 4.3 obtained
through PIA at @« = 2 and k = % with its exact solution and its absolute

M. Khalid et al.

error

t Exact PIA Abs Error

0.0 | 0.0000000000 | 0.0000000000 | 0.0000000000E+00
0.1 | 0.0904837418 | 0.0904837362 5.6269247733E-09
0.2 | 0.1637461506 | 0.1637460076 1.4298986870E-07
0.3 | 0.2222454662 | 0.2222446256 8.4055811256E-07
0.4 | 0.2681280184 | 0.2681253667 2.6516651139E-06
0.5 | 0.3032653299 | 0.3032595460 5.7838779841E-06
0.6 | 0.3292869817 | 0.3292773811 9.6005419847E-06
0.7 | 0.3476097127 | 0.3475973945 1.2318176999E-05
0.8 | 0.3594631713 | 0.3594520921 1.1079200653E-05
0.9 | 0.3659126938 | 0.3659101533 2.5404711865E-06
1.0 | 0.3678794412 | 0.3678953574 1.5916191025E-05

Comparison in Table 3 and graphical figure as Figure 3 is given between
numerical solution obtained at « = 2 and k = % with its exact solution. In
Figure 3d convergence of iterative solutions is shown with the exact solution,
as the number of iterations increases, the series solution converges to exact
solution. Figure 3c also indicates the accuracy by the propagation of absolute
error in fourth iteration of PTA at « = 2 and k = % Figure 3b at o = 2 gives
the behaviour of FPDDE for different values of k. It is observed that as the
value of k gets closer to zero, the function stretches and deviates downwards;
as the value of k gets bigger, the graph stretches upwards. Figure 3a shows

the fractional behaviour of PIA series solution obtained for FPDDE at k = %
4.4. Example 4

Consider non linear variable coefficient fractional differential equation with
pantograph delay [45]

(22) Deu(t) = 2u(kt) —u(t) —t> =1, 0<t<1,2<a<3,

with initial condition, u(0) = 1, «/(0) = —4 and «”(0) = 0. The exact
solution is u(t) = 1 — 2t2. Apply € with the nonlinear terms

(23) D&u(t) = e2u(kt) — u(t) — et> — 1.
By using iteration formula in Eq. (10) and taking € = 1 Eq. (23) becomes

(24) (D§u(t)) = —Dfu(t) + 2u(kt) — u(t) — t* — 1.
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u(t) u(t)
s

04f 30F Lo
— a=16 25F
03} = =17
a=18 k=
02} — a=19 15F
— a=20 E
01} N — k=

- L L L -

U.‘Z U.‘4 U.‘B 0.‘8 1.0 05 10 15 2.0
(a) PIA solution for different values  (b) Comparison of solution with dif-

of « ferent values of k and o = 2 for Ex-
ample.4.3

Error
0.000014
0.000012

0.00001 -

8.x107° |
6.x107¢ |
4.x107°
2.x107°F
0.‘2 0.‘4 U.‘() 0.‘8 110 !
(c) Propagation of absolute error in  (d) Convergence of solution for dif-
4th iteration at « =2 and k = 1/2 ferent iteration with the exact solu-

tion for ¢ € (0,5).

Figure 3: Numerical solution of Example 4.3 obtained by PIA is given with
complete analysis.

By applying the iteration formula and solving with initial guess as ug(t) =
—4t + 1 following iterations have been obtained

5 t 2tat2
t)=1-2t" - —
ui(t) T(a+1) T(a+3)
9 4k2 -1 ta+2 2k — 1 t2a 2 2ka+2 t2a+2
wa(t) — 1 g 2RI (ke e p(aketayiEre
I'(a+3) I'2a+1) I'2a + 3)
242_1 a+2 9 a+4_2a+2_42_1 20042
walt) — 1 — 22— 24K = 1)t (8k k K2 1)t
I'a+3) I'(2a + 3)
(4k3% — 220 — 2k — 1)t3
I'(3a+1)

2(4k3a+4 o 2k2o¢+2 o 2ka+2 o 1)t3a+2
I'(Ba+3) ’
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2(4k2 _ 1)ta+2 2(8]{7a+4 _ 2ka+2 _ 4k2 _ 1)t2a+2

t) =1—2t> —
ua(t) Tla+3) T'(2a + 3)
2(4k2 . 1)(4k3a+4 - 2k,20¢+2 o 2ka+2 + 1)t3oz+2 B
I'(3a+3)
(25) (8KOY — 4kP™ — 4k — 2K5* 4+ 2> 4 2k — 1)t
Ida+1)
Iterations for k = % are
o 2tot+2

ul(t):1—2t2— -

Fa+1) T(a+3)’

(2a _ 2)t2a (2a+1 _ 1)t2a+2

22T(2a +1) = 2°T(a+3) '

(2304 + 22a+1 _ 4)t3oc (2301-‘1-2 + 22a+1 + 2a+1 _ 1)t304+2
203+ 1) 230417 (3 + 3) ’

(26(1 + 22a+2 o 25a+1 o 24a+1 + 23a+1 + 2a+2 o 8)t4a

2607 (4o + 1)
(212a+2 o 24a+2 o 25a+2 o 23a+1 4 22a+1 4 2a+1 o 1)t4a+2

260-+2T 4oy + 3)

UQ(t) =1-—2¢2 +

uz(t) =1 —2t> —

ug(t) =1 —2t* — +

(26) L

In order to confirm the accuracy of Eq. (26), it is compared with exact
solution at @ = 3 in tabular and graphical form. Figure 4 gives the complete
numerical analysis of Eq. (25) and Eq. (26) and result observations are
approximately the same as in above examples. In Figure 4d shows that
as the number of iterations increase the series solution converges to exact
solution. Figure 4c also indicates the accuracy by the propagation of absolute
error in fourth iteration of PIA. Figure 4b shows that as the value of k gets
closer to zero, the function stretches and deviates downwards; as the value
gets bigger, the graph stretches upwards. Figure 4a shows the fractional
behaviour of Eq. (26).

5. Conclusion

To sum up, an easy, fast converging numerical method is constructed in this
paper for solving the pantograph type fractional delay differential equation.
The proposed algorithm is based on the perturbation parameter e. The final
results are approximately equal to exact solutions. In this work, the role of
the delay term k in the fractional equation is observed. This delay term,
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o) u(®)

~100
— a=26 b

-200 =27
=28 —4r
-300 — a=29
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-500

(a) PIA solution for different values  (b) Comparison of solution with dif-

of « ferent values of k and o = 3 for Ex-
ample.4.4
Error
5.x1073
u(t)
4.x1073 [ 100
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2.x10783 1 § 2nd Iteration
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(c) Propagation of absolute error in  (d) Convergence of solution for dif-
4th iteration at « =3 and k = 1/2 ferent iteration with the exact solu-
tion for t € (0,7).

Figure 4: Numerical analysis of series solution for Example 4.4 obtained by
PIA.

when present in solution, can stretch the solution of FPDDE upward and
downwards. When k is approaching zero, the solution stretches downwards;
whereas if the value of k gets farther away from zero, the solution deviates
upwards. In this work, not only is the efficacy of PIA for FPDDE proven,
the fractional behaviour for fixed delay term and variation in solutions due
to delay term is also shown.
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