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A structure-preserving method for solving the
complex �-Hamiltonian eigenvalue problem

Heng Tian, Xing-Long Lyu, and Tiexiang Li
∗

In this work, we present a new structure-preserving method to com-
pute the structured Schur form of a dense complex �-Hamiltonian
matrix H of moderate size. Origination of the complex �-Ham-
iltonian eigenvalue problem outside the control theory is briefly
discussed. Specifically, our method consists of three main stages.
At the first stage, we compute eigenvalues of H using the �-
symplectic URV-decomposition of complex H followed up with the
complex periodic QR algorithm to thoroughly respect the (λ,−λ)
pairing of eigenvalues. At the second stage, we construct the �-
isotropic invariance subspace of H from suitable linear combina-
tion of columns of U and V matrices from the first stage. At the
third stage, we find a �-symplectic-orthogonal basis of this invari-
ance subspace, which immediately provides the structured Schur
form of H . Several numerical results are presented to demonstrate
the effectiveness and accuracy of our method.

Keywords and phrases: Complex �-Hamiltonian eigenvalue prob-
lem, �-symplectic URV-decomposition, complex periodic QR algorithm,
complex �-Hamiltonian Schur form.

1. Introduction

In this paper, we consider solving in a structure-preserving manner the fol-
lowing structured eigenvalue problem

(1) H x ≡
[
A G
F −A�

] [
x1

x2

]
= λ

[
x1

x2

]
,

where A ∈ Cn×n, G = G� ∈ Cn×n and F = F� ∈ Cn×n with a moderate n.
Here, A� denotes the transpose of A. In addition, Ā and A∗ denote the
complex conjugate and conjugate transpose of A, respectively. The matrix
H in (1) acquires the �-Hamiltonian structure which will be more clear
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below, hence, the standard eigenvalue problem (1) is called the complex

�-Hamiltonian eigenvalue problem (�HEP). Hereafter, we directly call (1)

with H ∈ R2n×2n the real HEP, and simply call (1) with H ∈ C2n×2n the

�HEP, if no confusion occurs.

The �HEP does have some important physical originations. For exam-

ple, as noted in [19], the block structure of H is common to a variety

of quantum chemistry theories with distinct response functions, and pro-

vides a united framework to formulate the response theory which describes

molecules which are either isolated or embedded in a polarizable environ-

ment. In regard to the response of isolated molecules, the recognition of the

Hamiltonian structure with additional block structure A = A∗ and F = −Ḡ

in some linear response theory has been documented as early as in 1980s [22],

and is studied in [1, 8, 9, 16, 24]. On the other hand, in the non-variational

coupled cluster theory [19], which describes the response of molecules em-

bedded in the polarizable environment, the set of coupled response equations

lead to a �HEP as shown in (1), where A,−F and G in H have clear phys-

ical meaning. The pairing property of eigenvalues of H discussed below has

also been noticed by some quantum chemists.

To facilitate the discussion of the specific structures of (1), we lay out

the following definitions:

• J2n :=

[
0 In

−In 0

]
, where In is the identity matrix of size n× n.

• U ∈ C2n×2n is called �-symplectic if U�J2nU = J2n. We denote the

set of unitary �-symplectic matrices in C2n×2n by U�S2n := {U ∈
C2n×2n| U∗U = I2n, U�J2nU = J2n}.

• H ∈ C2n×2n is called �-Hamiltonian or �-skew-Hamiltonian if

(HJ2n)
� = HJ2n or (HJ2n)

� = −HJ2n, respectively.

• A subspace X ∈ C2n×m with 1 ≤ m ≤ n is called �-isotropic if

X�J2nX = 0, and it is called a �-Lagrangian subspace if it is �-

isotropic and m = n.

Moreover, it is rather easy to verify the following results, just by applying

the definitions above.

Proposition 1.

• A �-Hamiltonian matrix has the block form

[
A G
F −A�

]
, where A ∈

C2n×2n, F = F� ∈ C2n×2n and G = G� ∈ C2n×2n. Eigenvalues of a

�-Hamiltonian matrix always occur in pairs (λ,−λ).
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• A �-skew-Hamiltonian matrix has the block form

[
A G
F A�

]
, where

A ∈ C2n×2n, F = −F� ∈ C2n×2n and G = −G� ∈ C2n×2n. The eigen-
value of a �-skew-Hamiltonian matrix always has even multiplicity.

• Any U ∈ U�S2n can be partitioned as

[
U1 U2

−U2 U1

]
, with U1, U2 ∈

Cn×n.

In addition, the �HEP with A = A∗ and F = −Ḡ has more structures,
which are exploited in [1, 8, 9, 16, 24]. However, it is unclear to us how
the published techniques and computational methods for this special �HEP
can be conveniently adopted for solving the �HEP (1) with A �= A∗ and
F �= −Ḡ.

In [2], the �HEP, which is called complex J-symmetric eigenvalue prob-
lem there, is considered to some depth, and one of the foremost contri-
butions is that the existence of the structured Jordan form and complex
�-Hamiltonian Schur form of H are proved rigorously for the first time in
some sense. Moreover, three structure-preserving methods have been pro-
posed for the �HEP (1)—the QR-like algorithm, SR-like algorithm and em-
bedding complex H into a real Hamiltonian matrix, with the emphasis put
on the second algorithm, i.e., the structure-preserving SR-like algorithm and
the resulting complex �-symplectic Lanczos algorithm for the small dense
H and large sparse H , respectively. Besides, the main features of these
three algorithms are also summarized there. Specifically, the complexity of
the first method is as high as O(n4) for H of size n × n, which is quite
expensive, while the complexity of the latter two methods is O(n3) or less.
However, the second one is not backward stable. The third one is numer-
ically stable but relies on the inverse iteration, which could be relatively
expensive, to pick out the correct eigenvalues.

In this work, we will propose an alternative algorithm to solve the
�HEP (1) which is of O(n3) complexity, structure-preserving, numerically
stable, and free of deficiencies as just mentioned. In a nutshell, our method
amounts to computing the complex �-Hamiltonian Schur form of H . The
complex �-Hamiltonian Schur form (2) is pivotal to the �HEP (1). Once
the �-Hamiltonian Schur form is available, all eigenvalues of H are auto-
matically known, and more importantly, it is routine to retrieve eigenvectors
of H . Therefore, it is our main task in this paper to compute the complex
�-Hamiltonian Schur form (2). Furthermore, we note that the complex �-
Hamiltonian Schur form always exists for any complex �-Hamiltonian H
in (1). This fact is guaranteed by Theorem 1 [2] below.



202 Heng Tian et al.

Theorem 1. [2] For any complex �-Hamiltonian matrix H , there always
exists such Q ∈ U�S2n that

(2) Q∗H Q =

[
R C
0 −R�

]
=

⎡⎢⎢⎣
0

⎤⎥⎥⎦ , C = C�, R ∈ C
n×n.

In contrast to Theorem 1, the real Hamiltonian Schur form does NOT
always exist for a real Hamiltonian matrix [7]. In some cases, only the partial
real Hamiltonian Schur form can be computed by some sophisticated method
[21].

Hereafter, for convenience, we directly call (2) the �-Hamiltonian Schur
form. We make the following contributions in this paper on solving the dense
�HEP:

• We establish a stable structure-preserving method to compute all
eigenvalues of the �HEP, without embedding the complex H into
a real Hamiltonian matrix of the double size. Hence, we are free from
filtering away the spurious eigenvalues.

• We provide a different perspective of how to construct the �-isotropic
invariant subspace of H . This perspective in combination of some pro-
cedure to determine the orthogonal basis of the �-isotropic invariant
subspace leads to an efficient method to compute the �-Hamiltonian
Schur form (2), which is of O(n3) complexity, and easy to understand
and implement, though it is not strongly backwards stable for H . We
also show how this perspective helps us to understand the method
developed in [11].

The rest of this paper is organized as follows. In Sec. 2, we give a brief
overview of the structure-preserving algorithms to solve the real HEP. In
Sec. 3, we discuss the stable and structure preserving algorithm to calculate
all eigenvalues of the �HEP. In Sec. 4, we propose a simple and efficient
algorithm to compute the �-Hamiltonian Schur form, and we also address
the connection between our method and other related works.

Notations. The set C+ := {z ∈ C|�(z) > 0} ∪ {z ∈ ıR|	(z) > 0} with
ı =

√
−1 denotes all complex numbers lying in the right open half plane or

on the positive imaginary axis. For x ∈ C, we define the sign function by

sign(x) =

{
x/|x| if x �= 0,

1 if x = 0.
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ε is the machine precision 2−64 ≈ 2.22 × 10−16. A ⊕ B denotes the direct
sum of matrices A and B. ‖ · ‖F denotes the Frobenius norm of a vector or a
matrix. ej := In(:, j) denotes the j-th column of the identity matrix of size
n-by-n, where n can be known from the context.

2. Overview of the algorithm for the real HEP

The Hamiltonian structure and its properties are widely known within the
control theory [13, 14], particularly because of the intimate relation between
the stable invariant subspace of the real H and the stabilizing solution to
some quadratic matrix equation of great importance [14]. In passing, in
control theory, eigenvalues of H with negative real part are called stable
eigenvalues, and the corresponding invariant subspace is called the stable
invariant subspace of H .

For the past several decades, solving the real HEP has been studied ex-
tensively from the numerical linear algebra perspective, e.g., [4, 5, 7, 15, 17,
18, 23, 25] amongst other seminal works. In particular, Van Loan [25] has
first established the square-reduced method, which simply means that the
eigenvalues of H are obtained by taking the square root of those of H 2,
on the basis of the structure-preserving algorithm to compute the skew-
Hamiltonian Schur form [23] of H 2. However, this simple idea suffers from
a possible loss of accuracy of

√
ε for tiny eigenvalues of H . The Van Loan’s

curse [23], which is an open question related to the derivation of a numeri-
cally strongly backward stable method of O(n3) scaling to compute the real
Hamiltonian Schur form of a real Hamiltonian matrix, has plagued the re-
searchers for a long time. A breakthrough along this direction is made in
[4, 5].

Briefly speaking, the breakthrough consists in utilizing the symplectic
URV-decomposition of H and the relationship between the invariant sub-
spaces of a real Hamiltonian matrix H and the extended matrix

[
0 H

H 0

]
,

which can be seen as the implicit version of the square-reduced method
without the loss of accuracy due to explicit squaring of the matrix. The
accompanying algorithm, which we call the BMX algorithm, can compute
eigenvalues of H in a structure-preserving manner, and compute the sta-
ble invariant subspace of H satisfactorily if H has no eigenvalues near the
imaginary axis.

Furthermore, the long-standing Van Loan’s curse has finally been re-
solved in a more recent work [7]. With the assumption that the real Hamil-
tonian matrix has no purely imaginary eigenvalues, authors of [7] have shown
step by step that the real Hamiltonian Schur form of the real Hamiltonian
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matrix can indeed be computed in a numerically strongly backward stable

way in O(n3) flops. To have a completely different insight into why the new

method in [7] works even if the real Hamiltonian matrix has eigenvalues

near the imaginary axis, we refer the reader to [26]. The block version of

this method has also been developed in [21], which shares the same insight

with [26] and allows H to have tightly clustered groups of eigenvalues and

purely imaginary eigenvalues. This block algorithm arguably represents the

state-of-the-art method to solve the real HEP.

3. A stable algorithm to solve the eigenvalues of the �HEP

In this section, closely following the BMX algorithm, we present the struc-

ture-preserving method to compute all eigenvalues of the complex �-Hamil-

tonian matrix H , before the �-Hamiltonian Schur form (2) of H is actually

computed.

3.1. The �-symplectic URV decomposition

First of all, our method rests essentially on the following basic fact.

Theorem 2. For any W ∈ C2n×2n, there exist matrices U, V ∈ U�S2n such

that

(3) U∗WV =

[
R1 R3

0 R2

]
,

where R1 ∈ Cn×n is upper triangular and R2 ∈ Cn×n is lower Hessenberg

and R3 ∈ Cn×n is a general matrix.

The proof of this theorem is constructive. That is, we will propose an

algorithm to reduce a general complex matrix of even dimension into a form

on the right hand side of (3). To this end, extensive use will be made of two

types of elementary unitary complex �-symplectic matrices [23]: the com-

plex �-symplectic Givens matrices and complex �-symplectic Householder

matrices.

Specifically, given v ∈ C2n and j ∈ N with 1 ≤ j ≤ n, the complex

�-symplectic Givens matrix has a special form

(4) Gj(c, s) =

[
Cj(c) Sj(s)

−Sj(s) Cj(c)

]
∈ C

2n×2n
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with

(5a) Cj(c) = In + (c− 1)eje
�
j , Sj(s) = seje

�
j ,

and [ c s
−s̄ c ] being a Givens rotation such that[

c s
−s̄ c

] [
vj

vn+j

]
=

[
sign(vj)

√
|vj |2 + |vn+j |2
0

]
.(5b)

That is to say,

(5c) (c, s) =

⎧⎨⎩(1, 0) if vj = 0 = vn+j ,(
|vj |√

|vj |2+|vn+j |2
, sign(vj)vn+j√

|vj |2+|vn+j |2

)
otherwise.

The complex �-symplectic Householder matrices is a direct sum of two n-
by-n Householder matrices,

(6) Hj(u)⊕Hj(u) :=

(
In − 2

‖u‖2uu
∗
)
⊕
(
In − 2

‖u‖2 ūu
�
)
,

where u is a complex vector of length n with its first j−1 entries vanishing.
As is known, the Householder matrix is widely used to zero out last several
entries of a vector. Here, given x ∈ Cn and j ∈ N with 1 ≤ j ≤ n, if the
vector u in (6) is specified by its entries as follows

(7) uk =

⎧⎪⎨⎪⎩
0 if 1 ≤ k ≤ j − 1,

xk + ‖x(j :n)‖sign(xk) if k = j,

xk if j < k ≤ n,

then the Householder matrix Hj(u) defined in (6) can zero out last n − j
entries of x, as one can verify that

(8) Hj(u)
∗x = [x1, · · · , xj−1,−‖x(j :n)‖sign(xk), 0, · · · , 0]�.

In addition, please note that the Hermiticity of the complex Householder
matrix is not essential. Other variants of the complex Householder matrix
can achieve the similar goal as (8) does.

Moreover, to simplify the notation, for a given x ∈ C2n and j ∈ N, we
define

Ej(x) ≡ (Hj(w)∗ ⊕Hj(w)�)Gj(c, s)(Hj(u)
∗ ⊕Hj(u)

�),(9)
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Algorithm 1 Elementary eliminators

Input: x ∈ C
2n and j ∈ N with j ≤ n.

Output: u,w ∈ C
n and c, s ∈ C and the updated x ∈ C

2n.
1: Determine u ∈ C

n and Hj(u) such that the last n− j entries of x ← (Hj(u)
∗⊕

Hj(u)
�)x are zero, according to (7) and (8).

2: Determine c and s from the j-th and (n + j)-th entries of x according to (5b)
and (5c). Update x ← Gj(c, s)x.

3: Determine w ∈ C
n and Hj(w) such that the (j + 1)-th to the n-th entries of

x ← (Hj(w)∗ ⊕Hj(w)�)x are zero, according to (7) and (8).

where Hj(u), Hj(w) and Gj(c, s) are computed via Algorithm 1, and

(10) En+j(x) ≡
[
0 In
In 0

]
Ej (x([n+ 1:2n, 1:n]))

[
0 In
In 0

]
.

On the basis of Algorithm 1, we propose Algorithm 2 to construct the

complex �-symplectic URV-decomposition (3) of a general complex matrix.

In particular, if W in (3) is complex �-Hamiltonian, then a simple calcula-

tion yields

(11) U∗W 2U =

[
−R1R

�
2 R1R

�
3 −R3R

�
1

0 −R2R
�
1

]
,

which means that eigenvalues of W are square roots of those of the Hessen-

berg matrix −R1R
�
2 or −R2R

�
1 .

Algorithm 2 Complex �-symplectic URV decomposition

Input: A general matrix W ∈ C
n×n.

Output: Unitary�-symplectic matrices U, V ∈ U�S2n and U∗WV of the form (3).
1: U ← I2n and V ← I2n.
2: for j = 1 : n do
3: Set v = Wej .
4: Compute Ej(v) using (9) and Algorithm 1.
5: Update W ← Ej(v)W and U ← UEj(v)

∗.
6: if j < n then
7: Set u ← W�en+j .
8: Compute En+j+1(u) using (10) and Algorithm 1.
9: Update W ← WEn+j+1(u)

� and V ← V En+j+1(u)
�.

10: end if
11: end for
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3.2. The complex periodic QR algorithm

Recall that, although the singular values of A are square root of eigenvalues
of AA∗ or A∗A by definition, it is inadvisable to carry out the explicit matrix
multiplication in practical calculations, due to the loss of accuracy of

√
ε for

small singular values. More generally, the same rule holds for the product
eigenvalue problem, in which the matrix is given as the product of several
matrices, e.g., −R�

2 R1 in (11). In this case, the periodic QR algorithm [6, 12]
is the first choice. In a word, the complex periodic QR algorithm computes
two unitary matrices Z1 and Z2 such that Z∗

1AZ2 and Z∗
2BZ1 are both upper

triangular matrices.
Specifically, since the matrix factors R1 and R�

2 are already in the upper
triangular and upper Hessenberg form, respectively, we can directly perform
implicit QR steps by ‘bulge-chasing’ [6, 12], which is the key of the periodic
QR algorithm. Here, we only briefly describe one iteration of the ‘bulge-
chasing’ for AB ∈ Cn×n in Algorithm 3, which bears a strong resemblance
with the single-shift complex QZ algorithm for a complex generalized eigen-
value problem.

After running several iterations of Algorithm 3, some subdiagonal entry
A(k+1, k) of the Hessenberg matrix A will be regarded as zero if it satisfies

(12) |A(k + 1, k)| ≤ ε(|A(k, k)|+ |A(k + 1, k + 1)|).

Then eigenvalues of the original product AB become the union of those of
two or more uncoupled matrix products of smaller sizes, as illustrated in the
following

(13) AB =

[
A1 ∗
0 A2

] [
B1 ∗
0 B2

]
=

[
A1B1 ∗
0 A2B2

]
.

Hence Algorithm 3 will be applied to A1B1 and A2B2 separately. This pro-
cedure is repeated until A is reduced to the upper triangular form while B
remains upper triangular.

It could happen that one or more diagonal entries of the upper triangular
matrix B become negligibly small after running Algorithm 3 several times.
With regard to this, authors of [3] suggest that a diagonal entry B(k, k) of
B can be set to zero if it satisfies

(14) |B(k, k)| ≤ ε(|B(k − 1, k)|+ |B(k, k + 1)|).

Once B(k, k) = 0, one eigenvalue of AB directly becomes zero, and by
virtue of the deflation method discussed in [6], the rest eigenvalues of AB
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Algorithm 3 One iteration of the complex periodic QR algorithm [3]

Input: An upper Hessenberg matrix A ∈ Cn×n and an upper triangular matrix
B ∈ C

n×n with n ≥ 2.
Output: Unitary matrices Z1, Z2; the upper Hessenberg matrix Z∗

1AZ2 ∈ C
n×n

and the upper triangular matrix Z∗
2BZ1 ∈ C

n×n.
1: Set Z1 ← In and Z2 ← In.
2: Compute shifts σ1 as the eigenvalue of the 2-by-2 bottom right submatrix of

AB which is more close to the last entry of AB.
3: Set v ← (AB − σIn)e1.
4: Determine the Givens rotation K = [ c s

−s̄ c ] from v(1) and v(2) according to (5b)
and (5c).

5: Update A(1 :2, :) ← KA(1 :2, :), B(:, 1:2) ← B(:, 1:2)K∗ and Z1(:, 1:2) ← Z1(:
, 1:2)K∗.

6: Set u ← B(1 :2, 1).
7: Determine the Givens rotation K = [ c s

−s̄ c ] from u(1) and u(2) according to (5b)
and (5c).

8: Update A(:, 1:2) ← A(:, 1:2)K∗, B(1 :2, :) ← KB(1 :2, :) and Z2(:, 1:2) ← Z2(:
, 1:2)K∗.

9: for j = 2 : n− 1 do
10: Set v ← A(j :j + 1, j − 1).
11: Determine the Givens rotation K = [ c s

−s̄ c ] from v(1) and v(2) according
to (5b) and (5c).

12: Update A(j :j+1, :) ← KA(j :j+1, :), B(:, j :j+1) ← B(:, j :j+1)K∗ and
Z1(:, j :j + 1) ← Z1(:, j :j + 1)K∗.

13: Set u ← B(j :j + 1, j).
14: Determine the Givens rotation K = [ c s

−s̄ c ] from u(1) and u(2) according
to (5b) and (5c).

15: Update A(:, j :j+1) ← A(:, j :j+1)K∗, B(j :j+1, :) ← KB(j :j+1, :) and
Z2(:, j :j + 1) ← Z2(:, j :j + 1)K∗.

16: end for

are the union of those of two independent matrix products of smaller sizes,
which is similar to (13). However, so far, we are not quite convinced by
the error analysis in regard to (14). Especially, when (14) is fulfilled but
is intentionally neglected, the square root of the resulting eigenvalues of
AB could be comparable to

√
ε. We are not quite sure that such an eigen-

value of AB should be treated as zero. Therefore, at the moment we decide
to disregard the deflation induced by the criterion (14) in our computa-
tion.

To conclude this section, we summarize the main results in this and
previous subsections into the following theorem and corollary.

Theorem 3. For any complex �-Hamiltonian matrix H , there always exist
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matrices U, V ∈ U�S2n such that

(15) U∗H V = R =

[
R1 R3

0 R2

]
=

⎡⎢⎢⎣
0

⎤⎥⎥⎦ ,

where R1 ∈ Cn×n is upper triangular and R2 ∈ Cn×n is lower triangular.

Remark 1. To distinguish with �-symplectic URV-decompositions in (3)
and (15), we call (3) and (15) the unreduced and reduced �-symplectic URV-
decomposition, respectively. However, we intentionally use the same nota-
tions U, V,R1, R2 and R3 in (3) and (15), since in programming they just go
through the following in-place update from (3) to (15),

R1 ← Z∗
2R1Z1, U ← U(Z2 ⊕ Z2),

R2 ← Z�
2 R2Z1, V ← V (Z1 ⊕ Z1), R3 ← Z∗

2R3Z1,

where Z1 and Z2 are two unitary matrices computed by the complex periodic
QR algorithm.

Corollary 1. Given a complex �-Hamiltonian matrix H and (15), H 2 is
transformed into the following �-skew-Hamiltonian Schur form [23]

(16) U∗H 2U =

[
T1 ∗
0 T�

1

]
=

[
−R1R

�
2 ∗

0 −R2R
�
1

]
=

⎡⎢⎢⎣
0

⎤⎥⎥⎦ .

Similarly, it holds that

(17) V ∗H 2V = J2nR�J2nR =

[
T2 ∗
0 T�

2

]
=

[
−R�

2 R1 ∗
0 −R�

1 R2

]
,

where T2 ∈ Cn×n is upper triangular. Moreover, (λj ,−λj) is one pair of
eigenvalues of H with λj =

√
−R1(j, j)R2(j, j), j = 1, 2, · · · , n.

Remark 2. Throughout this paper, unless otherwise specified, we adopt
the convention of the square root function that

√
z ∈ C+ for any z ∈ C\{0},

i.e., √
(b+ ıc)2 = sign(b)(b+ ıc), b ∈ R\{0}, c ∈ R,(18a) √

−a2 = ı|a|, a ∈ R\{0}.(18b)
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4. A stable algorithm to compute the �-Hamiltonian Schur
form

4.1. �-Lagrangian invariant subspace of H

Similar to the real Hamiltonian Schur form, we can also require that all
eigenvalues of R in the �-Hamiltonian Schur form (2) belong to C+.

Below, we will explicate how the �-Hamiltonian Schur form is related
to the reduced �-symplectic URV-decomposition of H .

Lemma 1. [21] Given a non-singular complex �-Hamiltonian H ∈ C2n×2n

and its invariant subspace Xk ∈ C2n×k for some k ≤ n

(19) H Xk = XkBk,

where the eigenvalues of Bk ∈ Ck×k belong to C+, it holds that

(20) X�
k J2nXk = 0,

i.e., Xk is �-isotropic.

Proof. It follows from (19) that

J2nXkBk = J2nH Xk = −H �J2nXk,

hence,

X�
k J2nXkBk = −(H Xk)

�J2nXk = −B�
k X

�
k J2nXk.

That is, Yk := X�
k J2nXk satisfies the following Lyapunov equation

B�
k Yk + YkBk = 0.

Since the pairwise sums of eigenvalues of Bk are nonzero, then this Lyapunov
equation only admits a trivial solution Yk = X�

k J2nXk = 0.

It is highlighted that the machinery used above to guarantee the �-
isotropy of some invariant subspaces of H is quite general in the sense that
it works for any non-singular complex �-Hamiltonian matrix and real Hamil-
tonian matrix without purely imaginary eigenvalues. Moreover, in Lemma 1
no orthogality between columns of Xk is required.

In particular, to solve the �HEP (1) with non-singular H , the invari-
ant subspace Xk in Lemma 1 with k = n is most useful. As soon as the
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invariant subspace Xn of a complex �-Hamiltonian matrix H is found with
the associated eigenvalues all in C+ or none in C+ ∪ {0}, half of our task
to compute the �-Hamiltonian Schur form is done, since span(Xn) is essen-
tially the same as span(Q(:, 1:n)), where Q is the main object to be known
in (2).

Suppose that the invariant subspace Xn in Lemma 1 is found, then
the next step is to find a �-isotropic orthonormal basis of span(Xn). To
this purpose, the economy-sized QR decomposition of Xn can be utilized,
however, it could happen that the produced Q(:, 1:n) fails to be �-isotropic
to working precision. Therefore, we resort to the complex �-symplectic QR
decomposition [3, 12] whenever Xn is given as nonorthogonal columns. With
the �-isotropic orthonormal basis of span(Xn) at hand, the �-Hamiltonian
Schur form of H can be constructed.

In what follows, we make use of the reduced �-symplectic URV decom-
position (15) of H to construct the invariant subspace Xn of H .

If Xn satisfies (19) for k = n, then it holds that

(21) H 2Xn = XnB
2
n.

That is, Xn is a �-Lagrangian invariant subspace of H 2. On the other hand,
by (16) and (17), U(:, 1 :n) and V (:, 1 :n) are both �-Lagrangian invariant
subspaces of H 2, too. It is natural to ask how this unknown Xn is related
to [U(:, 1:n), V (:, 1:n)], since there can be at most 2n linearly independent
columns among Xn, U(:, 1:n) and V (:, 1:n).

In essence, the reduced �-symplectic URV-decomposition (15) of H can
be reformulated as

(22) H YUV = YUV M,

where

YUV = [U(:, 1:n), V (:, 1:n)] ∈ C
2n×2n,(23)

M =

[
0 R1

−R�
2 0

]
∈ C

2n×2n.(24)

Eigenvalues of M are just those ±λj ’s of H stated in Corollary 1. Fur-
thermore, by some routine procedures specified in Sec. 4.2 to construct a
desired unitary matrix P , this M can be transformed into an upper trian-
gular matrix M̃ = P ∗MP ∈ C2n×2n such that its first n diagonal entries all
belong to C+. Immediately, we arrive at the main result of this section.
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Theorem 4. Given a non-singular �-Hamiltonian H with YUV and M

satisfying (22) and

(25) M̃ = P ∗MP ∈ C
2n×2n

mentioned above, it holds that

(26) H X̃k = X̃kM̃(1 :k, 1:k),

where

(27) X̃k := YUV P (:, 1:k), 1 ≤ k ≤ n,

satisfies

(28) X̃�
k J2nX̃k = 0.

Moreover, span(X̃n) is a �-Lagrangian subspace.

Proof. Since by construction M̃ is upper triangular, the equality (26) follows

directly from (22) and (27). Since all eigenvalues of M̃(1 :k, 1 :k) belong to

C+, the �-isotropy of X̃k follows immediately from Lemma 1. Moreover,

comparing with (2), n columns of X̃n spans the same invariant subspace

of H as Q(:, 1 : n), therefore X̃n has full column rank and span(X̃n) is a

�-Lagrangian subspace.

Note that the columns of X̃k defined in (27) are usually not orthogonal

to each other for 2 ≤ k ≤ n. However, since X̃n satisfies (28), i.e., it contains

the first n columns of a 2n-by-2n �-symplectic matrix, then there exists a

Q ∈ U�S2n such that

(29) X̃n = Q

[
R11

0

]
= Q

⎡⎣
0

⎤⎦ ,

where R11 ∈ Cn×n is upper triangular. (29) is called the complex �-sym-

plectic QR decomposition [3, 12] of X̃n. Moreover, R11 in (29) is invertible,

since span(X̃n) is a �-Lagrangian subspace as shown in Theorem 4.

Theorem 5. Q∗H Q becomes the �-Hamiltonian Schur form with the very

Q in (29).
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Proof. Substituting (29) to (26) with k = n, we have

H Q(:, 1:n)R11 = Q(:, 1:n)R11M̃(1 :n, 1:n),

or rather

(30) H Q(:, 1:n) = Q(:, 1:n)
(
R11M̃(1 :n, 1:n)R−1

11

)
,

where the last factor on the right hand side is upper triangular. Further, as
soon as we set R = R11M̃(1 :n, 1 :n)R−1

11 , (30) becomes H Q(:, 1 :n) = Q(:
, 1:n)R; hence Q(:, 1:n)∗H Q(:, 1:n) = R. In addition,

Q(:, n+ 1:2n)∗H Q(:, n+ 1:2n) = Q(:, 1:n)�J2nH J �
2nQ(:, 1:n)

= −(Q(:, 1:n)∗H Q(:, 1:n))� = −R�.

Therefore, Q∗H Q is the �-Hamiltonian Schur form (2).

Remark 3. In practice, rather than compute R in this way, we would
compute R = Q(:, 1 : n)∗H Q(:, 1 : n) for the sake of stability. Similarly,
the off-diagonal block C of the �-Hamiltonian Schur form is computed by
C = Q(:, 1:n)∗H Q(:, n+ 1:2n).

Remark 4. Although we have not proven that YUV ∈ C2n×2n defined in (23)
is invertible, we can expediently think that (22) implies M = Y −1

UV H YUV ,
i.e., H is similar to M in (24), but not via a unitary �-symplectic matrix.
In this sense, our method using the results in Theorem 4 and Theorem 5 to
compute the �-Hamiltonian Schur form is some variant of the Laub trick
[14], which is NOT truly structure-preserving. However, we believe that our
method is stable, straightforward and friendly to the implementation.

4.2. The algorithm to compute the �-Hamiltonian Schur form

Here, we specify how to unitarily transformM defined in (24) into M̃ defined
in (25) with the particular ordering of the eigenvalues. By the perfect shuffle
matrix

(31) P1 = [e1, en+1, e2, en+2, · · · , en, e2n] ∈ R
2n×2n,

M is permuted into a quasi-upper triangular matrix P ∗
1MP1. Note that the

2-by-2 blocks

Dj =

[
0 R1(j, j)

−R2(j, j) 0

]
, 1 ≤ j ≤ n,
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along the diagonal of P ∗
1MP1 are special complex �-Hamiltonian matrices,

which can be transformed into the Schur form by Givens rotations. Specifi-
cally, since D2

je1 = λ2
je1 with λj =

√
−R1(j, j)R2(j, j), then λje1 +Dje1 is

the eigenvector of Dj , i.e.,

Dj

[
λj

−R2(j, j)

]
= λj

[
λj

−R2(j, j)

]
.

After determining the Givens rotation Kj such that Kj [λj , −R2(j, j)]
� ∝

[1, 0]� according to (5b) and (5c), KjDjK
∗
j becomes a 2-by-2 upper trian-

gular matrix

KjDjK
∗
j =

[
λj ∗
0 −λj

]
, 1 ≤ j ≤ n.

Letting

(32) K = K1 ⊕K2 ⊕ · · · ⊕Kn,

consequently, KP ∗
1MP1K

∗ is upper triangular. Moreover, we would like to
swap all diagonal entries of KP ∗

1MP1K
∗ which belong to C+ to the leading

block while the rest diagonal entries are moved to the bottom block. This re-
ordering is a routine task in numerical linear algebra. Some highly efficient al-
gorithm has been developed, e.g., in [12], to compute a unitary matrix P2 and
the upper triangular matrix P ∗

2KP ∗
1MP1K

∗P2 with the specified ordering
of the eigenvalues. Now, denote P = P1K

∗P2, then this P ∗
2KP ∗

1MP1K
∗P2

can be identified with the desired M̃ in Theorem 4.

Remark 5. When the Schur form KP ∗
1MP1K

∗ is reordered, to prevent the
numerical instability, we also need to identify the clusters of eigenvalues of
H if they exist. To this end, we can adopt the criterion used in [21].

In [7, 21, 26], in order to preserve the �-skew-Hamiltonian form U∗H 2U
in (16) at each step of transforming U∗H U to the �-Hamiltonian Schur
form, some sophisticated procedures are proposed to construct the Q ma-
trix.

However, in our problem it is only necessary that Q∗H 2Q is in the
�-skew-Hamiltonian form at the end, therefore, we decide to resort to the
procedure in Algorithm 4 to compute the complex �-symplectic QR decom-
position of X̃n, where only the elementary eliminators (9) are used, to find
an orthonormal basis of span(X̃n).

Now, we summarize the above derivations and discussions into Algo-
rithm 5 to compute the �-Hamiltonian Schur form (2) of a non-singular
complex �-Hamiltonian matrix H .
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Algorithm 4 �-symplectic QR decomposition [3, 12]

Input: A general matrix W ∈ C
2n×m with n ≥ m > 1.

Output: P ∈ U�S2n and P ∗W ∈ C
2n×m.

1: Set P ← I2n.
2: for j = 1:m do
3: Set x = W (:, j).
4: Compute Ej(x) using (9) and Algorithm 1.
5: Update W ← Ej(x)

∗W .
6: Update P ← PEj(x).
7: end for

Algorithm 5 A stable algorithm to compute the �-Hamiltonian Schur form
Input: A non-singular complex �-Hamiltonian matrix H .
Output: The �-Hamiltonian Schur form (2).
1: Compute the reduced �-symplectic URV decomposition of H (15) using Algo-

rithm 2 followed by Algorithm 3.
2: Form M in (24) and set P = P1 with P1 in (31).
3: Update M ← P ∗MP .
4: for j = 1:n do
5: Construct the Givens rotation Kj from λj =

√
−R1(j, j)R2(j, j) and

−R2(j, j) according to (5b) and (5c).
6: end for
7: Construct K in (32).
8: Update M ← KMK∗ and P ← PK∗.
9: Determine a unitary matrix P2 such that the first n diagonal entries of the

reordered Schur form P ∗
2MP2 belong to C+.

10: Update P ← PP2.
11: Compute X̃n according to (27).

12: Compute Q ∈ U�S2n via the �-symplectic QR decomposition of X̃n using Al-
gorithm 4.

13: Compute R = Q(:, 1:n)∗H Q(:, 1:n).
14: Compute C = Q(:, 1:n)∗H Q(:, n+ 1:2n).

With the �-Hamiltonian Schur form (2) ready, it is rather easy to com-
pute eigenvectors of H . To compute eigenvectors of �-Hamiltonian Schur
form is almost the same as those of the common Schur form, based on which
the eigenvectors of H are obtained. Hence, we will not discuss the details
here.
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4.3. Connection with other methods to compute the �-isotropic
invariant subspace of H

By Theorem 2.1 of [4], the stable invariant subspace of a real H is com-
puted using some invariant subspace of the extended matrix

[
0 H

H 0

]
in [3, 4].

By simple calculations, one can verify that Theorem 2.1 of [4] leads to the
identical invariant subspace X̃n of H defined in (27) with the associated
eigenvalues of H belong to C+. However, our main conclusion in Theorem 4
is directly obtained from (22), instead of a more complicated extended ma-
trix.

In section 3 of [11], a method has been proposed to extract the stable
invariant subspace of a large sparse real Hamiltonian matrix H from the
invariant subspace of H 2. Here we re-derive that method from (22) with
the aid of the sign function of M .

For convenience, we denote the sign function of M by signm(M). In
light of the special form of M in (24), by Chapter 5 of [10], we have

(33) signm(M) = M
(
sqrtm(M2)

)−1
=

[
R1 (sqrtm(T2))

−1

−R�
2 (sqrtm(T1))

−1

]
,

where T1 and T2 are defined in Corollary 1 and sqrtm(T1) denotes the
square root function of T1. In addition, even if T1 has some negative eigen-
values, so long as the convention (18) of the square root function is adopted,
sqrtm(T1) is well-defined via the established Schur-Parlett algorithm [10]
and its eigenvalues still belong to C+. Moreover, by Theorem 5.1 in [10],
(I2n + signm(M))[In, 0]� is the invariant subspace of M associated with
the eigenvalues in C+. Indeed, with (33), it is easy to see that

M(I2n + signm(M))

[
In
0

]
=

[
0 R1

−R�
2 0

] [
In

−R�
2 (sqrtm(T1))

−1

]
=

[
sqrtm(T1)

−R�
2

]
=

[
In

−R�
2 (sqrtm(T1))

−1

]
sqrtm(T1).(34)

Let

Ũn := YUV

[
In

−R�
2 (sqrtm(T1))

−1

]
=U(:, 1:n)− V (:, 1:n)R�

2 (sqrtm(T1))
−1,

(35)

then it follows from (22) that

H Ũn = Ũnsqrtm(T1).(36)
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Furthermore, by noting that V (:, 1 :n)(−R�
2 ) = H U(:, 1 :n), we can alter-

natively define

(37) Ũn = H U(:, 1:n) + U(:, 1:n)sqrtm(T1),

instead of (35), which still satisfies (36). One can verify that Ũn defined
in (37) is identical to the invariant subspace of H constructed in section 3
of [11]. In passing, by Lemma 1, Ũn is �-isotropic.

Since both P (:, 1 : n) in (27) and (I2n + signm(M))[In, 0]� spans the
same invariant subspace of M , we must have

−R�
2 (sqrtm(T1))

−1 = P (n+ 1:2n, 1:n)P (1 :n, 1:n)−1.

However, in practice, we should avoid using P (:, 1:n) in (27) to compute Ũn

in (34), especially when P (1 :n, 1:n) is ill-conditioned.

5. Numerical results

We have implemented the algorithms in previous sections in MATLAB [20]
language. All numerical computations in this paper are performed in double
precision by running MATLAB [20] of version 2019b on a laptop with an
Intel Core i7-8650U 1.90GHz CPU and 16GB RAM.

5.1. Accuracy and efficiency of the reduced �-symplectic
URV-decomposition

We test Algorithm 2 followed by the complex periodic QR algorithm on a
series of random �-Hamiltonian matrices H ∈ C2n×2n with n ranging from
20 to 600. These matrices are generated by the function rand of MATLAB.
Since the most time-consuming step is the complex periodic QR algorithm,
which is implemented without any blocking techniques, we decide to use
the average number iterations of Algorithm 3 to characterize its efficiency.
Specifically, for H ∈ C2n×2n, the average number of iterations (AverItn) is
defined by

AverItn =
the total number of times Algorithm 3 is executed

n
,

In Figure 1a, we plot the results of AverItn versus n, from which it is seen
that roughly 4 iterations of Algorithm 3 should be executed to obtain one
pair of eigenvalues of H .
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Figure 1: The efficiency and accuracy of the reduced �-symplectic URV-
decomposition.

To characterize the accuracy of the reduced �-symplectic URV-decom-

position (15) of H , we consider the relative residual

(38) r = ‖H YUV − YUV M‖F /‖H ‖F

of (22) with YUV defined in (23) and M defined in (24). For the same set

of �-Hamiltonian matrices H ∈ C2n×2n, we plot r defined in (38) versus

n in Figure 1b. Since these examples are not pathological, we have not en-

countered numerical difficulties during computing (15), hence the accuracy

is quite good, as shown in Figure 1b.

5.2. Accuracy of the �-Hamiltonian Schur form

As mentioned in Sec. 2, the block method to compute the real Hamilto-

nian Schur form has been developed in [21]. We also implement the complex

version of this method in MATLAB language. For comparison, we also im-

plement a variant of Algorithm 5 which is based on Ũn in (35) to construct

the �-Lagrangian invariant subspace of H . In brief, to compute the term

−R�
2 (sqrtm(T1))

−1 in (35), we need to first compute signm(M) using the

Parlett algorithm [10] and the relation

signm(M) = P1signm(P
∗
1MP1)P

∗
1 .
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To characterize the accuracy of the computed �-Hamiltonian Schur
form, we denote the relative residual of (2) by

rs = ‖H Q(:, 1 : n)−Q(:, 1 : n)R‖F /‖H ‖F ,

where s = schur, sign, and blk corresponding to Algorithm 5, the variant
of Algorithm 5 using (35) and the block method in [21]. We test these three
methods on some challenging cases, as shown below.

Each �-Hamiltonian matrix below is constructed using (2). Specifically,
we prepare a diagonal matrix D containing eigenvalues of H ∈ C2n×2n in
accordance with a specific requirement, and the upper triangular matrix
R ∈ Cn×n in (2) is obtained by computing the Schur decomposition of
Z∗DZ ∈ Cn×n with Z being a random unitary matrix. In addition, the C
block in (2) is generated by the function rand of MATLAB, and Q is just a
random unitary �-symplectic matrix.

Example 5.1. In this example, a complex �-Hamiltonian matrix H ∈
C100×100 is built with only one cluster consisting of 50 eigenvalues around−1.
These eigenvalues are clustered within a circle centered at −1 with the radius
being 10−6. For this H , we obtain the residual rschur = 2.34×10−15, rsign =
2.53× 10−11, and rblk = 1.25× 10−15 for the three methods respectively. In
this example, the first method is as accurate as the third method, however,
the second method is obviously less accurate, which could be due to the
relatively large error of the computed signm(M).

Example 5.2. In this example, we generate a complex �-Hamiltonian ma-
trix H ∈ C200×200 with 10 tight eigenvalue clusters on the left half complex
plane, which is illustrated in Figure 2a. The radius of each cluster is at most
10−6. Note that the correct index of clusters should be assigned to each
eigenvalue before the function ordschur of MATLAB is invoked. For this
H , we obtain the relative residual rschur = 3.41×10−15, rsign = 3.37×10−15

and rblk = 3.62× 10−15 for the three methods respectively. In this example,
the three methods are equally accurate.

Example 5.3. In this example, we construct a complex �-Hamiltonian
matrix H ∈ C400×400 with 5 tight eigenvalue clusters and some unclustered
eigenvalues, which is illustrated in Figure 2b. In the block method, 21 blocks
with different sizes are involved. We obtain the relative residual rschur =
4.69 × 10−15, rsign = 4.79 × 10−15 and rblk = 5.31 × 10−15 for the three
methods respectively. Again, in this example, the three methods are equally
accurate.
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Figure 2: The distribution of eigenvalues in Examples 5.2 and 5.3.
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6. Concluding remarks

In this paper, we present an O(n3) structure-preserving and numerically
stable algorithm to compute all eigenvalues of a complex �-Hamiltonian
matrix H in (1). Unlike the third algorithm proposed in [2], our method
deals with H directly and consequently computes no redundant eigenval-
ues.

We also provide a simple perspective to construct the �-Lagrangian in-
variant subspace of H , based on which the complex �-Hamiltonian Schur
form of H can be readily computed, without considering the extended ma-
trix

[
0 H

H 0

]
or H 2. In our numerical experiments, by testing three methods

on several challenging examples, we find that Algorithm 5 to compute the
�-Hamiltonian Schur form of H is competitive with the state-of-the-art
method in [21], and is simpler to understand and implement.
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