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A structure-preserving algorithm for the linear
lossless dissipative Hamiltonian eigenvalue problem

Xing-Long Lyu

In this paper, we propose a structure-preserving algorithm for com-
puting all eigenvalues of the generalized eigenvalue problem BAx =
λEx that arises in linear lossless dissipative Hamiltonian descrip-
tor systems, with B being skew-symmetric and A�E = E�A. We
rewrite the problem as BAE−1y = λy to preserve the symmetry of
A�E and convert the problem into the equivalent �-Hamiltonian
eigenvalue problem H z = λz. Furthermore, �-symplectic URV
decomposition and a corresponding periodic QR (PQR) method
are proposed to compute all eigenvalues of H . The structure-
preserving property ensures that the computed eigenvalues appear
pairwise, in the form (λ,−λ), as they should. Numerical experi-
ments show that the computed eigenvalues are more accurate and
strictly paired than those of the classical QZ method, while the
residuals of the eigenpairs are comparable.

Keywords and phrases: Structure-preserving algorithm, �-Hamil-
tonian eigenvalue problem, �-symplectic URV decomposition, periodic
QR.

1. Introduction

In recent years, the energy based modeling of dynamic systems gains great
attention, in which the port-Hamiltonian (PH) system [7, 8, 14, 18, 19, 23,
24] characterize models from variational principles. As a special case of PH
descriptor system, the linear time-invariant dissipative Hamiltonian (DH)
descriptor systems [2, 15, 16, 21], generally expressed as

(1) Eẋ = (B −R)Ax,

where B ∈ R2n×2n is nonsingular and skew-symmetric and A�E = E�A ∈
R2n×2n, have been widely considered in recent years. The matrix B is the
structure matrix, reflecting the energy flux among energy storage elements;
R is the dissipation matrix, describing the energy dissipation (due to dam-
pers, viscosity, resistors, etc.); and A�E = E�A guarantees the Hamiltonian
nature of the system.
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In this paper, for linear dissipative Hamiltonian descriptor systems,
we assume that R = 0 [20, 22], which corresponds to a lossless (energy-
conserving) model and is often adopted for RLC circuits and mass-spring-
damper (MSD) systems. In the lossless case, the DH eigenvalue problem
(DHEP) convert to a generalized eigenvalue problem (GEP)

(2) BAx = λEx,

of which the eigenpairs can be easily computed by QR-type eigensolvers,
e.g., the QZ method [17, 25]; however, the symmetry of A�E is ignored, and
consequently, the paired structure of the eigenvalues (λ,−λ) of (2), which is
an essential property of the original system, may be lost. Nevertheless, under
the assumption that E is invertible, (2) can be rewritten in the following
form:

(3) BAE−1y = λy.

We can consider B ∈ C2n×2n to be nonsingular and skew-symmetric, and
A�E = E�A ∈ C2n×2n; this constitutes one complex extension of the real
case. Notably, this complex case does not correspond to a complex lossless
dissipative Hamiltonian descriptor system [15], and further applications may
yet be discovered by researchers pursuing related work. However, the algo-
rithms proposed in this paper can perfectly fit a real system with only minor
revisions.

The main contributions of this paper are to prove that the product
eigenvalue problem given in (3) can be solved by instead computing one �-
Hamiltonian eigenvalue problem (�HEP) [12], and to propose a structure-
preserving algorithm that guarantees both the pairing property of the eigen-
values and the accuracy of the eigenpairs. In fact, only half of the eigenvalues
need to be computed during the implementation procedure.

The basic theories and algorithms for Hamiltonian eigenvalue problems
have been discussed in recent years; see, e.g., [1, 3, 6, 11]. Symplectic URV
decomposition [3, 4, 9] followed by the periodic QR method [5, 9, 10, 13]
is an efficient technique for computing all eigenvalues. Some trivial propo-
sitions regarding �-Hamiltonian matrices or unitary �-symplectic matrices
are applied in this paper without further explanation (refer to [3, 11] for
details).

Notations: Bold letters denote vectors; ek is the k-th column of an
identity matrix In; Ā, A

� and A∗ denote the conjugate, transpose and con-

jugate transpose of A, respectively; J =

[
0 In

−In 0

]
; H� is the set of complex
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�-Hamiltonian matrices; U�S is the set of unitary �-symplectic matrices;

and U is the set of unitary matrices.

2. Preliminaries

2.1. Similarity to a �-Hamiltonian matrix

In this section, we prove that the matrix product BAE−1 is similar to a

�-Hamiltonian matrix and yields a structure-preserving algorithm for com-

puting all eigenvalues of (3).

Theorem 1. There exist QB ∈ U2n×2n and a lower bidiagonal matrix

LB ∈ Cn×n s.t. QBBQ�
B =

[
0 LB

−L�
B 0

]
.

Proof. Since B is skew-symmetric, there exists a unitary matrix Q̃B s.t. B̃ ≡
Q̃BBQ̃�

B is an upper Hessenberg matrix; as a result, B̃ is skew-symmetric

and, thus, a tridiagonal matrix with all values on its main diagonal being

zero. Moreover, we let p = [1, n + 1, 2, n + 2, . . . , n, 2n], and B̃(p(:), p(:))

becomes

[
0 LB

−L�
B 0

]
.

The detailed derivations of QB and LB can be found in Algorithm 1.

Algorithm 1 Tridiagonal reduction of a complex skew-symmetric matrix

Input: A complex skew-symmetric matrix B ∈ C
2n×2n.

Output: QB ∈ U2n×2n and a lower bidiagonal matrix LB ∈ Cn×n s.t.

QBBQ�
B =

[
0 LB

−L�
B 0

]
.

1: QB ← I2n, PB ← I2n;
2: for i = 1 : 2n− 2 do
3: Compute Q = house(Bei, i+ 1, 2n), B ← QBQ�, QB ← QQB;
4: end for
5: Set p =

[
1, n+ 1, 2, n+ 2, . . . , n, 2n

]�
and rearrange all columns of PB as in p;

6: B ← PBBP�
B , QB ← PBQB and LB ← B(1 : n, n+ 1 : 2n).

Now, by combining the block structure of QBBQ�
B with the symmetry

of AE−1, we can prove that BAE−1 is similar to a �-Hamiltonian matrix.
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Theorem 2. Let R =

[
0 I

−L�
B 0

]
, Ã = Q̄BA, Ẽ = QBE, T =

[
LB 0
0 I

]
,

and

(4) H = RÃẼ−1T ∈ C
2n×2n.

Then, BAE−1 is similar to the �-Hamiltonian matrix H .

Proof. Consider that

QB(BAE−1)Q∗
B=(QBBQ�

B)(Q̄BAE−1Q∗
B)=

[
0 LB

−L�
B 0

]
(Q̄BA)(QBE)−1

=

[
LB 0
0 I

]([
0 I

−L�
B 0

]
(QBA)(QBE)−1

[
LB 0
0 I

])[
LB 0
0 I

]−1

.

Let Y = AE−1. Since A�E = E�A is symmetric, we know that Y is

symmetric. Let Y ≡
[
Y11 Y12
Y21 Y22

]
. In combination with the above definitions,

we find that

H = RÃẼ−1T = RYT

=

[
0 I

−L�
B 0

] [
Y11 Y12
Y21 Y22

] [
LB 0
0 I

]
=

[
Y21LB Y22

−L�
BY11LB −L�

BY12

]

is a complex �-Hamiltonian matrix.

Therefore, because of the similarity between BAE−1 and H , the eigen-

value problem expressed in (3) can be converted into the following complex

�HEP:

(5) H z = RÃẼ−1Tz = λz.

Accordingly, we can design a corresponding �-symplectic URV decomposi-

tion and periodic QR (PQR) method, as introduced in Section 3, to exploit

the matrix product structure and preserve the �-Hamiltonian structure of

H .

Since H is a �-Hamiltonian matrix, there exists a unitary �-symplectic

URV decomposition of H ; moreover, there exist unitary matrices W1, W2,
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and W3 s.t.

(6)

UH V ∗ = URÃẼ−1TV ∗ = (URW ∗
1 )(W1ÃW

∗
2 )(W3ẼW ∗

2 )
−1(W3TV

∗)

≡ RM ÃM Ẽ−1
M TM ≡

[
Rt Rr

0 Rb

] [
Ãt Ãr

0 Ãb

] [
Ẽt Ẽr

0 Ẽb

]−1 [
Tt Tr

0 Tb

]

=

[
RtÃtẼ

−1
t Tt ∗

0 RbÃbẼ
−1
b Tb

]
,

where T�
b is an upper Hessenberg matrix and Rt, R

�
b , Ãt, Ã

�
b , Ẽt, Ẽ

�
b and Tt

are upper triangular matrices. In this paper, we refer to the matrix structure
of RM , ÃM , and ẼM as the block-triangular form (BTF) and the structure
of TM as the triangular-Hessenberg form (THF).

2.2. Elementary unitary/unitary �-symplectic transformations

The decomposition of H in (6) can be realized by means of a series of uni-
tary �-symplectic transformations and standard unitary transformations.
Accordingly, the corresponding elementary transformations should be fully
utilized.

• We refer to H ∈ Cn×n as a Householder transformation matrix if

(7) H = In − 2ww∗,

with w ∈ Cn and ‖w‖2 = 1. Additionally, if x = [x1, . . . , xn]
�, we

write H = house(x, i, j) if H satisfies (7) and

Hx = [x1, . . . , xi−1, x̂i, 0, . . . , 0, xj+1, . . . , xn]
�,

where x̂i = ‖[xi, xi+1, . . . , xj ]
�‖2. The corresponding �-symplectic

Householder matrix H ∈ U
2n×2n
�S is a direct sum of two Householder

matrices, H =

[
H 0
0 H̄

]
= S-house(x, i, j).

• We refer to G ∈ Cn×n as a Givens rotation matrix if

(8) G = In + seie
�
j − s̄eje

�
i + (c− 1)(eie

�
i + eje

�
j ),

with c = cos(θ) and s = sin(θ). Additionally, we writeG = givens(x, i,
j) if G satisfies (8) and

[
c s
-s̄ c

] [
xi
xj

]
=

[
r
0

]
,
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where r = ‖[xi, xj ]�‖2. The corresponding�-symplectic Givens matrix

G ∈ U
2n×2n
�S is a direct sum of two Givens matrices, G =

[
G 0
0 Ḡ

]
=

S-givens(x, i, j).

3. A stable algorithm for computing the eigenvalues of H

3.1. �-symplectic URV decomposition of H

We divide the �-symplectic URV decomposition of H into four main steps;
subsequently, two unitary �-symplectic transformations and three unitary
transformations are computed. In the following steps, R(i), Ã(i) and Ẽ(i)

are matrices of the BTF, T (i) is a matrix of the THF, as shown in (6);

U (i), V (i) ∈ U
2n×2n
�S and W

(i)
j ∈ U2n×2n, for i = 1, 2, 3, 4 and j = 1, 2, 3.

Step 1: Find U (1) and W
(1)
1 s.t. R(1) = U (1)RW

(1)�
1 and Ã(1) = W

(1)
1 Ã.

The purpose of this step is to reduce R to the BTF. It can be

straightforwardly verified that U (1) = −J and W
(1)
1 =

[
I

−I

]

due to the special structure of R.

Step 2: Find U (2), W
(2)
1 and W

(2)
2 s.t. R(2) = U (2)R(1)W

(2)�
1 , Ã(2) =

W
(2)
1 Ã(1)W

(2)�
2 and Ẽ(2) = EW

(2)�
2 . The purpose of this step is to

reduce Ã(1) to the BTF while also preserving the BTF of R(1). The
elimination of nonzero elements in Ã(1) is similar to the standard
�-symplectic URV decomposition of a Hamiltonian matrix [3], but
the upper left corner of Ã(2) should be upper triangular. In particu-
lar, each row transformation generates one new nonzero element in
R(1); therefore, one unitary �-symplectic Givens rotation and one
unitary Givens rotation are needed to preserve the BTF of R(2).
Additionally, the column Householder transformations of Ã(1) lead
to column transformations of Ẽ(1).

Step 3: Find U (3), W
(3)
1 , W

(3)
2 and W

(3)
3 s.t. R(3) = U (3)R(2)W

(3)�
1 , Ã(3) =

W
(3)
1 Ã(2)W

(3)�
2 , Ẽ(3) = W

(3)
3 Ẽ(2)W

(3)�
2 and T (3) = W

(3)
3 T . The

purpose of this step is to reduce Ẽ(2) to the BTF while preserving
the BTFs of both R(2) and Ã(2). This step is similar to Step 2 but
is more cautious. In this step, the detailed reduction procedure
for Ẽ(2) follows the opposite order relative to that in Step 2. For
example, the nonzero elements in the (n + i)-th row of Ẽ(2) need
to be eliminated first, followed by the nonzero elements in the i-th
column.
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Step 4: Find U (4), V (4), W
(4)
1 , W

(4)
2 and W

(4)
3 s.t. R(4) = U (4)R(3)W

(4)�
1 ,

Ã(4) = W
(4)
1 Ã(3)W

(4)�
2 , Ẽ(4) = W

(4)
3 Ẽ(3)W

(4)�
2 and T (4) =

W
(4)
3 T (3)V (4), where T (4) is a THF matrix. The purpose of this

step is to reduce T (3) to the THF while preserving the BTFs of

R(3), Ã(3) and Ẽ(3). This step is also similar to Step 2. Note that

T (3) is a block diagonal matrix and that each block has dimensions

of n × n; accordingly, the computational costs of row and column

transformations for T (3) can be reduced.

Algorithm 2 Step 2 of �-symplectic URV decomposition for H

Input: R(1) ∈ C
2n×2n is of BTF, Ã(1) ∈ C

2n×2n and Ẽ(1) ∈ C
2n×2n.

Output: U (2) ∈ U
2n×2n
�S , W

(2)
1 ,W

(2)
2 ∈ U

2n×2n s.t. R(2) = U (2)R(1)W
(2)�
1 and

Ã(2) = W
(2)
1 Ã(1)W

(2)�
2 are of BTF.

1: U (2) ← I2n, W
(2)
1 ← I2n, W

(2)
2 ← I2n, R

(2) ← R(1), Ã(2) ← Ã(1), Ẽ(2) ← E.
2: for j = 1 : n do
3: for i = j : n− 1 do

4: Apply givens-trans(Ã(2)ej , n+ i+ 1, n+ i, R(2), Ã(2),W
(2)
1 );

5: Apply givens-trans(R(2)�ei+1, i+ 1, i, R(2), Ã(2),W
(2)
1 );

6: end for
7: Apply givens-trans(Ã(2)ej , n, 2n,R

(2), Ã(2),W
(2)
1 );

8: Apply S-givens-trans(R(2)en, n, 2n,R
(2), U (2));

9: for i = n− 1 : j do

10: Apply givens-trans(Ã(2)ej , i, i+ 1, R(2), Ã(2),W
(2)
1 );

11: Apply S-givens-trans(R(2)ei, i, i+ 1, R(2), U (2));

12: Apply givens-trans(R(2)e2n, n+ i, n+ i+ 1, R(2), Ã(2),W
(2)
1 );

13: if j < n then

14: Apply house-trans(Ã(2)�en+j , j + 1, n, Ã(2), Ẽ(2)�,W
(2)
2 );

15: Apply givens-trans(Ã(2)�en+j , n+ j + 1, j + 1, Ã(2), Ẽ(2)�,W
(2)
2 );

16: Apply house-trans(Ã(2)�en+j , n+ j, 2n, Ã(2), Ẽ(2)�,W
(2)
2 );

17: end if
18: end for
19: end for

We denote some notations to save illustrative words here, since there are

too many similar matrix operations during the URV decomposition of H .

• house-trans(x, i, j,X, Y,Q): determine H = house(x, i, j) and set

X = XH�, Y = HY and Q = QH�;
• S-house-trans(x, i, j,X,Q): determine H = S-house(x, i, j) and set

X = HX and Q = HQ;
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• givens-trans(x, i, j,X, Y,Q): determine G = givens(x, i, j) and set

X = XG�, Y = GY and Q = QG�;
• S-givens-trans(x, i, j,X,Q): determine G = S-givens(x, i, j) and set

X = GX and Q = GQ;

We summarize Step 2, Step 3 and Step 4 into Algorithm 2, 3 and 4, respec-

tively, for better showing the implementation details of the �-symplectic

URV decomposition of H .

As a result of the �-symplectic URV decomposition procedure, the �-

Algorithm 3 Step 3 of �-symplectic URV decomposition for H

Input: R(2), Ã(2) ∈ C
2n×2n are of BTF and Ẽ(2) ∈ C

2n×2n.

Output: U (3) ∈ U
2n×2n
�S , W

(3)
1 ,W

(3)
2 ,W

(3)
3 ∈ U

2n×2n s.t. R(3) = U (3)R(2)W
(3)�
1 ,

Ã(3) = W
(3)
1 Ã(2)W

(3)�
2 and Ẽ(3) = W

(3)
2 Ẽ(2)W

(3)�
3 are of BTF.

1: U (3) ← I2n, W
(3)
1 ← I2n, W

(3)
2 ← I2n, V

(3) ← I2n, R
(3) ← R(2), Ã(3) ← Ã(2),

Ẽ(3) ← Ẽ(2), T (3) ← T .
2: for j = 1 : n do
3: for i = j : n− 1 do

4: Apply givens-trans(Ẽ(3)�en+j , i+ 1, i, Ẽ(3), Ã(3)�,W
(3)
2 );

5: Apply givens-trans(Ã(3)ei, i, i+ 1, R(3), Ã(3),W
(3)
1 );

6: Apply S-givens-trans(R(3)ei, i, i+ 1), R(3), U (3);

7: Apply givens-trans(R(3)�en+i, n+ i, n+ i+ 1, R(3), Ã(3),W
(3)
1 );

8: Apply givens-trans(Ã(3)�en+i, n+ i, n+ i+ 1, Ã(3), Ẽ(3)�,W
(3)
2 );

9: end for
10: Apply givens-trans(Ẽ(3)�en+j , 2n, n, Ã

(3), Ẽ(3)�,W
(3)
2 );

11: Apply givens-trans(Ã(3)en, n, 2n,R
(3), Ã(3),W

(3)
1 );

12: Apply S-givens-trans(R(3)en, n, 2n,R
(3), U (3));

13: for i = n− 1 : j do

14: Apply givens-trans(Ẽ(3)�en+j , n+ i, n+ i+ 1, Ã(3), Ẽ(3)�,W
(3)
2 );

15: Apply givens-trans(Ã(3)en+i+1, n+ i+ 1, n+ i, R(3), Ã(3),W
(3)
1 );

16: Apply S-givens-trans(R(3)en+i+1, n+ i+ 1, n+ i, R(3), U (3));

17: Apply givens-trans(R(3)�ei+1, i+ 1, i, R(3), Ã(3),W
(3)
1 );

18: Apply givens-trans(Ã(3)�ei+1, i+ 1, i, Ã(3), Ẽ(3)�,W
(3)
2 );

19: if j < n then

20: Apply house-trans(Ẽ(3)ej , n+ j + 1, 2n, Ẽ(3)�, T (3)�,W
(3)�
3 );

21: Apply givens-trans(Ẽ(3)ej , j + 1, n+ j + 1, Ẽ(3)�, T (3)�,W
(3)�
3 );

22: Apply house-trans(Ẽ(3)ej , j, n, Ẽ
(3)�, T (3)�,W

(3)�
3 );

23: end if
24: end for
25: end for
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Algorithm 4 Step 4 of �-symplectic URV decomposition for H

Input: R(3), Ã(3), Ẽ(3) ∈ C2n×2n are of BTF, T (3) ∈ C2n×2n.

Output: U (4), V (4) ∈ U
2n×2n
�S , W

(4)
1 ,W

(4)
2 ,W

(4)
3 ∈ U2n×2n s.t. R(4) =

U (4)R(3)W
(4)�
1 , Ã(4) = W

(4)
1 Ã(3)W

(4)�
2 and Ẽ(4) = W

(4)
3 Ẽ(3)W

(4)�
2 are of BTF,

and T (4) = W
(4)
3 T (3)V (4) is of THF.

1: U (4) ← I2n, W
(4)
1 ← I2n, W

(4)
2 ← I2n, W

(4)
3 ← I2n, V

(4) ← I2n, R
(4) ← R(3),

Ã(4) ← Ã(3), Ẽ(4) ← Ẽ(3) and T (4) ← T (3).
2: for j = 1, . . . , n do
3: for i = j, . . . , n− 1 do

4: Apply givens-trans(T (4)ej , n+ i+ 1, n+ i, Ẽ(4)�, T (4)�,W
(4)�
3 );

5: Apply givens-trans(Ẽ(4)�en+i, n+ i, n+ i+ 1, Ã(4), Ẽ(4)�,W
(4)
2 );

6: Apply givens-trans(Ã(4)en+i+1, n+ i+ 1, n+ i, R(4), Ã(4),W
(4)
1 );

7: Apply S-givens-trans(R(4)en+i+1, n+ i+ 1, n+ i, R(4), U (4));

8: Apply givens-trans(R(4)�ei+1, i+ 1, i, R(4), Ã(4),W
(4)
1 );

9: Apply givens-trans(Ã(4)ei+1, i+ 1, i, Ã(4), Ẽ(4)�,W
(4)
2 );

10: Apply givens-trans(Ẽ(4)ei, i, i+ 1, Ẽ(4)�, T (4)�,W
(4)�
3 );

11: end for
12: Apply givens-trans(T (4)ej , n, 2n, Ẽ

(4)�, T (4)�,W
(4)�
3 );

13: Apply givens-trans(Ẽ(4)�e2n, 2n, n, Ã
(4), Ẽ(4)�,W

(4)
2 );

14: Apply givens(Ã(4)en, n, 2n,R
(4), Ã(4),W

(4)
1 );

15: Apply S-givens-trans(R(4)en, n, 2n,R
(4), U (4));

16: for i = n− 1, . . . , j do

17: Apply givens-trans(T (4)ej , i, i+ 1, Ẽ(4)�, T (4)�,W
(4)�
3 );

18: Apply givens-trans(Ẽ(4)�ei+1, i+ 1, i, Ã(4), Ẽ(4)�,W
(4)
2 );

19: Apply givens-trans(Ã(4)ei, i, i+ 1, R(4), Ã(4),W
(4)
1 );

20: Apply S-givens-trans(R(4)ei, i, i+ 1, R(4), U (4));

21: Apply givens-trans(R(4)�en+i, n+ i, n+ i+ 1, R(4), Ã(4),W
(4)
1 );

22: Apply givens-trans(Ã(4)�en+i, n+ i, n+ i+ 1, tAd, Ẽ(4)�,W
(4)
2 );

23: Apply givens-trans(Ẽ(4)�en+i+1, n+ i+ 1, n+ i, Ẽ(4)�, T (4)�,W
(4)�
3 );

24: if j < n then
25: Apply S-house-trans(T (4)�en+j , j + 1, n, T (4)�, V (4)�);
26: Set x = T (4)�en+j and determine G = givens(x, n+ j + 1, j + 1);
27: Set T (4) = T (4)G� and V (4) = V (4)G�;
28: Set x = T (4)�en+j and determine H = S-house(x, n+ j + 1, 2n);
29: Set T (4) = T (4)H� and V (4) = T (4)H�;
30: end if
31: end for
32: end for
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Hamiltonian matrix H can be reduced to the specific form given in (6) with
the help of the unitary transformations and unitary �-symplectic transfor-
mations described in Section 2.2.

3.2. Periodic QR method

After computing the URV decomposition of H , it is natural to computer
the eigenpairs of the corresponding matrix product using the periodic QR
method. Let M = −T�

b Ẽ−�
b Ã�

b R
�
b RtÃtẼ

−1
t Tt ∈ Cn×n, where Rt, Rb, Ãt,

Ãb, Ẽt, Ẽb, Tt and Tb are computed through the �-symplectic URV decom-
position of H . It follows that
(9)

V H 2V ∗ = (V H U∗)JJ�(UH V ∗) = V H JU�J�(UH V ∗)

= −V JH �U�J(UH V ∗) = −J(V̄ H �U�)J(UH V ∗)

=

[
−T�

b Ẽ−�
b Ã�

b R
�
b ∗

0 −T�
t Ẽ−�

t Ã�
t R

�
t

] [
RtÃtẼ

−1
t Tt ∗

0 RbÃbẼbTb

]

=

[
−T�

b Ẽ−�
b Ã�

b R
�
b RtÃtẼ

−1
t Tt ∗

0 −T�
t Ẽ−�

t Ã�
t R

�
t RbÃbẼbTb

]

=

[
M ∗
0 M�

]
.

According to (9), the eigenvalues of M are exactly half of those of H 2. By
additionally considering the fact that the eigenvalues of the �-Hamiltonian
matrix H appear in pairs of the form (λ,−λ) and the similarity between
the GEP in (2) and the �HEP in (5), we can summarize these relations into
the following corollary.

Corollary 3. If μ∗ is an eigenvalue of M , then ±λ∗ are eigenvalues of the
GEP expressed in (2), where λ∗ =

√
μ∗.

Therefore, it is necessary to stably compute all eigenvalues of M ; for this
purpose, the PQR algorithm is a sound approach. The detailed procedure
for one single-shift step of the PQR method is introduced in Algorithm 5.
We do not need to store the unitary matrices in Algorithm 5 since they are
not necessary when computing the eigenvectors of M .

For clarity, let us first consider the three relevant cases of the single-shift
PQR step for
M = −T�

b Ẽ−�
b Ã�

b R
�
b RtÃtẼ

−1
t Tt ≡ A1A

−1
2 A3A4A5A6A

−1
7 A8 when elimi-

nating nonzero elements:



Structure-preserving algorithm for the linear lossless DHEP 13

1. For A−1
i Ai+1, update Ai and Ai+1 via Ai+1 ← QjAi+1 and Ai ← QjAi,

with Q1 = givens(Ai+1ek, k, k+1) and Q2 = givens(Ai+1ek, k, k+1),
respectively, denoted by PQR-a(Ai, Ai+1, k).

2. For AiA
−1
i+1, update Ai and Ai+1 via Ai+1 ← Ai+1Q

∗
j and Ai ← AiQ

∗
j ,

with Q1 = givens(A�
i+1ek+1, k+1, k) and Q2 = givens(A�

i+1ek+1, k+
1, k), respectively, denoted by PQR-b(Ai, Ai+1, k).

3. For AiAi+1, update Ai and Ai+1 via Ai+1 ← QjAi+1 and Ai ← AiQ
∗
j ,

with Q1 = givens(Ai+1ek, k, k+1) and Q2 = givens(Ai+1ek, k, k+1),
respectively, denoted by PQR-c(Ai, Ai+1, k).

Below, we present Algorithm 5 for computing a single-shift PQR step for
M = A1A

−1
2 A3A4A5A6A

−1
7 A8.

Algorithm 5 One single-shift PQR step for M = A1A
−1
2 A3A4A5A6A

−1
7 A8

Input: Ai ∈ Cn×n, where A1 is an upper Hessenberg matrix and Ai is an upper
triangular matrix for i = 2, . . . , 8.

Output: Ai ∈ C
n×n after one single-shift PQR step for M , where A1 is an upper

Hessenberg matrix and Ai is an upper triangular matrix for i = 2, . . . , 8.
1: Determine the Francis shift μ of M , and Q = givens((M − μIn)e1, 1, 2).
2: Set A1 = QA1 and A8 = A8Q

∗.
3: for i = 1 : n− 2 do
4: Apply PQR-a(A7, A8, i), and PQR-b(A6, A7, i);
5: Apply PQR-c(Ak, Ak+1, i) with k = 5, 4, 3;
6: Apply PQR-a(A2, A3, i) and PQR-b(A1, A2, i);
7: if i < n− 2 then
8: Update A1 and A8 via A1 ← QA1 and A8 ← A8Q

∗ with Q =
givens(Aei, i+ 1, i+ 2);

9: end if
10: end for
11: Update A1 and A8 via A1 ← QA1 and A8 ← A8Q

∗ with Q =
givens(A1en−2, n− 1, n);

12: Update A8 and A7 via A8 ← QA8 and A7 ← QA7 with Q =
givens(A8en−1, n− 1, n);

13: Update A7 and A6 via A7 ← A7Q
∗ and A6 ← A6Q

∗ with Q =
givens(A�

7 en, n, n− 1);
14: Repeat step 11 three times in sequence while replacing A1 with Ak+1 and A8

with Ak for k = 5, 4, 3;
15: Repeat steps 12 and 13 with A8 replaced with A3, A7 replaced with A2 and A6

replaced with A1.

According to Theorem 5.1 in [3], analogously, the �-symplectic URV
decomposition and PQR method proposed in this paper for computing all
eigenvalues of H = RÃẼT are backward stable.
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4. Numerical experiments

In this section, we present two numerical examples to demonstrate the com-
putational precision and time consumption of our algorithm. For compari-
son, we implemented both our algorithm and the classical QZ method on the
same examples. All numerical computations were carried out in MATLAB
R2020a on a workstation with a 3.80 GHz Intel Core i7 processor and 64
GB of RAM, with a machine roundoff of eps = 2.2204× 10−16.

In the following experiments, we constructed the matrices A, B, and E
as follows.

1. Determine two unitary matrices U and V using the svd command for a
random complex matrix, and determine three random vectors b ∈ Cn

and a , e ∈ C2n using the rand command in MATLAB.
2. Let ΣB be a tridiagonal matrix; set [b1, 0, b2, 0, · · · , bn]� and

[−b1, 0,−b2, 0, · · · ,−bn]
� as its superdiagonal and subdiagonal, re-

spectively, and let B = UΣBU
�.

3. Let ΣA = diag(a) and ΣE = diag(e), and set A = ŪΣAV
∗ and E =

UΣEV
∗.

Note that this method of constructing A, B and E ensures that B is
skew-symmetric and that A�E = E�A is symmetric. Moreover, we can an-
alytically calculate the eigenvalues of (2), (λexact

1 , λexact
2 , · · · , λexact

n ), with

λexact
j ≡ ±bj

√
−a2j−1a2je

−1
2j−1e

−1
2j being the j-th eigenvalue of (2), thus pro-

viding accurate solutions for the numerical experiments.
We use (λ,x) and (λqz,xqz) to denote the eigenpairs computed by our

algorithm and the single-shift QZ method, respectively, while t(λ) and t(λqz)
are the corresponding amounts of time consumed. Additionally, we calculate
the relative errors e(λ) of the eigenvalues and the relative normalized residual
norms r(λ) as follows:

e(p) = max
j=1,··· ,n

|pj − λexact
j |

|λexact
j | , p = λ or λqz,

r(p) = max
j=1,··· ,n

‖BAqj − pjEqj‖1
(‖BA‖1 + |pj |‖E‖1)‖qj‖1

, q = x or xqz.

We plot the amounts of time consumed t(λ) and t(λqz) for random cases
with dimensionalities n ranging from 10 to 1000 and show the detailed time
consumption of the �-symplectic URV decomposition and the PQR method
in our algorithm and that of Hessenberg-triangular reduction and the QZ
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Table 1: The FLOP counts for different problems

Problem Phase FLOPs

�HEP (5)
�-symplectic URV decomposition 192n3

one single-shift iteration of the PQR method 48n2

GEP (2)
Hessenberg-triangular reduction 128n3

one single-shift iteration of the QZ method 48n2

Figure 1: Time consumption for random cases with dimensionalities n rang-
ing from 10 to 1000. t1(λ), t2(λ), t1(λ

qz) and t2(λ
qz) denote the time costs for

�-symplectic URV decomposition, PQR iterations, Hessenberg-triangular
reduction and QZ iterations, respectively.

method in Figure 1(a) and Figure 1(b); the results are consistent with the
computational cost estimates shown in Table 1. The overall time consump-
tion of the proposed method is higher than that of the shifted QZ method
because of the higher computational cost of the �-symplectic URV decom-
position of H compared to that of the Hessenberg-triangular reduction of
(BA,E). Additionally, the floating point operation (FLOP) count of a single-
shift iteration of the PQR method for M = −T�

b Ẽ−�
b Ã�

b R
�
b RtÃtẼ

−1
t Tt is

the same as that of a single-shift iteration of the QZ method for (BA,E),
and the total time consumption for PQR iterations is less than that for QZ
iterations in the numerical experiments.

In this example, the matrices A, B and E were designed using the above
construction strategy with n = 1000 to ensure that the eigenvalues of (2)
would be ±1,±2, · · · ,±500. We present a comparison with the eigenvalues
computed using the URV+PQR and QZ methods, where the accuracies are
denoted by e(λ) and e(λqz), respectively, in Figure 2(a). The relative errors
of the eigenvalues computed using our method are comparable in value to
and more stable than those of the QZ method for all eigenvalues. Addition-
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Figure 2: (a) Relative error comparison for eigenvalues of ±1, · · · ,±500. (b)
Relative residual comparison.

ally, the relative residuals computed for the two algorithms are shown in
Figure 2(b), with the eigenvectors both being restored through one step of
the inverse power method for (BA,E). To summarize, the accuracies of the
eigenvalues or eigenpairs found using our method are comparable to those
found with the QZ method, while the pairing property is implicitly satisfied.

5. Conclusions

In this paper, to address lossless dissipative Hamiltonian systems of the
form expressed in (1), we have proposed a structure-preserving algorithm for
computing all eigenvalues of (BA,E), with B being complex skew-symmetric
and A�E = E�A. To utilize these matrix structures, instead of computing
the original GEP (2), we computed the equivalent �HEP H z = λz (5),
which can be reduced via a corresponding �-symplectic URV decomposition
procedure to a product eigenvalue problem of half as many dimensions.
As a result, a PQR method can be applied to compute all eigenvalues of
M (9), from which the eigenvalues of H can be computed immediately
using Corollary 3, such that the paired form (λ,−λ) of the eigenvalues is
strictly maintained. Two numerical experiments revealed that our algorithm
can preserve the pairing property of the eigenvalues and achieve a level of
accuracy for the eigenpairs that is comparable to that of the QZ method.
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