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Wigner rotation and its SO(3) model: an
active-frame approach

Leehwa Yeh

As an important issue in special relativity, Wigner rotation is no-
toriously difficult for beginners for two major reasons: this physical
phenomenon is highly unintuitive, and the mathematics behind it
can be extremely challenging. To remove the first obstacle, we in-
troduce a clear and easy toy model under the guidance of group
theory. To overcome the second, a concise mathematical method is
developed by the integration of geometric algebra and the active-
frame formalism.
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1. Introduction

First discovered by L. Silberstein and then rediscovered by L. Thomas [1, 2],
the phenomenon that two successive non-parallel boosts (i.e., Lorentz trans-
formations that contain neither rotation nor reflection) lead to a boost and a
rotation is generally called Wigner rotation [3]. It has been studied by many
authors for almost a century [4, 5, 6, 7, 8], the mysterious aura persists nev-
ertheless. H. Goldstein, author of the classic work Classical Mechanics, com-
pared it to the twin paradox as two famous counter-intuitive consequences
of special relativity [9].

As for what is wrong with our intuition, we begin our discussion with the
classical counterpart of boost transformation. In classical mechanics, for two
inertial reference frames with coordinates (x1, x2, x3, t) and (x′1, x

′
2, x

′
3, t

′),
if their relative velocity is the constant three-dimensional vector �V , then
the relation between the two set of coordinates is the so-called Galilean
transformation

x′i = xi − Vit, i = 1, 2, 3;

t′ = t.

The first equation of the above transformation is nothing but a time-
dependent passive translation, and the second implies the two frames share
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the same time coordinate. Because the composition of two translations is

another translation, there is no doubt that two successive Galilean trans-

formations lead to another one. Being the relativistic version of Galilean

transformation, boost is usually mistaken for possessing this closure prop-

erty as well, i.e., two successive boosts lead to another boost. But the truth

is, as mentioned earlier, as long as the directions of the two boosts are not

parallel, their composition is not a single boost, but a boost along with a

Wigner rotation.

Getting to the bottom of the matter, it is because boost can not be

identified with or compared to any kind of translation. Consequently, analo-

gizing boost to Galilean transformation is groundless and dangerous, at least

in the current case. From the mathematical point of view, a boost is a kind

of rotation in the four-dimensional spacetime, or more precisely a pseudo-

rotation. It should come as no surprise that the composition law of boosts

is more complicated than that of translations.

However, even if we understand a boost is essentially a pseudo-rotation

in the four-dimensional spacetime, there is still a fact violating our common

sense. When a problem involves two non-parallel boosts and three reference

frames, say K0, K1, and K2, with K0 and K1 being associated by the first

boost, and K1 and K2 by the second, it makes sense that some of the spatial

axes of K0 and K2 might be non-parallel since not all of the spatial axes of

K0 (K1) are parallel to that of K1 (K2) from the four-dimensional point of

view. What contradicts intuition is another frame K3 can be obtained from

K2 by a boost so that K3 and K0 are at rest with respect to each other, but

some spatial axes of K3 and K0 still differ by a rotation—the same Wigner

rotation—even though there is no temporal dimension involved.

To comprehend this fact, it is better to use a geometric picture to

replace the physical one, i.e., consider a series of frame pseudo-rotations

(K0→K1→K2 →K3) instead of a snap shot of these four frames. Even then,

since the pseudo-rotation is quite different to the ordinary one, it is hard to

build a clear picture in one’s mind. The best policy is to find a toy model

for this process which contains only ordinary rotations.

Although Wigner rotation emerges whenever the two boost velocities are

not parallel, people usually let these velocities be perpendicular to each other

to simplify the calculations. It will be called the simple Wigner rotation in

this paper. Interpreting this simple case as a series of pseudo-rotations, we

are able to build an SO(3) toy model to mimic this process (Section 3). Being

a model, it contains the essence of the original problem nonetheless. Thus we

can use what we learn to study the simple Wigner rotation (Section 4) then
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generalize it to the general case (Section 5). This model may be considered
as the first achievement of this paper.

As for the second achievement, by working directly on the active frame
we show there is no need to consider the passive coordinate transformation
at all. Allying with geometric algebra, the active-frame formalism enables
us to derive all the important results of Wigner rotation and condense them
into three neat geometric theorems.

2. Preliminaries

2.1. Active frame

In the two-dimensional Euclidean space R2, the position vector of a point is
xx̂+yŷ = (x̂ ŷ)(x y)�, where (x, y) are the coordinates of that point, � is the
notation for matrix transpose, and (x̂, ŷ) is the frame which may be taken
as a set of orthonormal bases at the origin. Now consider a passive linear
transformation in this space, if the transformation law for the coordinates
is (x′ y′)� = [T ](x y)�, where [T ] is the matrix representation of the trans-
formation T , then the frame transformation must obey (x̂′ ŷ′) = (x̂ ŷ)[T ]−1

to balance the change made by [T ] and render the position vector intact.

When the transformation is a two-dimensional rotation, i.e., an element
of the special orthogonal group SO(2), we have [T ]−1 = [T ]� so that the
transformations for the coordinates and frames are formally the same, i.e.,

(
x′

y′

)
= [T ]

(
x
y

)
=

(
cosω sinω
− sinω cosω

)(
x
y

)
,

and

(1)

(
x̂′

ŷ′

)
= [T ]

(
x̂
ŷ

)
=

(
cosω sinω
− sinω cosω

)(
x̂
ŷ

)
.

For a positive ω, (1) represents a counterclockwise (i.e., positive-sense)
rotation of the frame (x̂, ŷ). We shall regard this rotation as taking place
“along” the xy-plane around (0, 0) instead of some axis, the reason will be
clear soon.

If the coordinates (x, y) are replaced by (x, ct), where c is the light speed
and t is the time coordinate, the space corresponding to the new coordinates
is usually called the two-dimensional Minkowski space R

1,1. It differs from
the two-dimensional Euclidean space R

2 in the following aspects.
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1. Although the second coordinate is ct with the dimension of length,
the corresponding basis is t̂ which is a dimensionless quantity like x̂ and ŷ.

2. There is no ordinary rotation in R
1,1, instead we have the pseudo-

rotation (or more precisely the hyperbolic rotation) defined by

(2)

(
x′

ct′

)
=

(
coshΩ − sinhΩ
− sinhΩ coshΩ

)(
x
ct

)
,

which leaves x2 − c2t2 unchanged. We may regard it as taking place along
the xt-plane just like ordinary rotations along a Euclidean plane.

3. The transformation matrix in (2) belongs to the group SO+(1, 1)
whose elements are those reflection-free pseudo-orthogonal transformations
in R

1,1. It is symmetric but not orthogonal unless Ω = 0.
4. With regard to the coordinate transformation (2), the transformation

law for the Minkowski frame is

(3)

(
x̂′

t̂′

)
=

(
coshΩ sinhΩ
sinhΩ coshΩ

)(
x̂
t̂

)
.

It is obvious that, as long as Ω �= 0, the new bases will no longer have unit
length and no longer be perpendicular to each other from the Euclidean
point of view (Figure 1).

From the physical perspective, there are two more noteworthy points.
5. If the frame (x̂, t̂) is interpreted as a physical reference frame, then

the spatial basis x̂ is usually thought of as a rigid rule and the temporal
basis t̂ a set of clocks fixed on the rule. When talking about a moving frame,
we mean the rule carries those clocks moving along the x-direction.

6. If we interpret the hyperbolic angle Ω as the rapidity of the relative
speed u between the two frames, i.e., u = c tanhΩ, then (2) and (3) be-
come the boost transformations of the spacetime coordinates and the frames
respectively. Note that the rigid rules corresponding to the spatial bases
x̂ and x̂′ are still parallel to each other from the one-dimensional point of
view.

2.2. SO+(2, 1) and SO(3) groups

Although physical spacetime is the four-dimensional Minkowski space R
3,1,

we work on its subspace in many cases without losing generality. For exam-
ple, when discussing a boost transformation between two frames (x̂, ŷ, ẑ, t̂)
and (x̂′, ŷ′, ẑ′, t̂′), we may assume the relative velocity is along the x-direction
and consider just the transformation between the frames (x̂, t̂) and (x̂′, t̂′),
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Figure 1: Hyperbolic rotation of the Minkowski frame (x̂, t̂).

which is depicted by (3). Similarly, since the problem of Wigner rotation in-
volves only two relative velocities, it is legitimate to put them in the xy-plane
so that none of the z-components shows up in the calculations. Therefore
the space R

2,1 and the transformation group SO+(2, 1) are sufficient for us
to derive all of the related results.

From the point of view of group theory, there are many similarities
between SO+(2, 1) and SO(3). For example, neither of them contains any
kind of reflection, and the invariants of these two groups are x2 + y2 − c2t2

and x2 + y2 + z2 respectively. This allows us to model the Wigner rotation
problem with a series of rotations in R

3 which provides a concrete and clear
picture.

2.3. Geometric algebra

Wigner rotation, like many other problems in special relativity, is usually
studied by using vectors and matrices as the mathematical tools. However,
there is an alternative choice named geometric algebra (also known as Clif-
ford algebra) which might be more suitable. Putting it simply, geometric
algebra is nothing but the traditional vector algebra plus a new operation,
the so-called geometric product.

For the four-dimensional Minkowski space R3,1 with a set of orthonormal
bases (x̂, ŷ, ẑ, t̂), the geometric product is defined as below.

1. x̂x̂ = ŷŷ = ẑẑ = 1 and t̂t̂ = −1. The first three correspond to the
unit length of those bases and the fourth one reflects the “Minkowskiness”
of R3,1.

2. The geometric product is associative, e.g., (x̂ŷ)ẑ = x̂(ŷẑ) = x̂ŷẑ, etc.
3. The geometric product of different bases obeys the anti-commutative

relation, e.g., x̂ŷ = −ŷx̂, ẑt̂ = −t̂ẑ, etc.
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4. The dagger conjugation changes the ordering in the products, e.g.,
(x̂ŷ)† = ŷx̂, (x̂ŷt̂)† = t̂ŷx̂, etc.

With the aid of geometric algebra, the three-dimensional version of (1)
can be expressed in a neat form.

(4)

⎛
⎝x̂′

ŷ′

ẑ′

⎞
⎠ =

⎛
⎝ cosω sinω 0
− sinω cosω 0

0 0 1

⎞
⎠

⎛
⎝x̂
ŷ
ẑ

⎞
⎠ = R

⎛
⎝x̂
ŷ
ẑ

⎞
⎠R†,

where

R = exp
(
−ω

2
x̂ŷ

)

is called rotor. Note that ẑ behaves like a constant because (x̂ŷ)ẑ = ẑ(x̂ŷ).
Using the identity (x̂ŷ)(x̂ŷ) = −1, R can be expanded as cos ω

2 − sin ω
2 x̂ŷ

and its action to the bases can be calculated easily. For example,

x̂′ = Rx̂R† =
(
cos

ω

2
− sin

ω

2
x̂ŷ

)
x̂
(
cos

ω

2
+ sin

ω

2
x̂ŷ

)
= cosωx̂+ sinωŷ.

If we replace ω with ω + 2π, R = exp(−ω
2 x̂ŷ) becomes −R but the

rotation transformation (4) is not affected at all. Therefore we adopt the
identification R ≡ −R.

The rotor R introduced above can be derived rigorously from the so-
called Cartan-Dieudonné theorem [6, 10]. Here we start with the semi-
finished result R = C(x̂ + x̂′)x̂ = C(ŷ + ŷ′)ŷ, where x̂′ and ŷ′ are given
by (1) and C is the real normalization constant in order that RR† = 1. The
term (x̂+ x̂′) in C(x̂+ x̂′)x̂ may be interpreted metaphorically as “halfway
between x̂ and x̂′” and x̂ on its right as “initial position”. This combination
may be taken as a general rule.

By using the explicit expression of x̂′ and some trigonometric identities,
it is straightforward to derive C(x̂ + x̂′)x̂ = cos ω

2 − sin ω
2 x̂ŷ. Obviously

C(ŷ + ŷ′)ŷ can generate the same result.
The rotors for the hyperbolic rotations in R

2,1 are similar to those in
R
3. For example, when the rotation is along the xt-plane, the corresponding

rotor B takes the form

B = exp

(
−Ω

2
x̂t̂

)
,

and the basis x̂ is transformed as

Bx̂B† =

(
cosh

Ω

2
− sinh

Ω

2
x̂t̂

)
x̂

(
cosh

Ω

2
+ sinh

Ω

2
x̂t̂

)
= coshΩx̂+ sinhΩt̂,

where the hyperbolic functions come from the identity (x̂t̂)(x̂t̂) = 1.



Wigner rotation and its SO(3) model 147

Analogous to (4), when we apply B to the frame (x̂, ŷ, t̂), the result is

B

⎛
⎝x̂
ŷ
t̂

⎞
⎠B† =

⎛
⎝coshΩ 0 sinhΩ

0 1 0
sinhΩ 0 coshΩ

⎞
⎠

⎛
⎝x̂
ŷ
t̂

⎞
⎠ =:

⎛
⎝x̂∗

ŷ∗

t̂∗

⎞
⎠ .

To derive the hyperbolic rotors, we need to use the Minkowski version of

Cartan-Dieudonné theorem. Starting with B = C ′(x̂+ x̂∗)x̂ = −C ′(t̂+ t̂∗)t̂
with the condition BB† = 1, the rest is similar to that of the rotors in R

3.

2.4. Composition of velocities

In special relativity, a boost transformation takes place between two iner-

tial frames, hence each boost is defined by a constant velocity which is the

relative velocity between the frames. Since Wigner rotation involves two suc-

cessive boosts, it is inherently related to the problem of adding two velocities

relativistically. We give a brief review of this problem below.

In the four-dimensional Minkowski space R
3,1, when a four-velocity un-

dergoes a passive boost B(�V ) with �V being the relative velocity between

the two frames, the transformation formula W ′ = [B(�V )]W is analogous to

the boost transformation of spacetime coordinates, where W and W ′ are
the four-velocities in the old and the new frames respectively, and [B(�V )] is

the matrix representation of B(�V ) which can be proved to be always sym-

metric. Conversely, the inverse boost transformation W = [B(�V )]−1W ′ =
[B(−�V )]W ′ allows us to calculate the four-velocity in the old frame from

that in the new one.

Now consider an object resting in the new frame, since its three-velocity

relative to the old frame equals the relative velocity between the two frames,

transforming its four-velocity in the new frame back to that in the old one

reveals the information of the boost velocity.

W = [B(�V )]−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠ = γ(�V )

⎛
⎜⎜⎝
Vx

Vy

Vz

c

⎞
⎟⎟⎠ , where γ(�V ) =

1√
1− V 2

c2

.(5)

The above result has an intriguing geometric representation in the active-

frame formalism. Given a boost transformation B(�V ), the temporal basis t̂′
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of the new frame is proportional to the four-velocity of the boost velocity.

t̂′ =
(
x̂′ ŷ′ ẑ′ t̂′

)
⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠ =

(
x̂ ŷ ẑ t̂

)
[B(�V )]−1

⎛
⎜⎜⎝
0
0
0
1

⎞
⎟⎟⎠(6)

=
γ(�V )

c
(�V + ct̂).

When the problem involves three inertial frames and two successive

boosts, say first B(�V1) then B(�V2), the four-velocity of a rest object in the

third frame can be transformed to that in the first frame by

W =
(
[B(�V2)][B(�V1)]

)−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠ = [B(�V1)]

−1[B(�V2)]
−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠ .

The three-velocity contained in this four-velocity is the composition of the

two boost velocities in that order and is usually denoted by �V1⊕�V2, therefore

the above formula is equivalent to

[B(�V1)]
−1[B(�V2)]

−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠ = [B(�V1 ⊕ �V2)]

−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠(7)

= γ(�V1 ⊕ �V2)

⎛
⎜⎜⎝
(�V1 ⊕ �V2)x
(�V1 ⊕ �V2)y
(�V1 ⊕ �V2)z

c

⎞
⎟⎟⎠ .

The explicit expression of �V1⊕ �V2 can always be extracted from (7). For

example, when �V1 = c tanhΩ1x̂ and �V2 = c tanhΩ2x̂, (7) becomes

⎛
⎜⎜⎝
coshΩ1 0 0 sinhΩ1

0 1 0 0
0 0 1 0

sinhΩ1 0 0 coshΩ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝
coshΩ2 0 0 sinhΩ2

0 1 0 0
0 0 1 0

sinhΩ2 0 0 coshΩ2

⎞
⎟⎟⎠

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠
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= cosh(Ω1 +Ω2)

⎛
⎜⎜⎝
c tanh(Ω1 +Ω2)

0
0
c

⎞
⎟⎟⎠ ,

which yields the result

�V1 ⊕ �V2 = c tanh(Ω1 +Ω2)x̂ =
V1 + V2

1 + V1V2/c2
x̂,

where V1V2/c
2 in the denominator is the relativistic correction term. If

�V1 and �V2 are not parallel, the expression of �V1 ⊕ �V2 is rather complicated

[11], but we still have �V1 ⊕ �V2 = �V1 + �V2 in the classical limit c → ∞.

Substituting �V1 ⊕ �V2 for �V , we can rewrite (6) as

t̂′′ =
γ(�V1 ⊕ �V2)

c
[�V1 ⊕ �V2 + ct̂ ], or ct̂′′ = γ(�V1 ⊕ �V2)[�V1 ⊕ �V2 + ct̂ ].(8)

In short, ct̂′′ equals the four-velocity which corresponds to the three-velocity
�V1 ⊕ �V2 that defines the composite boost.

If the order of the two boosts is exchanged, then (7) changes to

[B(�V2)]
−1[B(�V1)]

−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠ = [B(�V2 ⊕ �V1)]

−1

⎛
⎜⎜⎝
0
0
0
c

⎞
⎟⎟⎠

= γ(�V2 ⊕ �V1)

⎛
⎜⎜⎝
(�V2 ⊕ �V1)x
(�V2 ⊕ �V1)y
(�V2 ⊕ �V1)z

c

⎞
⎟⎟⎠ .

An important identity γ(�V1 ⊕ �V2) = γ(�V2 ⊕ �V1) can be proved by using the

following two facts: (i) [B(�V1)]
−1[B(�V2)]

−1 and [B(�V2)]
−1[B(�V1)]

−1 share

the same diagonal elements since boost matrices are all symmetric, and (ii)

γ(�V1 ⊕ �V2) equals the (4, 4) element of [B(�V1)]
−1[B(�V2)]

−1 and γ(�V2 ⊕ �V1)

equals that of [B(�V2)]
−1[B(�V1)]

−1.
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3. The toy model

3.1. process a and Theorem 1

To construct the SO(3) toy model of the simple Wigner rotation, first we
define a series of rotations of a Euclidean frame (x̂, ŷ, ẑ) as below and name
it process a.

Step 1. Rotate the frame along the zx-plane by an angle θ, and call the
new frame (x̂′a, ŷ

′
a, ẑ

′
a), where ŷ′a = ŷ.

Step 2. Rotate the new frame along the new yz-plane by an angle φ, and
call the newer frame (x̂′′a, ŷ

′′
a , ẑ

′′
a), where x̂′′a = x̂′a.

Step 3. Rotate the newer frame along the plane spanned by ẑ and ẑ′′a to
the extent that the final ẑ′′′a coincides with the original ẑ.

Using the formulation of geometric algebra, these three rotations can be
expressed as follows:

a1.

⎛
⎝x̂′a
ŷ′a
ẑ′a

⎞
⎠ = exp(−θ

2
ẑx̂)

⎛
⎝x̂
ŷ
ẑ

⎞
⎠ exp(−θ

2
ẑx̂)†.

a2.

⎛
⎝x̂′′a
ŷ′′a
ẑ′′a

⎞
⎠ = exp(−φ

2
ŷ′aẑ

′
a)

⎛
⎝x̂′a
ŷ′a
ẑ′a

⎞
⎠ exp(−φ

2
ŷ′aẑ

′
a)

†

= exp(−θ

2
ẑx̂) exp(−φ

2
ŷẑ)

⎛
⎝x̂
ŷ
ẑ

⎞
⎠ exp(−φ

2
ŷẑ)† exp(−θ

2
ẑx̂)†

= XY

⎛
⎝x̂
ŷ
ẑ

⎞
⎠Y †X†,

where X = exp(− θ
2 ẑx̂) and Y = exp(−φ

2 ŷẑ), and the following equalities
have been used.

exp(−θ

2
ẑx̂)† exp(−θ

2
ẑx̂) = exp(+

θ

2
ẑx̂) exp(−θ

2
ẑx̂) = 1;

ŷ′aẑ
′
a = exp(−θ

2
ẑx̂)ŷẑ exp(−θ

2
ẑx̂)†;

exp(−φ

2
ŷ′aẑ

′
a) = exp(−θ

2
ẑx̂) exp(−φ

2
ŷẑ) exp(−θ

2
ẑx̂)†.
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a3.

⎛
⎝x̂′′′a
ŷ′′′a
ẑ′′′a

⎞
⎠ = M

⎛
⎝x̂′′a
ŷ′′a
ẑ′′a

⎞
⎠M † = MXY

⎛
⎝x̂
ŷ
ẑ

⎞
⎠Y †X†M †,

where M is constructed by employing the Cartan-Dieudonné theorem,

M = C(ẑ′′a + ẑ)ẑ′′a = C(1 + ẑẑ′′a) = C(1 +X†Y †2X†)(9)

with the condition MM † = 1. Note that

ẑXY = ẑ exp(−θ

2
ẑx̂) exp(−φ

2
ŷẑ) = exp(+

θ

2
ẑx̂) exp(+

φ

2
ŷẑ)ẑ = X†Y †ẑ

has been used to obtain (9).

In the light of (4), the expressions of the first two steps can be easily
transformed to matrix forms. In contrast, the elegance of (9) will be lost if
we use matrix formulation to replace geometric algebra.

Now we are equipped to prove that the result of process a is generated
by a rotor along the original xy-plane.

Theorem 1. MXY = exp( ε2 x̂ŷ) =: Rw generates the toy Wigner rotation,
where the toy Wigner angle ε is defined by

tan
ε

2
= tan

θ

2
tan

φ

2
with ε ∈ (−π, π].

The proof is provided by some simple calculations with three notes as
follows:

MXY = C(1 +X†Y †2X†)XY = C(XY +X†Y †)

= C

[
exp(−θ

2
ẑx̂) exp(−φ

2
ŷẑ) + exp(

θ

2
ẑx̂) exp(

φ

2
ŷẑ)

]

= 2C

(
cos

θ

2
cos

φ

2
+ sin

θ

2
sin

φ

2
x̂ŷ

)

∝ cos
ε

2
+ sin

ε

2
x̂ŷ

= exp
( ε

2
x̂ŷ

)
.

Note 1. A normalized M implies the product MXY is also normalized.
Hence we may assert the coefficient of exp( ε2 x̂ŷ) equals unity without doing
practical calculation.
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Figure 2: The frame rotates clockwise along the xy-plane by a toy Wigner
angle at the end of process a. The result of process b is the same except the
rotation is counterclockwise.

Note 2. Since Rw = exp(−−ε
2 x̂ŷ), a positive ε corresponds to a clockwise

(i.e., negative-sense) rotation according to (4). If the range of θ and φ is
taken to be (−π, π], then ε > 0 if and only if θφ > 0. The maximum of the
toy Wigner angle corresponds to θ = π and φ �= 0, or φ = π and θ �= 0.

Note 3. This theorem tells us although the basis ẑ comes back to its
original orientation at the end of the process, the other two bases deviate
from the original (x̂, ŷ) by a toy Wigner rotation (Figure 2).

MXY

⎛
⎝x̂
ŷ
ẑ

⎞
⎠Y †X†M † = Rw

⎛
⎝x̂
ŷ
ẑ

⎞
⎠R†

w =

⎛
⎝Rwx̂R

†
w

RwŷR
†
w

ẑ

⎞
⎠ .

3.2. process b and Theorem 2 & 3

To fully model the problem of simple Wigner rotation, we have to create
another process which will be named process b. The main difference between
these two processes is the order of the first two rotations. In process b, we
let the frame rotate along the yz-plane by an angle φ first and then let the
new frame rotate along the new zx-plane by an angle θ. The result of this
process can be expressed as

⎛
⎝x̂′′′b
ŷ′′′b
ẑ′′′b

⎞
⎠ = N

⎛
⎝x̂′′b
ŷ′′b
ẑ′′b

⎞
⎠N † = NYX

⎛
⎝x̂
ŷ
ẑ

⎞
⎠X†Y †N †,

where X and Y are the same as those in process a, and N as the counterpart
of M can be constructed in a similar way,
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N = C ′(ẑ′′b + ẑ)ẑ′′b = C ′(1 + ẑẑ′′b ) = C ′(1 + Y †X†2Y †)(10)

with the condition NN † = 1.
It is easy to prove NYX is also a rotor along the xy-plane. Moreover, it

is the inverse of the rotor MXY .

Theorem 2. NYX = (MXY )† = R†
w = R−1

w .

The proof is also made of a few simple calculations:

NYX = C ′(1 + Y †X†2Y †)Y X = C ′(Y X + Y †X†)

= C ′Y †X†(1 +XY 2X) =
C ′

C
Y †X†M † = (MXY )†,

where C = C ′ comes from both MXY and NYX are normalized.
This theorem implies that, except for the sense of the rotation, the result

of process b is the same as that of process a.

NYX

⎛
⎝x̂
ŷ
ẑ

⎞
⎠X†Y †N † = R†

w

⎛
⎝x̂
ŷ
ẑ

⎞
⎠Rw =

⎛
⎝R†

wx̂Rw

R†
wŷRw

ẑ

⎞
⎠ .

In addition to Theorem 2, there is another interesting relation between
the rotors N and M .

Theorem 3. RwNR†
w = M .

The trick of the proof is substituting X†Y †N † for Rw and NYX for R†
w.

An important relation Rwẑ
′′
bR

†
w = ẑ′′a can be derived from Theorem 3

when M is expressed by C(1+ ẑẑ′′a) and N by C(1+ ẑẑ′′b ). It implies the two
rotations generated by M and N perform along two different planes and
the N -plane can be transformed to the M -plane by the toy Wigner rotation
(Figure 3).

In summary, each theorem of this toy model has a precise geometric
meaning.

Theorem 1. process a brings about a toy Wigner rotation of the frame
along the xy-plane.

Theorem 2. The only difference between the results of process a and
process b is the sense of the toy Wigner rotation (clockwise vs. counter-
clockwise).

Theorem 3. The third rotation planes of the two processes differ from
each other by a toy Wigner rotation, hence the angle between them equals
the toy Wigner angle.
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Figure 3: The third rotation plane of process b (N -plane) can be transformed
to that of process a (M -plane) by the toy Wigner rotation.

Figure 4: Schematic diagram for Theorem 1∼3 of the toy Wigner rotation.

These statements may be illustrated in one schematic diagram as shown
in Figure 4.

4. Simple Wigner rotation

4.1. process c and Theorem I

After familiarizing ourselves with the SO(3) toy model, we are ready to
study the processes that yield the simple Wigner rotation. First we define
process c which contains three hyperbolic rotations of a Minkowski frame
(x̂, ŷ, t̂).
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Step 1. Rotate the frame along the xt-plane by a hyperbolic angle Θ,

and call the new frame (x̂′c, ŷ
′
c, t̂

′
c), where ŷ′c = ŷ.

Step 2. Rotate the new frame along the new yt-plane by a hyperbolic

angle Φ, and call the newer frame (x̂′′c , ŷ
′′
c , t̂

′′
c ), where x̂′′c = x̂′c.

Step 3. Rotate the newer frame hyperbolically along the plane spanned

by t̂ and t̂′′c to the extent that the final t̂′′′c coincides with the original t̂.

The expressions of these three hyperbolic rotations are similar to those

of process a.

c1.

⎛
⎝x̂′c
ŷ′c
t̂′c

⎞
⎠ = exp(−Θ

2
x̂t̂)

⎛
⎝x̂
ŷ
t̂

⎞
⎠ exp(−Θ

2
x̂t̂)†,

c2.

⎛
⎝x̂′′c
ŷ′′c
t̂′′c

⎞
⎠ = exp(−Φ

2
ŷ′ct̂

′
c)

⎛
⎝x̂′c
ŷ′c
t̂′c

⎞
⎠ exp(−Φ

2
ŷ′ct̂

′
c)

†

= exp(−Θ

2
x̂t̂) exp(−Φ

2
ŷt̂)

⎛
⎝x̂
ŷ
t̂

⎞
⎠ exp(−Φ

2
ŷt̂)† exp(−Θ

2
x̂t̂)†

= XY

⎛
⎝x̂
ŷ
t̂

⎞
⎠Y†X †,

c3.

⎛
⎝x̂′′′c
ŷ′′′c
t̂′′′c

⎞
⎠ = M

⎛
⎝x̂′′c
ŷ′′c
t̂′′c

⎞
⎠M† = MXY

⎛
⎝x̂
ŷ
t̂

⎞
⎠Y†X †M†,

where X = exp(−Θ
2 x̂t̂),Y = exp(−Φ

2 ŷt̂), and M = C(1 +X †Y†2X †) are the

analogues of X,Y , and M of process a respectively. The construction of M
is analogous to (9),

M = −C(t̂′′c + t̂)t̂′′c = C(1− t̂t̂′′c ) = C(1 + X †Y†2X †)(11)

with the condition MM† = 1.

With regard to this process, we can deduce a theorem which is analogous

to Theorem 1 of the toy model.
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Theorem I. MXY = exp( ε2 x̂ŷ) =: Rw is the rotor of the simple Wigner
rotation, where the simple Wigner angle ε is defined by

tan
ε

2
= tanh

Θ

2
tanh

Φ

2
with ε ∈ (−π

2
,
π

2
).

The proof is omitted owing to its resemblance to that of Theorem 1.
Similar to the toy Wigner angle ε, the simple Wigner angle ε is positive

if and only if ΘΦ > 0. However, the range of the latter is half of that of the
former because the range of tanhx is (−1, 1) while that of tanx is (−∞,∞).

4.2. process d and Theorem II & III

Imitating the procedure for constructing the toy model, we now exchange
the first two rotations in process c, i.e., let the frame rotate along the yt-
plane by a hyperbolic angle Φ first and then let the new frame rotate along
the new xt-plane by a hyperbolic angle Θ. This new process will be named
process d and its result can be expressed as

⎛
⎝x̂′′′d
ŷ′′′d
t̂′′′d

⎞
⎠ = N

⎛
⎝x̂′′d
ŷ′′d
t̂′′d

⎞
⎠N † = NYX

⎛
⎝x̂
ŷ
t̂

⎞
⎠X †Y†N †

,

where N is the counterpart of M,

N = −C′(t̂′′d + t̂)t̂′′d = C′(1− t̂t̂′′d) = C′(1 + Y†X †2Y†)(12)

with the condition NN † = 1.
Thanks to the isomorphisms between (9) and (11), and between (10)

and (12), we acquire the following two theorems by change of notations.

Theorem II. NYX = (MXY)† = R−1
w .

Theorem III. RwNR†
w = M.

4.3. The physical meanings

To discuss the physical meanings of the processes and theorems introduced in
this section, we begin with identifying the rotors X and Y with the boosts
defined by the velocities �u = c tanhΘx̂ and �v = c tanhΦŷ respectively.
Under these identifications, the (2+1)-dimensional version of (8) gives us
the following results.

ct̂′′c = γ(�u⊕ �v)[�u⊕ �v + ct̂ ], and ct̂′′d = γ(�v ⊕ �u)[�v ⊕ �u+ ct̂ ],(13)
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where γ(�u⊕ �v) = γ(�v ⊕ �u) as proved at the end of Section 2.

Since t̂′′c = M†t̂′′′c M = M†t̂M according to Step 3 of process c, it implies

that M† = M−1 as a boost is defined by the velocity �u ⊕ �v. Therefore the

boost M is defined by −(�u ⊕ �v), and for the same reason N † is defined by

�v ⊕ �u and N by −(�v ⊕ �u).

Now we are ready to use physical language to rephrase the two processes

in this section (omitting the subscripts c and d).

process c:

Step 1. A physical reference frame (x̂′, ŷ′, t̂′) is found which moves with

velocity �u relative to the original frame (x̂, ŷ, t̂).

Step 2. Another frame (x̂′′, ŷ′′, t̂′′) is found which moves with velocity �v

relative to (x̂′, ŷ′, t̂′).
Step 3. The third frame (x̂′′′, ŷ′′′, t̂′′′) is found which moves with velocity

−(�u⊕ �v) relative to (x̂′′, ŷ′′, t̂′′).
Since t̂′′′ = t̂, we know from (6) there is no relative velocity between

the third and the original unprimed frames. The spatial bases of these two

frames differ by a simple Wigner rotation according to Theorem I.

⎛
⎝x̂′′′

ŷ′′′

t̂′′′

⎞
⎠ = MXY

⎛
⎝x̂
ŷ
t̂

⎞
⎠Y†X †M† = Rw

⎛
⎝x̂
ŷ
t̂

⎞
⎠R†

w =

⎛
⎝Rwx̂R†

w

RwŷR†
w

t̂

⎞
⎠ .

Integrating with Theorem III, the above relation can be expressed in the

following form.

(14) XY

⎛
⎝x̂
ŷ
t̂

⎞
⎠Y†X † = M†Rw

⎛
⎝x̂
ŷ
t̂

⎞
⎠R†

wM = RwN †

⎛
⎝x̂
ŷ
t̂

⎞
⎠NR†

w,

which means the action of the first two boosts to the original frame is equiva-

lent to that of a boost of velocity �u⊕�v preceded by a simple Wigner rotation,

or a boost of velocity �v ⊕ �u followed by the same rotation.

process d:

Step 1. A physical reference frame (x̂′, ŷ′, t̂′) is found which moves with

velocity v̂ relative to the original frame (x̂, ŷ, t̂).

Step 2. Another frame (x̂′′, ŷ′′, t̂′′) is found which moves with velocity �u

relative to (x̂′, ŷ′, t̂′).
Step 3. The third frame (x̂′′′, ŷ′′′, t̂′′′) is found which moves with velocity

−(�v ⊕ �u) relative to (x̂′′, ŷ′′, t̂′′).
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Similarly, according to Theorem II and Theorem III, we can conclude
that (i) the spatial bases of the third and the original frames differ by an
inverse simple Wigner rotation,

⎛
⎝x̂′′′

ŷ′′′

t̂′′′

⎞
⎠ = NYX

⎛
⎝x̂
ŷ
t̂

⎞
⎠X †Y†N † = R†

w

⎛
⎝x̂
ŷ
t̂

⎞
⎠Rw =

⎛
⎝R†

wx̂Rw

R†
wŷRw

t̂

⎞
⎠ ,

and (ii) the action of the first two boosts to the original frame is equivalent
to that of a boost of velocity �v ⊕ �u preceded by an inverse simple Wigner
rotation, or a boost of velocity �u⊕ �v followed by the same rotation,

(15) YX

⎛
⎝x̂
ŷ
t̂

⎞
⎠X †Y† = N †R†

w

⎛
⎝x̂
ŷ
t̂

⎞
⎠RwN = R†

wM†

⎛
⎝x̂
ŷ
t̂

⎞
⎠MRw.

In addition to the above results, Theorem III leads to a relation
Rw t̂

′′
dR

†
w = t̂′′c which is analogous to Rwẑ

′′
bR

†
w = ẑ′′a of the toy model. We can

use (13) to convert this relation to Rw(�v⊕ �u)R†
w = �u⊕�v which implies the

angle between these two composite velocities equals the simple Wigner angle.
In summary, each of the three theorems in this section has a precise

physical meaning.
Theorem I. process c brings about a simple Wigner rotation of the frame

along the xy-plane.
Theorem II. The only difference between the results of process c and

process d is the sense of the simple Wigner rotation.
Theorem III. The composite velocities of the two processes differ from

each other by a simple Wigner rotation, implying the angle between them
equals the simple Wigner angle.

These statements are illustrated in one schematic diagram as shown in
Figure 5.

5. General Wigner rotation

5.1. process e and Theorem I′

Now we release the 90◦ constraint on the two boost velocities, allowing the
angle between them to be arbitrary. Without loss of generality, we still put
the velocity �u along the x-direction, while the velocity �v deviates from the
y-direction clockwise by an angle η ∈ (−π

2 ,
π
2 ). The basis ŷ can be rotated to
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Figure 5: Schematic diagram for Theorem I∼III of the simple Wigner rota-
tion.

Figure 6: The orientations of velocities �u and �v in the problem of general
Wigner rotation.

the direction of �v by a rotor and the new basis will be called ŵ (Figure 6),

i.e.,

ŵ = exp(
η

2
x̂ŷ)ŷ exp(

η

2
x̂ŷ)† = sin ηx̂+ cos ηŷ.

Using this new basis ŵ, we generalize process c to the following one

which will be named process e.

Step 1. Rotate the frame along the xt-plane by a hyperbolic angle Θ, and

call the new frame (x̂′e, ŷ
′
e, t̂

′
e), where ŷ′e = ŷ. Accordingly ŵ is transformed

to ŵ′
e.

Step 2. Rotate the new frame along the new wt-plane by a hyperbolic

angle Φ, and call the newer frame (x̂′′e , ŷ
′′
e , t̂

′′
e). Note that x̂′′e �= x̂′e.
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Step 3. Rotate the newer frame hyperbolically along the plane spanned
by t̂ and t̂′′e to the extent that the final t̂′′′e coincides with the original t̂.

The expressions for this process are as follows:

e1.

⎛
⎜⎜⎝
x̂′e
ŷ′e
t̂′e
ŵ′
e

⎞
⎟⎟⎠ = exp(−Θ

2
x̂t̂)

⎛
⎜⎜⎝
x̂
ŷ
t̂
ŵ

⎞
⎟⎟⎠ exp(−Θ

2
x̂t̂)†,

e2.

⎛
⎝x̂′′e
ŷ′′e
t̂′′e

⎞
⎠ = exp(−Φ

2
ŵ′
et̂

′
e)

⎛
⎝x̂′e
ŷ′e
t̂′e

⎞
⎠ exp(−Φ

2
ŵ′
et̂

′
e)

†

= exp(−Θ

2
x̂t̂) exp(−Φ

2
ŵt̂)

⎛
⎝x̂
ŷ
t̂

⎞
⎠ exp(−Φ

2
ŵt̂)† exp(−Θ

2
x̂t̂)†

= XW

⎛
⎝x̂
ŷ
t̂

⎞
⎠W†X †,

e3.

⎛
⎝x̂′′′e
ŷ′′′e
t̂′′′e

⎞
⎠ = M

⎛
⎝x̂′′e
ŷ′′e
t̂′′e

⎞
⎠M† = MXW

⎛
⎝x̂
ŷ
t̂

⎞
⎠W†X †M†,

where X = exp(−Θ
2 x̂t̂), W = exp(−Φ

2 ŵt̂), and

M = C(1− t̂t̂′′e) = C(1 + X †W†2X †) with MM† = 1.

Now we can generalize Theorem I of the simple Wigner rotation to the
general case.

Theorem I′.

MXW = exp
(ε
2
x̂ŷ

)
=: Rw,

where tan
ε

2
=

cos η

coth Θ
2 coth Φ

2 + sin η
with ε ∈ (−π

2
− η,

π

2
− η).

The proof is contained in the following calculations:

MXW = C(XW + X †W†)
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= C
[
exp(−Θ

2
x̂t̂) exp(−Φ

2
ŵt̂) + exp(

Θ

2
x̂t̂) exp(

Φ

2
ŵt̂)

]

= 2C
(
cosh

Θ

2
cosh

Φ

2
+ sinh

Θ

2
sinh

Φ

2
x̂ŵ

)

= 2C
[(

cosh
Θ

2
cosh

Φ

2
+ sin η sinh

Θ

2
sinh

Φ

2

)
+ cos η sinh

Θ

2
sinh

Φ

2
x̂ŷ

]

= cos
ε

2
+ sin

ε

2
x̂ŷ.

5.2. process f and Theorem II′ & III′

Just like process e is a generalization of process c, process f is generalized
from process d.

⎛
⎝x̂′′′f
ŷ′′′f
t̂′′′f

⎞
⎠ = N

⎛
⎝x̂′′f
ŷ′′f
t̂′′f

⎞
⎠N † = NWX

⎛
⎝x̂
ŷ
t̂

⎞
⎠X †W†N †,

where N = C′(1− t̂t̂′′f ) = C′(1 +W†X †2W†) with NN † = 1.

Because the expressions of the rotors M and N are respectively iso-
morphic to those of M and N of the simple Wigner rotation, Theorem II
and Theorem III are generalized to the following.

Theorem II′. NWX = (MXW)† = R−1
w .

Theorem III′. RwNR†
w = M.

In summary, except for the fact that the formula for the Wigner angle is
more complicated, the related theorems and their physical meanings have no
significant change for the general Wigner rotation. For example, the analogue
of (14) is

(16) XW

⎛
⎝x̂
ŷ
t̂

⎞
⎠W†X † = M†Rw

⎛
⎝x̂
ŷ
t̂

⎞
⎠R†

wM = RwN †

⎛
⎝x̂
ŷ
t̂

⎞
⎠NR†

w,

and that of (15) is

(17) WX

⎛
⎝x̂
ŷ
t̂

⎞
⎠X †W† = N †R†

w

⎛
⎝x̂
ŷ
t̂

⎞
⎠RwN = R†

wM†

⎛
⎝x̂
ŷ
t̂

⎞
⎠MRw.
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We can take either (16) or (17) as the mathematical manifestation of the
claim “two successive non-parallel boosts lead to a boost and a rotation” in
Section 1.

6. Conclusion

By the joint effort of group theory, geometric algebra, and the active-frame
formalism, the geometry of Wigner rotation problem is clarified and the
mathematics is simplified. Among other things, the SO(3) toy model pro-
vides an easy way to comprehend the essence of this problem.

Appendix: comparison with matrix-coordinate formalism

The results in this paper are mainly obtained and expressed by geometric
algebra. In order to make comparisons with those in other literature, there
is a need to translate these results into matrix formulation.

First, we work on an example from process c as a demonstration,

exp(−Θ

2
x̂t̂) exp(−Φ

2
ŷt̂)

⎛
⎝x̂
ŷ
t̂

⎞
⎠ exp(−Φ

2
ŷt̂)† exp(−Θ

2
x̂t̂)†

= exp(−Θ

2
x̂t̂)

⎛
⎝1 0 0
0 coshΦ sinhΦ
0 sinhΦ coshΦ

⎞
⎠

⎛
⎝x̂
ŷ
t̂

⎞
⎠ exp(−Θ

2
x̂t̂)†,

=

⎛
⎝1 0 0
0 coshΦ sinhΦ
0 sinhΦ coshΦ

⎞
⎠

⎛
⎝coshΘ 0 sinhΘ

0 1 0
sinhΘ 0 coshΘ

⎞
⎠

⎛
⎝x̂
ŷ
t̂

⎞
⎠ .

Using the aforementioned notations X and Y for the rotors, and denoting
the corresponding matrices by [X ] and [Y], the above equality becomes

XY

⎛
⎝x̂
ŷ
t̂

⎞
⎠Y†X † = [Y][X ]

⎛
⎝x̂
ŷ
t̂

⎞
⎠ .

The correspondence between these two formulations may be put formally
as XY ⇐⇒ [Y][X ]. However, in order to make those matrices act on the
coordinates (x, y, ct) instead of the frame (x̂, ŷ, t̂), we need to go further to
take the transpose-inverse of [Y][X ]. Hence in this example the correspon-
dence between the rotor-frame formalism and matrix-coordinate formalism
should be XY ⇐⇒ ([Y]�)−1([X ]�)−1.
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Now we are ready to apply this rule to the results of general Wigner
rotation discussed in Section 5. Starting with Theorem I′ and bearing in
mind the boost matrix is symmetric while the rotation matrix orthogonal,
we have

MXW = Rw ⇐⇒ [W ]−1[X ]−1[M]−1 = [Rw].

It is better to introduce the notation B(�V ) from Section 2 to unify those
boost matrices. Since B(�V ) is a passive transformation, we have [W ]−1 =
[B(�v)], [X ]−1 = [B(�u)], and [M]−1 = [B(−(�u⊕ �v))], and the above matrix
equality becomes

[B(�v)][B(�u)][B(−(�u⊕ �v))] = [Rw],

or

[B(�v)][B(�u)] = [Rw][B(�u⊕ �v)].(18)

Applying the same rule to Theorem II′ gives us a similar result,

[B(�u)][B(�v)] = [Rw]
−1[B(�v ⊕ �u)].

As for Theorem III′, the rotor-matrix correspondence is

RwNR†
w = M ⇐⇒

[Rw]
−1[N ]−1[Rw] = [M]−1,

or

[Rw]
−1[B(−(�v ⊕ �u))][Rw] = [B(−(�u⊕ �v))],

or

[Rw]
−1[B(�v ⊕ �u)][Rw] = [B(�u⊕ �v)].(19)

Integrating (18) with (19), we obtain the correspondent of (16),

(20) [B(�v)][B(�u)] = [Rw][B(�u⊕ �v)] = [B(�v ⊕ �u)][Rw].

The transpose of (20) gives us the correspondent of (17),

(21) [B(�u)][B(�v)] = [B(�u⊕ �v)][Rw]
−1 = [Rw]

−1[B(�v ⊕ �u)].
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Needless to say, (20) and (21) can also be obtained by applying the corre-
spondence rule to the rotor-frame formulas (16) and (17).

Lastly, the explicit forms of these boost matrices are provided below for
reference.

[B(�u)] =

⎛
⎝ coshΘ 0 − sinhΘ

0 1 0
− sinhΘ 0 coshΘ

⎞
⎠ , [B(�u)]−1 =

⎛
⎝coshΘ 0 sinhΘ

0 1 0
sinhΘ 0 coshΘ

⎞
⎠ .

[B(�v)] =

⎛
⎝ cos2 η + sin2 η coshΦ sin η cos η(coshΦ− 1) − sin η sinhΦ
sin η cos η(coshΦ− 1) sin2 η + cos2 η coshΦ − cos η sinhΦ

− sin η sinhΦ − cos η sinhΦ coshΦ

⎞
⎠ ,

[B(�v)]−1 =

⎛
⎝ cos2 η + sin2 η coshΦ sin η cos η(coshΦ− 1) sin η sinhΦ
sin η cos η(coshΦ− 1) sin2 η + cos2 η coshΦ cos η sinhΦ

sin η sinhΦ cos η sinhΦ coshΦ

⎞
⎠ .

[B(�u⊕ �v)] =
1

P

⎛
⎝P +Q2 QR −PQ

QR P +R2 −PR
−PQ −PR P 2 − P

⎞
⎠ ,

[B(�u⊕ �v)]−1 =
1

P

⎛
⎝P +Q2 QR PQ

QR P +R2 PR
PQ PR P 2 − P

⎞
⎠ ,

where P = 1 + coshΘ coshΦ + sin η sinhΘ sinhΦ,

Q = sinhΘ coshΦ + sin η coshΘ sinhΦ,

R = cos η sinhΦ.

According to (5), γ(�u⊕�v) and �u⊕�v can be read out from the last column
of [B(�u⊕ �v)]−1, i.e., γ(�u⊕ �v) = P − 1 and �u⊕ �v = c

P−1 [Q,R].
With the following modifications for the expressions of Q and R, the two

matrices above can represent [B(�v⊕ �u)] and [B(�v⊕ �u)]−1 as well, and �v⊕ �u
can be extracted by using the same rule.

Q = cos2 η sinhΘ + sin η coshΘ sinhΦ + sin2 η sinhΘ coshΦ,

R = cos η coshΘ sinhΦ + sin η cos η sinhΘ(coshΦ− 1).
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Supplementary material

An animation of the six processes discussed in this paper is available at
https://www.youtube.com/watch?v=HyVouwd7X2o
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