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Solving optical tomography with deep learning

Yuwei Fan and Lexing Ying

This paper presents a neural network approach for solving two-

dimensional optical tomography (OT) problems based on the ra-

diative transfer equation. The mathematical problem of OT is to

recover the optical properties of an object based on the albedo op-

erator that is accessible from boundary measurements. Both the

forward map from the optical properties to the albedo operator

and the inverse map are high-dimensional and nonlinear. For the

circular tomography geometry, a perturbative analysis shows that

the forward map can be approximated by a vectorized convolution

operator in the angular direction. Motivated by this, we propose

effective neural network architectures for the forward and inverse

maps based on convolution layers, with weights learned from train-

ing datasets. Numerical results demonstrate the efficiency of the

proposed neural networks.
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1. Introduction

Optical tomography (OT) is a non-invasive method for reconstructing the

optical properties of the medium from boundary measurements with harm-

less near-infrared light. A typical experiment is to illuminate a highly-

scattering medium by a narrow collimated beam and measure the light on

the surface by an array of detectors [4]. Since it is non-destructive to bio-

logical tissues, OT is of great interest in early tumor diagnosis in medicine,

such as in brain imaging [10] and breast imaging [27]. Other industrial appli-

cations include atmospheric remote sensing [63] and semiconductor etching

[21], etc. We refer readers to the review paper [4], the book [5] and references

therein for more details of OT.
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1.1. Background

The governing equation of the near-infrared light depends on the spatial
scale, ranging from Maxwell equations at the microscale, radiative transfer
equation (RTE) at the mesoscale, and to diffusion theory at the macroscale
[4]. Among them, RTE is the most widely accepted model for light propa-
gation in tissues. Let Ω ⊂ Rn for n = 2 or 3 be a bounded Lipschitz domain
and Sn−1 is the unit sphere in Rn. Define Γ± = {(x, v) ∈ ∂Ω × Sn−1 |
±v · ν(x) > 0} with ν(x) to be the outward unit normal to ∂Ω at x. The
specific intensity Φ(x, v), defined as the intensity of the light at the position
x in the direction v, satisfies the following RTE, for (x, v) ∈ Ω× Sn−1

(1)
v · ∇Φ(x, v) + μt(x)Φ(x, v) = μ(x)

∫
Sn−1

σ(v · v′)Φ(x, v′) dv′ +Q(x, v),

Φ(x, v) = F (x, v), on Γ−.

The scattering phase function σ satisfies
∫
Sn−1 σ(v · v′) dv = 1. Q(x, v) is the

source inside Ω and F (x, v) is the boundary condition specified at Γ−. In this
paper, the internal light source is assumed to be absent, i.e., Q(x, v) = 0.
The transport coefficient μt(x) = μa(x) + μ(x) measures the total absorp-
tion, including the physical absorption quantified by the term μa(x) and the
scattering phenomenon quantified by the term μ(x). Here we focus on the
reconstruction of the scattering coefficient μ(x) under the assumption that
μa is a known constant.

The scattering phase function σ(v · v′) describes the probability for a
photon entering a scattering process at the direction of propagation v to
leave this process at the direction v′. The most common phase function in
OT is the Henyey-Greenstein scattering function [38]

(2) σ(v · v′) = 1

|Sn−1|
1− g2

(1 + g2 − 2gv · v′)n/2 .

The parameter g ∈ (−1, 1) defines the shape of the probability density. The
case g = 0 indicates that the scattering is almost isotropic, whereas the
value of g close to 1 indicates the scattering is primarily a forward directed.
A typical value in biological tissue is g = 0.9.

The boundary condition in (1) guarantees the uniqueness of solutions
of the RTE [12]. In most applications, F (x, v) is either a delta function
(in v) at direction v = −ν(x) or an angular-uniform illumination source.
In both cases, F (x, v) can be written as an angular independent function
f(x)h(ν(x) · v) for some fixed distribution h(·).
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The measurement on the boundary can be angular dependent or inde-
pendent. Here we focus on the angular independent case, where the measur-
able quantity is given by

(3) b(x) ≡ BΦ(x) ≡
∫
v·ν(x)>0

v · ν(x)Φ(x, v) dv.

The albedo operator is defined as

(4) Λ : Hk(∂Ω) → H−k(∂Ω), f(x) |∂Ω→ b(x) |∂Ω,

where k > 2+n/2. We refer the readers to [64] for more details of the albedo
operator and the spaces H±k(∂Ω).

For a given μ(x), the albedo operator is a linear map, hence there exists
a μ-dependent distribution kernel λ(r, s) for r, s ∈ ∂Ω such that

(5) (Λf)(r) = b(r) =

∫
∂Ω

λ(r, s)f(s) dS(s).

The forward problem for the albedo operator is that, given the scattering
coefficient μ, to compute the kernel λ(r, s), i.e., μ → λ. The inverse problem,
which is central to OT, is to recover the optical scattering coefficient μ in Ω
based on the observation data. Typically, the observation data is a collection
of pairs (f,Λf) of the boundary illumination source f and the measurable
quantity Λf . When the observation data is sufficient, it is reasonable to
assume that the kernel λ is known and hence the inverse problem is to
recover μ from λ, i.e., λ → μ. The solvability of the inverse problem has been
well studied [15, 59, 6, 5]. Since the measurements are angularly integrated,
the inverse problem is often sensitive to noise [9, 64]. For example, in the
diffusion limit where RTE can be approximated by a diffusion equation, the
inverse problem is considered ill-conditioned due to the elliptic nature [4] of
the equation. In other cases, the inverse problem can suffer Hölder instability
due to its transport nature (see [64] for example).

From a computational perspective, both the forward and inverse prob-
lems associated with the albedo operator (4) are numerically challenging.
For the forward problem, since the unknown field Φ(x, v) is a (2n − 1)-
dimensional function in both the space x and the direction v, direct solu-
tion of RTE is quite expensive even for the two-dimensional case. For OT
problems, the situation is worse since in each round of measurements the
number of RTE solves is equal to the number of light sources. For the in-
verse problem, the map λ → μ is often numerically unstable [9, 49] due to
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the ill-posedness and the measurement noise. In order to avoid instability, an
application-dependent regularization term is often required in order to stabi-
lize the inverse problem; see, for instance, [37, 13, 42, 31, 9]. Algorithmically,
the inverse problem is usually solved with iterative methods [37, 34, 31, 62],
which often require a significant number of iterations.

1.2. Contributions

In the recent years, deep neural networks (DNNs) have been very effective
tools in a variety of contexts and have achieved great successes in computer
vision, image processing, speech recognition, and many other artificial intelli-
gence applications [39, 46, 33, 54, 50, 60, 48, 58]. More recently, DNNs have
been increasingly used in the context of scientific computing, particularly
in solving PDE-related problems [43, 8, 35, 25, 3, 55, 47, 28]. First, since
neural networks offer a powerful tool for approximating high-dimensional
functions [17], it is natural to use them as an ansatz for high-dimensional
PDEs [57, 11, 35, 44, 20]. A second main direction focuses on the low-
dimensional parameterized PDE problems, by using the DNNs to represent
the nonlinear map from the high-dimensional parameters of the PDE so-
lution [52, 36, 43, 25, 24, 23, 51, 7]. Applying DNNs to inverse problems
[45, 40, 41, 2, 53, 61, 26, 56] can be viewed as a particularly important case
of this direction.

This paper applies the deep learning approach to the two-dimensional
OT problems by representing both the forward and inverse maps using neu-
ral network architectures. The starting point of the new architectures is
reformulating RTE into an integral form, which allows for writing out ex-
plicitly the forward map μ → λ. By applying a perturbative analysis on
the forward map followed by reparameterization, we find the forward map
contains one-dimensional convolution in the angular direction for the cir-
cular tomography geometry. This observation motivates to represent the
forward map from 2D coefficient μ to 2D data λ by a one-dimensional con-
volution neural network (with multiple channels). Following the idea of the
back-projection method [29], the inverse map λ → μ can be approximated
by reversing the architecture of the forward map followed with a simple
two-dimensional neural network. For the test problems being considered,
the resulting neural networks have a relatively small number of parameters,
thanks to the convolutional structure. This rather small number of parame-
ters allows for rapid and accurate training, even on rather limited data sets,
which is friendly for OT problems as solving RTE is computationally quite
expensive.
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This rest of the paper is organized as follows. The mathematical back-
ground on the albedo operator is studied in Section 2. The design and ar-
chitecture of the DNNs of the forward and inverse maps are discussed in
Section 3. Numerical tests are presented in Section 4.

2. Mathematical analysis of the albedo operator

The goal of this section is to make the relationship between the scattering
field μ(x) and the kernel λ(r, s) of the albedo operator more explicit. The
first step is to reformulate RTE as an equivalent integral equation [12, 22].
Denote by

(6) JF (x, v) = exp

(
−

∫ t

0
μt(x− τv) dτ

)
F (x− tv, v)

the extension of boundary values, where t(x, v) is the distance of a photon
traveling from x to the domain boundary along the direction −v, i.e.,

(7) t(x, v) = sup{τ : x− sv ∈ Ω for 0 ≤ s < τ}

and (x− t(x, v)v, v) ∈ Γ−. Introduce also the lifting operator

(8) LQ(x, v) =

∫ t

0
exp

(
−

∫ τ

0
μt(x− sv) ds

)
Q(x− τv, v) dτ,

and the scattering operator

(9) SΦ(x, v) = μ(x)

∫
Sn−1

σ(v′ · v)Φ(x, v′) dv′.

Direct calculations verify that

(10)
(v · ∇+ μt)JF = 0,

(v · ∇+ μt)LQ = Q, LQ |Γ−= 0.

This indicates that the extension of the boundary value JF lies in the
kernel of the transport operator v · ∇ + μt and the lifting operator is the
right inverse of the transport operator. Noticing that the internal source
vanishes (Q = 0), one can write RTE equivalently in an integral form [12]

(11) Φ = LSΦ+ JF,
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which is a Fredholm integral equation of the second kind. The existence and
uniqueness of the integral equation is well understood [12, 18] and inverting
(11) results in

(12) Φ = (I − LS)−1JF,

where I is the identity operator.
In order to better understand the relationship between the scattering

coefficient and the solution, we perform a perturbative analysis for (12).
Notice that all the operators L, S and J depend the scattering coefficient
μ either directly or implicitly through μt. Denote the background of the
scattering coefficients by μ0 and introduce the perturbation

μ̃ ≡ μ− μ0.

Here we assume that both μ0 and μa are constant. The background of the
total absorption coefficient is then μt,0 ≡ μa + μ0. In order to carry out
the perturbative analysis, we expand the operators L,J ,S into terms of
different orders of μ̃:

(13) L = L0 + L1 + . . . , J = J0 + J1 + . . . , S = S0 + S1 + . . .

where the background operators L0, S0 and J0 are independent of μ̃ while
L1, S1 and J1 are all linear in μ̃. With these new notations, (12) can be
reformulated as

(14) Φ = (I − L0S0 − L1S0 − L0S1 − . . .)−1(J0 + J1 + . . .)F

where . . . stands for higher order terms in μ̃. Let us introduce E1 = L1S0 +
L0S1, which is also first order in μ̃. When μ̃ is sufficiently small, one can
expand (I − L0S0 − L1S0 − L0S1 − . . .)−1 = (I − L0S0 − E1 − . . .)−1 via a
Neumann series

(15) (I − L0S0 − E1 − . . .)−1 = G0 + G0E1G0 + . . . .

where G0 = (I − L0S0)
−1. Putting this back in (14) and keeping only the

terms linear in μ̃, we conclude that the solution of RTE is approximated by

(16) Φ ≈ (G0J0 + G0J1 + G0E1G0J0)F.

Combining this with the measurement quantity (3) results in

(17) b = BΦ = B(I − LS)−1JF ≈ B(G0J0 + G0J1 + G0E1G0J0)F.
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By introducing b0 = b |μ=μ0
, the boundary measurement obtained with

the background scattering coefficient μ0, it is equivalent to focus on the

difference b−b0. This is known as difference imaging in medical applications

[4] and the formula for the difference is

(18)

b− b0 = B(I − LS)−1JF − B(I − L0S0)
−1J0F ≈ BG0J1F + BG0E1G0J0F.

In practical applications, the boundary source can be represented as

(19) F (x, v) = f(x)h(ν(x) · v).

For example, if the boundary source is a laser, h(ν(x) · v) = δ(ν(x) · v − 1);

if the source is angular independent, then h(ν(x) · v) = 1/|Sn−1|. Hence, the

difference of the albedo operator (4) applied to f is

(20)
b− b0 = (Λ− Λ0) f = B(I − LS)−1J hf − B(I − L0S0)

−1J0hf

≈ BG0J1hf + BG0E1G0J0hf.

By setting f(x) to be delta sources, one can extract from b− b0 the kernel

λ̃ ≡ λ− λ0

of the difference albedo operator Λ − Λ0. In order to see λ̃ more explic-

itly, denote the distribution kernel of the operator G0 by G0(x, v, x
′, v′),

i.e., G0F (x, v) =
∫
Ω×Sn−1 G0(x, v, x

′, v′)F (x′, v′) dx′ dv′, and the distribu-

tion kernel of the operator E1 by E1(x, v, x
′, v′). By defining the operator

β[η](x, y) = |x− y|
∫ 1
0 η(x+ τ(y− x)) dτ for any function η(x), the operator

BG0J can be represented as

(21)

BG0JF (xr) =

∫
ν(xr)·v>0
ν(xr) · v

∫
Ω

∫
∂Ω

G0

(
xr, v, x, x̂− xs

)
exp(−β[μt](xs, x))

F (xs, x̂− xs) dv dx dxs,

where x̂ = x
|x| . Using the approximation

(22)
exp(−β[μt](x, y)) = exp (−β[μt,0](x, y)) exp (−β[μ̃](x, y))

≈ exp (−β[μt,0](x, y)) (1− β[μ̃](x, y)) ,
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from μ̃ = μ− μ0 = μt − μt,0, the kernel of the first term BG0J1 is
(23)

d1(xr, xs) = −
∫
ν(xr)·v>0
ν(xr) · v

∫
Ω
G0

(
xr, v, x, x̂− xs

)
exp (−β[μt,0](xs, x))

β[μ̃](xs, x)h(ν(xs) · x̂− xs) dv dx,

which is linear in μ̃ through β[μ̃]. Similarly, the kernel of the second term
BG0E1G0J0 can be approximated by

(24)

d2(xr, xs) =

∫
ν(xr)·v>0
ν(xr) · v

∫
Ω3

∫
(Sn−1)2

G0(xr, v, x1, v1)E1(x1, v1, x2, v2)

G0(x2, v2, x3, x̂3 − xs) exp (−β[μt,0](x3, xs))

h(ν(xs) · x̂3 − xs) dx1 dx2 dx3 dv dv1 dv2,

which is also linear in μ̃ through E1(x1, v1, x2, v2). Putting them together,
the kernel of the difference of the albedo operator Λ− Λ0 can then approx-
imated by

(25) λ̃(xr, xs) ≡ (λ− λ0)(xr, xs) ≈ d(xr, xs) ≡ d1(xr, xs) + d2(xr, xs).

3. Neural networks for OT

The discussion below focuses on the two-dimensional case, i.e., n = 2. For
circular tomography geometry, the domain Ω is a unit disk [4, 9, 62, 5].
As illustrated in Figure 1, the light sources are placed on the boundary
equidistantly, while the receivers are shifted by a half spacing. The forward
problem of OT is to determinate all the outgoing intensity on the receivers
when the light source is activated one by one. The measured data is the
kernel λ(xr, xs), where xs = (cos(s), sin(s)) with s = 2πk

Ns
, k = 0, . . . , Ns −

1 and xr = (cos(r), sin(r)) with r = (2j+1)π
Nr

, j = 0, . . . , Nr − 1, where
Ns = Nr in the current setup. Both the absorption coefficient μa and the
background scattering coefficient μ0 are assumed to be known constants.
The inverse problem of OT is to recover the scattering coefficient μ in the
domain given the observation data λ(xr, xs) − λ0(xr, xs), where λ0(xr, xs)
is the measurement data of the medium with scattering coefficient to be μ0.

3.1. Forward problem of OT

Since the domain Ω is a disk, it is convenient to write the problem in the
polar coordinates. Let xr = (cos(r), sin(r)), xs = (cos(s), sin(s)) and x =
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Figure 1: Illustration of the problem setup. The domain is a unit disk and
the light sources and the receivers are equidistantly placed on the boundary,
with a half spacing shift in between.

(ρ cos(θ), ρ sin(θ)), where ρ ∈ [0, 1] denotes the radial direction and r, s, θ ∈
[0, 2π) denotes the angular direction.

3.1.1. Convolution in the angular direction. Figure 2 presents an
example of the measurement data λ(xr, xs) and λ(xr, xs)−λ0(xr, xs). Notice
that the main signal concentrates upon the diagonal part and the left-lower
and right-upper corners. Due to the circular tomography geometry, it is
convenient to “shear” the measurement data by introducing a new angular
variable h = r − s, where the difference here is understood modulus 2π. As
we shall see, this shearing step significantly simplifies the architecture of the
NNs. Under the new parameterization, the measurement data is

(26) d(h, s) ≡ d(xh+s, xs) = d((cos(s+ h), sin(s+ h)), (cos(s), sin(s))).

By also writing μ(ρ, θ) ≡ μ((ρ cos(θ), ρ sin(θ))) in the polar coordinates, the
linear dependence of d(h, s) on μ̃ in (23) and (24) states that there exists a
kernel distribution K(h, s, ρ, θ) such that

(27) d(h, s) =

∫ 1

0

∫ 2π

0
K(h, s, ρ, θ)μ̃(ρ, θ) dρdθ.

The following proposition states that this can in fact be written as a convo-
lution in the angular direction.

Proposition 1. There exists a function κ(h, ρ, ·) periodic in the last argu-
ment such that

(28) K(h, s, ρ, θ) = κ(h, ρ, s− θ).
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Figure 2: The upper figures are the measurement data λ(xr, xs) and the
difference λ(xr, xs)− λ0(xr, xs) ≈ d(xr, xs) with respect to the background,
respectively. The horizontal and vertical axes are s and r, respectively. The
lower figures are shift of their upper figures by h = r − s.

The proof of this proposition uses some basic formulas summarized in

the following lemma.

Lemma 2. If R ∈ R2×2 is a rotation matrix, then

β[μ0](Rx,Ry) = β[μ0](x, y),(29)

G0(x, v, x
′, v′) = G0(Rx,Rv,Rx′, Rv′).(30)

Proof. The definition of β indicates β[μ0](x, y) = μ0|x−y|. Thus (29) holds.
Denote the distribution kernel of L0S0 by L0(x, v, x

′, v′). Since G0 =

(I − L0S0)
−1, we just need to check L0(Rx,Rv,Rx′, Rv′) = L0(x, v, x

′, v′).
Notice that the operator LS is defined as

(31)
LSQ(x, v)

=

∫ t

0
exp (−β[μt](x, x− τv))μ(x− τv)

∫
S1

σ(v · v′)Q(x− τv, v′) dv′ dτ

=

∫
Ω

∫
S1

δ(v − x̂− x′)

|x− x′| exp
(
−β[μt](x, x

′)
)
μ(x′)σ(v · v′)Q(x′, v′) dx′ dv′.
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Then the kernel L0 reads

L0(x, v, x
′, v′) =

δ(v − x̂− x′)

|x− x′| exp
(
−β[μt,0](x, x

′)
)
μ0σ(v · v′).

Since δ(Rv −R(x̂− x′)) = δ(v − x̂− x′), Rv ·Rv′ = v · v′ and (29), one can

directly obtain

L0(Rx,Rv,Rx′, Rv′) = L0(x, v, x
′, v′).

This completes the proof.

Proof of Proposition 1. To prove (28), one needs to show that, for any ρ ∈
[0, 1) and any h ∈ [−π, π) and s, ψ ∈ [0, 2π),

(32) d(h, s+ ψ) =

∫ 1

0

∫ 2π

0
K(h, s, ρ, θ)μ̃(ρ, θ + ψ) dρdθ

holds. Notice (25) that d has two parts. We study them one by one. Define

the rotation matrix R =

(
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

)
, then

d1(h, s+ ψ) = d1(Rxr, Rxs)

=−
∫
ν(Rxr)·v>0

ν(Rxr) · v
∫
Ω
G0

(
Rxr, v, x, ̂x−Rxs

)

× exp (−β[μt,0](Rxs, x))β[μ̃](Rxs, x)h(ν(Rxs) · ̂x−Rxs) dv dx.

Since Ω is a disk, the integral keeps unchanged if we change of variables

as v → Rv and x → Rx. Using ν(Rxr) · Rv = ν(xr) · v, (30) and (29)

to eliminate the rotation and changing the variable again as Rv → v and

Rx → x, we obtain

d1(h, s+ ψ) = d1(Rxr, Rxs)

=−
∫
ν(xr)·v>0
ν(xr) · v

∫
Ω
G0

(
xr, v, x, x̂− xs

)

× exp (−β[μt,0](xs, x))β[μ̃](Rxs, Rx)h(ν(xs) · x̂− xs) dv dx.

This completes the proof of the d1 part.
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Next we study the second part d2. Noticing (31), we obtain the kernel
distribution E1(x, v, x

′, v′)

=
δ(v − x̂− x′)

|x− x′| exp
(
−β[μt,0](x, x

′)
)
σ(v · v′)

(
−β[μ̃](x, x′) + μ̃(x′)

)
.

Using (29), we have

E1(Rx,Rv,Rx′, Rv′)

=
δ(v − x̂− x′)

|x− x′| exp
(
−β[μt,0](x, x

′)
)
σ(v · v′)

(
−β[μ̃](Rx,Rx′) + μ̃(Rx′)

)
.

Then using the same technique in the proof of the first part, we can show
that (32) also holds for the second part. This completes the proof.

Proposition 1 shows that K acts on μ̃ in the angular direction by a
convolution, i.e.,

(33) d(h, s) =

∫ 1

0
(κ(h, ρ, ·) ∗ μ̃(ρ, ·))(s) dρ.

This effectively reduces the forward map to a family of 1D convolutions,
parameterized by ρ and h.

Till now all the analysis is in the continuous space. One can apply a
discretization on the RTE (1) by the finite volume method on the space and
discrete velocity method on the direction domain [30]. The kernel distribu-
tion G0 and E are replaced by its discrete version. The actual discretization
is often problem-dependent and we leave it to Section 4. Here with a slight
abuse of notation, we use the same letters to denote the continuous kernels,
variables and their discretization. Then the discretization version of (33) is

(34) d(h, s) ≈
∑
ρ

(κ(h, ρ, ·) ∗ μ̃(ρ, ·))(s).

3.1.2. Neural network architecture. The perturbative analysis shows
that if μ̃ is sufficiently small, the forward map μ̃(ρ, θ) → λ̃(h, s) can be
approximated by (34). This indicates that the forward map (34) can be
approximated by a convolution layer for small μ̃. For larger μ̃, this linear
approximation is no longer accurate. In order to extend the neural network
for (34) to the nonlinear case, we propose to increase the number of convolu-
tion layers and include nonlinear activation functions, as shown in Algorithm
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1. Here Conv1d[α,w,ReLU] stands for a one-dimensional layer with channel
number α, window size w, and activation function as ReLU. Note that be-
cause the value of the measurement data ranges in R, no activation function
is applied after the last layer. Since the convolution in (34) is global, the
architectural parameters are chosen with

(35) wNcnn ≥ Ns

so that the resulting network is capable of capturing global interactions.
When Ns is large, it is possible that the recently proposed multiscale neural
networks, for example MNN-H-net [25], MNN-H2-net [24], and BCR-net
[23], are more efficient for such global interactions. However in order to
simplify the presentation, the discussion here sticks to the convolutional
layers.

Algorithm 1 Neural network architecture for the forward problem μ̃ → λ̃.

Require: α, w, Ncnn ∈ N+, μ̃ ∈ RNρ×Nθ

Ensure: λ̃ ∈ RNh×Ns

1: ξ(0) = μ̃ with ρ as the channel direction
2: for k from 1 to Ncnn − 1 by 1 do
3: ξ(k) ← Conv1d[α,w,ReLU](ξ(k−1))
4: end for
5: λ̃ ← Conv1d[Nh, w, id](ξ(Ncnn−1))
6: return λ̃

3.2. Inverse problem of OT

The perturbative analysis shows that if μ̃ is sufficiently small, the forward
map can be approximated by

(36) λ̃ ≈ Kμ̃,

which is the operator notation of the discretization (34). Here μ̃ is a vector
indexed by (ρ, θ), λ̃ is a vector indexed by (h, s), and K is a matrix with row
indexed by (h, s) and column indexed by (ρ, θ). The filtered back-projection
method [29] suggests the following formula to recover μ̃:

(37) μ̃ ≈ (KTK + εI)−1KTλ̃.

Since KTλ̃ can also be written as a family of convolutions

(38) (KTλ̃)(ρ, θ) =
∑
h

(κ(h, ρ, ·) ∗ λ̃(h, ·))(θ),
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the application of KT to λ̃ can be approximated with a one-dimensional
convolutional neural network, similar to K. For the part KTK + εI, which
can be viewed as a post-processing in the (ρ, θ) space, we implement this
with several two-dimensional convolutional layers for simplicity. However, for
problems with larger sizes, multiscale neural networks such as [25, 24, 23] can
be also used. The resulting architecture for the inverse map is summarized
in Algorithm 2 and illustrated in Figure 3

Algorithm 2 Neural network architecture for the inverse problem λ̃ → μ̃.

Require: α1, α2, w1, w2, Ncnn1 , Ncnn2 ∈ N+, λ̃ ∈ RNh×Ns

Ensure: μ̃ ∈ RNρ×Nθ

1: ζ(0) = λ̃ with h as the channel direction
2: for k from 1 to Ncnn1 by 1 do
3: ζ(k) ← Conv1d[α1, w1,ReLU](ζ

(k−1))
4: end for
5: ξ(0) ← ζ(Ncnn1 )

6: for k from 1 to Ncnn2 − 1 by 1 do
7: ξ(k) ← Conv2d[α2, w2,ReLU](ξ

(k−1))
8: end for
9: μ̃ ← Conv2d[1, w2, id](ξ

(Ncnn2
−1))

10: return μ̃

Figure 3: Neural network architecture for the inverse map of OT.

4. Numerical tests

This section reports the numerical performance of the proposed neural net-
work architectures for the forward and inverse maps.

4.1. Experimental setup

The RTE in (1) is discretized with a finite volume method in x and a discrete
velocity method in v. The upwind scheme is used for the convection term and
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the composite trapezoidal rule is applied for the integral of the scattering
term. The value of σ(v′ · v) is replaced by its value on the discretization
points with a scaling such that its numerical quadrature is 1. The multi-
level method proposed in [30] is adopted to solve the discrete system. The
domain Ω is partitioned by triangle mesh with 6976 elements and 3553
points. The direction v is uniformly discretized using 32 points. In the polar
coordinates, the domain (ρ, θ) ∈ [0, 1]× [0, 2π) is partitioned by a uniformly
Cartesian mesh with 96× 192 points. As a technical note, since Algorithms
1 and 2 are designed for the scattering coefficient in the polar coordinates,
the scattering coefficient on the triangle mesh is treated as a piece-constant
function and it is further interpolated on to the polar grid.

To mimic the setup of realistic medical applications, Ω is a disc with the
radius equal to 20mm and the background scattering and absorption coeffi-
cient are 1mm−1 and 0.01mm−1, respectively [31, 9, 62]. The parameter g in
(2) is set as g = 0.9, a typical value of biological tissues. In the experiment,
Ns = 16 light sources and Nr = 16 receivers are equidistantly placed on
the boundary of the domain with a half spacing shift (see Figure 1). The
source light is an angular independent pointolite, i.e., the s-th light source
is F (x, v) = δ(x− xs).

The NN is implemented with Keras [14] running on top of TensorFlow
[1]. Nadam is chosen as the optimizer [19] and the mean squared error is
used as the loss function. The parameters of the network are initialized by
Xavier initialization [32]. In the training process, the batch size and the
learning rate is firstly set as 16 and 10−3 respectively, and the NN is trained
100 epochs. Then we increase the batch size by a factor 2 till to 256 with
the learning rate unchanged, and then decrease the learning rate by a factor
101/2 to 10−5 with the batch size fixed as 256. In each step, we train the NN
50 epochs. The selection of the channel number α, number of convolution
layers Ncnn and the window size w will be discussed in the numerical results.

4.2. Numerical results

For a fixed scattering coefficient field μ, λ(h, s) = λ((cos(s + h), sin(s +
h)), (cos(s), sin(s))) stands for the exact measurement data solved by nu-
merical discretization of (1). The prediction of the forward NN from μ is
denoted by λNN, while the one of the inverse NN from λ is denoted by μNN.
The accuracy for the forward problem is measured by the relative error in
the �2 norm:

(39)
‖λ− λNN‖�2

‖λ‖�2
.
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For each experiment, the test error is then obtained by averaging (39) over a

given set of test samples. The numerical results presented below are obtained

by repeating the training process three times, using different random seeds

for the NN initialization.

The scattering coefficient μ(x) is assumed to be piecewise constant. For

each sample μ(x), we randomly generate Ne ellipses in Ω and set μ(x) =

2mm−1 in the ellipses and 1mm−1 otherwise. For each ellipse, the width

and height are sampled from the uniform distributions U(0.0075, 0.015) and
U(0.00375, 0.0075), respectively, the direction is uniformly random over the

unit circle, and the position is uniformly sampled in the disk. It is also

required that each ellipse lies in the disk and there is no intersection between

each two ellipses. For each test, 10,204 samples {(μi, λi)} are generated with

8192 used for training and the remaining 2048 for testing.

While Algorithms 1 and 2 assume for simplicity that Nθ = Ns, this is

often not the case in the experimental setup. To deal with this issue, for

the forward problem we first compress μ from Nr ×Nθ to α×Ns by a one-

dimensional convolution layer with channel number α, window size Nr/Ns,

and strides Nr/Ns. For the inverse problem, an interpolation operator for ex-

tending the data of size α×Ns to Nr×Nθ is added after the one-dimensional

convolution neural networks. In the implementation, the interpolation is im-

plemented by two layers. The first layer interpolates the data of size α×Ns

along with the angular direction to α × Nθ by a one-dimensional convolu-

tion layer with channel number α×Nθ/Ns and window size 1, and a column

major reshape. The second layer interpolates the data of size α×Nθ along

with the radial direction to Nr × Nθ by a convolution layer with channel

number Nr and window size 1.

4.2.1. Forward problem. The data set is generated with the number of

ellipses Ne = 4 and the window size w in Algorithm 1 is set to be 5. Multiple

numerical experiments are performed to study how the test error depends

on the channel number α and the convolution layer number Ncnn, with the

results presented in Figure 4. As the number of channels increases, the test

error first consistently decreases and then saturates. The same is observed

for the number of convolution layers. The choices of the hyper-parameters

α = 32 and Ncnn = 8 offers a reasonable balance between accuracy and

efficiency. For this specific case, the number of parameters is 7.5 × 104 and

the test error is 1.1× 10−3. Figure 5 illustrates the NN prediction λNN and

its corresponding references λ of a sample in the test data.
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Figure 4: The test error for different channel numbers α and different con-
volution layer numbers Ncnn.

Figure 5: Illustration of a sample in the test data for the forward problem
with the number of ellipses Ne = 4 in Ω. The channel number α = 32 and
the convolution layer number Ncnn = 8.

4.2.2. Inverse problem. Two date sets corresponding to Ne = 2, 4 are

generated. The hyper-parameters in Algorithm 2 are set as (α1 = 32, w1 =

5, Ncnn1
= 6) and (α2 = 4, w2 = 3 × 3, Ncnn2

= 5) and the number of

parameters in NN is 4.8×104. To model the uncertainty in the measurement

data, we introduce noises to the albedo operator in the data set by defining

λδ
i ≡ (1 + Ziδ)λi, where Zi is a Gaussian random variable with zero mean

and unity variation and δ controls the signal-to-noise ratio. For each noisy

level δ = 0, 0.5%, 1%, 2% and 5%, an independent NN is trained and tested

with the noisy data set {(λδ
i , μi)}. Note that in our experiments the mean
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of ‖λ−λ0‖
λ for all the samples is about 5% and hence the signal-to-noise ratio

for the difference λ− λ0 is almost 100% when the noise level δ = 5%.

Figure 6: NN prediction of a sample in the test data for the number of
ellipses Ne = 2 in Ω and for different noise level δ = 0, 0.5%, 1%, 2%, 5%.

Figures 6 and 7 show samples in the test data for different noise level
δ and different number of ellipses Ne in Ω. When there is no noise in the
measurement data, the NN offers an accurate prediction of the scattering
coefficient μ, in the position, shape and direction of the ellipses. For the
small noise levels, for example δ = 0.5% and 1%, the boundary of the shapes
in the prediction is blurred while the position and direction of the ellipses
are still correct. As the noise level δ increases, the shapes become fuzzy
but the position and number of shapes are still correctly predicted. This
demonstrates the NN architecture in Algorithm 2 is capable of learning the
inverse problem of OT.

To test the generalization performance of the NN, we train the NN using
the data set of Ne = 2 at a given noise level and test the NN by the data of
Ne = 4 with the same noise level (and vice versa). The results, summarized
in Figure 8, indicate that the NN trained by the data, with two inclusions is
capable of recovering the measurement data of the case with four inclusions,
and vice versa. This is an indication that the trained NN is capable of
predicting beyond the training scenario.
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Figure 7: NN prediction of a sample in the test data for the number of
ellipses Ne = 4 in Ω and for different noise level δ = 0, 0.5%, 1%, 2%, 5%.

5. Discussions

This paper presents a neural network approach for OT problems. Mathe-
matically, these NNs approximate the forward and inverse maps between
the scattering coefficient and the kernel distribution of the albedo operator.
The perturbative analysis, which indicates that the linearized forward map
can be represented by a one-dimensional convolution with multiple channels,
inspires the design of the NN architectures.

NNs have offered a few clear advantages in approximating the forward
and inverse problems. For both the forward and inverse maps, once the NN
is trained, applying the map is significantly accelerated as it only involves
a single inference with the trained NN. For the inverse problem, two crit-
ical issues for more traditional approaches are the choices of the solution
algorithm and the regularization term. NNs seem to bypass the algorithm
issue by choosing an appropriate architecture and learning the map from
the data, and at the same time, identify an appropriate regularization by
automatically learning the key features from the training set. Numerical
results also demonstrate that the proposed NNs are capable of approximat-
ing the forward and inverse maps accurately. However, although empirically
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Figure 8: NN generation test. The upper figures: the NN is trained by the
data of the number of ellipses Ne = 4 in Ω with noise level δ = 0 0.5% or 1%
and test by the data of Ne = 2 with the same noise level. The lower figures
correspond the case of training data Ne = 2 and test data Ne = 4.

encouraging, theoretical justification of these advantages require significant
work.

The discussion in this paper focuses on the reconstruction of the scat-
tering coefficient. Using a similar analysis, one can extend the work to the
reconstruction of the absorption coefficient or both. The analysis in this pa-
per can also extended to the three-dimensional OT problems by leveraging
recent work such as [16].

The NN for the inverse map implicitly uses a strong prior: the testing
and training data are alike. In the reported numerical examples, the testing
and training data are indeed sampled from the same statistical model and
therefore the recovery is quite accurate. When the testing and training data
are statistically different, this becomes of the problem of distributional shift
or transfer learning, which is much harder and left for future work.
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