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Index search method for solving nonnegative matrix
factorization∗

Yi-Shin Cheng and Ching-Sung Liu

Nonnegative matrix factorization (NMF) has been widely used for
dimensionality reduction in recent years, while playing an impor-
tant role in many fields such as image processing and data analysis.
NMF is a classic non-convex optimization problem, and the alter-
nating nonnegative least squares (ANLS) framework is a popular
method for solving the problem. In general, ANLS divides the NMF
problem into two convex optimization problems, called nonnegative
least squares (NNLS) problems. In this paper, we first introduce an
active set method for NNLS, called indexed search method (ISM).
Meanwhile, our goal is to propose a robust algorithm that combines
ANLS and ISM for solving NMF. Finally, numerical experiments
are provided to support the theoretical results.
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1. Introduction

Technology is advancing with each passing day, and the era of big data is

coming. Nowadays, there are thousands of data accumulated around us, how

to use these data has become a major problem. It is not easy to find latent

information in a large amount of data, so dimensionality reduction plays an

important role in machine learning and data mining, and nonnegative matrix

factorization (NMF) [14, 15] has attracted a lot of attention. The matrices

in NMF have nonnegative element and are called nonnegative matrix. In

NMF, we will decompose a high-dimensional nonnegative matrix into two

low-dimensional nonnegative matrices. After multiplying the two matrices,

the original high-dimensional nonnegative matrix can be reduced to a low-

dimensional nonnegative matrix. The mathematical formula is as follows:
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Figure 1: Use NMF to decompose face images to obtain face features.

(1) min
W,H≥0

1

2
‖V −WH‖2F ,

where V ∈ Rm×n,W ∈ Rm×r and H ∈ Rr×n.
In most data, such as images [1], text [16, 18, 1] and medical data [3, 8],

all have nonnegative properties. And NMF can preserve the properties of
these data. Due to its nonnegativity, each element in the data is a linear
combination of some of the implicit information in the data. It can be seen
that the factors include the implicit information in the data and the way
of combination. Figure 1 shows one of the factors in a graphical way after
performing NMF on the images of 2429 faces. It can be clearly seen that
the figure presents the outline of the face. Hence NMF also has the function
of feature extraction. Compared with other decompositions, such as Singu-
lar Value Decomposition (SVD), which can provide higher accuracy matrix
decomposition, NMF can provide higher sparsity, because it has far more
zeros than other decompositions with negative numbers. Although some peo-
ple use the projection method to make nonnegative SVD [17], and has lower
accuracy. However, when the matrix size is large, it will not only take more
time, but also have the disadvantage of insufficient memory.

There are many kinds of algorithms for NMF. Paatero and Tapper [15]
initially proposed the alternating nonnegative least squares (ANLS) [5, 13]
framework for NMF. At first they created an slow algorithm, but then Lee
and Seung developed new algorithms and popularized NMF. Their multi-
plicative update algorithm (MULT) [12] is well known, and the original W
and H are multiplied by an update term (2) by repeatedly using multi-
plication until the stopping criterion is satisfied. The algorithm is fast at
each iteration because it does not solve a linear system, but because of this,
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the final number of iterations is usually very large. Although a convergence
proof for the algorithm has been proposed in the past, the proof was later
overturned, so it lacks convergence. MULT has bad performance when there
is a zero element in the multiple update term, the denominator will be 0
and cause error. In addition, there is also an algorithm that directly solves
the unconstrained least squares at each step. After obtaining the solution,
the negative number is directly projected to 0 to achieve nonnegativity. Al-
though this method is very intuitive, it is ineffective. But this idea is good
and worth keeping and improving.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Wia = Wia

(V HT )ia
(WHHT )ia

, ∀i, a,

Hbj = Hbj
(W TV )bj

(W TWH)bj
, ∀b, j.

(2)

There are two other more mainstream methods, projected gradient
method (PG) [13] and block principal pivoting method (BP) [10]. PG is
to use the gradient method to solve NNLS and set the negative part to 0,
which is called projection in this method. The gradient method is to select
the negative gradient in the subproblem as the direction, and search for the
step size to move forward in the selected direction. The most important part
of PG is to select the step size. If the step size is too large, it may skip the
optimal solution, resulting in infinite loops and failure to converge; if the
step size is too small, the convergence speed may be very slow. Therefore,
PG will spend a long time in selecting a good step size, and how to choose
a good step size is the most challenging part of this algorithm.

BP is different from PG, regardless of the selection of step size and
direction, BP solves linear systems. To satisfy the constraints, there must
be only positive numbers and 0 in the optimal solution. If the correct positive
element index can be found, then solve the least squares problem for these
indices (with no constraints), and fill in 0 for the other indices, the optimal
solution can be obtained. Due to dual feasible (9c) and the complementary
property (9d), the dual problem also has similar properties, when selecting
the positive element indices, if the KKT criterion is not satisfied, delete the
negative element index in x, and then add the negative element index in
u, recalculated until all of the KKT conditions are satisfied. This method
may enter an infinite loop (the deleted indices are added back in the next
step), so the algorithm has a setting that if an infinite loop occurs, it will
be changed to eliminate the indices one by one until the number of negative
element indices decreases.
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In the ANLS framework, the NMF problem is transformed into two
nonnegativity constrained least squares subproblem. The methods described
above are all algorithms for solving subproblems. The algorithms that can
be used to solve subproblems in the ANLS framework also have the active
set method [9], the projected quasi-Newton method [7] and a new algorithm,
Index Search Method [11], is introduced in this paper. Different from the
gradient descent methods, we use the method of finding the correct indices to
solve the subproblems. Unlike gradient descent, we can get a more accurate
solution.

The rest of this paper is organized as follows. Section 2 provides pre-
liminaries and introduces the ANLS framework of NMF and the related
background, and shows the methods are used to solve the subproblems in
NMF using the ANLS framework. Section 3 introduce the ISM algorithm
and improve it for the case of multiple right hand-side. Except for nonnega-
tive constraints, this section will generalizes ISM for box constraints. Section
4 introduce two experiments used to compare several NMF algorithms and
provide the results and their interpretation. Finally, we conclude the paper
in Section 5 with discussions.

2. Preliminaries

Throughout the paper, we use capital letters to denote matrices and low-
ercase (bold) letters to denote scalars (vectors). A real matrix A = [Aij ] ∈
Rn×k is called nonnegative (positive) if Aij ≥ 0 (Aij > 0). The superscript
T denotes the transpose of vector or matrix. For each j, we use v(j) to
represent the j-th element of a vector v and A(:, j) to represent the j-th col-
umn of a matrix A. In addition, we use typewriter typestyle for any subset
I ⊆ {1, ...,m}, let I = {i1, ..., i�} with i1 < ... < i�, |I| denotes the number
of elements in I, i.e., |I| = �. For a matrix A ∈ Rn×k with min {n, k} ≥ il,
A(:,I) (or A(I,:)) is an n×|I| (or an |I| × k) submatrix of A formed by
columns (or rows) i1, ..., i�. Denote Ic = {j1, ..., jm−�} with j1 ≤ jm−� the
complement of I. Denote a permutation matrix

PI = [ei1 , ..., ei� , ej1 , ..., ejm−�
] ∈ Rm×m,

where ek is the j-th column of m×m identity matrix. Then for each v ∈ Rm,
we have P T

I v = [v(I)T ,v(Ic)T ]T and P T
I PI = Im.

An optimization problem in standard form is as follow:

(3)
minimize f(x)

subject to gi(x) ≤ 0, i = 1, ...,m
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with variable x ∈ Rn. And the Lagrangian L : Rn×Rm×Rp → R associated
with the problem (3) is defined as

L(x,u) = f(x) +

m∑
i=1

u(i)gi(x)

in [2], where the vector u ∈ Rm is called the dual variables or Lagrange
multiplier vectors associated with the problem (3).

Assume that the function f, g1, ..., gm are differentiable, and let x∗ and
u∗ be any primal and dual optimal points with zero duality gap. Since x∗
minimizes L(x,u∗) over x, it follows that its gradient must vanish at x∗, i.e.

∂xf(x∗) +
m∑
i=1

u∗(i)∂xgi(x∗) = 0.

Thus

(4)

gi(x∗) ≤ 0, i = 1, ...,m,

u∗(i) ≥ 0, i = 1, ...,m,

u∗(i)gi(x∗) = 0, i = 1, ...,m,

∂xf(x∗) +
∑m

i=1
u∗(i)∂xgi(x∗) = 0,

which are called the Karush-Kuhn-Tucker (KKT) conditions [2].
To summarize, for any optimization problem with differentiable objec-

tive and constraint functions for which strong duality obtains, any pair of
primal and dual optimal points must satisfy the KKT conditions (4).

2.1. Alternating nonnegative least squares framework for
nonnegative matrix factorization

This section detail the Alternating Nonnegative Least Squares framework
used to solve NMF. Alternating nonnegative least squares (ANLS) frame-
work is widely used to solve NMF. The ANLS framework divide the problem
into two blocks and solve the NNLS alternately to get the optimal solution.
The framework is summarized as follows.

1. Initialize a nonnegative matrix H0 ∈ Rr×n.
2. Solve the following problems repeatedly until the convergence criteria

is met:

(5) Wk+1 = arg min
W≥0

‖HT
k W

T − V T ‖2F ,
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where Hk is fixed, and

(6) Hk+1 = argmin
H≥0

‖Wk+1H − V ‖2F ,

where Wk+1 is fixed.

This framework can swap the order, initialize W first, and reverse the order
in the second step. Although the two orders are mathematically correct, the
order of W and H when V is a sparse matrix will be discussed in later
section.

The subproblems in NMF are nonnegative least squares. Although the
original problem (1) is non-convex, after dividing the original problem into
two subproblems, the subproblems are convex, so the optimal solution can
be found in the subproblem. In addition, W ∈ Rm×r and HT ∈ Rn×r are
slender matrices with respect to V since r 
 min(m,n). These observations
play an important role in improving the algorithm later.

The ANLS framework is a two block coordinate descent algorithm, shown
in the results of Grippo and Sciandrone [5], any limit point of the sequence
of optimal solutions of two block subproblems is a stationary point. With
the guarantee of the above, the convergent of any NMF algorithm based on
the ANLS framework, finding the optimal solution to the subproblem is the
most important. If the subproblem has good convergence properties and the
optimal solution can be obtained at each iteration, then the NMF problem
can obtain the solution.

3. Index search method algorithm for NNLS

This section introduce the index search method (ISM) algorithm for the
NNLS problem. First, describe the NNLS algorithm with a single right-hand
vector. And then, the improved methods will be introduced to effectively
handle multiple right-hand side method, since the subproblems (5) and (6)
in the NMF of the ANLS framework need to solve multiple NNLS problems.

3.1. Single right-hand side case

The single right-hand side is NNLS problem, and it is formulated as

(7) min
x≥0

‖Ax− b‖22,

where A ∈ Rp×q,b ∈ Rp×1, and x ∈ Rq×1. The subproblems in (5) and
(6) can be regarded as several independent instances decomposed into (7).
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Therefore, the algorithm of (7) is the basic building block of the algorithms of
(5) and (6). Before introducing the algorithm, we will first deduce the KKT
conditions of problem (7) in detail to facilitate the subsequent introduction.

Assume A has full column rank. Since the problem in (7) is convex
optimization problem, it has a unique optimal solution. The NNLS problem
(7) can also be regarded as a quadratic optimization problem with linear
inequality constraints:

(8) min
x≥0

f(x) = min
x≥0

(
1

2
xTATAx− xTATb).

This function is also a convex optimization problem. To form the Lagrangian
we introduce multipliers ui for the q inequality constraints (i.e., x ∈ Rq and
x ≥ 0) and let u ∈ Rq with u ≥ 0 and u(i) = ui. The Lagrangian is

L(x,u) ≡ f(x)− uTx =
1

2
xTATAx− xTATb− uTx,

and we can compute

∂xL(x,u) = ATAx−ATb− u.

Finally, the KKT conditions of (8) are

u = ATAx−ATb,(9a)

x ≥ 0,(9b)

u ≥ 0,(9c)

x(i)u(i) = 0, i = 1, 2, ..., q.(9d)

That is, if there are x and u satisfy the KKT conditions if and only if x
and u are primal and dual optimal, and we denote x∗ and u∗ as primal and
dual optimal.

To classify, ISM is more similar to BP, which also needs to solve lin-
ear systems. The initial idea is derived from the KKT condition. Since the
optimal solution of NNLS must satisfy (9), all elements in x∗ must be non-
negative numbers, and only positive numbers provide information. So we
assume that if we can find the indices of the positive numbers in x, we only
have to solve the linear system for the indices. How to find the positive index
in the optimal solution is an important part of ISM.

Assuming that the index set Ik is the set of all positive indices of xk,
the purpose is to find the I∗, where

I∗ = {i|x∗(i) > 0}.
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Besides primal feasible (9b), KKT conditions also have dual feasible (9c)
and complementary properties (9d). Let’s define a set that has indices in x
that satisfy the primal feasible as

J = {i ∈ N|x(i) > 0},

and the set that has indices in u that do not satisfy the dual feasible as

N = {i ∈ N|u(i) < 0}.

If any element in u is negative, it means that x is not the optimal solution.
Hence, if N is non-empty, select those indices into I, increase the indices
position where x needs to be solved. Therefore, in the process of searching
I∗, the indices with positive elements in x and the indices with negative
elements in the corresponding u are selected into I. In other words, every
iteration before we find I∗, we should update I by the following equation

I = J ∪ N.

After determining how to update I, we can use the index set to solve for
the corresponding position, then check whether the current solution is the
optimal.

Since I is the index set of the indices in x which elements are positive,
so u(I) must be zero by complementary property (9a). Hence, to keep the
complementary property (9a) and stationary (9d), the equation for solving
y is as follows:

(10) AT
IAIy −AT

I b = 0,

where AI = A(:, I). Since we assume that the matrix A has full column rank,
then the matrix ATA is positive definite, and (10) is strictly convex. If it is
found that the element in y has any negative number, remove those indices
from I, and solve (10) again; otherwise, set x(I) = y, and x(Ic) = 0, let x
satisfies the primal feasible. Then compute the corresponding u by (9d), and
check whether u satisfies dual feasible, if there are still negative elements in
u, use the pair (x,u) to find new I. Otherwise, it means that this pair of
solutions satisfies all KKT conditions. Then x∗ = x, and u∗ = u. The idea
of Algorithm 1 is shown in Figure 2, and the flow chart in Figure 3.

Theorem 3.1 ([11]). Assume that {xk} is the sequence generated by Algo-
rithm 1. Then {xk} converges to the optimal x∗ of NNLS (7).
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Algorithm 1 Index search method (Single)

1. Compute r0 = −b, u0 = AT r0, Q = ATA and c = ATb.
Given x0 = 0 and tol > 0. Set y = −1.

2. For k = 0, 1, 2, ...
3. Jk = {i ∈ N|xk(i) > 0}, Nk = {i ∈ N|uk(i) < 0} and Ik = Jk ∪ Nk.
4. While y ≯ 0
5. Solve the linear system Q(I, I)y = c(I).
6. Find the index set P = {i ∈ N|y(i) > 0}.
7. Set I = I(P).
8. EndWhile

9. Set J = I and xk+1 = PJ

[
y
0

]
.

10. Compute rk+1 = Axk+1 − b.
11. uk+1 = AT rk+1.
12. EndFor
13. until |min(uk+1)| ≤ tol. (seek dual feasibility)

Figure 2: The idea of Algorithm 1.
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Figure 3: The flow chart of Algorithm 1.

3.2. Multiple right-hand sides case

The subproblems (5) and (6) can be viewed as NNLS problems with multiple
right-hand side vectors. First we assume that the following NNLS problem
needs to be solved:

min
X≥0

‖AX −B‖2F ,

where A ∈ Rp×q, B ∈ Rp×s, and X ∈ Rq×s. The above problem can be
simply regarded as performing a single right-hand algorithm (Algorithm 1)
on each right-hand vector B1, ..., Bs, but this method is computationally
inefficient. Now, we will introduce the efficient methods for this case, and
the improvement methods from [10] have two main parts.

The first idea of improvement is the result observed from Section 3.
For subproblems in NMF, the matrix A of the NNLS problem which is
W or HT in subproblems (5) and (6) will be very thin and long. In this
case, it would be computationally expensive to construct ATA and ATB,
and the submatrix of those matrix must be constructed repeatedly in each
iteration of the algorithm to solve the linear system, which would make the
algorithm very inefficient. Therefore, our algorithm precomputes Q = ATA
and C = ATB at the beginning, then saves them and reuses them in later
iterations. It can be seen that the 6th line in Algorithm 1 and the 7th line
in Algorithm 3 both use this method. Although both sides can improve the
efficiency, the effect is more significant in the case of multiple right-side
vectors. Because A is very thin and long, the size of ATA and ATB will be
small, so the storage space of the two matrices is not an issue.
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Table 1: Improve result (the matrix size is 5000× 1000)

Linear System
Multiple Single

r # Total Time # Total Time Pre-Compute
5 1 0.116 1000 0.250 0.189
10 1 0.099 1000 0.255 0.169
20 6 0.127 1005 0.438 0.266
40 576 0.262 1923 1.566 0.787
80 2015 0.293 3014 3.195 1.600
100 2231 0.358 3230 4.401 2.230

The most time-consuming part of the ISM algorithm is to solve the linear
system, so we hope that by reducing the number of linear systems that need
to be solved, the efficiency of the algorithm can be improved. When the
NNLS problem is changed from a single right-side vector to multiple right-
side vectors, it needs to be solved one by one, the number of linear systems
to be solved is greatly increased, and the efficiency is greatly reduced. In the
beginning, we form a sparse matrix with r matrices (Q) on the diagonal, and
transform a multiplicative linear system of vectors into a linear system with
the variables as matrices. We hope this approach can reduce execution time
and improve efficiency. Although the goal has been achieved, the efficiency
is still not good enough.

In each iteration, we solve the linear system according to a different
index set I, so if we can find vectors with the same index set I, we can
collect those vectors together and solve the linear system once. This avoids
the problem of repeating computations for Q in the Cholesky decomposition.
As mentioned in Section 3, A will be a thin and long matrix, and X will be
a wide and flat matrix (i.e. q 
 s), because it will be H or W T which in
the subproblem of NMF. In this special case, the value of combinations Cs

q

will not be very large. Since there are not many choices, it may happen that
different vectors have the same index set I among the s vectors, which can
reduce the number of linear systems to be solved. As shown in the Table 1,
when q is smaller, the efficiency will be higher; if q is larger, the worst case
will only change back to one-by-one operation. But r is usually much smaller
than min(m,n) in NMF (q 
 min(p, s) in NNLS problem), so this problem
is less likely to occur. Therefore, by reordering the vectors in C, the vectors
with the same index set I are formed into a group, and the linear system
can be solved sequentially, which can improve the efficiency. Figure 4 is the
concept of rearranging vectors.

Finally, in order to avoid recomputing vectors that already satisfy the
stopping criterion, the vectors that do not satisfy the stopping criterion will
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Figure 4: The idea of improving multiple right-hand sides case.

be picked out before solving the linear system. Even if the number of linear
systems needed to be solved is reduced, Repeatedly calculating a vector
that is already an optimal solution will only reduce efficiency. Therefore,
computing only vectors that do not satisfy the stopping criterion is also a
major factor in reducing computation time. The last improvement will be
shown in Algorithm 2, and the complete algorithm after improved will be
presented at Algorithm 3.

The Algorithm 2 is referring from [10] and line 2-6 are the matlab code.
The function sortrows can sort rows of a matrix. First output is the sorted
matrix, and second output will returns an index vector Inx which describes
the order of the sorted rows. After line 2, the columns have same elements
will be grouped together. Then we should know how many groups we have
and what elements are in the columns inside those groups. Hence, we use
diff for matrix to find the row differences and any to mark columns with
any non-zero elements as TRUE. Then obtain the index of the first column
of each group by function find, since it can find indices of nonzero elements.
Finally, which columns (cols) and the indices (var) need to be solved in group

Algorithm 2 Y =Reorder(Q,C, I)

1. Given Q ∈ Rq×q, C ∈ Rq×s, and index set I ∈ Rq×s.
2. Let [ ~I, Inx ] = sortrows(IT ).
3. Set G = any(diff(~I)T ) and g = [ 0 find(G) s ].
4. For i = 1, 2, ..., length(g)− 1
5. cols = Inx(g(i) + 1 : g(i+ 1)).
6. var = I(:, cols(1)).
7. Solve the linear system Q(var,var)Y (var,cols) = C(var,cols).
8. EndFor
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Algorithm 3 Index search method (Multiple)

1. Compute R0 = −B, U0 = ATR0, Q = ATA and C = ATB.
Given X0 = 0 and tol > 0. Set Y = −1.

2. For k = 0, 1, 2, ...
3. Jk = {i ∈ N|Xk(i) > 0}, Nk = {i ∈ N|Uk(i) < 0} and Ik = Jk ∪ Nk.
4. While Y ≯ 0
5. Cols = {i ∈ N| the i-th column which contains nonnegative element}.
6. Y (:, Cols) = Reorder(Q,C(:, Cols), I(:, Cols)).
7. Find the index set P = {i ∈ N|Y (i) > 0}.
8. Set I = I(P).
9. EndWhile

10. Set J = I and X = PJ

[
Y
0

]
.

11. Compute Rk+1 = AXk+1 −B.
12. Uk+1 = ATRk+1.
13. EndFor
14. until |min(Uk+1)| ≤ tol. (seek dual feasibility)

i can be picked out. So we can solve the linear system group by group, then
get output Y .

4. Numerical experiments

We compare ISM with projected gradient Method (PG) [13], block principle
pivoting (BP) [10], multiplicative update algorithm (MULT) [12] and alter-
nating least squares (ALS) [1] by using the same stop criterion for NMF. The
stopping criterion for NMF is based on the objective function. We have two
stopping criterions, designed for different experiments. It is mainly divided
into two types: strict and loose, which are introduced in detail below. Strict
stopping criterion is based on KKT conditions, and the following residual is
deduced in [10] as

�=
δ

δW + δH
,

where

δ =

m∑
i=1

r∑
�=1

|min(Wi�, (∂f(W,H)/∂W )i�)|

+

r∑
�=1

n∑
j=1

|min(H�j , (∂f(W,H)/∂H)�j)|,
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δW = #(min(W,∂f(W,H)/∂W ) 
= 0),

δH = #(min(H, ∂f(W,H)/∂H) 
= 0).

The purpose of removing non-zero elements is to make the size of W and H
independent of the residual, in other words, to normalize the residual. The
stopping criterion will use this residual and be defined as

�≤ ε �0,

where �0 is the value of � by using initial values and ε is a chosen tolerance.
We set ε as 10−4 in the numerical experiments. To achieve fairness among
multiple algorithms, we choose initial values instead of the value after the
first iteration to calculate �0.

Loose stopping criterion is designed by relative error. Loose stopping
criterion is used in image applications, especially image restoration. We con-
sider this result to be sufficient for the image when the relative error is small
enough. The color in the image is divided into 255, the value is from small
to large, and the color is from dark to light. Adjacent numerical values will
be very similar in color and cannot be distinguished by the human eye. In
addition, the current image pixels are very large, rather than waiting a long
time to obtain accuracy, it is much more efficient to obtain similar results
in a shorter time. So for the image we set this stop criterion, defined as

�k−1 −�k ≤ ε�0,

where

�k =
‖V −WkHk‖F

‖V ‖F
.

�0 has the same setting as strict stop criterion by using initial values and
ε is a chosen tolerance. We set ε as 10−4 in the numerical experiments. It is
to achieve fairness in comparison with many algorithms.

4.1. Experimental results with synthetic datasets

In this subsection, three datasets are used as our test samples, includ-
ing synthetic images, images, and RGB images. The synthetic image gen-
eration method is the first numerical experiment in [10]. First, for r =
5, 10, 20, 30, 40, 60 and 80, randomly generate W and H with a sparsity of
40%. Second, compute V = WH and add Gaussian noise with a standard
deviation of 5%. Then normalize, so that all the V generated by r can have
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Table 2: Experimental results on synthetic datasets

r ISM BP PG MULT ALS
iterations 5 11.4 15.5 13.5 966.8 >1000

10 17 19.9 24 >1000 >1000
20 20.7 24.9 22.6 >1000 >1000
30 26.4 27.6 33.2
40 31.6 33.8 40.2
60 47.4 52.4 61.5
80 72.7 86.3 150.1

residual 5 0.04845 0.04845 0.04845 0.04845 0.04847
10 0.04792 0.04792 0.04792 0.04795 0.04809
20 0.04651 0.04651 0.04653 0.04664 0.04761
30 0.04580 0.04580 0.04581
40 0.04446 0.04446 0.04465
60 0.04233 0.04233 0.04236
80 0.03961 0.03961 0.03963

time 5 0.04215 0.04123 0.02095 0.59147 0.96277
10 0.14345 0.12306 0.05384 1.21621 1.71411
20 0.35128 0.22358 0.10089 2.11936 2.97298
30 0.58829 0.31406 0.21464
40 0.96627 0.46409 0.40370
60 2.36516 1.13260 2.20056
80 5.70527 2.62258 7.15772

the same mean element-wise magnitude. Finally, a sparse matrix V with
implicit information can be obtained.

To be fair, all algorithms start with the same initial value, and 10 ex-
periments yield 10 different initial values to prevent special cases. Since it
is a numerical experiment, strict stopping criterion is used, and finally the
results of 10 experiments for each algorithm will be averaged and presented
in Table 2. As shown in Table 2, in this experiment, the number of iterations
of MULT and ALS is much larger than other algorithms. When r is small,
they can still have about the same relative error. But when r increases, the
relative errors of MULT and ALS cannot be more accurate. Therefore, the
comparison of the two algorithms is not performed after r exceeds 20. In
contrast, the remaining three algorithms are relatively stable. But as r in-
creases, the steps of PG also start to increase slowly, although not as steep
as MULT and ALS. This is something that did not happen to ISM and BP.
This also highlights the stability of their number of iterations with respect
to r.

From the residual, it can be found that PG is in a small weak position,
because PG does not solve the linear system, and if the stopping criterion is
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not adjusted, it will not have a good residual. But under the same criterion,
ISM and BP can maintain the best residuals, which is also a big advantage of
this type of method. In addition, it can be seen that the number of iteration
steps of ISM is the least. From the small number of steps required and the
same residual, it can be seen that the residual decline rate of ISM is faster
than that of BP, so we infer that the way of ISM to find the index set I is
better than that of BP.

4.2. Experimental results with image datasets

For the image, we perform image compression on a grayscale image with a
size of 1164 × 1406 pixels and observe the results to compare the pros and
cons of each algorithm. This experiment performed image compression with
r = 50, 100 and 200 respectively, and the compression results are presented
in Figure 6 as the image. From Figure 6, it can be clearly seen that ALS
has obvious distortion problems. The restored picture can no longer display
the color correctly, and even some exposure situations, that is to say, the
restored matrix is too far away from the original matrix.

In addition, the performance of PG is extremely poor when r = 100 and
200. As we know, the accuracy of PG is of a certain level, so it is guessed
that the poor performance should be related to the speed of the residual
drop. It can be seen from Figure 5 that our speculation is not wrong. Due
to the slow decline of the PG residual, the stop criterion is reached early,
resulting in poor results. Although the speed is faster when using PG, there
is a need to adjust ε for different situations. Under the same criterion, other
algorithms will not have this problem. Finally, although MULT has roughly

Figure 5: The residual comparison of all algorithms.
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Figure 6: The result of all algorithms for experiment 2.

restored images, the results are still not satisfactory compared to ISM and
BP. Therefore, the following experiment will exclude ALS and MULT.

5. Conclusion

In this paper, the ISM method is introduced to solve the NNLS problem.
We apply it to the subproblems of NMF, use the method of reordering the
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right side to improve the efficiency, and finally we compare it with other
algorithms. It can be seen from the experimental results that BP and ISM
can obtain the smallest error, and the number of outer iteration steps does
not increase sharply with the increase of r in NMF. Although PG does not
perform as well as them in these two results, good image results can also be
obtained by adjusting the stopping criterion. In addition, when r is small,
the time spent by PG is very small. Therefore, if the problem is a case
where r is small, it is recommended to use PG as the solution to the NMF
subproblem. If r is large and high accuracy is desired, BP can be used as the
solution to the NMF subproblem. Finally, it can be seen from experiment 2
that ISM has good stability for sparse matrices. Therefore, if the matrix to
be decomposed has high sparsity or is relatively uniform, ISM can be used as
the solution method of the NMF subproblem to obtain a more stable NMF.
The above are the results obtained by numerical experiments, and we can
continue to discuss related issues in the future.
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