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On a degenerate mixed-type boundary value
problem for the two-dimensional self-similar Euler

equations

Yanbo Hu

This paper is concerned with the semi-hyperbolic structures orig-
inated from the study of the two-dimensional Riemann problem
for the compressible Euler equations in gas dynamics. Given two
piece of smooth curves in the self-similar plane such that one is
a sonic curve and the other is a characteristic curve, we estab-
lish the existence of classical supersonic solutions in the angular
region near the corner point. The main difficulty arises from the
coupling of nonlinearity and degeneracy at the corner. With the
help of the characteristic decomposition technique, the problem is
solved by transforming the self-similar Euler equations into a new
degenerate hyperbolic system with explicitly singularity-regularity
structures. Based on the solution in the partial hodograph plane,
we construct a smooth sonic-supersonic solution of the original de-
generate mixed-type boundary value problem in the self-similar
plane.
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1. Introduction

Consider the two-dimensional (2-D) isentropic compressible Euler equations⎧⎨⎩
ρt + (ρu)x + (ρv)y = 0,
(ρu)t + (ρu2 + p)x + (ρuv)y = 0,
(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

(1)

where ρ is the density, (u, v) is the velocity and p is the pressure given by
the polytropic gas equation p(ρ) = Aργ , A > 0 is a constant can be scaled
to be one, γ > 1 is the adiabatic gas constant [5].
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We are interested in the Riemann problem of (1), which is a kind of
Cauchy problem with special initial data that is constant along each ray
from the origin. Based on these special initial data, the flow is pseudo-steady
for which a solution depends on the self-similar variables (ξ, η) = (x/t, y/t).
The 2-D Riemann problem of (1) with four piecewise constants was initiated
by Zhang and Zheng [37]. By using the generalized characteristic analysis
method, they conjectured the configurations of the global solutions. The
solution configurations were completed and confirmed afterward by numer-
ical simulations [24, 40]. Many very important and interesting phenomena,
such as shock reflection and dam collapse, are included in the framework of
the 2-D Riemann problem (see the survey [22]). The rigorous proof of the
numerical simulations are considerably difficult due to the fact that each so-
lution configuration typically contains transonic and small-scale structures.
Many efforts have been made to understand these configurations for more
specific initial data. A representative example is the expansion problem of
a semi-infinite wedge of gas into vacuum, which is often interpreted as the
dam collapse problem in hydraulics [20, 33]. In the context of 2-D Riemann
problem, it is that of the interaction of two 2-D planar rarefaction waves.
In [21], Li established the first global existence result for the interaction of
rarefaction waves in the hodograph plane. This solution was converted into
the physical plane by Li and Zheng [26, 27] by applying the characteristic
decomposition technique which is a powerful tool for studying the degener-
ate hyperbolic problems developed in [6, 25]. Subsequently, the existence of
global solutions to the interaction of two arbitrary planar rarefaction waves
was solved directly in the physical plane [3, 14, 23]. The interaction of a cen-
tered simple wave and a planar rarefaction wave was discussed by Sheng et
al. [18, 18, 29]. The results of shock reflection and shock diffraction problems
can be found, among others, in [1, 2, 7, 41].

The numerical simulations in [8] show that shock waves may formate
near sonic curves even in the interaction of four-rarefaction waves, which
illustrate that the properties of supersonic solutions near sonic curves are
indeed extremely complicated. In [32], Song and Zheng proposed the con-
cept of semi-hyperbolic region which is not parabolic or hyperbolic in the
classical sense. A semi-hyperbolic region is a small region in which a family
of characteristics starts on a sonic curve and ends on either a sonic curve or
a transonic shock wave. This type of region may also appear in many other
situations, such as in the transonic flow over an airfoil [4, 17] and in Guderley
shock reflection [34, 35]. It is worth noting that the study of semi-hyperbolic
solutions may provide us the important information about sonic curves. A
semi-hyperbolic patch as shown in Figure 1 was first extracted theoretically
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Figure 1: A semi-hyperbolic patch produced by a planar rarefaction wave
R14(η) : η = v +

√
p′(ρ), v = v4 +

∫ ρ
ρ4

√
p′(s)/s ds, u = u1 = u4 = 0 with

v4 +
√

p′(ρ4) ≤ η ≤ v1 +
√

p′(ρ1), 0 < ρ4 ≤ ρ ≤ ρ1.

in [32] for the 2-D pressure gradient system and then extended to the isen-
tropic and isothermal Euler equations in [28, 14]. A similar semi-hyperbolic
problem to the 2-D nonlinear wave system with Chaplygin gases was consid-
ered in [16]. In [30], a semi-hyperbolic patch arising from a transonic shock in
simple waves interaction was constructed for the pressure gradient system.
The regularity of the semi-hyperbolic problems for the pressure-gradient and
Euler systems were discussed in [15, 31, 36]. Hu and Li [12] established a
global supersonic-sonic solution in a region surrounded by a streamline and
a characteristic curve for the steady full Euler equations with a special re-
lation of entropy and vorticity, also see Hu [9] and Hu and Li [13] for the
related results.

The framework for studying the semi-hyperbolic problem as described
in Figure 1 in previous papers [32, 28, 14, 16, 15, 31, 36] is to give the

negative characteristic curve B̂C and then solve two degenerate Goursat
problems in the regions ABC and BCD with the possible sonic boundary
ÂC and envelope curve ĈD respectively. Particularly, the flow in the region
BCD is a simple wave. Unlike the previous framework, we plan to study the
semi-hyperbolic structure by giving the sonic curve ÂC and then solving the
problem in the region ABC to determine the negative characteristic B̂C. In
order to realize this programme, it is necessary to study first the existence
of classical sonic-supersonic solutions of the degenerate boundary value and
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degenerate mixed-type boundary value problems. The existence of classi-
cal sonic-supersonic solutions of the degenerate boundary value problem to
the Euler equations were investigated in [38, 39, 11]. In [10], Hu and Chen
constructed a classical sonic-supersonic solution of a degenerate mixed-type
boundary value problem for the steady full Euler equations. In the present
paper, we consider a degenerate mixed-type boundary value problem for
the 2-D self-similar Euler equations and establish the existence of classical
sonic-supersonic solutions in an angular region bounded by a sonic curve and
a characteristic curve. Specifically, we consider the degenerate mixed-type
problem as follows.

Problem 1.1. Let P̂C and P̂E be two piece of smooth curves in the self-
similar plane, see Figure 1. We assign the boundary data on P̂C and P̂E
such that P̂C is a sonic curve and P̂E is a negative characteristic curve.
We look for a classical self-similar supersonic solution for (1) in the region

bounded by P̂C and P̂E near point P .

The degenerate mixed-type boundary value problem 1.1 is also called
the degenerate Cauchy-Goursat problem. The main difficulty of this prob-
lem is to deal with the coupling of nonlinearity and degeneracy near the
corner point. We adopt the pseudo-Mach angle and pseudo-velocity poten-
tial as the auxiliary coordinate system to transform the pseudo-steady Eu-
ler equations into a new nonlinear system with clear singularity-regularity
structures. An iterative sequence generated by a nonlinear integral system is
formed and then shown to be uniformly convergent. To overcome the influ-
ence of nonlinearity on the convergence of iterative sequence, the difference
of iterative fluctuations need to be analyzed carefully and the difference
of boundary values on the characteristic need to be estimated accurately.
Based on the solution in the partial hodograph plane, we construct a classi-
cal sonic-supersonic solution to the original degenerate mixed-type boundary
value problem for the 2-D self-similar isentropic irrotational Euler equations.

The rest of the paper is organized as follows. In Section 2, we introduce
the angle variables and derive their characteristic decompositions to formu-
late the problem and state the main result of the paper. In Section 3, we
transform the problem into a new degenerate mixed-type boundary value
problem in a partial hodograph plane and use the iteration method to solve
this new problem under some higher-order compatibility conditions at the
corner point. In Section 4, with the aid of the solution in terms of partial
hodograph variables, we establish the local existence of classical supersonic
solutions to the original problem in the self-similar plane and then complete
the proof of the main theorem.
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2. Formulation of the problem and the main result

In this section, we introduce a set of dependent variables and derive their

characteristic decompositions to formulate the degenerate mixed-type bound-

ary value problem and state the main result of the paper.

2.1. Preliminary characteristic decompositions

In terms of self-similar variables (ξ, η), system (1) can be written as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Uρξ + V ρη + ρ(uξ + vη) = 0,

Uuξ + V uη +

(
c2

γ − 1

)
ξ

= 0,

Uvξ + V vη +

(
c2

γ − 1

)
η

= 0,

(2)

where (U, V ) = (u − ξ, v − η) is the pseudo-velocity and c =
√

p′(ρ) is the

sound speed. We further assume that the flow is irrotational, that is, uy = vx
in the (x, y) plane or equivalent uη = vξ in the (ξ, η) plane. Then system (2)

reduces to {
(c2 − U2)uξ − UV (uη + vξ) + (c2 − V 2)vη = 0,
uη − vξ = 0,

(3)

which is supplemented with the pseudo-Bernoulli law

c2

γ − 1
+

U2 + V 2

2
= −φ, φξ = U, φη = V,(4)

where φ is the pseudo-velocity potential.

It is obtained by direct calculations that the two eigenvalues of (3) are

Λ± =
UV ± c

√
U2 + V 2 − c2

U2 − c2
,(5)

from which one can clearly see that system (3) is of mixed-type: supersonic

for U2 + V 2 > c2, subsonic for U2 + V 2 < c2 and sonic for U2 + V 2 = c2.

A curve is called a sonic curve if each point (ξ, η) on it satisfies U2(ξ, η) +

V 2(ξ, η) = c2(ξ, η). We perform the standard manipulation to achieve that
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the left eigenvectors of (3) are �± = (1,Λ∓) and then the characteristic
forms are {

∂+u+ Λ−∂+v = 0,
∂−u+ Λ+∂

−v = 0,
∂± = ∂ξ + Λ±∂η.(6)

Following the previous works [11, 26], it is convenient to handle the
sonic degenerate problems of the compressible Euler equations in terms of
the angle variables. Introduce the pseudo-flow angle θ and pseudo-Mach
angle ω as follows

tan θ =
V

U
, sinω =

c

q
,(7)

and denote

α := θ + ω, β := θ − ω.(8)

According to the expression of Λ± in (5), one obtains that

tanα = Λ+, tanβ = Λ−,(9)

which mean that the angles α and β are the inclination angles of positive
and negative characteristic curves, respectively. Moreover, we combine (4)
and (7) to express the functions (c, u, v) in terms of φ, θ, ω as follows:

c =

√
−2φκ sin2 ω

κ+ sin2 ω
, u = ξ − c

cos θ

sinω
, v = η − c

sin θ

sinω
,(10)

where κ = (γ−1)/2 > 0. And now the sonic curve is {(ξ, η) : sinω(ξ, η) = 1}.
In addition, we introduce the following normalized directional derivatives

∂̄+ = cosα∂ξ + sinα∂η, ∂̄− = cosβ∂ξ + sinβ∂η,
∂̄0 = cos θ∂ξ + sin θ∂η, ∂̄⊥ = sin θ∂ξ − cos θ∂η,

(11)

from which one has

⎧⎪⎪⎨⎪⎪⎩
∂ξ =

cos θ sinω(∂̄+ + ∂̄−)− sin θ cosω(∂̄+ − ∂̄−)

sin(2ω)
,

∂η =
sin θ sinω(∂̄+ + ∂̄−) + cos θ cosω(∂̄+ − ∂̄−)

sin(2ω)
,

⎧⎪⎪⎨⎪⎪⎩
∂̄0 =

∂̄+ + ∂̄−

2 cosω
,

∂̄⊥ =
∂̄− − ∂̄+

2 sinω
.

(12)



A degenerate mixed-type problem for Euler equations 27

Combining with (6), (10) and (11) gives a new system in terms of the vari-
ables (θ, ω) ⎧⎪⎪⎨⎪⎪⎩

∂̄+θ +
cosω

κ+�2
∂̄+� =

�2

c
· κ− 1 + 2�2

κ+�2
,

∂̄−θ − cosω

κ+�2
∂̄−� = −�2

c
· κ− 1 + 2�2

κ+�2
.

(13)

Here and below, we use the mixed variables ω and � := sinω in a system
for convenience. Set

R =
∂̄+c

c
, S =

∂̄−c

c
.(14)

Then we can obtain the relations between � and (R,S) by the pseudo-
Bernoulli law (4)

∂̄+� =
�(κ+�2)

κ
R− cosω�2

c
, ∂̄−� =

�(κ+�2)

κ
S − cosω�2

c
,(15)

and the equations for (R,S) by the characteristic decomposition technique⎧⎪⎪⎨⎪⎪⎩
∂̄−R = R

{
− 2 cosω�

c
+

(κ+ 1)(R+ S)

2κ cos2 ω
− κ+ 2�2

κ
S

}
,

∂̄+S = S

{
− 2 cosω�

c
+

(κ+ 1)(R+ S)

2κ cos2 ω
− κ+ 2�2

κ
R

}
,

(16)

The detailed derivation of (16) can be found in [28]. We further introduce

R̄ = �
√

κ+�2R, S̄ = −�
√

κ+�2S,(17)

from which and (16) arrives at⎧⎪⎪⎨⎪⎪⎩
∂̄−R̄ = R̄

{
κ+ 1

2κ�
√
κ+�2

· R̄− S̄

cos2 ω
− �(3κ+ 4�2) cosω

c(κ+�2)

}
,

∂̄+S̄ = S̄

{
κ+ 1

2κ�
√
κ+�2

· R̄− S̄

cos2 ω
− �(3κ+ 4�2) cosω

c(κ+�2)

}
.

(18)

2.2. The problem and the main result

We now specify the boundary conditions and formulate the mixed-type
boundary value problem 1.1 in terms of the angle variables. Given a smooth
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curve P̂C : η = ϕ(ξ)(ξ ∈ [ξP , ξC ]), we suppose that the function ϕ and the
boundary values (c, θ,�)|

̂PC
= (ĉ, θ̂, �̂)(ξ) satisfy

ϕ(ξ) ∈ C3([ξP , ξC)), (ĉ, θ̂)(ξ) ∈ C3([ξP , ξC)), �̂(ξ) = 1.(19)

Thus P̂C is a sonic curve. Let P̂E : η = ψ(ξ) (ξ ∈ [ξP , ξE ]) be a smooth
curve satisfying ϕ(ξP ) = ψ(ξP ). We assume that the function ψ and the
boundary values (c, θ,�)|

̂PE
= (c̃, θ̃, �̃)(ξ) satisfy

ψ(ξ) ∈ C1([ξP , ξE)) ∩ C4((ξP , ξE)),

(c̃, θ̃, �̃)(ξ) ∈ C1([ξP , ξE)) ∩ C4((ξP , ξE)),

θ̃(ξ) = arctanψ′(ξ) + arcsin �̃(ξ).

(20)

Then P̂E is a negative characteristic curve. We further assume that the
functions (ĉ, θ̂, �̂)(ξ) and (c̃, θ̃, �̃)(ξ) satisfy the following basic compatibility

conditions at the corner P and the characteristic curve P̂E

ĉ(ξP ) = c̃(ξP ), θ̂(ξP ) = θ̃(ξP ), �̂(ξP ) = �̃(ξP ) = 1,

θ̃′ −
√
1− �̃2

κ+ �̃2
�̃′ = −�̃2

√
(ψ′)2 + 1

c̃
· κ− 1 + 2�̃2

κ+ �̃2
∀ ξ ∈ [ξP , ξE).

(21)

The last relation in (21) comes from the second governing equation in (13).

In addition, we can express ξ as a function of cos ω̃ on the curve P̂E to get
ξ = ξ̃(cos ω̃). Set

b̃0(cos ω̃)(22)

:=
κ√

1− cos2 ω̃(κ+ 1− cos2 ω̃)

(
�̃′(ξ̃(cos ω̃))√

(ψ′)2 + 1
+

cos ω̃(1− cos2 ω̃)

c̃(ξ̃(cos ω̃))

)
.

Actually, b̃0 is the boundary value of S on the curve P̂E. As the function of
cos ω̃, we further require b̃0 to satisfy the regularity

b̃0(cos ω̃) ∈ C3([0, cos ω̃(E))).(23)

We comment that this requirement can be achievable by the degeneracy of
the derivative of ξ̃(cos ω̃) at point P .

Our main conclusion can be stated in the following theorem.

Theorem 2.1. Let the boundary conditions (19)–(20) and (23) hold. As-
sume that the compatibility conditions (21) and a higher-order compatibility
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condition (C) are satisfied at the corner P (the condition (C) is given in (58)
in Subsection 3.1). We further suppose that the following inequality condi-
tions at point P hold

ĉ′(ξP ) < 0, �̃′(ξP ) < 0,

(ĉθ̂′ − ϕ′ cos θ̂ + sin θ̂)(ξP ) > 0, (cos θ̂ + ϕ′ sin θ̂)(ξP ) < 0.
(24)

Then there exists a classical supersonic solution (c, θ,�) for system (13)
with (c, θ,�)|

̂PC
= (ĉ, θ̂, �̂)(ξ) and (c, θ,�)|

̂PE
= (c̃, θ̃, �̃)(ξ) in the angular

region around P .

Remark 1. The inequality conditions in (24) are matched the study of
semi-hyperbolic patch in the previous works [28, 14].

2.3. The boundary values of (R̄, S̄)

The strategy of this paper is to construct the solution of system (13) by
solving a problem corresponding to system (18) in a partial hodograph plane.

Hence we need the information of R̄ and S̄ on the boundaries P̂C and P̂E.
We first assert that system (13) is compatible at the corner P . The

compatibility of the second equation of (13) follows from (21). For the first
equation, we note by the fact cosω(P ) = 0 and (21) that

∂̄+θ(P ) = cos(θ(P ) + ω(P ))θξ(P ) + sin(θ(P ) + ω(P ))θη(P )

=− sin(θ(P ))θξ(P ) + cos(θ(P ))θη(P )

=− cos(θ(P )− ω(P ))θξ(P )− sin(θ(P )− ω(P ))θη(P )

=− ∂̄−θ(P ) = − 1√
1 + (ψ′)2

θ̃′(P ) =
1

c̃(P )
,

which implies that the first equation of (13) holds at P .

Since P̂E is a negative characteristic curve, we can get the boundary
data of S by (15) and (22)

S|
̂PE

=

{
κ

�(κ+�2)

(
∂̄−� +

cosω�2

c

)}∣∣∣∣
̂PE

= b̃0(cos ω̃),(25)

from which and (17) one gets

S̄|
̂PE

= −
(
�
√

κ+�2S
)
|
̂PE

(26)

= −
√

(1− cos2 ω̃)(κ+ 1− cos2 ω̃)b̃0(cos ω̃) := b̃1(cos ω̃).
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The boundary data of R̄ on P̂E will be obtained later by solving a singular
ODE problem.

For the data of (R,S) on the sonic curve P̂C, we first note by (12)
and (14) that

R+ S =
2 cosω∂̄0c

c
,(27)

which indicates by cos ω̂ = 0 that R|
̂PC

= −S|
̂PC

. On the other hand,
adding the two equations of (13) and applying (15) yields

R− S = −2κ∂̄0θ

�
.(28)

Thus it follows that

R|
̂PC

= −S|
̂PC

= −κ(∂̄0θ)|
̂PC

,

and then

R̄|
̂PC

= S̄|
̂PC

= −κ
√
κ+ 1(∂̄0θ)|

̂PC
.(29)

To obtain the boundary data of ∂̄0θ, we subtract the two equations of (13)
and notice the definition of ∂̄⊥ to acquire

∂̄⊥θ =
cosω(∂̄+� + ∂̄−�)

2�(κ+�2)
− �(κ− 1 + 2�2)

c(κ+�2)
,(30)

which along with the fact cos ω̂ = 0 leads to

sin θ̂(θξ)|̂PC
− cos θ̂(θη)|̂PC

= −1

ĉ
,

which together with the boundary value θ(ξ, ϕ(ξ)) = θ̂(ξ) arrives at

(θξ)|̂PC
=

ĉ cos θ̂θ̂′ − ϕ′

ĉ(cos θ̂ + ϕ′ sin θ̂)
, (θη)|̂PC

=
ĉ sin θ̂θ̂′ + 1

ĉ(cos θ̂ + ϕ′ sin θ̂)
,

from which we have

(∂̄0θ)|
̂PC

= cos θ̂(θξ)|̂PC
+ sin θ̂(θη)|̂PC

=
ĉθ̂′ − ϕ′ cos θ̂ + sin θ̂

ĉ(cos θ̂ + ϕ′ sin θ̂)
.(31)
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Combining with (29) and (31) gives

R̄|
̂PC

= S̄|
̂PC

= −κ
√
κ+ 1(ĉθ̂′ − ϕ′ cos θ̂ + sin θ̂)

ĉ(cos θ̂ + ϕ′ sin θ̂)
:= â0(ξ).(32)

Moreover, for late use, we here derive the boundary data of ∂̄0c on P̂C.
It suggests by (14) and (17) that

R̄+ S̄ =
�
√
κ+�2

c
(∂̄+c− ∂̄−c) = −2�2

√
κ+�2

c
∂̄⊥c,

from which and (32) obtains

(∂̄⊥c)|
̂PC

= − ĉâ0√
κ+ 1

.(33)

which combined with the boundary value c(ξ, ϕ(ξ)) = ĉ(ξ) achieves

(cξ)|̂PC
=

ĉ′ cos θ̂ − ĉâ0√
κ+1

ϕ′

cos θ̂ + ϕ′ sin θ̂
, (cη)|̂PC

=
ĉ′ sin θ̂ + ĉâ0√

κ+1

cos θ̂ + ϕ′ sin θ̂
.

Hence one has

(∂̄0c)|
̂PC

=

√
κ+ 1ĉ′ + ĉâ0(sin θ̂ − ϕ′ cos θ̂)
√
κ+ 1(cos θ̂ + ϕ′ sin θ̂)

,(34)

and then by (27) and (17)

R̄− S̄

2 cosω

∣∣∣∣
̂PC

=
�
√
κ+�2∂̄0c

c

∣∣∣∣
̂PC

(35)

=

√
κ+ 1ĉ′ + ĉâ0(sin θ̂ − ϕ′ cos θ̂)

ĉ(cos θ̂ + ϕ′ sin θ̂)
:= â1(ξ).

Finally, we discuss the properties of the boundary data of (R̄, S̄). We first
note by (22), (26) and (32) that â0(ξP ) = b̃1(0). According to the regularity
assumptions in (19)–(20) and (23), we see that â0, â1 are C2-continuous
functions and b̃1 is C3-continuous function provided cos θ̂ + ϕ′ sin θ̂ �= 0.
Recalling the inequality conditions in (24) and employing the expression of
â0, we know by continuity that there exist two small positive constants ε0
and δ0 such that ĉ′(ξ) ≤ −ε0, �̃

′(ξ) ≤ −ε0, (ĉθ̂
′ − ϕ′ cos θ̂ + sin θ̂)(ξ) ≥ ε0,
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(cos θ̂+ϕ′ sin θ̂)(ξ) ≤ −ε0, â0(ξ) ≥ ε0 and b̃1(ξ) ≥ ε0 for any ξ ∈ [ξP , ξP +δ0].
Without loss of generality, we may assume these inequalities hold on the
boundary curve P̂C and P̂E. Otherwise, we can use the points C1 and
E1 instead of C and E respectively, to make them hold on P̂C1 and P̂E1.
Therefore we have the following conditions for the boundary data of (R̄, S̄)

(â0, â1)(ξ) ∈ C2([ξP , ξC)), b̃1(cos ω̃) ∈ C3([0, cos ω̃(E)),
ĉ′(ξ) ≤ −ε0, â0(ξ) ≥ ε0 ∀ ξ ∈ [ξP , ξC),

�̃′(ξ) ≤ −ε0, b̃1(ξ) ≥ ε0 ∀ ξ ∈ [ξP , ξE).

(36)

3. Solutions in a partial hodograph plane

In this section, we transform system (18) into a new nonlinear degenerate
hyperbolic system with clear singularity-regularity structures by introducing
a partial hodograph transformation. The new problem will be solved by the
iteration method.

3.1. Reformulated problem in a partial hodograph plane

To characterize the singularity of system (18) caused by the sonic degeneracy,
we consider the problem in a partial hodograph plane. Introduce

t′ = cos2 ω, z′ = −φ.(37)

Applying (4), (12), (15) and (17) yields the Jacobian of the transforma-
tion (37)

J :=
∂(z′, t′)

∂(ξ, η)
= 2 sinω(U�η − V �ξ)(38)

=c
∂̄−� − ∂̄+�

sinω
= −c

√
κ+ 1− t′(R̄+ S̄)

κ
√
1− t′

.

Thanks to (36), we see that J < 0 near the boundary curve P̂C.
By direct calculations, the operators ∂̄± can be transformed into

∂̄+ =

{
− 2

√
(κ+ 1− t′)(1− t′)R̄

κ
+

2
√
t′
√

(1− t′)3

c

}
∂t′ +

c
√
t′√

1− t′
∂z′ ,

∂̄− =

{
2
√

(κ+ 1− t′)(1− t′)S̄

κt
+

2
√
t′
√

(1− t′)3

c

}
∂t′ +

c
√
t′√

1− t′
∂z′ ,

(39)
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where c = c(z′, t′) =
√

2κ(1− t′)z′/(κ+ 1− t′). Then the functions (R̄, S̄)

in terms of (z′, t′) satisfy⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̄t′ +
cκ

√
t′

2(1− t′)T ′
1

R̄z′ =
(κ+ 1)R̄

(1− t′)
√
κ+ 1− t′T ′

1

· R̄− S̄

4t′

− κ(3κ+ 4− 4t′)R̄

2c(κ+ 1− t′)T ′
1

√
t′,

S̄t′ −
cκ

√
t′

2(1− t′)T ′
2

S̄z′ =
(κ+ 1)S̄

(1− t′)
√
κ+ 1− t′T ′

2

· S̄ − R̄

4t′

+
κ(3κ+ 4− 4t′)S̄

2c(κ+ 1− t′)T ′
2

√
t′,

(40)

where

T ′
1 =

√
κ+ 1− t′S̄ +

κ(1− t′)

c(z′, t′)

√
t′,

T ′
2 =

√
κ+ 1− t′R̄− κ(1− t′)

c(z′, t′)

√
t′.

We note that the term (R̄− S̄)/t′ in (40) corresponds to the term (R̄−
S̄)/ cos2 ω in the (ξ, η) plane, which is still singular at the sonic curve. Then

we further introduce

t =
√
t′, z = z′.(41)

It is clear that the transformation (z′, t′) 	→ (z, t) and its inverse transforma-

tion are one-to-one, despite the fact that the Jacobian of this transformation

has singularities at t′ = 0. In terms of (z, t), the operators ∂̄± are

∂̄+ =

{
−

√
(κ+ 1− t2)(1− t2)R̄

κt
+

√
(1− t2)3

c

}
∂t +

ct√
1− t2

∂z,

∂̄− =

{√
(κ+ 1− t2)(1− t2)S̄

κt
+

√
(1− t2)3

c

}
∂t +

ct√
1− t2

∂z,

(42)

where c = c(z, t) =
√

2κ(1− t2)z/(κ+ 1− t2). Hence, we can obtain the
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system of (R̄, S̄)(z, t)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̄t +
cκt2

(1− t2)T1
R̄z =

(κ+ 1)R̄

(1− t2)
√
κ+ 1− t2T1

· R̄− S̄

2t

−κ(3κ+ 4− 4t2)R̄

c(κ+ 1− t2)T1
t2,

S̄t −
cκt2

(1− t2)T2
S̄z =

(κ+ 1)S̄

(1− t2)
√
κ+ 1− t2T2

· S̄ − R̄

2t

+
κ(3κ+ 4− 4t2)S̄

c(κ+ 1− t2)T2
t2,

(43)

where

T1 =
√

κ+ 1− t2S̄ +
κ(1− t2)

c(z, t)
t, T2 =

√
κ+ 1− t2R̄− κ(1− t2)

c(z, t)
t.

Set

R̃ =
1

R̄
, S̃ =

1

S̄
.(44)

Then system (43) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R̃t +
κcS̃t2

(1− t2)T3
R̃z =

κ+ 1

(1− t2)
√
κ+ 1− t2T3

· R̃− S̃

2t

+
κ(3κ+ 4− 4t2)

c(κ+ 1− t2)T3
R̃S̃t2,

S̃t −
κcR̃t2

(1− t2)T4
S̃z =

κ+ 1

(1− t2)
√
κ+ 1− t2T4

· S̃ − R̃

2t

−κ(3κ+ 4− 4t2)

c(κ+ 1− t2)T4
R̃S̃t2,

(45)

where

T3 =
√

κ+ 1− t2 +
κ(1− t2)

c(z, t)
S̃t,

T4 =
√

κ+ 1− t2 − κ(1− t2)

c(z, t)
R̃t.

We next consider the boundary conditions of (R̃, S̃) on the the (z, t)
coordinates. According to the assumption ĉ′(ξ) ≤ −ε0 in (36), we find by (4)
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that the function

z =

(
1

γ − 1
+

1

2

)
ĉ2(ξ), (ξ ∈ [ξP , ξC))

is strictly decreasing, which implies that there exists an inverse function,
denoted by ξ = ξ̂(z) (z ∈ (z1, z2]), where

z1 =

(
1

γ − 1
+

1

2

)
ĉ2(ξC), z2 =

(
1

γ − 1
+

1

2

)
ĉ2(ξP ).

It is clear that the sonic boundary P̂C on the (ξ, η)-plane is transformed to

a segment P̂ ′C ′ on t = 0 with z ∈ (z1, z2] on the (z, t)-plane. On the segment

P̂ ′C ′, we have

(R̃, S̃)(z, 0) = (â0, â0)(z) ∀ z ∈ (z1, z2],(46)

where â0(z) = 1/â0(ξ̂(z)). In addition, if system (45) admits a smooth solu-
tion (R̃, S̃), then by the exact form of (45), the solution should be satisfied

R̃t|t=0 =
R̃− S̃

2t

∣∣∣∣
t=0

, S̃t|t=0 =
S̃ − R̃

2t

∣∣∣∣
t=0

.(47)

Therefore, we also have by (35)

R̃t(z, 0) = â1(z), S̃t(0, z) = −â1(z) ∀ z ∈ (z1, z2],(48)

where â1(z) = −â1(ξ̂(z))/â
2
0(ξ̂(z)).

Now we discuss the image of boundary P̂E on the (z, t)-plane. Apply-
ing (22) gives (

κ+�2

κ�2
S − ∂̄−�

�3

)∣∣∣∣
̂PE

=
1

�̃3

(
�̃(κ+ �̃2)

κ
b̃0 −

�̃′√
1 + (ψ′)2

)
=

cos ω̃

�̃c̃
> 0,

for ξ > ξP , which indicates by (4) that the function

z =

(
c̃2

γ − 1
+

c̃2

2�̃2

)
(ξ), (ξ ∈ [ξP , ξE))
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is strictly increasing. Thus there exists an inverse function ξ = ξ̃(z) on

z ∈ [z2, z3), where

z3 =

(
c̃2

γ − 1
+

c̃2

2�̃2

)
(ξE).

Let us use P̂ ′E′ : z = z̃(t) (z ∈ [z2, z3)) to denote the curve {(t, z)| t =√
1− �̃2(ξ̃(z)), z ∈ [z2, z3)}. Due to the assumption �̃′(ξ) ≤ −ε0 in (36),

we know that z = z̃(t) is a strictly increasing function on t ∈ [0, t0), where

t0 = cos ω̃(ξE). By (26), we obtain that the boundary value of S̃ on P̂ ′E′ is

S̃(z̃(t), t) = b̃2(t) ∀ t ∈ [0, t0),(49)

where b̃2(t) = 1/b̃1(t). Moreover, it is not difficult to check that the curve

P̂ ′E′ is a positive characteristic of system (45) passing through point (0, z2)

and the expression of z̃(t) is

z̃(t) = z2 +

∫ t

0

κc(z̃(s), s)b̃2(s)s
2

(1− s2)[
√
κ+ 1− s2 + κ(1−s2)

c(z̃(s),s) b̃2(s)s]
ds, t ∈ [0, t0).(50)

For the boundary data of R̃ on P̂ ′E′, we consider the following ODE problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
d̃′0(t) =

κ+ 1

(1− t2)
√
κ+ 1− t2T̃3

· d̃0(t)− b̃2(t)

2t

+
κ(3κ+ 4− 4t2)d̃0(t)b̃2(t)t

2

c(z̃(t), t)(κ+ 1− t2)T̃3

,

d̃0(0) = â0(z2),

(51)

where

T̃3 =
√

κ+ 1− t2 +
κ(1− t2)

c(z̃(t), t)
b̃2(t)t.

The solvability for the ODE problem (51) will be shown in Lemma 3.1 in

Subsection 3.2.1. Hence the boundary data of (R̃, S̃) on P̂ ′E′ are

(R̃, S̃)(z̃(t), t) = (b̃2, d̃0)(t), ∀ t ∈ [0, t0).(52)

We combine (46), (48) and (52) to obtain the mixed-type boundary
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conditions of system (45) as follows

(R̃, S̃)(z, 0) = (â0, â0)(z), (R̃t, S̃t)(z, 0) = (â1,−â1)(z), ∀ z ∈ (z1, z2],

(R̃, S̃)(z̃(t), t) = (d̃0, b̃2)(t), ∀ t ∈ [0, t0).

(53)

Moreover, it follows by (36) that the functions â0, â1 and b̃2 satisfy

(â0, â1) ∈ C2((z1, z2]), b̃2 ∈ C3([0, t0)),
â0(z) ≥ ε0 ∀z ∈ (z1, z2],

b̃2(0) = â0(z2), b̃′2(0) = â1(z2).

(54)

The compatibility conditions in (54) come from the compatibility condi-
tions (21) and the definitions of functions â0(z), â1(z) and b̃2(t)).

To obtain a classical solution for the degenerate problem (45), (53), we
need more information about the derivative of S̃ at the corner P ′(z2, 0).
Denote

χ̃0(t) =
κ+ 1

(1− t2)
√
κ+ 1− t2T̃4

· b̃2(t)− d̃0(t)

2t
(55)

− κ(3κ+ 4− 4t2)

c(z̃(t), t)(κ+ 1− t2)T̃4

d̃0(t)b̃2(t)t
2,

where

T̃4 =
√

κ+ 1− t2 − κ(1− t2)

c(z̃(t), t)
d̃0(t)t.

Actually, χ̃0(t) is the value of the right-hand term of the equation for S̃

in (45) on the boundary P̂ ′E′. In view of the boundary value S̃(z̃(t), t) =
b̃2(t), we find by (50) that⎧⎪⎪⎪⎨⎪⎪⎪⎩

S̃t(z̃(t), t)−
κc(z̃(t), t)d̃0(t)t

2

(1− t2)T̃4

S̃z(z̃(t), t) = χ̃0(t),

S̃t(z̃(t), t) +
κc(z̃(t), t)b̃2(t)t

2

(1− t2)T̃3

S̃z(z̃(t), t) = b̃′2(t),

(56)

from which one gets

S̃z(z̃(t), t) =
(1− t2)T̃3T̃4

κc(z̃(t), t)(T̃4b̃2(t) + T̃3d̃0(t))
· b̃

′
2(t)− χ̃0(t)

t2
:= χ̃1(t).(57)
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We further assume that the boundary data in (19) and (20) satisfy some
appropriate conditions such that the following compatibility condition (C)
at P ′(z2, 0) holds:

(C) : χ̃1(0) = â′0(z2), χ̃′
1(0) = −â′1(z2).(58)

Remark 2. The conditions in (C) ensure that S̃z and the derivative of S̃z

with respect to t are continuous at point P ′. This higher-order compatibility
condition plays an important role in dealing with the singularities at the
initial line t = 0 in the current paper.

In terms of the partial hodograph variables, we have the the following
existence theorem.

Theorem 3.1. Let (54) and (58) be satisfied. The degenerate mixed-type
boundary value problem (45), (53) admits a unique classical solution around
point P ′(z2, 0).

3.2. The proof of Theorem 3.1

This subsection is devoted to solving the degenerate mixed-type boundary
value problem (45), (53) in the partial hodograph plane. We divide the pro-
cess into four steps. In the first step, we homogenize the boundary conditions
and define the admissible functions. In the second step, we construct an it-
erative sequence by the integral system relative to (45). In the third step, we
establish several key lemmas for the iterative sequence. Finally, we complete
the proof of Theorem 3.1 in the fourth step.

3.2.1. The homogeneous problem. In order to deal with the degen-
erate boundary conditions conveniently, we homogenize the boundary val-
ues (53) by introducing the higher-order error terms for the variables (R̃, S̃)
as follows: {

W (z, t) = R̃(z, t)− a0(z)− ta1(z),

V (z, t) = S̃(z, t)− a0(z) + ta1(z),
(59)

where

a0(z) = â0(z + z2), a1(z) = â1(z + z2).

Here we moved the point P ′(z2, 0) to the origin. Corresponding to (53), we
acquire that the boundary conditions for the variables (W,V ) are

(W,V,Wt, Vt)(z, 0) = 0 ∀ z ∈ (z1 − z2, 0],
(W,V )(z̄(t), t) = (d, b)(t) ∀ t ∈ [0, t0),

(60)
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where z̄(t) = z̃(t)− z2 and

d(t) = d̃0(t)− a0(z̄(t))− ta1(z̄(t)),

b(t) = b̃2(t)− a0(z̄(t)) + ta1(z̄(t)).
(61)

It follows from (54) that

(a0, a1)(z) ∈ C2((z1 − z2, 0]), b(t) ∈ C2([0, t0)),

a0(z) ≥ ε0 ∀z ∈ (z1 − z2, 0],

b(0) = b′(0) = 0.

(62)

Combining with (57) and (59) leads to

Vz(z̄(t), t) = χ̃1(t)− a0(z̄(t)) + ta1(z̄(t)) := χ(t).(63)

By the definition of χ(t) and the conditions in (54), we employ the compat-

ibility condition (58) to find that there exists a positive constant K̂ such

that

|χ(t)| ≤ K̂t2.(64)

From (45), we obtain the equations for (W,V )⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wt +
cκ(V + f)t2

(1− t2)T5
Wz =

W − V

2t
+A1(V, z, t)W +A2(V, z, t)V

+A3(V, z, t)t
2 + F (z, t)t,

Vt −
cκ(W + g)t2

(1− t2)T6
Vz =

V −W

2t
+B1(W, z, t)W +B2(W, z, t)V

+B3(W, z, t)t2 + F (z, t)t,

(65)

where

f = a0 − ta1, g = a0 + ta1, F (z, t) = − a0a1κ
c
√
κ+1−t2

,

T5(V ) =
√
κ+ 1− t2 + κ1−t2

c (V + f)t,

T6(W ) =
√
κ+ 1− t2 − κ1−t2

c (W + g)t,
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and

A1(V, z, t) =
t(κ+2−t2)+κ

√
κ+1−t2 1−t2

c
(V+f)(t2−1)

2(1−t2)
√
κ+1−t2T5

+ κ(3κ+4−4t2)(V+f)t2

c(κ+1−t2)T5
,

A2(V, z, t) = − t(κ+2−t2)+κ
√
κ+1−t2 1−t2

c
(V+f)(t2−1)

2(1−t2)
√
κ+1−t2T5

− ta1κ(1−t2)
cT5

,

A3(V, z, t) =
κ(3κ+4−4t2)g(V+f)

c(κ+1−t2)T5
− (a′

0+ta′
1)(V+f)cκ

(1−t2)T5
+ a1(κ+2−t2)√

κ+1−t2(1−t2)T5

+fta1κ
cT5

+ a2
1κ

cT5
+ κ2(1−t2)(V+f)a0a1

c2
√
κ+1−t2T5

,

and

B1(W, z, t) = − t(κ+2−t2)+κ
√
κ+1−t2 1−t2

c
(W+g)(1−t2)

2(1−t2)
√
κ+1−t2T6

− ta1κ(1−t2)
cT6

,

B2(W, z, t) =
t(κ+2−t2)+κ

√
κ+1−t2 1−t2

c
(W+g)(1−t2)

2(1−t2)
√
κ+1−t2T6

− κ(3κ+4−4t2)(W+g)t2

c(κ+1−t2)T6
,

B3(W, z, t) = −κ(3κ+4−4t2)(W+g)f
c(κ+1−t2)T6

+ (a′
0−ta′

1)(W+g)cκ
(1−t2)T6

− a1(κ+2−t2)√
κ+1−t2(1−t2)T6

+gta1κ
cT6

− a2
1κ

cT6
− κ2(1−t2)(W+g)a0a1

c2
√
κ+1−t2T6

.

It is clear that the positive/negative eigenvalues of system (65) are

λ+(V, z, t) =
cκ(V + f)t2

(1− t2)T5(V )
, λ−(W, z, t) = − cκ(W + g)t2

(1− t2)T6(W )
.(66)

and the positive/negative characteristics passing through point (ζ, τ) are
defined by {

dz±(t; ζ, τ)

dt
= λ±(z±(t; ζ, τ), t),

z±(τ ; ζ, τ) = ζ.
(67)

We now verify that the ODE problem (51) is solvable, which follows
directly from the next lemma by (59).

Lemma 3.1. Assume that (62) holds. Then the following ODE problem⎧⎪⎨⎪⎩
d′(t) =

d(t)− b(t)

2t
+A1(b(t), z̄(t), t)d(t) +A2(b(t), z̄(t), t)b(t)

+A3(b(t), z̄(t), t)t
2 + F (z̄(t), t)t,

d(0) = d′(0) = 0.

(68)

admits a unique C2-solution on t ∈ [0, δ1] for a small positive constant
δ1 < t0.
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Proof. For convenience, we useK0 in this paper to denote a positive constant
which depends only on the C2-norms of â0, â1, the C3-norm of b̃1 and the
constants κ, ε0. The value of K0 may change from one expression to another.

According to the conditions of b(t) in (62), we know that

|b(t)| ≤ K0t
2, |b′(t)| ≤ K0t.(69)

Thus we find that there exists a small positive constant δ̄1 such that

T5(b(t)) =
√

κ+ 1− t2 + κ
1− t2

c(z̄(t), t)
(b(t) + f)t ≥

√
κ

2

for t ≤ δ̄1, from which and the exact expressions of Ai (i = 1, 2, 3) and F ,
one obtains that

M1 = max
t∈[0,δ̄1]

{
K0, |A1(b(t), z̄(t), t)|, |A2(b(t), z̄(t), t)|,(70)

|A3(b(t), z̄(t), t)|, |F (z̄(t), t)|
}
,

is uniformly bounded. We next construct the iterative sequence. Denote
d(0)(t) = 0 and then define quantities d(k)(t) (k ≥ 1) by the following relation

d(k)(t) =

∫ t

0

{
d(k−1)(s)− b(s)

2s
+A1(b(s), z̄(s), s)d

(k−1)(71)

+A2(b(s), z̄(s), s)b(s) +A3(b(s), z̄(s), s)s
2 + F (z̄(s), s)s

}
ds.

Let δ1 = min{δ̄1, 1/(4M1)}. Then for t ∈ [0, δ1], we can get by a standard
argument of induction that for all k ≥ 1

∣∣d(k)(t)∣∣ ≤ M1t
2

k∑
i=0

(
2

3

)j

,
∣∣d(k+1)(t)− d(k)(t)

∣∣ ≤ M1t
2

(
2

3

)k

,(72)

which indicates that the sequence d(k)(t) converges uniformly to a continuous
function d(t). Moreover, one can see by (72) that the function d(t) satisfies

|d(t)| ≤ 3M1t
2 ∀ t ∈ [0, δ1],(73)

which together with (71) leads to the smoothness result for d(t). The proof
of the lemma is completed.
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We next define the admissible functions and strong determinate domain
to system (65). Let Dδ1 be a closed domain in the (z, t)-plane defining as
follows

Dδ1 = {(z, t)| t ∈ [0, δ1],
z1 − z2

2
≤ z ≤ z̄(t)},

Denote S(Dδ1) a function class incorporating all vectors F = (f1, f2)
T :

Dδ1 → R2 that satisfy the following properties:

(P1) : f1, f2 are continuous on Dδ1 ;
(P2) : (f1, f2)

T (z, 0) = (0, 0) ∀ z ∈ [ z1−z2
2 , 0];

(P3) : (f1, f2)
T (z̄(t), t) = (d, b)T (t) ∀ t ∈ [0, δ1];

(P4) : max
(z,t)∈Dδ1

{|f1(z, t)|, |f2(z, t)|} ≤ M̃t2,

where M̃ (≥ 3M1) is a fixed constant.

(74)

Thanks to Lemma 3.1, (73) and (69), we see that (d, b)T (t) belongs to
S(Dδ1). Thus S(Dδ1) is not empty. Let (f1, f2)

T ∈ S(Dδ1) be any element
in S(Dδ1). We apply the property (P4) in (74) and the exact expressions of
f, g and T5, T6 to find by (62) and (66) that there exists a small positive

constant δ2 < min{δ1, 1/M̃} such that

f, g ≥ ε0
2
, T5(f2), T6(f1) ≥

√
κ

2
,

0 < k ≤ λ+(f2, z, t)

t2
,
−λ−(f1, z, t)

t2
≤ K,

∀ (z, t) ∈ Dδ1 ∩ {t ≤ δ2},(75)

and

k ≥ 2Kδ2,
z1 − z2

2
≤ z̄(δ2)−Kδ32 := z∗(76)

for some constants k and K. From the relation z̄(t) = z̃(t) − z2 and (50),
one has

z∗ =

∫ δ2

0

κc(z̃(s), s)b̃2(s)s
2

(1− s2)[
√
κ+ 1− s2 + κ(1−s2)

c(z̃(s),s) b̃2(s)s]
ds−Kδ32(77)

≤
∫ δ2

0
Ks2 ds−Kδ32 = −2

3
Kδ32 ,

which means that the number z∗ is negative. Set ẑ(t) = z∗+Kt3 (t ∈ [0, δ2]).
Then it suggests that

ẑ(t) < z̄(t) ∀ t ∈ [0, δ2),



A degenerate mixed-type problem for Euler equations 43

and ẑ(δ2) = z̄(δ2). We now denote

Dδ2 = {(z, t)| t ∈ [0, δ2], ẑ(t) ≤ z ≤ z̄(t)},(78)

and S(Dδ2) the corresponding function class defined on Dδ2 . For any vector

function (f1, f2)
T ∈ S(Dδ2) and for any point (ζ, τ) ∈ Dδ2 , it is not hard

to check that the positive/negative characteristic curves z±(t; ζ, τ), defined
in (67) but with (f1, f2)

T replacing (W,V )T in λ±, stay insider Dδ2 until the

intersection with the boundary curves z = z̄(t) or t = 0. Thus the domain

Dδ2 is a strong determinate domain for system (65).

For later use, we here derive |z+(t; ζ, τ)− z−(t; ζ, τ)| by (75)

∣∣z+(t; ζ, τ)− z−(t; ζ, τ)
∣∣ ≤ ∫ τ

0
2Kt2 dt ≤ Kτ3(79)

for t ∈ [τ−, τ ]. Here and below τ− is the intersection time of the negative

characteristic z = z−(t; ζ, τ) and the boundary of Dδ2 . Furthermore, one

also has by the expression of F in (65)∣∣F (z+(t; ζ, τ), t)− F (z−(t; ζ, τ), t)
∣∣(80)

≤K0

∣∣z+(t; ζ, τ)− z−(t; ζ, τ)
∣∣ ≤ K0τ

3.

3.2.2. The construction of iterative sequence. We are now based on

the differential equations (65) to construct an iterative sequence. Let (ζ, τ)

be any point in Dδ2 . Integrating the system (65) along the characteristic

curves z = z±(t) and employing the boundary conditions in (60) gives⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (ζ, τ) =

∫ τ

0

{
W − V

2t
+A1(V )W +A2(V )V

+A3(V )t2 + F (z, t)t

}
(z+(t), t) dt,

V (ζ, τ) = b(τ−) +

∫ τ

0

{
V −W

2t
+B1(W )W +B2(W )V

+B3(W )t2 + F (z, t)t

}
(z−(t), t) dt.

(81)

Here we used the fact that the positive characteristic curve z = z+(t) only

intersects the line t = 0.
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Set W (0)(z, t) = d(t) and V (0)(z, t) = b(t). We solve the following ODE

problem

dz
(0)
− (t)

dt
= λ−(W

(0))(z
(0)
− (t), t), z

(0)
− (0) = 0,(82)

and denote the solution as z = ž
(0)
− (t) (t ∈ [0, δ2]). The solvability of prob-

lem (82) follows from (75). It is clear that the curve z = ž
(0)
− (t) divides the

domain Dδ2 into two disjoint subdomains

Dδ2 = D
(01)
δ2

∪D
(02)
δ2

,

where D
(01)
δ2

= {(z, t)| z ≤ ž
(0)
− (t)} ∩Dδ2 and D

(02)
δ2

= {(z, t)| z > ž
(0)
− (t)} ∩

Dδ2 . For any point (ζ, τ) ∈ Dδ2 , the characteristic curves z = z
(0)
± (t) =:

z
(0)
± (t; ζ, τ) are defined as

⎧⎨⎩ dz
(0)
± (t; ζ, τ)

dt
= λ±(W

(0), V (0), z, t)(t, z
(0)
± (t; ξ, η)),

z
(0)
± (τ ; ζ, τ) = ζ.

(83)

Denote τ
(0)
− the intersection time of the negative characteristic z = z

(0)
− (t; ζ, τ)

and the boundary of Dδ2 . Obviously, τ
(0)
− = 0 if (ζ, τ) ∈ D

(01)
δ2

, while τ
(0)
− > 0

if (ζ, τ) ∈ D
(02)
δ2

. Then we construct the functions (W (1), V (1))(ζ, τ) by (81)

as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (1)(ζ, τ) =

∫ τ

0

{
W (0) − V (0)

2t
+A1(V

(0))W (0) +A2(V
(0))V (0)

+A3(V
(0))t2 + Ft

}
(z

(0)
+ (t), t) dt,

V (1)(ζ, τ) = b(τ
(0)
− ) +

∫ τ

τ
(0)
−

{
V (0) −W (0)

2t
+B1(W

(0))W (0)

+B2(W
(0))V (0) +B3(W

(0))t2 + Ft

}
(z

(0)
− (t), t) dt.

(84)

After defining the functions (W (k), V (k))(z, t) (k ≥ 1), we solve the fol-
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lowing ODE problem

dz
(k)
− (t)

dt
= λ−(W

(k))(z
(k)
− (t), t), z

(0)
− (0) = 0,(85)

and denote the solution as z = ž
(k)
− (t) (t ∈ [0, δ2]). We will prove that

(W (k), V (k)) is in S(Dδ2), which together with (75) leads to the solvability

of problem (85). Similarly, the curve z = ž
(k)
− (t) divides the domain Dδ2 into

two disjoint subdomains

Dδ2 = D
(k1)
δ2

∪D
(k2)
δ2

,

where D
(k1)
δ2

= {(z, t)| z ≤ ž
(k)
− (t)} ∩Dδ2 and D

(k2)
δ2

= {(z, t)| z > ž
(k)
− (t)} ∩

Dδ2 . For any point (ζ, τ) ∈ Dδ2 , we define the characteristic curves z =

z
(k)
± (t) =: z

(k)
± (t; ζ, τ) as⎧⎨⎩ dz

(k)
± (t; ζ, τ)

dt
= λ±(W

(k), V (k), z, t)(t, z
(k)
± (t; ξ, η)),

z
(k)
± (τ ; ζ, τ) = ζ,

(86)

and then denote the intersection time of the negative characteristic z =

z
(k)
− (t; ζ, τ) and the boundary of Dδ2 by τ

(k)
− . By the construction, we see

that τ
(k)
− = 0 if (ζ, τ) ∈ D

(k1)
δ2

, while τ
(k)
− > 0 if (ζ, τ) ∈ D

(k2)
δ2

. We then

construct the functions (W (k+1), V (k+1))(ζ, τ)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W (k+1)(ζ, τ) =

∫ τ

0

{
W (k) − V (k)

2t
+A1(V

(k))W (k)

+A2(V
(k))V (k) +A3(V

(k))t2 + Ft

}
(z

(k)
+ (t), t) dt,

V (k+1)(ζ, τ) = b(τ
(k)
− ) +

∫ τ

τ
(k)
−

{
V (k) −W (k)

2t
+B1(W

(k))W (k)

+B2(W
(k))V (k) +B3(W

(k))t2 + Ft

}
(z

(k)
− (t), t) dt.

(87)

We shall show that there exist two positive constants δ < δ2 and M̃ such
that the sequences (W (k), V (k)) (k ≥ 0) converge uniformly in the function
class S(Dδ).
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3.2.3. Several lemmas. We now establish several key lemmas for the
iterative sequences (W (k), V (k)) (k ≥ 0). According to the exact expressions
of Ai, Bi (i = 1, 2, 3) and F in (65), if (W,V )T ∈ S(Dδ2), one has

|Ai(V, z, t)|; |Bi(W, z, t)|; |F (z, t)|; |Fz(z, t)|; |Fzz(z, t)| ≤ M,

|Aiz(V, z, t)|; |AiV (V, z, t)|; |Biz(W, z, t)|; |BiW (W, z, t)| ≤ M
(88)

for some positive constant M .
Let M , δ and M̃ be three positive constants satisfying

M = max{1, 4K0, 4K̂, 4M1,M}, δ ≤
{
δ2,

1

100M
,

k

2M

}
, M̃ ≥ 3M,

(89)

where K̂,M1 and k are given in (64), (70) and (75), respectively. The choices
of M and δ in (89) ensure that the following inequalities hold(

1

2
+ 13Mδ

)
exp(2Mδ3) ≤ 2

3
, 4Mδ +

Mδ

k
<

2

3
.(90)

For the number δ, we define a closed domain Dδ as follows

Dδ = {(z, t)| 0 ≤ t ≤ δ, z̄(δ)−Kδ3 +Kt3 ≤ z ≤ z̄(t)}.

Clearly, one has Dδ ⊂ Dδ2 .
We now have

Lemma 3.2. For any (ζ, τ) ∈ Dδ and for all k ≥ 1, the following inequali-
ties hold

∣∣W (k)(ζ, τ)
∣∣; ∣∣V (k)(ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

,

∣∣W (k)(ζ, τ)− V (k)(ζ, τ)
∣∣ ≤ Mτ2

k∑
j=0

(
2

3

)j

.

(91)

Proof. The proof is based on the standard argument of induction. We first
check (91) for n = 1 and then assume all the inequalities are true for n = k
to derive (91) for n = k + 1.

Due to (W (0), V (0))T = (d, b)T ∈ S(Dδ2), we apply (88) and (89) to
acquire

|Ai(V
(0), z, t)|; |Bi(W

(0), z, t)|; |F (z, t)|; |Fz(z, t)| ≤ M (i = 1, 2, 3)(92)
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for any (z, t) ∈ Dδ. It follows from (69), (84) and (92) that

∣∣V (1)(ζ, τ)
∣∣ = ∣∣b(τ (0)− )

∣∣+ ∫ τ

τ (0)
−

{∣∣V (0) −W (0)
∣∣

2t
+
∣∣B1(W

(0))
∣∣ · ∣∣W (0)

∣∣(93)

+
∣∣B2(W

(0))
∣∣ · ∣∣V (0)

∣∣+ ∣∣B3(W
(0))

∣∣t2 + |F |t
}
(z

(0)
− (t), t) dt

≤ K0τ
2 +

∫ τ

0

{
K0 + 3M1

2
t+M ·Mt2 +M ·Mt2 +Mt2 +Mt

}
dt

≤ M

4
τ2 +

{
M

4
τ2 +M2τ3 +

M

2
τ2
}

= Mτ2(1 +Mδ)

≤ Mτ2
1∑

j=0

(
2

3

)j

.

A similar argument obtains the inequality forW (1). To estimate |W (1)(ζ, τ)−
V (1)(ζ, τ)|, we use (84) again to achieve∣∣W (1)(ζ, τ)− V (1)(ζ, τ)

∣∣ ≤ ∣∣b(τ (0)− )
∣∣+ I1 + I2,(94)

where

I1 =

∫ τ (0)
−

0

{∣∣W (0) − V (0)
∣∣

2t
+
∣∣A1(V

(0))
∣∣ · ∣∣W (0)

∣∣
+
∣∣A2(V

(0))
∣∣ · ∣∣V (0)

∣∣+ ∣∣A3(V
(0))

∣∣t2 + |F |t
}
(z

(0)
+ (t), t) dt,

and

I2 =

∫ τ

τ (0)
−

{
2

∣∣W (0) − V (0)
∣∣

2t
+
∣∣A1(V

(0))W (0)
∣∣+ ∣∣B1(W

(0))W (0)
∣∣

+
∣∣A2(V

(0))V (0)
∣∣+ ∣∣B2(W

(0))V (0)
∣∣+ ∣∣A3(V

(0))
∣∣t2

+
∣∣B3(W

(0))
∣∣t2 + ∣∣F (z

(0)
+ (t), t)− F (z

(0)
− (t), t)

∣∣t} dt.

For the term I1, one has by (92)

I1 ≤
∫ τ (0)

−

0

{
M

2
t+ 3M2t2 +Mt

}
dt =

3

4
M(τ

(0)
− )2 +M2(τ

(0)
− )3.(95)
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For the term I2, making use of (80) and (92) yields

I2 ≤
∫ τ

τ
(0)
−

{
Mt+ 6M2t2 +Mτ3

}
dt(96)

≤1

2
Mτ2 + 2M2τ3 +Mτ4 − 1

2
M(τ

(0)
− )2 − 2M2(τ

(0)
− )3.

We put (95)–(96) into (94) and apply (69) again to obtain

∣∣W (1)(ζ, τ)− V (1)(ζ, τ)
∣∣ ≤ 1

4
Mτ2 +

3

4
M(τ

(0)
− )2 +M2(τ

(0)
− )3(97)

+
1

2
Mτ2 + 2M2τ3 +Mτ4 − 1

2
M(τ

(0)
− )2 − 2M2(τ

(0)
− )3

≤Mτ2(1 + 2Mδ) ≤ Mτ2
1∑

j=0

(
2

3

)j

.

Hence the inequalities in (91) are true for n = 1.

Assume that (91) holds for n = k. Due to the choice of M̃ in (89), we
see that

∣∣W (k)(ζ, τ)
∣∣; ∣∣V (k)(ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

≤ 3Mτ2 ≤ M̃τ2,

which means that (W (k), V (k))T ∈ S(Dδ). Thus it suggests by (88) that

|Ai(V
(k), z, t)|; |Bi(W

(k), z, t)|; |F (z, t)|; |Fz(z, t)| ≤ M (i = 1, 2, 3),(98)

for any (z, t) ∈ Dδ. Combining with (69), (87) and (98) arrives at

∣∣V (k+1)(ζ, τ)
∣∣ ≤ ∣∣b(τ (k)− )

∣∣+ ∫ τ

τ
(k)
−

{∣∣V (k) −W (k)
∣∣

2t
+
∣∣B1(W

(k))W (k)
∣∣(99)

+
∣∣B2(W

(k))V (k)
∣∣+ ∣∣B3(W

(k))
∣∣t2 + |F |t

}
dt

≤1

4
Mτ2 +

∫ τ

0

{
Mt

2

k∑
j=0

(
2

3

)j

+ 3M2t2
k∑

j=0

(
2

3

)j

+Mt

}
dt

≤Mτ2
{
3

4
+

(
1

4
+Mδ

) k∑
j=0

(
2

3

)j}
≤ Mτ2

k+1∑
j=0

(
2

3

)j

.
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The inequality in (99) is also true for W (k+1). To estimate the difference

betweenW (k+1)(ζ, τ) and V (k+1)(ζ, τ), one achieves by employing (84) again∣∣W (k+1)(ζ, τ)− V (k+1)(ζ, τ)
∣∣ ≤ ∣∣b(τ (k)− )

∣∣+ I3 + I4,(100)

where

I3 =

∫ τ
(k)
−

0

{∣∣W (k) − V (k)
∣∣

2t
+
∣∣A1(V

(k))
∣∣ · ∣∣W (k)

∣∣
+
∣∣A2(V

(k))
∣∣ · ∣∣V (k)

∣∣+ ∣∣A3(V
(k))

∣∣t2 + |F |t
}
(z

(k)
+ (t), t) dt,

and

I4 =

∫ τ

τ (k)
−

{
2

∣∣W (k) − V (k)
∣∣

2t
+
∣∣A1(V

(k))W (k)
∣∣+ ∣∣B1(W

(k))W (k)
∣∣

+
∣∣A2(V

(k))V (k)
∣∣+ ∣∣B2(W

(k))V (k)
∣∣+ ∣∣A3(V

(k))
∣∣t2

+
∣∣B3(W

(k))
∣∣t2 + ∣∣F (z

(k)
+ (t), t)− F (z

(k)
− (t), t)

∣∣t} dt.

By similar processes as before, we use the induction assumptions to obtain

I3 ≤
∫ τ

(k)
−

0

{
Mt

2

k∑
j=0

(
2

3

)j

+ 3M2t2
k∑

j=0

(
2

3

)j

+Mt

}
dt(101)

≤ 1

2
M(τ

(k)
− )2 +

1

4
M(τ

(k)
− )2

k∑
j=0

(
2

3

)j

+M2(τ
(k)
− )3

k∑
j=0

(
2

3

)j

,

and

I4 ≤
∫ τ

τ (k)
−

{
Mt

k∑
j=0

(
2

3

)j

+ 6M2t2
k∑

j=0

(
2

3

)j

+Mτ3
}

dt(102)

≤1

2
M

[
(τ)2 − (τ

(k)
− )2

] k∑
j=0

(
2

3

)j

+ 2M2
[
(τ)3 − (τ

(k)
− )3

] k∑
j=0

(
2

3

)j

+Mτ4.
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Inserting (101)–(102) into (100) and applying (84) again gives∣∣W (k+1)(ζ, τ)− V (k+1)(ζ, τ)
∣∣(103)

≤1

4
Mτ2 +

1

2
M(τ

(k)
− )2 +

1

4
M(τ

(k)
− )2

k∑
j=0

(
2

3

)j

+M2(τ
(k)
− )3

k∑
j=0

(
2

3

)j

+
1

2
M

[
(τ)2 − (τ

(k)
− )2

] k∑
j=0

(
2

3

)j

+ 2M2
[
(τ)3 − (τ

(k)
− )3

] k∑
j=0

(
2

3

)j

+Mτ4

≤Mτ2
{(

3

4
+ δ2

)
+

(
1

2
+ 2Mδ

) k∑
j=0

(
2

3

)j}
≤ Mτ2

k+1∑
j=0

(
2

3

)j

,

which along with (99) ends the proof of the induction step. The proof of the

lemma is complete.

It is easy to see by Lemma 3.2 that (W (k), V (k))T ∈ S(Dδ) for each

k ≥ 1, which together with (88) lead to

|Ai(V
(k), z, t)|; |Bi(W

(k), z, t)|; |F (z, t)|; |Fz(z, t)|; |Fzz(z, t)| ≤ M,

|Aiz(V
(k), z, t)|; |AiV (V

(k), z, t)|; |Biz(W
(k), z, t)|; |BiW (W (k), z, t)| ≤ M

(104)

for any (z, t) ∈ Dδ. We now differentiate system (87) with respect to ζ to

deduce

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W
(k+1)
ζ (ζ, τ) =

∫ τ

0

{
W

(k)
z − V

(k)
z

2t
+A11(V

(k))W (k)
z

+A12(W
(k), V (k))V (k)

z +A13(W
(k), V (k)) + Fzt

}
∂z

(k)
+

∂ζ
(z

(k)
+ (t), t) dt,

V
(k+1)
ζ (ζ, τ) = χ(τ

(k)
− ) +

∫ τ

τ
(k)
−

{
V

(k)
z −W

(k)
z

2t
+B11(W

(k))V (k)
z

+B12(W
(k), V (k))W (k)

z +B13(W
(k), V (k)) + Fzt

}
∂z

(k)
−

∂ζ
(z

(k)
− (t), t) dt.

(105)
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where

A11(V
(k)) = A1(V

(k)),

A12(W
(k), V (k)) = A2(V

(k)) +A1V (V
(k))W (k)

+A2V (V
(k))V (k) +A3V (V

(k))t2,

A13(W
(k), V (k)) = A1z(V

(k))W (k) +A2z(V
(k))V (k) +A3z(V

(k))t2,

B11(W
(k)) = B2(W

(k)),

B12(W
(k), V (k)) = B1(W

(k)) +B1W (W (k))W (k)

+B2W (W (k))V (k) +B3W (W (k))t2,

B13(W
(k), V (k)) = B1z(W

(k))W (k) +B2z(W
(k))V (k) +B3z(W

(k))t2,

and

∂z
(k)
±

∂ζ
(t; ζ, τ) = exp

{∫ t

τ

∂λ
(k)
±

∂z
(z

(k)
± (t; ζ, τ), t) dt

}
.(106)

Recalling the expressions of λ± in (66) gets

∂λ
(k)
+

∂z
(z

(k)
+ (t; ζ, τ), t) =

κt2

1− t2

(
C11(V

(k))V (k)
z + C12(V

(k))

)
,(107)

where

C11(V
(k)) =

c

T5(V (k))
− κt(1− t2)(V (k) + f)

T 2
5 (V

(k))
,

C12(V
(k)) =

cz(V
(k) + f) + cfz

T5(V (k))
− κt(1− t2)(V (k) + f)fz

T 2
5 (V

(k))

+
κt(1− t2)(V (k) + f)2cz

cT 2
5 (V

(k))
,

and

∂λ
(k)
−

∂z
(z

(k)
− (t; ζ, τ), t) = − κt2

1− t2

(
D11(W

(k))W (k)
z +D12(W

(k))

)
,(108)

where

D11(W
(k)) =

c

T6(W (k))
+

κt(1− t2)(W (k) + g)

T 2
6 (W

(k))
,
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D12(W
(k)) =

cz(W
(k) + g) + cgz

T6(W (k))
+

κt(1− t2)(W (k) + g)gz

T 2
6 (W

(k))

− κt(1− t2)(W (k) + g)2cz

cT 2
6 (W

(k))
.

Thanks to (104) and (75), we can acquire the following estimates∣∣A11

∣∣; ∣∣B11

∣∣ ≤ M,
∣∣A12

∣∣; ∣∣B12

∣∣ ≤ 2M,
∣∣A13

∣∣; ∣∣B13

∣∣ ≤ 8M2t2,
κ

1− t2

∣∣C11

∣∣; κ

1− t2

∣∣C12

∣∣; κ

1− t2

∣∣D11

∣∣; κ

1− t2

∣∣D12

∣∣ ≤ K0 ≤ M.
(109)

Combing with (106)–(109) leads to∣∣∣∣∂z(k)±
∂ζ

(t; ζ, τ)

∣∣∣∣ ≤ exp

{∫ τ

0

∣∣∣∣∂λ(k)
±

∂z

∣∣∣∣ dt}(110)

≤ exp

{∫ τ

0
Mt2

(∣∣W (k)
z

∣∣+ ∣∣V (k)
z

∣∣+ 1
)
dt

}
.

For the sequences (W
(k)
ζ , V

(k)
ζ ) (k ≥ 0), we have

Lemma 3.3. For any (ζ, τ) ∈ Dδ and for all k ≥ 1, the following inequali-
ties hold

∣∣W (k)
ζ (ζ, τ)

∣∣; ∣∣V (k)
ζ (ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

,

∣∣W (k)
ζ (ζ, τ)− V

(k)
ζ (ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

.

(111)

Proof. We proceed by induction again. It follows by the facts W
(0)
z = 0,

V
(0)
z = 0 and (110) that∣∣∣∣∂z(0)±

∂ζ
(t; ζ, τ)

∣∣∣∣ ≤ exp

{∫ τ

0
Mt2

(∣∣W (0)
z

∣∣+ ∣∣V (0)
z

∣∣+ 1
)
dt

}
(112)

≤ exp(Mδ3).

We combine (64), (105), (109) and (112) to deduce

∣∣V (1)
ζ (ζ, τ)

∣∣ ≤∣∣χ(τ (0)− )
∣∣+ ∫ τ

0

{∣∣B13(W
(0), V (0))

∣∣+ |Fz|t
}∣∣∣∣∂z(0)−

∂ζ

∣∣∣∣ dt(113)
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≤K̂τ2 +

∫ τ

0

{
8M2t2 +Mt

}
eMδ3 dt

≤Mτ2
(
1

4
+

1

2
eMδ3 + 3MδeMδ3

)
≤ Mτ2

1∑
j=0

(
2

3

)j

.

For the term |W (1)
ζ (ζ, τ)− V

(1)
ζ (ζ, τ)|, one also gets∣∣W (1)

η (ζ, τ)− V (1)
η (ζ, τ)

∣∣ ≤ ∣∣χ(τ (0)− )
∣∣+ I5 + I6 + I7,(114)

where

I5 =

∫ τ
(0)
−

0

(∣∣A(0)
13

∣∣+ ∣∣Fz

∣∣t) ·
∣∣∣∣∂z(0)+

∂ζ

∣∣∣∣ dt,
I6 =

∫ τ

τ
(0)
−

{∣∣A(0)
13

∣∣ · ∣∣∣∣∂z(0)+

∂ζ

∣∣∣∣+ ∣∣B(0)
13

∣∣ · ∣∣∣∣∂z(0)−
∂ζ

∣∣∣∣} dt,

I7 =

∫ τ

τ
(0)
−

∣∣∣∣Fz(z
(0)
+ (t), t)

∂z
(0)
+

∂ζ
(z

(0)
+ (t), t)

− Fz(z
(0)
− (t), t)

∂z
(0)
−

∂ζ
(z

(0)
− (t), t)

∣∣∣∣ · t dt.
It is easily obtained the estimates of I5 and I6 by (109) and (112)

I5 ≤
∫ τ

(0)
−

0

(
8M2τ2 +Mt

)
eMδ3 dt ≤

(
3M2(τ

(0)
− )3 +

1

2
M(τ

(0)
− )2

)
eMδ3 ,

I6 ≤
∫ τ

τ
(0)
−

16M2t2eMδ3 dt ≤ 6M2

(
τ3 − (τ

(0)
− )3

)
eMδ3 .

(115)

For the term I7, one finds by (79) and (110) that

I7 ≤
∫ τ

0

{
t
∣∣Fz(z

(0)
+ (t), t)− Fz(z

(0)
− (t), t)

∣∣ · ∣∣∣∣∂z(0)+

∂ζ

∣∣∣∣(116)

+ t|Fz(z
(0)
− (t), t)| ·

∣∣∣∣∂z(0)+

∂ζ
(z

(0)
+ (t), t)− ∂z

(0)
−

∂ζ
(z

(0)
− (t), t)

∣∣∣∣} dt

≤
∫ τ

0

{
tM

∣∣z(0)+ (t)− z
(0)
− (t)

∣∣eMδ3
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+ tM · eMδ3
∫ τ

0

(∣∣∣∣∂λ(0)
+

∂z

∣∣∣∣+ ∣∣∣∣∂λ(0)
−

∂z

∣∣∣∣) ds

}
dt

≤
∫ τ

0

{
M ·Mτ4 · eMδ3 +M · eMδ3 ·Mτ4

}
dt = 2M2eMδ3τ5.

We combine (114)–(116) and apply (64) again to obtain∣∣W (1)
η (ζ, τ)− V (1)

η (ζ, τ)
∣∣(117)

≤1

4
Mτ2 +

(
3M2(τ

(0)
− )3 +

1

2
M(τ

(0)
− )2

)
eMδ3

+ 6M2

(
τ3 − (τ

(0)
− )3

)
eMδ3 + 2M2eMδ3τ5

≤Mτ2
{(

1

4
+

1

2
eMδ3

)
+ 8MδeMδ3

}
≤ Mτ2

1∑
j=0

(
2

3

)j

.

Hence all inequalities in (111) are true for n = 1.
We now suppose that the inequalities in (111) are valid for n = k. Thus

one has ∣∣W (k)
ζ (ζ, τ)

∣∣; ∣∣V (k)
ζ (ζ, τ)

∣∣ ≤ 3Mτ2,

Putting the above into (110) gives∣∣∣∣∂z(k)±
∂ζ

(t; ζ, τ)

∣∣∣∣ ≤ exp

{∫ τ

0
Mt2

(
6Mτ2 + 1

)
dt

}
≤ exp(2Mδ3).(118)

We sum up (104), (105), (109), (118) and employ (64) and the induction
assumptions to conclude for n = k + 1

∣∣V (k+1)
ζ (ζ, τ)

∣∣ ≤ 1

4
Mτ2 +

∫ τ

τ
(k)
−

{
1

2
Mt

k∑
j=0

(
2

3

)j

+M2t2
k∑

j=0

(
2

3

)j

(119)

+ 2M2t2
k∑

j=0

(
2

3

)j

+ 8M2t2 +Mt

}
e2Mδ3 dt

≤Mτ2
{(

1

4
+ (

1

2
+ 3Mδ)e2Mδ3

)
+

(
1

4
+Mδ

)
e2Mδ3

k∑
j=0

(
2

3

)j}

≤Mτ2
{
1 +

2

3

k∑
j=0

(
2

3

)j}
= Mτ2

k+1∑
j=0

(
2

3

)j

.
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The above estimate also holds for W
(k+1)
ζ (ζ, τ). We next handle the term

|W (k+1)
ζ (ζ, τ)− V

(k+1)
ζ (ζ, τ)|. From (105), we deduce∣∣W (k+1)

ζ (ζ, τ)− V
(k+1)
ζ (ζ, τ)

∣∣ ≤ ∣∣χ(τ (k)− )
∣∣+ I8 + I9 + I10 + I11,(120)

where

I8 =

∫ τ

0

{∣∣W (k)
z − V

(k)
z

∣∣
2t

+
∣∣A11W

(k)
z

∣∣+ ∣∣A12V
(k)
z

∣∣+ ∣∣A13

∣∣}∣∣∣∣∂z(k)+

∂ζ

∣∣∣∣ dt,
I9 =

∫ τ

τ (k)
−

{∣∣V (k)
z −W

(k)
z

∣∣
2t

+
∣∣B11V

(k)
z

∣∣+ ∣∣B12W
(k)
z

∣∣+ ∣∣B13

∣∣}∣∣∣∣∂z(k)−
∂ζ

∣∣∣∣ dt,
and

I10 =

∫ τ

τ (k)
−

t

∣∣∣∣Fz(z
(k)
+ (t), t)

∂z
(k)
+

∂ζ
− Fz(z

(k)
− (t), t)

∂z
(k)
−

∂ζ

∣∣∣∣ dt,
I11 =

∫ τ (k)
−

0
|Fzt| ·

∣∣∣∣∂z(k)+

∂ζ

∣∣∣∣ dt.
It proceeds by (104), (109), (118) and the induction assumptions that

I8; I9 ≤
∫ τ

0

{
1

2
Mt

k∑
j=0

(
2

3

)j

+ 3M ·Mt2
k∑

j=0

(
2

3

)j

+ 8M2t2
}
e2Mδ3 dt

(121)

≤Mτ2
{
3Mδe2Mδ3 +

(
1

4
+Mδ

)
e2Mδ3

k∑
j=0

(
2

3

)j}
.

Moreover, one obtains

I10 ≤
∫ τ

0

{
t
∣∣Fz(z

(k)
+ (t), t)− Fz(z

(k)
− (t), t)

∣∣ · ∣∣∣∣∂z(k)+

∂ζ

∣∣∣∣(122)

+ t|Fz(z
(k)
− (t), t)| ·

∣∣∣∣∂z(k)+

∂ζ
(z

(k)
+ (t), t)− ∂z

(k)
−

∂ζ
(z

(k)
− (t), t)

∣∣∣∣} dt

≤
∫ τ

0

{
tM

∣∣z(k)+ (t)− z
(k)
− (t)

∣∣e2Mδ3 + tM · e2Mδ32Mτ3
}

dt

≤
∫ τ

0

{
tM ·Mτ3 · e2Mδ3 + 2tM2τ3e2Mδ3

}
dt = 2M2e2Mδ3τ5,
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and

I11 ≤
∫ τ

0
Mte2Mδ3 dt =

1

2
Mτ2e2Mδ3 .(123)

Inserting (121)–(123) into (120) and making use of (64) yields∣∣W (k+1)
ζ (ζ, τ)− V

(k+1)
ζ (ζ, τ)

∣∣(124)

≤1

4
Mτ2 + 2Mτ2

{
3Mδe2Mδ3 +

(
1

4
+Mδ

)
e2Mδ3

k∑
j=0

(
2

3

)j}
+ 2M2e2Mδ3τ5 +

1

2
Mτ2e2Mδ3

≤Mτ2
{(

1

4
+

1

2
e2Mδ3 + 8Mδe2Mδ3

)
+

(
1

2
+ 2Mδ

)
e2Mδ3

k∑
j=0

(
2

3

)j}

≤Mτ2
{
1 +

2

3

k∑
j=0

(
2

3

)j}
= Mτ2

k+1∑
j=0

(
2

3

)j

.

With the aid of (119) and (124) inequalities (111) follow.

Based on Lemmas 3.2 and 3.3, we have

Lemma 3.4. For any (ζ, τ) ∈ Dδ and for all k ≥ 0, the following inequali-
ties hold

∣∣W (k+1)(ζ, τ)−W (k)(ζ, τ)
∣∣; ∣∣V (k+1)(ζ, τ)− V (k)(ζ, τ)

∣∣ ≤ Mτ2
(
2

3

)k

.

(125)

Proof. We also use the the argument of induction to prove the lemma. For
k = 0, one gets by (87), (69) and (73)

∣∣V (1)(ζ, τ)− V (0)(ζ, τ)
∣∣ ≤ |b(τ (k)− )|+ |b(τ)|+

∫ τ

τ (k)
−

{∣∣b(t)− d(t)
∣∣

2t
(126)

+
∣∣B1(d)d

∣∣+ ∣∣B2(d)b
∣∣+ ∣∣B3(d)

∣∣t2 + ∣∣Ft
∣∣}(z

(0)
− (t), t) dt

≤1

4
M(τ

(k)
− )2 +

1

4
Mτ2 +

∫ τ

τ
(k)
−

{
K0t+ 3M2t2 +Mt

}
dt

≤1

4
M(τ

(k)
− )2 +

1

4
Mτ2 +

1

2
K0τ

2 +M2τ3 +
1

2
Mτ2 − 1

2
M(τ

(k)
− )2
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≤Mτ2
(
7

8
+Mδ

)
≤ Mτ2.

The derivation in (126) is also valid for W .
Assume that the inequalities in (125) hold for n = k − 1. To estab-

lish (125) for n = k, we need to estimate the difference |τ (k)− − τ
(k−1)
− |. We

recall (67) to find that∫ τ
(k)
−

0
λ+(z̄(t), t) dt+

∫ τ

τ
(k)
−

λ
(k)
− (z

(k)
− (t; ζ, τ), t) dt

= ζ =

∫ τ
(k−1)
−

0
λ+(z̄(t), t) dt+

∫ τ

ξ
(k−1)
−

λ
(k−1)
− (z

(k−1)
− (t; ζ, τ), t) dt,

which means that∫ τ
(k)
−

τ
(k−1)
−

(
λ
(k−1)
− (z

(k−1)
− (t; ζ, τ), t)− λ+(z̄(t), t)

)
dt(127)

=

∫ τ

τ (k)
−

(
λ
(k)
− (z

(k)
− (t), t)− λ

(k−1)
− (z

(k−1)
− (t), t)

)
dt.

Here and below we assume, without loss of generality, τ
(k)
− ≥ τ

(k−1)
− . Hence

we combine (75), (108), (109) and (127) to acquire

2

3
k
∣∣(τ (k)− )3 − (τ

(k−1)
− )3

∣∣(128)

≤
∫ τ

τ (k)
−

{∣∣λ−W

∣∣ · ∣∣W (k)(z
(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
+
∣∣λ−z

∣∣ · ∣∣z(k)− (t)− z
(k−1)
− (t)

∣∣} dt

≤
∫ τ

τ
(k)
−

Mt2
{∣∣W (k)(z

(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
+
∣∣z(k)− (t)− z

(k−1)
− (t)

∣∣} dt.

According to (111) and the induction assumptions, one achieves∣∣W (k)(z
(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣(129)

≤
∣∣W (k)(z

(k)
− (t), t)−W (k)(z

(k−1)
− (t), t)

∣∣
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+
∣∣W (k)(z

(k−1)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
≤
∣∣W (k)

z

∣∣ · ∣∣z(k)− (t)− z
(k−1)
− (t)

∣∣+Mt2
(
2

3

)k−1

≤3Mt2
∣∣z(k)− (t)− z

(k−1)
− (t)

∣∣+Mt2
(
2

3

)k−1

.

Next we estimate the difference |z(k)− (t) − z
(k−1)
− (t)|. It follows that for any

t ∈ [τ
(k)
− , τ ]

z
(k)
− (t) +

∫ τ

t
λ
(k)
− (z

(k)
− (s), s) ds

= ζ = z
(k−1)
− (t) +

∫ τ

t
λ
(k−1)
− (z

(k−1)
− (s), s) ds,

from which and (129) one has

∣∣z(k)− (t)− z
(k−1)
− (t)

∣∣ ≤ ∫ τ

t

∣∣∣∣λ(k−1)
− (z

(k−1)
− (s), s)− λ

(k)
− (z

(k)
− (s), s)

∣∣∣∣ ds(130)

≤
∫ τ

t

{∣∣λ−W

∣∣ · ∣∣W (k)(z
(k)
− (s), s)−W (k−1)(z

(k−1)
− (s), s)

∣∣
+
∣∣λ−z

∣∣ · ∣∣z(k)− (s)− z
(k−1)
− (s)

∣∣} ds

≤
∫ τ

τ
(k)
−

{
Ms2

(
3Ms2

∣∣z(k)− (s)− z
(k−1)
− (s)

∣∣+Ms2
(
2

3

)k−1)
+Ms2

∣∣z(k)− (s)− z
(k−1)
− (s)

∣∣} ds.

Set

Z
(k)
− = max

t∈[τ (k)
− ,τ ]

∣∣z(k)− (t)− z
(k−1)
− (t)

∣∣.
One finds by (130) that

Z
(k)
− ≤

∫ τ

τ (k)
−

{
Ms2(1 + 3MS2)Z

(k)
− +M2s4

(
2

3

)k−1}
ds(131)

≤Mτ3Z
(k)
− +M2τ5

(
2

3

)k−1

,
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which implies by the fact Mδ3 ≤ 1/2 that

Z
(k)
− ≤ 2M2τ5

(
2

3

)k−1

.(132)

Inserting (132) into (129) gives

∣∣W (k)(z
(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣ ≤ Mt2(1 + 6M3τ5)

(
2

3

)k−1

.(133)

In a similar way, one also has for the function V

∣∣V (k)(z
(k)
− (t), t)− V (k−1)(z

(k−1)
− (t), t)

∣∣ ≤ Mt2(1 + 6M3τ5)

(
2

3

)k−1

.(134)

We put (133) and (132) into (128) to obtain∣∣(τ (k)− )3 − (τ
(k−1)
− )3

∣∣(135)

≤ 3

2k

∫ τ

0
Mt2

{
Mt2(1 + 6M3τ5)

(
2

3

)k−1

+ 2M2τ5
(
2

3

)k−1}
dt

≤2

k
M2τ5

(
2

3

)k−1

.

We now consider the term |V (k+1)(ζ, τ)− V (k)(ζ, τ)|. It follows by (87)
that ∣∣V (k+1)(ζ, τ)− V (k)(ζ, τ)

∣∣(136)

≤
∫ τ

τ (k)
−

{
I12 + I13 + I14 + I15 + I16

}
dt+ I17,

where

I12 =

∣∣V (k)(z
(k)
− (t), t)− V (k−1)(z

(k−1)
− (t), t)

∣∣
2t

+

∣∣W (k)(z
(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
2t

,

I13 =
∣∣B1(W

(k))W (k)(z
(k)
− (t), t)−B1(W

(k−1))W (k−1)(z
(k−1)
− (t), t)

∣∣,
I14 =

∣∣B2(W
(k))V (k)(z

(k)
− (t), t)−B2(W

(k−1))V (k−1)(z
(k−1)
− (t), t)

∣∣,
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I15 =
∣∣B3(W

(k))(z
(k)
− (t), t)−B3(W

(k−1))(z
(k−1)
− (t), t)

∣∣t2,
I16 =

∣∣F (z
(k)
− (t), t)− F (z

(k−1)
− (t), t)

∣∣t,
I17 =

∣∣∣∣b(τ (k)− )− b(τ
(k−1)
− )−

∫ τ
(k)
−

τ
(k−1)
−

Θ(k−1)(z
(k−1)
− (t), t) dt

∣∣∣∣,
and

Θ(k−1) =

{
V (k−1) −W (k−1)

2t
+B1(W

(k−1))W (k−1)

+B2(W
(k−1))V (k−1) +B3(W

(k−1))t2 + Ft

}
(z

(k−1)
− (t), t).

Next we estimate I12 · · · I17 term by term. For the term I12, we use (133)–
(134) to see that

I12 ≤ Mt(1 + 6M3τ5)

(
2

3

)k−1

.(137)

For the term I13, we recall (91), (104) and use (132)–(134) again to get

I13 ≤
∣∣B1(W

(k))(z
(k)
− (t), t)−B1(W

(k−1))(z
(k−1)
− (t), t)

∣∣ · ∣∣W (k)
∣∣(138)

+
∣∣B1(W

(k−1))
∣∣ · ∣∣W (k)(z

(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
≤M

∣∣W (k)(z
(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣ · 3Mt2

+M
∣∣z(k)− (t)− z

(k−1)
− (t)

∣∣ · 3Mt2

+M
∣∣W (k)(z

(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣
≤
{
M ·Mt2(1 + 6M3τ5)

(
2

3

)k−1

+M · 2M2τ5
(
2

3

)k−1}
· 3Mt2

+M ·Mt2(1 + 6M3τ5)

(
2

3

)k−1

≤M2t2
(
1 + 6Mτ2

)(
2

3

)k−1

.

The above estimate is also valid for I14. For the term I15, one acquires

I15 ≤Mt2
∣∣W (k)(z

(k)
− (t), t)−W (k−1)(z

(k−1)
− (t), t)

∣∣(139)

+Mt2
∣∣z(k)− (t)− z

(k−1)
− (t)

∣∣
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≤Mt2
{
Mt2(1 + 6M3τ5)

(
2

3

)k−1

+ 2M2τ5
(
2

3

)k−1}
≤2M2t2τ2

(
2

3

)k−1

.

For the term I16, it suggests that

I16 ≤t|Fz| ·
∣∣z(k)− (t)− z

(k−1)
− (t)

∣∣ ≤ tM · 2M2τ5
(
2

3

)k−1

(140)

≤2M3τ6
(
2

3

)k−1

.

For the last term I17, we have

I17 ≤
∫ τ (k)

−

τ
(k−1)
−

∣∣∣∣b′(t)−Θ(k−1)(z
(k−1)
− (t), t)

∣∣∣∣ dt ≤ I18 + I19.(141)

where

I18 =

∫ τ
(k)
−

τ (k−1)
−

∣∣∣∣b′(t)−Θ(z̄(t), t)

∣∣∣∣ dt,
I19 =

∫ τ
(k)
−

τ
(k−1)
−

∣∣∣∣Θ(z̄(t), t)−Θ(k−1)(z
(k−1)
− (t), t)

∣∣∣∣ dt.
Recalling (55) and (59) arrives at

Θ(z̄(t), t) = a1 − λ−(z̄(t), t)(a
′
0 − ta′1) + χ̃0(t),

which combined with (61), (56) and (57) yields

b′(t)−Θ(z̄(t), t) =

(
b̃′2(t)− â′0λ+(z̄(t), t) + â1 + tâ′1λ+(z̄(t), t)

)
(142)

−
(
â1 − λ−(z̄(t), t)(â

′
0 − tâ′1) + χ̃0(t)

)
=
(
b̃′2(t)− χ̃0(t)

)
+ (â′0 − tâ′1)

(
λ−(z̄(t), t)− λ+(z̄(t), t)

)
=
(
λ+(z̄(t), t)− λ−(z̄(t), t)

)(
χ̃1(t)− â′0 + tâ′1

)
,

which indicates by the compatibility condition (C) in (58) that∣∣b′(t)−Θ(z̄(t), t)
∣∣ ≤ 2KK0t

3.(143)
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Hence we find by (135) and (143) that

I18 ≤
∫ τ

(k)
−

τ
(k−1)
−

2KK0t
2τ dt ≤ KK0τ

[
(τ

(k)
− )3 − (τ

(k−1)
− )3

]
(144)

≤M4τ6

k

(
2

3

)k−1

.

Furthermore, one applies the expression of Θ(k−1) to conclude∣∣∣∣Θ(z̄(t), t)−Θ(k−1)(z
(k−1)
− (t), t)

∣∣∣∣
=

∣∣∣∣Θ(k−1)(z̄(t), t)−Θ(k−1)(z
(k−1)
− (t), t)

∣∣∣∣
≤
{∣∣V (k−1)

z −W
(k−1)
z

∣∣
2t

+
∣∣B11V

(k−1)
z

∣∣+ ∣∣B12W
(k−1)
z

∣∣+ ∣∣B13

∣∣+ |Fz|t
}

×
(
|z̄(t)|+ |z(k−1)

− (t)|
)
,

from which and (109), (111) we obtain∣∣∣∣Θ(z̄(t), t)−Θ(k−1)(z
(k−1)
− (t), t)

∣∣∣∣(145)

≤
{
3

2
Mt+M · 3Mt2 + 2M · 3Mt2 + 8M2t2 +Mt

}
· 2K0t

3

≤2M2t4(1 + 5Mδ) ≤ 2M2τ2t2(1 + 5Mδ).

Inserting (145) into the term I19 and employing (135) again gives

I19 ≤
∫ τ

(k)
−

τ (k−1)
−

2M2t4(1 + 5Mδ) dt(146)

≤ M2(1 + 5Mδ)τ2
[
(τ

(k)
− )3 − (τ

(k−1)
− )3

]
≤ 2M4(1 + 5Mδ)τ7

k

(
2

3

)k−1

≤ 12M4τ7

k

(
2

3

)k−1

.
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one puts (144) and (146) into (141) to achieve

I17 ≤
M4τ6

k

(
2

3

)k−1

+
12M4τ7

k

(
2

3

)k−1

≤ 2M4τ6

k

(
2

3

)k−1

.(147)

Combining with (136)–(140) and (147), we have∣∣V (k+1)(ζ, τ)− V (k)(ζ, τ)
∣∣(148)

≤
∫ τ

0

{
Mt(1 + 6M3τ5)

(
2

3

)k−1

+ 2M2t2
(
1 + 6Mτ2

)(
2

3

)k−1

+ 2M2t2τ2
(
2

3

)k−1

+ 2M3τ6
(
2

3

)k−1}
dt+

2M4τ6

k

(
2

3

)k−1

≤Mτ2
(
1

2
+ 2Mδ +

2δ(Mδ)3

k

)(
2

3

)k−1

≤ Mτ2
(
2

3

)k

,

by the choice of δ in (90). One can derive the same estimate for W and the

proof of the lemma is finished.

3.2.4. The existence and uniqueness of solutions. We now establish

the existence and uniqueness of classical solutions to the problem (65), (60).

According to Lemma 3.4, we see that the sequences (W (k), V (k))(ζ, τ) are

uniformly convergent. Denote the limit functions by (W,V )(ζ, τ) which are

continuous on the region Dδ. Due to Lemma 3.2, we know that the limit

functions (W,V )(ζ, τ) satisfy

|W (ζ, τ)|; |V (ζ, τ)| ≤ 3Mτ2, |W (ζ, τ)− V (ζ, τ)| ≤ 3Mτ2,(149)

for any (ζ, τ) ∈ Dδ. Obviously, the functions (W,V ) also satisfy the integral

system (81) and the homogeneous initial conditions W (ζ, 0) = V (ζ, 0) = 0.

Recalling the relation between τ− and τ, ζ

ζ −
∫ τ

τ−

λ−(zi(t; ζ, τ), t) dt = z̄(τ−) =

∫ τ−

0
λ+(z̄(t), t) dt,(150)

one finds that ζ = z̄(τ−) iff τ = τ−, which along with (81) and (149) deduces

V (z̄(τ−), τ−) = b(τ−). Thus the function V satisfies the boundary condi-

tion in (60). The boundary condition W (z̄(t), t) = d(t) also holds by (68).

Moreover, it follows directly by (149) and the equation for W in (81) that
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Wτ (ζ, 0) = 0. To derive the initial condition of Vτ , we differentiate (150)

with respect to τ to obtain

τ−τ =

λ−(ζ, τ) +

∫ τ

τ−

∂λ−
∂z

· ∂z−
∂τ

dt

λ−(z̄(τ−), τ−)− λ+(z̄(τ−), τ−)
,

∂z−
∂τ

(t; ζ, τ) = −λ−
∂z−
∂ζ

(t; ζ, τ),

from which and (111), (118), (149) one gets

τ−τ ≤ K0

τ2−
,

which together with (143) and (149) arrives at Vτ (ζ, 0) = 0. Therefore, the

functions (W,V ) satisfy all the conditions in (60).

Next we discuss the regularity of (W,V )(ζ, τ). Based on the above anal-

ysis, we know that W (ζ, τ) and V (ζ, τ) possess one continuous derivative

with respect to τ . In order to establish the existence of (Wζ , Vζ) in Dδ,

we differentiate the integral system (81) with respect to ζ and consider the

following system of integral equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Wζ(ζ, τ) =

∫ τ

0

{
Wz − Vz

2t
+A11(V )Wz +A12(W,V )Vz

+A13(W,V ) + Fzt

}
∂z+
∂ζ

(z+(t), t) dt,

Vζ(ζ, τ) = χ(τ−) +

∫ τ

τ−

{
Vz −Wz

2t
+B11(W )Vz +B12(W,V )Wz

+B13(W,V ) + Fzt

}
∂z−
∂ζ

(z−(t), t) dt.

(151)

The coefficient functions in (151) are given in (105) but with the limit func-

tions (W,V, z±) replacing (W (k), V (k), z
(k)
± ). Similar arguments to Lemma 3.1,

we solve the following ODE problem⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

dσ(t)

dt
=

σ(t)− χ(t)

2t
+A11(b(t))σ(t) +A12(d(t), b(t))χ(t)

+A13(d(t), b(t)) + Fz(z̄(t), t)t,

σ(0) = σ′(0) = 0,
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and the solution σ(t) satisfies the same estimate as χ(t). Set

(W̃ (0)
z , Ṽ (0)

z )(z, t) = (σ(t), χ(t)).

Let us construct the sequences (W̃
(k)
z , Ṽ

(k)
z )(k ≥ 1) as follows

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

W̃
(k+1)
ζ (ζ, τ) =

∫ τ

0

{
W̃

(k)
z − Ṽ

(k)
z

2t
+A11(V )W̃ (k)

z +A12(W,V )Ṽ (k)
z

+A13(W,V ) + Fzt

}
∂z

(k)
+

∂ζ
(z+(t), t) dt,

Ṽ
(k+1)
ζ (ζ, τ) = χ(τ−) +

∫ τ

τ−

{
Ṽ

(k)
z − W̃

(k)
z

2t
+B11(W )Ṽ (k)

z

+B12(W,V )W̃ (k)
z +B13(W,V ) + Fzt

}
∂z

(k)
−

∂ζ
(z−(t), t) dt,

(152)

where

∂z
(k)
+

∂ζ
(t; ζ, τ) = exp

{∫ t

τ

κt2

1− t2

(
C11(V )Ṽ (k)

z + C12(V )

)
dt

}
,

∂z
(k)
−

∂ζ
(t; ζ, τ) = exp

{
−
∫ t

τ

κt2

1− t2

(
D11(W )W̃ (k)

z +D12(W )

)
dt

}
,

For the sequences (W̃
(k)
ζ , Ṽ

(k)
ζ )(k ≥ 0), one can use the completely similar

proof process of Lemma 3.3 to show the following lemma.

Lemma 3.5. For any (ζ, τ) ∈ Dδ and for all k ≥ 0, the following inequali-

ties hold

∣∣W̃ (k)
ζ (ζ, τ)

∣∣; ∣∣Ṽ (k)
ζ (ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

,

∣∣W̃ (k)
ζ (ζ, τ)− Ṽ

(k)
ζ (ζ, τ)

∣∣ ≤ Mτ2
k∑

j=0

(
2

3

)j

.

(153)

Based on Lemma 3.5, we have
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Lemma 3.6. For any (ζ, τ) ∈ Dδ and for all k ≥ 0, the following inequali-

ties hold

∣∣W̃ (k+1)
ζ (ζ, τ)− W̃

(k)
ζ (ζ, τ)

∣∣; ∣∣Ṽ (k+1)
ζ (ζ, τ)− Ṽ

(k)
ζ (ζ, τ)

∣∣ ≤ Mτ2
(
2

3

)k

.

(154)

Proof. The proof is also based on the argument of induction. We deduce for

n = 0 by (152)∣∣Ṽ (1)
ζ (ζ, τ)− Ṽ

(0)
ζ (ζ, τ)

∣∣ ≤ |χ(τ−)|+ |χ(τ)|

+

∫ τ

0

{∣∣σ(t)− χ(t)
∣∣

2t
+
∣∣B11(d)χ(t)

∣∣+ ∣∣B12(d, b)σ(t)
∣∣

+
∣∣B13(d, b)

∣∣+ ∣∣Fz(z̄(t), t)
∣∣t}∣∣∣∣∂z(0)−

∂ζ

∣∣∣∣ dt
≤2K̂τ2 +

∫ τ

0

{
2K0t+ 12M2t2

}
e2Mδ3 dt

≤Mτ2
{
1

2
+

(
1

4
+ 4Mδ

)
e2Mδ3

}
≤ Mτ2.

Here we used (64) and (109).

Assume that the inequalities in (154) are valid for n = k − 1. Then for

n = k, we calculate∣∣Ṽ (k+1)
ζ (ζ, τ)− Ṽ

(k)
ζ (ζ, τ)

∣∣ ≤ I20 + I21,(155)

where

I20 =

∫ τ

τ−

{∣∣Ṽ (k)
z − Ṽ

(k−1)
z

∣∣+ ∣∣W̃ (k)
z − W̃

(k−1)
z

∣∣
2t

+
∣∣B11(W )

∣∣ · ∣∣Ṽ (k)
z − Ṽ (k−1)

z

∣∣+ ∣∣B12

∣∣ · ∣∣W̃ (k)
z − W̃ (k−1)

z

∣∣}∣∣∣∣∂z(k)−
∂ζ

∣∣∣∣ dt,
I21 =

∫ τ

τ−

{∣∣Ṽ (k−1)
z − W̃

(k−1)
z

∣∣
2t

+
∣∣B11Ṽ

(k−1)
z

∣∣+ ∣∣B12W̃
(k−1)
z

∣∣
+ |B13|+ |Fz|t

}
×
∣∣∣∣∂z(k)−
∂ζ

− ∂z
(k−1)
−
∂ζ

∣∣∣∣ dt.
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In view of the induction assumptions, we find that

I20 ≤
∫ τ

0

{
Mt

(
2

3

)k−1

+ 3M ·Mt2
(
2

3

)k−1}
e2Mδ3 dt(156)

≤Mτ2
(
1

2
+Mδ

)
e2Mδ3

(
2

3

)k−1

,

and

I21 ≤
∫ τ

0

{
3Mt

2
+M · 3Mt2 + 2M · 3Mt2 + 8M2t2 +Mt

}
(157)

× e2Mδ3Mτ2 ·Mτ2
(
2

3

)k−1

dt

≤
(
2Mτ2 + 6M2τ3

)
· e2Mδ3M2τ4

(
2

3

)k−1

.

Here we used the following result by the expression
∂z(k)

−
∂ζ in (50) and the

estimates (109), (118)

∣∣∣∣∂z(k)−
∂ζ

− ∂z
(k−1)
−
∂ζ

∣∣∣∣ ≤e2Mδ3
∫ τ

0

κt2

1− t2

∣∣D11(W )
∣∣ · ∣∣W̃ (k)

z − W̃ (k−1)
z

∣∣ dt
≤e2Mδ3Mτ2 ·Mτ2

(
2

3

)k−1

.

Now inserting (156) and (157) into (155) yields∣∣Ṽ (k+1)
ζ (ζ, τ)− Ṽ

(k)
ζ (ζ, τ)

∣∣(158)

≤Mτ2
(
1

2
+Mδ

)
e2Mδ3

(
2

3

)k−1

+
(
2Mτ2 + 6M2τ3

)
· e2Mδ3M2τ4

(
2

3

)k−1

≤Mτ2
(
1

2
+ 2Mδ

)
e2Mδ3

(
2

3

)k−1

≤ Mτ2
(
2

3

)k

,

by the choice of δ in (90). The inequality for W in (154) can be derived in

a similar way. This completes the proof of the lemma.
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According to Lemmas 3.5 and 3.6, it is known that (W̃
(k)
ζ , Ṽ

(k)
ζ ) are uni-

formly convergent, which imply that the functions (Wζ , Vζ)(ζ, τ) are contin-
uous and satisfy ∣∣Wζ(ζ, τ)

∣∣; ∣∣Vζ(ζ, τ)
∣∣ ≤ 3Mτ2,∣∣Wζ(ζ, τ)− Vζ(ζ, τ)
∣∣ ≤ 3Mτ2.

(159)

Thus the functions (W,V )(z, t) are C1-continuous. Since (W,V )(z, t) satisfy
the integral system (81) and have the required differentiability properties,
it is a smooth solution of the mixed-type boundary problem (65), (60).

We assert that the solution (W,V )(z, t) is unique. To show this assertion,

we consider the difference of solutions Ŵ = W2−W1 and V̂ = V2−V1, where
(W1, V1) and (W2, V2) are two smooth solutions of problem (65), (60). It is

not difficult to check by (81) and (109) that the functions (Ŵ , V̂ )(z, t) satisfy
the following homogeneous integral inequality system

∣∣Ŵ (ζ, τ)
∣∣; ∣∣V̂ (ζ, τ)

∣∣ ≤ ∫ τ

0

{∣∣Ŵ − V̂
∣∣

2t
+ M̂

(∣∣Ŵ ∣∣+ ∣∣V̂ ∣∣)} dt,

∣∣Ŵ (ζ, τ)− V̂ (ζ, τ)
∣∣ ≤ ∫ τ

0

{∣∣Ŵ − V̂
∣∣

t
+ M̂

(∣∣Ŵ ∣∣+ ∣∣V̂ ∣∣)} dt

(160)

for some positive constant M̂ . Clearly, the functions (Ŵ , V̂ ) also satisfy
the inequalities as in (91). We repeat the insertion of these in the right
side of (160) to see that there exists a positive constant M∗ such that for
arbitrary k ≥ 0

∣∣Ŵ ∣∣; ∣∣V̂ ∣∣ ≤ M∗
(
2

3

)k

.

which means that there holds Ŵ = V̂ ≡ 0. Hence we obtain the uniqueness
of classical solutions of the mixed-type boundary problem (65), (60).

Thanks to the two problems (45), (53) and (63), (60) are equivalent
by (59), the proof of Theorem 3.1 is complete.

4. Solutions in terms of self-similar variables

In the previous Section 3, we have established a classical solution (R̃, S̃)(z, t)
in the region D := {(z, t)| t ∈ [0, δ], z̃(δ) − Kδ3 + Kt3 ≤ z ≤ z̃(t)} for the
mixed-type boundary problem (45), (53). Based on this result, in this section
we construct a classical solution to system (13) in the self-similar (ξ, η) plane.
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Due to (44) and (41), we first obtain the functions (R̄, S̄)(z′, t′) in the

region D
′
:= {(z′, t′)| t′ ∈ [0, δ2], z̃(δ) − Kδ3 + K(

√
t′)3 ≤ z ≤ z̃(

√
t′)}. In

order to obtain a solution in (ξ, η) plane, it is necessary to construct the
coordinate functions ξ = ξ(z′, t′) and η = η(z′, t′). Recalling the coordinate
transformation (37) and using (4), (10), (12) and (17), one has

∂ξ

∂t′
= −c sin θ(z′, t′)

J
√
1− t′

,
∂η

∂t′
=

c cos θ(z′, t′)

J
√
1− t′

,

∂ξ

∂z′
= −2

√
1− t′�η

J
,

∂η

∂z′
=

2
√
1− t′�ξ

J
,

(161)

where J(z′, t′) is defined by

J = −c(z′, t′)
√
κ+ 1− t′[R̄(z′, t′) + S̄(z′, t′)]

κ
√
1− t′

,

and

�ξ(z
′, t′) =

cos θ(z′, t′)
√
κ+ 1− t′R̄S̄

κ

(
V −W

2t
(z′, t′)− a1

)
− cos θ(z′, t′)(1− t′)

c(z′, t′)
− sin θ(z′, t′)

√
κ+ 1− t′(R̄+ S̄)

2κ
√
1− t′

,

�η(z
′, t′) =

sin θ(z′, t′)
√
κ+ 1− t′R̄S̄

κ

(
V −W

2t
(z′, t′)− a1

)
− sin θ(z′, t′)(1− t′)

c(z′, t′)
+

cos θ(z′, t′)
√
κ+ 1− t′(R̄+ S̄)

2κ
√
1− t′

,

which are well-defined by (149). The function θ(z′, t′) in (161) is defined by

θ(z′, t′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ̂(ξ̂(z′))

+

∫ t′

0

c(z′, s)
√
s(R̄− S̄)− 2κ(1− s)

√
κ+ 1− s

2c(z′, s)
√
1− s(κ+ 1− s)(R̄+ S̄)

ds,

if z′ ∈ [ẑ1, z2],

θ̃(ξ̃(z′))

+

∫ t′

t̃′

c(z′, s)
√
s(R̄− S̄)− 2κ(1− s)

√
κ+ 1− s

2c(z′, s)
√
1− s(κ+ 1− s)(R̄+ S̄)

ds,

if z′ ∈ [z2, z̃3],

(162)
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where ẑ1 = z̃(δ) − Kδ3, z̃3 = z̃(δ), t̃′ = (z̃−1(z′))2 and z̃−1 represents the

inverse of z̃(·). The integrand function in (162) follows from the following

relations

θt′(z
′, t′) =

c(z′, t′)
√
t′(R̄− S̄)− 2κ(1− t′)

√
κ+ 1− t′

2c(z′, t′)
√
1− t′(κ+ 1− t′)(R̄+ S̄)

,

θz′(z′, t′) = −
√
1− t′c(z′, t′)(T2

′S̄ + T1
′R̄)

κc2(z′, t′)(κ+ 1− t′)(R̄+ S̄)

−
√
1− t′κ(1− t′)

√
κ+ 1− t′ T2−T1

t (z′, t′)

κc2(z′, t′)(κ+ 1− t′)(R̄+ S̄)
,

(163)

which are derived by (13), (15) and (39). By using (161), we define the

functions ξ = ξ(z′, t′) and η = η(z′, t′) for any (z′, t′) ∈ D
′

ξ(z′, t′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξ̂(z′) +

∫ t′

0

κ sin θ(z′, s)√
κ+ 1− s(R̄+ S̄)(z′, s)

ds, z′ ∈ [ẑ1, z2],

ξ̃(z′) +

∫ t′

t̃′

κ sin θ(z′, s)√
κ+ 1− s(R̄+ S̄)(z′, s)

ds, z′ ∈ [z2, z̃3],

(164)

and

η(z′, t′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ϕ(ξ̂(z′))−

∫ t′

0

κ cos θ(z′, s)√
κ+ 1− s(R̄+ S̄)(z′, s)

ds, z′ ∈ [ẑ1, z2],

ψ(ξ̃(z′))−
∫ t′

t̃′

κ cos θ(z′, s)√
κ+ 1− s(R̄+ S̄)(z′, s)

ds, z′ ∈ [z2, z̃3].

(165)

By the arbitrariness of (z′, t′), the above process determines a region Ω in

the self-similar (ξ, η) plane

Ω = {(ξ, η)| ξ = ξ(z′, t′), η = η(z′, t′), (z′, t′) ∈ D
′},

which is corresponded to the region D
′
in the (z′, t′) plane. Moreover, we

obtain by (161) that the Jacobian of the map (z′, t′) 	→ (ξ, η) is

j :=
∂(ξ, η)

∂(z′, t′)
= − κ

√
1− t′

c(z′, t′)
√
κ+ 1− t′(R̄(z′, t′) + S̄(z′, t′))

,
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which along with the facts R̄ > 0, S̄ > 0 lead to j < 0 in D
′
. This means that

the map (z′, t′) 	→ (ξ, η) is an one-to-one mapping for t′ ∈ [0, δ2]. Therefore,

we have the functions z′ = z′(ξ, η), t′ = t′(ξ, η) defined on Ω. Furthermore,

it follows by (164) and (165) that the images of t′ = 0, z′ ∈ [ẑ1, z2] and

z′ = z̃(
√
t′), z′ ∈ [z2, z̃3] are, respectively, η = ϕ(ξ) (ξ ∈ [ξP , ξ̂C ]) and η =

ψ(ξ) (ξ ∈ [ξP , ξ̃E ]), where ξ̂C = ξ̂(ẑ1) and ξ̃E = ξ̃(z̃3).

We now define the functions (c, θ,�)(ξ, η) for any (ξ, η) ∈ Ω

c =

√
2κ(1− t′(ξ, η))z′(ξ, η)

κ+ 1− t′(ξ, η)
, � =

√
1− t′(ξ, η), θ = θ(z′(ξ, η), t′(ξ, η)),

(166)

and denote

α = θ(ξ, η) + arcsin�(ξ, η), β = θ(ξ, η)− arcsin�(ξ, η).

It is observed by the construction process that the functions (θ,�)(ξ, η)

defined in (166) satisfy the boundary conditions on P̂C and P̂E. Next we

check that they satisfy system (13). We only consider the first equation, the

second equation of (13) can be checked analogously. Making use of (161)

gives

∂̄+� = cosα�ξ + sinα�η(167)

= cosα

{
cos θ

√
κ+ 1− t′

κ
· R̄− S̄

2
√
t′

− cos θ(1− t′)

c

− sin θ
√
κ+ 1− t′(R̄+ S̄)

2κ
√
1− t′

}
+ sinα

{
sin θ

√
κ+ 1− t′

κ
· R̄− S̄

2
√
t′

− sin θ(1− t′)

c
+

cos θ
√
κ+ 1− t′(R̄+ S̄)

2κ
√
1− t′

}
=

√
κ+ 1− t′R̄

κ
− (1− t′)

√
t′

c
.

We combine (161) and (167) to calculate

∂̄+θ =cosαθξ + sinαθη

=(cosαz′ξ + sinαz′η)θz′ + (cosαt′ξ + sinαt′η)θt′

=

(
cosα

ηt′

j
+ sinα

−ξt′

j

)
θz′ +

(
cosα

−ηz′

j
+ sinα

ξz′

j

)
θt′
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=
c(cosα cos θ + sinα sin θ)

jJ
√
1− t′

θz′ +
−2

√
1− t′(cosα�ξ + sinα�η)

jJ
θt′

=
c
√
t′√

1− t′
θz′ −

√
1− t′

(√
κ+ 1− t′R̄

κ
− (1− t′)

√
t′

c

)
(2θt′).

Putting (163) into the above and applying the relations by the expression
of T ′

1, T
′
2 in (40)

T ′
2S̄ + T ′

1R̄ = 2
√
κ+ 1− t′R̄S̄ +

κ
√
t′(1− t′)

c
(R̄− S̄),

T ′
2 − T ′

1 =
√
κ+ 1− t′(R̄− S̄)− 2κ

√
t′(1− t′)

c
,

one has

∂̄+θ =
−1

c(κ+ 1− t2)(R̄+ S̄)

{
c
√
t′

κ

(
2
√
κ+ 1− t′R̄S̄ +

κ
√
t′(1− t′)

c
(R̄− S̄)

)
+ (1− t′)

√
κ+ 1− t′

(√
κ+ 1− t′(R̄− S̄)− 2κ

√
t′(1− t′)

c

)
+ c

√
t′(R̄− S̄)

(√
κ+ 1− t′

κ
R̄−

√
t′(1− t′)

c

)
− 2κ(1− t′)

√
κ+ 1− t′

(√
κ+ 1− t′

κ
R̄−

√
t′(1− t′)

c

)}
=−

√
t′R̄

κ
√
κ+ 1− t′

+
1− t′

c
.

which together with (167) arrives at

∂̄+θ +
cosω

κ+�2
∂̄+�

=−
√
t′R̄

κ
√
κ+ 1− t′

+
1− t′

c
+

√
t′

κ+ 1− t′

(√
κ+ 1− t′R̄

κ
− (1− t′)

√
t′

c

)
=
1− t′

c
− (1− t′)t′

c(κ+ 1− t′)
=

(1− t′)(κ+ 1− 2t′)

c(κ+ 1− t′)

=
�2(κ− 1 + 2�2)

c(κ+�2)
,
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which is the desired result.
Finally, we define the functions (ρ, u, v)(ξ, η) by (10) and (166)

ρ =

(
c2(ξ, η)

Aγ

) 1

γ−1

, u = ξ − c(ξ, η)
cos θ(ξ, η)

�(ξ, η)
, v = η − c(ξ, η)

sin θ(ξ, η)

�(ξ, η)
.

It is not difficult to check that the functions (ρ, u, v)(ξ, η) defined as above
satisfy the 2-D isentropic self-similar Euler equations (2).
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