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The Kohn–Laplacian and Cauchy–Szegö projection
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§¶

We study the Kohn–Laplacian and its fundamental solution on
some model domains in Cn+1, and further discuss the explicit ker-
nel of the Cauchy–Szegö projections on these model domains using
the real analysis method. We further show that these Cauchy–
Szegö kernels are Calderón–Zygmund kernels under the suitable
quasi-metric.
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1. Background and main results

In complex analysis, fundamental objects such as fundamental solutions for
the Kohn–Laplacian, Cauchy–Szegö kernel, heat kernel, etc. are explicitly
known in very few cases. But explicit solutions are very important for re-
lated analysis, especially for unbounded domains. In this paper, we discuss
such formulae for some higher step case in higher dimension using a differ-
ent approach. We first review the geometry of a general real hypersurface
M in Cn+1, which is unbounded and of high step, and study geometrically
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invariant formulas for the fundamental solutions of the Kohn–Laplacian,
Cauchy–Szegö kernel and heat kernels. We refer to Theorems 5.3 and 6.1.
This model domain was studied intensively by many mathematicians, espe-
cially Beals, Gaveau and Grenier (see e.g., Beals [2], Beals–Gaveau–Greiner
[3, 4, 5, 6] and Calin–Chang–Greiner [8]).

The main result in the current paper is the estimates for those kernels by
applying real method in harmonic analysis. The first step is to establish the
L2 estimates. For the Cauchy–Szegö projection S, this is automatic since by
definition S : L2(∂Ωk) → H2(Ωk) is bounded. Then the next natural opera-
tor is P (X1, X2)Kλ. Kλ is the fundamental solution for the Kohn Laplacian
which we derived in our Sections 4 and 5, and P (X1, X2) is a quadratic
polynomial in the “horizontal” vector fields X1 and X2. Then we can use
David–Journé theorem (The famous T (1) Theorem) (see David–Journé [14]
and Nagel–Rosay–Stein–Wainger [24]). Due to the limitation of pages, we
will put detailed calculations in a forthcoming paper.

The natural next step is to investigate whether the Cauchy–Szegö kernels
on the boundary of model domains are Calderón–Zygmund kernels. Note
that Diaz [13] studied this property for the Cauchy–Szegö kernels of Greiner
and Stein [20] in domains in C2. In this paper, by choosing a suitable control
metric, we provide another proof to show that that for the model domains Ωk

in C2 with k ≥ 1, the Cauchy–Szegö Kernels on the boundary are Calderón–
Zygmund kernels. We refer to Theorem 7.1 for detail. Our approach can be
applied to model domains Ωk in Cn+1 for general n > 1 and k ≥ 1, with full
detailed calculations in a forthcoming paper.

Due to the notational complexity, we will not state the full details of
our main theorems here and refer the details to each section. This paper is
organized as follows:

• In Sections 2 and 3, we review the Cauchy–Riemann geometry and
subRiemannian geometry in Cn, and the Kohn–Laplacian on CR-
manifolds in Cn+1, respectively;

• In Section 4, we study the fundamental solution for Kohn–Laplacian
on Siegel upper half space in Cn+1;

• In Section 5, we derive the fundamental solution for Kohn–Laplacian
on model domains (with higher steps) in Cn+1 and prove our first main
result Theorem 5.3;

• In Section 6, we apply the result in Section 5, and obtain the explicit
Cauchy–Szegö kernels on the boundary of model domains, which is the
second main result Theorem 6.1;

• In the last section, we prove that the Cauchy–Szegö kernels on the
boundary are Calderón–Zygmund kernels which is the third main re-
sult Theorem 7.1.
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2. Cauchy–Riemann geometry and subRiemannian geometry

Consider

ΔX =
1

2

m∑
j=1

X2
j + · · · ,

where X = {X1, . . . , Xm} are m linearly independent vector fields on Mn,
an n-dimensional real manifold with m ≤ n. The subspace TX spanned by
X1, . . . , Xm is called the horizontal subspace, and its complement is referred
to as the missing directions.

TX = TM if and only if ΔX is elliptic. The operator ΔX is the usual
Laplace–Beltrami operator. The Newtonian potential is

N(x,x0) =
1

(2− n)|Σn(x0)|dn−2(x,x0)
, n > 2,

where |Σn(x0)| is the surface area of the induced unit ball with center x0,
and d(x,x0) is the Riemannian distance between x and x0. Then

ΔXN(x,x0) = δ(x− x0) +O
(
d−n+1(x,x0)

)
.

When TX �= TM, the operator is non-elliptic. AssumeX satisfies bracket
generating condition: “the horizontal vector fields X and their brackets span
TM”, then

(1). We know that from Chow’s Theorem [12]: Given any two points A,B ∈
M, there is a piecewise C1 horizontal curve γ : [0, 1] → M:

γ(0) = A, γ(1) = B,

and

γ̇(s) =

m∑
k=1

ak(s)Xk.

This yields a distance and therefore a geometry which we shall call subRie-
mannian.

(2). By results of Fefferman–Phong [15] and Fefferman–Sanchez [16], we
know that ΔX is subelliptic:∥∥P(Xj , Xk)u

∥∥
L2

k

≤ C‖f‖L2
k
, k ∈ Z+
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where P(Xj , Xk) is any quadratic polynomial in Xj , Xk, 1 ≤ j, k ≤ m.
Hence, it is hypoelliptic, i.e.,

ΔXu = f, f ∈ C∞(Mn) ⇒ u ∈ C∞(Mn).

This recovered a theorem of Hörmander [22].

Set

Xj =

n∑
k=1

ajk(x)
∂

∂xk
, j = 1, . . . ,m.

Then

H =
1

2

m∑
j=1

( n∑
k=1

ajk(x)ξk

)2
is the Hamiltonian function on the cotangent bundle T ∗M.

A bicharacteristic curve (x(s), ξ(s)) ∈ T ∗M is a solution of the Hamil-
ton’s system:

ẋj(s) = Hξj , ξ̇j(s) = −Hxj
,

with boundary conditions,

xj(0) = x
(0)
j , xj(τ) = xj , j = 1, . . . , n,

for given points x(0), x ∈ M.
The projection x(s) of the bicharacteristic curve on Mn is a geodesic.

Remarks 2.1. This new geometry has essential differences with the Rie-
mannian geometry.
(1) Every point O of a Riemannian manifold is connected to every other
point in a sufficiently small neighborhood by a unique geodesic. On a sub-
Riemannian manifold there will be points arbitrarily near O which are con-
nected to O by an infinite number of geodesics. This strange phenomenon
was first pointed out by Gaveau (1977) and Strichartz (1986), and it brings
up the question of what “local” means in subRiemannian geometry. Con-
trol theorists studying subRiemannian examples noticed that the Riemannian
concepts of cut locus and conjugate locus behave badly in a subRiemannian
context.
(2) In Riemannian geometry the unit ball is smooth. In subRiemannian ge-
ometry, among many distances, there is a shortest one, often referred to as
the Carnot–Carathéodory distance. In subRiemannian geometry the Carnot–
Carathéodory unit ball is singular.
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(3) The exponential map is smooth in Riemannian geometry, but often singu-

lar in subRiemannian geometry. The singularities occur at points connected

to an “origin” by an infinite number of geodesics. These singular points con-

stitute a submanifold whose tangents yield the “missing directions”, that is

the directions in TMn not covered by the horizontal directions.

Suppose that we are in 3 dimensions, x = (x1, x2, t) = (x′, t), with 2

vector fields,

X1 =
∂

∂x1
+ 2kx2|x′|2k−2 ∂

∂t
,

X2 =
∂

∂x2
− 2kx1|x′|2k−2 ∂

∂t
,

with |x′|2 = x21 + x22. The differential operator one wants to invert is

Δλ =
1

2

(
X2

1 +X2
2

)
− 1

2
iλ
[
X1, X2

]
.

The number given by the minimum number of brackets necessary to generate

TM plus 1 is referred to as the “step” of the operator ΔX. In particular,

elliptic operator is step 1, one bracket generators are step 2, and everything

else is referred to as higher step. Since

[X1, X2] = −2k(k + 1)|x′|2(k−1) ∂

∂t
,

Δλ is step 2 at points |x′| �= 0, and step 2k otherwise.

We first try to find the fundamental solution Kλ(x,x0) of Δλ which is

the distribution solution of

Δλ,xKλ(x,x0) = δ
(
x− x0

)
.

Before we go further discussion of the operator Δλ, let us review the

geometry of a general real hypersurface M in Cn. The beautiful interplay

between real and complex geometry dominates the discussion.

Let us first work with Cn itself. A vector field L on Cn can be expressed

as a first order different operator

L =

2n∑
j=1

aj(x)
∂

∂xj
,
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where aj ∈ C∞. In order to allow us to express the differentiations in
complex notation, we start by considering the complexified tangent bun-
dle CT (Cn) = C ⊗ T (Cn). A section of this bundle is a complex vector
field:

L =

n∑
j=1

cj(x)
∂

∂zj
+

n∑
j=1

dj(x)
∂

∂z̄j
.

We obtain two naturally defined integrable subbundles of CT (Cn):

T (1,0)(Cn) =
{
Z =

n∑
j=1

cj(x)
∂

∂zj

}

where cj ∈ C∞(Cn). T (1,0)(Cn) is integrable in the sense of Frobenius: if
Z,W ∈ T (1,0)(Cn) ⇒ [Z,W ] ∈ T (1,0)(Cn). Denoted

T (0,1)(Cn) = T (1,0)(Cn).

Hence,

T (1,0)(Cn) ∩ T (0,1)(Cn) = {0}.
This splitting of the tangent bundle plays a crucial rule in all aspects of
complex geometry.

Let M be a smooth real hypersurface of Cn, or more generally, of a
complex manifold. Again we start by tensoring with C, writing CTM for
C⊗ T (M). We define

T (1,0)(M) = T (1,0)(Cn) ∩ CTM.

As before, T (0,1)(M) = T (1,0)(M). Again we have

T (1,0)(M) ∩ T (0,1)(M) = {0}.

For an abstract real manifoldM we say that the subbundle T (1,0)(M) defines
a CR structure on M if it is integrable, and its intersection with its conjugate
bundle is trivial. We call such a manifold a CR manifold. Its horizontal
subbundle is the union

H(M) = T (1,0)(M) ∪ T (0,1)(M).

We say that M is of hypersurface type if the fibres of H(M) have codimen-
sion 1 in CTM.
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Given a CR manifold of hypersurface type, there is a non-vanishing
differential 1-form η such that

ker(η) = H(M).

We may assume that η is purely imaginary.

Definition 2.2. Let M be a CR manifold of hypersurface type. The Levi
form λ is the Hermitian form defined by

λ(Z, W̄ ) =
〈
η, [Z, W̄ ]

〉
, Z,W ∈ T (1,0)(M).

Definition 2.3. A CR manifold of hypersurface type is pseudoconvex if all
nonzero eigenvalues of λ have the same sign. It is called strongly pseudocon-
vex if λ is definite, that is, all eigenvalues have the same non-zero sign.

Now we want to express the Levi form on a hypersurface in terms of
partial derivatives. In a neighborhood of a given point, we suppose that

M =
{
z ∈ C

n : ρ(z) = 0, dρ �= 0
}
.

A complex vector field Z is tangent to M then Z(ρ) = 0 on M. We may
use

η =
(
∂ − ∂̄

)
(ρ).

Let Z,W ∈ T (1,0)(M). Then

〈∂ρ, Z〉 = 〈∂ρ,W 〉 = 0.

By the Cartan formula for exterior derivatives,

λ(Z, W̄ ) =
〈
η, [Z, W̄ ]

〉
=
〈
− dη, Z ∧ W̄

〉
=
〈
∂∂̄ρ, Z ∧ W̄

〉
.

Hence we have interpreted the Levi form as the restriction of the complex
Hessian of ρ to sections of T (1,0)(M).

Here we give a few examples.

Example 1. The zero set of

ρ(z) =

n+1∑
j=1

|zj |2 − 1
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is the sphere S2n+1. The horizontal subbundle Hz on S2n+1 decomposes into
the holomorphic subspace

T (1,0)
z (S2n+1) = span{Z1, . . . Zn}

and its conjugate T
(0,1)
z (S2n+1), where

Zj = z̄j
∂

∂zn+1
− z̄n+1

∂

∂zj
, j = 1, . . . , n.

The annihilating contact 1-form is

η =
1

2

n+1∑
j=1

(
z̄jdzj − zjdz̄j

)
.

The Levi form, after dividing out a nonzero factor, satisfies λ(Zj , Z̄k) =
δjk + z̄jzk. Hence S2n+1 is strongly pseudoconvex.

Example 2. The zero set of

ρ(z) = Im(zn+1)−
n∑

j=1

|zj |2

is the boundary of the Siegel upper half space, which we identify with the
Heisenberg group Hn. To simplify notations, we use Hn to represent ∂Ω̃n

from now on. Since Bn+1 ≈ Ω̃n biholomorphically equivalent, the CR struc-
tures on the boundary and associated Levi forms must be equivalent. The
horizontal subbundle of Hn decomposes into holomorphic and conjugate

holomorphic subspaces T
(1,0)
z (Hn) = span{Z1, . . . , Zn} and T

(1,0)
z (Hn) with

Zj =
∂

∂zj
− 2iz̄j

∂

∂zn+1
, j = 1, . . . , n

and later is spanned by the conjugate vector fields Z̄1, . . . , Z̄n. An annihi-
lating contact 1-form is

η =
i

2

(
dzn+1 + dz̄n+1

)
+

n+1∑
j=2

(
z̄jdzj − zjdz̄j

)
.

Finally, the Levi form is λ(Zj , Z̄k) = δjk.
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Example 3. The zero set of

ρ(z) = Im(zn+1)

is a halfspace Σ. It’s horizontal space Hz(Σ) decomposes into holomorphic
and conjugate holomorphic subspaces, spanned respectively by the vector
fields

Zj =
∂

∂zj
, j = 1, . . . , n

and their conjugates Z̄1, . . . , Z̄n. In this case, the complex Hessian of the
defining function is identically equal to zero, and hence the Levi form is
λ(Zj , Z̄k) ≡ 0.

3. Kohn–Laplacian

Let M be a CR-manifold in Cn+1. Assume that {Z1, . . . , Zn} is an orthonor-
mal basis of T (0,1)(M). Denote B(0,q)(M) the set of all (0, q)-forms on M.
An element φ ∈ B(0,q)(M) can be written as

φ =
∑
J∈ϑq

φJ ω̄
J =

∑
J∈ϑq

φJ ω̄j1 ∧ ω̄j2 ∧ · · · ∧ ω̄jq

where ϑq is the set of all increasing q-tuples J = (j1, . . . , jq) with j1 < j2 <
· · · < jq and φJ ∈ C∞(M). The tangential Cauchy–Riemann operator

∂̄b : B(0,q)(M) → B(0,q+1)(M), q = 0, . . . , n

can be written as

∂̄bφ =

n∑
k=1

∑
J∈ϑq

Z̄k(φJ)ω̄k ∧ ω̄J ∈ B(0,q+1)(M).

The adjoint operator

∂̄∗
b : B(0,q)(M) → B(0,q−1)(M), q = 1, . . . , n− 1

can be written as

∂̄∗
bφ = −

n∑
k=1

∑
J∈ϑq

Zk(φJ)ω̄k�ω̄J ∈ B(0,q−1)(M)
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where

ω̄k�ω̄J = 0, if k �∈ ϑq

and

ω̄k�ω̄J = (−1)mω̄j1 ∧ · · · ∧ ω̄jm−1
∧ ω̄jm+1

∧ · · · ∧ ω̄jq

if k = jm. The Kohn Laplacian on (0, q)-forms is

�b = ∂̄b∂̄
∗
b + ∂̄∗

b ∂̄b

which is a self-adjoint operator defined B(0,q)(M). Straightforward compu-
tation shows that the action of �b on B(0,q)(M) is given by

�b

( ∑
J∈ϑq

φJ ω̄
J
)
= −

∑
J∈ϑq

(
Ln−1−2qφJ

)
ω̄J

where, for λ ∈ C,

Lλ =
1

2

n∑
k=1

(
ZkZ̄k + Z̄kZk

)
− iλ[Zk, Z̄k].

Now let Ωk = {(z1, z2) ∈ C2 : Im(z2) > |z1|2k} be a domain in C2. The
boundary ∂Ωk is a CR manifold of hypersurface type. As before, we may
change the coordinates

z1 = x1 + ix2 and t = Re(z2),

then the operator Δλ is exactly the Kohn Laplacian with 1− 2q, q = 0, 1, 2.

In fact, the Kohn Laplacian Δλ has some connection with the classical
mechanics. Consider a unit mass particle under the influence of force F (x) =
x. Newton’s law ẍ = x gives us an equation which describes the dynamics
of an inverse pendulum in an unstable equilibrium, for small angle x. The
potential energy

U(x) = −
∫ x

0
F (u) du = −x2

2
.

The Lagrangian L : TR → R is the difference between the kinetic and the
potential energy

L(x, ẋ) = K − U =
1

2
ẋ2 +

1

2
x2.
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The momentum p = ∂L
∂ẋ = ẋ and the Hamiltonian associated with the above

Lagrangian is obtained using the Legendre transform: H : T ∗R → R

H(x, p) = pẋ− L(x, ẋ) =
1

2
p2 − 1

2
x2.

Consider the following complexification

x = x1 + ip2, p = p1 + ix2.

Hence H : T ∗C → C and

H(x, p) =
1

2
p2 − 1

2
x2

=
1

2
(p1 + ix2)

2 − 1

2
(x1 + ip2)

2

=
1

2
(p1 + ix2)

2 +
1

2
(p2 − ix1)

2.

Replacing θ = i,

H(x, p; θ) =
1

2
(p1 + θx2)

2 +
1

2
(p2 − θx1)

2.

Quantizing, p1 → ∂x1
, p2 → ∂x2

, θ → ∂t and hence H → Δ0, the Kohn
Laplacian in the case k = 1 and λ = 0:

Δ0 =
1

2

( ∂

∂x1
+ x2

∂

∂t

)2
+

1

2

( ∂

∂x2
− x1

∂

∂t

)2
.

In general, we shall look for Kλ in the form

Kλ(x,x0) =

∫
R

E(x,x0, τ)Vλ(x,x0, τ)

g(x,x0, τ)
dτ,

where the function g is a solution of the Hamilton–Jacobi equation:

∂g

∂τ
+

1

2

(
X1g

)2
+

1

2

(
X2g

)2
= 0,

given by a modified action integral of a complex Hamiltonian problem. The
associated energy

E = −∂g

∂τ
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is the first invariant of motion, and the volume element Vλ is the solution of
a transport equation, which is order 1 in the step 2 case, k = 1, and order
2k in the higher step case, k ≥ 2.

4. The step 2 case; k = 1

Here

X1 =
∂

∂x1
+ 2x2

∂

∂t
, X2 =

∂

∂x2
− 2x1

∂

∂t
,

which are left-invariant with respect to the following Heisenberg group trans-
lation:

x ◦ y =
(
x′ + y′, t+ s+ 2[x2y1 − x1y2]

)
.

where x = (x′, t) and y = (y′, s). Moreover, one has [X1, X2] = −4 ∂
∂t = −4T .

In high dimensional case, the Siegel upper half space Ω̃n is defined as:

(1) Ω̃n =
{
(z′, zn+1) ∈ C

n+1 : Im(zn+1) >

n∑
j=1

|zj |2
}

where z′ = (z1, . . . , zn) ∈ Cn.
The following elementary but useful identity is the key to discovering

the biholomorphic maps:

(2) Im(ζ) =
∣∣∣ i+ ζ

2

∣∣∣2 − ∣∣∣ i− ζ

2

∣∣∣2.
With ζ = zn+1 we plug (2) into (1) and rewrite to obtain

(3)
∣∣∣ i+ zn+1

2

∣∣∣2 > n∑
j=1

|zj |2 +
∣∣∣ i− zn+1

2

∣∣∣2.
After dividing by

∣∣∣ i+zn+1

2

∣∣∣2 and changing notation, inequality (3) becomes

1 >

n+1∑
j=1

|wj |2,

the defining property of the unit ball. The explicit mapping is given by

wj =
2zj

i+ zn+1
, 1 ≤ j ≤ n
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and

wn+1 =
i− zn+1

i+ zn+1
.

It is easy to check that this transformation z �→ w is biholomorphic from
Ω̃n to Bn+1.

We now describe the analogous situation on ∂Ω̃n of the Siegel upper half
space:

∂Ω̃n =
{
(z′, zn+1) ∈ C

n+1 : Im(zn+1) =

n∑
j=1

|zj |2
}
.

The variable zn+1 plays a different role, and hence for z ∈ Cn+1 we write
z = (z′, zn+1). Two natural families of biholomorphic self-maps of Ω̃n are
the dilations δρ : Ω̃n → Ω̃n, for ρ > 0, given by

δρ(z
′, zn+1) =

(
ρz′, ρ2zn+1

)
,

and the rotations RA : Ω̃n → Ω̃n, for A ∈ U(n), given by

RA(z
′, zn+1) =

(
A(z′), zn+1

)
.

To introduce an analogue of translation we consider

τx : Ω̃n → Ω̃n,

for x = (z′, t) ∈ Cn × R, given by

τx(w
′, wn+1) =

(
w′ + z′, wn+1 + t+ 2i〈z′, w′〉+ i|z′|2,

)
.

All of the preceding maps extend to self-maps of the boundary ∂Ω̃n. The
action of the family {τx : x = (z, t) ∈ Cn ×R} on Ω̃n × ∂Ω̃n is faithful and
the action on ∂Ω̃n is simply transitive. We obtain a useful identification of
∂Ω̃n with Cn × R. By this method we equip Cn × R with a group law:

(x,y) �→ x ◦ y,

characterized by the identity τx · τy = τx◦y. Here

x ◦ y =
(
x′ + y′, t+ s+ 2

n∑
j=1

[
xn+jyj − xjyn+j

])
.

The resulting space is the Heisenberg group Hn as we mentioned before.
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Finally, we observe that the group of biholomorphic automorphisms of
Ω̃n which fix the point at ∞ is generated by dilations, rotations, and trans-
lations.

4.1. Lagrangian formalism

In order to simplify notations, let us return to the case C × R ≈ R3. We
shall associate a Lagrangian L : TR3 → R with the Hamiltonian:

H(x, ξ) =
1

2
(ξ1 + 2x2θ)

2 +
1

2
(ξ2 − 2x1θ)

2.

This can be done by using the Legendre transform in (ẋ1, ẋ2, ṫ). It is known
that

H(x, ẋ) =
1

2
(ẋ21 + ẋ22) + θ(ṫ− 2x2ẋ1 + 2x1ẋ2).

Using polar coordinates, the Lagrangian:

L =
1

2
(ṙ2 + r2φ̇2) + θ(ṫ+ 2r2φ̇).

A computation shows

d

ds

∂L

∂ṙ
= r̈,

∂L

∂r
= rφ̇

(
φ̇+ 4θ

)
,

∂L

∂φ̇
= r2φ̇+ 2θr2,

∂L

∂φ
= 0,

∂L

∂ṫ
= θ,

∂L

∂t
= 0,

and hence r(s), φ(s) and θ satisfy the Euler–Lagrange system

(4)

⎧⎪⎨⎪⎩
r̈ = rφ̇

(
φ̇+ 4θ

)
r2
(
φ̇+ 2θ

)
= C(constant)

θ = θ0 = constant

If the geodesic starts at the origin, r(0) = 0 ⇒ C = 0. Then 2nd equation
of (4) yields φ̇ = −2θ. The Euler–Lagrange system becomes

(5)

⎧⎪⎨⎪⎩
r̈ = −4θ2r

φ̇ = −2θ

θ = θ0(constant).
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When θ0 = 0, the system (5) becomes⎧⎪⎨⎪⎩
r̈ = 0

φ̇ = 0

θ0 = 0.

Proposition 4.1. Given a point P (0, x′), there is a unique geodesic be-
tween the origin and P . It is a straight line in the plane {t = 0} of length
|x′| =

√
x21 + x22, and it is obtained for θ = 0.

Now let us move the end point P away from the x′ with |x′| �= 0. Consider
the boundary conditions:

x′(0) = 0, t(0) = 0, φ(0) = φ0

|x′(τ)| = R, t(τ) = t, φ(τ) = φ1.

We may choose φ0 = 0. One has{
ṫ = −2r2φ̇

φ̇ = −2θ
⇒ ṫ = 4θr2 > 0.

This implies that t(s) is increasing and if t(0) = 0, then t(τ) > 0.

Lemma 4.2. The following relations take place among the boundary condi-
tions:

φ1 = −2θτ, sin2 φ1 = 4θ2R2,

t =
1

4θ2
sin(2φ1)− 2φ1

2
,

|t|
R2

= −μ(φ1) = μ(2θτ),

where

μ(z) =
z

sin2 z
− cot z.

Lemma 4.3. μ is a monotone increasing diffeomorphism of the interval
(−π, π) onto R. On each interval (mπ, (m + 1)π), m ∈ N, μ has a unique
critical point xm. On this interval μ decreases strictly from +∞ to μ(xm)
and then increases strictly from μ(xm) to +∞. Moreover

μ(xm) + π < μ(xm+1), m ∈ N.
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Theorem 4.1. On H1, there are a finite number of geodesics connecting
x to 0 ⇔ x′ �= 0. They are parametrized by solutions τm, m = 1, . . . , N , of
the transcendental equation

(6) |t| = μ(τm)|x′|2 = μ(τm)(x21 + x22),

where

μ(z) =
z

sin2 z
− cot z.

The length

dm(x) =
√

ν(τm)
(
|x′|2 + |t|

)
where

ν(z) =
z2

z + sin2 z − sin z cos z
.

Here τ1, . . . , τN are the solutions of equation (6). The shortest d1(x) is called
the Carnot–Carathéodory distance.

It is easy to see that the number of geodesics increasing without bound

as |t|
|x′|2 → ∞. We have the following theorem.

Theorem 4.2. Every point of the line (0, t) is connected to the origin by
an infinite number of geodesics with lengths

d2m = mπ|t|, m ∈ N.

For each length dm, the equations of geodesics are

r(m)(φ) =

√
|t|
mπ

sin(φ− φ0)

t(m)(φ) =
|t|

2mπ

(
sin(2(φ− φ0))− 2(φ− φ0)

)
.

The geodesic of that length are parametrized by the circle S1.

The projection of the m-th geodesic on the (x1, x2)-plane is a circle with
radius

Rm =
1

2

√
|t|
mπ

and area

σm =
|t|
4m

.
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4.2. Fundamental solution for the operator Δλ for k = 1

Consider the complex action function

g(x′, t, τ) =− it+

∫ τ

0

{ 2∑
j=1

ẋjξj −H
}
ds

=− it+ coth(2τ)|x′|2 = −it+ coth(2τ)
(
x21 + x22

)
.

Like the classical action, the complex action g satisfies the Hamilton–Jacobi
equation:

∂g

∂τ
+H

(
x,∇xg

)
= 0.

Set

f(x, τ) = τg(x, τ) = τ
(
− it+ coth(2τ)|x′|2

)
.

This is so called a “modified complex distance”.

Theorem 4.3. Let τ1(x), τ2(x),... denote the critical points of f(x, τ), i.e.,

∂f

∂τ
(x, τj(x)) = 0.

Then

f(x, τj(x)) =
1

2
d2j (x).

It is expected that the fundamental solution has the following form:

(7) Kλ(x,y) =

∫
R

E(x,y, τ)Vλ(x,y, τ)

g(x,y, τ)
dτ

Since Δλ is left-invariant, we may set x0 = 0 in Kλ(x,x0):

Kλ(x,0) =

∫
R

E(x, τ)Vλ(x, τ)

g(x, τ)
dτ,

where E and Vλ can be calculated explicitly:

E(x, τ) = −∂g

∂τ
=

2(x21 + x22)

sinh2(2τ)
,

and

Vλ(x, τ) = − 1

4π2
e−2λτ sinh(2τ)

x21 + x22
.
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Using contour integration, one obtains

Kλ(x) = −
Γ
(
1+λ
2

)
Γ
(
1−λ
2

)
4π2

× (|x′|2 − it)−
1+λ

2 (|x′|2 + it)−
1−λ

2 .(8)

This is the famous Folland–Stein formula [17]. Moreover, if λ �= ±(n + 2�),
� ∈ Z+, ∥∥P(Xj , XK)Kλ(f)

∥∥
Lp

k

≤ C‖f‖Lp
k

and hence ‖Kλ(f)‖Lp
k+1

≤ C‖f‖Lp
k
for k ∈ Z+ and 1 < p < ∞. Here

P(Xj , XK) is any quadratic polynomial in Xj , Xk. For detailed discussion,
we refer readers to the books by Calin–Chang–Greiner [8]; Calin–Chang–
Funrutani–Iwasaki [9] and Chang–Tie [11].

5. The higher step case; k ≥ 2

As we know, there is no group structure on the boundary ∂Ωk in this case.
Moreover, solutions for Hamilton’s system can not be written into elemen-
tary functions. Let us look at the simplest higher step case in C2, i.e., k = 2.
In this case, one has

X1 =
∂

∂x1
+ 4x2|x′|2

∂

∂t
, X2 =

∂

∂x2
− 4x1|x′|2

∂

∂t
,

with |x′|2 = x21 + x22. Since

[X1, X2] = −16|x′|2 ∂

∂t
, [X1, [X1, X2]] = −32x1

∂

∂t
,

[X1, [X1, [X1, X2]]] = −32
∂

∂t
,

(9)

hence ∂Ω2 is step 4 away from the (x1, x2)-plane. Denote x0 = t. After
length calculations, we have the following result.

Theorem 5.1. Let P (x1, x2, t) be a point of R3. Then
(i). If t = 0, then there is a unique geodesic between the origin and P . It is
a straight line in the (x1, x2)-plane of length

√
x21 + x22.

(ii). If |x′| = 0 and t �= 0 there are infinitely many geodesics between the
origin and P .

The subRiemannian geodesics that join the origin to a point (0, 0, t) have
lengths d1, d2, d3, . . ., where

(dm)4 =
m3K4

4Q
|t|
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with

K =

∫ 1

0

dω√
(1− ω2)(1− k2ω2)

being the complete Jacobi integral and

k =

√
2

4

(√
3− 1

)
, Q =

1

4

Γ(1/6)

Γ(2/3)

√
π.

For each length dm, the geodesics of that length are parameterized by the
circle S1.
(iii). If P is away from the t-axis and x′-plane with 0 < |t|

(x2
1+x2

2)
2 < ∞, then

there are not less than 2m − 1 and not more than 2m + 1 subRiemannian
geodesics between the origin and the point P , where the integer m is defined
by (

m− 1

2

)
Q <

3

4

|t|
(x21 + x22)

2
≤
(
m+

1

2

)
Q.

We can also compute the lengths of geodesics connecting the origin and
the point (x1, x2, t). Here is just state the result.

Theorem 5.2. Let τj be the critical points of the modified complex action
f(τ) = τg(τ). Setting ζj = �(iτj), the lengths of the geodesics between the
origin and the point (x1, x2, t), |x′| �= 0 are given by

�4j = ν(ζj)
(
|t|+ |x′|4

)
.

Here

�(z) =
1 +

√
3

41/3
z − 31/2 2−2/3z − 1

2
tan−1

(
sd(24/3 31/4z)

2 · 31/4

)

+
1

2

{
uE(am−1ω, k′) +

i

2
log

θ4(x− iy)

θ4(x+ iy)

+ u
[( 2π

Γ(1/6)Γ(1/3)

)2 − 3−
√
3

6

]
am−1ω

}
with

u = 24/3 31/4 z, and am−1ω = sn−1(
√
3− 1, k′).

Here

am(v) =

∫ v

0
dn(γ) dγ

and θ4 stands for Jacobi’s zeta function.
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5.1. Fundamental solution for the sub-Laplacian Δλ with λ = 0

Since the defining function for ∂Ωk is
{
Im(z2) = |φ(z1)|2 = |z1|2k

}
⊂ C2

with k = 2, 3, . . ., thus it is convenient to use polar coordinates (r(ς), ω(ς)),
ς ∈ [0, τ ], for the variable z = x1 + ix2 ∈ C. As usual, set

r2 = x21 + x22, ω =
1

2i
log

x1 + ix2
x1 − ix2

.

It follows that
(
r2
)·

= 2rṙ = 2x1ẋ1+2x2ẋ2, and r2ω̇ = x1ẋ2−x2ẋ1. Thus,(
r2ω̇

)·
= x1ẍ2 − x2ẍ1. Since ẋ1 =

∂H
∂ξ1

and ẋ2 =
∂H
∂ξ2

, we know that

ẍ1 = −4i
(
r2ρ′′(r2) + ρ′(r2)

)
ẋ2, ẍ2 = 4i

(
r2ρ′′(r2) + ρ′(r2)

)
ẋ1,

where ρ(v) = vk and ρ′(v) = kvk−1. This yields(
r2ω̇

)·
= 2i

(
r2ρ′′(r2) + ρ′(r2)

)
×
(
2x1ẋ1 + 2x2ẋ2

)
= 2i

(
r2ρ′′(r2) + ρ′(r2)

)
× t
(
r2
)·

= 2i
(
r2ρ′(r2)

)·
.

Hence, there is a function Ω = Ω(x, x0, τ), the angular momentum, constant
on the bicharacteristic, such that

r2(ς)ω̇(ς) = i
(
2r2(ς)ρ′

(
r2(ς)

)
− Ω

)
= iW

(
r2(ς)

)∣∣∣
ς=r2

.

It follows that

(10) W (v) = W (v,Ω) = 2v · ρ′(v)− Ω = 2kvk − Ω.

Thus (
rṙ
)2

+
(
r2ω̇

)2
=

(
x1ẋ1 + x2ẋ2

)(
x1ẋ2 − x2ẋ1

)2
=

(
x21 + x22

)(
ẋ21 + x22

)
= 2r2E.

Hence (1
2

(
r2
)·)2

= 2r2E −
(
r2(ς)φ̇

)2
= 2r2(ς)E +W 2(r2(ς)).

Letting v = r2(ς), we obtain

(11)
dv

dς
= 2

√
2Ev +W 2(v) ⇒ 2 dς =

dv√
2Ev +W 2(v)

.
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Denote r = r(τ), r0 = r(0), ω = ω(τ) and ω0 = ω(0). The function E and
Ω which are constant on each bicharacteristic, and determined implicitly by
integrating (11)

ς =

∫ ς

0
dv =

1

2

∫ r2(ς)

r20

dv√
2Ev +W 2(v)

,

and

ω(ς)− ω0 =

∫ ς

0
ω̇(v)dv =

1

2

∫ r2(ς)

r20

W (v)√
2Ev +W 2(v)

dv

v
.

On the other hand, from previous calculations, we know that

ẋ1ξ1 + ẋ2ξ2 −H = ζ1ξ1 + ζ2ξ2 −
1

2

(
ζ21 + ζ22

)
=

1

2

(
ζ21 + ζ22

)
+ ζ1

(
ξ1 − ζ1

)
+ ζ2

(
ξ2 − ζ2

)
= E + 2iρ′(r2) · r2φ̇ = E + 2ρ′(r2) ·W (r2).

If follows that∫ τ

0

[ 2∑
j=1

ẋj(ς)ξj(ς)−H
(
x(ς), t(ς); ξ(ς), θ(ς)

)]
dς

=Eτ + 2

∫ τ

0
ρ′(r2(ς))W (r2(ς))dς = Eτ +

∫ |z|2

|w|2

ρ′(v)W (v)√
2Ev +W 2(v)

dv.

(12)

It is impossible to calculate W and Ω explicitly, but we know their
analytic properties, and g and Vλ may be found in terms of E and Ω. When
φ(z) = zk, one has ρ(v) = vk and ρ′(v) = kvk−1. Moreover, from (10), we
know that W (v) = 2kvk − Ω. Hence, ρ′(v) = 1

2kW
′(v). In this case,∫ |z|2

|w|2

ρ′(v)W (v)√
2Ev +W 2(v)

dv =
1

2k

∫ |z|2

|w|2

W ′(v)W (v)√
2Ev +W 2(v)

dv

=
1

2k
· sgn(τ) ·

√
2Ev +W 2(v)

∣∣∣v=|z|2

v=|w|2
− Eτ

k
.

Combining the above result with (12), we have

g = −i(t− s) +
(
1− 1

k

)
Eτ
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+
1

2k
sgn(τ)

{(
2E|z|2 +W (|z|2)2

) 1

2 −
(
2E|w|2 +W (|w|2)2

) 1

2

}
,

where one uses the principal branch of the square roots. We define

P =
2

1

k zw̄[
|z|2k + |w|2k − i(t− t0)

] 1

k

.(13)

This expression in square brackets has non-negative real part and we take
the principal branch of the root. Thus Pk = u+ band P̄k = u−. Note that
|P| ≤ 1 with equality only when |z| = |w|, t = t0. We also define functions

F±
λ,	(P+,P−) =

∫ 1

0

{(
ς

1

kP±
)	
ς−

1+λ

2 (1− ς)−
1−λ

2

×
(
1− (P+P−)

kς
)− 1+λ

2
(
1− Pk

±ς
)−1
}
dς,

(14)

for � = 0, 1, 2, . . . , k. These functions are holomorphic functions of their
arguments so long as Pk

± and (P+P−)k do not belong to the interval [1,∞).

Remarks 5.1. The expression (14) The functions F±
λ,	(P+,P−) of (14) can

be identified as generalized hypergeometric functions of Appell [1] which are
real analytic functions of z, z̄, w, w̄, t and t0 is the region |P| < 1, i.e.,
everywhere except t = t0 and |z| = |w|. Furthermore, they do not extend
smoothly to the boundary but in pairs they do. More precisely, the functions
F+
λ,	 + F−

−λ,k−	, � = 0, 1, . . . , k, extend to an analytic function of z, z̄, w, w̄,

t and t0 except at the points where Pk
± = 1. In other words, zk = wk and

t = t0. This is because

Γ
(1− λ

2

)
Γ
(1 + λ

2

)(
F+
λ,	 + F−

−λ,k−	

)
=

∫ 1

0

∫ 1

0

{ ς− 1−λ

2 (1− ς+)−
1−λ

2 σ− 1+λ

2 (1− σ)−
1+λ

2

(1− Pk
+ς)(1− Pk

−σ)

×
[(ς1/kP+)

	
(
1− (P+P−(ςσ)1/k

)k−	

1− (P+P−)kςσ

+
(σ1/kP−)k−	

(
1− (P+P−(ςσ)1/k

)	
1− (P+P−)kςσ

]}dς
ς

dσ

σ
.

(15)

The expression in braces is holomorphic in P+ and P− for P+P− close to 1,
i.e., |P| near 1, and for ς, σ ∈ [0, 1] because the possible zero of the denom-
inator is cancelled by a zero in the numerator. This proves the argument of
the Remark.
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Using (15), we have

K+(z, w, t− t0, λ) +K+(z̄, w̄, t0 − t,−λ)

=
1

4kπ2
(A)−

1−λ

2 (Ā)−
1+λ

2

{∫ 1

0

(
1− |P|2kς

)− 1+λ

2

ς
1+λ

2 (1− ς)
1−λ

2

dς(
1− Pς

1

k

)
+

∫ 1

0

(
1− |P|2kς

)− 1−λ

2

ς
1−λ

2 (1− ς)
1+λ

2

dς(
1− P̄ς

1

k

)}.
(16)

Summarizing what we discussed above, we have the following formula
for Kλ:

Kλ(z, w, t− t0)

=
1

8kπ2
(A)−

1−λ

2 (Ā)−
1+λ

2

{∫ 1

0

(
1− |P|2kς

)− 1+λ

2

ς
1+λ

2 (1− ς)
1−λ

2

1 + Pς
1

k

1− Pς
1

k

dς

+

∫ 1

0

(
1− |P|2kς

)− 1+λ

2

ς
1−λ

2 (1− ς)
1+λ

2

1 + P̄ς
1

k

1− P̄ς
1

k

dς
}
,

(17)

for −1 < Re(λ) < 1. Here

(18) A =
1

2

(
|z|2k + |w|2k + i(t− t0)

)
,

and

P =
z̄ · w
A

1

k

, if w �= 0 and P = 0, if w = 0. �

5.2. Fundamental solution Kλ for the Kohn Laplacian Δλ when
|Re(λ)| < 1

Let us start with a well-known identity:

(19)
1

(1− w)β
= F (1, β, 1, w) =

1

Γ(β)Γ(1− β)

∫ 1

0

ςβ−1

(1− ς)β(1− wς)
dς

for β /∈ Z. Hence we have

Γ
(1 + λ

2

)
Γ
(1− λ

2

)(
1− |P|2kς

)− 1+λ

2

=

∫ 1

0
σ− 1−λ

2 (1− σ)−
1+λ

2

(
1− |P|2kςσ

)−1
dσ.
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It follows that

∫ 1

0

ς−
1+λ

2 (1− ς)−
1−λ

2(
1− |P|2kς

)− 1+λ

2
(
1− |P|2kς

) 1+λ

2

1 + Pς
1

k

1− Pς
1

k

dς

=
1

Γ
(
1+λ
2

)
Γ
(
1−λ
2

) ∫ 1

0

dσ

σ
1−λ

2 (1− σ)
1+λ

2

×
∫ 1

0

ς−
1+λ

2 (1− ς)−
1−λ

2

1− |P|2kςσ
1 + Pς

1

k

1− Pς
1

k

dς.

(20)

Similarly, we have

∫ 1

0

ς−
1−λ

2 (1− ς)−
1+λ

2(
1− |P|2kς

)− 1−λ

2
(
1− |P|2kς

) 1+λ

2

· 1 + P̄ς
1

k

1− P̄ς
1

k

dς

=
1

Γ
(
1+λ
2

)
Γ
(
1−λ
2

) ∫ 1

0

dσ

σ
1−λ

2 (1− σ)
1+λ

2

×
∫ 1

0

ς−
1+λ

2 (1− ς)−
1−λ

2

1− |P|2kςσ
1 + P̄ς

1

k

1− P̄ς
1

k

dς.

(21)

Thus, the sum of (20) and (21) gives us

2

Γ
(
1+λ
2

)
Γ
(
1−λ
2

) ∫ 1

0

∫ 1

0
ς−

1+λ

2 (1− ς)−
1−λ

2 σ− 1−λ

2 (1− σ)−
1+λ

2

×
k−1∏
	=1

(
1− e

2�π

k
i|P|2(ςσ) 1

k

)−1 dςdσ

(1− Pς
1

k )(1− P̄σ
1

k )
.

From the above and formula (17), we obtain for k > 1,

Kλ =
1

4kπ2

(A)−
1−λ

2 (Ā)−
1+λ

2

Γ
(
1+λ
2

)
Γ
(
1−λ
2

) ∫ 1

0

ς−
1+λ

2 (1− ς)−
1−λ

2

1− Pς
1

k

dς

×
∫ 1

0

k−1∏
	=1

(
1− e

2�π

k
i|P|2(ςσ) 1

k

)−1 σ− 1−λ

2 (1− σ)−
1+λ

2

1− P̄σ
1

k

dσ,

(22)
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and for k = 1,

Kλ =
1

4π2

(A)−
1−λ

2 (Ā)−
1+λ

2

Γ
(
1+λ
2

)
Γ
(
1−λ
2

) ∫ 1

0

ς−
1+λ

2 (1− ς)−
1−λ

2

1− Pς
dς

×
∫ 1

0

σ− 1−λ

2 (1− σ)−
1+λ

2

1− P̄σ
dσ

(23)

Now we may state our result as following theorem.

Theorem 5.3. Assume (z, t) �= (w, t0). Then the fundamental solution Kλ

for the sub-Laplacian Δλ is given by (22). In particular, when k = 1, Kλ is

given by (23).

Remarks 5.2. (1). In fact, from what we have discussed, we know that

|P| ≤ 1 and P = 1 if and only if (z, t) = (w, t0). Therefore, it is easy to

see that Kλ has a unique singularity at (w, t0). Moreover, it is not difficult

to show that Kλ ∈ L1
loc(R

3) and ΔλKλ = δ(z, w, t− t0). We omit the detail

here.

(2). The integrand in (22) is real analytic in P and P̄ in the region

W =
{
|P| ≤ 1, P �= 1, P̄ �= 1,

}
when ς, σ ∈ [0, 1]. Moreover,

Fλ(0, 0) =
B
(
1−λ
2 , 1+λ

2

)
B
(
1+λ
2 , 1−λ

2

)
Γ
(
1−λ
2

)
Γ
(
1+λ
2

) = Γ
(1− λ

2

)
Γ
(1 + λ

2

)
,

where B(·, ·) denotes the beta function.

From Theorem 5.3, we obtain the fundamental solution for the operator

Δ0 as a corollary.

Corollary 5.3. Assume (z, t) �= (w, t0). Then the fundamental solution K0

for the sub-Laplacian Δ0,k has the following closed form:

K0 =
1

4kπ3|A|

∫ 1

0

∫ 1

0
ς−

1

2 (1− ς)−
1

2σ− 1

2 (1− σ)−
1

2

×
k−1∏
	=1

(
1− e

2�π

k
i|P|2(ςσ) 1

k

)−1 dςdσ

(1− Pς
1

k )(1− P̄σ
1

k )
.

(24)
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6. The Cauchy–Szegö kernel on Ωk and ∂Ωk

Let f(z, zn+1) ∈ H2(Ωk). Here H2(Ωk) is the space of all square integrable

holomorphic functions on Ωk. Then one has

f(z, zn+1) =

∫ ∞

0
e2πiλzn+1 f̃(z, λ)dλ

where f̃(z, λ) is the Fourier transform of f with respect to the zn+1 variable.

The “height function” on Ωk can be written as

ρ = Im(zn+1)−

⎛⎝ n∑
j=1

|zj |2
⎞⎠k

= Im(zn+1)− |z|2k,

where |z|2 =
∑n

j=1 |zj |2. Then

(25) f(z, zn+1) =

∫ ∞

0
e2πiλ(Re(zn+1))−2πλ(ρ+|z|2k)f̃(z, λ)dλ.

According to Plancherel’s formula, we know that

e−2πλ(ρ+|z|2k)f̃(z, λ) =

∫ +∞

−∞
e2πiλ(Re(zn+1))f(z, zn+1)d(Re(zn+1)).

This implies that

(26) f̃(z, λ) =

∫ +∞

−∞
e−2πiλz̄n+1f(z, zn+1)d(Re(zn+1)).

The definition of H2(Ωk) and (25) imply that∫
Cn

∫ ∞

0
e−4πλ(

∑n
j=1 |zj |2)

k

|f̃(z, λ)|2dλdV (z) < ∞,

where dV (z) = dz1dz̄1 · · · dzndz̄n. Let Aλ be the Bergman space of holomor-

phic functions in Cn with the norm

‖g‖Aλ(Ωk) =

{∫
Cn

e−4πλ|z|2k |g(z)|2dV (z)

} 1

2

< ∞.
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Then Aλ has a reproducing kernel Sλ(z,w), i.e., for g ∈ Aλ, one has

g(z) =

∫
Cn

Sλ(z,w)dV (w).

In particular,

f̃(z, λ) =

∫
Cn

Sλ(z,w)f̃(w, λ)dV (w),

whenever f ∈ H2(Ωk). Therefore, such an f has the following integral rep-
resentation:

f(z, zn+1) =

∫ ∞

0
e2πiλzn+1dλ

∫
Cn

Sλ(z,w)f̃(w, λ)dV (w).

Substituting (26) for f̃(w, λ), we obtain

f(z, zn+1) =

∫
∂Ωk

S(z, zn+1;w, wn+1)f(w, wn+1)dV (w)d(Re(wn+1)).

Denote

A =
i

2
(w̄n+1 − zn+1),

and

S(z, zn+1;w, wn+1) =

∫ ∞

0
e−4πλASλ(z,w)dλ.

Then we have the following lemma.

Lemma 6.1. Let U be a unitary transform on Cn. If S(z, zn+1;w, wn+1) is
the Cauchy–Szegö kernel on Ωk, then

S(U(z), zn+1;U(w), wn+1) = S(z, zn+1;w, wn+1).

Proof. Let f ∈ H2(Ωk). Then f ◦U−1 ∈ H2(Ωk) for every unitary transform
U and∫

∂Ωk

S(U(z), zn+1;U(w), wn+1)f(w, wn+1)dV (w)d(Re(wn+1))

=

∫
∂Ωk

S(U(z), zn+1;w, wn+1)f(U
−1(w), wn+1)dV (w)d(Re(wn+1))

= f(U−1(·), zn+1)
∣∣
U(z)

= f(z, zn+1)
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=

∫
∂Ωk

S(z, zn+1;w, wn+1)f(w, wn+1)dV (w)d(Re(wn+1)).

The lemma follows immediately.

Theorem 6.1. The explicit Cauchy–Szegö kernel on Ωk is as follows.

S(z, zn+1;w, wn+1)

=
n!

4πn+1

1(
A

1

k −
∑n

j=1 zjw̄j

)n+1
A

k−1

k

=
n!

4πn+1

[
i
2(s− t) + 1

2(|z|2k + |w|2k) + 1
2(ρ+ μ)

] 1−k

k{[
1
2(|z|2k + |w|2k)− i

2(t− s) + 1
2(ρ+ μ)

] 1

k −
∑n

j=1 zjw̄j

}n+1 .

Let us first compute Sλ(z,w). Assume that w = 1 = (1, 0, . . . , 0) is the

“north pole” of the unit sphere in Cn, then we have

Sλ(z,1) =

∞∑
j=0

zj1j

‖zj1‖2Aλ(Ωk)

=

∞∑
j=0

zj1

‖zj1‖2Aλ(Ωk)

where

‖zj1‖2Aλ(Ωk)
=

∫
Cn

e−4πλ|z|2k |z1|2jdv(z)

=

∫
∂Bn

|z1|2jdσ(z)
∫ ∞

0
e−4πλr2kr2jr2n−1dr

with r = |z| =
(∑n

	=1 |z	|2
) 1

2 . Set u = 4πλr2k. It follows that

du

u
= 2k

dr

r
.

Hence we have

‖zj1‖2Aλ(Ωk)
=

πn2(j!)

(j + n− 1)!
· 1

2k(4πλ)
j+n

k

∫ ∞

0
e−uu

j+n

k
du

u

=
πn2(j!)

(j + n− 1)!
· 1

2k(4πλ)
j+n

k

Γ

(
j + n

k

)
.
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Therefore,

Sλ(z,1) =
k

πn

∞∑
j=0

(j + n− 1)!

j!

zji

Γ
(
j+n
k

)(4πλ) j+n

k .

Hence

S(z, zn+1;1, wn+1)

=
k

πn

∞∑
j=0

(j + n− 1)!

j!

(∫ ∞

0
e−4πλA(4πλ)

j+n

k dλ

)
zj1

Γ
(
j+n
k

)
=

k

4πn+1

∞∑
j=0

(j + n− 1)!

j!

Γ
(
j+n
k + 1

)
Γ
(
j+n
k

) A− j+n

k
−1zj1

=
1

4πn+1

∞∑
j=0

(j + n)!

j!

(
z1

A
1

k

)j

A−n

k
−1

=
n!

4πn+1

∞∑
j=0

(j + n)!

j!n!

(
z1

A
1

k

)j

A−n

k
−1

=
n!

4πn+1

(
1− z1

A
1

k

)−n−1

A−n

k
−1.

Suppose z = r · z′ with ‖z′‖ = 1 and z′ ∈ ∂Bn. Then there exists a unitary

transform U on ∂Bn such that U(z′) = 1. Hence, z′ = U−1(1). Therefore,

S(z, zn+1;w, wn+1)

= S(r · z′, zn+1;w, wn+1) = S(r · U−1(1), zn+1;w, wn+1)

= S(r · 1, zn+1;U(w), wn+1) = S(U(w), wn+1; r · 1, zn+1)

=
n!

4πn+1

1(
1− r ·

(
U(w)

A
1
k

)
1

)n+1A
−n

k
−1

=
n!

4πn+1

1(
1−

(
r1 ·

(
U(w)

A
1
k

)))n+1
A

n

k
+1

=
n!

4πn+1

1(
1−

(
rU−1(1) ·

(
w̄

A
1
k

)))n+1
A

n

k
+1
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=
n!

4πn+1

1(
1− z·w̄

A
1
k

)n+1
A

n

k
+1

=
n!

4πn+1

A
1

k
−1(

A
1

k −
∑n

j=1 zjw̄j

)n+1 .

This tells us that

S(z, zn+1;w, wn+1)

=
n!

4πn+1

1(
A

1

k −
∑n

j=1 zjw̄j

)n+1
A

k−1

k

=
n!

4πn+1

[
i
2(s− t) + 1

2(|z|2k + |w|2k) + 1
2(ρ+ μ)

] 1−k

k{[
1
2(|z|2k + |w|2k)− i

2(t− s) + 1
2(ρ+ μ)

] 1

k −
∑n

j=1 zjw̄j

}n+1 .

When both (z, zn+1) and (w, wn+1) in ∂Ωk, ρ = μ = 0, then we have

S(z, t;w, s) =
n!

4πn+1

[
i
2(s− t) + 1

2(|z|2k + |w|2k)
] 1−k

k{[
1
2(|z|2k + |w|2k)− i

2(t− s)
] 1

k −
∑n

j=1 zjw̄j

}n+1 .

In particular, when k = 1, the Cauchy–Szegö for the Heisenberg group Hn

is

S(z, t;w, s) =
n!

4πn+1

1{[
1
2(|z|2k + |w|2k)− i

2(t− s)
] 1

k −
∑n

j=1 zjw̄j

}n+1 .

We note that |[12(|z|2k+ |w|2k)− i
2(t−s)]

1

k −
∑n

j=1 zjw̄j |
1

2 can be considered
as a generalization of the Korányi distance to the higher step operators (see
Diaz [13]).

Remarks 6.2. (1). The domain Ωk is equivalent to the “ellipsoid”

Ek =
{
(w, wn+1) ∈ C

n+1 :
( n∑
j=1

|wj |2
)k

+ |wn+1|2 < 1
}

via the “generalized Caley transform”:

z1 =
w1

(1 + wn+1)
1

k

, . . . , zn =
wn

(1 + wn+1)
1

k

, zn+1 =
i(1− wn+1)

1 + wn+1
.
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Then the Cauchy–Szegö kernel for Ek is

S(z, zn+1;w, wn+1)

=
n!

4πn+1

1[
(1− zn+1w̄n+1)

1

k −
∑n

j=1 zjw̄j

]n+1
(1− zn+1w̄n+1)

k−1

k

.(27)

In particular, when k = 1, then the Cauchy–Szegö kernel for the unit ball
Bn+1 ⊂ Cn+1 is

S(z, zn+1;w, wn+1) =
n!

4πn+1

1(
1−

∑n+1
j=1 zjw̄j

)n+1 .

(2). When k = 1, then the Cauchy–Szegö projection is closely related to the
solvability of the Kohn Laplacian. Let us consider the Kohn Laplacian acting
on functions, i.e., q = 0. Then we know that

�b = −1

2

n∑
k=1

(
ZkZ̄k + Z̄kZk

)
− i[Zk, Z̄k] = −

n∑
k=1

ZkZ̄k.

In this case, the operator annihilates the boundary values of holomorphic
functions on Hn. Now we need to deal with the Hans Lewy operator. In
general, we can’t expect this operator is hypoelliptic. Moreover, the equation

n∑
k=1

ZkZ̄k(u) = f

is generally not even locally solvable. Following a method in Greiner–Kohn–
Stein [19] and Greiner–Stein [20], we know that for any f ∈ L2(Hn) leads
to the Cauchy–Szegö integral C(f), defined in C∞

0 (Hn) by

C(f)(z, zn+1;w, wn+1) =

∫
∂Ω̃n

S(z, zn+1;w, wn+1)f(w, wn+1)dσ,

with

S(z, zn+1;w, wn+1) =
2n−1n!

πn+1

{
i(w̄n+1 − zn+1)− 2

n∑
k=1

zkw̄k

}−n−1
.

Here dσ is the Lebesgue measure defined on ∂Ω̃n which is identified as the
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Heisenberg group Hn. The restriction of C(f) to ∂Ω̃n is given by

(28) Cb(f) = lim
ρ→0+

f ∗ Sρ,

where

Sρ(z, t) =
2n−1n!

πn+1

(
ρ2 +

n∑
k=1

|zk|2 − it
)−n−1

.

The convolution in (28) is with respect to the Heisenberg group. Since f ∈
L2, the limit in (28) exists in L2-norm (see Korányi and Vági [23]).

Let us consider the following equation:

�(0)
b = Lλ − i

(
λ− n

) ∂
∂t

.

Thus

(29) �(0)
b

(
Kλ

)
= Lλ

(
Kλ

)
− i
(
λ− n

) ∂
∂t

(
Kλ

)
,

where

Kλ(z, t) =
22−nπn+1

Γ
(
n+λ
2

)
Γ
(
n+λ
2

)( n∑
k=1

|zk|2 − it
)−n+λ

2
( n∑

k=1

|zk|2 + it
)−n−λ

2

.

Formal differentiation of (29) with respect to the variable λ yields the fol-
lowing result

�(0)
b

[2n−2(n− 1)!

πn+1
log
( |z|2 − it

|z|2 + it

)
·
( n∑

k=1

|zk|2 − it
)−n]

= δ − 2n−1n!

πn+1

( n∑
k=1

|zk|2 − it
)−(n+1)

.

Denote

Ψ =
2n−2(n− 1)!

πn+1
log
( |z|2 − it

|z|2 + it

)
·
( n∑

k=1

|zk|2 − it
)−n

.

Then we have the following identity

�(0)
b K = K�(0)

b = I− Cb,

where K(f) = f ∗Ψ with f ∈ C∞
0 (Hn).
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7. Sharp estimates of Cauchy–Szegö kernel

Consider the triple (∂Ωk, d, μ), where μ is the Lebesgue measure on C× R.
We use new coordinates (z, t) on the boundary ∂Ωk to identify it as C×R.
Here z = x+ iy and t = Re(z2).

We now introduce the quasi-distance on ∂Ωk as follows: for any (z, t),
(w, s) ∈ ∂Ωk,

d((z, t), (w, s)) := h2((z, t), (w, s))ρ2−2k((z, t), (w, s)),(30)

where

ρ((z, t), (w, s)) := |z|+ |w|+ |σ| 1

2k ≈ |z|+ |w|+ |t− s| 1

2k ,

and

h((z, t), (w, s)) = |z−w|2ρ2k−2((z, t), (w, s)) + |σ((z, t), (w, s))|

with

σ((z, t), (w, s)) = t− s+ 2Im(zkwk).

Based on Proposition 9.6 in [5], we see that this quasi-metric d satisfies the
quasi-triangle inequality:

d((z, t), (u, r)) � d((z, t), (w, s)) + d((w, s), (u, r)).

Recall the functions in (18) and (13)

A(z, t;w, s) =
1

2

(
|z|2k + |w|2k − i(t− s)

)
;

P(z, t;w, s) =
zw

A(z, t;w, s)
1

k

.

By Lemma 9.3 in [5] and the estimate on Page 242 in [6], we have the
following properties.

Lemma 7.1. The functions h, ρ,A and P satisfy

|zk −wk|2 � h((z, t), (w, s)) � ρ2k((z, t), (w, s)) ≈ |A(z, t;w, s)|;

|1− P (z, t;w, s)| ≈ h((z, t), (w, s))

|A(z, t;w, s)| , (z, t), (w, s) ∈ ∂Ωk.
(31)
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Based on these notation, we see that the Cauchy–Szegö kernel S(z, t;w, s)
on ∂Ωk can be expressed as

S(z, t;w, s) =
1

4π2
A− k+1

k (z, t;w, s)
(
1− P(z, t;w, s)

)−2
.(32)

Moreover, based on (31), we see that

d((z, t), (w, s)) � ρ2k+2((z, t), (w, s)).(33)

Theorem 7.1. For both (z, t) and (w, s) in ∂Ωk with (z, t) �= (w, s),
the Cauchy–Szegö projection associated with the kernel S(z, t;w, s) is a
Calderón–Zygmund operator on (∂Ωk, d, μ).

Proof. We first consider the size estimate of S(z, t;w, s). Note that for
(z, t) �= (w, s), by Lemma 7.1, we have

|S(z, t;w, s)| = 1

4π2

∣∣∣A− k+1

k (z, t;w, s)
(
1− P(z, t;w, s)

)−2
∣∣∣

≈ |A(z, t;w, s)|− k+1

k |A(z, t;w, s)|2h−2((z, t), (w, s))

= |A(z, t;w, s)|− 1

k
+1h−2((z, t), (w, s))(34)

≈ ρ−(2−2k)((z, t), (w, s))h−2((z, t), (w, s))

=
1

d((z, t), (w, s))
.

Next, we verify the regularity conditions. Consider the difference

|S(z, t;w1, s1)− S(z, t;w0, s0)|,

where

d((w1, s1), (w0, s0)) ≤ cd((z, t), (w0, s0)),(35)

for some small c.
To continue, we consider the following substitution: fix (z, t), by the

change of variables {
w′ = w,

s′ = s− 2Im(zkwk),
(36)
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we have

S(z, t;w, s) = S(z, t;w′, s′ + 2Im(zkw′k)) =: S̃(z, t;w′, s′),

and thus, ⎧⎪⎪⎨⎪⎪⎩
∂S̃
∂w′ =

∂S
∂w

+ ikwk−1zk ∂S
∂s

,

∂S̃
∂s′

= ∂S
∂s

.

(37)

Let

s′α = s′(wα, sα), α = 0, 1,

(w′
ν , s

′
ν) = (1− ν)(w0, s

′
0) + ν(w1, s

′
1), 0 ≤ ν ≤ 1.

Let (wν , sν) denote the point whose (w
′, s′) coordinates are (w′

ν , s
′
ν). There-

fore,

wν = (1− ν)w0 + νw1,

sν = s′ν + 2Im(zkwk
ν)

= (1− ν)
(
s0 − 2Im(zkwk

0)
)
+ ν

(
s1 − 2Im(zkwk

1)
)

+ 2Im
[
zk ((1− ν)w0 + νwk)

k
]
.

By [5, (9.34), (9.35), (9.37)], we have

ρ((z, t), (wν , sν)) ≈ ρ((z, t), (w0, s0)),

h((z, t), (wν , sν)) ≈ h((z, t), (w0, s0)), 0 ≤ ν ≤ 1,
(38)

and

|w1 −w0| � d
1

4 ((w1, s1), (w0, s0))ρ
1−k

2 ((w1, s1), (w0, s0)),

|s′1 − s′0| ≤ h((w1, s1), (w0, s0))(39)

+ h
1

2 ((z, t), (w0, s0))h
1

2 ((w1, s1), (w0, s0)),

h((w1, s1), (w0, s0)) � h((z, t), (w0, s0)).

Since⎧⎪⎨⎪⎩
∂A
∂w

+ ikwk−1zk ∂A
∂s

= kwk−1
(
wk − zk

)
= O(ρk−1h

1

2 ),

∂P
∂w

+ ikwk−1zk ∂P
∂s

= −1
k
P
A

(
∂A
∂w

+ ikwk−1zk ∂A
∂s

)
,

(40)
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for 0 ≤ ν ≤ 1, we have

∂S̃

∂w′

∣∣∣∣
(z,t;w′

ν ,s
′
ν)

=

(
∂S

∂w
+ ikwk−1zk

∂S

∂s

) ∣∣∣∣
(z,t;wν ,sν)

=
1

4π2

{
− k + 1

k
A− k+1

k
−1(1− P)−2

(
∂A

∂w
+ ikwk−1zk

∂A

∂s

) ∣∣∣∣
(z,t;wν ,sν)

+ 2A− k+1

k (1− P)−3

(
∂P
∂w

+ ikwk−1zk
∂P
∂s

) ∣∣∣∣
(z,t;wν ,sν)

}
=

1

4π2
A− k+1

k (1− P)−2

[
C1

1

A
+ C2

P
A(1− P)

]
×
(
∂A

∂w
+ ikwk−1zk

∂A

∂s

) ∣∣∣∣
(z,t;wν ,sν)

= S

[
C1

1

A
+ C2

P
A(1− P)

]∣∣∣∣
(z,t;wν ,sν)

kwν
k−1

(
wν

k − zk
)
.

By using (36), (34), (31) and (38), we obtain that∣∣∣∣ ∂S̃∂w′

∣∣∣∣
(z,t;w′

ν ,s
′
ν)

(w′
1 −w′

0)

∣∣∣∣
=

∣∣∣∣ ( ∂S

∂w
+ ikwk−1zk

∂S

∂s
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)∣∣∣

× d
1
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1
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h
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(
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� 1
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1
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(
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)∣∣∣

× d
1
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ρ
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� 1

d((z, t), (w0, s0))
· ρ
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1

2 ((z, t), (w0, s0))

h((z, t), (w0, s0))

× d
1

4 ((w1, s1), (w0, s0))

ρ
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=
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· ρ
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1
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1
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ρ
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=
1
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(
ρ((z, t), (w0, s0))
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2
(
d((w1, s1), (w0, s0))

d((z, t), (w0, s0))

) 1

4

.

Moreover, we have

∂S̃

∂w′

∣∣∣∣
(z,t;w′

ν ,s
′
ν)

=

(
∂S

∂w
− ikwk−1zk

∂S

∂s

) ∣∣∣∣
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=
1

4π2

{
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k
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k
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(
∂A

∂w
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∂A

∂s

)∣∣∣∣
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+ 2A− k+1

k (1− P)−3

(
∂P
∂w
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∂P
∂s
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}
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{
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A

(
∂A
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)
+
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1− P

(
∂P
∂w
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∂P
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.

Hence,∣∣∣∣ ∂S̃∂w′

∣∣∣∣
(z,t;w′
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′
ν)

(w′
1 −w′

0)
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=
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= |S|
∣∣∣∣C1

A

(
∂A

∂w
− ikwk−1zk

∂A

∂s

)
+

C2
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(
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�
{
1

d

∣∣∣∣ 1A
(
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+
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1
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1− P

(
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=: I1 + I2.

For I1, by (39), (38), (31), (33), we obtain that

I1� 1
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ν)

∣∣∣∣ |w1 −w0|
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� 1
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1
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≈ 1

d((z, t), (w0, s0))

(
ρ((z, t), (w0, s0))

ρ((w1, s1), (w0, s0))
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2
(
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) 1

4

.

Also, note that

(
∂P
∂w

− ikwk−1zk
∂P
∂s

) ∣∣∣∣∣
(z,t;wν ,sν)

=
z

A
1

k

−
(

z ·w
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1

k
+1

)(
kwν

k−1wk
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k−1zkν · i
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=
z

A
1

k
+1
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}

=
z

A
1

k
+1

{
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k)− i(t− sν)
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=
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A
1

k
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{
Re
(
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(
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.

By (31) and (38), we have
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and that

|(t− sν + 2Imzkwν
k)| = σ((z, t), (wν , sν)) � h((z, t), (w0, s0)).

Therefore, we can obtain that

I2 =
1
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h

1
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≈ 1
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.

Moreover, note that
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A
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A
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.

As a consequence, by (38), (39), (30), we further obtain that we obtain that
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To sum up, we have∣∣∣∣〈∇w′,w′,s′S̃(z, t;w
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From (30) we can see that d((z, t), (w0, s0)) � ρ2k+2((z, t), (w0, s0)). On
the one hand, if
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then
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Therefore,
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which imply that
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Combining with (35), in this case, we have∣∣∣∣〈∇w′,w′,s′S̃(z, t;w
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On the other hand, if d((z, t), (w0, s0)) ≈ ρ2k+2((z, t), (w0, s0)), then
by (33), we have∣∣∣∣〈∇w′,w′,s′S̃(z, t;w
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Consequently, for

d((w1, s1), (w0, s0)) ≤ cd((z, t), (w0, s0)),

with some small c, we have
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This finishes the proof of Theorem 7.1.
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[23] A. Korányi and S. Vági, Singular integrals in homogeneous spaces and

some problems in classical analysis, Ann. Scuola Norm. Sup. Piss, 25

(1971), 575–648. MR0463513

[24] A. Nagel, J.P. Rosay, E.M. Stein and S. Wainger, Estimates for the
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