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We give an elementary proof of the Myers–Steenrod theorem, stat-
ing that the group of isometries of a connected Riemannian man-
ifold M is a Lie group acting smoothly on M . Our proof follows
the approach of Chu and Kobayashi, but replacing their use of a
theorem of Palais with a topological condition detecting when a
locally compact subspace of M is an embedded integral manifold
of a given k-plane distribution.
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1. Introduction

Throughout this paper, let M be a (smooth) n-manifold (without bound-

ary). Note that n-manifolds as well as Lie groups are second countable by

definition; this is an important assumption (and requirement) that seems to

be omitted in [2] and in [6].

Suppose that M is a connected Riemannian manifold. A well-known

theorem of Myers and Steenrod [5] states that the group of isometries of

a Riemannian manifold M , equipped with the compact-open topologies,

admits a unique differential structure making it a Lie group acting smoothly

on M . The original proof in [5] is complicated with difficult computation.

Here, we will follow the approach of Chu and Kobayashi [2] (see also the

textbook [4]). This approach uses the theory of principal bundles (see [3]

or [7]) to reduce to the following theorem of Kobayashi; in fact, it even

generalises the Myers–Steenrod theorem to pseudo-Riemann manifolds.

Theorem 1.1. Let M be a connected smooth n-manifold that admits a

smooth global frame (E1, . . . , En): that is
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each Ej ∈ X(M) and, for every p ∈ M , (E1p, . . . , Enp) is a basis for

TpM .

Denote by G the set of diffeomorphisms of M that leave each Ej invariant:

that is

f∗(Ejp) = Ejf(p) (p ∈ M, f ∈ G, 1 ≤ j ≤ n) .

Then G is a group of diffeomorphisms of M that, equipped with the compact-

open topology1, is a topological group that acts continuously, freely, and prop-

erly on M with closed orbits, and there exists a unique smooth structure on

G making it a Lie group of diffeomorphisms that acts smoothly on M .2

The proof of this theorem in [4, Theorem I.3.2] uses a theorem of Palais

(see [4, Theorem I.3.1]), and it goes by constructing a smooth structure on

a certain normal subgroup H of G and then shows that it is possible to

translate the topology and smooth structure on H to the other H-cosets

to make G a Lie group. But it does not seem to address whether this new

topology on G agrees with the compact-open one, and it does not even

address whether there are countably or uncountably many H-cosets in G

(for G to be a Lie group, there must be only countably many cosets of

an open subgroup such as H). Thus without further argument, it is quite

possible thatH is just the trivial group, and then G becomes an uncountable

discrete group.

To work around this issue, we shall adopt some element of the proof

in [5], and introduce a topological condition guaranteeing that a locally

compact subspace of a manifold is an integral submanifold for some given

plane distribution. This is carried out in §2. This is then applied in §3 to

prove Theorem 1.1; for the sake of the readers we include complete details,

not just the part that requires §2.

1Given two manifolds M and M̃ , recall that the compact-open topology on
the set of continuous maps M → M̃ has a subbase consists of sets of the form

{
f : M → M̃ : f is continuous, and f(K) ⊆ V

}

for compact sets K in M and open sets V in M̃ . Given any metric d̃ that defines the
topology of M̃ , the compact-open topology is the same as the topology of uniform
convergence on compact subsets of M . See [1, Chapter VII] for more details.

2This implicitly means that the given topology on G already makes it a topo-
logical manifold.
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2. Integral manifolds without Frobenius

Throughout this section, let S ⊆ TM be a k-plane distribution on M , and let

N be a topological subspace of M . This section is to give sufficient conditions

for N to be an embedded integral manifold of S. Note that the k-plane

distribution S is not assumed to be Frobenius, and so the Frobenius theorem

is not applicable. See [3], especially §4.5 for k-plane distributions, integral

manifolds, and the Frobenius theorem.

The following notions have their roots in the proof in [5], where M is

a Riemannian manifolds and normal coordinate neighbourhoods (through

geodesics) are used.

Definition 2.1.

(i) Let (pi) be a sequence that converges to p in M , and let v ∈ TpM \{0}.
We says that v is a direction of approach of (pi) if pi �= p eventually

and there exists a coordinate neighbourhood (U,ϕ) about p such that

(identifying Rn with its tangent plane at each point) the Rn-vectors

ϕ(pi)− ϕ(p) have directions approach that of dϕp(v). That is

lim
i→∞

ϕ(pi)− ϕ(p)

‖ϕ(pi)− ϕ(p)‖ =
dϕp(v)

‖dϕp(v)‖

where ‖·‖ is the Euclidean norm on Rn.

(ii) Let (pi) and (qi) be sequences that converges to p in M , and let v ∈
TpM\{0}. We says that v is a direction of approach of (pi) relative

to (qi) towards p if pi �= qi eventually and there exists a coordinate

neighbourhood (U,ϕ) about p such that the Rn-vectors ϕ(pi)− ϕ(qi)

have directions approach that of dϕp(v).

So if v is a direction of approach of a sequence of points, then so too

is any positive multiple of it. Similar remark holds for the relative version.

The following shows that these notions are independent of coordinates used:

Lemma 2.2. Let f : U → Rm be smooth where U is open in Rn.

(i) Let (pi) be a sequence that converges to p in U such that pi �= p even-

tually, and let v ∈ Rn be such that Jfp(v) �= 0.

If lim
i→∞

pi − p

‖pi − p‖ = v then lim
i→∞

f(pi)− f(p)

‖f(pi)− f(p)‖ =
Jfp(v)

‖Jfp(v)‖
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(ii) Let (pi) and (qi) be sequences that converges to p in U such that pi �= qi
eventually, and let v ∈ Rn be such that Jfp(v) �= 0.

If lim
i→∞

pi − qi
‖pi − qi‖

= v then lim
i→∞

f(pi)− f(qi)

‖f(pi)− f(qi)‖
=

Jfp(v)

‖Jfp(v)‖

Proof. Part (i) is a special case of (ii) (with all qi = p), and so let us prove
(ii). Let ε > 0. Then there exists an Euclidean ball Bε centred at p in U
such that if x ∈ Bε, then the operator norm

‖Jfx − Jfp‖ < ε .

Let i0 be an index such that if i ≥ i0. Then pi, qi ∈ Bε. Write wi := pi − qi.
Then

‖f(pi)− f(qi)− Jfp(wi)‖ =

∥∥∥∥
∫ 1

0
Jftpi+(1−t)qi(wi)dt− Jfp(wi)

∥∥∥∥ ≤ ε ‖wi‖ .

Since wi/ ‖wi‖ → v as i → ∞, we see from the above that

f(pi)− f(qi)

‖wi‖
→ Jfp(v)

which shows that the direction of f(pi)−f(qi) approaches that of Jfp(v).

Definition 2.3. Let N be a topological subspace of M , let p ∈ N , and let
v ∈ TpM .

(i) The vector v is called an approaching direction for N at p if v is
a direction of approach of a sequence (pi) in N that converges to p.
The approaching direction set for N at p, denoted by ANp , is the
set of all the approaching directions for N at p.

(ii) The vector v is called a relative approaching direction for N
at p if v is a direction of approach of a sequence (pi) relative to a
sequence (qi), both converge to p in N . The relative approaching
direction set for N at p, denoted by relANp , is the set of all the
relative approaching directions for N at p.

The following properties are obvious.

Lemma 2.4. Let N be a subspace of M and let p ∈ N . Then

(i) ANp ⊆ relANp .

(ii) If v ∈ relANp , then −v ∈ relANp .
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The following theorem will be the base to prove other results.

Theorem 2.5. Let M be a n-manifold, let S ⊆ TM be a k-plane distribution
on M , and let N be a topological subspace of M . Suppose that the following
two conditions hold for each p ∈ N :

• ANp ⊆ Sp, and
• there exists a coordinate neighbourhood (U, ξ = (x1, . . . , xn)) of p in M
such that ξ(p) = 0, Sp is the tangent space at p = 0 for the coordinate
k-plane ξ−1(Rk) =

{
x ∈ U : xk+1 = . . . = xn = 0

}
, and the projection

π : Rn → Rk restricted to a homeomorphism from ξ(U ∩ N) onto an
open neighbourhood of 0 in Rk.

Then N is an embedded k-submanifold of M and an integral manifold of S.

Proof. Since this is a local problem, it is sufficient for us to consider the case
that M = U is an open neighbourhood of p = 0 in Rn, and (U, ξ) is the
standard coordinate on M . Since dπp = π under the natural identification
Rn ≡ Tp(R

n) and Rk ≡ Tπ(p)R
k, it restricts to the identity map Sp → Rk.

So we may and shall suppose (by shrinking M further if necessary) that if
x ∈ M , then dπx is injective on Sx, and so a linear bijection from Sx onto
Rk ≡ Tπ(x)R

k. For each x ∈ M and each v ∈ Rk, set

η(x, v) := (dπx|Sx
)−1(v),

where v is considered as an element of Tπ(x)R
k. Then η : M × Rk → S is

smooth.
The hypothesis states that the restriction π|N of π maps N homeomor-

phically onto an open k-ball B centred at 0. Denote by ϕ the inverse of π|N ,
so that ϕ : B → M is a topological embedding with image N . It is sufficient
to prove that ϕ is a smooth embedding.

Take a ∈ B, and a nonzero vector v ∈ Rk ≡ TaR
k. Then, by the defini-

tion of ANϕ(a), for any sequence ti → 0+, if

lim
i→∞

ϕ(a+ tiv)− ϕ(a)

‖ϕ(a+ tiv)− ϕ(a)‖ = w

exists, then it belongs to ANϕ(a) ⊆ Sϕ(a), and by Lemma 2.2 applied to the

map π, we see that dπϕ(a)(w) has the same direction as v. Thus w is the

normalisation of
[
(dπϕ(a)|Sϕ(a)

)−1(v)
]
, and so

w =
η(ϕ(a), v)

‖η(ϕ(a), v)‖ .
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A standard compactness argument then shows that

lim
t→0+

ϕ(a+ tv)− ϕ(a)

‖ϕ(a+ tv)− ϕ(a)‖ =
η(ϕ(a), v)

‖η(ϕ(a), v)‖

Since π is an orthogonal (linear) projection from Rn → Rk, and π ◦ϕ = idB,
we see that

lim
t→0+

‖ϕ(a+ tv)− ϕ(a)‖
‖tv‖ = lim

t→0+

‖ϕ(a+ tv)− ϕ(a)‖
‖π(ϕ(a+ tv)− ϕ(a))‖

is equal to the cosecant of the acute angle between η(ϕ(a), v) and
π(η(ϕ(a), v)) = v, which is ‖η(ϕ(a), v)‖ / ‖v‖. Hence,

lim
t→0+

ϕ(a+ tv)− ϕ(a)

t
=

η(ϕ(a), v)

‖η(ϕ(a), v)‖ · ‖η(ϕ(a), v)‖‖v‖ · ‖v‖ = η(ϕ(a), v) .

A similar argument shows that this is true with t → 0− as well. Hence

dϕ(a+ tv)

dt

∣∣∣∣
t=0

= η(ϕ(a), v)

The above argument shows in particular that ϕ has continuous partial
derivatives of first order everywhere on B, and so it is C1 on B. Moreover,
its Jacobian satisfies

Jϕa(v) = η(ϕ(a), v) (a ∈ B, v ∈ Rk) ,

and so ϕ is smooth with constant rank k.

Here is the main theorem of this section.

Theorem 2.6. Let M be an n-manifold, let S ⊆ TM be a k-plane distribu-
tion on M , and let N be a locally compact subspace of M . Suppose that the
following two conditions hold for each p ∈ N :

(i) ANp spans Sp linearly, and

(ii) relANp is included in the cone generated by ANp .

Then N is an embedded k-submanifold of M and an integral manifold of S.

Lemma 2.7. Suppose that N is locally compact. Let p ∈ N , and let (U, ξ =
(x1, . . . , xn)) be any coordinate neighbourhood of p in M such that ξ(p) = 0
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and Sp is the tangent space at p for the coordinate k-plane

ξ−1(Rk) =
{
x ∈ U : xk+1 = . . . = xn = 0

}
.

If relANp ⊆ Sp, then there exists an open neighbourhood V of p in U such

that the coordinate projection π : Rn → Rk restricted to a homeomorphism
from V ∩N onto its image.

Proof. It is sufficient to work inside U , thinking of it as an open subset
of Rn and ξ as the standard coordinate, and show the existence of an open
neighbourhood V of p in U such that the coordinate projection π : Rn → Rk

is injective on V ∩N : indeed, by shrinking V further if necessary, using the
local compactness of of N , we may require further that V ∩N is compact,
and an injective continuous map from a compact space onto a Hausdorff
space is a homeomorphism.

Assume towards a contradiction that for every open neighbourhood V of
p with compact closure in U there are two distinct points in V ∩N with the
same π-image. But this with a compactness argument shows that there exist
two sequences (pi) and (qi) that converge to p with pi �= qi and a nonzero
vector v ⊥ Sp and hence v /∈ Sp such that v is the approaching direction of
(pi) relative to (qi). This contradicts the assumption that relANp ⊆ Sp.

Lemma 2.8. Theorem 2.6 holds in the case where k = n.

Proof. Since N is locally compact, replacing M by an open subset if nec-
essary, we may and shall suppose that N is closed in M . Also, restricting
to a coordinate neighbourhood, we may suppose that M = Rn. We need to
show that N is open in Rn (and so, by connectedness, must be all of Rn –
but this is not important).

Assume towards a contradiction that N is not open. Then there exist
p ∈ N and a sequence (ai) in Rn \N that converges to p. Let us temporarily
fix an i, and write a = ai. Let δ be the distance from a to N (with respect
to the Euclidean distance). Since N is closed, we see that δ > 0 and there
exists b ∈ N such that ‖a− b‖ = δ. Consider the closed ball

B := {x ∈ Rn : ‖x− a‖ ≤ δ} .

Then B◦ ∩N = ∅ and b ∈ N ∩ ∂B.
We claim that ANb ⊆ TbC, where C := ∂B. Indeed, assume the contrary

that there exists a vector v ∈ ANb \TbC. Denote by L the hyperplane tangent
to C at b; L divides Rn into two halves. Then there are two cases. Case 1: if
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v points to the half that includes B, then by the definition of v ∈ ANb , some

element of N must be in B◦; a contradiction. Case 2: if v points to the half

that does not include B, then since v ∈ ANb ⊆ relANb , we have −v ∈ relANb ,

and so, by condition (ii) of the hypothesis of Theorem 2.6, −v lies in the cone

generated by ANb . Thus, in Case 2, some w ∈ ANb \ TbC will point to the half

of Rn (as divided by L) that includes B, and we arrive at a contradiction

as in Case 1.

But the claim contradicts condition (i) of the hypothesis of Theorem 2.6

in the case where k = n, so N must be open as asserted.

Proof of Theorem 2.6. Let p ∈ N . By Lemma 2.7, there exists a coordi-

nate neighbourhood (V, ξ = (x1, . . . , xn)) of p in M such that ξ(p) = 0

and Sp is the tangent space at p for the coordinate k-plane ξ−1(Rk) ={
x ∈ V : xk+1 = . . . = xn = 0

}
such that the coordinate projection π : Rn →

Rk is a homeomorphism from V ∩N onto π(V ∩N). Shrinking V further if

necessary, we suppose that dπ is injective on Sx for every x ∈ V . Working

in V , we shall suppose that V is an open subset of Rn and ξ is the standard

coordinate map.

Set P := π(V ∩N). We claim that APa spans TaR
k and relAPa is contained

in the cone generated by APa for every a ∈ P . Indeed, if x ∈ V ∩ N , then

dπx(A
N
x ) = APπ(x) and dπx(relA

N
x ) = relAPπ(x): The inclusions dπx(A

N
x ) ⊆

APπ(x) and dπx(relA
N
x ) ⊆ relAPπ(x) are immediate from Lemma 2.2. To prove

the reverse inclusions, say APπ(x) ⊆ dπx(A
N
x ) for example, take {xi} ∈ V ∩N

such that π(xi) converges to π(x) with an approaching direction w ∈ TRk
π(x).

Then xi → x, and assume the contrary that this convergent sequence did

not have v := (dπ|Sx
)−1(w) as its approaching direction. Since π(xi) �= π(x)

eventually, we have xi �= x eventually, and so passing to a subsequence

if necessary, we shall suppose that (xi − x)/ ‖xi − x‖ is kept away from

v/ ‖v‖. Then, by compactness, passing to a further subsequence if necessary,

(xi − x)/ ‖xi − x‖ converges to some v′ �= v/ ‖v‖. But then, Lemma 2.2

implies that dπx(v
′) has the same direction as w, and so v′ must have the

same direction as v – a contradiction.

The claim then follows from the fact that dπ is a linear bijection from

Sx onto Tπ(x)R
k for every x ∈ V and conditions (i) and (ii) in the hypothesis

of the theorem.

The special case, proved in Lemma 2.8, applied to the locally compact

subspace P of Rk, then implies that P is open in Rk. Thus the hypothesis

of Theorem 2.5 holds, and the current theorem then follows.
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As a sidenote, when N is locally Euclidean, the assumptions concerning
AN and relAN can be relaxed with the use of Brower’s invariance of domain
theorem.

Theorem 2.9. Let M be an n-manifold, let S ⊆ TM be a k-plane distri-
bution on M , and let N be a locally Euclidean subspace of M of dimension
k. Suppose that relANp ⊆ Sp for each p ∈ N . Then N is an embedded k-
submanifold of M and an integral manifold of S.

Proof. Let p ∈ N . By Lemma 2.7, there exists a coordinate neighbourhood
(V, ξ = (x1, . . . , xn)) of p inM such that ξ(p) = 0 and Sp is the tangent space
at p for the coordinate k-plane ξ−1(Rk) =

{
x ∈ V : xk+1 = . . . = xn = 0

}
such that the coordinate projection π : Rn → Rk restricted to a homeomor-
phism from V ∩N onto its image. Since N is locally Euclidean of dimension
k, the invariance of dimension theorem implies that π(V ∩ N) is an open
subset of Rk. Theorem 2.5 then applies.

3. Proof of Theorem 1.1

First, note that it follows from the equivariant rank theorem and the con-
dition that G acts smoothly and freely on M with closed orbits that, given
any p ∈ M , the map

f �→ f(p), G �→ M

is a smooth embedding. This proves the uniqueness of the smooth structure
on G.

It remains to prove the existence. For this, we shall go through a suc-
cession of lemmas, where each notation will keep the same meaning once
it is introduced. For each smooth vector field X ∈ X(M), let us denote
by ΦX

t (p) = ΦX(t, p) the maximal flow with generator X (see [3] for more
details).

Definition 3.1. Define E to be the linear span of E1, . . . , En in X(M). Set

Ψ(E, p) := ΦE
1 (p)

for each E ∈ E and p ∈ M such that ΦE
t (p) is defined for 0 ≤ t ≤ 1. Then,

for each E ∈ E, set

ME := {p ∈ M | Ψ(E, p) is defined} .

Lemma 3.2.



232 Hung Pham

(i) Ψ is a smooth M -valued function defined on an open neighbourhood U

of {0} ×M in E×M .
(ii) Ψ(tE, p) = ΦE

t (p) whenever either side is defined.
(iii) dΨ(0,p) : (E, v) �→ Ep + v for each p ∈ M , where we identify T0E

with E naturally as for any linear manifold, and identify T(0,p)U with
T0E⊕ TpM .

(iv) For every E ∈ E,

ME = {p ∈ M : (E, p) ∈ U} is open in M

and Ψ(E, ·) is a diffeomorphism from ME onto M−E with inverse
Ψ(−E, ·).

Proof. These follow from the basic facts of the theory of (maximal) flows
[3].

Definition 3.3. For each p, q ∈ M , define Lp,q : TpM → TqM by setting

Lp,q(Ep) = Eq for every E ∈ E.

Lemma 3.4. Let f : M → M . Then the following are equivalent:

(i) f is a local diffeomorphism and and dfp = Lp,f(p) for every p ∈ M .
(ii) f is C1 and leaves each E ∈ E invariant.
(iii) f(ΦE

t (p)) = ΦE
t (f(p)) whenever ΦE

t (p) is defined.
(iv) If (E, p) ∈ U, then (E, f(p)) ∈ U and f(Ψ(E, p)) = Ψ(E, f(p)).
(v) For each p ∈ M , there is a neighbourhood V of 0 in E such that if

E ∈ V then f(Ψ(E, p)) = Ψ(E, f(p)).

In particular,

G={bijective f : M → M such that f(Ψ(E, p))=Ψ(E, f(p)) for (E, p)∈U}.

Proof. It is obvious that (i)⇒(ii) and that (iii)⇔(iv) and (iv)⇒(v). To see
that (ii)⇒(iii), takes p ∈ M . Then γ(t) := f(ΦE

t (p)) is a C1 curve defined
on an open interval with γ(0) = f(p) and

γ′(t) = df(EΦE
t (p)) = Ef(ΦE

t (p)) = Eγ(t)

where the second equality is due to f leaving E invariant. Thus γ is a flow
line of E starting at f(p), and so γ(t) = ΦE

t (f(p)).
To see that (v)⇒(i), it is sufficient to show that f is a local diffeomor-

phism; the rest then follows from the properties of flows. For each p ∈ M ,
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part (iii) of Lemma 3.2 and the inverse function theorem imply that Ψ(·, p)
is a diffeomorphism from an open neighbourhood of 0 in E onto an open
neighbourhood of p in M . Thus the local diffeomorphism property of f in
the said neighbourhood of p follows from that of Ψ.

The following connectedness argument will be used several times.

Lemma 3.5. Let P ⊆ M . Suppose that, for every p ∈ P and E ∈ E, if
Ψ(E, p) is defined then it belongs to P . Then either P = ∅ or P = M .

Proof. Since Ψ(·, p) is a diffeomorphism from a neighbourhood of 0 in E

onto a neighbourhood of p, the hypothesis implies that P is open. This also
shows that if q ∈ P , then there exists E ∈ E such that p := Ψ(E, q) ∈ P .
Then q = Ψ(−E, p), and the hypothesis again implies that q ∈ P . Thus, by
the connectedness of M , if P is not empty, then P = M .

Below we shall write the identity map on M as either idM or eG, the
identity element of G, interchangeably.

Lemma 3.6. Let p ∈ M and f ∈ G. If f(p) = p, then f = idM .

Proof. Consider P := {q ∈ M : f(q) = q}. Then by Lemma 3.4(iv), we see
that P satisfies the hypothesis of Lemma 3.5. This lemma then follows.

In the next two lemmas, let us fix an inner product 〈·|·〉 on E. This
inner product induces a Riemannian metric on M , also denoted by 〈·|·〉 on
each fibre of TM , and the associated distance function d on M . It then
follows that each Lp,q is a linear isometry from TpM onto TqM , and, from
Lemma 3.4, that every f ∈ G is a Riemannian isometry on M .

Lemma 3.7. Let p ∈ M , and let (fi) be a net in G. Suppose that (fi(p))
converges to a point q in M . Then there exists an element f ∈ G such that
f(p) = q, (fi) converges to f in G, and (f−1

i ) converges to f−1 in G.

Proof. Denote by P the set of a ∈ M such that (fi(a)) is convergent in M .
Then p ∈ P . For each a ∈ P , set f(a) := limi fi(a).

Let a ∈ P and let E ∈ V such that Ψ(E, a) is defined. Then by
Lemma 3.4(iv)

fi (Ψ(E, a)) = Ψ(E, fi(a)) → Ψ(E, f(a)) ,(1)

and so Ψ(E, a) ∈ P . Thus P = M by Lemma 3.5, and so f is globally
defined on M with

f (Ψ(E, a)) = Ψ(E, f(a))(2)
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whenever Ψ(E, a) is defined.
Moreover, by the uniform continuity of Ψ on compact subsets of U, we

see from (1) and (2) that, for each a ∈ M ,

fi (Ψ(E, a)) → f (Ψ(E, a))

uniformly for E in a compact neighbourhood of 0 in U. Thus (fi(x)) con-
verges to f(x) uniformly for x in a neighbourhood of a. Since a ∈ M is
arbitrary, (fi) converges to f uniformly on each compact subset of M .

The same argument applies to (f−1
i ) with limi f

−1
i (q) = p (using d(fi(p)

, q) = d(p, f−1
i (q))) shows that there exists a map g : M → M such that

(f−1
i ) converges to g uniformly on each compact subset of M . For each

a ∈ M , one then sees that (fi(a)) converges to f(a), and so (f−1
i (fi(a)))

converges to g(f(a)), using local compactness ofM and uniform convergence
of (f−1

i ) to g on compact subsets of M . Similarly, g(f(a)) = a. Thus f is
bijective and g = f−1.

Finally, by (2), f satisfies condition (v) of Lemma 3.4, and so f ∈ G.

Lemma 3.8. Let (pi) be a net that converges to p in M . Let (fi) be a net
in G, and f ∈ G. Then the following are equivalent:

(i) (fi) converges to f in G.
(ii) (fi(pi)) converges to f(p) in M .
(iii) (fi(p)) converges to f(p) in M .

Note that Lemma 3.6 is a special case of this lemma (relative to the
simple fact that G with the compact-open topology is Hausdorff).

Proof. Condition (i) implies condition (ii) since (fi) converges to f uniformly
on compact subsets of M .

To see that (ii) implies (iii), we note that d(fi(pi), fi(p)) = d(pi, p) → 0
as i → ∞ since each fi is a Riemannian isometry.

To see that (iii) implies (i), we use Lemma 3.7 to obtain a function h ∈ G
such that (fi) converges to h in G. Since h(p) = f(p), Lemma 3.6 shows that
h = f .

Let us summarise what we have obtained about the given group G and
its action on M so far in the following, which is immediate from the previous
lemmas:

Corollary 3.9. G equipped with the compact-open topology is a locally com-
pact metrisable group that acts continuously, freely, and properly on M , and
the G-orbits are closed.
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Let us now work towards putting a smooth structure on G.

Lemma 3.10. Let p0 ∈ M . If G admits a smooth structure making the map

f �→ f(p0), G → M,

a (smooth) embedding, then G is a Lie group and the action of G on M is
smooth.

Proof. Denote by P the set of p ∈ M such that f �→ f(p) is an embedding.
Then p0 ∈ P . Let p ∈ P and E ∈ V such that Ψ(E, p) is defined. Then, by
Lemma 3.4(iv), we see that

{f(p) : f ∈ G} ⊆ ME

and, by Lemma 3.2, Ψ(E, ·) is a diffeomorphism from the open set ME onto
the open set M−E . Thus

f �→ Ψ(E, f(p)) = f(Ψ(E, p))

is an embedding, and so Ψ(E, p) ∈ P . By Lemma 3.5, P = M .
Moreover, for each p ∈ M = P , let V be an open neighbourhood of 0 in

E that is mapped diffeomorphically by Ψ(·, p) onto a neighbourhood D of p.
Then since

(f,E) �→ Ψ(E, f(p))

is smooth on G×V, we see that (f, x) �→ f(x) is smooth on G×D. Thus the
map (f, x) �→ f(x), G × M → M , is smooth. Since f �→ f(p0) is assumed
to be an embedding of G into M , we see then that

(f, g) �→ fg = f ◦ g

being the composition of (f, g) �→ (f, g(p0)), (f, x) �→ f(x), and then h(p0) �→
h, is smooth.

Finally, the inverse of G is smooth is due to the implicit function theorem
applied to the map (f, g) �→ fg.

Definition 3.11. Let p ∈ M . Define Ap to be the set of those vectors v in
TpM for which there exists a sequence (fi) in G such that (fi(p)) converges
to p from the direction v. Let Sp be the linear span of Ap in TpM .

In other words, if N is an G-orbit in M and if p ∈ N , then Ap is nothing
but ANp as defined in Definition 2.3.
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Lemma 3.12.

(i) Let p ∈ M , and let (fi) be a sequence in G that converges to eG = idM .
Suppose that q = Ψ(E, p) for some E ∈ E. Then if (fi(p)) converges
to p from the direction v ∈ TpM , then (fi(q)) converges to q from the
direction dΨ(E, ·)p(v).

(ii) The spaces Sp (p ∈ M) together form a vector subbundle S of TM .

Proof. To prove (i), note that if Ψ(E, p) is defined, then p ∈ ME , and Ψ(E, ·)
is a diffeomorphism from ME onto M−E with inverse Ψ(−E, ·). Also,

fi(q) = fi(Ψ(E, p)) = Ψ(E, fi(p))

and so the assertion follows from Lemma 2.2(i).
To prove (ii), we see from (i) that if Ψ(E, p) is defined, then the linear

bijection dΨ(E, ·)p is a bijection from Ap onto AΨ(E,p), and so it restrict to
a linear bijection from Sp onto SΦ(E,p). Thus, for each v ∈ Ap, if we set

Zv
Ψ(E,p) := dΨ(E, ·)p(v) ,

then as E varies, we obtain a smooth vector field Zv on a neighbourhood
V of p, whose value at each x in that neighbourhood belongs to Ax, and
if we let v varies in a maximal linear independent subset of Ap, then the
corresponding Zv form a collection of vector fields on V whose values at
each x ∈ V form a linear basis for Sx. This shows that S =

⋃
p∈M Sp is a

vector subbundle of TM .

A final piece needed to apply Theorem 2.6 is the following connection
to Definition 2.1.

Lemma 3.13. Let p ∈ M and let v ∈ TpM . Then v ∈ Ap if there exist
sequences (fi) and (gi) in G such that v is the direction of approach of
(fi(p)) relative to (gi(p)).

Proof. Set hi := g−1
i fi and choose a closed Euclidean coordinate ball U

centred at p with positive radius. Part of the assumption is that fi(p) → p
and gi(p) → p and that fi �= gi eventually, so that both fi → eG and gi → eG
by Lemma 3.8. Thus (hi(p)) converges to p, as well as hi(p) �= p eventually.

Take ε > 0. Then since d(gi)x = Lx,gi(x) by Lemma 3.4, and since
gi(x) → x uniformly for x on compact subsets of U , we see that, shrinking
U if necessary, there exists i0 such that for all i ≥ i0 and all x ∈ U , we have
the operator norm

‖id− J(gi)x‖ < ε .
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By increasing i0 if necessary, let us suppose also that fi(p), gi(p), hi(p) ∈ U
for all i ≥ i0. Then, using the fundamental theorem of calculus on the
restriction of id− gi on the coordinate line segment joining p and hi(p), we
obtain

|hi(p)− p− (fi(p)− gi(p))| = |(id− gi)(hi(p))− (id− gi)(p)| ≤ ε |hi(p)− p|

here we identify points of U with points of Rn using the given coordinate.
From this and the fact that (fi(p) − gi(p))/ ‖fi(p)− gi(p)‖ → v/ ‖v‖, it
follows that (hi(p)− p)/ ‖hi(p)− p‖ → v/ ‖v‖, that is v ∈ Ap.

We can now complete the proof of Theorem 1.1: Fix an p0 ∈ M , and let
N be the G-orbit of p0 in M . Then, by Corollary 3.9, N is closed and the
map

f �→ f(p0), G → N,(3)

is a homeomorphism.
For each p ∈ N , ANp as defined in Definition 2.3 is nothing but Ap. Thus

each ANp spans the fibre Sp of the vector bundle S. Lemma 3.13 shows that

relANp = ANp for every p ∈ N . Thus, by Theorem 2.6, N is an embedded
submanifold of M . Therefore, one can put on G a smooth structure making
the homeomorphism in (3) a diffeomorphism. This then allows us to apply
Lemma 3.10 to complete the proof.
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