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Let G be a locally compact group. In this paper, we study various
invariant subspaces of the duals of the algebras AM (G) and Acb(G)
obtained by taking the closure of the Fourier algebra A(G) in the
multiplier algebra MA(G) and completely bounded multiplier al-
gebra McbA(G) respectively. In particular, we will focus on various
functorial properties and containment relationships between these
various invariant subspaces including the space of uniformly con-
tinuous functionals and the almost periodic and weakly almost
periodic functionals.

Amongst other results, we show that if A(G) is either AM (G) or
Acb(G), then UCB(A(G)) ⊆ AP (A(G)) if and only if G is discrete.
We also show that if UCB(A(G)) = A(G)∗, then every amenable
closed subgroup of G is compact.

Let i : A(G) → A(G) be the natural injection. We show that if
X is any closed topologically introverted subspace of A(G)∗ that
contains L1(G), then i∗(X) is closed in A(G) if and only if G is
amenable.
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1. Introduction

Let G be a locally compact group. The Fourier algebra of G is an algebra

A(G) of continuous functions on G under pointwise operations consisting

of the set of all coefficient functions u(x) = 〈λ(x)f, g〉 of the left regular

representation of G on the Hilbert space L2(G). A(G) becomes a Banach

algebra via the norm it inherits as the natural pre-dual of the group von
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Neumann algebra

V N(G) = span{λ(x)|x ∈ G}−WOT ⊆ B(L2(G))

where λ(x)f(y) = f(x−1y) for each x, y ∈ G and f ∈ L2(G). If G is abelian,
then A(G) is isometrically isomorphic as a Banach algebra with L1(Ĝ) via
the classical Fourier transform and V N(G) can be identified with L∞(Ĝ),
where Ĝ is the Pontryagin dual of G.

For an abelian group G there are several distinguished C∗-subalgebras
of L∞(Ĝ) that have been very well studied. These include the spaces of uni-
formly continuous functions UCB(Ĝ), the almost periodic functions AP (Ĝ),
the weakly almost periodic functions WAP (Ĝ) and C0(Ĝ), the space of con-
tinuous functions vanishing at infinity. All of these spaces induce correspond-
ing subspaces of V N(G) via the Fourier transform. In particular, we refer to
the subspaces corresponding to UCB(Ĝ), AP (Ĝ) and WAP (Ĝ) in V N(G)
as the uniformly continuous, almost periodic and weakly almost periodic
functionals on A(G) respectively. The image of C0(Ĝ) is the reduced group
C∗-algebra C∗

λ(G). One common property that all of these spaces have in
common is that they are invariant under the natural module action of A(G)
on V N(G).

When G is non-abelian there is still a dual relationship between A(G)
and L1(G) but it is much more complex given the lack of a Pontryagin dual
group. It is, however, possible to define analogous versions of all of the above
subspaces of V N(G) and indeed this can be done in the abstract for any
commutative Banach algebra. For the Fourier algebra in particular, there
is a significant body of work investigating the properties of the subspaces
highlighted above with a focus on what their structures tell us about the
underlying group. See for example [7], [9], [10], [12] and [13].

In this paper, we will focus our attention primarily on non-amenable
groups and on analogous invariant subspaces in the duals of two Banach al-
gebras that arise from the Fourier algebra, AM (G) and Acb(G), which are the
closures of A(G) in its multiplier and completely bounded multiplier algebra
respectively. In particular, we will consider various functorial properties and
containment properties associated with these subspaces. Amongst other re-
sults, if A(G) is either AM (G) or Acb(G), we will characterize discrete groups
as those locally compact groups for which UCB(A(G)) ⊆ AP (A(G)). We
also show that if UCB(A(G)) = A(G)∗, then every amenable closed sub-
group of G is compact. In particular, G has an open compact subgroup.

A(G) injects contractively into both AM (G) and Acb(G) with the range
of the injection being proper precisely when G is non-amenable. If we let
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i : A(G) → A(G) be the natural injection, we will show that if X is any of
the closed subspaces of A(G)∗ mentioned above that contains L1(G), then
i∗(X) is closed in A(G) if and only if G is amenable.

2. Preliminaries and notation

Throughout this paper, A will denote a Banach algebra. In this case, the
dual A∗ becomes a Banach A-bimodule with respect to the module actions

〈u · T, v〉 = 〈T, vu〉 and 〈T�u, v〉 = 〈T, uv〉

for every u, v ∈ A and T ∈ A∗. Note that when A is commutative 〈u ·T, v〉 =
〈T�u, v〉 which will generally be the case for most of this paper. In fact,
from this point we will assume that every Banach algebra A we consider is
commutative unless stated otherwise.

2.1.

Remark. It is well known that there are two natural products that can be
used to extend the multiplication of A to its second dual A∗∗. In this paper
we will choose the following Arens product:

A1) 〈u · T, v〉 = 〈T, vu〉 for every u, v ∈ A and T ∈ A∗.
A2) 〈n� T, u〉 = 〈n, u · T 〉 for every u ∈ A and T ∈ A∗ and n ∈ A∗∗.
A3) 〈m� n, T 〉 = 〈m,n� T 〉 for every T ∈ A∗ and m,n ∈ A∗∗.

From here we will proceed with the following definitions and notational
conventions.

2.2.

Definition. We call the space

UCB(A) = span{v · T | v ∈ A, T ∈ A∗}−‖·‖A∗

the uniformly continuous functionals on A.
We call T ∈ A∗ a (weakly) almost periodic functional on A if

{u · T | u ∈ A, ‖u‖A ≤ 1}

is relatively (weakly) compact in A∗ and we denote the space of all (weakly)
almost periodic functionals on A by AP (A) (WAP (A)).
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2.3.

Definition. We say that a closed subspace X ⊆ A∗ is invariant if u ·T ∈ X

for every u ∈ A and T ∈ X.

Given a closed invariant subspace X. We say that X is topologically

introverted if m� T ∈ X for every m ∈ X∗ and T ∈ X.

2.4.

Remark. If X is topologically introverted then X∗ can be made into a

Banach algebra by mimicking what we did for A∗∗ by defining

〈m� n, T 〉 = 〈m,n� T 〉

for m,n ∈ X∗ and T ∈ X.

It is a well-known criterion of Grothendieck that T ∈ A∗ is weakly almost

periodic if and only if given two nets {uα}α∈Ω1
and {vβ}β∈Ω2

in A we have

that

lim
α

lim
β
〈T, uαvβ〉 = lim

β
lim
α
〈T, uαvβ〉

whenever both limits exist. From this one can show that if A is a com-

mutative Banach algebra and X is topologically introverted, then X∗ is

commutative if and only if X ⊆ WAP (A). (See [3] and [16].)

The following three propositions will prove useful.

2.5.

Proposition. Let A be a commutative Banach algebra. Then each of UCB(A),

AP (A) and WAP (A) are invariant subspaces of A∗.

Proof. That UCB(A) is invariant is obvious since for each T ∈ A∗, we have
u · T ∈ UCB(A).

Let T ∈ (W )AP (A). Let v ∈ A. Without loss of generality, we can

assume that ‖v‖A = 1. Since

{u · (v · T ) | u ∈ A, ‖u‖A ≤ 1} ⊂ {u · T | u ∈ A, ‖u‖A ≤ 1}

we have that {u · (v · T ) | u ∈ A, ‖u‖A ≤ 1} is relatively (weakly) compact

and hence v · T ∈ (W )AP (A).
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2.6.

Proposition. Let A be a commutative Banach algebra. Then UCB(A) is
topologically introverted.

Proof. Let m ∈ UCB(A)∗ and let T = u · T1 ∈ UCB(A). Let v ∈ A. Then

〈m� T, v〉 = 〈m, v · T 〉
= 〈m, v · (u · T1)〉
= 〈m,uv · T1〉
= 〈m� T1, uv〉
= 〈u · (m� T1), v〉.

It follows that m� T = u · (m� T1) ∈ UCB(A). Moreover, if T ∈ span{u ·
T1|u ∈ A, T1 ∈ A∗}, then m� T ∈ UCB(A) as well.

Finally, lets assume that {Tn} ⊂ UCB(A) and that lim
n→∞

Tn = T . Let

u ∈ A with ‖u‖A ≤ 1. Then for m ∈ UCB(A)∗,

|〈m� T, u〉 − 〈m� Tn, u〉| = |〈m,u · (T − Tn)〉| ≤ ‖m‖UCB(A)∗‖T − Tn‖A∗ .

It follows that lim
n→∞

m � Tn = m � T . Since span{u · T1|u ∈ A, T1 ∈ A∗} is

dense in UCB(A), it follows that m�T ∈ UCB(A) for every m ∈ UCB(A)∗

and T ∈ UCB(A). That is, UCB(A) is topologically introverted.

2.7.

Proposition. Let X be a closed invariant subspace of WAP (A). Then X
is topologically introverted.

Proof. Let T ∈ X. Let

O(T ) = {u · T | u ∈ A, ‖u‖A ≤ 1}.

Since T ∈ WAP (A), the convex set O(T ) is relatively σ(A∗,A∗∗) compact.

Hence its σ(A∗,A∗∗) closure O(T )
σ(A∗,A∗∗)

is weakly compact and hence
is also a norm closed set in X. Moreover, the σ(A∗,A∗∗) and σ(A∗,A)

topologies agree on O(T )
σ(A∗,A∗∗)

.
Next, we let m ∈ X∗. Without loss of generality, we may assume that

‖m‖X∗ = 1. Let M ∈ A∗∗ be an extension of m to A∗ with ‖m‖X∗ =
‖M‖A∗ = 1. Then by Goldstine’s Theorem, there exists a net {uα}α∈Ω in A
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such that ‖uα‖ ≤ 1 and {uα}α∈Ω converges to M in the weak∗ topology on
A∗∗. It follows that if u ∈ A and T ∈ X, then

〈M � T, u〉 = 〈M,u · T 〉 = lim
α∈Ω

〈uα, u · T 〉 = lim
α∈Ω

〈uα · T, u〉.

But this shows that

M � T ∈ O(T )
σ(A∗,A) ⊂ X.

Moreover, if u ∈ A and T ∈ X, then

〈M � T, u〉 = 〈M,u · T 〉 = 〈m,u · T 〉 = 〈m� T, u〉.

Hence m� T ∈ X. It follows that X is topologically introverted.

2.8.

Definition. Let I be a closed ideal in A. We let

Z(I) = {x ∈ Δ(A) | u(x) = 0 for all u ∈ I}.

Given a closed set E ⊆ Δ(A), we let

I(E) = {u ∈ A | u(x) = 0 for all x ∈ E}.

We say that a closed set E ⊆ Δ(A) is a set of spectral synthesis for A
if the only closed ideal I is A with Z(I) = E is I(E).

3. Multipliers of the fourier algebra

Let G be a locally compact group. We let A(G) and B(G) denote the
Fourier and Fourier-Stieltjes algebras of G, which are Banach algebras of
continuous functions on G and were introduced in [5]. A multiplier of A(G)
is a (necessarily bounded and continuous) function v : G → C such that
vA(G) ⊆ A(G). For each multiplier v of A(G), the linear operator Mv on
A(G) defined by Mv(u) = vu for each u ∈ A(G) is bounded via the Closed
Graph Theorem. The multiplier algebra of A(G) is the closed subalgebra

MA(G) := {Mv : v is a multiplier of A(G)}

of B(A(G)), where B(A(G)) denotes the algebra of all bounded linear op-
erators from A(G) to A(G). Throughout this paper we will generally use v
in place of the operator Mv and we will write ‖ v ‖MA(G) to represent the
norm of Mv in B(A(G)).
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3.1.

Definition. Let QM (G) be the completion of L1(G) with respect to the norm

‖f‖QM (G) = sup

{∫
G
f(x)v(x)dx | v ∈ MA(G), ‖v‖MA(G) ≤ 1

}
.

Then QM (G)∗ = MA(G).
Let G be a locally compact group and let V N(G) denote its group von

Neumann algebra. The duality

A(G) = V N(G)∗

equips A(G) with a natural operator space structure. With this operator
space structures we can define the cb-multiplier algebra of A(G) to be

McbA(G) := CB(A(G)) ∩M(A(G)),

where CB(A(G)) denotes the algebra of all completely bounded linear maps
from A(G) into itself. We let ‖ v ‖cb denote the cb-norm of the operator Mv.
It is well known that Mcb(A(G)) is a closed subalgebra of CB(A(G)) and
is thus a (completely contractive) Banach algebra with respect to the norm
‖ · ‖cb.

3.2.

Definition. Let Qcb(G) be the completion of L1(G) with respect to the norm

‖f‖Qcb(G) = sup

{∫
G
f(x)v(x)dx | v ∈ McbA(G), ‖v‖cb ≤ 1

}
.

Then Qcb(G)∗ = McbA(G).
It is known that in general,

A(G) ⊆ B(G) ⊆ Mcb(A(G)) ⊆ M(A(G))

and that for v ∈ A(G)

‖ v ‖A(G)=‖ v ‖B(G)≥‖ v ‖cb≥‖ v ‖M .

In case G is an amenable group, we have

B(G) = Mcb(A(G)) = M(A(G))



246 Brian Forrest et al.

and that

‖ v ‖B(G)=‖ v ‖cb=‖ v ‖M
for any v ∈ B(G).

3.3.

Definition. Given a locally compact group G let

AM (G)
def
= A(G)−‖·‖M ⊆ M(A(G)).

and

Acb(G)
def
= A(G)−‖·‖cb ⊆ Mcb(A(G)).

3.4.

Remark. The algebra Acb(G) was introduced by the first author in [6] where
it was denoted by A0(G). In that paper we show that in the case of F2, the
free group on two generators, Acb(G) shares many of the properties charac-
teristic of the Fourier-algebra of an amenable group. In particular, the alge-
bra Acb(F2) is known to have a bounded approximate identity. The locally
compact groups G for which Acb(G) has a bounded approximate identity are
called weakly amenable groups. All amenable groups are weakly amenable,
but many classical non-amenable groups such as F2 and SL(2,R) are weakly
amenable. We say that the locally compact group G is M-weakly amenable
if there is an approximate identity {uα}α∈I in A(G) that is bounded in the
norm ‖ · ‖M .

3.5.

Remark. Let A(G) denote either AM (G) or Acb(G). Consider the following
map and its adjoints:

iA : A(G) → A(G)
i∗A : A(G)∗ → V N(G)
i∗∗A : V N(G)∗ → A(G)∗∗,

where iA denotes the inclusion map. Since iA has dense range, i∗A is injective
and as such is invertible with inverse i∗A

−1 on Range(i∗A). It is easy to see
that i∗A is simply the restriction map. That is

i∗A(T ) = T|A(G)
.
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It will also be useful to view all of the above maps as embeddings. That
is, when G is nonamenable A(G)∗ can be viewed as a proper subset of
V N(G) and V N(G)∗ as a proper subset of A(G)∗∗, of course with different
norms.

3.6.

Definition. We let

Xλ
M (G) = {T ∈ QM (G) | 〈u, T 〉 = 0 for every u ∈ AM (G)}

and let

Bλ
M (G) = AM (G)

weak∗

⊆ MA(G).

Let

Qλ
M (G) = QM (G)/Xλ

M .

We let

Xλ
cb(G) = {T ∈ QAcb(G)(G) | 〈u, T 〉 = 0 for every u ∈ Acb(G)}

and let

Bλ
cb(G) = Acb(G)

weak∗

⊆ McbA(G).

Let

Qλ
cb(G) = Qcb(G)/Xλ

cb.

3.7.

Remark. QM (G) and Qcb(G) are natural analogs of the group C∗-algebra
C∗(G). Similarly, Qλ

M (G) and Qλ
cb(G) are natural analogs of the reduced

group C∗-algebra C∗
λ(G). In particular, we have that

(Qλ
M (G))∗ = Bλ

M (G)

and

(Qλ
cb(G))∗ = Bλ

cb(G).

Moreover, we can identify Qλ
M (G) and Qλ

cb(G) with the closed subspaces
of AM (G)∗ and Acb(G)∗ respectively generated by

{φf | f ∈ L1(G)}
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where

〈φf , u〉 =
∫
G
f(x)u(x) dx.

As such going forward, we will view Qλ
M (G) and Qλ

cb(G) as norm closed

subspaces of AM (G)∗ and Acb(G)∗ respectively. Moreover, we will gener-

ally identify the functional φf with the function f ∈ L1(G) for notational

convenience.

Finally, we let

Qδ
M (G)

def
= span{φx | x ∈ G}−‖·‖AM (G)∗ ⊆ AM (G)∗

and

Qδ
cb(G)

def
= span{φx | x ∈ G}−‖·‖Acb(G)∗ ⊆ Acb(G)∗

where φx(v) = v(x) for each x ∈ G and each v ∈ AM (G) and Acb(G)

respectively. In particular, if G is discrete, then Qλ
M (G) = Qδ

M (G) and

Qλ
cb(G) = Qδ

cb(G).

4. Invariant subspaces of Acb(G) or AM(G) and their
functorial properties

In this section we will focus our attention on some important invariant sub-

spaces of the algebras A(G), Acb(G), AM (G) and their closed ideals.

Let A(G) be any of the algebras A(G), Acb(G) and AM (G). We note

that while by definition

UCB(A(G)) = span{v · T | v ∈ A(G), T ∈ A(G)∗}−‖·‖A∗

it turns out that we don’t actually need the linear span.

4.1.

Proposition. Let A(G) be any of the algebras A(G), Acb(G) and AM (G).

Let I be a closed ideal in A(G) with Z(I) a set of spectral synthesis. Then

UCB(I) = {v · T | v ∈ A(G), T ∈ I∗}−‖·‖I∗
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Proof. Let

j(Z(I)) = {u ∈ A(G) | supp(u) is compact and disjoint from Z(I)}.

The assumption that Z(I) is a set of spectral synthesis tells us that j(Z(I))
is dense in I.

Let u1, u2 ∈ j(Z(I)) and T1, T2 ∈ I∗. Then if K1 = supp(u1) and K2 =
supp(u2) we have that K = K1∪K2 is a compact set disjoint from Z(I). By
the regularity, we can also find a u ∈ A(G) with compact support disjoint
from Z(I) such that u(x) = 1 if x ∈ K. In particular, u ∈ j(Z(I)). Moreover

u · (u1 · T1 + u2 · T2) = uu1 · T1 + uu2 · T2 = u1 · T1 + u2 · T2.

Hence j(Z(I)) · I∗ is a subspace of UCB(I).
Next, we assume that u ∈ I and T ∈ I∗. Choose {un} ⊂ j(Z(I)) such

that lim
n→∞

‖un − u‖A(G) = 0. Since

‖un · T − u · T‖I∗ ≤ ‖un − u‖A(G)‖T‖I∗

we have that j(Z(I)) · I∗ is also dense in UCB(I).

4.2.

Remark. Given an ideal I in A(G) and a T ∈ I∗ we say that x ∈ G\Z(I) is
a support point for T if for every neighbourhood V of x, there exists a u ∈ I
with supp(u) ⊆ V and 〈T, u〉 �= 0. We let supp(T ) denote the collection of
all support points of T . We note that Proposition 4.1 shows that UCB(I)
is the closure in I∗ of those T ∈ I∗ with compact support.

4.3.

Definition. Let A(G) denote any of the algebras A(G), Acb(G) or AM (G).
Given a closed ideal I in A(G) we define

UCBc(I) = {T ∈ I∗ | T has compact support}

or equivalently

UCBc(I) = {T ∈ I∗ | T = u · T1, u ∈ I has compact support and T1 ∈ I∗}.
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4.4.

Definition. Let X be a closed invariant subspace of A∗ containing a char-

acter φ ∈ Δ(A). We say that m ∈ X∗ is a topological invariant mean at φ

on X if

‖m‖X∗ = 〈m,φ〉 = 1

and

〈m,u · T 〉 = 〈φ, u〉〈m,T 〉

for all u ∈ A and T ∈ X. We denote the space of all topological invariant

means at φ on X by TIMA(X,φ).

4.5.

Definition. Let A(G) be one of the algebras A(G), Acb(G) or AM (G). Let

x ∈ G define the isometry Lx : A(G) → A(G) by

Lx(u)(y) = u(xy),

for each y ∈ G.

The following two propositions are respectively [8, Proposition 4.3] and

[8, Proposition 4.5].

4.6.

Proposition. Let A(G) be one of the algebras A(G), Acb(G) or AM (G). Let

X ⊆ A(G)∗ be a closed invariant subspace of A(G)∗. Let x ∈ G.

i) If Y = L∗
x(X), then Y is a closed invariant subspace of A(G)∗ and

u · L∗
x(T ) = L∗

x(Lx(u) · T )

for every u ∈ A(G) and T ∈ X.

ii) Let x ∈ G. Then L∗
x(φe) = φx where e denotes the identity of G.

iii) Let m ∈ TIMA(G)(X,φe). If x ∈ G, Then φx ∈ L∗
x(X) and L∗∗

x−1(m) ∈
TIMA(G)(L

∗
x(X), φx).
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4.7.

Proposition. Let A(G) be either Acb(G) or AM (G). Let A(G) · V N(G) =
{u · T : u ∈ A(G), T ∈ V N(G)}. Then

i) A(G) · V N(G) ⊆ UCB(A(G))
ii) i∗(v · T ) = v · i∗(T ) for each v ∈ A(G), T ∈ A(G)∗.
iii) i∗(UCB(A(G))) ⊆ UCB(A(G)).
iv) If A(G) has a bounded approximate identity, then A(G) · V N(G) =

UCB(A(G))
v) u · T ∈ i∗(A(G)∗) for each u ∈ A(G), T ∈ V N(G).

We can now extend the result in Proposition 4.7 iii) to other important
invariant subspaces.

4.8.

Proposition. Let A(G) be either Acb(G) or AM (G). Then

i) i∗(AP (A(G)) ⊆ AP (A(G)).
ii) i∗(WAP (A(G)) ⊆ WAP (A(G)).
iii) i∗(Qδ

cb(G)) ⊆ C∗
δ (G) and i∗(Qδ

M (G)) ⊆ C∗
δ (G).

iv) i∗(Qλ
cb(G)) ⊆ C∗

λ(G) and i∗(Qλ
M (G)) ⊆ C∗

λ(G).

Proof.

i) Let T ∈ AP (A(G)). Let {un} be a sequence in A(G) with ‖un‖A(G) ≤ 1
for each n ∈ N. Then ‖un‖A(G) ≤ 1 for each n ∈ N. It follows that
there exists a subsequence {unk

} such that {unk
·T} converges to some

T1 ∈ AP (A(G)). Since

i∗(unk
· T ) = unk

· i∗(T )

and since i∗ is norm continuous we have that {unk
· i∗(T )} converges

to i∗(T1).
ii) Let T ∈ WAP (A(G)). Let {uα}α∈Ω be a net in inA(G) with ‖uα‖A(G) ≤

1 for each α ∈ Ω. Then as before ‖uα‖A(G) ≤ 1 for each α ∈ Ω. It fol-
lows that there exists a subnet {uαβ

} such that {uαβ
· T} converges

weakly to some T1 ∈ WAP (A(G)).
Let m ∈ A(G)∗∗. Then i∗∗(m) ∈ A(G)∗∗. It follows that

lim
β
〈m,uαβ

· i∗(T )〉 = lim
β
〈m, i∗(uαβ

· T )〉
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= lim
β
〈i∗∗(m), uαβ

· T 〉

= 〈i∗∗(m), T1〉
= 〈m, i∗(T1)〉.

This shows that {unk
· i∗(T )} converges weakly to i∗(T1) and hence

i∗(T ) ∈ WAP (A(G)).
iii) This follows immediately since, abusing notation, i∗(φx) = φx for every

x ∈ G.
iv) Again, this follows immediately since, once more abusing notation,

i∗(f) = f for every f ∈ L1(G).

It is worth asking whether the containments in the previous proposition
can ever be equalities. This is clearly the case if G is amenable since A(G) =
AM (G) = Acb(G). In [7, Lemma 4.7] the first author together with T. Miao
showed that if i∗(UCB(A(G))) = UCB(A(G)), then G must be amenable.
In fact, the following is true:

4.9.

Theorem. Let A(G) be either Acb(G) or AM (G). Let X be a closed invariant
subspace of A(G)∗ which contains L1(G). If i∗(X) is closed in V N(G), then
G is amenable.

Proof. Assume that i∗(X) is closed in V N(G). Since i∗(L1(G)) = L1(G), we
have that C∗

λ(G) ⊆ i∗(X). Moreover, since i∗ is continuous and injective, if
i∗(X) is closed, the restriction of i∗ to X is an isomorphism. In particular,
if we let u ∈ A(G), then u defines a continuous linear functional on C∗

λ(G).
Hence A(G) ⊆ Bλ(G) and the norm on A(G) is equivalent to the norm from
B(G). As such G is amenable [15].

4.10.

Remark. Let A(G) be either Acb(G) or AM (G). Let H be a closed subgroup
of G. Then the restriction map R : A(G) → A(H) is a contraction homomor-
phism. In general, we don’t know if it is surjective. In fact, if G = SL(2,R)
and H is a closed subgroup of G isomorphic to F2, then the restriction map
R : AM (G) → AM (H) is not surjective [1, Theorem 4.3]. However, there are
cases when the restriction map is known to be surjective. For example, we
say that G ∈ [SIN ]H if there is a neighbourhood base at the identity con-
sisting of sets that are invariant under the inner automorphisms by elements
in H. If G ∈ [SIN ]H , then R : A(G) → A(H) is surjective [1, Corollary 3.4].
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If H is amenable, then A(H) = A(H) and the surjectivity of R follows
from Herz’s Extension Theorem [11]. In this case A(H) is isometrically iso-
morphic to A(G)/IA(G)(H). Moreover, in this case R∗ is a ∗-homomorphism
from V N(H) onto

V NH(G) = span{φx | x ∈ H}−w∗

which is a von Neumann algebra in A(G)∗. (See [10, Lemma 3.1]). Moreover,

V NH(G) = IA(G)(H)⊥.

In general, we let

A∗
H(G) = span{φx | x ∈ H}−w∗

= IA(G)(H)⊥ ⊆ A(G)∗.

4.11.

Definition. Let G be a locally compact group, H a closed subgroup and
C ≥ 1 be a constant. We say that A(H) is C-extendable in A(G) if for
every v ∈ A(H) and every ε > 0, there exists a w ∈ A(G) such that v = w|H
and

‖w‖A(G) ≤ (C + ε)‖v‖A(H).

Moreover, we also assume that if v ∈ A(G), then we can choose w ∈ A(G).
We let

ExtA(G) = {H|A(H) is C-extendable for some C ≥ 1}.

4.12.

Remark. A(G) be either Acb(G) or AM (G). Assume that H ∈ ExtA(G).
Then R : A(G) → A(H) is surjective with kernel IA(G)(H) and hence A(H)
is isomorphic with A(G)/IA(G)(H). In particular, if A(H) is C-extendable
in A(G), then for each T ∈ A(H)∗

1/C‖T‖A(H)∗ ≤ ‖R∗(T )‖A(G)∗ ≤ ‖T‖A(H)∗

and R∗ is an isomorphism of A(H)∗ onto A∗
H(G). In case, C = 1, the

natural identification of A(H) with A(G)/IA(G)(H) is an isometric algebra
isomorphism.

The following proposition was established by Kaniuth and Lau [10,
Lemma 3.2] for A(G) for all closed subgroups H.
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4.13.

Proposition. Let A(G) either Acb(G) or AM (G). Let H ∈ ExtA(G). Let
R : A(G) → A(H) be the restriction map. Then

i) R∗(UCBc(A(H)) = UCBc(A(G)) ∩ A∗
H(G)

ii) R∗(UCB(A(H)) = UCB(A(G)) ∩ A∗
H(G)

iii) R∗(AP (A(H)) = AP (A(G)) ∩ A∗
H(G)

iv) R∗(WAP (A(H)) = WAP (A(G)) ∩ A∗
H(G)

Proof.

i) If T ∈ UCBc(A(H), then there exists a u ∈ A(H) ∩ C00(H) and a
T1 ∈ A(H)∗ such that T = u · T1. Since H ∈ ExtA(G), there exists a
v ∈ A(G) ∩ C00(G) such that R(v) = u. For w ∈ A(G),

〈R∗(T ), w〉 = 〈R∗(u · T1), w〉
= 〈u · T1, R(w)〉
= 〈T1, uR(w)〉
= 〈T1, R(vw)〉
= 〈R∗(T1), vw〉
= 〈v ·R∗(T1), w〉.

Hence R∗(T ) = v ·R∗(T1) ∈ UCBc(A(G)). But we also have R∗(T ) ∈
A∗

H(G).
Next assume that T ∈ UCBc(A(G)) ∩ A∗

H(G). In particular, there
exists T1 ∈ A(H)∗ such that T = R∗(T1).
Let K = supp(T ). Since T ∈ UCBc(A(G)), K is compact. As such
there exists u ∈ A(G)∩C00(G) such that u(x) = 1 for each x in some
open neighbourhood of K. It follows that u · T = T . Note also that
v = R(u) ∈ A(H) ∩ C00(H). In particular v · T1 ∈ UCBc(A(H). We
claim that R∗(v · T1) = T .
Let w ∈ A(G). Then

〈R∗(v · T1), w〉 = 〈v · T1, R(W )〉
= 〈T1, vR(w)〉
= 〈T1, R(uw)〉
= 〈R∗(T1), uw)

= 〈u · T,w〉
= 〈T,w〉.
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ii) Since R∗ is continuous, and UCBc(A(H)) is dense in UCB(A(H)), it
follows from i) that R∗(UCB(A(H)) ⊆ UCB(A(G)) ∩ A∗

H(G).
Since H ∈ ExtA(G), R

∗ is an isomorphism and hence R∗(UCB(A(H))
has closed range. It now follows from i) that R∗(UCB(A(H)) =
UCB(A(G)) ∩ A∗

H(G)
iii) Let T ∈ AP (A(H)). Let ‖u‖A(G) ≤ 1. Then ‖R(u)‖A(H) ≤ 1. More-

over, if v = R(u), then for each w ∈ A(G), we have

〈R∗(v · T ), w〉 = 〈v · T,R(w)〉
= 〈T,R(uw)〉
= 〈R∗(T ), uw〉
= 〈u ·R∗(T ), w〉

It follows that

{u ·R∗(T ) | ‖u‖A(G) ≤ 1} ⊆ R∗({v · T | ‖v‖A(H) ≤ 1}.

Since {v · T | ‖v‖A(H) ≤ 1} is relatively compact, so is R∗({v · T |
‖v‖A(H) ≤ 1} and hence so is {u ·R∗(T ) | ‖u‖A(G) ≤ 1}. That is

R∗(AP (A(H)) ⊆ AP (A(G)) ∩ A∗
H(G).

Next suppose that T ∈ AP (A(G)) ∩ A∗
H(G). It follows that there

exists a T1 ∈ A(H)∗ such that T = R∗(T1). Let {un} ⊂ A(H)
with ‖un‖A(H) ≤ 1. For each n ∈ N, choose vn ∈ A(G), such that
‖vn‖A(G)∗ ≤ C + 1 and vn|H

= un. Then from our calculation above
we see that

vn · T = R∗(un · T1).

Since T ∈ AP (A(G)) ∩ A∗
H(G), it follows that there exists a subse-

quence {vnk
·T} of {vn·T}, that converges in norm to some S ∈ A∗

H(G).
As R∗ is an isomorphism onto A∗

H(G), there exists an S1 ∈ A(H)∗

so that {unk
· T1} converges in norm to S1. This shows that T1 ∈

AP (A(H)) and hence that R∗(AP (A(H)) = AP (A(G)) ∩ A∗
H(G).

iv) That R∗(WAP (A(H)) ⊆ WAP (A(G)) ∩ A∗
H(G) follows in a manner

similar to the proof of iii) above.
Suppose that T ∈ WAP (A(G))∩A∗

H(G). It follows as before that that
there exists a T1 ∈ A(H)∗ such that T = R∗(T1). Let {uα}α∈Ω ⊆ A(H)
with ‖un‖A(H) ≤ 1. For each α ∈ Ω, choose vα ∈ A(G), such that
‖vα‖A(G) ≤ C + 1 and vα|H

= uα.
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Since T ∈ WAP (A(G)) ∩ A∗
H(G), there exists a subnet {vαβ

· T} of
{vα · T} that converges weakly to some S ∈ A(G)∗. However, since
A∗

H(G) is weakly closed, we have that S ∈ A∗
H(G). In particular,

{vαβ
·T} converges to S in the σ(A∗

H(G),A∗
H(G)∗) topology. Moreover

S = R∗(S1) for some S1 ∈ A(H)∗. Since R∗ : A(H)∗ → A∗
H(G)∗ is

an isomorphism it follows that {uαβ
· T1} converges to S1 weakly in

A(H)∗. Hence T1 ∈ WAP (A(H)).

Note: In the previous proposition, we do not know if, in general, without
the assumption that H ∈ ExtA(G) to obtain the equalities.

4.14.

Remark. Let M(G) denote either MA(G) or McbA(G), and let A(G) de-
note respectively AM (G) or Acb(G). Let H be an open subgroup of G. For
each u ∈ M(H) we define u◦ by

u◦ =

{
u(x) if x ∈ H,

0 if x �∈ H.

Then u◦ ∈ M(G) with ‖u◦‖M(G) = ‖u‖M(H).

Define Γ : M(H) → M(G) by Γ(u) = u◦. Then Γ is an isometric algebra
isomorphism from M(H) onto the ideal 1HM(G) of M(G). Moreover, if
u ∈ A(H), then Γ(u) = u◦ ∈ A(G)

Note that if T ∈ A(G)∗ and w ∈ A(G), then

〈R∗ ◦ Γ∗(T ), w〉 = 〈Γ∗(T ), R(w)〉
= 〈T,Γ(R(w))〉
= 〈T, 1Hw〉
= 〈1H · T,w〉.

That is R∗ ◦ Γ∗(T ) = 1H · T .
If T ∈ A(G)∗, v ∈ A(G) and u = R(v), then for w ∈ A(H), we have

〈Γ∗(v · T ), w〉 = 〈v · T,w◦〉
= 〈T, vw◦〉
= 〈T, (uw)◦〉
= 〈Γ∗(T ), uw〉
= 〈u · Γ∗(T ), w〉
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Hence Γ∗(v · T ) = R(v) · Γ∗(T ).

Finally, with H open, we can define a projection PH from A(G) onto the

ideal IA(G)(G\H) by PH(u) = 1Hu. The kernel of PH is the ideal IA(G)(H).

Moreover, PH = Γ ◦R.

4.15.

Proposition. Let A(G) denote either AM (G) or Acb(G). Let H be an open

subgroup of G. Then

i) Γ∗(A(G)∗) = A(H)∗ and Γ∗
|1H ·A(G)∗

is an isometric isomorphism from

1H · A(G)∗ onto A(H)∗

ii) Γ∗(UCB(A(G))) = UCB(A(H)) and Γ∗
|1H ·UCB(A(G))

is an isometric iso-

morphism from 1H · UCB(A(G)) onto UCB(A(H)).

iii) Γ∗(AP (A(G))) = AP (A(H)) and Γ∗
|1H ·AP (A(G))

is an isometric isomor-

phism from 1H ·AP (A(G)) onto AP (A(H)).

iv) Γ∗(WAP (A(G))) = WAP (A(H)) and Γ∗
|1H ·WAP (A(G))

is an isometric

isomorphism from 1H ·WAP (A(G)) onto WAP (A(H)).

v) Γ∗(Qδ
M (G)) = Qδ

M (H) and Γ∗
M |1H ·Qδ

M
(G)

is an isometric isomorphism

from 1H ·Qδ
M (G) onto Qδ

M (H).

vi) Γ∗(Qδ
cb(G)) = Qδ

cb(H) and Γ∗
|1H ·Qδ

cb
(G)

is an isometric isomorphism from

1H ·Qδ
cb(G) onto Qδ

cb(H).

vii) Γ∗(Qλ
M (G)) = Qλ

M (H) and Γ∗
|1H ·Qλ

M
(G)

is an isometric isomorphism

from 1H ·Qλ
M (G) onto Qλ

M (H).

viii) Γ∗(Qλ
cb(G)) = Qλ

cb(H) and Γ∗
|1H ·Qλ

cb
(G)

is an isometric isomorphism from

1H ·Qλ
cb(G) onto Qλ

cb(H).

Proof.

i) We first show that Γ∗ is surjective. Assume that T ∈ A(H)∗. Let

S = R∗(T ). We claim that T = Γ∗(S). Let u ∈ A(G). Then

〈Γ∗(S), u〉 = 〈S,Γ(u)〉
= 〈R∗(T ), u◦〉
= 〈T,R(u◦)〉
= 〈T, u〉.
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Next we show that ker(Γ∗) = 1G\H ·A(G)∗. Let 1G\H ·T ∈ 1G\H ·A(G)∗

and let u ∈ A(H). Then

〈Γ∗(1G\H · T ), u〉 = 〈1G\H · T,Γ(u)〉
= 〈1G\H · T, u◦〉
= 〈T, 1G\Hu◦〉
= 0.

Assume that T ∈ A(G)∗, but T �∈ 1G\H · A(G)∗. Then there exists
x ∈ H ∩ supp(T ). In particular, since H is an open neighbourhood of
x, there exists v ∈ A(G) such that v(x) �= 0 with supp(v) ⊆ H and
〈T, v〉 �= 0. Let u = R(v). Then u◦ = v so

〈Γ∗(T ), u〉 = 〈T,Γ(u)〉 = 〈T, u◦〉 = 〈T, v〉 �= 0.

Finally, we show that Γ∗
|1H ·A(G)∗

is an isometry. Clearly,

‖Γ∗‖B(A(G)∗,A(H)∗) ≤ 1.
Let T ∈ 1H · A(G)∗ such that ‖T‖A(G)∗ = 1. Let ε > 0. Then there
exists v ∈ A(G) with ‖v‖A(G) = 1 such that

|〈T, v〉| > 1− ε.

Note that since T ∈ 1H · A(G)∗, we have that T = 1H · T so that if
w = 1Hv, then ‖w‖A(G) ≤ 1 and

|〈T, v〉| = |〈T,w〉| > 1− ε.

Let u = R(v). Then ‖u‖A(H) ≤ 1 and

|〈Γ∗(T ), u〉| = |〈T,Γ(u)〉| = |〈T,w〉| > 1− ε.

ii) We need only show that Γ∗(UCB(A(G))) = UCB(A(H)).
The first observation we will make is that for any T ∈ A(G)∗, we can
write

T = 1H · T + 1G\H · T
and that Γ∗(T ) = Γ∗(1H · T ). Moreover

UCB(A(G)) = 1H · UCB(A(G))⊕ 1G\H · UCB(A(G))

Assume that T = v · T1 ∈ UCB(A(G)) with v ∈ A(G). Let u = R(v).
Then Γ∗(T ) = u · Γ∗(T1) ∈ UCB(A(H)). Since Γ∗ is continuous and
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{u · T | T ∈ A(G)∗, u ∈ A(G)} is dense in UCB(A(G)), we get that

Γ∗(UCB(A(G))) ⊆ UCB(A(H)).

Next assume that T = u ·T1 where T1 ∈ A(H)∗, u ∈ A(H). Then there

exists an S ∈ 1H · A(G)∗ such that T1 = Γ∗(S). If v = u◦, then

Γ∗(v · S) = R(v) · Γ∗(S) = u · T1.

Hence, Γ∗ : 1H · UCB(A(G)) → UCB(A(H) has dense range. But as

Γ∗ is isometric on 1H ·UCB(A(G)), we have that Γ∗(UCB(A(G))) =

UCB(A(H)).

iii) It is easy to see that T ∈ AP (A(G)) if and only if both 1H · T and

1G\H · T are in AP (A(G). Let T ∈ 1H · AP (A(G)). Let S = Γ∗(T ).
Now

{u · S|‖u‖A(H) ≤ 1} = Γ∗({u◦ · T |‖u‖A(H) ≤ 1}).

But {u◦·T |‖u‖A(H) ≤ 1}) is relatively compact. Hence, {u·S|‖u‖A(H) ≤
1} is also relatively compact and S ∈ AP (A(H)).

For the converse, suppose that S ∈ AP (A(H)) and choose T ∈ 1H ·
A(G)∗, so that S = Γ∗(T ). Since 1H · A(G)∗ is invariant, Γ∗ maps

{v · T |‖v‖A(G) ≤ 1} isometrically onto {R(v) · S|‖v‖A(G) ≤ 1}. Since
{R(v) ·S|‖v‖A(G) ≤ 1} is relatively compact, so is {v ·T |‖v‖A(G) ≤ 1}.

iv) This follows in a similar manner to iii) above.

v) This follows from i) since, abusing notation,

Γ∗(φx) =

{
φx if x ∈ H,
0 if x �∈ H.

for every x ∈ G.

vi) See v).

vii) This follows from i) since, abusing notation, Γ∗(φf ) = φf|H
and that

L1(H) is isometrically isomorphic with 1HL1(G).

viii) See vii).

5. Containment results

In this section, we will establish various containment results for invariant

subspaces of A(G), Acb(G), and AM (G) and their ideals.
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5.1.

Lemma. Let A(G) denote any of the algebras A(G), Acb(G) or AM (G). Let
I be a non-zero closed ideal in A(G) with E = Z(I). Then

span{φx | x ∈ G \ E}−‖·‖I∗ ⊆ UCB(I).

If G is discrete and Z(I) is a set of spectral synthesis, then

span{φx | x ∈ G \ E}−‖·‖I∗
= UCB(I).

Proof. Given any x ∈ G \E, we can find an open neighbourhood U of x for
which U ∩ E = ∅. Then we can choose u ∈ A(G) ∩ C00(G) ⊆ A(G) so that
u(x) = 1 and u(y) = 0 for every y �∈ U and hence u ∈ I. If v ∈ I, then

〈u · φx, v〉 = 〈φx, vu〉 = v(x)u(x) = v(x) = 〈φx, v〉.

Hence φx = u · φx ∈ UCB(I). It follows that span{φx | x ∈ G \ E}−‖·‖I∗ ⊆
UCB(I).

Next assume that G is discrete and that E = Z(I) is a set of spectral
synthesis. Let T = u · T1 ∈ I∗ where u ∈ I and T1 ∈ I∗.

Let x ∈ G \ E. If

J = {v ∈ I | v(x) = 0},
then J is a closed ideal in I of co-dimension 1. Hence J⊥ is one dimensional.
Clearly φx ∈ J⊥. It follows that

J⊥ = {αφx | α ∈ C}.

Next we note that if w = 1{x}, then w ·T1 ∈ J⊥. It follows that w ·T1 = αφx

for some α ∈ C.
Let v ∈ C00(G) ∩ I have support {x1, x2, . . . , xk} ⊆ G \ E. Then v =

k∑
i=1

v(xi)1xi
so that

v · T1 =

k∑
i=1

v(xi)1xi
· T1 =

k∑
i=1

v(xi)αiφxi

for some finite collection of scalars {α1, α2, . . . , αk}.
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Finally since E is a set of spectral synthesis, there exists a sequence
{un} ⊂ I with un ∈ c00(G) such that lim

n→∞
‖un − u‖A(G) = 0. If w ∈ I with

‖w‖A(G) ≤ 1, then

| 〈u · T1, w〉 − 〈un · T1, w〉 | = | 〈T1, wu〉 − 〈T1, wun〉 |
= | 〈T1, w(u− un)〉 |
≤ ‖T1‖I∗‖u− un‖A(G).

It follows that lim
n→∞

‖un ·T1−u ·T1‖I∗ = 0. However, un ·T1 ∈ span{φx |

x ∈ G \E} and hence we have that T = u ·T1 ∈ span{φx | x ∈ G \ E}−‖·‖I∗
.

We get that

UCB(I) ⊆ span{φx | x ∈ G \ E}−‖·‖I∗
.

Since the empty set is a set of Spectral synthesis for all of A(G), Acb(G)
and AM (G) the next result follows immediately.

5.2.

Corollary. Let G be a locally compact group. Then Qδ
cb(G) ⊆ UCB(Acb(G))

and Qδ
M (G) ⊆ UCB(AM (G)). Moreover, if G is discrete, then UCB(Acb(G)) =

Qδ
cb(G) = Qλ

cb(G) and UCB(AM (G)) = Qδ
M (G) = Qλ

M (G).

5.3.

Remark. If G is discrete, then UCB(Acb(G)) = Qλ
cb(G) = Qδ

cb(G) and
UCB(AM (G)) = Qλ

M (G) = Qδ
M (G). It follows that

UCB(Acb(G))∗ = Bλ
cb(G)

and

UCB(AM (G))∗ = Bλ
M (G)

respectively. Moreover, the normal algebra structure of both Bλ
cb(G) and

Bλ
M (G) agrees with the multiplication on UCB(Acb(G))∗ and UCB(AM (G))∗

respectively that is inherited from being the dual of a topologically intro-
verted subspace.

If I is a closed ideal in Acb(G), and if G is discrete and E = Z(I) is a
set of spectral synthesis, then we have seen that

span{φx | x ∈ G \ E}−‖·‖I∗
= UCB(I).
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In this case,

UCB(I)∗ = I
−w∗

⊆ Bλ
cb(G).

Similarly, if I ⊂ AM (G), then

UCB(I)∗ = I
−w∗

⊆ Bλ
M (G)

and if I ⊂ A(G), then

UCB(I)∗ = I
−w∗

⊆ Bλ(G).

5.4.

Proposition. Let A(G) denote any of the algebras A(G), Acb(G) or AM (G).

Let I be a non-zero closed ideal in A(G). If I has a bounded approximate

identity, then WAP (I) ⊆ UCB(I).

Proof. Assume that I has a bounded approximate identity {uα}α∈Ω. Let
T ∈ WAP (I). Then for u ∈ I,

lim
α∈Ω

〈uα · T, u〉 = lim
α∈Ω

〈T, uαu〉 = 〈T, u〉.

That is {uα · T}α∈Ω converges in the weak-∗ topology on I∗ to T . But

since T ∈ WAP (I) and since {uα}α∈Ω is bounded, there exists a subnet

{uαβ
}β∈Ω1

such that {uαβ
· T}β∈Ω1

converges weakly in I∗ to some T0 ∈ I∗.
But this means that T = T0 so T is in the weak closure of {u · T |u ∈ I}
and hence in the weak closure of UCB(I). But UCB(I) is weakly closed so

T ∈ UCB(I).

5.5.

Remark. It follows immediately from the definitions that for any com-

mutative Banach algebra A, we have that AP (A) ⊆ WAP (A). Hence if

A(G) denotes any of the algebras A(G), Acb(G) or AM (G) and if I is a

non-zero closed ideal in A(G) with a bounded approximate identity, then

AP (I) ⊆ UCB(I).
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5.6.

Theorem. Let A(G) denote any of the algebras A(G), Acb(G) or AM (G).

i) Let I be a non-zero closed ideal in A(G) with UCB(I) ⊆ WAP (I),
then G is discrete.

ii) Let I be a non-zero closed ideal in A(G) with x �∈ Z(I). Then φx|I
∈

AP (I). In particular, if G is discrete and Z(I) is a set of spectral
synthesis, then UCB(I) ⊆ AP (I).

iii) If G is discrete, Z(I) is a set of spectral synthesis, and I has a bounded
approximate identity, then UCB(I) = AP (I).

Proof.

i) This is [8, Corollary 4.19].
ii) Let {uα}α∈Ω be a net in I such that ‖uα‖A(G) ≤ 1, we find a subnet

{uαβ
}β∈Ω1

such that lim
β∈Ω1

uαβ
(x) = c ∈ C. It follows that if u ∈ I with

‖u‖A(G) ≤ 1, then

| 〈cφx|I
, u〉 − 〈uαβ

· φx|I
, u〉 | = | 〈φx|I

, cu〉 − 〈φx|I
, uαβ

u〉 |
= | cu(x)− uαβ

(x)u(x) |
≤ |c− uαβ

(x) |

This shows that lim
β∈Ω1

‖uαβ
· φx|I

− cφx|I
‖I∗ = 0. Hence φx|I

∈ AP (I).

The fact that UCB(I) ⊆ AP (I) follows from Lemma 5.1
iii) This follows from ii) and Remark 5.5.

5.7.

Corollary. Let A(G) denote either of the algebras Acb(G) or AM (G). Then
Qδ

M (G) ⊂ AP (A(G)) and Qδ
cb(G) ⊂ AP (A(G)). In particular, G is discrete

if and only if UCB(A(G)) ⊆ AP (A(G)). Moreover, if A(G) has a bounded
approximate identity, then G is discrete if and only if UCB(A(G))=
AP (A(G)).

5.8.

Proposition. Let G be a locally compact group. Then

i) Qλ
cb(G) ⊆ UCB(Acb(G))

ii) Qλ
cb(G) ⊆ WAP (Acb(G))
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iii) Qλ
cb(G) = UCB(Acb(G)) if and only if G is discrete.

iv) Qλ
M (G) ⊆ UCB(AMG).

v) Qλ
cb(G) ⊆ WAP (AM (G)).

vi) Qλ
M (G) = UCB(AMG) if and only if G is discrete.

Proof.

i) Since C00(G) is dense in L1(G) and hence in Qλ
cb(G), it is enough to

show that every f ∈ C00(G) is in UCB(Acb(G)).
Assume that f ∈ C00(G) with supp(f) = K. Then there exits a u ∈
Acb(G) such that u(x) = 1 for each x ∈ K. In particular u·f = uf = f .
Hence f ∈ UCB(Acb(G)).

ii) Let {uα}α∈Ω be a net in Acb(G) with ‖uα‖Acb(G) ≤ 1 for each α ∈ Ω.
Since

{uα}α∈Ω ⊆ Bλ
cb(G) = Qλ

cb(G)∗,

by passing to a subnet if necessary we can assume that {uα}α∈Ω con-
verges in the σ(Bλ

cb(G),Qλ
cb(G)) topology to some u ∈ Bλ

cb(G).
Now consider m ∈ Acb(G)∗∗. Let v = m|Qλ

cb
(G)

. If f ∈ Qλ
cb(G), then

lim
α∈Ω

〈m,uα · f〉 = lim
α∈Ω

〈v, uα · f〉

= lim
α∈Ω

∫
G
v(x)uα(x)f(x)dx

= lim
α∈Ω

〈uα, v · f〉

= 〈u, v · f〉
= 〈v, u · f〉
= 〈m,u · f〉.

That is {uα · f}α∈Ω converges weakly to u · f . This shows that f ∈
WAP (Acb(G)).

iii) Assume that Qλ
cb(G) = UCB(Acb(G)). Then by ii) above we have that

UCB(Acb(G)) ⊆ WAP (Acb(G)). In particular, Theorem 5.6 i) shows
that G is discrete.
The converse is Corollary 5.2.
The proofs of iv), v) and vi) are similar to those of the corresponding
statements about Acb(G).

5.9.

Remark. If A(G) is any of A(G), AM (G) or Acb(G), then the question
of when A(G) = WAP (A(G)) is equivalent to the question of identifying
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groups G such that A(G) is Arens regular. For G amenable, it is known

that G must be finite. In general, while it is strongly suspected that A(G) =

WAP (A(G)) if and only if G is finite, surprisingly, even for A(G), this is

still not known to be true. However, we have recently shown that if A(G) =

WAP (A(G)), then G must be discrete [8, Theorem 5.1].

Granirer has shown that UCB(A(G)) = V N(G) if and only if G is

compact. This motivates us asking: If A(G) is either AM (G) or Acb(G), is

UCB(A(G)) = A(G)∗ if and only if G is compact. While we strongly expect

the answer to this question to be yes, we are unable to show this in general.

However, we can show that if UCB(A(G)) = A(G)∗, then G has a compact

open subgroup, and every amenable subgroup is compact.

5.10.

Theorem. Let A(G) be either AM (G) or Acb(G). If UCB(A(G)) = A(G)∗,
then G has a compact open subgroup, and every closed amenable subgroup

is compact. In particular, if G is almost connected, then G is compact.

Proof. Assume that H is a closed amenable subgroup. Then H ∈ ExtA(G).

It follows from Proposition 4.13 that R∗(UCB(A(H)) = UCB(A(G)) ∩
V NH(G). However, if we assume that UCB(A(G)) = A(G)∗, we have

that R∗(UCB(A(H)) = V NH(G). This in turn means that UCB(A(H)) =

V N(H). It then follows from Granirer’s result that H is compact.

To see that G has an open subgroup we note that if the connected

component G0 is not amenable, then G0 contains the free group F2 on two

generators. In particular, G0 contains an infinite non-compact abelian group

which is impossible from our argument above. As a consequence it must be

the case that G0 is compact. From here we note that G also has an open

almost connected subgroup G1. As G1/G0 is compact, G1 must also be

compact.
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[5] P. Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull.

Soc. Math. France 92 (1964), 181–236. MR0228628

[6] B. E. Forrest, Completely bounded multipliers and ideals in A(G) van-

ishing on closed subgroups, In: A. T.-M. Lau and V. Runde, Banach Al-

gebras and Their Applications, Contemp. Math. 363, pp. 89–94. Amer-

ican Mathematical Society, 2004. MR2097953

[7] B. Forrest and T. Miao, Uniformly Continuous Functionals and M-

Weakly Amenable Groups,. Canad. J. Math. 65 (2013), no. 5, 1005–

1019. MR3095004

[8] B. Forrest, J. Sawatzky and A. Thamizhazhagan, Arens regularity of

ideals in A(G), Acb(G) and AM (G), (preprint).

[9] E. E. Granirer, Weakly almost periodic and uniformly continuous func-

tionals on the Fourier algebra of any locally compact group, Trans.

Amer. Math. Soc. 189 (1974), 371–382. MR0336241

[10] E. Kaniuth and A.T. Lau, Spectral Synthesis for A(G) and Subspaces

of VN(G), Proc. Amer. Math. Soc., 129 (2001), no. 11, 3253–3263.

MR1845000

[11] Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier

(Grenoble) 23 (1973), no. 3, 91–123. MR0355482

[12] A. T. Lau, Uniformly continuous functionals on the Fourier algebra of

any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39–59.

MR0531968

https://mathscinet.ams.org/mathscinet-getitem?mr=3162241
https://mathscinet.ams.org/mathscinet-getitem?mr=0784292
https://mathscinet.ams.org/mathscinet-getitem?mr=0559675
https://mathscinet.ams.org/mathscinet-getitem?mr=0372531
https://mathscinet.ams.org/mathscinet-getitem?mr=0228628
https://mathscinet.ams.org/mathscinet-getitem?mr=2097953
https://mathscinet.ams.org/mathscinet-getitem?mr=3095004
https://mathscinet.ams.org/mathscinet-getitem?mr=0336241
https://mathscinet.ams.org/mathscinet-getitem?mr=1845000
https://mathscinet.ams.org/mathscinet-getitem?mr=0355482
https://mathscinet.ams.org/mathscinet-getitem?mr=0531968


Invariant subspaces in the dual of Acb(G) and AM (G) 267

[13] A. T. Lau, Uniformly continuous functionals on Banach algebras, Col-
loq. Math. 51 (1987), 195–205. MR0891287

[14] A. T. Lau and J. C. S. Wong, Weakly almost periodic elements in
L∞(G) of a locally compact group, Proc. Amer. Math. Soc. 107 (1989),
no. 4, 1031–1036. MR0991701

[15] V. Losert, Properties of the Fourier algebra that are equivalent to
amenability, Proc. Amer. Math. Soc. 92 (1984), no. 3, 347–354.
MR0759651

[16] J. S. Pym, The convolution of functionals on spaces of bounded func-
tions, Proc. London Math. Soc. 15 (1965), 84–104. MR0173152

Brian Forrest

Department of Pure Mathematics

University of Waterloo

Waterloo, Ontario Canada N2L 3G1

Canada

E-mail address: beforres@uwaterloo.ca

John Sawatzky

Department of Pure Mathematics

University of Waterloo

Waterloo, Ontario Canada N2L 3G1

Canada

E-mail address: jmsawatzky@uwaterloo.ca

Aasaimani Thamizhazhagan

Department of Pure Mathematics

University of Waterloo

Waterloo, Ontario Canada N2L 3G1

Canada

E-mail address: athamizhazhagan@uwaterloo.ca

Received April 12, 2023

https://mathscinet.ams.org/mathscinet-getitem?mr=0891287
https://mathscinet.ams.org/mathscinet-getitem?mr=0991701
https://mathscinet.ams.org/mathscinet-getitem?mr=0759651
https://mathscinet.ams.org/mathscinet-getitem?mr=0173152
mailto:beforres@uwaterloo.ca
mailto:jmsawatzky@uwaterloo.ca
mailto:athamizhazhagan@uwaterloo.ca

	Introduction
	Preliminaries and notation
	
	
	
	
	
	
	
	

	Multipliers of the fourier algebra
	
	
	
	
	
	
	

	Invariant subspaces of Acb(G) or AM(G) and their functorial properties
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Containment results
	
	
	
	
	
	
	
	
	
	

	Acknowledgments
	References

